
Combining Input/Output logic and Reification
for representing real-world obligations

Livio Robaldo∗, Llio Humphreys∗, Xin Sun∗, Loredana Cupi+,
Cristiana Santos#, and Robert Muthuri+

*University of Luxembourg, +University of Turin, #University of Barcelona
{livio.robaldo, llio.humphreys, xin.sun}@uni.lu, loredana.cupi@unito.it,

muthuri.r@gmail.com, cristiana.teixeirasantos@gmail.com
?

Abstract. In this paper, we propose a new approach to formalize real-
world obligations that may be found in existing legislation. Specifically,
we propose to formalize real-world obligations by combining insights of
two logical frameworks: Input/Output logic, belonging to the literature
in deontic logic and normative reasoning, and the Reification-based ap-
proach of Jerry R. Hobbs, belonging to the literature in Natural Lan-
guage Semantics. The present paper represents the first step of the Pro-
LeMAS project, whose main goal is the one of filling the gap between
the current logical formalizations of legal text, mostly propositional, and
the richness of Natural Language Semantics.

1 Introduction

Legal scholars and practitioners are feeling increasingly overwhelmed with the
expanding set of legislation and case law available these days, which is assuming
more and more of an international character. Consider, for example, European
legislation, which is estimated to be 170,000 pages long, of which over 100,000
pages have been produced in the last ten years.

Legal informatics is an under-researched area in IE, and there is a lack of
suitable annotated data. The idiosyncratic nature of legal text poses new chal-
lenges for the task of extracting such information using NLP, in order to associate
norms with semantic representations on which to perform reasoning [4].

The ProLeMAS project1 has been specifically proposed to address these chal-
lenges. The main goal of the project is to overcome two main limitations of
current approaches in normative reasoning and deontic logic:

? Livio Robaldo has received funding from the European Unions Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No
661007 for the project “ProLeMAS: PROcessing LEgal language in normative Multi-
Agent Systems”. Llio Humphreys is supported by the National Research Fund, Lux-
embourg. Loredana Cupi has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skodowska-Curie grant
agreement No 690974 for the project “MIREL: MIning and REasoning with Legal
texts”. We would like to thank prof. Leon van der Torre for fruitful discussions.

1 http://www.liviorobaldo.com/ProLeMAS.htm

2

(1) a. Several proposals in deontic logic are typically propositional, i.e. their
basic components are whole propositions. A proposition basically refers
to a whole sentence. On the other hand, natural language (NL) seman-
tics includes a wide range of fine-grained intra-sentence linguistic phe-
nomena: named entities, anaphora, quantifiers, etc. It is then necessary
to move beyond the propositional level, i.e. to enhance the expressivity
to formalize the meaning of the phrases constituting the sentences.

b. Few proposals in deontic logic have been implemented and tested on real
legal text. Most of them are only promising methodologies, which over-
come the limits of other approaches on the theoretical side. In order to
make the logical framework really useful and worth being implemented,
its design has to be guided by the analysis of real norms.

We started by studying a corpus of EU legislation in English. The corpus
includes twenty EU directives from 1998 to 2011, covering a range of subjects,
e.g., the profession of lawyer, passenger ships, biotechnological inventions, etc.

Our initial experiments of norm representation in ProLeMAS is conducted
on the English version of Directive 98/5/EC of the EU Parliament to facilitate
practice of the profession of lawyer on a permanent basis in a Member State other
than that in which the qualification was obtained. There are 36 obligations,
13 powers, 10 legal effects, 8 definitions, 6 permissions, 6 applicability types,
6 rationales, 2 rights, 1 exception, and 1 hierarchy. In this paper, we use the
following example of obligation for explanatory purposes:

(2) A lawyer who wishes to practise in a Member State other than that in which
he obtained his professional qualification shall register with the competent
authority in that State.

The approach proposed in this paper merges two specific logical frameworks
into a new one: (1) Input/Output (I/O) logic, belonging to the literature in
deontic logic and normative reasoning, and (2) the Reification-based approach
of Jerry R. Hobbs, belonging to the literature in Natural Language Semantics.

I/O logic appears as one of the new achievements in deontic logic in recent
years [9]. The key feature of I/O logic is that it adopts operational semantics
and not truth-conditional ones. Thus, it allows to determine which obligations
are operative in a situation that already violates some of them. It is not possible
to achieve such a characterization of norms in terms of a truth-conditional se-
mantics: a violation would correspond to an inconsistency, which will make the
whole knowledge base inconsistent.

On the other hand, Hobbs’s logic is a wide-coverage logic for Natural Lan-
guage Semantics centered on the notion of Reification. Reification is a con-
cept originally introduced by Donald Davidson in [6]. Modern logical frame-
works based on Reification are known in the literature as “neo-Davidsonian”
approaches. Reification allows a wide variety of complex natural language (NL)
statements to be expressed in First Order Logic (FOL). NL statements are for-
malized such that events, states, etc., correspond to constants or quantifiable

3

variables of the logic. Following [2], we use in this paper the term ‘eventuality’
to denote both the reification of a state and the one of an event.

Reification allows us to move from standard FOL notations such as “(give a
b c)”, asserting that “a” gives “b” to “c”, to another notation “(give′ e a b c)”,
which is again in FOL, where e is the reification of the giving action. In other
words, the expression “(give′ e a b c)” says that “e” is a giving event by “a” of
“b” to “c”. “e” is a FOL term exactly as “a”, “b”, and “c”.

