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Abstract – We discuss crystallization as a non-equilibrium process. In a system of hard spheres
under compression at a constant rate, we quantify the amount of heat that is dissipated during the
crystallization process. We interpret the dissipation as arising from the resistance of the system
against phase transformation. An intrinsic compression rate is identified that separates a quasi-
static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes
more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of
non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by
analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation
and external driving.

Copyright c© EPLA, 2016

Crystallization from the metastable fluid is a non-
equilibrium process. Yet, it is usually discussed in terms
of quasi-equilibrium concepts such as transition state the-
ory [1,2]. Those approaches do not account for the fact
that any irreversible process of finite duration is inevitably
subject to dissipation. Here, we present a numerical ap-
proach to quantify this dissipation for a system that crys-
tallizes under compression. For slow compression rates,
the dissipation is proportional to the driving rate, allowing
us to identify an intrinsic resistance of the system to phase
transformation. Above a certain compression rate, the re-
sponse becomes a nonlinear function of the external driv-
ing. Crystallization in this regime proceeds faster, due to
the opening of non-equilibrium relaxation channels.

A standard way to characterize irreversible processes is
to quantify entropy production [3,4]. However, to do so
directly is unpractical even for very simple model systems.
Since we compress the system at a constant rate, we can
bypass this problem: We evaluate the overall work per-
formed on the system, and subtract the known equilibrium
contribution.

As a model system we use hard spheres, the most sim-
ple system that shows a liquid-to-crystal transition [5].
Hard spheres are expected to capture the essential dynam-
ical processes in dense liquids, since these are governed by
excluded volume between the constituents [6,7]. Our re-
sults should thus be applicable to crystallization in many

metallic systems as well as dense colloidal suspensions.
Crystallization dynamics in hard spheres has been exten-
sively studied in computer simulation and analysed using
equilibrium concepts [8–12].

We perform standard Monte Carlo (MC) computer sim-
ulations of hard spheres in the NPT ensemble. The diam-
eter of the spheres σ, the free diffusion time t0, and the
thermal energy kBT define the units of length, time, and
energy. The system is prepared in a fluid equilibrium state
at constant pressure and then compressed with constant
rate Ṗ for a duration τ . Under these conditions the work
W performed on the system is given by dW = V (t)Ṗ dt,
where V (t) is the volume response of the system to the
external driving Ṗ . After subtraction of the equilibrium
Gibbs free-energy difference ΔG between the initial and
final state, the dissipated energy associated to each simu-
lation trajectory remains,

Wdiss =
∫ τ

0

Ṗ V (t) dt − ΔG. (1)

The volume evolution of two typical trajectories is
shown in fig. 1 (solid lines). Dashed lines indicate the
equations of state of the liquid [13] and the crystal [14]
used to evaluate ΔG. The dissipated energy Wdiss, in-
dicated by the shaded areas, consists of three contribu-
tions: (I) is the work associated with compression of the
metastable liquid phase until the nucleation event occurs
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Fig. 1: (Colour online) Specific volume V (t)/N along two typi-
cal simulation trajectories of a hard-sphere system compressed
with a rate Ṗ = 0.01065 kBT/σ3t0 (solid lines). Induction
times are labeled tN and t′N . Dashed lines indicate the equa-
tion of state of the metastable fluid (upper line) and the ideal
equilibrium crystal (lower line). A vertical line marks the coex-
istence point. Shaded areas indicate the different contributions
to the dissipated energy, eq. (1). Area (II) is the dissipation qc

during the crystallization process.

at some induction time tN . (III) is a contribution that
arises because the system is not completely transformed
into the equilibrium crystal during the simulation time,
but contains defects. Its effect on the following analysis
is minor. (I) and (III) are quasi-equilibrium contributions
to Wdiss. Contribution (II) yields the non-equilibrium dis-
sipation qc associated with the crystallization process

qc =
1
N

∫ tN+Δt

tN

dt Ṗ [V − Veq(P )], (2)

where Δt is the process duration.
We briefly summarize the technical details of the MC

simulation. Particle displacements are drawn from a
flat distribution over [−Δ,Δ] with Δ = 0.065σ. As
unit of time we use t0 = σ2/D0, where the free-particle
diffusion coefficient is D0 = Δ2/6/MC sweep ≈ 7 ×
10−4σ2/MC sweep. To control the pressure, a volume
change is attempted once per MC sweep by rescaling the
box lengths according to Li �→ Li exp[0.0012(r − 1/2)],
where r is a uniform random variable in ]0, 1] and i labels
the Cartesian directions. We allow changes of Li inde-
pendently in each direction to accomodate crystals with
unit cells of different aspect ratios. Simulations start from
an equilibrium fluid state at pressure P0 = 8 kBT/σ3 and
end at Pτ = 23 kBT/σ3. (The crystal-liquid coexistence
pressure is Pc = 11.54 kBT/σ3 [15].) Trajectory dura-
tions τ = (Pτ − P0)/|Ṗ | were chosen as τ = 1 × 105,
2 × 105, 5 × 105, 1 × 106, 2 × 106, 5 × 106, and 1 × 107

