
Towards Security-aware Mutation Testing
Thomas Loise∗†, Xavier Devroey∗, Gilles Perrouin∗, Mike Papadakis†, and Patrick Heymans∗

∗PReCISE Research Center,University of Namur, Belgium, Emails: thomas.loise@student.unamur.be,
xavier.devroey@unamur.be, gilles.perrouin@unamur.be, patrick.heymans@unamur.be
†SnT, SERVAL Team, University of Luxembourg, Email: michail.papadakis@uni.lu

Abstract—Mutation analysis forms a popular software analysis
technique that has been demonstrated to be useful in supporting
multiple software engineering activities. Yet, the use of mutation
analysis in tackling security issues has received little attention.
In view of this, we design security aware mutation operators to
support mutation analysis. Using a known set of common security
vulnerability patterns, we introduce 15 security-aware mutation
operators for Java. We then implement them in the PIT mutation
engine and evaluate them. Our preliminary results demonstrate
that standard PIT operators are unlikely to introduce vulner-
abilities similar to ours. We also show that our security-aware
mutation operators are indeed applicable and prevalent on open
source projects, providing evidence that mutation analysis can
support security testing activities.

Keywords-Mutation analysis; Mutation operators; Security
Testing; PIT; FindBugs

I. INTRODUCTION

Mutation testing is a popular fault-based testing technique
[1], [2]. As every fault-based technique, it provides guarantees
that the software under analysis is free from specific types
of faults [3]. The technique has attracted a lot of interest
because it forms a flexible and effective way to perform
testing. Thus, it is used to guide test generation [4], to
perform test assessment [5] and to uncover subtle faults [6].
It works by making syntactically altered program versions of
the system under test. These alterations are designed to reflect
the faults that our testing seeks for and are used for assessing
the adequacy of testing. The approach is flexible because it
relies on the introduced alterations [2]. Thus, by designing
appropriate mutations it is possible to test all structures of
a given language and almost everything that testing process
seeks for. In view of this, we design security aware mutations
that can be used to guide the testing of security related issues.
Taking advantage of the fault-based nature of the technique,
our mutations ensure that security-aware faults are not present
and through regression tests that these will not appear in
the future when the software will evolve. Existing mutation
operators, especially those used by the Java mutation testing
tools [7] are restricted to simple syntactic alterations and faults.
Hence, it is unlikely that they can lead to tests that effectively
exercise security related aspects of the applications. To deal
with this issue, we design security-aware mutations based on
common security bug patterns encoded by a well-known static
analysis tool called FindBugs-sec-plugin1 [8]. The bug patterns

1Find Security Bugs is a plugin for FindBugs and aims at identifying
security issues in Java web applications.

used by the static analysis tools aim at identifying potential
issues with the code under analysis. Therefore, they point-
out the presence of potential bugs and not opportunities for
injecting them as it is done by the mutation operators. To
cover this last point and design our security-aware mutations,
we manually analyzed the bug patterns, inferred the classes
of faults they represent and inverted them, i.e., we defined
rules that introduce these defects. We have implemented our
mutations on PIT mutation testing engine [9] and provide ini-
tial exploratory results showing its applicability and difference
from the traditional mutation operators. Thus, we applied both
the traditional and our operators on four subject programs
and validated the presence of potential vulnerabilities using
FindBugs. Our results demonstrate that traditional operators
are ineffective in introducing such security-aware faults.

Overall, our security related faults represent simple vulner-
abilities, which can form an initial step for defining security-
aware testing requirements. We believe that these require-
ments are particularly useful when building regression test
suites of web application. Furthermore, our operators can be
particularly useful in evaluating and comparing fuzzing or
other security testing tools. In summary, our paper makes the
following contributions:

1) We design 15 security-aware mutation operators for sup-
porting security mutation testing.

2) We extend PIT so that it applies both traditional and
security-aware mutation testing. To support future re-
search, we make our implementation publicly available.