Many neo-Davidsonian logical frameworks have been proposed in Natural
Language Semantics and also in Legal Informatics (cf. section 2 below). The
peculiarity of Hobbs’s with respect to all other neo-Davidsonian approach is
the total avoidance of subformulae within the scope of other operators. In other
words, the formulae are mere conjunctions of atomic predications. It has been
argued in [14] and [25] that many interpretations available in NL require the
parallel evaluation of two or more logical operators (e.g., modal operators or
quantifiers). Section 2 presents some example. Hobbs’s logic, by avoiding em-
beddings of operators within the scope of other operators, straightforwardly and
uniformly handles these readings, that are intrinsically prevented in many tra-
ditional logical frameworks for Natural Language Semantics.

2 Related work

Some previous approaches try to model, in some deontic settings, sentences com-
ing from existing norms. The most representative work is perhaps [30]. Examples
of real norms formalized in deontic logic may be also found in [11] and [1].

Many current state-of-the-art approaches try to formalize legal knowledge via
Event Calculus [16] [22]. Event Calculus is a neo-Davidsonian logical language
that extends the original account of Reification (see [10] for a discussion).

A recent approach in the line is [12]. In [12], it is argued that Event Calculus
predicates for handling time cannot be directly used for handling also deontic
meaning. Therefore, a new version is proposed to incorporate the deontic effect
of norms, so that they can be used for compliance checking. Similar proposals
are [24], [7], and [8]. However, [12] appears to be superior in that it identify and
formalize much more fine-grained and complex obligation modalities.

The mentioned approaches in Event Calculus focus on business process com-
pliance. In other words, they do not specifically focus on formalizing norms
coming from existing legislation.

Thus, they cannot be directly compared with the present proposal, where
Natural Language Semantics has a prominent role.

To our knowledge, the approach that appears closest to the one we are going
to propose below is perhaps McCarty’s Language for Legal Discourse (LLD) [20],
[21]. LLD is strongly drawn on previous studies on Natural Language Semantics,
it uses Reification, and it has been developed specifically to model real legal text.

An example of McCarthy’s Language for Legal Discourse (LLD) is shown in
(3). The sentence in (3) is represented via the formula below it.

4

(3) “The petitioner contends that the regulatory takings claim should not have
been decided by the jury”

sterm(contends, A,

[nterm(petitioner, B, [])

/det(The, nn),

sterm(decided, C,

[D,

aterm(regulatory,E,[F]) &

nterm(takings,G,[]) &

nterm(claim,F,[])

/det(the, nn)])

&& H∧pterm(by, H,

[C,

nterm(jury,I,[])

/det(the, nn)])

/[modal(should),negative,perfect,passive]

sterm, nterm, aterm, and pterm are reified terms of different kind. For instance,
sterms denote reified relations. Thus, the sterm on the first line refers to the
eventuality denoted by the main verb “contends”.

Space constraints forbid us to illustrate all technical details of LLD. We focus
only on the two architectural choices most relevant for the present work:

(4) a. Each *term is associated with a lexical entry, e.g. “contends”, “peti-
tioner”, “decided”, etc. This is the first argument of the *term.

b. *terms may outscope by other *terms. E.g., the sterm associated with
the main verb “contends” outscopes the nterm associated with “peti-
tioner” which in turn outscopes the sterm associated with “decided”.

(4.a-b) make McCarthy’s logic very reminiscent of standard representation for-
malisms used in Natural Language Semantics such as Discourse Representation
Theory (DRT) [15] and Minimal Recursion Semantics (MRS) [5].

Nevertheless, [14] and [25] argues that (4.a-b) intrinsically prevents the proper
representation of several readings that are actually available in NL utterances.
For instance, consider sentences in (5), drawn from the large range of examples
considered by Hobbs and Robaldo in their past research in NL semantics.

(5) a. Permission may be obtained, but it could take more than one month.

b. The city does not have a train station, but it has a bus station.

c. If the parents of a student earn less than 20k euros per year, then the
student is eligible.

Sentence (5.a) highlights that reification can easily give rise to a practical formal-
ism for NL semantics. The pronoun “it” refers to the permission to be obtained.
The referent of the pronoun could be then directly identified by the FOL term

5

reifying the eventuality denoted by the main verb of the first clause (see [14] and
several other earlier publications by the same author2).

(5.b) is an example of concessive relation, one of the trickiest semantic re-
lations occurring in NL: the first clause creates the expectation that the city
is unreachable by public transportation. The second clause denies that expec-
tation. A practical way to properly model concessive relations is to reify the
eventuality corresponding to the expectation, as proposed in [28]. Note that the
expectation is a “hidden” eventuality, i.e., it is not denoted by any lexical item.
Thus, (5.b) cannot be represented in LLD via its basic constructs, due to (4.a).

Finally, (5.c) is an example of cumulative reading. The meaning of (5.c) is
that if the money cumulatively earned by either one of the parents, or by both
together3 is less than 20k, the student is eligible. Cumulative readings have been
extensively studied in a reification setting in [26], [27], and [29].