MC sweeps (corresponding to compression rates between
Ṗ ≈ 0.214 kBT/σ3t0 and Ṗ ≈ 0.00214 kBT/σ3t0). We
monitor the degree of crystallinity through the local q6q6

bond order parameter [16,17] and analyze the averaged
|q4| and |q6| to distinguish different crystal structures [18].
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Fig. 2: (Colour online) Left panel: distribution of work per
particle, p(W/N), performed upon compression (forward pro-
cess: right set of curves) and expansion (reverse process:
left set of curves, shown as p(−W/N)) across the phase
transition with a constant rate |Ṗ |. Histograms are shown
for |Ṗ | = 0.214, 0.107, 0.0428, 0.0214, 0.0107, 0.00428 kBT/σ3t0
(from right to left for the forward process). The dashed verti-
cal line indicates the equilibrium chemical potential difference
Δμ. Right panel: Δμ estimated using the Jarzynski relation,
eq. (3), see text. The horizontal dashed line indicates the equi-
librium value.

To compute qc, eq. (2), we need to define the time win-
dow of the crystallization process, Δt. We set the induc-
tion time tN to the time after which the largest crystalline
cluster maintains a size of ten or more particles. The end
of the process, tN + Δt, is set to the time when the over-
all crystallinity reaches 60%. This value is large enough
to capture the main contributions of dissipated heat, but
still small enough to minimize the influence of periodic
boundary conditions.

Since rare trajectories can contribute considerably to
the non-equilibrium work distribution, we need to gen-
erate a very large number of independent trajectories
(O(105) runs for each compression rate). To reduce com-
putational effort, we simulate a relatively small system of
N = 540 particles. We have checked that this system is
large enough to reproduce the nucleation rates obtained
from simulations with N = 8000 and N = 216000 parti-
cles [19]. For each value of Ṗ , we have sampled between
70000 and 650000 trajectories, obtained by selecting only
those runs that crystallized to a degree of at least 75%. In
total this required 90 years of CPU time on 2.2GHz Xeons.
In addition, to test for finite-size effects, we computed 〈qc〉
for four different Ṗ with N = 8000 particles. As the sim-
ulation times would have become forbiddingly long when
applying a barostat that simply rescales the particle po-
sitions, we used the barostat introduced by Almarza [20]
instead. All results that we discuss in the following were
qualitatively the same for the larger system, but due to
the different choice of barostat the absolute values of the
energies differed.

The distribution of total work per particle performed
along the non-equilibrium trajectories is shown in fig. 2
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Fig. 3: (Colour online) Left panel: probability distribution of
dissipated energy per particle during crystallization, qc, for dif-
ferent compression rates, Ṗ = 0.00214, 0.0107, 0.0214, 0.0428,
0.107, 0.214 kBT/σ3t0, as indicated. Right panel: correspond-
ing distributions of the crystallization loss, qc/Ṗ .

(left panel) for different |Ṗ |. Upon compression (Ṗ > 0),
the distributions pF(W/N) of this (forward) process are
centered around values W/N > Δμ = ΔG/N . For small
Ṗ , the curves are monomodal and well described by Gaus-
sian probability distribution functions down to the accu-
racy set by the number of trajectories that we simulated.
The same is true upon expansion (Ṗ < 0) for the (reverse)
process involving melting, at all values of |Ṗ | considered
here (shown in fig. 2 as pR(−W/N)). At larger Ṗ , a more
subtle structure is seen for the forward process. In partic-
ular around Ṗ ≈ 0.0428 kBT/σ3t0, two distinct contribu-
tions to pF(W/N) can be discerned.

