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Abstract This contribution discusses Bayesian inference (BI) as an approach to
identify parameters in viscoelasticity. The aims are (i) to show that the prior has a
substantial influence for viscoelasticity, (ii) to show that this influence decreases for
an increasing number of measurements and (iii) to show how different types of exper-
iments influence the identified parameters and their uncertainties. The standard linear
solid model is the material description of interest and a relaxation test, a constant
strain-rate test and a creep test are the tensile experiments focused on. The exper-
imental data are artificially created, allowing us to make a one-to-one comparison
between the input parameters and the identified parameter values. Besides dealing
with the aforementioned aims, we believe that this contribution forms a comprehen-
sible start for those interested in applying BI in viscoelasticity.

Keywords Bayesian inference · Bayes’ theorem · Statistical identification ·
Parameter identification · Viscoelasticity

H. Rappel
Faculty of Science, Technology and Communication, University of Luxembourg, Campus Kirchberg, 6,
Rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg.
Computational & Multiscale Mechanics of Materials (CM3), Department of Aerospace and Mechanical
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1 Introduction

A frequently employed approach to identify model parameters from a set of experi-
mental data is the least squares method (LSM, see e.g. Beex et al. 2013). The standard
LSM formulates the squared difference between the measured data and the model
response in terms of the parameters of interest and minimises this difference with re-
spect to the parameters of interest. Those parameters that minimise the difference are
the resulting parameter values. The residual is a measure for how well the response
fits the measurement data, but does not give insight in the uncertainty of the identified
parameter values.

Some enhanced LSM formulations incorporate the statistical information of the
measurement noise, in contrast to the standard LSM (Magorou et al. 2002; Genovese
et al. 2005). Linearised approximations are however needed to extract the most prob-
able parameter values and the covariance (i.e. a measure that shows how the random
variables depend on each other). These approaches furthermore assume that the mea-
surement noise is symmetrically distributed with a constant variance. In other words,
they assume that the noise is independent of the measured value and that a particu-
lar positive noise realisation is equally possible as a negative realisation of the same
magnitude (Elster and Wübbeler 2016).

Bayesian inference (BI) can be used to formulate an alternative identification ap-
proach, which may account for the fact that only a limited number of measurement
data is available. It achieves this by incorporating an a-priori assumption on the pa-
rameter values. In practise, this entails that the user has to specify a prior distribution
(i.e. the prior). The influence of this prior distribution can influence the identified pa-
rameter values significantly, but its influence decreases for an increasing number of
measurement data (Madireddy et al. 2015; Rappel et al. 2016).

An intermediate result of BI is a probability density function (PDF) in terms of
the parameters of interest, called the posterior distribution (or the posterior). Once the
posterior distribution is established, its statistical characteristics need to be evaluated,
e.g. the mean, the covariance matrix and the parameter values at which the PDF is
maximum (called the ‘maximum-a-posteriori-probability’ or ‘MAP’ point). Most of-
ten, numerical methods like Markov chain Monte Carlo (MCMC, Higdon et al. 2002;
Wang and Zabaras 2004) are necessary to extract the statistical characteristics from
the posterior distribution. For posteriors with C2-continuity, Laplace approximations
can be applied to evaluate the quantities of the interest. The posterior is then approx-
imated by a Gaussian distribution (Beck and Katafygiotis 1998; Oh et al. 2008).

The application of BI to identify (elastic) material parameters was started by Isen-
berg (1979), to the best of our knowledge. For two decades afterwards, BI was not
used for material parameter identification. When the developments started again, it
was amongst others used for the identification of elastic constants from dynamic
responses (Alvin 1997; Beck and Katafygiotis 1998; Marwala and Sibusiso 2005;
Daghia et al. 2007; Abhinav and Manohar 2015), the elastic constants of compos-
ite and laminate plates (Lai and Ip 1996; Daghia et al. 2007; Nichols et al. 2010;
Gogu et al. 2013) and spatially varying elastic constants (Koutsourelakis 2012). An
introduction to identify Young’s moduli using BI is presented in Gogu et al. (2010).
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Approaches based on BI are also used to identify material parameters in elasto-
plasticity. Some examples are the studies of Fitzenz et al. (2007), Muto and Beck
(2008), Most (2010), Rosić et al. (2013) and Liu and Au (2013). Rappel et al. (2016)
have recently written an introduction of how BI can be employed for elastoplastic
models. In an another study, Sarkar et al. (2012) used the Bayesian approach to iden-
tify thermodynamical parameters of cementitious materials.

These days, BI is also used as an approach to evaluate the quality of different me-
chanical models with respect to each other, to which is referred as ‘model selection’.
Some examples are the studies of Madireddy et al. (2015) for hyperelastic constitu-
tive models for tissue, Oden et al. (2013) for phenomenological models for tumour
growth, Chiachı́o et al. (2015) for models of damage progression in composites due to
fatigue, and Babuška et al. (2016) for fatigue descriptions of metals. Model selection
is however out of the scope of the current study.

BI is also used to identify viscoelastic parameters. Zhang et al. (2013) used BI
to characterise the Young’s modulus of a viscoelastic polymer layer in a laminated
structure. Their work includes a validation. Mehrez et al. (2015) employed BI to
identify the viscoelastic properties of aged and unaged asphalt. Miles et al. (2015)
applied BI to characterise the viscoelastic parameters of a dielectric elastomer under-
going finite deformation. Hernandez et al. (2015) employed the Bayesian approach
for the probabilistic identification of five viscoelastic parameters. Zhao and Pelegri
(2016) used BI together with a finite element model to identify the time constant of a
Voigt-based tissue model. All mentioned studies (except Zhao and Pelegri 2016) are
based on actual experimental data. Kenz et al. (2013) compared asymptotic theory,
bootstrapping, and Bayesian estimation for a viscoelastic wave propagation model.
Also in this study, experimental data was used (for a homogeneous tissue-mimicking
gel).

None of the mentioned BI studies for viscoelasticity have focused on the influ-
ence of the prior distribution however. Furthermore, none of them have investigated
the influence of the number of measurement data. Except for Zhao and Pelegri (2016)
none of the studies for viscoelasticity are able to compare the resulting values with
the input values. Finally, none of the aforementioned studies have compared the esti-
mated parameter values for different types of tests (e.g. relaxation test, constant strain
rate test and creep test). Hence, BI was used in the past to identify viscoelastic param-
eters, but if other prior distributions were selected, the number of measurements were
different or other tests were used, the results of the aforementioned studies would be
different.

The aim of this study is to show how viscoelastic parameters identified by BI are
dependent on the selected prior distribution, the number of measurement data and
the type of test. The standard linear solid (SLS) model is the employed viscoelastic
description and a tensile relaxation test, a tensile constant strain-rate test and the
creep test are the experiments of interest. The measurements are generated artificially,
including the noise realisations. This allows us to compare the identified values with
the input values and with the LSM values, in a controlled and thorough manner. In
order to investigate if better parameter values are obtained by different types of tests,
the values identified based on different tests are also compared to each other.
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Fig. 1: The one-dimensional spring-dashpot representation of the SLS model.

The structure of the paper is as follows. Section 2 briefly discusses the SLS model.
Section 3 presents the theoretical fundamentals of BI, the final expression of the
posterior distribution for the SLS model and the three types of experiments. Section
4 discusses the MCMC method to numerically extract the most probable parameter
values from the posterior distribution (including the associated covariances). Section
5 briefly discusses the LSM and genetic optimisation as the minimisation approach
to find the parameter values identified by LSM. Section 6 presents the examples. This
contribution is closed with some conclusions (section 7).

2 Material model

Viscoelasticity can be used to describe the stress-strain-time relation of time-dependent
materials. These materials show both viscous and elastic behaviour under deforma-
tion (Banks et al. 2011). Well-known viscoelastic material models are the Maxwell
model, the Kelvin-Voigt model, the standard linear solid (SLS) model and the gen-
eralised Maxwell model (Banks et al. 2011). As the goal of this contribution is to
identify the parameters of the SLS model, the remainder of this section considers this
description.