It is quite hard to represent (5.a-c) by embedding operators within the scope
of other operators, as it is done in DRT or MRS. For instance, in (5.c) we have
two operators/quantifiers: “Two” and “Less than 20k”. By embedding the latter
within the scope of the former, we get a reading where the student is eligible if
either parent independently earns less than 20k euros, but the sum of the two
earnings is superior to 20k. On the other hand, in order to get the meaning of
cumulative readings, the two quantifiers must be evaluated in parallel, i.e., none
of the two must outscope the other.

This paper defines a reified deontic logic characterized by the total avoidance
of embeddings in the instantiated formulae, in line with [14] and [29].

The next two sections introduce the formal instruments at the base of our
logical formalization: Hobbs’s logic and Input/Output logic. The subsequent sec-
tions illustrates how the former can be integrated into the latter, while retaining
the advantages of both formalisms.

3 Hobbs’ logical framework

Jerry R. Hobbs defines a wide-coverage logic for Natural Language Semantics
centered on the notion of Reification. Hobbs’s logic uses two related kinds of
predicates: primed and unprimed. For instance, the predication “(give a b c)”
seen above is associated with “(give′ e a b c)”, where “e” is the reification of
the giving action. Hobbs’ implements a fairly large set of linguistic and semantic
concepts including sets, composite entities, scales, change, causality, time, event
structure, etc., into an integrated first order logical formalism.

Eventualities may be possible or actual. In Hobbs’, this distinction is repre-
sented via a unary predicate Rexist that holds for eventualities really existing
in the world. To give an example cited in Hobbs, if I want to fly, my wanting
exists in reality, but my flying does not. This is represented as:

2 See http://www.isi.edu/∼hobbs/csknowledge-references/csknowledge-
references.html and http://www.isi.edu/∼hobbs/csk.html.

3 For instance, suppose they rent an apartment that they co-own.

6

∃e[(Rexist e) ∧ (want′ e I e1) ∧ (fly′ e1 I)]

Eventualities can be treated as the objects of human thoughts. Reified even-
tualities are inserted as parameters of such predicates as believe, think, want,
etc. Reification can be applied recursively. The fact that John believes that Jack
wants to eat an ice cream is represented as an eventuality e such that it holds:

∃e∃e1∃e2∃e3 [(Rexist e) ∧ (believe′ e John e1) ∧ (want′ e1 Jack e2) ∧
(eat′ e2 Jack Ic) ∧ (iceCream′ e3 Ic)]

Every relation on eventualities, including logical operators, causal and tempo-
ral relations, and even tense and aspect, may be reified into another eventuality.
For instance, by asserting (imply′ e e1 e2), we reify the implication from e1 to
e2 into an eventuality e and e is, then, thought of as “the state holding between
e1 and e2 such that whenever e1 really exists, e2 really exists too”. Negation is
represented as (not′ e1 e2): e1 is the eventuality of e2’s not existing.

The predicates imply′ and not′ are defined to model the concept of ‘incon-
sistency’. Two eventualities e1 and e2 are said to be inconsistent if and only if
they (respectively) imply two other eventualities e3 and e4 such that e3 is the
negation of e4. The definition is as follows:

(6) (forall (e1 e2)

(iff (inconsistent e1 e2)

(and (eventuality e1) (eventuality e2)

(exists (e3 e4) (and (imply e1 e3)

(imply e2 e4)(not’ e3 e4))))))

(6) is an example of an ‘axiom schema’. In this logic, an ‘axiom schema’
provides one or more different axioms for each predicate p. The axiom schemas
of the predicates used in formulae are generally stored into a separate ontology.

Higher order operators, such as modal and temporal operators, are modelled
by introducing new predicates and by defining axiom schemas to restrict their
meaning. However, it is important to note that thanks to reification, the formulae
representing natural language utterances never feature any kind of embedding
of predicates within other operators. In other words, formalae are always con-
junctions of atomic FOL predicates applied to FOL terms. See for instance [28],
which propose a formalization in Hobbs’ of concessive relations.

As [14], pp.5, states: “There has been an attempt to make the notation as
‘flat’ as possible. All knowledge is knowledge of predications4. FOL terms are
only handles. The intuition is that in natural language we cannot communicate
entities directly. We can only communicate properties and hope that the listener
can determine the entity we are attempting to refer to.”

It should be clear that the main peculiarity of Reification-based logical frame-
works is their formal simplicity. This eases the handling of several natural lan-
guage phenomena. Hobbs’ past research particularly addresses the proper treat-
ment of anaphora (cf. in particular [14]). For instance, (7.a) may be represented

4 And, it may be separately asserted in axiom schema.

7

via formula (7.b). For simplicity, in (7.b) the semantic relation between the two
clauses is simply represented as a material implication (predicate imply′).

(7) a. If John goes to Mary’s house, he tells her before.

b. (Rexist e) ∧ (imply′ e e1 e2) ∧ (goTo′ e1 J M) ∧
(tell′ e2 J e1 M) ∧ (happenBefore e2 e1)

e1 is the event of John’s going to Mary, while e2 is the event of John’s telling
to Mary the fact that he will come to her. The predicate (happenBefore e2 e1)
states that e2 must occur before e1. Note that e1 and e2 are only hypothetical
eventualies: (7.b) does not assert that they exist in the real world. In (7.a), the
(hidden) pronoun “it”, which is the object of the verb “tell”, is straightforwardly
represented: the eventuality e1 is directly inserted as the second parameter of the
tell′ predicate in (7.b). Without Reification, it would be necessary to introduce
some 2-order operators in the logic in order to get the intended meaning of (7.a).