3) We make an initial assessment of our operators demon-
strating their prevalence and potential weaknesses of the
traditional operators using large real-world projects.

The rest of the paper is organized as follows: Sections II
and III presents operator definition process and detail our
security-aware operators. Section IV describes our assessment
and results. Sections V and VI discus threats to validity and
related work. Finally Section VII concludes the paper.

II. MUTATION OPERATORS DEFINITION PROCEDURE

Security related issues have received little attention by the
mutation testing literature. As a result, it lacks operators that
introduce security bugs. While security bugs are more or less
well understood, there is no clear definition that we could use.
Therefore, for the purposes of this study we use the following
definition: a security bug is a piece of code that can lead to
one or several vulnerabilities in an application.

TABLE I: Security-aware Mutation Operators

Acronym Name

UPPRNG USE PREDICTABLE PSEUDO RAND NUM GEN
RPTS REMOVE PATH TRAVERSAL SANITIZATION
UWMD USE WEAK MESSAGE DIGEST
RHNV REMOVE HOST NAME VERIFICATION
XMLPVXXE XML PARSER VULNERABLE TO XXE
XMLPVXEE XML PARSER VULNERABLE TO XEE
REIS REMOVE ENCRYPTION IN SOCKET
UC UNSECURE COOKIE
RHTTPOFC REMOVE HTTPONLY FROM COOKIE
URSAWSK USE RSA WITH SHORT KEY
UBFWSK USE BLOWFISH WITH SHORT KEY
PSQLI PERMIT SQL INJECTION
UDESISE USE DES IN SYMMETRIC ENCRYPTION
UECBISE USE ECB IN SYMMETRIC ENCRYPTION
RRS REMOVE REGEX SANITIZATION

Research on software security developed a number of tech-
niques to identify vulnerabilities in source code. One such
(effective) technique is based on static analysis and seeks to
identify occurrences of problematic code patterns. Such tools
detect security bugs by highlighting potentially vulnerable
code based on common vulnerability patterns. In view of
this, we propose to leverage their knowledge and gather a set
of common security bugs, which we can turn into injectable
faults. These faults can form our mutants and support security
testing.

By gathering the security patterns supported by known static
analysis tools we can identify certain types of security related
faults. Unfortunately, these patterns only detect the presence
of a potentially vulnerable code and not the transformation
needed to inject a vulnerability. Indeed, a security mutation
operator can identify a non-vulnerable code pattern and turn
it into a vulnerable one. We transformed every occurrence
of the vulnerability patterns in its non-vulnerable functional
equivalent one in order to define our mutation operators. This
was not a trivial task as it required manual analysis and
comprehension of the vulnerability classes.

For the purposes of the present study, we used the security
patterns of a well-known static security bug analyzer, named
FindBugs-sec plugin. All the patterns we used are described in
the plugin documentation [8]. We believe that these patterns
are suitable for our purposes as most of them form real-world
security bugs that are well justified by Findbugs-sec, with CVE
and NIST references. We detail our operators in the following
Section.

III. SECURITY-AWARE MUTATION OPERATORS

Table I presents the acronyms and a short description
of our mutation operators. For each operator, we provide
its application context, its goal, and some implementation
details, i.e., how it proceeds to introduce a vulnerability in
the application under test.

Use predictable pseudo random number generator
(UPPRNG). Context: Pseudo Random Number Generators
(PRNGs) are widely used in secure-aware contexts and es-

pecially in cryptography to avoid prediction that could ease
undesired decryption. Goal: the UPPRNG operator tries to
make the application vulnerable to predictable random num-
ber generator attacks potentially leading to various security
leaks (authentication, authorization, etc.). Implementation: this
operator replaces the unpredictable pseudo random generators
from the SecureRandom class by predictable ones using the
Random class.