The SLS model describes stress-relaxation and creep phenomena in viscoelastic
systems with only one rate-dependent parameter (Orosz et al. 1997). In one dimen-
sion, the model can schematically be represented using two springs and a dashpot
(see Fig. 1).

For uniaxial tension, the stress-strain-time relation of the SLS can be described
by the following differential equation (Liu et al. 2011):

σ +
η

E1

∂σ

∂ t
= E0ε +(E0 +E1)

η

E1

∂ε

∂ t
, (1)

where σ is the stress, ε is the strain, ∂

∂ t denotes the derivative with respect to time,
E0 is the stiffness of the parallel spring, E1 is the stiffness of the spring in series with
the dashpot and η is the viscosity of the dashpot (see Fig.1).

In a tensile relaxation experiment in which strain ε0 is applied infinitely fast and
then kept constant, the stress-time relation during relaxation resulting from Eq. (1)
reads:

σ(x, t) = E0ε0 +E1ε0exp
(
− E1t

η

)
, (2)
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Fig. 2: A schematic stress-time curve for one-dimensional stress relaxation of the
SLS model. It is assumed that applied strain ε0 is prescribed infinitely fast, resulting
in σ0 = E0ε0 +E1ε0.

where x =
[
E0 E1 η

]T is the parameter vector. Fig. 2 shows the relaxation behaviour
of Eq. (2) schematically.

For a constant strain-rate experiment in tension, in which the specimen is elon-
gated with a constant strain-rate ε̇0, the stress-time relation reads:

σ(x, t) = E0ε̇0t +ηε̇0

(
1− exp

(
− E1t

η

))
. (3)

The stress-time response of the constant strain-rate test is shown in Fig. 3 schemati-
cally.

In a creep test in tension a constant tensile stress σ0 is applied to the specimen
infinitely fast, which is then kept constant. Strain is the quantity that is measured in
this experiment. The strain-time relation for a creep test of the SLS model reads:

ε(x, t) =
σ0

E0
+σ0

( 1
E0 +E1

− 1
E0

)
exp
(
− E0E1t

η(E0 +E1)

)
. (4)

Fig. 4 shows the behaviour of Eq. (4) schematically.

3 Bayesian inference

Identification approaches based on BI are less common than those based on the LSM.
An intermediate result of Bayesian approaches is a probability density function (PDF)
for the parameters to be identified (the so-called ‘posterior distribution’ or ‘poste-
rior’). The posterior includes one’s prior knowledge about the parameters, as a PDF
(the so-called ‘prior distribution’ or ‘prior’). Numerical techniques are most often re-
quired to extract the mean, the variance and MAP point from the posterior. In this
contribution, MCMC is employed for this, which is discussed in section 4.
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Fig. 3: A schematic stress-time curve for a one-dimensional constant strain-rate test
of the SLS model. The applied strain-rate is ε̇0.
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Fig. 4: A schematic strain-time curve for a one-dimensional creep test in tension of
the SLS model. It is assumed that the constant stress σ0 is applied infinitely fast and
then remains constant. The initial strain is ε0 =

σ0
E0+E1

.

This section focuses on the fundamentals of BI for continuous events (subsection
3.1) and BI for the specific application to the SLS model and the tensile uniaxial
relaxation, constant strain-rate and creep tests (subsection 3.2).

Throughout this section capital letters denote random variables and bold ones de-
note vectors and matrices. An important issue for this contribution is to recognise that
we only consider a statistical noise in the measured output, not in the experimental
input. We thus consider the time measurements to be exact. In Rappel et al. (2016),
we have treated double uncertainties however.
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3.1 Fundamentals of Bayesian inference

3.1.1 Bayes’ theorem

Consider two continuous random variables X ∈Rn and Y ∈Rk with associated PDFs
π(x) and π(y). Joint probability density function π(x,y) expresses the probability
that both x and y occur. This joint PDF can be expanded as:

π(x,y) = π(x)π(y|x) = π(y)π(x|y), (5)

where π(y|x) and π(x|y) are conditional PDFs. Conditional PDF π(x|y) expresses
the probability that x occurs, if it is certain that y occurs. Using Eq. (5), the simplest
form of Bayes’ theorem can be written as:

π(x|y) = π(x)π(y|x)
π(y)

. (6)

If we now consider x to be the vector with n identifiable parameters and y to be the
vector with k measurements, then π(x), π(y|x) and π(x|y) are the prior distribution
(i.e. the PDF that represents the original belief or prior knowledge), the likelihood
function (i.e. the PDF of the measured data y, given unknown parameters x) and the
posterior distribution (i.e. the PDF of unknown parameters x, given measured data y).
Furthermore, π(y) is called the evidence and can be calculated using the law of total
probabilities (Ulrych et al. 2001) as follows:

π(y) =
∫
Rn

π(x)π(y|x)dx. (7)

As the measured data (y) is already known after the experiment, the evidence
in Eq. (6) (π(y)) is a constant number (C ∈ R+). It can thus be considered as a
normalisation factor that ensures that the integral of the posterior (π(x|y)) equals 1.

As the MAP point, the mean and the covariance matrix of the posterior are inde-
pendent of this normalisation factor, it suffices to rewrite Eq. (6) as follows:

π(x|y) ∝ π(x)π(y|x). (8)

Eq. (8) is the expression for the posterior in which we are interested. Based on
Eq. (8) it may be clear that in order to obtain the posterior distribution (π(x|y)), one
needs to define the prior (π(x)) and the likelihood function (π(y|x)). The prior is the
PDF that expresses one’s a-priori knowledge. It can have a significant influence on
the estimated MAP point, mean value and covariance matrix if the number of mea-
surement data is small (see e.g. Kaipio and Somersalo 2006; Rappel et al. 2016 and
the results section of this contribution). On the other hand, if the number of measure-
ment data is large, the influence of the prior decreases (Madireddy et al. 2015).
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Fig. 5: Schematic of additive noise. The noise around the known theoretical response
f (x, t) is independent of f (x, t) (Calvetti and Somersalo 2007). In this representation,
an error in the time measurements is included as well.

3.1.2 Likelihood function

In order to construct the likelihood function, one needs to formulate the noise model
(i.e. the uncertainty model) and determine the type of noise distribution (πnoise), in-
cluding its parameters. This is often based on a calibration procedure of the exper-
imental equipment. The most common noise model in the literature is the additive
noise model, in which the noise distribution is independent of the theoretical model
( f (x, t) in Fig. 5). Consequently, the noise only shifts around the theoretical model
(see Fig. 5 again).

The additive noise model is also employed in this work. For a consideration of
other types of noise models, the readers are referred to Kaipio and Somersalo (2006).

Given X ∈ Rn as the vector with the parameters to be identified, Y ∈ Rk as the
vector with the measurements, ΩΩΩ ∈ Rk as the noise vector, f : Rn→ Rk as the model
dependent on the unknown parameters and using the additive noise model, one can
write the relation between the measurements and the noise (i.e. the error in the mea-
surements) as follows:

Y = f(X)+ΩΩΩ . (9)

It can be noted that the measurements, Y, are made at a specific experimental
input t. In the relaxation and constant strain-rate tests, the stress measurements (Y)
can be recognised as the experimental output and the strain measurements for the
creep test. The experimental input can be recognised as the time at which each stress
or strain measurement is made (t). In Eq. (9) we should thus have written f(X|t). We
have however chosen not to do this in order to simplify the notation.
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If realisation X= x is given for Eq. (9), the only random variable on the right-hand
side is noise vector (ΩΩΩ ). Assuming that the noise vector and the unknown parameters
are statistically independent, the noise distribution is the likelihood function:

π(y|x) = πnoise(y− f(x)), (10)

where πnoise(ωωω) is the noise PDF (based on calibration experiments, see subsection
6.1) and ΩΩΩ = ωωω is the noise realisation. Substituting Eq. (10) in Eq. (8) yields the
posterior:

π(x|y) ∝ π(x)πnoise(y− f(x)). (11)

Once the posterior is established, one can calculate the statistical quantities of
interest (e.g. the MAP point, the mean and the covariance matrix).

