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Abstract

Textual Inference is a research trend in Natural Language Processing (NLP) that has recently received
a lot of attention by the scientific community. Textual Entailment (TE) is a specific task in Textual
Inference that aims at determining whether a hypothesis is entailed by a text. Usually tackled by
machine learning techniques employing features which represent similarity between texts, the recent
availability of more training data presupposes that Neural Networks that are able to learn latent feature
from data for generalized prediction could be employed. This paper employs the Child-Sum Tree-
LSTM for solving the challenging problem of textual entailment. Our approach is simple and able to
generalize well without excessive parameter optimization. Evaluation done on SNLI, SICK and other
TE datasets shows the competitiveness of our approach.

1 Introduction
Textual Inference stands at the heart of many NLP tasks. Presently, machines seem to be a bit far from
reproducing human capability in reasoning and making semantic deductions from natural languages,
e.g., spoken or written text. This is due to the phenomenon of variability and ambiguity in natural
languages, since we have different ways of expressing similar ideas2 [11]. The challenge is for machines
to overcome these limitations for it to identify semantic connections such as similarity, entailment and
paraphrasing etc., in a body of text. By Textual Inference, we mean the ability of Machines to recognize
and quantify similarity between two text portions [1, 18], extract summary or paraphrases from a given
text and most importantly, being able to infer the type of semantic connection between two text. The
latter is generally referred to as Recognizing Textual Entailment (RTE), where, given two text fragments
e.g., a text T and an hypothesis H, the machine’s ability to determine whether T entails H is put to test
[3]. This paper focuses on the Textual Entailment task.

Since Dagan et al [12] conceived the task of Recognizing Textual Entailment, it has continued
to receive interest from a lot of researchers thus leading to projects and conferences dedicated to it
[4, 21]. It has also inspired interests in similar NLP applications such as Factoid Question answering
and information extraction [14].

TE tasks can be grouped into two i.e., the binary and multi-class categories. The former requires a
Yes/No answer while the latter could be an n-way prediction3, e.g., a 3-way task where label could be
either of Entailed, Neutral or Contradict. The latter is a bit complicated than the former e.g., S2 below
contradicts S1 while S3 and S4 are neutral and entailment with respect to S1 respectively.
S1: This church choir sings to the masses as they sing joyous songs from the book at a church.
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S2:A choir singing at a baseball game. (Contradiction)
S3: The church has cracks in the ceiling. (Neutral)
S4: The church is filled with song. (Entailment)

Most of the reported systems approached the problem as a classification task. They use hand crafted
features fed into some machine learning algorithms and often relying on some knowledge resources
e.g., WordNet, as well as syntactic and semantic resources, e.g., co-reference resolution, named entity
recognizer, parts of speech-tagger and dependency parsing libraries. The features employed typify sim-
ilarity between the text and hypothesis. The assumption is that common named entities, dependencies
such as subject-verb-object-predicate agreement, presence of negation words as well as information re-
trieval (IR) based intuition such as TFIDF and cosine similarity might be good features for identifying
entailment [17]. Other researchers approached the task simply as IR-based task without Machine learn-
ing. Reported systems in this category use the word alignment between the text and hypothesis, word
overlap, word-word similarity and synonyms substitution using WordNet, surface string similarity e.g.
levenhstein distance as well as other syntactic and semantic pointers. However, handcrafting features
is usually time-consuming. Moreover, it is often uncertain the combination of features that might work
best and ablation test is often done to weigh the features. Nevertheless, these systems rarely or slightly
outperform simple baselines relying on just surface string similarity and word-overlap approaches [3].

Recently, Neural Networks such as Convolutional Neural Networks (CNN) [19], Recurrent Neural
Networks (RNN) [22] and Long Short-Term Memory (LSTM) [16] have shown to possess the ability to
autonomously identify latent features provided there is sufficient amount of data to learn from.

Moreover, it has been successfully applied to several NLP tasks while producing state of the art
results, e.g., paraphrase detection [27], Question answering [14], text classification [30], and semantic
relatedness [28]. In particular, the authors in [26] using attention-based LSTM have reported state of
the art results in textual entailment.