Remove path traversal sanitization (RPTS). Context: web
applications often provide internal file access functionalities
to their external users by requiring them to provide the
desired file’s name. Goal: the RPTS operator introduces a
vulnerability which allows a malicious user to enter a path to
access directories or files regardless of the file access policy
defined by the web application. Implementation: the operator
simply removes calls to input file names sanitization functions,
generally used to avoid this vulnerability.

Use weak message digest (UWMD). Context: message
digests, or hashing functions, are very often used to assure the
integrity of received data. However, some hash functions are
weak because of their high collision degree: in this case, for a
hashed string, a malicious user can easily craft another string
producing the same hash. Goal: the UWMD operator introduces
a vulnerability in integrity checking of received data by using
a weak hash function (i.e., MD5). Implementation: it identifies
hash function calls and replaces them by MD5 hashing.

Remove host name verification (RHNV). Context: a web
application needing to authenticate its clients may verify their
host names, usually after a successful SSL handshake. Goal:
the RHNV operator removes this authentication, making the
application vulnerable to man-in-the-middle attacks. Imple-
mentation: it removes standard methods used to authenticate
clients using their host names.

Make XML parser vulnerable to XML Entity Expansion
attack (XMLPVXEE). Context: web services often parse
XML documents, to communicate with other web services in a
standardized way. A known attack is the billion laughs attack
which is an instance of a denial of service attack on XML
parsers that require them to exponentially expand the tree with
dummy text (“LOL”). However, one can prevent this attack
by enabling a standard security option on the XML parser.
Goal: the XMLPVXEE operator introduces a vulnerability in
external XML parsers to expose the application to DOS at-
tacks. Implementation: the operator disables standard security
options of the XML parsers just before the XML parser begins
parsing. It performs this task by identifying methods used on
standard XML Java parsers, like XMLReader or SAXParser
instances.

Make XML parser vulnerable to XML eXternal Entity
attack (XMLPVXXE). Context: for this operator, in addition
to the XML document parsing feature, we also assume that
the attacker has a way to access the result of the parsing.
In this context, an XML eXternal Entity (XXE) attack can
lead to a confidentiality leak by accessing unauthorized files.
To prevent this attack, developers have to enable a standard
security option on their XML parsers. Goal: the XMLPVXXE

operator introduces a vulnerability in external XML parsers
to expose the application to XXE attacks. Implementation: it
disables standard XXE security option of the XML parsers
before an XML parsing. Like the XMLPVXEE operator, the
XMLPVXXE operator performs this by identifying methods
used on standard XML Java parsers.

Remove encryption in socket (REIS). Context: it is
very usual in web applications to exchange encrypted data
(i.e, passwords, e-mail addresses, etc.) with a user. This is
commonly done by using sockets encrypting data with SSL on
HTTP. Goal: the REIS operator tries to weaken the applica-
tion’s sent data to expose it to a confidentiality leak. Implemen-
tation: it removes the SSL encryption in sockets by identifying
and removing standard Java SSL-encryption. For instance, it
can replace sockets created with a SSLSocketFactory by
sockets created with a SocketFactory.

Unsecure cookie (UC). Context: cookies are defined by
the HTTP protocol as pieces of information sent by the server
to the client’s browser. Some cookies can store secret values
proving the authentication of the client and must therefore
be encrypted using SSL during communication. Cookies are
meant to be sent by the browser with each request from the
client, disregarding the secured-nature of the communication.
To make sure that a browser will not make the mistake of send-
ing a sensitive cookie in an unsecured HTTP communication, a
secure flag can be set on the cookie, asking the browser to send
this cookie only during HTTPS communications. Goal: the
UC operator allows to send sensitive cookies during unsecured
HTTP communication. Implementation: it removes the call to
the methods setting the secure flag on cookies.