3.2 Bayesian inference for the uniaxial tensile relaxation, constant strain-rate and
creep tests

In this subsection, we will employ the theory of the previous subsection to construct
the posterior for the one-dimensional SLS model and our experiments of interest in
uniaxial tension.

The parameters of the SLS model to be identified are E0, E1 and η . Hence, the
parameter vector thus reads x =

[
E0 E1 η

]T .
First we start with the relaxation test, in which the model (f(X) in Eq. (9)) is given

by Eq. (2) for one measurement. Employing these relations and considering only one
measurement point (measurement point i), Eq. (9) reads:

yi = E0ε0 +E1ε0exp
(
− E1ti

η

)
+ωi, (12)

where yi is the measured stress, ti is the time at which yi is measured and ωi originates
from realisation Ω = ωi.

To identify the statistical distribution of the measurement noise, calibration ex-
periments must be performed (discussed in subsection 6.1). For now we assume that
these calibration experiments have exposed that a normal distribution with standard
deviation Snoise can be used:

πnoise(ω) =
1√

2πSnoise
exp
(
− ω2

2S2
noise

)
, (13)

where Ω = ω is a realisation for the noise drawn from the distribution given by
Eq. (13).

Using Eqs. (10) and (12) the likelihood function for measurement point i reads:



10 Hussein Rappel et al.

π(yi|x) = πnoise(yi−E0ε0−E1ε0exp
(
− E1ti

η

)
) =

1√
2πSnoise

exp
(
−

(
yi−E0ε0−E1ε0exp

(
− E1ti

η

))2

2S2
noise

)
. (14)

The next step is to choose the prior distribution (π(x)). As the material parameters
cannot be negative, a modified normal distribution is selected:

π(x) ∝

exp
(
−

(x−xprior)
T ΓΓΓ
−1
prior(x−xprior)

2

)
if E0 ≥ 0 and E1 ≥ 0 and η ≥ 0

0 otherwise
, (15)

where xprior and ΓΓΓ prior are the mean vector and the covariance matrix of the prior,
respectively. The values in xprior and ΓΓΓ prior must be selected by the user. After all,
they are assumptions (as is the shape of the priori distribution).

Substituting Eqs. (14) and (15) in Eq. (8) yields the posterior for measurement
point i as follows:

π(x|yi) ∝ exp

(
−
[
(x−xprior)

T ΓΓΓ
−1
prior(x−xprior)

2
+

(
yi−E0ε0−E1ε0exp

(
− E1ti

η

))2

2S2
noise

])
. (16)

Since the posterior for measurement point i can serve as the prior for measurement
point i+1, the posterior for k measurement points reads:

π(x|y) ∝ exp

(
−
[
(x−xprior)

T ΓΓΓ
−1
prior(x−xprior)

2
+

k
∑

i=1

(
yi−E0ε0−E1ε0exp

(
− E1ti

η

))2

2S2
noise

])
, (17)

where π(x|y) = π(x|y1,y2, · · · ,yk).
For the constant strain-rate test the only change is the employed model (f(X) in

Eq. (9)) which is given by Eq. (3). Hence, for the same noise distribution (Eq. (13))
and the prior given in Eq. (15), the posterior distribution for k stress measurements
reads:
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π(x|y) ∝ exp

(
−
[
(x−xprior)

T ΓΓΓ
−1
prior(x−xprior)

2
+

k
∑

i=1

(
yi−E0ε̇0ti−ηε̇0

(
1− exp

(
− E1ti

η

)))2

2S2
noise

])
, (18)

where ε̇0 is the constant applied strain-rate and π(x|y) = π(x|y1,y2, · · · ,yk).
As was mentioned previously the output for the creep test (Y in Eq. (9)) is the

strain measurements. The model f(X) for this case is given by Eq. (4). We furthermore
assume that the noise distribution is of the same for as for the previous two cases
(Eq. (13)). Hence, using Eqs. (4), (11), (13) and (15) the final form of the posterior
for the creep test with k strain measurements reads:

π(x|y) ∝ exp

(
−
[
(x−xprior)

T ΓΓΓ
−1
prior(x−xprior)

2
+

k
∑

i=1

(
yi− σ0

E0
−σ0

(
1

E0+E1
− 1

E0

)
exp
(
− E0E1ti

η(E0+E1)

))2

2S2
noise

])
, (19)

where yi is the measured strain at time ti, x is the parameter vector
[
E0 E1 η

]T and σ0
is the constant applied tensile stress.

Now the posterior is established for all three cases (relaxation, constant strain-
rate and creep test), we will use the MCMC approach to identify the mean parameter
values, the parameter values at which the posterior is maximum (i.e. the ‘MAP’ point)
and the covariance matrix of the posterior. The covariance matrix is a measure for the
possible spread of the parameter values, as well as how each parameter value depends
on the others.

4 Markov chain Monte Carlo method (MCMC)

After establishing the posterior, one needs to determine the statistical properties of
the posterior, such as the MAP point, the mean and the covariance matrix. These sta-
tistical quantities can be found analytically for straightforward cases, but often the
use of a numerical technique cannot be avoided. One such a technique is Markov
chain Monte Carlo sampling (Beck and Au 2002; Marzouk et al. 2007; Kristensen
and Zabaras 2014). MCMC techniques are based on drawing samples from a target
distribution (here the posterior) and numerically approximating the quantities of in-
terest (e.g. the mean). Below, the Monte Carlo method and the adaptive Metropolis
algorithm are discussed as means to obtain appropriate samples.
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4.1 Monte Carlo method

The main goal of the Monte Carlo approach is to numerically approximate integrals
of the following form:

I =
∫
Rn

g(x)π(x)dx, (20)

where π is the target distribution (here posterior) and g : Rn → Rk is an integrable
function over Rn. Having a set of samples {xi}N

i drawn from target PDF π(x), the
integral I can be numerically approximated as follows:

Î =
1
N

N

∑
i=1

g(xi), (21)

where Î represents the numerical approximation of I. The law of large numbers entails
that Î converges as follows (Andrieu et al. 2003):

lim
N→+∞

1
N

N

∑
i=1

g(xi) = I. (22)

The numerical approximation of the components of the covariance matrix for
g(x) (ĉovg) reads (Brooks et al. 2011):

(ĉovg) jm =
1
N

N

∑
i=1

(
g j(xi)− I j

)(
(gm(xi)− Im

)
, j = 1,2, · · · ,k, m= 1,2, · · · ,k. (23)

In our case, we substitute g(x) = x and π = πpost in the previous equations in
order to obtain the following relation for the mean of the posterior:

xpost =
∫
Rn

xπpost(x)dx = lim
N→+∞

1
N

N

∑
i=1

xi. (24)

The components of the covariance matrix of the posterior (ĉovpost) are furthermore
approximated as follows:

(ĉovpost) jm =
1
N

N

∑
i=1

(
(xi) j−(xpost) j

)(
(xi)m−(xpost)m

)
, j = 1,2, · · · ,k, m= 1,2, · · · ,k.

(25)
Assuming that the number of the drawn samples is large (i.e. N is large), the MAP

point can be approximated as follows (Andrieu et al. 2003):

M̂AP = argmax
xi;i=1,...,N

π(xi). (26)

In next subsection the standard and adaptive Metropolis algorithms are discussed
as means to obtain appropriate samples. The adaptive Metropolis algorithm is em-
ployed in this contribution as the sampling approach.
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4.2 The standard Metropolis algorithm

The Metropolis-Hastings approach is an often employed technique for sampling (An-
drieu et al. 2003). Its goal is to explore the target PDF (i.e. the posterior) by making a
random walk through parameter space x. The procedure accomplishes this by basing
each new sample on the previous sample.