Hobbs’ formula are formulae in first order logic with a very restricted syntax.
They are basically conjunctions of atomic predicates instantiated on FOL terms.
From a formal point of view, eventualities are FOL terms exactly as “Jack” in
example (7.b), the only difference being that they refers to facts and actions
occurring in the world. Facts and actions are taken to be individuals of the
domain like persons, dogs, etc.

The logic we are going to use as the object logic of I/O systems - which we
will call “ProLeMAS object logic” - is a further simplification of Hobbs’ logic.
The formulae will be more verbose, but, in our view, the simpler syntax will
enhance readability and it will facilitate the definition of a reference ontology
storing the available predicates and the axiom schemas modelling their meaning.

In fact, it is easy to see that the structure of the formulae strictly resemble
the technique of rewriting relations of arbitrary arity as binary relations, used
in AI as entity-attribute-value (EAV) triples in the last decades, which is at the
basis of the subject-predicate-object of the RDF/OWL data model5.

In ProLeMAS object logic, there is a single type of predicate, i.e. there is no
distinction between primed and unprimed predicates. Predicates will be always
unary or binary predicates. Thus, for instance, “(give a b c)” is not an acceptable
predicate in our logic. N-ary relations are modelled by making thematic roles
explicit. This is done by introducing other FOL predicates referring each to an
available thematic role. For example, “(give a b c)” is translated into:

(8) (give e1) ∧ (agent e1 a) ∧ (patient e1 b) ∧ (recipient e1 c)

The meaning of (8) is obvious: e1 is a giving event whose agent is a, whose
patient is b, and whose recipient is c. “Agent”, “patient”, and “recipient” are
thematic roles. The ontology specifies, for each kind of eventuality, the available
thematic roles and - via further axioms - the restrictions on these thematic roles.

5 http://www.w3.org/TR/owl-ref

8

For instance, if we want to impose that agents of giving eventualities can be
only human beings, we add the following axiom to the ontology:

(9) (forall (e a) (if (and (give e) (agent e a)) (humanBeing a)))

Of course, the computational ontology has to be designed and developed with
respect to the application and the domain where we want to concretely use
the formulae. In our future research, we aim at specifically designing and im-
plementing a legal ontology for modelling the meaning of norms expressed in
natural language [3].

We now formally defines6 the syntax of ProLeMAS object logic. For reasons
that will be clear below, ProLeMAS object logic includes existential quantifiers
but not universal ones. And, free variables are allowed. Those will be bound by
an (external) universal quantifier.

Definition 1 (Syntax of ProLeMAS object logic). ProLeMAS object logic
is a fragment of First Order Logic (FOL). Where:

- The vocabulary includes FOL terms (constants, variables, and functions),
FOL unary or binary predicates, the boolean connective “∧” and the exis-
tential quantifier “∃”.

- If “p” and “q” are, respectively, a unary and a binary predicate, while “a”
and “a” are terms, “p(a)” and “q(a,b)” are atomic formulae.

- If Φ1 . . . Φn are atomic formulas, “Φ1∧. . .∧Φn” and “∃x1
. . . ∃xm

[Φ1∧. . .∧Φn]”,
where x1 . . . xm occurring in Φ1 . . . Φn, are non-atomic formulas, possibly con-
taining free variables.

4 Input/Output logic

Input/Output logic (I/O logic) was originally introduced by Makinson and van
der Torre in [19]. For a comprehensive survey and a techinqual introduction of
I/O logic, see [23] and [31] respectively. Strictly speaking, I/O logic is not a single
logic but a family of logics, just like modal logic is a family of logics containing
systems K, KD, S4, S5, etc. In the first volume of the handbook of deontic logic
and normative systems [9], I/O logic appears as one of the new achievements in
deontic logic in recent years.

I/O logic originated from the study of conditional norms. Unlike modal logic,
which usually uses possible world semantics, I/O logic mainly adopts operational
semantics: an I/O system is conceived as a deductive machine, like a black box
which produces deontic statements as output, when we feed it factual statements
as input. In the original paper of Makinson and van der Torre, i.e. [19], four I/O
logics are defined: out1, out2, out3, and out4. They vary on the axioms used to
constrain the deductive machine that produces the output against a valid input.

6 Definition 1 only includes the boolean connective “∧”. Other boolean connectives
are modelled by introducing special predicates as imply′ and not′ in (6).

9

Let P = {p0, p1, . . .} be a countable set of propositional letters and L be the
propositional language built upon P. Let G ⊆ L × L be a set of ordered pairs of
formulas of L. G represents the deduction machine of the I/O logic: whenever
one of the heads is given in input, the corresponding tails are given in output.
Each pair (a, b) in G is called a “generator” and it is read as “given a, it ought
to be x”. In this paper, “a” and “b” are respectively termed as the head and the
tail of the generator (a, b). Formally, G is a function from 2L to 2L such that for
a set A of formulas, G(A) = {x ∈ L : (a, x) ∈ G for some a ∈ A}. Makison and van
der Torre [19] define the semantics of I/O logics from out1 to out4 as follows:

(10) – out1(G,A)=Cn(G(Cn(A))).
– out2(G,A)=

⋂
{Cn(G(V)) : A ⊆ V, V is complete}.

– out3(G,A)=
⋂
{Cn(G(B)) : A ⊆ B = Cn(B) ⊇ G(B)}.