Remove HTTP-only flag from cookie (RHTTPOFC).
Context: even if a cookie was sent using an HTTPS commu-
nication, web pages’ scripts can access it on the client-side by
asking the browser concrete access to the session’s cookies. An
attacker may access those cookies on the client-side by using
a cross-site scripting (XSS) attack. To prevent this, cookies
have an HttpOnly flag asking the client’s browser to not share
this cookie with scripts. Of course, the flag is just mitigating
the risk, since it relies on the trust in the browser. Goal: The
RHTTPOFC operator exposes the web pages to such session’s
cookies confidentiality leaks. Implementation: It removes the
call of standard methods setting the httpOnly flag on cookies,
allowing to share the cookie with client-side scripts.

Use RSA with short key (URSAWSK). Context: RSA is an
asymmetric encryption algorithm used in web applications to
exchange confidential data. Over time, with the improvement
of computation power, the RSA algorithm needs longer keys to
keep the exchange secured and to resist to brute force attacks.
NIST2 recommends the RSA keys to be at least 2048 bits long.
Goal: the URSAWSK operator tries to weaken RSA encryption
to make brute force attacks possible, allowing confidential data
to leak. Implementation: it detects the use of RSA encryption
with a sufficient key size and sets its to 512 bits.

2http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
131Ar1.pdf

Use Blowfish with short key (UBFWSK). Context: Blow-
fish is a variable key size symmetric encryption algorithm five
times faster than triple DES. Just like RSA, Blowfish could
also be used with a short key (less than 128 bits). Goal:
The UBFWSK operator tries to weaken Blowfish encryption to
expose the application to brute force attacks, also allowing data
to confidentiality leaks. Implementation: When the operator
detects the usage of Blowfish with a sufficient key size, it sets
the key size to 64 bits.

Permit SQL injection (PSQLI). Context: SQL injections
exploit the fact that the web application uses input(s) from
the user to build an SQL query that will be executed by a
Data Base Management System (DBMS). The idea for an
attacker is to inject SQL code in the input used to build the
query in order to maliciously alter the database and or get
access to private information. To prevent these attacks, Java
APIs provide methods to prepare/encode queries and send
them without their external inputs to the DBMS, requiring
these inputs separately from the user. Inputs are then used
to finalize construction of the query and execute it. Hence,
it is not possible anymore for an attacker to play with
the SQL-syntax to create tainted queries. Goal: the PSQLI
operator tries to weaken the web application’s protection
against SQL-injection attacks to expose it to various security
leaks potentially threatening its confidentiality, integrity, and
authentication mechanisms. Implementation: it detects usages
of SQL injection-proof APIs and replaces such usages by
unsecured APIs in order to execute SQL queries.

Use DES in symmetric encryption (UDESISE). Context:
in secured web applications, symmetric encryption is often
very valuable to exchange sensitive data with external users.
Data Encryption Standard (DES) was a popular symmetric en-
cryption algorithm recognized as now sensitive to brute force
attacks due to the great advances in computer performances.
Therefore, web applications should prefer other symmetric en-
cryption algorithms, like AES. Goal: the idea of the UDESISE
operator is to weaken the confidentiality of symmetrically
encrypted data, exposing it to leaks. Implementation: it detects
the usage of a symmetric encryption algorithm and replaces
it with DES encryption. This operator requires to modify
several Java code lines. Though, PIT’s architecture wasn’t
designed for this kind of modifications. Therefore, UDESISE
is still under review but our initial implementation provides
promising results.

Use ECB in symmetric encryption (UECBISE). Context:
symmetric encryption may be done using different modes,
describing how the algorithm should encrypt a message, which
is split into blocks of fixed size. The Electronic CodeBook
(ECB) mode encrypts two identical blocks into two identical
ciphered blocks, introducing redundancy in the encrypted
message, which makes it easier for an attacker to decrypt the
message. Goal: the UECBISE operator tries to weaken the
confidentiality of symmetrically encrypted data by easing its
decryption using ECB mode. Implementation: it detects the
usage of a symmetric encryption algorithm and replaces its
mode by ECB.