This study builds on these works and show that a more simplified LSTM model which uses fixed
raw embeddings learned from even the training data achieves similar result on some well known textual
entailment datasets, even without any constraint on size of training data available as well as requiring
little or no excessive hyper-parameter fine-tuning.

2 Background
The task of recognizing textual entailment (RTE) aims at making machines to mimic human inference
capability, i.e., given a text T and some world knowledge H which could be a ground truth or partial
truth (hypothesis), a human reading both the text and the hypothesis can recognize whether the meaning
of the hypothesis can be directly inferred from the text [12], the goal is to make automated systems
replicate this capability. As earlier pointed out, several authors used machine learning approaches with
engineered features [15, 24].

The introduction of SNLI4, a large dataset of 570K human generated text-hypothesis pairs by Bow-
man et al.,[9] and the encouraging results obtained from their LSTM-RNN neural networks model, there
has been renewed interest in applying deep learning to textual entailment. Moreover, their model out-
performed lexical classifiers which use word overlap, bigram and other features. The authors evaluated
their models on SICK5 and SNLI.

The authors in [26] proposed a word-by-word neural attention mechanism based on LSTM. The
idea is to have two LSTMs, one reasoning over the sequence of tokens in the text while the other is
reasoning on the hypothesis sequence. The second LSTM is conditioned by the first one as its memory
is initialized by the output (i.e., the last cell state) of the first LSTM. This is different from the tree-
structured LSTM networks proposed in [28] which being order insensitive, is able to capture semantics
between two sentences. Notwithstanding, the authors evaluated their model on SNLI and obtained an
accuracy of 83.7 and 83.5 on the development and test set respectively.

Baudis et al., [2] also reproduced an attention based model similar to the LSTM-based question
answering model in [29]. Also, as in the former, the idea is to attend preferentially to token sequences
in the sentence when building its representation. They proposed a RNN model, a CNN model as well
as a hybrid RNN-CNN. The RNN captures the long-term dependencies and contextual representation of

4http://nlp.stanford.edu/projects/snli
5http://clic.cimec.unitn.it/composes/sick.html



words before being fed to the CNN. They report an accuracy of 0.829 and 0.774 respectively on SNLI
train and test set respectively. Since this model also rely on embedding sequences, importance is also
placed on word order. As pointed out in [28], order-insensitive models capture the semantics of natural
language without recourse to syntactic structure differences. We therefore proposed an augmented tree-
structure LSTM network which builds sentence representation from constituent subphrases of a text, but
takes into account more compositional features for better generalization.

3 Methods
We describe the general LSTM architecture. Specifically, this work employs the Child-Sum Tree-LSTMs
proposed by [28]. We describe our modified version of the algorithm in this work.

Long Short-Term Memory Networks
A characteristic of deep networks is their ability to autonomously learn semantic representation from
text without recourse to time-consuming feature construction. Recurrent Neural Networks (RNNs) have
connections that have loops, adding feedback and memory to the networks over time. This memory
allows this type of network to learn and generalize across sequences of inputs rather than individual
patterns. LSTM Networks [16] are a special type of RNNs and are trained using backpropagation
through time, thus overcoming the vanishing gradient problem. LSTM networks have memory blocks
that are connected into layers, the block contains gates that manage the blocks state and output. These
gates are the input gates which decides the values from the input to update the memory state, the forget
gates which decides what information to discard from the unit and the output gates which decides what
to output based on input and the memory of the unit. LSTMs are thus able to memorize information over
a long period of time since this information are stored in a recurrent hidden vector which is dependent
on the immediate previous hidden vector. A unit operates upon an input sequence and each gate within a
unit uses the sigmoid activation function to control whether they are triggered or not, making the change
of state and addition of information flowing through the unit conditional. We follow the definition and
notation of LSTM in [28].

