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ABSTRACT

As the concept of Internet of Things (IoT) develops, build-
ings are equipped with increasingly heterogeneous sensors
to track building status as well as occupant activities. As
users become more and more concerned with their privacy in
buildings, explicit sensing techniques can lead to uncomfort-
ableness and resistance from occupants. In this paper, we
adapt a sensing by proxy paradigm that monitors building
status and coarse occupant activities through agglomerative
clustering of indoor temperature movements. Through ex-
tensive experimentation on 86 classrooms, offices and labs
in a five-story school building in western Europe, we prove
that indoor temperature movements can be leveraged to in-
fer latent information about indoor environments, especially
about rooms’ relative physical locations and rough type of
occupant activities. Our results evidence a cost-effective
approach to extending commercial building control systems
and gaining extra relevant intelligence from such systems.

CCS Concepts

eInformation systems — Clustering; eComputer sys-
tems organization — Sensor networks;

Keywords

Sensing by proxy; smart buildings; occupancy inference

1. INTRODUCTION

Citizens in a modern society spend a majority of their time
everyday inside buildings working or relaxing. In turn, build-
ings consume a surprisingly large portion of total energy con-
sumption by all sectors. For example, 41% of energy con-
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sumption attributes to buildings in the US and buildings
consume even more energy than industry in the EU [11].
Many initiatives have thus been proposed to combat the
energy consumption issue. As the concept of Internet of
Things (IoT) develops, more and more proposals focus on
devising more efficient Building Energy and Comfort Man-
agement (BECM) systems, which try to fulfill users’ comfort
requirements while reducing energy footprints for building
operations including heating, ventilation, and air condition-
ing (HVAC), lighting and plug loads. Indeed, research has
shown that BECM systems can potentially reduce buildings’
energy footprints in both simulated and real-world evalua-
tions.

BECM systems often involves taking advantage of heteroge-
neous sensors, such as passive infrared (PIR) sensors, cam-
eras, motion and presence detectors, and environmental sen-
sors like temperature, humidity, COz2, etc., to monitor the
status of the building and especially occupant activities,
since conservative behaviors can help reducing building op-
eration energy consumption by one-third compared to de-
sign point benchmark while careless ones may increase en-
ergy footprints by one-third [11]. However, the assumption
of tracking individual occupants in real-time is largely im-
practical and rarely adopted in real-world cases due to tech-
nological, construction and maintenance cost and privacy
challenges.

To tackle with these challenges, we seek to devise an plug-
and-play and cost-effective approach that takes advantage
of existing BECM systems and investigates the feasibility
of gaining extra intelligence about corresponding buildings
and their occupants from such systems. Since user behav-
iors have a large impact on their indoor environments, we
can profile these behaviors by proxy of the resulting impacts
they have made. To be exact, sensing by proxy here refers to
inferring latent factors with indirect measurements on activ-
ity traces rather than directly measuring activities. To make
our approach more applicable to different scenarios and cost-
effective, we take advantage of mature and widely deployed
temperature sensors. We have conducted this study using
real-world settings and all our data has been collected from
a school building in western Europe, which was planned and
constructed around 2000 and is equipped with basic sensors
and actuators (e.g., temperature sensors and HVAC system)



to facilitate building operations. The main contributions of
this paper include:

1. We adopt a sensing by proxy paradigm to reduce costs
and relax users’ privacy concerns. We confirm that
agglomerative clustering of temperature evolution of
indoor environments (with minimal occupant activi-
ties) produces accurate adjacency maps with regard
to the physical location of each temperature sensor.
This adjacency map is helpful and can be complement
to indoor floor plan inference and localization.

2. We prove that it is feasible to infer coarse-grained intel-
ligence about occupant activities using agglomerative
clustering of temperature evolution of indoor environ-
ments with occupant activities even if data have been
collected with low frequency in a non-intrusive man-
ner.

3. We provide a data analytics tool that extends off-the-
shelf BECM systems for smart homes and smart build-
ings that helps owners and operators to understand the
overall status the buildings with regard to its previous
status. Our approach can also be used to track anoma-
lies within buildings.

The remainder of this paper is organized as follows. Sec-
tion 2 prepares readers with the necessary technical back-
ground and Section 3 introduces works that are related to
ours. We present our methodology in Section 4 and real-
world experiment results in Section 5. Finally we conclude
with future research directions in Section 6.