Remove regex sanitization (RRS). Context: modern web-
sites are following the idea of WEB 2.0, enabling the participa-
tion of external users to the content of a web page. Thus, web
applications can have a lot of stored data coming from external
users. To prevent malicious users’ content, web applications
commonly validate the inputs coming from external sources
using regular expressions. Goal: the RRS operator tries to
introduce vulnerabilities in external input filters of a web
application. Implementation: it detects regular expressions
usages and replace them by a dummy expression, which is
always true.

IV. EVALUATION

In this section, we report on our preliminary efforts to assess
the relevance our set of security-aware mutation operators. To
this end, we state three research questions: (RQ1) Are the
standard operators of PIT likely to introduce vulnerabilities?
(RQ2) Does our mutation operators introduce vulnerabilities
that are detectable by the FindBugs’ static analysis? (RQ3)
How prevalent is the application of our mutation operators on
open source projects?

Case Studies

In order to answer the different research questions, we
considered the following case studies:

1) iTrust: iTrust3 is a web application developed and main-
tained by the students of NCState University and consists of
24,785 lines of code. It provides a platform accessible to
patients and doctors, to keep track of the patient’s medical
history.

2) Vuze-Azureus: Vuze4 is a popular open-source Bittorrent
client, consisting of 186,247 lines of code.

3) OpenLegislation: OpenLegislation5 is an open source
web application developed and maintained by the New York
State Senate. The goal of this application is to give access
to several NYS’s data including bills, resolutions and laws. It
consists of 912 classes and is 33,819 lines of code.

4) AntsP2P: Ant’s Peer-to-Peer is an open-source Bittor-
rent client6 (consisting of 19,399 lines of code), like Vuze.

RQ1: PIT Operators and Vulnerabilities

To investigate this question, we generate mutants using
PIT’s standard mutation operators and use FindBugs to count
the vulnerabilities found. This metric gives an indication of
the suitability of such operators to cover vulnerabilities even
if they are not designed for that. We selected the iTrust case for
this assessment: we elicited a sample of 33 classes, for which
our security-aware operators yielded vulnerabilities found by
FindBugs, and applied PIT on those classes. Table II records
our results.

Overall, PIT generated 5486 mutants and introduced only
two vulnerabilities (see Table II). The introduced vulnerabili-
ties relate to potential SQL injection attacks that can occur by

3https://sourceforge.net/projects/itrust/ (version 21.0.01)
4https://sourceforge.net/projects/azureus/ (version 5.7.40)
5https://github.com/nysenate/OpenLegislation (version 2.2)
6https://sourceforge.net/projects/antsp2p/ (version beta1.6.0)

TABLE II: Mutating iTrust with PIT’s standart operator set.
The table records the number of mutants and vulnerabilities
that were generated per used operator.

Operator name #mutants #Vulnerabilities

ArgumentPropagationMutator 42 0
ConditionalsBoundaryMutator 48 0
ConstructorCallMutator 431 0
IncrementsMutator 12 0
InlineConstantMutator 696 0
MathMutator 41 0
MemberVariableMutator 83 0
NegateConditionalsMutator 368 0
NonVoidMethodCallMutator 1539 1
RemoveConditionalMutator EQUAL ELSE 320 0
RemoveConditionalMutator EQUAL IF 320 0
RemoveConditionalMutator ORDER ELSE 48 0
RemoveConditionalMutator ORDER IF 48 1
RemoveIncrementsMutator 12 0
RemoveSwitchMutator 15 0
ReturnValsMutator 289 0
SwitchMutator 2 0
VoidMethodCallMutator 1172 0

Total 5486 2

inserting dynamically generated strings in a query (SQL_-
NONCONSTANT_STRING_PASSED_TO_EXECUTE) or by
removing a conditional execution (SQL_INJECTION_-
JDBC). Though these are genuine security issues, this harvest
with standard operators appears to be mediocre. As we will see
in the following sections, our operators are able to introduce
a much larger number of vulnerabilities (62 for iTrust).