We start by the consideration of sample xi. The posterior is evaluated for this
sample (resulting in πpost(xi)). Subsequently, a new sample xp is proposed using a
proposal distribution (q in Algorithm 1). If the value of the PDF at the proposed
sample is larger than the PDF at the previous sample or they are equal (πpost(xi) ≤
πpost(xp)), the proposed sample will be accepted as the new sample. Otherwise, the
sample will be accepted or rejected, based on the ratio of the PDF evaluated at the
proposed and current sample (r in Algorithm 1) and its comparison with a random
number generated from a uniform PDF. If the ratio is less than the random number
drawn from the uniform distribution, the proposed sample is rejected. If the ratio is
larger, it is accepted. Algorithm 1 shows the standard Metropolis-Hastings algorithm
in practice.

Algorithm 1 The standard Metropolis-Hastings algorithm
1: select the initial sample x0 ∈ Rn and γ

2: for i = 0,1,2, ...,N−1 do
3: draw xp ∈ Rn from the proposal distribution q(xp|xi) in Eq. (29)

4: calculate the ratio r(xi,xp) = min
(

1, π(xp)q(xi |xp)
π(xi)q(xp |xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0,1] from uniform probability density
6: if r(xi,xp)≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: end for

For a symmetric proposal distribution (i.e. transition kernel, q in Algorithm 1),
one can write:

q(xi|xp) = q(xp|xi). (27)

Using Eq. (27), line 4 of the algorithm can then be rewritten as:

r(xi,xp) = min
(

1,
π(xp)

π(xi)

)
. (28)

The convergence and stability of the algorithm can be checked by focusing for
instance on the evolution of the mean value and the covariance matrix as a function of
the number of the drawn samples (Sarkar et al. 2012). The approximated distribution
converges to the posterior if the approximated statistical quantities remain the same
for an increase of the number of samples.
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Factors that influence the efficiency of the algorithm are the proposal distribution
(q) and the initial sample (x0, Kaipio and Somersalo 2006). The most common pro-
posal distribution for the Metropolis-Hastings algorithm (as employed in this work)
is a normal distribution:

q(xi|xp) = q(xp|xi) ∝ exp
(
− 1

2γ2

∥∥xi−xp
∥∥2
)
, (29)

where γ is the standard deviation, which can be tuned to increase the efficiency. In the
work of Gelman et al. (1996), γ = 2.38√

n is given as an efficient starting value, where n
is the dimension of the posterior (i.e. the number of unknown parameters).

4.3 The adaptive Metropolis algorithm

The adaptive proposal (AP) is introduced by Haario et al. (1999) to automatically tune
γ and by doing so, increase the efficiency of the Metropolis algorithm. AP bases its
updates on the knowledge of the posterior, gathered from previously drawn samples.
The proposal distribution in the adaptive Metropolis algorithm reads:

q(xp|xi)∼ N(xi,γ
2Ri), (30)

where N(xi,γ
2Ri) denotes a normal distribution with mean xi and covariance matrix

γ2Ri, of size n× n. γ is the initially selected standard deviation and Ri is updated
based on the previous samples. Matrix Ri is established by first storing all i previous
samples in matrix K of size i×n. Ri is then computed as:

Ri =
1

i−1
K̃

T
K̃, (31)

where K̃ = K−Kmean and Kmean reads:

Kmean =


kmean
kmean

...
kmean


i×n

, (32)

with kmean as a 1×n vector of the following form:

kmean =
1
i

[
i

∑
j=1

(K) j1
i

∑
j=1

(K) j2 · · ·
i

∑
j=1

(K) jn

]
. (33)

In terms of K̃, one can rewrite the proposal distribution as follows:

N(xi,γ
2Ri) = xi +

γ√
i−1

K̃
T

N(0,Ii), (34)

where Ii is the identity matrix of size i× i and N(0,Ii) denotes an i-dimensional nor-
mal distribution. In this contribution, the proposal distribution is updated once per
thousand samples, as it is inefficient to update the proposal distribution too often. Al-
gorithm 2 shows the Metropolis-Hastings algorithm with the symmetric AP proposal
(Eq. (34)).
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Algorithm 2 The Metropolis-Hastings algorithm with symmetric AP proposal

1: select the initial sample x0 ∈ Rn and set γ = 2.38√
n

2: for i = 0,1,2, ...,N−1 do
3: draw xp ∈ Rn from the proposal distribution q(xp|xi) in Eq. (34)

4: calculate the ratio r(xi,xp) = min
(

1, π(xp)
π(xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0,1] from uniform probability density
6: if r(xi,xp)≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: per 1000 samples
12: update matrix K̃
13: end for

5 Least squares method and genetic minimisation

5.1 The least squares method

The LSM is based on measuring the squared difference between the measurement
data and the response of the model for the same experiment. Consequently, the squared
difference is a function of the parameters to be identified. In order to obtain the param-
eter values that give the best model response for the measurement data, the squared
difference is minimized with respect to the parameters. Those parameter values that
minimise the squared difference are the identified values. The difference that remains
at the identified values (i.e. the residual) is a measure for how well the model fits the
experimental data.

The squared difference J(x|y) for the one-dimensional SLS model and relaxation
experiment in tension is:

J(x|y) = 1
2

k

∑
i=1

(
yi−E0ε0−E1ε0exp

(
− E1ti

η

))2
, (35)

In contrast to the Bayesian formulation, the noise distribution does not require to
be known explicitly in the standard LSM of Eq. (35). This saves calibration efforts.
It does however entail two assumptions about the noise: (1) it assumes an additive
noise model and (2) it assumes that the noise is symmetrically distributed.

The parameter values that give the best match between the measurement data and
the model response are denoted by xLSM. The squared difference must be minimized
to obtain them. We are thus interested in the following:

xLSM = argminx J(x|y), (36)

where argminx gives us the values of x that minimise J(x|y).
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5.2 Genetic optimisation

Numerous approaches can be employed to tackle the minimization problem of Eq. (36).
In this contribution, we employ genetic optimization (GO). GO has the advantage that
no initial guess is required. Instead, it searches for the optimum in a domain. This may
be considered convenient for identification problems, because an appropriate initial
guess for the parameters is not always trivial to choose. Another advantage is that
GO finds the optimum in an entire, even it contains several local optima (Goldberg
1989). A particular advantage compared to the Newton-Raphson method is that GO
is entirely derivative-free. Hence, no issues with the conditioning of Hessians occur
(i.e. a squared matrix of second-order partial derivatives of a scalar valued function,
Goldberg 1989).

The derivative-free character of GO entails some clear advantages as discussed
above, but it also makes GO substantially slower than optimization approaches using
derivatives (Chaparro et al. 2008). This can make the approach computationally pro-
hibitive for large optimization problems. For the case in this contribution however,
this is not an issue, because the model is an equation (Eqs. (2) and (36)) and only
three parameters are to be identified.

The GO algorithm for the problem defined in Eq. (36) starts with the seeding of
numerous vectors in the parameter space. In fact, we start with 1000 vectors, given
by E0 ∈ {0.5,1.5556, · · · ,10}, E1 ∈ {0.5,1, · · · ,5} and η ∈ {50,63.3333, · · · ,170}.
The squared difference (J) is computed for each of these vectors, and they are ranked
based on their squared difference. The first 100 with the smallest squared difference
are subsequently used to create new vectors, whilst the other ones are ignored. Each of
the first 100 vectors will randomly choose 10 other vectors out of these 100 vectors
(which may include the same vector more than once). With each partner vector j,
vector i creates a new vector v, of which the values are established as follows:

Ev
0 = (rE0

1 E i
0 +(1− rE0

1 )E j
0)r

E0
2 , (37)

Ev
1 = (rE1

1 E i
1 +(1− rE1

1 )E j
1)r

E1
2 , (38)

and

η
v = (rη

1 η
i +(1− rη

1 )η
j)rη

2 , (39)

where rE0
1 , rE1

1 and rη

1 are independently chosen from a uniform distribution in domain
[0,1] and rE0

2 , rE1
2 and rη

2 are independently chosen from a uniform distribution in
domain [0.95,1.05].