2. BACKGROUND

In this section, we introduce the necessary technical back-
ground to facilitate understanding of this paper. Specifically,
we present the concept of time series and its typical manip-
ulations, especially time series clustering and the Ward’s
method, which implements agglomerative clustering based
on a sum-of-squares criterion.

We consider sensor readings as time series data. That is,
each data point p; is a (¢;, v;) tuple where v; is the numerical
value recorded by a sensor at timestamp ¢;; a time series T is
then a collection of data points that are ordered by their cor-
responding timestamps, i.e., T' = [(to, vo), (t1,v1), ..., (t(n—1),
U(n—1))]- Thanks to its intrinsic timestamps, time series can
be easily resampled, interpolated and extrapolated. Besides,
it is also common practice in time series mining commu-
nity that timestamps can be safely ignored for even-spaced
time series sampled at a specific frequency, i.e., those whose
timestamps are strictly periodic. In this case, time series
are represented as T' = [vo,v1, ..., ¥(n—1)]. Time series are
a common type of data that are frequently found in IoT,
medical and health care, and financial applications [8]. Our
previous work [6] has also taken advantage of time series
to profile household electrical appliancesand this language
modeling based approach has been generalized to apply to
time series in different domains [9, 7).

When evaluating the similarity or dissimilarity of two time
series instances X and Y (|X| = |Y| = n), a distance

measure D(X,Y") is defined. Popular distance measures for
time series include Euclidean distance Dgyciidean(X,Y) =

S (Xi — Y;)? that maps the i-th point in X to the i-th
point in Y, and Dynamic Time Warping (DTW) distance,
which tries to find the best way to warp the time axis and as
aresult aligns X and Y differently. As shown in Figure 1, an
i-th point in X can be mapped to a j-th point (it is possible
that ¢ # j), and one point in X can be mapped to multiple
points in Y. For Euclidean distance, the gray dotted lines
indicating the mapping would all be vertical.
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Figure 1: Illustration of how DTW aligns two time
series and calculates their distance.

Time series clustering is a common type of unsupervised
time series mining task that tries to partition time series into
homogeneous groups while maximizing within-group simi-
larity and between-group dissimilarity [10]. Clustering al-
gorithms can be categorized into different families based on
their underlying models, for instance hierarchical clustering
which is based on connectivity and centroid-based clustering
(e.g. k-means) where clusters are represented by a represen-
tative point. In this paper, we are especially interested in
the former, since hierarchical clusters can be represented as
a dendrogram, which depicts the hierarchy arrangement of
clusters that can be merged with another at certain dis-
tances. Hierarchical clustering do not attempt to generate
an arbitrary number of clusters. Instead, it produces a hi-
erarchy that is easier for users to understand and users can
set the break points by themselves. Hierarchical agglomera-
tive clustering has recently received great interests in pattern
recognition and become especially popular in financial appli-
cations. Figure 2 shows an example of hierarchical clustering
results, where companies with similar business domain and
activities have been grouped together. Note that in den-
drograms, the height of a branch indicates how different it
is from another while the horizontal orientation is generally
irrelevant.
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Figure 2: Example dendrogram from hierarchical
clustering, using daily stock price variations from
January 2012 to January 2016.



Hierarchical clustering can employ either a bottom-up (ag-
glomerative) or top-down (divisive) approach. The former
starts with a single instance from the dataset and gradu-
ally aggregates instances into clusters until all instances are
grouped into a single cluster, while the latter starts with
the whole dataset and iteratively divide the dataset into
clusters. In general, agglomerative methods are computa-
tionally more efficient than divisive ones. Thus we favor
the former, and especially the Ward’s method [16], which
is a popular algorithm used to minimize the total within-
cluster variance. Recall that Ward — as an agglomerative
approach — works incrementally, the distance (namely the
Ward’s Linkage) of clusters JUJ and K are calculated based
on a distance update formula Dy qrq¢(I U J, K) as specified
below:

\/(III + [K))D(I, K)? + (|J]| + | K|) D(J, K)* — |K|D(1, J)*
|+ | J] + K]

where I and J are two clusters to be joined into a new cluster
and K is any other cluster, and | % | denotes the number of
instances in one cluster. The computational complexity of
Ward is O(n?), where n is the size of the dataset. Ward
is widely available in many software packages, for example
Matlab and Wolfram Mathematica.