RQ2: Static detection of Vulnerabilities

Our second research question investigates the extend to
which our security-aware operators introduce vulnerabilities
and if they are always detectable statically with FindBugs. This
process can be seen as a sanity check of the function of the
implemented operators. To perform this check, we manually
created a sample project containing on average one class that
contains one application instance of the mutation operators
we implemented. Each class was implemented so that it can
trigger one specific mutation. We used PIT’s mutation engine
to generate the mutants with respect to our operators. We
wrote scripts to keep track of the applied mutations and results
obtained via FindBugs. We specifically tuned FindBugs to
check every potential issue, even those of low confidence, at
the cost of performance.

The analysis results are reported in Table III. RRS and
UDESISE were not evaluated. RRS was not inspired by a
FindBugs pattern. Regarding UDESISE, it requires higher or-
der mutation and its correct operation is currently experimental
in PIT. Overall, we can see that 9/13 (nearly 70%) operators
generated a vulnerability that could be found by FindBugs.
For the four remaining ones, non-recognition causes are:

a) Remove Host Name Verification (RHNV): the vul-
nerability is actually introduced, because the replacement
of HostNameVerifier.verify(...)’s result by true
was present in the mutant. It is not recognized be-
cause FindBugs identifies a vulnerable HostNameVerifier by

TABLE III: Injected classes of vulnerabilities that were iden-
tified by FindBugs (with the security plugin), in a sample
project. We mutated this project and verified the presence of
vulnerabilities by comparing the static analysis reports of the
mutants and the original programs. Y signifies that the injected
vulnerability was identified by FindBugs.

UPPRNG RPTS UWMD RHNV XMLPVXXE
Recognized? Y Y Y N N

XMLPVXEE REIS UC RHTTPOFC URSAWSK
Recognized? N N Y Y Y

UBFWSK PSQLI UDESISE UECBISE RRS
Recognized? Y Y / Y /

looking at its code. Indeed, for FindBugs, a vulnerable
HostNameVerifier is identified by a constant return
true; in all its .verify(...) methods. Because we
didn’t mutate the HostNameVerifier.verify(...)
method but its calls, FindBugs could thus not recognize it.

b) Xml Parser Vunerable to XXE/XEE (XMLPVXXE/
XMLPVXEE): the vulnerability is also present as we remove
a secure parsing feature of the XML reader. However, we
mutated a secure original program that had the following line:
XMLReader.setFeature(SecurizingFeature,
true) prior to parsing. Therefore, the mutant had the
following code:

XMLReader . s e t F e a t u r e (S e c u r i z i n g F e a t u r e ,
t rue) ;

XMLReader . s e t F e a t u r e (S e c u r i z i n g F e a t u r e ,
f a l s e) ;

XMLReader . p a r s e (i n p u t) ;

We hypothesize that when FindBugs analysed the first line, it
directly returned that the vulnerability was eliminated.

c) Remove Encryption In Socket (REIS): here, after per-
forming several tests, we supposed that FindBugs identifies
unsecured sockets only by the following pattern:

So ck e t s = new So ck e t (a d d r e s s , p o r t) ;

However, since we created a unsecured socket in the mutant
with the following method:

So ck e t s = S o c k e t F a c t o r y . g e t D e f a u l t () .
c r e a t e S o c k e t (a d d r e s s , p o r t) ;

and upon manual inspection of createSocket(...)
method’s specification, we certify that the two manners of
creating an unsecured socket are equivalent.

Regarding the results of this section, we can answer RQ2
by stating that all vulnerabilities were actually introduced
though only 70% were found by FindBugs. Missed vulner-
abilities either stem from the static analyzer’s incomplete-
ness (REIS) or optimisations (XMLPVXXE/XMLPVXEE).
Regarding RHNV, this vulnerability requires a global (e.g.,
analysing the call graph) or a dynamic reasoning, techniques
that are out of reach for FindBugs. Although we took inspi-
ration on FindBugs patterns to create our mutation operators,
they can trick FindBugs. Therefore, our operators might be
used to validate static analysis tools as well.