For the newly created vectors, the squared difference is computed and the newly
created vectors are ranked, together with the old vectors, based on their squared dif-
ference. Those 100 with the smallest squared difference (this can include old and new
vectors) are then again used to create new vectors and the process is repeated for 50
generations.
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6 Results

This section presents the results of the Bayesian framework for the SLS model. The
main points we focus on are how the number of measurement points affects the results
and the influence of the prior, and how the three different tests influence the results.
However, we start with the calibration of the measurement noise for the relaxation
experiment.

6.1 Noise calibration

In this subsection, we briefly discuss a procedure to identify the noise model, the
noise distribution and its parameters. The noise is artificially created and hence, this
subsection only aims to outline a procedure of how to identify the noise. The noise
here is generated using an additive noise model and a normal distribution with a
zero mean and Snoise = 0.5 MPa. The aim here is thus to find this back. We only
focus on the identification of the noise in the relaxation test, because the procedure is
principally the same for the other two tests (note that the output y for the creep test is
the measured strain).

We start with a test without specimens. The stress-time measurements of these
tests show that the noise in the stress behaves according to a normal distribution with
a zero mean and a standard deviation Snoise (see Fig. 6(a)). No noise in the time is
observed.

Now we would like to know if this distribution depends on the measured stress.
Therefore, relaxation tests on a calibration specimen (of which parameters E0, E1
and η are known) are performed. Some schematic results are shown in Fig. 6(b). The
results show that the noise distribution does not evolve and only shifts with the exact
response of the calibration specimen (shown by the bold black curve in Fig. 6(b)).

The artificially created calibration experiments show that the additive model can
be used to describe the uncertainty and a normal distribution with a zero mean and a
standard deviation of Snoise pollutes the stress measurements.

6.2 Identification of the SLS parameters using the relaxation test and two
measurements

Bayesian inference

In this section we consider a relaxation experiment in tension on a specimen with
E0 = 3.9455 MPa, E1 = 2.9636 MPa and η = 136.8035 MPa.s. The noise distribution
is furthermore identified in subsection 6.1. The standard deviation of this normal
distribution is identified as Snoise = 0.5 MPa.

In the first example, we consider only two measurements: y1 = 4.1598 MPa
and y2 = 1.9220 MPa, measured at t1 = 10 s and t2 = 80 s, respectively. The mea-
surements are made in the fast decaying part of the stress-time response (i.e. the



18 Hussein Rappel et al.
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πnoise(ω)

(a) The results of the ‘calibration tests’
without specimen

t

y

(b) The results of the ‘calibration tests’
with calibration specimen, together with
those without specimen

Fig. 6: Schematic of the stress-time measurements (blue circles) of the ‘calibration
tests’, including the noise distributions (red curves). The stress-time relation of the
calibration specimen is presented by the bold black curve in (b). The noise distri-
bution shifts to the curve of the calibration sample, meaning that the additive noise
model can be used to describe the uncertainty.

nonasymptotic part of the curve in Fig. 2). The prior is chosen to follow Eq. (15) with
the following mean and covariance matrix:

xprior =

 5.5
2

110 s

 MPa, ΓΓΓ prior =

1 0 0
0 0.4444 0
0 0 400 s2

MPa2. (40)

This yields a posterior in the form of Eq. (17). We run an MCMC chain of 104

samples and we ‘burn’ the first 3000 samples (meaning that the first 3000 samples
are not used to determine the mean, the covariance matrix and the MAP estimate).
The result of this reads:

xpost =

 4.7082
2.4488

106.9068 s

 MPa, ΓΓΓ post =

 0.3253 −0.0573 −1.4514 s
−0.0573 0.3487 0.3816 s
−1.4514 s 0.3816 s 373.7074 s2

 MPa2,

(41)
and

MAP =

 4.6841
2.3969

106.6689 s

 MPa. (42)
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Fig. 7: Samples drawn by the adaptive MCMC approach to approximate the posterior
distribution. The projections of the samples on three planes are also presented.

(a) The 95% credible region (b) The measurements and the stress-time curves

Fig. 8: The 95% credible region of the posterior distribution (a) and the stress-time re-
sponse associated with the 95% credible region, together with the two measurements,
the true response, the response associated with the mean and the response associated
with the MAP point (b). The 95% credible region (approximated by an ellipsoid)
contains 95% of the posterior. Note that the responses associated with the mean and
the MAP point are practically on top of each other.

Fig. 7 shows the samples drawn by the adaptive MCMC approach and their pro-
jections on the planes E0−E1, E1−η and η −E0. Fig. 8 shows the 95% credible
region (i.e. the region that contains 95% of the posterior, approximated by an ellip-
soid) and the associated stress-time responses. The wide credible region is partially
caused by the large standard deviation of the noise distribution (Snoise = 0.5 MPa).
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Fig. 9: The mean value of E0 of the posterior (Epost
0 ) as a function of the mean values

of the prior (Eprior
0 , Eprior

1 and η
prior). Epost

0 is mostly dependent on the selected value
of Eprior

0 and Eprior
1 , whereas η

prior has substantially less influence.

The prior in BI may have a significant effect on the posterior for a small number
of measurements (as is the case here). To illustrate this influence, we now change
the mean of the prior, while keeping the covariance matrix of the prior constant. The
following covariance matrix is used for the prior:

ΓΓΓ prior =

1 0 0
0 0.4444 0
0 0 277.7778 s2

MPa2. (43)

Figs. 9 to 11 show that the mean value of a particular parameter in the posterior
mostly depends on the mean value of that same parameter in the prior (e.g. Epost

1

depends mostly on the selected value of Eprior
1 ). For Epost

0 however, Eprior
0 and Eprior

1
both have an influence.

η
post almost entirely depends on η

prior. This is caused by the fact that η has
relatively the smallest influence on the stress-time relation. After all, E0 is responsible
for the plateau stress and E1 (together with E0) is responsible for the initial stress at
the start of the relaxation (see Fig. 2). Parameters η and E1 are however together
responsible for the time scale at which the initial stress relaxes to the plateau stress
(see Eq. (2)). Consequently, the sensitivity of the stress-time relation is the smallest
for η of the three parameters.

Fig. 12 shows the effect of the mean of the prior on the diagonal components of
the posterior (ΓΓΓ post). The results show that the mean of the prior only affects (Γpost)33

in a systematic manner. An increasing η
prior leads to an increase of (Γpost)33, whereas

an opposite effect can be observed for Eprior
0 and Eprior

1 .
The effect of the selected mean of the prior on the off-diagonal components of

the ΓΓΓ post is shown in Fig. 13. The prior’s mean hardly has a systematic influence on
the off-diagonal components.
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Fig. 10: The mean value of E1 of the posterior (Epost
1 ) as a function of the mean values

of the prior (Eprior
0 , Eprior

1 and η
prior). Epost

1 is mostly dependent on the selected value
of Eprior

1 , compared to Eprior
0 and η

prior.
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Fig. 11: The mean value of η of the posterior (ηpost) as a function of the mean values
of the prior (Eprior

0 , Eprior
1 and η

prior). η
post depends highly on the selected value of

η
prior, compared to the values of Eprior

0 and Eprior
1 .

Now we will look at the effect of the prior’s covariance matrix on the posterior.
We will keep the mean of the prior constant in this exercise. To investigate the effect
of the prior’s covariance matrix, the modified normal distribution given in Eq. (15) is
selected with following mean:

xprior =

 6
3

110 s

 MPa, (44)
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(c) Effect of xprior on (Γpost)33

Fig. 12: The effect of the mean of the prior on the diagonal components of the pos-
terior’s covariance matrix. Only (Γpost)33 is systematically influenced by the mean of
the prior.

We have chosen this prior’s mean, because it is located relatively far from xprior =[
0 0 0

]T so that we can investigate the influence of relative large components of the
prior’s covariance matrices.

Figs. 14 to 16 show the effect of the different diagonal components of the prior co-
variance matrix ((Γprior)11, (Γprior)22 and (Γprior)33) on the mean of the posterior. The
results show that Epost

0 mostly depends on (Γprior)11 and for an increase of (Γprior)11,
the influence on Epost

0 decreases. Epost
1 is hardly influenced by (Γprior)33. All compo-

nents of the prior’s covariance matrix are of influence on η
post.