At each time step t, let an LSTM unit be a collection of vectors in Rd where d is the memory
dimension: an input gate it, a forget gate ft, an output gate ot, a memory cell ct and a hidden state ht.
The state of any gate can either be open or closed, represented as [0,1]. The LSTM transition can be
represented with the following equations (xt is the an input vector at time step t, σ represents sigmoid
activation function and � the elementwise multiplication. The ut is a tanh layer which creates a vector
of new candidate values that could be added to the state) :

it = σ

(
W (i)xt + U (i)ht−1 + b(i)

)
,

ft = σ

(
W (f)xt + U (f)ht−1 + b(f)

)
,

ot = σ

(
W (o)xt + U (o)ht−1 + b(o)

)
,

ut = tanh

(
W (u)xt + U (u)ht−1 + b(u)

)
,

ct = it � ut + ft � ct−1,

ht = ot � tanh ct (1)

Tree-Structured LSTMs
Tree-LSTMs are specialized LSTMs that adopt the tree-structure topology, i.e., at any given time step t
the LSTM is able to compose its states from input vector and hidden states of its child-nodes simulta-
neously. This is unlike the standard LSTM that assumes a single child per unit since the gating vectors
and memory cell updates are dependent on the states of all child-nodes while also maintaining a forget



state for each child. A well-known variant of this structure, i.e., the Child-Sum Tree, has been proposed
by Tai [28]. The Child-Sum Tree LSTMs transition is represented by the following equation, where Cj

is the set of children in a node j and k ∈ Cj .

ĥj =
∑

k∈C(j)

hk (2)

ij = σ

(
W (i)xj + U (i)ĥj + b(i)

)
(3)

fjk = σ

(
W (f)xj + U (f)ĥk + b(f)

)
(4)

oj = σ

(
W (o)xj + U (o)ĥj + b(o)

)
(5)

uj = tanh

(
W (u)xj + U (u)ĥj + b(u)

)
(6)

cj = ij � uj +
∑

k∈C(j)

fjk � ck (7)

hj = oj � tanh cj (8)

Tree-LSTM for Textual Entailment
We use the Child-Sum Tree-LSTM to generate sentence representation for both the text and hypothe-
sis by committing a tree to each of text and hypothesis. Assuming both the text and hypothesis are
sentences, each with constituent words that are well connected. The structural connection between the
words form a deep branching graph, with elements and their dependencies (in case of dependency pars-
ing) where each connection in principle unites a superior term and an inferior term. The inferior term
defers to its superior, thus distinguishing between semantically useful words like nouns and verbs to say,
a determinative word. With constituency parsing, a phrase-like one-to-one correspondence between the
words is observed. The Child-Sum Tree-LSTM works better for dependency parse tree representation
of a sentence, where each child is a node in the representation. For each node, the LSTM unit takes as
input the vectors of its superior word to which it is dependent. In the case of constituency parsing, an
LSTM unit takes as input the exact vector of the node.

Considering our n-way classification, given a set of classes Y whose label cardinality corresponds
to n , i.e., y1, y2, y3...yn are the given labels. First, we obtain a representation rj = (htxt, hhyp) from
both the text and hypothesis using the dependency tree representation. Recall that an inferior node takes
the fixed raw vectors of its superior while a superior node takes the sum of its vectors and that of all its
dependents. At each superior node of the text and hypothesis tree, we encode the entailment relationship
as the distance and angle between their element-wise summed vectors and angle of their vectors product.
We use the * operator to denote vectors product. We predict the label ŷj , given the input representation
rj observed which encodes the entailment relationship at nodes in the subtree rooted at j. The classifier
takes the hidden state hj at the node as input. The process is represented by the equations below:

h× = htxt � hhyp (9)

h+ = htxt + hhyp (10)

hh = |h∗txt � h∗hyp| (11)

hs = σ

(
W (×)h× +W (h)hh +W (+)h+ + b(h)

)
(12)

p̂θ(y|{r}j) = softmax

(
W (p)hs + b(p)

)
(13)

ŷj = argmax
y

p̂θ(y|rj) (14)



4 Evaluation
RTE PASCAL challenge [12] is an important avenue for researchers to submit TE systems for public
evaluation. We evaluated our system on the PASCAL RTE3 dataset which consists of 800 sentence pairs
both for development and test set. The RTE3 dataset has only two classes, i.e., the entailment relation
can either be true or false. The SEMEVAL track offering similarity and entailment task also makes
use of the SICK dataset6. SICK consists of 10000 sentence pairs annotated for use in both sentence
similarity and 3-way entailment task. Finally we evaluated our system on the SNLI corpus [9] which till
date is the biggest manually constructed entailment dataset publicly available. However, we only use
half of the training data in our experiment. Nevertheless, the result obtained shows that our model is
able to generalize quite well.