TABLE IV: Mutating projects with new operators

iTrust VUZE OPENLEGISLATION ANTSP2P

#classes in input 405 4669 912 406
#classes mutated 33 30 57 9
#mutants generated 62 57 154 18

TABLE V: Number of security-aware mutants generated on
4 open source projects. The table entries record the number
of mutants generated per mutation operator and project. Non
referenced operators did not produce any mutants.

UPPRNG UWMD PSQLI UECBISE RRS TOTAL

iTrust 1 0 39 0 22 62
VUZE 8 2 0 9 38 57
OPENLEGISLATION 0 0 0 0 154 154
ANTSP2P 2 4 0 11 1 18

RQ3: Prevalence of Security-aware Operators’ application

The preceding research questions were meant to assess the
relevance of our security-aware operators. However, the ques-
tion that it is raised here is how numerous these vulnerabilities
are. In practice, it is hard to trigger and secure vulnerabilities
and thus, it is possible that injecting a large number of them
may be excessively expensive. To assess this point, we simply
generated mutants with our operators for the four projects we
considered. Table IV records the results provided by our 15
operators.

A first observation is that five of our operators are prevalent
in practice. Interestingly, these operators are not numerous
indicating that mutation-based security testing is feasible. Ten
operators were not applicable in the selected projects.

Another interesting point is that the injected faults only
concern a fraction of the project’s classes (e.g., 0.67% for
VUZE). Table V shows the repartition of applied operators
for each project. There are disparities, PSQLI that accounts
for 61% of the mutants in iTrust and does not appear in other
projects, while RRS appears in all projects. RRS “popularity”
is also quite understandable as a regex-sanitization function
can be assumed to be more common to web applications than
the use of Blowfish, for instance. We therefore conclude
that many security-aware faults appear in the selected projects.
Though, we note that further case studies are required to gain
confidence on the prevalence of our operators.

V. THREATS TO VALIDITY

Internal validity. One possible threat of our study is due to
the used tools. We implemented our operators in PIT, which re-
lies on Java bytecode manipulation (using ASM Java bytecode
framework as an abstraction layer) to perform mutations. Thus,
potential defects may influence our results. To verify that our
operators were correctly implemented, we used code review
on the operators’ implementation, and, for each experiment,
we manually inspected the generated mutants. Moreover, we
checked in RQ2 that the vulnerabilities from the generated
mutants are detected by FindBugs: it is the case for nine of
them, explanations for the four remaining ones are given in
Section IV.

Construct validity. We chose to use iTrust to answer RQ1,
because of the high number of security concerns that the
application has to take into account. This tends to be confirmed
by the higher percentage (8%) of classes mutated by our new
operators in Table IV. RQ2’s only goal was to validate our
operators’ implementation. Therefore, we used ad hoc classes,
one per operator, which is enough for this purpose. For RQ3,
we took 4 open source projects: 2 web applications and 2
Bittorrent clients. We plan to extend the number as well as
the diversity of the considered projects in our future work.

External validity. We designed our mutation operators,
based on patterns defined in FindBugs sec plugin. Therefore,
it is questionable whether these are usually met in practice.
However, each of these patterns introduces one or more
vulnerabilities described in well-known vulnerability reporting
authorities (like NIST and CVE), as referenced in FindBugs
documentation7. To perform our evaluation, we selected 4
open source projects in which security is a key concern.

VI. RELATED WORK

Using mutation for security purposes was explored at the
model-level by Mouehli et al. [10] where the authors mutate
access control models to qualify security test suites. Operators
change user roles and allowed actions, deleting policy rules
or modify their application context. Dadeau et al. defined
operators that introduce leaks in a high-level security procotol
[11]. Büchler et al. considered mutating the abstract model
of a web application by removing authorization checks and
un-sanitizing data [12], but they do not detail the operators.
Although, these operators are inspired from actual vulnerabil-
ities, as being model-based they model different defects from
our code-based ones.