– out4(G,A)=
⋂
{Cn(G(V) : A ⊆ V ⊇ G(V)), V is complete}.

Here Cn is the classical consequence operator of propositional logic, and
a set of formulas is complete if it is either maximal consistent or equal to L.
These four logics are called simple-minded output, basic output, simple-minded
reusable output and basic reusable output respectively. For each of these four
logics, a throughput version that allows inputs to reappear as outputs, defined as
out+i (G, A) = outi(Gid, A), where Gid = G∪{(a, a) | a ∈ L}. When A is a singleton,
we write outi(G, a) for outi(G, {a}).

I/O logics are given a proof theoretic characterization. We say that an ordered
pair of formulas is derivable from a set G iff (a, x) is in the least set that extends
G ∪ {(>,>)} and is closed under a number of derivation rules. The following7

are the rules we need to define out1 to out4
+:

(11) – SI (strengthening the input): from (a, x) to (b, x) whenever b ` a.
– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).
– WO (weakening the output): from (a, x) to (a, y) whenever x ` y.
– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).
– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y).
– ID (identity): from nothing to (a, a).

The derivation system based on the rules SI, WO and AND is called deriv1. Adding
OR to deriv1 gives deriv2. Adding CT to deriv1 gives deriv3. The five rules
together give deriv4. Adding ID to derivi gives deriv+i for i ∈ {1, 2, 3, 4}.
(a, x) ∈ derivi(G) is used to denote the norms (a, x) derivable from G using

rules of derivation system derivi. In [19], it is proven that each deriv
(+)
i is

sound and complete with respect to out
(+)
i .

I/O logic is a general framework for normative reasoning, used to formal-
ize and reason about the detachment of obligations, permissions and institu-
tional facts from conditional norms. I/O logic is not defined in terms of a truth-
conditional semantics. Rather, as pointed out above, I/O logic adopts operational
semantics. As explained in [17] and [18], “directives do not carry truth-values.

7 In (11), ` is the classical entailment relation of propositional logic.

10

Only declarative statements may bear truth-values, but norms are items of an-
other kind. They may be respected (or not), and may also be assessed from the
standpoint of other norms, for example when a legal norm is judged from a moral
point of view (or viceversa). But it makes no sense to describe norms as true or
as false.”

Thus, I/O logic allows to determine which obligations are operative in a
situation that already violates some of them. To achieve this, we must look at
the family of all maximal subsets G’ such that G’⊆G and outi(G’, A) is consistent
with A. The family of such outi(G’, A) is called the outfamily of (G, A).

To understand this concept, consider the following example. Suppose we have
the following two norms: “The cottage should not have a fence or a dog” and “if
it has a dog it must have both a fence and a warning sign.” that we may formalize
as the I/O logic generators “(>, ¬(f ∨ d))” and “(d, f ∧ w)” respectively.

Suppose further that we are in the situation that the cottage has a dog. In
this context, the first norm is violated. And, the outfamily of (G, A) determines8

that, still, we are obliged to build a fence with a warning sign around the cottage:

G ≡ {(>, ¬(f ∨ d)), (d, f ∧ w)}, A ≡ {d}, outfamily(G, A)≡{Cn(f ∧ w)}

Although Input/Output logic is an adequate framework for representing and
reasoning on norms, only propositional logics have been used for asserting the
generators and the input so far. This is because of issues related to the complexity
of the framework. The complexity of input/output logic is at least as difficucut
as the objective logic. By the complexity of input/output logic, we mean the
complexity of the following fulfillment problem:

Given finite G,A and x, is x ∈ outi(G,A)?

[32] shows that the complexity of the fulfillment problem for out1,out2,out4 is
coNP complete, for out3 the lower bound is coNP while the upper bound is PNP.

There have been no efforts to represent norms coming from existing legal
texts as those from the corpus described above in section 2. For representing
concrete existing norms, the expressivity of propositional logic is not sufficient.

First order (object) logics are needed in order to fill the gap between the
Input/Output logic and the richness of NL semantics. To this end, in the next
section, we propose a merger of the ProLeMAS Object Logic as defined in section
?? with Input/Output logic. There is no precedent in the literature of a first-
order Input/Output logic. However, it is worth noticing that this proposal is not
the first deontic logic employing first-order relational variables.

5 The ProLeMAS logic

The present section merges together Input/Output logic and the ProLeMAS
object logic, whose syntax has been defined above in definition 1. The resulting
logic will be termed as “the ProLeMAS logic”.

8 In this example, outfamily(G, A)≡{Cn(f ∧ w)} for all Input/Output logic out
(+)
i ,

with i=1,2,3,4.

11

We are not interested here in proposing first order versions of all definitions
shown in the previous section, but we will restrict our attention to only those
needed for the aims of the ProLeMAS project. In particular, the axiom OR in
(11) does not appear to be suitable for legal reasoning. To see why consider the
following obligations: “If someone kills a dog, s/he has to spend two years in
prison” and “If someone robs a bank s/he has to spend two years in prison”.
And, suppose John did one of the two, but there is no way to understand which
one, i.e. if either he killed a dog or he robbed a bank. Logically, John must
spend two years in prison. But from a legal reasoning perspective, he must not:
only if concrete evidence of what he did is found, obligations apply. Thus, in
the rest of the paper we will no longer consider the OR axiom and, consequently,
the Input/Output logic out2 and out4. On the other hand, we will focus in
particular on the CT (cumulative transitivity) axiom, used to define the simple-
minded reusable output logic out3. It will also be easy to apply the considerations
below to the remaining axioms SI, WO, AND, and ID, so that we will skip formal
definitions about them.