The effect of the prior’s covariance matrix on the components of the posterior’s
covariance matrix ΓΓΓ post is shown in Figs. 17 and 18. The diagonal components of the
posterior’s covariance matrix clearly depend mostly on their equivalents in the prior’s
covariance matrix. For the off-diagonal components Fig. 18 shows that (Γpost)12 is
mostly influenced by (Γprior)11 and (Γprior)22. (Γpost)13 depends on all diagonal com-
ponents, and (Γpost)23 is influenced by (Γprior)22 and (Γprior)33.

Least squares method

As the number of parameters to be identified is three and we only have two mea-
surements, the minimisation of the objective function in the LSM (J(x|y) in Eqs. (35)
and (36)) is ill-posed. This means that no unique solution to the minimisation prob-
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Fig. 13: The effect of the mean of the prior on the off-diagonal components of the
posterior’s covariance matrix. The prior’s mean does not seem to have a systematic
influence.
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Fig. 14: The effect of ΓΓΓ prior on Epost
0 . Except for (Γprior)11, the diagonal components

of the prior’s covariance matrix hardly have an influence on Epost
0 .



24 Hussein Rappel et al.

3

3.1

3.2

3.3

3.4

3.5

3.6

Fig. 15: The effect of ΓΓΓ prior on Epost
1 . Epost

1 is influenced by (Γprior)11 and (Γprior)22,
but not by (Γprior)33.
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Fig. 16: The effect of ΓΓΓ prior on the estimated value for η
post. All diagonal components

of the prior’s covariance matrix are of influence.

lem of Eq. (32) exists. Consequently, a wide range of parameter sets can be obtained.
Fig. 19 shows some possible curves generated based on the results of running the
GO routine described in subsection 5.2 several times. Note that the various curves
obtained for the LSM do not represent any uncertainty as the curves created using
the 95% credible region in the Bayesian approach. The bounds between which any
possible curve of the LSM is located are presented by the two blue curves in Fig. 19.

Hence, for two measurements a large difference between the Bayesian approach
and the LSM occurs. After all, the LSM case is ill-posed, whereas the prior in BI
regularises the Bayesian framework.
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Fig. 17: The effect of ΓΓΓ prior on the diagonal components of the posterior’s covariance
matrix. Each diagonal component is mostly dependent on its equivalent in the prior
covariance matrix.

6.3 Identification of the SLS parameters using the relaxation test and more than two
measurements

In the next example, we add another three measurements to the two measurements of
the previous subsection and investigate how this influences the results of the Bayesian
framework as well as those of the LSM. The modified normal distribution given in
Eq. (15) with the mean and covariance matrix given in Eq. (40) is selected as the prior
distribution. Running the MCMC chain for 104 samples, whilst burning the first 3000
samples, yields:

xpost =

 4.8354
2.4069

109.7946 s

 MPa, ΓΓΓ post =

 0.1453 −0.0328 −1.4935 s
−0.0328 0.3392 0.6262 s
−1.4935 s 0.6262 s 361.5418 s2

 MPa2,

(45)
and

MAP =

 4.8463
2.4558

110.6589 s

 MPa. (46)
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Fig. 18: The effect of ΓΓΓ prior on the off-diagonal components of the posterior’s co-
variance matrix. (Γpost)12 is mostly influenced by (Γprior)11 and (Γprior)22. (Γpost)13
depends on all diagonal components and (Γpost)23 is influenced by (Γprior)22 and
(Γprior)33.

The values identified by the LSM are:

xLSM =

 4.1156
4.6433

199.5536 s

 MPa. (47)

Comparing Eqs. (45), (47) and the true values, one can see that the errors of ELSM
1

and ηLSM are larger than of Epost
1 and η

post. This is thanks to the prior knowledge
used in the Bayesian framework. One should however note that if the number of
measurements is small, the selection of the prior’s mean far from the true values and
small components for the prior’s covariance matrix would lead to a larger error. After
all, the Bayesian framework aims to account for the fact that only a limited number of
measurement points are available by incorporating a prior distribution. It is therefore
questionable if a direct comparison between the LSM results and the posterior’s mean
and MAP point is truly valid at all.

The stress-time curves associated with the 95% credible region are given in Fig. 20.
Increasing the number of measurements clearly leads to a narrower credible region
(i.e. a smaller uncertainty, cf. Fig. 8(b)).

To study the effect of the prior’s mean on the posterior’s mean, we again show
the posterior’s mean values as functions of the prior’s mean, see Fig. 21. Comparing



Bayesian inference to identify parameters in viscoelasticity 27

Fig. 19: Different curves (red) associated with the parameters identified by the LSM
due to ill-posedness. All the curves are made for the same measurements and each
time that the LSM is applied as an identification approach the identified values lead
to a different curve. However, in the Bayesian approach the problem is regularised by
the prior and hence, it is not ill-posed. Note that the estimated responses by the LSM
do not represent any uncertainty.

Fig. 20: The stress-time curves for the relaxation test with five measurements. In-
creasing the number of the measurements leads to a narrower region (cf. Fig. 8(b)).
This means that the uncertainty decreases as the number of measurements increases.
Note that the responses associated with the mean and the MAP point are almost on
top of each other.
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Fig. 21: The effect of xprior on xpost for five measurements. An increase of the number
of measurements results in a smaller dependency of Epost

0 on xprior. This is also the
case for Epost

1 and η
post, but this is more difficult to observe by comparing this figure

with Fig. 9.

Fig. 21 with 9 shows that an increasing number of measurements results in a smaller
dependency of Epost

0 on xprior. This is also true for Epost
1 and ηpost, but this cannot well

be observed by comparing Figs. 21 and 9.
In the next example the number of measurements is increased to ten. Assuming

the same prior distribution given in Eq. (15) with xprior and ΓΓΓ prior given in Eq. (40)
the mean, covariance matrix and MAP point read:

xpost =

 4.6381
2.4154

107.4595 s

 MPa, ΓΓΓ post =

 0.0812 −0.0143 −1.4925 s
−0.0143 0.3043 0.8244 s
−1.4925 s 0.8244 s 359.5813 s2

 MPa2,

(48)
and

MAP =

 4.6507
2.4299

106.5064 s

 MPa. (49)
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Fig. 22: The stress-time curves for the relaxation experiment with ten measurements.
Increasing the number of measurements leads to a narrower region (cf. Figs. 8(b)
and 21). This means that the uncertainty decreases as the number of measurements
increases. Note that the responses associated with the mean and the MAP point are
practically on top of each other.

The estimated values using the LSM are:

xLSM =

 4.4661
3.9303

121.0358 s

 MPa. (50)

Fig. 22 shows the associated stress-time curves. As the number of measurements
is increased compared to the previous examples, the responses associated with the
95% credible region become more localised (i.e. the uncertainty decreases, cf. Figs. 8(b)
and 21).

The effect of prior’s mean on xpost is shown in Fig. 23. Comparing Fig. 23 with
Figs. 9, 10, 11 and 21, it is clear that the prior’s mean has again less influence on the
posterior’s mean. This is most obvious for Epost

0 .

6.4 Identification of the SLS parameters when the measurements are created by the
generalised Maxwell model using the relaxation test

In the final example for the relaxation test, we study the results of the Bayesian ap-
proach and the LSM when the measurements are generated using the generalised
Maxwell model with three spring-dashpots in series (instead of only one as in the
SLS model). The model is shown schematically in Fig. 24. We take E0 = 4 MPa,
E1 = 3 MPa, E2 = 2.5 MPa, E3 = 2 MPa, η = 140 MPa.s, η2 = 110 MPa.s and
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Fig. 23: The effect of the prior’s mean (xprior) on Epost
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1 and η
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surements. The effect of the prior’s mean becomes less significant, especially for
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1 and η

post one can observe that an increase in the number of measure-
ments decreases the prior’s effect.
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Fig. 24: Schematic representation of the generalised Maxwell model with three
spring-dashpots in series.