3. RELATED WORK

Recent research on BECM systems focuses on collectively
taking advantage of both real-time occupancy information
and occupant preferences when designing more efficient build-
ing control systems. For instance, Chen et al. [3] propose
a BECM system that keeps track of occupants’ real-time
location to enable fine-grained control of ambient environ-
ment including lighting, cooling, heating, etc. As sensors
and actuators are deployed in buildings and these systems
are connected to external networks such as the Internet,
occupant security and privacy become a more challenging
task since sensor data can be leveraged to make unwanted
inferences about occupants and their behaviors [19]. For
instance, Yang et al. [17] have conducted empirical experi-
ments using motion sensors in a three-person single-family
home and electricity meters in a twelve-person university
lab, and shown that data from these sensors can enable in-
ferring real-time occupancy and even occupants’ identities.
Another approach [18] takes advantage of RFID technologies
and implements a localization algorithm that learns about
the location of occupants.

Information about indoor environment is important for many
applications including indoor localization services, security
services like access control and alarms, and privacy protec-
tion. However, this information is often either unavailable
or obtaining it is time-consuming due to effort-intensive ne-
gotiations with building operators. As a result, many ap-
proaches have been proposed to explore and infer indoor
environments. Earlier approaches takes advantage of laser
scanners [12] to infer and reconstruct indoor floor plans,
while more recent works leverage mainly commodity sen-
sors available on smartphones [15] and takes a crowd sens-
ing approach. For instance, CrowdInside [1] takes advantage
of sensors (including accelerometers, magnetometers, gyro-

scopes, etc.) on smartphones to construct occupants’ motion
traces and then infer floor plan as well as room and corridor
shapes. [4] introduces another indoor floor plan construction
system that takes advantage of Wi-Fi signals to construct
room adjacency graphs and leverages user motion data col-
lected from smartphones to to estimate room sizes and or-
ders. Unlike these approaches that involve taking advantage
of heterogeneous or ad hoc (specific purposed) sensors, our
approach does not require any sophisticated sensing hard-
ware and utilizes only indoor temperature sensors, which
are commonly found in modern buildings with HVAC con-
trol systems.

Indoor occupant activity inference and detection is another
research trend since more and more sensors are installed
in buildings and occupants are becoming increasingly con-
cerned about their own privacy. For instance, motion sen-
sors and smart meters can be used for detecting whether
a room is occupied and even for analyzing occupant iden-
tities [17]. A more recent work [14] explores the resonance
effect of rooms and devise models to infer the number of
occupants by observing changes in the ultrasonic spectrum
reflected back from a centrally located ultrasonic chirp trans-
mitter. Our work has been largely influenced by that of Jin
et al. [5], where the authors try to infer implicit factors by
indirect measurements based on the physical environment.
They argue that occupancy can be inferred by indoor CO-
concentration. Since COg sensors are not as widely avail-
able as temperature sensors, we try to investigate the sens-
ing by proxy paradigm using temperature sensor readings.
Note that our work mainly concerns inferring indoor envi-
ronments and occupant activities from sensor data, instead
of exploring the vulnerability of networking protocols such
as KNX [2].

4. METHODOLOGY

Since different buildings operate with different BECM sys-
tems, to extend such systems we have to find a common in-
terface or common type of data when conducting latent sens-
ing. Fortunately, temperature sensors are usually available
in the majority of BECM systems because of the require-
ments by HVAC devices. Besides the availability, we believe
indoor temperature movements are largely influenced by
both natural factors and occupant behaviors, making tem-
perature sensors a perfect data source for inferring relevant
information from buildings and their occupants behaviors.
For instance, we have collected data — including temperature
measurements and set-points, lighting, alarms, etc.— from
the BECM system located in a school building, and indoor
temperature records attribute to a significantly large por-
tion in our database. To be exact, around 60 percent of total
records are indoor temperature measurements, while in com-
parison outdoor weather station data contributes around 15
percent. In this section, we introduce the whole pipeline of
our approach from collecting data, processing these data so
that it fits the agglomerative clustering algorithm, to the
validation process.