To the best of our knowledge, there is no set of security-
aware mutation operators for Java. Perhaps the closest related
work is that of Nanavati et al. [13], Shahriar and Zulkernine
[14] and Ghosh et al. [15] that defined mutation operators
related to the memory related faults. All these operators
introduces memory manipulation issues in C programs (such
buffer overflows, uninitialized memory allocations and etc.),
which may be exploited by security attacks. As these operators
make heavy use of memory allocation primitives, specific to
the C language, they are rather different from ours.

VII. CONCLUSION

This paper introduces security-aware mutation testing op-
erators. Inspired by common vulnerability patterns, we have
designed 15 new mutation operators for Java, which we
implement in the mutation testing engine of PIT. We used
FindBugs and its security plugin to assess whether standard
PIT mutation operators are likely to introduce vulnerabilities,
like those supported by our operators, and demonstrated that
they fail to do so. Our case studies validated the purposes of
our operators and revealed that certain types of vulnerabilities
are prevalent in open source projects.

7http://find-sec-bugs.github.io/bugs.htm

This work constitutes the first step towards a relatively new
direction of mutation testing research which is the mutation-
based security testing. With the use of our mutants, security
related test suites can be designed and documented. Other
potential uses of our mutation operators are in education and in
the systematic evaluation and comparison of fuzzing and other
security testing tools. Overall, our goal is to use mutation to
define adequacy criteria for security testing.

In the future, we plan to extend our work towards the
following directions: First, we plan to consider a much larger
set of security patterns that we will mine from open source
projects. Second, we will assess our research questions on
more subjects and confirm our observations with actual tests
from fuzzing tools. Third, we would like thoroughly assess
the practical benefits of our security testing metrics.

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[3] J. Voas and G. McGraw, Software Fault Injection: Inoculating Programs
Against Errors. John Wiley & Sons, 1997.

[4] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in IEEE 21st International Symposium
on Software Reliability Engineering, ISSRE 2010, San Jose, CA, USA,
1-4 November 2010, 2010, pp. 121–130.

[5] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats
to the validity of mutation-based test assessment,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 354–365.

[6] T. C. Thierry, M. Papadakis, Y. L. Traon, and M. Harman, “Empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption,” in ICSE, 2017.

[7] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris,
“Analysing and comparing the effectiveness of mutation testing tools:
A manual study,” in International Working Conference on Source Code
Analysis and Manipulation, 2016.

[8] P. Arteau, “Bug patterns - find security bugs http://find-sec-bugs.github.
io/bugs.htm.”

[9] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT:
a practical mutation testing tool for java (demo),” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 449–452.

[10] T. Mouelhi, Y. L. Traon, and B. Baudry, “Mutation analysis for se-
curity tests qualification,” in Testing: Academic and Industrial Con-
ference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), Sept 2007, pp. 233–242.

[11] F. Dadeau, P.-C. Héam, R. Kheddam, G. Maatoug, and M. Rusinowitch,
“Model-based mutation testing from security protocols in hlpsl,” Soft-
ware Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 684–711,
2015.

[12] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-automatic security
testing of web applications from a secure model,” in 2012 IEEE Sixth
International Conference on Software Security and Reliability, June
2012, pp. 253–262.

[13] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke, “Mutation
testing of memory-related operators,” in Software testing, verification
and validation workshops (ICSTW), 2015 IEEE eighth international
conference on. IEEE, 2015, pp. 1–10.

[14] H. Shahriar and M. Zulkernine, “Mutation-based testing of buffer
overflow vulnerabilities,” in Proceedings of the 32nd Annual IEEE Inter-
national Computer Software and Applications Conference, COMPSAC
2008, 28 July - 1 August 2008, Turku, Finland, 2008, pp. 979–984.

[15] A. K. Ghosh, T. O’Connor, and G. McGraw, “An automated approach for
identifying potential vulnerabilities in software,” in Security and Privacy
- 1998 IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 3-6, 1998, Proceedings, 1998, pp. 104–114.