η3 = 100 MPa.s. The same noise distribution is considered as in the previous exam-
ples (Snoise = 0.5MPa). The modified normal distribution given in Eq. (15) is selected
as the prior distribution with xprior and ΓΓΓ prior given in Eq. (40). Running the MCMC
chain for 104 sample and burning the first 3000 samples yields:
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xpost =

 4.5290
3.4806

122.3883 s

 MPa, ΓΓΓ post =

 0.0810 −0.0175 −1.7183 s
−0.0175 0.2714 1.9272 s
−1.7183 s 1.9272 s 300.6031 s2

 MPa2,

(51)
and

MAP =

 4.5352
3.4771

122.9158 s

 MPa. (52)

The identified values by the LSM are:

xLSM =

 3.3702
9.9743

306.8281 s

 MPa. (53)

In Fig. 25 all associated stress-time responses are presented. The LSM response
is clearly closer to the true response, than the responses associated with the mean
and the MAP of the Bayesian framework. The prior distribution clearly also has a
substantial influence for this case.

Fig. 25: The stress-time response for the SLS model when ten measurement points are
created using the generalised Maxwell model. The response identified by the LSM is
significantly closer to the true response than the responses associated with the mean
and the MAP point of the Bayesian framework. Hence, also in this case the prior has
a significant influence in the Bayesian framework. Note that the responses associated
with the mean and the MAP point are on top of each other.
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6.5 Comparison with the constant strain-rate test and the creep test

In this subsection we compare the results for the relaxation test to the results for
the constant strain-rate test and the creep test. To make our comparison is as ‘fair’ as
possible, we try to keep every condition as similar to the relaxation test with five mea-
surements. This means amongst others that we also consider five measurements in the
constant strain-rate test and the creep test and that we again try to find the same pa-
rameter values back (E0 = 3.9455 MPa, E1 = 2.9636 MPa and η = 136.8035MPa.s).
In the following two subsections we explain how we try to keep the other conditions
as similar as possible. The comparison of the results is presented in subsection 6.5.3.

6.5.1 Set-up of the constant strain-rate test

In the constant strain-rate test, strain-rate ε̇0 is chosen such that the maximum stress
that will occur is the same as the maximum stress occurring in the relaxation test.
Consequently, the following expression to determine the applied strain-rate:

ε̇0 =
(E0 +E1)ε0

E0texp +η

(
1− exp

(
− E1texp

η

)) , (54)

where texp = 300 s and represents the duration of the relaxation test as well as that of
the constant strain-rate test. The strain applied in the relaxation test is represented by
ε0.

Note that the reason to choose ε̇0 according to Eq. (54) is to have the same order
of magnitude for the stresses in both tests. In this way, the noise distribution (for
which we again use a normal distribution with zero mean and Snoise = 0.5 MPa) has
approximately the same influence in both tests. Furthermore, we assume that the noise
realisation for each measurement at time ti in the constant strain-rate test is the same
as the noise realisation at the same time in the relaxation test. In this way, the noise
realisations have approximately the same influence in both tests.

6.5.2 Set-up of the creep test

The noise distribution in the creep test is again chosen to be in the form of Eq. (13).
As the quantity measured in a creep test is the strain however, the standard deviation
of the noise distribution (i.e. Snoise in Eq. (13)) must be re-defined such that a ‘fair’
comparison can be made between the results of the previous two tests and the creep
test. For this reason, the standard deviation of the noise distribution in the creep test,
Screep

noise is chosen as follows:

Screep
noise =

Srelaxation
noise ε

creep
max

σ relaxation
max

, (55)

where Srelaxation
noise is the standard deviation of the noise in the relaxation test, ε

creep
max is

the maximum strain occurring in the creep test and σ relaxation
max is the maximum stress
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that has occurred in the relaxation test. Using Eqs. (2) and (4) ε
creep
max and σ relaxation

max are
calculated as follows:

ε
creep
max =

σ0

E0
+σ0

( 1
E0 +E1

− 1
E0

)
exp
(
−

E0E1tcreep
exp

η(E0 +E1)

)
, (56)

and

σ
relaxation
max = (E0 +E1)ε0, (57)

where tcreep
exp represents the duration of the creep test.

Furthermore, a comparison between Eqs. (2), (3) and (4) shows that the coeffi-
cient in the exponent of the strain-time expression for the creep test (i.e. E0E1

η(E0+E1)
)

is smaller than the one in the strain-time expressions for the other two tests (i.e. E1
η

).
This entails that more time is required in the creep test to achieve the same amount of
relaxation as in the previous two tests. Consequently, the experiment duration for the
creep test is scaled as tcreep

exp = (E0+E1)
E0

trelaxation
exp . trelaxation

exp refers here to the duration of
the relaxation test (here trelaxation

exp = 300 s and tcreep
exp = 525.3403 s).

Because we scale the duration of the creep test, we also scale the time at which
each measurement is made as tcreep

i = (E0+E1)
E0

trelaxation
i . tcreep

i refers here to the time
at which measurement i is made in the creep test and trelaxation

i refers to the time at
which the same measurement is made in the relaxation test.

Using Eq. (55) the standard deviation of the noise distribution in the creep test is
determined as Snoise = 0.0724. Note that σ0 in Eq. (4) is chosen such that the final
strain in the creep test is the same as the strain applied in the relaxation test (i.e. ε0 in
Eq. (2)). Additionally, we assume that noise realisation i in the creep test (ωcreep

i ) has
the same probability to occur as noise realisation i in the relaxation test (ωrelaxation

i ).
This entails that we scale each noise realisation as follows:

ω
creep
i = ω

relaxation
i

Screep
noise

Srelaxation
noise

. (58)

6.5.3 Comparison of results

In this subsection we present the results of both the constant strain-rate test and the
creep test and compare them with each other and those of the relaxation test. The
prior for the two new tests is the same as we used for the relaxation test with five
measurements (using Eq. (15) with the mean and covariance matrix in Eq. (40)). The
MCMC chain is again run for 104 sample and we have burnt the first 3000 samples.
Table1 shows the estimated values of each parameter and each component of the
posterior’s covariance matrix (ΓΓΓ post) for the three tests.

Comparing the values given in Table 1 with each other and the real values (i.e. E0 =
3.9455 MPa, E1 = 2.9636 MPa and η = 136.8035 MPa.s), one can see that the iden-
tified parameter values for the three tests are all approximately of the same accuracy.
The relaxation and constant strain-rate test overestimate the value of E0, whereas the
creep test identifies this value accurately. However, the creep test underestimates the
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Table 1: The estimated values of the posterior’s mean, MAP and components of the
covariance matrix for the three experiments.

Estimated value Relaxation test Constant strain-rate test Creep test

Epost
0 (MPa) 4.8354 4.9115 3.9047

Epost
1 (MPa) 2.4069 2.0435 1.7861

η
post (MPa.s) 109.7946 109.0151 105.7801

EMAP
0 (MPa) 4.8463 4.8448 3.8569

EMAP
1 (MPa) 2.4558 1.9383 1.7678

ηMAP (MPa.s) 110.6589 107.4682 106.1140
(Γpost)11 (MPa2) 0.1453 0.3548 0.0748
(Γpost)22 (MPa2) 0.3392 0.4562 0.4173

(Γpost)33 (MPa2.s2) 361.5418 398.6452 420.1033
(Γpost)12 (MPa2) −0.0328 −0.0302 −0.0121
(Γpost)13 (MPa2.s) −1.4935 −1.9472 −0.9538
(Γpost)23 (MPa2.s) 0.6262 0.2432 −0.8297

value of E1 substantially more than the other two tests. This is not very surprising
since this results from the fact that the stress is measured in the relaxation and con-
stant strain-rate test and that the strain is measured in the creep test. The posteriors’
means and MAPs for the different tests in Table 1 cannot well be compared to begin
with, since we only consider five measurements and one prior.