4.1 Data Collection and Processing

We are interested in collecting indoor temperature data from
buildings” BECM systems. Fortunately, majority of BECM



systems are based on open communication standards such as
KNX! or LON?. As a result, it is easy to get a compatible
watchdog module and simply attach it to the control bus
and start collecting data. We store all collected data in a
database for ease of querying and retrieving purposes.

Note that in practice sensor readings generally exhibit dif-
ferent statistical characteristics. For instance, different tem-
perature sensors report temperatures at different frequen-
cies and the amplitude of values may also differ. Besides,
abnormal and missing values are very common, making the
collected data quite noisy. To proceed processing the data,
we have to conduct data cleansing tasks as specified below:

1. Resampling. Specifically, we choose to down-sample
data records using a uniform frequency of one hour
for temperature readings. This process helps reducing
noises as noisy data points can be filtered out. Further-
more, down-sampling can greatly reduces the dataset
size and improve computation efficiency.

2. Interpolation. Some sensors may be missing values at
certain timestamps even after down-sampling. Miss-
ing values are common in our case due to sensor fail-
ures and occasional server shutdown. There are many
missing value imputation techniques [13], however, we
choose to linearly interpolate these missing values since
temperatures of indoor environments do not tend to
change drastically.

3. Normalization. Temperature sensors in different loca-
tions may report values of significantly different am-
plitude levels. This can result in inaccurate compu-
tation especially with distance measures such as the
DTW distance. In this paper, we are more concerned
with the oscillation development for readings from each
individual sensor. As a result, we divide each sen-
sor’s readings by their corresponding standard devia-
tion for normalization, i.e., t; = t;/1/ = ;:01 (ti — p)?
for 0 <7 < n, where pp = %Z;.:Ol t;. This step is es-
pecially important if we are concerned with the overall
temperature movements instead of the absolute terms,

which are easy to get using simple algebras and statis-
tical methods.

Afterwards, we calculate the pairwise distance of tempera-
ture movements of different rooms (in the form of time se-
ries) using both Euclidean and DTW distance and generate
a corresponding distance matrix, which is then fed as input
to the agglomerative clustering process.

4.2 Baseline Establishment and Validation

Since our intuition is that temperature movements are mainly
influenced by natural factors and occupant behaviors, to val-
idate this assumption we have to separate the influence of
such two factors. If we can achieve this, then we can continue
investigating how each factor contributes to the temperature
movements. Separation of natural factors and occupant be-
haviors can be easy and sometimes maybe trivial since we

"http://www.knx.org/
http://www.lonmark.org/

can just find out when occupants are in the building. For
example, offices and schools usually have a consistent sched-
ule that tells us when rooms are occupied (e.g. daytime on
weekdays) or not (e.g. nighttime or holidays). For simplic-
ity, we choose to split all temperature data into daytime and
nighttime readings.

When investigating how each factor contributes to indoor
temperature movements, consider first the natural factors.
It is obvious that the physical location can have the biggest
impact on room temperature. For instance, rooms facing
south (in the Northern Hemisphere) would generally fluctu-
ate more drastically than rooms always in shadows, provided
that all rooms in the same building have the same heat insu-
lation features. In this case, we can validate the clustering
results against the floor plans in order to evaluate the im-
pact of natural factors. On the other hand, since human
activities can greatly impact indoor environments, cluster-
ing temperature movements under human influence will tell
us more about the actual activities.

In summary, agglomerative clustering of indoor temperature
movement data collected when minimal occupant activities
are present will likely tell us more information about the
physical locations of rooms; while clustering of temperature
movement data when occupant activities are present will
likely enable us infer how close activities in one room is to
those in another room. We continue validating these as-
sumptions with real-world data in the following section.

5. EXPERIMENTAL EVALUATION

In order to validate our assumptions, we have conducted
experiments using data from a real-world building that is in
daily use. In this section we present the experiments and
their results. We present our research questions (RQs) and
answer then along with experiment results.

5.1 Experiment Subject and Data Collection

All our data has been collected from a single school building
in western Europe, which has around 100 classrooms, labs
and offices located on five different floors and 86 of these
rooms are equipped with a single temperature sensor in each
room. This building was planned and constructed around
2000 and most rooms as well outside facades are equipped
with sensors and actuators to monitor and control tempera-
ture and heating, ventilation, illumination, etc. for the ease
of building operations. In total, this building has more than
1000 connected sensors and actuators. All these sensors and
actuators (such as light switches and dimming units) have
been connected to a KNX bus, which is a broadcast net-
working protocol where all communication telegrams passes
on the bus and pre-configured source/destination pairs may
send and receive only relevant telegrams and react. KNX
is a very popular building control protocol that has been
deployed in several millions of installations worldwide.