From a formal point of view, recalling that the syntax of the ProLeMAS
object logic admits free variables, the last ingredient needed to merge ProLeMAS
object logic and out3 are quantifiers bounding each a free variable. We impose
these free variables to occur both in the head and the tail of a generator, and we
bound them via universal quantifiers. This establishes a “bridge” between the
head and the tail, needed to “carry” individuals from the input to the output.
Consider these simple (toy) examples:

(12) a. Each lawyer must run.

b. A lawyer who runs must wear a pair of shoes.

c. If John goes to Mary’s house, he’ll have to tell her before.

We propose to represent (12.a-c) via the following generators:

(13) a. ∀x(lawyer(x), ∃er [(Rexist er) ∧ run(er) ∧ agent(er, x)])

b. ∀x∀er (lawyer(x) ∧ (Rexist er) ∧ run(er) ∧ agent(er, x),

∃ew∃y[(Rexist ew) ∧ wear(ew) ∧ agent(ew, x) ∧
patient(ew, y) ∧ shoes(y)])

c. ∀eg ((Rexist eg) ∧ go(eg) ∧ agent(eg, J) ∧ to(eg, M),

∃et [(Rexist et) ∧ tell(et) ∧ agent(et, J) ∧ receiver(et, M) ∧
theme(et, eg) ∧ (happenBefore et eg)])

Note that, in (13.b), x occurs in both the head and the tail of the generator,
while er only occurs in the head. On the other hand, y and ew are existentially
quantified variables that occur only in the tail: every time a lawyer runs, there
is a different “wearing” eventuality and (possibly) a different pair of shoes.

On the other hand, in (13.c), the eventuality eg occurs in both the head and
the tail. That’s because the sentence means: “If John goes to Mary’s house, he’ll
have to tell Mary before that he goes to Mary”.

12

In our solution, free variables occurring in the heads (and possibly also in
the tails) are outscoped by universal quantifiers. Free variables occurring only
in the tails are outscoped by the existential quantifiers of the ProLeMAS object
logic syntax (cf. definition 1). Formally:

Definition 2 (ProLeMAS logic generators).

A generator in ProLeMAS logic is a construct in the form:

∀x1,...,xn,y1,...,ym
(Φ(x1, . . . , xn, y1, . . . , ym), Ψ(y1, . . . , ym)) ∈ G

where x1, . . . , xn are free variables occurring only in Φ while y1, . . . , yn occur both
in Φ and in Ψ . Φ and Ψ do not contain any other free variable. Furthermore, Φ
does not contain existential quantifiers.

Sentence (2), copied in (14) for reader’s convenience, which come from an EU di-
rective in our corpus, can be represented in ProLeMAS logic in a straightforward
manner. We simply increase the size of the formula, but not its complexity.

(14) A lawyer who wishes to practise in a Member State other than that in which
he obtained his professional qualification shall register with the competent
authority in that State.

The formula is:

∀x∀y∀ew∀ep(cond(x, y, ew, ep), action(x, y))

where:

cond(x, y, ew, ep) ⇔ lawyer(x) ∧ memberState(y) ∧ different(y, fw(x)) ∧
Rexist(ew) ∧ want(ew) ∧ practise(ep) ∧ agent(ew, x) ∧
patient(ew, ep) ∧ agent(ep, x) ∧ at(ep, y)

action(x, y) ⇔ ∃er [Rexist(er) ∧ register(er) ∧ agent(er, x) ∧
patient(er, x) ∧ with(er, fc(y))]

where x, y, ew, ep, and er are variables denoting a lawyer, a Member State, and
the eventualities of “wanting”, “practising” and “registering”. agent, patient, at,
and with are thematic roles of the two eventualities. fw(x) is a function referring
to the Member State where x obtained his professional qualification while fc(y)
is a function that given a member state y returns the competent authority of y.
The meaning of the formula is obvious: for every tuple of lawyer, Member State,
and “wanting”, and “practising” actions that satisfy together the predicates in
cond, the predicates in action are instantiated on x and y.

13

6 Working with ProLeMAS formulae

The main peculiarity of Reification-based logical frameworks is their formal sim-
plicity. By instantiating FOL predicates on non-variable FOL terms, we obtain
again propositional formulae. Thus, it is easy to see that ProLeMAS’s generators
do not increase the complexity of the Input/Output logic originally defined in
[19], provided that two requirements are met: (1) the domain is finite; and (2)
the input formulae are only atomic formulae in ProLeMAS object logic, i.e, FOL
predicates instantiated on non-variable FOL terms, i.e., propositional formulae.

The aim of the ProLeMAS project is to build concrete NLP-based applica-
tions to be used in practical applications, where both requirements (1) and (2)
are met. The domains of individuals will always be finite (e.g., the set of all
lawyers in the EU). And, we are interested in performing normative reasoning
on specific9 individuals only, e.g., deriving all obligations a specific lawyer must
obey, according to a specific normative code.