The work distributions p(W ) of an arbitrary non-
equilibrium process are connected to the equilibrium ΔG
by fluctuation theorems [4]. Crooks’ theorem [21] relates
pF(W ) to pR(W ) by

pF(W )e−βW = pR(−W )e−βΔG, (3)

and integrating over W , one obtains the Jarzynski rela-
tion [22]. We use eq. (3) to test whether our p(W ) are
consistent with the known ΔG. A direct test would re-
quire to sample both pF(W ) and pR(−W ) at |W | ≈ ΔG
well enough, but this is unfeasible with our current com-
putational resources. To nevertheless get an estimate, we
fit pF(W ) by a superposition of two Gaussians (although
it need not be Gaussian in the tails), using eq. (3) with
the data for pR(−W ) as a constraint. The values of Δμ
estimated from this procedure are shown in fig. 2 (right
panel, circles with error bars). They agree reasonably well
with the known equilibrium Δμ. This holds in particular
also for the case where two distinct contributions can be
discerned in the forward process.

The dissipation per particle qc associated with the crys-
tallization process is obtained after subtracting the equi-
librium and quasi-equilibrium contributions from W/N .
The left panel of fig. 3 shows the distribution p(qc) for var-
ious values of the compression rate Ṗ . As the compression
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Fig. 4: (Colour online) Crystallization loss, i.e. the average
energy per particle dissipated during crystallization relative to
the external driving rate, ζ(Ṗ ) = 〈qc〉/Ṗ , as a function of com-
pression rate Ṗ (full symbols, with lines to guide the eye).

rate increases, the distribution shifts to higher average 〈qc〉
and broadens. At the highest compression rate we simu-
lated, 〈qc〉 is about 0.2 kBT , which is of the same order of
magnitude as the average (macroscopic) interfacial energy
over the area per particle, γσ2 ≈ 0.6 kBT [23]. For small
Ṗ , the distributions collapse when plotted in terms of the
reduced variable qc/Ṗ , cf. fig. 3 (right panel). This col-
lapse defines the regime of quasi-static behavior, where the
response qc/Ṗ of the system is independent of the driving
force.

In the context of equilibrium thermodynamics the
term “quasi-static” is restricted to the case of infinitely
slow driving, Ṗ = 0. The existence of a regime of
Ṗ -independent distributions of qc/Ṗ justifies the exten-
sion of this notion to finite (small) driving rates. The lim-
iting value of the average response ζ := 〈qc〉/Ṗ attained
for Ṗ → 0 can be interpreted as an immanent system
property, the quasi-static crystallization loss.

At driving forces above a threshold Ṗ ∗ the crystalliza-
tion loss ζ(Ṗ ) drops sharply with increasing Ṗ , as shown
in fig. 4. This marks the cross-over from the quasi-static
to a strongly driven regime of crystallization.

Intuitively, one would expect the relative dissipation to
increase once the rate of driving exceeds typical micro-
scopic relaxation times of the system, as additional work
can be dissipated through the microscopic degrees of free-
dom. The counterintuitive behavior of the crystallization
loss can be rationalized by analogy with mechanical fric-
tion in fluids. There, one typically observes friction to
decrease strongly in the nonlinear-response regime of fast
driving [24]. This is particularly well known for the viscos-
ity of non-Newtonian fluids [25], where the effect is called
shear thinning. It also holds for a driven tracer subject to
an external force in a dense fluid [26]. In these cases, the
slow near-equilibrium relaxation processes are replaced by
faster ones that occur on the time scale set by the exter-
nal driving. In analogy, we interpret ζ(Ṗ ) as a generalized
friction coefficient that characterizes the resistance of the
melt to phase transformation.
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ζ(Ṗ ) shows non-monotonic behavior because both ef-
fects, i.e., increased friction through enhanced coupling to
microscopic degrees of freedom as well as decreased friction
through non-equilibrium relaxation channels, contribute
to the crystallization loss. As indicated in fig. 3, the ini-
tial increase is associated with an increase in the large-qc

tail. This is intuitively expected since an increased cou-
pling to microscopic degrees of freedom increases the prob-
ability for strongly dissipating trajectories. At Ṗ > Ṗ ∗,
this large-qc tail is cut off. (We will show in the follow-
ing that this effect is due to the formation of metastable
crystal structures.) The cross-over between the two trends
occurs around Ṗ ∗ ≈ 2 × 10−2 kBT/σ3t0 (where the shape
of p(W ) changes, as noted in connection with fig. 2). The
cross-over value can be related to the time scale tL needed
for collective particle rearrangements involving the near-
est and next-to-nearest neighbour shells. tL is set by
the long-time self-diffusion coefficient DL = σ2/tL. For
the typical densities reached when crystallization sets in,
DL/D0 = O(10−2) (for the initial fluid state in our work,
DL/D0 ≈ 0.04) [27]. Hence, Ṗ ∗tL = O(kBT/σ3); i.e. the
effects of the external driving start to dominate the crys-
tallization process once the compression rate is faster than
the typical thermal energy density can be redistributed
through collective particle rearrangements.