We have implemented a system to collect data from the
building, as shown in Figure 3. The broadcasting nature
of KNX makes it easy for us to simply attach a KNX-to-
USB interface to the KNX bus and listens to every telegram
on the bus to a gateway server via the USB interface (in
our case, it is a Weinzierl KNX USB Interface 311, which
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Figure 3: Overview of data collection and manage-
ment process.
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costs around 200 Euros). This gateway then parses and
stores all KNX telegrams to a Linux server. We started
collecting data from this building from mid February, 2016.
In this paper, we have used data collected over a span of
five months from February till July, 2016. Each record in
our database consists of information such as telegram times-
tamp, source and destination addresses, KNX telegram type
and message (generally a numerical value) parsed from this
telegram. The commercial BECM system used by the school
provides only a interface to monitor real-time readings from
each sensor and no history data were store anywhere. As a
result, we have also developed a dashboard (a web applica-
tion) for the building operators to monitor and view charts
about the real-time as well as historical records from sensors
and actuators that are interesting to the building operator.
In a backend, users and operators may configure a more
customized dashboard interface by themselves.

5.2 Inferring Indoor Environment

Following our intuition that rooms located physically to-
gether should share similar patterns in room temperature
movements due to similar natural influences such as sun-
shine, rain and wind. Optimally, human occupant impacts
need to be ruled out when recording room temperatures that
will be utilized for agglomerative clustering. To that end we
choose those time periods when there is minimal occupant
activities. Since our experiment subject is a school building
and no one is in the building during night time, we split tem-
perature readings into two subsets — daytime (07:00 to 19:00)
and nighttime (19:00 to 07:00) readings — and explore only
the nighttime temperature records. We start our research
by investigating if temperature sensor records can be
used to correctly group physically nearby classrooms
other than mere temperature fluctuations (RQ1).

To answer RQ1, we extracted all the temperature records
and down-sampled them to one-hour frequency to establish
a tradeoff between reducing dataset size and lowering the
amount of missing value interpolation. After normalization,
we then calculate the pairwise Euclidean and DTW distance
for all the preprocessed data and feed these distances to ag-
glomerative clustering using Ward’s linkage algorithm. We
have experimented with data from all five floors. In order to
make the readers understand better, we start with the top
floor where temperature readings are available in only six
classrooms.

Figure 4 shows the simplified floor plan (to protect the pri-
vacy of the school) and the temperature readings in each

room for around five months. For human eyes, indoor tem-
perature does not fluctuate greatly and these readings from
different classrooms look more or less similar along the course.
Especially, when the whether gets warmer, the temperature
differences among different classrooms become smaller. By
generating a distance matrix diagram of temperature move-
ments from different rooms where darker blocks indicate
more differences rather than similarities (cf. Figure 5 left),
it may take some time (even for experts) to identify that R6
and R4 are more different than other classrooms. However,
such a matrix does not tell us (or building facility manage-
ment teams) about what can be the potential cause. Finally,
note that the distance matrices in our case are symmetric,
since D(X,Y) = D(Y, X) for both Euclidean and DTW dis-
tance. We present whole matrices in this paper for the sake
of straightforwardness.

When applying agglomerative clustering techniques on the
temperature movements (cf. Figure 5 right), our approach
has produced two bottom level clusters { R1, R3} and { R2, R5},
and moving up from the latter, R4 can be attached to { R2, R5}
to form a larger cluster, which can then be joined by R6.
These results accurately corresponds with our floor plan in
Figure 4, since rooms R1 and R3 are indeed located next
to each other, and the so are the others. Also, R5 has been
clustered with R2 but not with R1, probably due to the fact
that there is a staircase between R5 and R1, while R2 and
R5 are physically near each other. As a result, the answer
to RQ1 is indeed positive: room temperatures are good in-
dicators of sensor adjacency (and thus physical adjacency of
rooms) inference using agglomerative clustering.