Universal quantifiers are just a compact way to refer to all individuals in the
domain. We obtain equivalent formulae by simply substituing the universally
quantified variables with all constants referring each to an individual of the
domain. For instance, assume G contains generator (13.a) only:

G = {∀x(lawyer(x), ∃er [(Rexist er) ∧ run(er) ∧ agent(er, x)])}

And, suppose the domain is made up of the individuals John and Jack, the for-
mer being a lawyer, the latter not. G is equivalent to the following G’:

G’={ (lawyer(John), ∃er [(Rexist er) ∧ run(er) ∧ agent(er, John)])

(lawyer(Jack), ∃er [(Rexist er) ∧ run(er) ∧ agent(er, Jack)]) }

Since John is a laywer while Jack is not, the propositional symbol “lawyer(John)”
belongs to our initial facts while “lawyer(Jack)” does not, i.e. lawyer(John)∈A.
In out1, we infer that John is obliged to run, i.e.

out1(G’, A)={ run(f1(John)) ∧ agent(f1(John), John) }

Where we substituted10 the existential quantifier on er with a Skolem function
f1, so that out1(G’, A) again contains propositional symbols only. Thus, it satis-
fies requirement (2) and, in out3, it could be reused to trigger other obligations,
e.g., being applied to an obligation such as “every runner must wear a pair of
shoes”.

9 It could be the case that such applications will have to reason on sets, e.g., a sets
of ten laywers. To properly deal with sets, Hobbs introduces in his framework the
notion of typical element (cf. [13] and [14]).

10 Skolemization is merely a formality to meet requirement (2). Alternatively, we could
allow existential quantifiers on inputs and define a different pattern-matching rule
between the input and the heads of the generators.

14

We stress again that, thanks to Reification, we are not increasing the com-
plexity of the original I/O logic. On finite domains, the formulae we are going
to use turns out to be propositional. Original I/O logic definitions and proofs of
soundness and completeness still hold, modulo generalizations via universal and
existential quantifiers. For instance, CT is modified as follows:

CT (cumulative transitivity):

from

∀x1..xn(Φ(x1, . . . , xn), ∃z1.. zk [Ψ(y1, . . . , ym, z1, . . . , zk)]),

with {y1, . . . , ym} ⊆ {x1, . . . , xn}

and

∀x1..xnw1..wr
(Φ(x1, . . . , xn) ∧ Ψ(w1, . . . , wr), ∃k1.. ki

[Υ (t1, . . . , tl, k1, . . . , ki)]),

with {t1, . . . , tl} ⊆ {x1, . . . , xn, w1, . . . , wr}

to

∀x1..xn
(Φ(x1, . . . , xn), ∃k1.. kim1..ms

[Υ (p1, . . . , pc, k1, . . . , ki,m1, . . . ,ms)]),

with {m1, . . . ,ms} ⊆ {w1, . . . , wr} and {m1, . . . ,ms}∪{p1, . . . , pc}≡{t1, . . . , tl}

7 Future Work and Conclusions

This paper is part of the ProLeMAS research project, which aims at (1) filling the
gap between the current logical formalizations of legal text, mostly propositional,
and the richness of Natural Language Semantics, and (2) formalizing norms
extracted from existing legal documents.

The first step is to move beyond the propositional level towards first-order
logical frameworks, in order to enhance the expressivity fit to formalize the mean-
ing of the phrases constituting the sentences. ProLeMAS proposes to achieve
such a result by using the Reification-based constructs from Hobbs. The key
feature of Hobbs’s approach, which distinguishes it from other neo-Davidsonian
approaches, is the total avoidance of embeddings of logical operators within the
scope of other logical operators.

This paper shows how it is possible to integrate Hobbs’s account within I/O
logic by adding universal and existential quantifiers to the latter. It also discusses
how, provided the domain is finite, the complexity of the resulting framework
does not increase with respect to that of propositional I/O logic. We consider
this a great result, due to the complexity issues related to I/O logic.

Our next steps will involve the following future work:

(15) a. Studying how the ProLeMAS logic could deal with other kinds of
norms, such as permissions, powers, etc. And, eventually, extending the
account to provide a proper representation of their meaning.

15

b. Designing suitable legal ontologies to represent and restrict the meaning
of relevant predicates, in order to trigger automatic reasoning on the
individuals in the Abox. We are particularly interested in developing
legal ontologies in the data protection domain. Under the pressure from
technological developments during the last few years, the EU legislation
on data protection has shown its weaknesses, and is currently undergoing
a long and complex reform that is finally approaching completion.

c. Building a concrete pipeline to populate the Abox of the ontology. In
ProLeMAS, the pipeline will firstly process the documents via depen-
dency parsing, then it will define a syntax-semantic interface from the
dependency trees to the final formulae.

References

1. M. Araszkiewicz and K. Pleszka, editors. Logic in the theory and practice of law-
making. Springer, 2015.

2. E. Bach. On time, tense, and aspect: An essay in english metaphysics. In P. Cole,
editor, Radical Pragmatics, pages 63–81. Academic Press, New York, 1981.

3. Cesare Bartolini and Robert Muthuri. Reconciling data protection rights and
obligations: An ontology of the forthcoming eu regulation. In (To appear in) Pro-
ceedings of the Workshop on Language and Semantic Technology for Legal Domain
(LST4LD), 2015.

4. Guido Boella, Luigi Di Caro, Alice Ruggeri, and Livio Robaldo. Learning from
syntax generalizations for automatic semantic annotation. Journal of Intelligent
Information Systems, 43(2):231–246, 2014.