In the context of our ongoing work in the legal domain7 [5, 8, 7], we explored the option of eval-
uating our models on a dataset deeply rooted in legal nuances. The three datasets cited above contain
sentences that are domain independent and thus have no technical jargons. Our goal is to see how our
model would perform within the complex legal domain. Legal texts seem intuitive as they have some
peculiarities which set them apart from day-to-day natural language since they employ legislative terms.
For instance, a sentence could reference another sentence (e.g., an article) without any explicit link to
its text from inside the quoting text. Also, sentences could be long with several clausal dependencies,
that is notwithstanding of its inter and intra-sentential anaphora resolution complexity. We opined that
a system that is able to achieve good result in this scenario would generalize well given other domain
dependent texts.

We used the COLIEE dataset8 which is a Question-Answering legal corpus made available in the
context of COLIEE Legal Information Extraction/Retrieval challenge. Task 2 of the challenge addresses
TE, such that, given a sentence and a Query, a system identifies if there is an entailment or not. We
provide our evaluation on the 2015 training and test set.

Experiment
We implemented our adaptable Tree-Structured LSTM as proposed by [28]. We obtained dependency
tree of both text and hypothesis using Stanford dependency parser [10]. Instead of encoding both text
and hypothesis as one-hot encoding representation of the token sequences, we used trained word em-
bedding vectors with fixed weight throughout the experiments. We used 300-dimensional Glove vec-
tors [25]. However, we also generated our own 300-dimensional word embeddings using the popular
Word2Vec algorithm9 [23] on a minimal set of text including SNLI, RTE2, RTE3 and SICK datasets.
For the experiment on COLIEE corpus, we included its text in those used to generate the first Word2Vec
word embeddings, using the same parameter for training, we obtained a separate embeddings to use for
this particular run. An oddity is that even with the embeddings generated from a rather small text, the
obtained vectors still capture the semantics of the sentences. We therefore compare the result obtained
when we use Glove as well as our trained embeddings.

We used the Keras10 Deep Learning library to construct two models which only differ based on their
configuration depth. Model1 is quite basic, it has a single hidden layer with 300 LSTM units. Model2
mimics the feed-forward MLP networks in that we maintain a stack of layers to increase the depth and
scale-up the performance. The first hidden layer size = 300, the second hidden layer size = 200, the
third hidden layer size = 150. Depending on the cardinality of classification in each dataset, the sigmoid
output layer predicts the right label based on the class distribution. We observed that applying a heavy
dropout between 0.4 and 0.5 in the hidden layers lowers the performance. Hence, a moderate dropout
between 0.1 and 0.2 was used depending on the performance on the validation data.

As earlier pointed out, our goal is to avoid excessive parameter fine-tuning specifically for each
dataset. Because of this, we maintain a uniform batch-size of 25. We used ADAM, a stochastic optimizer
with learning rate set at 0.01 and a decay value of 1e-4 as well as momentum of 0.9. Typically, we set the

6http://clic.cimec.unitn.it/composes/sick.html
7Specifically, the MIREL project: http://www.mirelproject.eu, which is drawn from our past project EUCases [6].
8http://webdocs.cs.ualberta.ca/˜miyoung2/COLIEE2016
9No stopword removal or stemming was done, all terms were lemmatized. We used the skip-gram representation with context

window of 10, dimension of 300 and min-count of 5 using the gensim package.
10https://github.com/fchollet/keras



number of training epochs to 250. However, throughout the experiments, we track the model for over-
fitting by monitoring the peak accuracy on the validation data as well as the epoch where the model does
not seem to learn sufficiently again and the accuracy begins to drop or does not increase anymore over
a period of time. Usually, we pick this epoch for our test runs.

Tables 1, 2 and 3 display the results obtained on the datasets used. For table 1, we used the results
from Rocktaschel et al.,[26], Baudis et al., [2] and Bowman et al., [9] as the baseline systems on SNLI
and SICK respectively. For PASCAL-RTE3, we did not include any baseline system since there is no
recent work which use similar deep learning approach on that dataset. For the result on COLIEE dataset
in table 3, we include as our baseline, the best and the baseline results as reported by the authors in
[20]. Note that we only use a randomly sampled half of the SNLI data for training due to computation
time for our experiments were conducted on the CPU and not the GPU. We also give a comparison
of the performances of the models with Glove vectors and our generated Word2Vec embeddings from
the training data. It turns out that there is no clear distinction between the results obtained in this
respect. In fact, instances exist where we obtained higher accuracy with our trained embeddings. We
also observed that the depth/configuration complexity of the network influences accuracy by some order
of magnitude since we obtained marginally improved accuracy with model2 that has more hidden LSTM
layers stacked.