Following RQ1, we wonder how much data is needed for
accurate inference of sensor adjacency (RQ2) and if
Euclidean and DTW distance make a difference to
clustering results (RQ3). To that end, we repeat our
previous clustering process with the time span of room tem-
perature readings using a sliding window with size varying
from one to 160 nights and conduct the pairwise distance
calculation with both Euclidean and DTW distance. In to-
tal, we have generated 26,080 dendrograms, which we pro-
grammatically validate if each dendrogram conflicts with our
floor plan. A clustering output is considered as an error if
any two rooms fall into one cluster in the dendrogram while
these two are not strictly next to each other according to
the floor plan, for instance, when a dendrogram reads that
R2 and R6 or R4 and R1 belong to one cluster. Due to wide
hallways, we do not consider classrooms located on different
side of the hallway as close to each other.

We present the error rate with each time span setting in Fig-
ure 6. It is obvious that the more data we use for clustering,
the more accurate results are. And in our case with six
classrooms, using room temperature readings (with
one-hour sampling frequency) during a span of three
months produces clusters strictly correlated with re-
gard to the floor plan (RQ2). This span may seem
long, however, in practice it may still be faster than effort-
intensive negotiations with building operators (which took
more than six months in our case to get the building floor
plans). Besides, in this experiment we use hourly sampled
temperature during nighttime, it is thus probable that using
temperature readings with higher sampling rate would re-
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Figure 4: Simplified floor plan (left) and temperature readings during a course of around five months (right).
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Figure 5: Distance matrix of temperature move-
ments with Euclidean distance (left) and agglomera-
tive clustering clustergram of temperature readings
for six rooms with Ward (right).
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Figure 6: Error rate regarding the amount of data
used for agglomerative clustering.

duce the inference time. Regarding RQ3, it is obvious from
Figure 6 that both Euclidean and DTW distance contributes
to better clustering results with more data. Furthermore,
DTW seems to be more sensitive to noises since its perfor-
mance is not as stable as Euclidean with small datasets and
smaller datasets are known to have smaller signal to noise
ratio (SNR). Due to DTW’s computational complexity is a
magnitude higher than Euclidean, we find Euclidean to be
a more efficient and accurate distance measure than
DTW (RQ3).

Next, we seek to find out if our approach works with
data from more classrooms and classrooms from dif-
ferent floors (RQ4). We have tested our approach with
data from each of the five floors within the school building,
results show that agglomerative clustering of room temper-
ature indeed helps inferring the relative physical locations
of classrooms even with as many as twenty rooms. Figure 7
presents an example clustering with nighttime temperature
movements (during a span of five months) from all 20 rooms
on another floor. In order to validate the result, we have
assigned a color for each cluster in order to visualize the
similarities between different rooms. To investigate if this
clustering results corresponding to the physical locations of

the rooms, we apply the same color scheme to the floor plan,
which is shown in Figure 8. It is obvious that classrooms lo-
cated next to each other generally fall into the same cluster,
with the only exception that R28 is colored differently com-
pared to its neighbors, indicating an anomaly. However,
when comparing Figure 7, R28 is actually attached to the
cluster of {R25, R27, R29, R31} at a very late phase, sug-
gesting that R28 is not so similar with the rest in its cluster.
Besides, we have found out that R28 is used as a classroom
for musical education while others are normal classrooms.
This indicates that R28 may have special features (e.g., heat
insulation or acoustic requirements) in design and construc-
tion stage.

- 32

- 28

- 24

- 20

-16

-12

Figure 7: Agglomerative clustering on temperature
movements of 20 classrooms.

Furthermore, as shown in Figure 9, our experiments demon-
strate that clustering of rooms on higher floors generate
more relevant results than rooms in lower ones, indicating
that rooms located on higher floors of a building are more
impacted by natural factors such as sun, rain and wind which
influences buildings’ energy performance. Especially, clus-
tering results are terrible with indoor temperature move-
ments in the basement, while better results are achieved
above the ground. As a result, our results indeed indicate
that our approach are more sensitive to the floor lo-
cation of rooms rather than the number of items
to cluster (RQ4). This result suggest that this approach
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Figure 8: Simplified floor plan with coloring scheme
from agglomerative clustering results.

can potentially be performant with rooms in higher tower
buildings as their indoor temperature are more impacted by
natural factors.
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Figure 9: Clustering accuracy (number of correctly
clustered rooms divided by total rooms on each
floor) among different floors.