5. A. Copestake, D. Flickinger, and I.A. Sag. Minimal Recursion Semantics. An
introduction. Journal of Research on Language and Computation., 2(3), 2005.

6. D. Davidson. The logical form of action sentences. In Nicholas Rescher, editor,
The Logic of Decision and Action. University of Pittsburgh Press, 1967.

7. D. Evans and D. Eyers. Deontic logic for modelling data flow and use compliance.
In Proceedings of the 6th International Workshop on Middleware for Pervasive and
Ad-hoc Computing, pages 19–24, New York, NY, USA, 2008. ACM.

8. N. Fornara and M. Colombetti. Specifying artificial institutions in the event calcu-
lus. In V. Dignum editor, Handbook of Research on Multi-Agent Systems: Seman-
tics and Dynamics of Organizational Models, pages 335–366. IGI Global, 2009.

9. D. Gabbay, J. Horty, X. Parent, R. van der Meyden, and L. (eds.) van der Torre.
Handbook of Deontic Logic and Normative Systems. College Publications, 2013.

10. Antony Galton. Operators vs. arguments: The ins and outs of reification. Synthese,
150(3):415–441, 2006.

11. G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco. Computing strong and
weak permissions in defeasible logic. Journal of Philosophical Logic, 6(42), 2013.

12. M. Hashmi, G. Governatori, and M. Wynn. Modeling obligations with event-
calculus. In Antonis Bikakis, Paul Fodor, and Dumitru Roman, editors, Rules on
the Web. From Theory to Applications, volume 8620 of Lecture Notes in Computer
Science, pages 296–310. Springer International Publishing, 2014.

13. J.R. Hobbs. Monotone decreasing quantifiers in a scope-free logical form. In in
Semantic Ambiguity and Underspecification, pages 55–76. 1995.

16

14. J.R. Hobbs. The logical notation: Ontological promiscuity. In Chapter 2 of Dis-
course and Inference. 1998. http://www.isi.edu/∼hobbs/disinf-tc.html.

15. Hans Kamp and Uwe Reyle. From Discourse to Logic: an introduction to mod-
eltheoretic semantics, formal logic and Discourse Representation Theory. Kluwer
Academic Publishers, Dordrecht, 1993.

16. R Kowalski and M Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

17. David Makinson and Leendert van der Torre. Permission from an input/output
perspective. Journal of Philosophical Logic, 32(4):391–416, 2003.

18. David Makinson and Leendert van der Torre. What is input/output logic? In
Benedikt Lwe, Wolfgang Malzkom, and Thoralf Rsch, editors, Foundations of the
Formal Sciences II, volume 17 of Trends in Logic, pages 163–174. Springer Nether-
lands, 2003.

19. David Makinson and Leendert W. N. van der Torre. Input/output logics. Journal
of Philosophical Logic, 29(4):383–408, 2000.

20. L. T. McCarty. A language for legal discourse i. basic features. In Proc. of the
2nd International Conference on Artificial Intelligence and Law (ICAIL ’89), ACM
Press, 1989.

21. L. T. McCarty. Deep semantic interpretations of legal texts. In The Eleventh
International Conference on Artificial Intelligence and Law, Proceedings of the
Conference, June 4-8, 2007, Stanford Law School, Stanford, California, USA, pages
217–224, 2007.

22. R. Miller and M. Shanahan. The event calculus in classical logicalternative axiom-
atizations. Electronic Transactions on Artificial Intelligence, 16(4), 1999.

23. X. Parent and L. van der Torre. Input/output logic. In J. Horty, D. Gabbay,
X. Parent, R. van der Meyden, and L. van der Torre, editors, Handbook of Deontic
Logic and Normative Systems. College Publications, London, 2013.

24. A. Paschke and M. Bichler. SLA representation, management and enforcement. In
2005 IEEE International Conference on e-Technology, e-Commerce, and e-Services
(EEE 2005), 29 March - 1 April 2005, Hong Kong, China, pages 158–163, 2005.

25. L. Robaldo. Interpretation and inference with maximal referential terms. The
Journal of Computer and System Sciences, 76(5):373–388, 2010.

26. L. Robaldo. Distributivity, collectivity, and cumulativity in terms of
(in)dependence and maximality. The Journal of Logic, Language, and Information,
20(2):233–271, 2011.

27. L. Robaldo. Conservativity: a necessary property for the maximization of witness
sets. The Logic Journal of the IGPL, 21(5):853–878, 2013.

28. L. Robaldo and E. Miltsakaki. Corpus-driven semantics of concession: Where do
expectations come from? Dialogue&Discourse, 5(1), 2014.

29. L. Robaldo, J Szymanik, and B. Meijering. On the identification of quantifiers’
witness sets: a study of multi-quantifier sentences. The Journal of Logic, Language,
and Information., 23(1), 2014.

30. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T.
Cory. The british nationality act as a logic program. Commun. ACM, 29(5):370–
386, 1986.

31. Xin Sun. How to build input/output logic. In 15th International Workshop on
Computational Logic in Multi-Agent Systems, pages 123–137, 2014.

32. Xin Sun and Diego Agustin Ambrossio. On the complexity of input/output logic.
In to appear in the Proceedings of The Fifth International Conference on Logic,
Rationality and Interaction, 2015.