Model SNLI Train SNLI Test SICK Train SICK Test
Model1 (Glove) 84.76 78.30 85.10 76.00
Model1 (w2vec) 84.40 78.00 - -
Model2 (Glove) 85.30 79.40 88.00 80.10
Model2 (w2vec) 85.90 78.30 - -

Neural Attention[26] 85.30 83.50 - -
attn1511 [2] 82.90 77.40 85.80 76.70

LSTM-RNN [9] 84.80 77.60 99.90 80.80

Table 1: Evaluation on SNLI and SICK datasets

Model Train Test
Model1 (Glove) 95.76 86.90
Model1 (w2vec) 94.80 82.24
Model2 (Glove) 95.30 87.20
Model2 (w2vec) 93.20 87.60

Table 2: Evaluation on PASCAL-RTE3 dataset

Model Train Test
Model1 (w2vec) 76.00 64.19
Model2 (w2vec) 81.33 70.10

Baseline [20] - 55.87
Best [20] - 63.87

Table 3: Evaluation on COLIEE dataset

Discussion and Conclusions
In this paper, we have presented a Child-Sum Tree-LSTM model for solving the challenging problem
of textual entailment. We showed that our approach performs competitive with other state of the art
deep learning systems applied to textual entailment. We reported our evaluations on SNLI, SICK, and
relatively small PASCAL-RTE3 datasets. We evaluated our models on a domain specific Question-
Answering corpus with background in the field of Law. Results are shown in Tables 1, 2, and 3.

The table 1 reveals slight over-fitting in our models since it did not generalize well when compared
to the baselines, i.e., we seem to obtain better accuracy on the training data than the authors in [26] while
their system generalize better on unseen data. However, observing deeply, we see only slight variations
between train and test accuracy. Probably, the model is not able to minimize error or learn better. For the
SNLI dataset, it is possible that there is an imbalance in class distribution when we randomly shuffled
the data in order to pick one-half of the original training data used in our experiments. Class imbalance
can skew the learning curve, thus leading to improper generalization. Note that for SICK, we split the
data into train, validation and test set at the ration 60:20:20 respectively. Likewise, COLIEE has no
official validation set, we therefore split the test set into validation and test in the ratio 50:50.

The seemingly poor result obtained on the COLIEE corpus is quite noticeable. Two issues might
be connected to this. First, the general consensus is that with deep neural networks, more data gives



a better generalization. In fact, a lexicalized classifier with carefully handcrafted features or a simple
n-gram based classifier might generalize better with little training data in comparison to a very com-
plex deep network architecture with little data to learn from. The COLIEE corpus with less than 500
training sentence pairs is some order of magnitude smaller than the PASCAL-RTE3 corpus which is
generally agreed to be insufficient for training neural networks11. Secondly, we believe that the result
on PASCAL-RTE3 is not totally bad, given that the training corpus is of similar size. Another factor
may be considered. For instance, we believe that the technicality of the text and the fact that it is domain
specific pose some issues. First, the embedding was not obtained from the training of a large legal text
from which the semantics of legal jargons are best captured. Furthermore, compared to SNLI and SICK,
both the text and hypothesis in COLIEE are unusually long, which as pointed out earlier, is a clear char-
acteristic of legal text. However, we posit that more training data and the inclusion of more legal data
for generating word embedding might improve results. Nevertheless, we report improved result to the
baselines from [20].

Compared to all the benchmarked baselines, our approach is simple and required little or no hyper-
parameter fine-tuning. Obtaining a better generalization should be possible by optimizing various pa-
rameters, e.g., a grid search optimization of some parameters might lead to a more accurate model.
Also, introducing more layers in our model might achieve better generalization even though it can also
lead to model memorizing features without any significant improvement in the learning curve.
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