5.3 Towards Inferring Occupant Activities

After validating that indoor temperature movements are
closely correlated with rooms’ physical locations, we set to
investigate the possibility of inferring occupant activ-
ities by proxy of temperature movements (RQ5). To
this end, from the same school building we select temper-
ature movements from 20 rooms that serve different func-
tionality. For instance, some rooms are offices or labs, while
others can be normal classrooms or libraries. Note that
these rooms are located on different floors of the building
and rooms with similar functionality are generally not phys-
ically close to each other. In this experiment we have only
used temperature readings during daytime for a course of
five months, so as to reduce the dilution by readings when
no occupant activities are present.

Figure 10 presents the agglomerative clustering results. Much
to our surprise, rooms with similar activities or functional-
ity are generally clustered together. For instance, offices
seem to have similar temperature movements and science
labs do not share much similarity with other type of rooms
other than slight similarity with offices. Besides, clustering
results suggest that temperature movements in cafeteria, au-
ditorium and reception are quite similar, probably due to the
fact that all these rooms see bursts of occupants at specific
time slots. Moreover, the rooms hosting kindergartens and
preschool classes fall into one cluster, which can be joined by
a meeting room, probably indicating that such rooms usu-
ally have smaller number of occupants. Last but not least,
classrooms for training purposes (art, music and culinary)
also have similar temperature movements.

- Office (Teacher)

- Office (Director) [ 54
- Office (Coordinator)
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Figure 10: Agglomerative clustering on temperature
movements of 20 rooms with different functionality.

While admittedly we are not able to predict what exactly a
specific occupant activity is at the moment, by comparing
with other activity traces we are still able to tell roughly
what such an activity can possibly be. Furthermore, if we
setup a database of how different occupant activities can
impact indoor temperature movements with higher mea-
suring requirements (e.g., higher sampling frequency, more
accurate measurements and larger amount of records), we
are confident that finer-grained activity inference can be
achieved. As a result, the answer to RQ5 can be pos-
itive when such a activity inference database is es-
tablished.

5.4 Discussion

Since most of the temperature sensors in our experiment
subject report readings with low frequencies, it has been
challenging to infer fine-grained information about indoor
environment as well as occupant activities. Despite of dataset
limitations, our approach is still able to discover relevant in-
formation such as indoor adjacency maps and coarse occu-
pant activities. Furthermore, it is also beneficial to use our
system for anomaly detection and building diagnosis. We are
able to find groups of rooms whose temperature movements
are different from all others. Such anomalies may indicate
sensor failures, different HVAC configurations, malfunction-
ing heat insulation or simply abnormal occupant behaviors.
In either case, this kind of information can provide a starting
point that helps building owners and operators locating pos-
sible issues and fixing them. In addition, since our approach
takes advantage of existing building control systems and re-
quires minimal efforts for installation of new hardware, it
has the potential to large scale deployment. In turn, when
more data are collected, sensing by proxy can become more
accurate.



6. CONCLUSION AND FUTURE WORK

It is well established that a thorough understand of indoor
environments and occupant activities is a key component in
building control systems for better user comfort and more
efficient energy usage. Unlike traditional approaches that
leverage heterogeneous sensors or crowd-sensing paradigms
to monitor indoor environments and activities, we adopt a
non-intrusive sensing by proxy paradigm and take advan-
tage of existing infrastructures to be cost-effective. Through
extensive experiments with a school building that has 86
rooms equipped with temperature sensors, we are able to
apply agglomerative clustering techniques on indoor tem-
perature movements and infer useful information about both
the physical features of rooms as well as the functionality of
rooms based on traces from occupant activities.

In the future we plan to experiment our approach with more
different buildings with respect to geolocations, heights, util-
ity types (office or residential buildings) and number of occu-
pants within rooms. It can also be beneficial to harvest finer-
grained indoor temperature movements, i.e., collect temper-
ature data with more accurate sensors and higher frequen-
cies, so that we may infer more detailed information with
regard to occupants’ exact activities. In addition, other ma-
chine learning approaches can be helpful in the context of
activity recognition and anomaly detection. Finally, other
commonly available sensor and actuator data may also be
interesting and adopted to our system.
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