In constant-volume simulations of crystallization start-
ing from over-compressed hard-sphere fluid states [9,10],
the time scale tL was also identified as determining the
induction times tN , as long as the initial packing frac-
tion was smaller than φ ≈ φg = 0.58 (corresponding
to V/N ≈ πσ3/6φ ≈ 0.903). Above this packing frac-
tion, tN � tL was found; hence, two regimes of nu-
cleation were identified, based on equilibrium concepts
(termed nucleation-and-growth and spinodal nucleation).
The distinction between two regimes of crystallization
that we discuss here, based on a cross-over to far-from-
equilibrium response, is fundamentally different. Note
that for Ṗ ≈ Ṗ ∗, our simulations reach an average packing
fraction at tN of φ ≈ 0.55 < φg, thus there is not even a
coincidence in the packing fractions at cross-over for these
different phenomena.

In the strongly driven regime, Ṗ > Ṗ ∗, the melt relaxes
faster into the crystal phase than it does in the quasi-
static case. This is seen in fig. 5 (left panel), where we
show the distributions of the crystallization-process du-
rations Δt. For small Ṗ , the distributions collapse to a
Ṗ -independent curve with a pronounced tail at large Δt
and an average 〈Δt〉 ≈ 20t0 ≈ tL. This confirms that
long-time self-diffusion sets the relevant time scale for the
crystallization process in the quasi-static regime. At large
Ṗ , the large-Δt tail is cut off and p(Δt) narrows with in-
creasing Ṗ . This suggests that the external driving rate
sets a relevant time scale, (kBT/σ3)/Ṗ , for the crystalliza-
tion process at Ṗ > Ṗ ∗.

This accelerated crystallization mechanism proceeds
through non-equilibrium relaxation channels, in particular
the formation of metastable crystal structures (bcc instead
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Fig. 5: (Colour online) Left: distribution of the time interval
Δt over which the system crystallizes, for different Ṗ corre-
sponding to the data shown in fig. 3. For the two highest val-
ues of Ṗ , vertical lines indicate the maximum Δt that would
be possible for the earliest induction time tN observed. Right:
distribution of the fraction of bcc crystal structures in the crys-
talline part of the system at the end of the compression run.

of fcc). The right panel of fig. 5 shows the probability
distribution of the fraction of particles with a bcc-like en-
vironment in the crystal at the end of the simulation run.
Again, at slow driving rates, Ṗ � Ṗ ∗, the distributions
are independent of Ṗ . For Ṗ � Ṗ ∗, the formation of bcc
structures is facilitated strongly. There even is a signifi-
cant number of runs that crystallize completely into bcc.
Interestingly, the question why fcc is the stable equilib-
rium structure while bcc should form more easily is known
from Landau theory [28]. There, the effect arises because
a larger set of reciprocal lattice vectors is needed to form
fcc. This implies that a larger set of local density fluctu-
ations needs to be sampled. It is plausible that this takes
more time, and hence, bcc is favored kinetically at large
driving rate Ṗ .

The tendency to form metastable crystal structures in
rapid solidification is well known from metallic melts [29]
and also colloidal suspensions [30]. It is often attributed
to Ostwald’s step rule, which invokes interfacial tensions
between the crystal nucleus and the surrounding fluid [17].
These are inherently equilibrium, macroscale quantities
that might not be well defined for a non-equilibrium pro-
cess and on the scale of a few particle diameters. In par-
ticular since the dissipation along the process can be of
the same order of magnitude as the interfacial energy, an
explanation of the appearance of metastable structures on
the basis of kinetic processes (as first indicated in ref. [31])
appears more reasonable.

In summary, we have discussed the crystallization pro-
cess in terms of non-equilibrium notions. As a central
quantity, we have calculated the distribution of heat dis-
sipated during the process. Compressing the system at
different rates Ṗ and measuring the volume response,
we observe two regimes: that of near-equilibrium quasi-
static crystallization below a characteristic compression
rate Ṗ ∗, and the strongly driven far-from-equilibrium
regime above. The cross-over Ṗ ∗ is set by the time scale
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of collective particle rearrangements and the coexistence
pressure. This cross-over is analogous to the one from
linear response to nonlinear response in driven fluids,
and extends the notion of these regimes to the dynam-
ics across the first-order phase transition. Below Ṗ ∗,
the resistance of the system against the phase transition,
ζ(Ṗ ) = 〈qc〉/Ṗ , is constant, and the system responds
quasi-statically. Above Ṗ ∗ the crystallization process is
facilitated, because new relaxation channels are opened
via the formation of bcc structures instead of the thermo-
dynamically favored fcc ones.
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