More interesting are the results for the uncertainty of E0. After all, the values of
(Γpost)11 vary with a factor of five for the three tests. The difference between the un-
certainty of E0 of the relaxation test and the constant strain-rate test can be explained
based on comparing the stress-time relations for both tests (see Eqs. (2) and (3)). If
t approaches infinity in the relaxation test (t→+∞), an horizontal asymptote occurs
(σ = E0ε0) which depends only on E0. In the the constant strain-rate test however,
an oblique asymptote occurs (i.e. E0ε̇0t + ηε̇0) which depends on two parameters
(E0 and η). This means if t→ ∞, a measurement in the relaxation test only provides
information about E0, but in the constant strain-rate test this measurement gives in-
formation about E0 and η . Consequently, E0 is determined with more certainty in the
relaxation test than in the constant strain-rate test. Furthermore, at the beginning of
the relaxation test information is directly obtained for E0 and E1, whereas the con-
stant strain-rate does not provide any information at time t = 0 s. The same reasoning
can be used for the creep test as well. Unlike the stress-time relation for the relax-
ation test however, the one for the creep test is a combination of homographic and
exponential functions. For this reason we obtain a different value for (Γpost)11 in the
creep test.

Figs. 26 and 27 present the stress-time responses and the strain-time responses
of the constant strain-rate test and the creep test, respectively. The curves associated
with 95% credible region are generated using the points from region which contain
95% of the posterior (approximated by an ellipsoid).

In the remainder of this subsection we investigate the effect of prior’s mean xprior
on the results. For this exercise, the prior’s covariance matrix is kept constant (i.e. the
covariance matrix given in Eq. (40)).



Bayesian inference to identify parameters in viscoelasticity 35

Fig. 26: The stress-time curves for the constant strain-rate test with five measure-
ments. The measurements are made using the same noise distribution as in subsec-
tion 6.2. Furthermore, it is assumed that the noise realisation for each measurement
at time ti in the constant strain-rate test is the same as the noise realisation at the same
time in the relaxation test. Note that the associated curves with the mean and MAP
point are practically on top of each other.

Fig. 27: The strain-time curves for the creep test with five measurements. The mea-
surements are generated using a normal distribution with zero mean and a standard
deviation given by Eq. (55). To ensure that the same amount of relaxation occurs as in
the other two tests, the time at which each measurement is made is scaled according
to tcreep

i = (E0+E1)
E0

trelaxation
i .
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Fig. 28: The effect of xprior on Epost
0 for the three tests. Epost

0 depends least on the
prior for the relaxation test. Epost

0 depends only on Eprior
0 for the creep test, whereas it

depends on Eprior
0 and Eprior

1 in the other two tests.

Fig. 28 shows the effect of xprior on Epost
0 for the relaxation, constant strain-rate

and creep test. It can be observed that Epost
0 depends least on xprior for the relax-

ation test. It can also be observed that Epost
0 depends only on Eprior

0 for the creep test,
whereas it depends on Eprior

0 and Eprior
1 in the other two tests. Note that a possible

reason for the different influence of the prior in the creep test is the type of function
for its stress-time relation (Eq. (4) is a combination of homographic and exponential
function of parameters).

Now we investigate the effect of the prior’s mean on the estimated values. The
prior’s covariance matrix is again kept constant for this. The influence of the prior’s
mean on the estimated values is very similar to that for the relaxation test, except for
(Γpost)11, (Γpost)33, (Γpost)13 and (Γpost)23. In Fig. 29 the effect of xprior on (Γpost)11 is
presented. Only for the creep test an actual trend can be observed.

Fig. 30 indicates that the effect of xprior on the estimated value of (Γpost)33 for the
relaxation test, whereas it is the smallest for the constant strain-rate test.

Figs. 31 and 32 show the effect of xprior on (Γpost)13 and (Γpost)23 for the three tests
employed in this work. The estimated value of (Γpost)13 does not depends on xprior for
the constant strain-rate test, whereas a dependency can be observed for the other two
tests. Furthermore, for (Γpost)23 we can only see a dependency for the relaxation test.
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Fig. 29: The effect of xprior on (Γpost)11. Only for the creep test a trend can be distin-
guished.

The values estimated for (Γpost)12 using the three tests are independent of the mean
of the prior, although the value change for each test.

Investigating the effect of the mean of the prior on the estimated values for the
parameters and components of the posterior’s covariance matrix shows that the con-
stant strain-rate test is less sensitive to the prior’s mean compared to the two other
tests. This can be due to the existence of the term ηε̇0 that does not vanish for t→ ∞

(see Eq. (3)), whereas a constant remains for the other two tests. The nature of the
different tests therefore seems to have a considerable influence on the results.

7 Conclusions

In this contribution Bayesian inference is used to identify parameters in viscoelastic-
ity. The model focused on was the standard linear solid model and the experiments
of interest were a relaxation test, a constant strain-rate test and a creep test in tension.
We have investigated four issues. First, the influence of the number of measurements
on the parameter values and their uncertainty was investigated. Second, the identi-
fied parameter values were compared to those identified by the least squares method
(LSM) for the relaxation test. Thirdly, three different types of experiments were con-
sidered in order to study how they affect the results. Finally, the sensitivity on the
prior distribution was investigated for all the aforementioned cases.

The obtained results allow us to draw four conclusions:
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Fig. 30: The effect of xprior on (Γpost)33. The influence for the relaxation test is most
significant, whereas almost no influence can be observed for the constant strain-rate
test.

(1) The prior has a substantially larger effect on the identified values (i.e. the mean
and the MAP) in viscoelasticity than in elastoplasticity. The influence on the
damping parameter is especially large. The reason for the prior’s substantial influ-
ence in viscoelasticity compared to elastoplasticity is that no clear domains can
be distinguished in viscoelasticity, whereas two domains are present in elasto-
plasticity (in which an elastic and elastoplastic domain can be distinguished).

(2) An increase of the number of measurement points reduces the influence of the
prior, but the influence on the damping parameter is still substantially present. If
only two measurement points are present furthermore, the LSM has no unique
solution but the prior in the Bayesian framework regularises this case such that it
becomes unique.

(3) For the relaxation test with more than two measurements, the stress-time re-
sponses associated with the LSM results are practically always closer to the true
responses than the responses associated with the mean and MAP values identi-
fied by the Bayesian framework. It is however questionable if this means that
the LSM is ‘better’ than the Bayesian framework. After all, the Bayesian frame-
work incorporates the assumption that other measurements could have been made
as well (incorporated in the prior). Furthermore, the Bayesian framework treats
the parameters as random variables and consequently, the parameter values come
with a credible region. This is not the case for the LSM. In other words, if one
desires to propagate the uncertainty of the parameters in a predictive model, the
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Fig. 31: The effect of xprior on (Γpost)13 for the three employed tests. Unlike the con-
stant strain-rate test, the estimated value for (Γpost)13 is function of the mean of the
prior for the two other tests.

standard LSM gives no estimate for the interval of a particular parameter. The
Bayesian framework is however able to do this, including the dependency on the
other parameters.

(4) The use of BI has enabled us to distinguish that the uncertainty of the identi-
fied parameter values resulting from the constant strain-rate test is substantially
larger than those resulting from the relaxation test and the creep test. This can
be explained by the fact that asymptotic behaviour occurs in the relaxation and
creep test, for which only one parameter is responsible. Consequently, the uncer-
tainty of this parameter is relatively small and because of that, the uncertainties
of the other parameters are also relatively small compared to those resulting from
the constant strain-rate experiment. The results however show that this does not
mean that the influence of the prior is larger.

The Bayesian identification approach and the LSM both have their advantages
and disadvantages to identify material parameters. BI incorporates a regularisation
that makes cases with few measurements solvable, which cannot be solved using the
standard formulation of the LSM. An result of BI, which cannot be obtained using the
standard LSM, is that the parameters come with uncertainties. This is essential for the
propagation of uncertainties in mechanical predictions. On the other hand, the prior
information in BI can also significantly influence the results negatively. Probably, it
will always remain a matter of taste to prefer one method above the other. In case of
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Fig. 32: The effect of xprior on (Γpost)23 for the three employed tests. Except for the
relaxation test, the other tests are independent of the prior’s mean.

a small number of measurements and obtaining an uncertainty however, BI seems to
be unavoidable.
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