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Abstract

Within a few years, Android has been established as a leading platform in the mobile market with
over one billion monthly active Android users. To serve these users, the official market, Google Play,
hosts around 2 million apps which have penetrated into a variety of user activities and have played
an essential role in their daily life. However, this penetration has also opened doors for malicious
apps, presenting big threats that can lead to severe damages.

To alleviate the security threats posed by Android apps, the literature has proposed a large body
of works which propose static and dynamic approaches for identifying and managing security issues
in the mobile ecosystem. Static analysis in particular, which does not require to actually execute
code of Android apps, has been used extensively for market-scale analysis. In order to have a better
understanding on how static analysis is applied, we conduct a systematic literature review (SLR) of
related researches for Android. We studied influential research papers published in the last five years
(from 2011 to 2015). Our in-depth examination on those papers reveals, among other findings, that
static analysis is largely performed to uncover security and privacy issues.

The SLR also highlights that no single work has been proposed to tackle all the challenges for static
analysis of Android apps. Existing approaches indeed fail to yield sound results in various analysis
cases, given the different specificities of Android programming. Our objective is thus to reduce the
analysis complexity of Android apps in a way that existing approaches can also succeed on their failed
cases. To this end, we propose to instrument the app code for transforming a given hard problem
to an easily-resolvable one (e.g., reducing an inter-app analysis problem to an intra-app analysis
problem). As a result, our code instrumentation boosts existing static analyzers in a non-invasive
manner (i.e., no need to modify those analyzers).

In this dissertation, we apply code instrumentation to solve three well-known challenges of static analy-
sis of Android apps, allowing existing static security analyses to 1) be inter-component communication
(ICC) aware; 2) be reflection aware; and 3) cut out common libraries.

• ICC is a challenge for static analysis. Indeed, the ICC mechanism is driven at the framework
level rather than the app level, leaving it invisible to app-targeted static analyzers. As a
consequence, static analyzers can only build an incomplete control-flow graph (CFG) which
prevents a sound analysis. To support ICC-aware analysis, we devise an approach called IccTA,
which instruments app code by adding glue code that directly connects components using
traditional Java class access mechanism (e.g., explicit new instantiation of target components).

• Reflection is a challenge for static analysis as well, because it also confuses the analysis
context. To support reflection-aware analysis, we provide DroidRA, a tool-based approach,
which instruments Android apps to explicitly replace reflective calls with their corresponding
traditional Java calls. The mapping from reflective calls to traditional Java calls is inferred
through a solver, where the resolution of reflective calls is reduced to a composite constant
propagation problem.

• Libraries are pervasively used in Android apps. On the one hand, their presence increases
time/memory consumption of static analysis. On the other hand, they may lead to false positives
and false negatives for static approaches (e.g., clone detection and machine learning-based
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malware detection). To mitigate this, we propose to instrument Android apps to cut out a
set of automatically identified common libraries from the app code, so as to improve static
analyzer’s performance in terms of time/memory as well as accuracy.

To sum up, in this dissertation, we leverage code instrumentation to boost existing static analyzers,
allowing them to yield more sound results and to perform quicker analyses. Thanks to the afore-
mentioned approaches, we are now able to automatically identify malicious apps. However, it is still
unknown how malicious payloads are introduced into those malicious apps. As a perspective for our
future research, we conduct a thorough dissection on piggybacked apps (whose malicious payloads
are easily identifiable) in the end of this dissertation, in an attempt to understand how malicious
apps are actually built.
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1 Introduction

In this chapter, we first introduce the motivation of conducting static security analysis for Android
apps. Then, we summarize the challenges people face when conducting static security analysis of
Android apps, and finally we present the contributions and roadmap of this dissertation .
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Chapter 1. Introduction

1.1 Motivation for Static Security Analysis

In 2008, the first Android-based device, namely T-Mobile G1 (or HTC Dream in areas outside of
USA), was released. Since then, the number of Android-based devices varying from smart phones to
TVs has never stopped increasing. Until now, there are over 1.5 million activated devices everyday
and over 2 million apps available for users to choosei. Those apps have infiltrated into nearly every
activity of users, including social networking, schedule planning, financial resource managing, etc.
Positively, users’ life has been much easier thanks to those apps. However, these phenomena, on the
other hand, also threaten users’ daily life, as the quality of Android apps are uneven, e.g., some of
them may be malware [121,125].

The current Android ecosystem does not provide a perfect way to prevent malicious apps from entering
it [1]. Android malware passed into Google Play store could infect millions of usersii. As a result,
the current Android ecosystem actually provides a hotbed for malicious apps to keep penetrating
into our daily life. Moreover, because of its popularity, Android has become the primary target for
attackers. There are actually many sweet points leveraged by attackers to exploit Android apps. We
now summarize them as follows:

• Android apps are relatively easy to be reverse-engineered compared to other kinds of apps like
iOS apps or PC executables. Indeed, there are many off-the-shelf tools (e.g., Soot, Apktool,
dex2jar) that support the reverse engineering of Android apps. Thanks to that, it is also
relatively easy to understand and instrument the code structures of Android apps, making app
repackaging a popular task that injects malicious payloads or updates advertisement packages
for popular Android apps.

• Android employs an all-or-nothing mechanism for its permission system (before Android 6.0,
API level 23). At installation, users must grant all permissions requested by an app or simply
terminate the installation. Because of this mechanism, users may install apps that declare
more permissions than that their really need, resulting in a permission gap. This gap could be
exploited by other (malicious) apps to achieve some activities that are not originally allowed
(the so-called privilege escalation attack).

• Android apps are heavily dependent on libraries, including massive Java libraries and Android-
specific advertisement libraries. Those libraries can only be shipped within Android apps and
there is no simple way to separate or isolate them from the primary code [255]. However, the
quality of those libraries cannot be guaranteed and thus the integration of libraries may increase
the attack surface of Android apps. For example, third-party libraries can abuse the granted
permissions of their host apps to leak sensitive user information.

• Android apps are written in Java and thus inherit the same reflection mechanism. With this
feature, Android apps can reflectively access malicious payloads at runtime for their malicious
behaviors. Furthermore, with the combination of dynamic code loading (DCL) feature, Android
apps can even reflectively access remote malicious payloads at runtime (e.g., download →
dynamically load → reflectively access).

• Android apps can invoke native code through Java Native Interface (JNI). This may induce
security problems due to widely known memory corruption bugs in low-level languages (e.g., C
or C++). Furthermore, as native code is not fully tamed yet by existing approaches, it could
be intentionally adopted by malware writers to evade Java/Android bytecode-based analyses.

• Android adopts a special crossing-component communication mechanism, the so-called inter-
component communication (ICC) mechanism, to facilitate the reuse of existing modules, resulting
in a loose coupling architecture for speeding app implementation. As an example, every app can

ihttp://www.statista.com/topics/876/android/
iihttp://www.ibtimes.co.uk/android-malware-discovered-google-play-store-1553341

2

http://www.statista.com/topics/876/android/
http://www.ibtimes.co.uk/android-malware-discovered-google-play-store-1553341


1.2. Challenges of Static Security Analysis

leverage the dialing module of system to perform dialing service. However, this ICC mechanism
also introduces security issues for Android apps. For instance, malicious apps can illegally
access components of other apps through ICC, leading to spoofing attacks. Similarly, malicious
apps can also hijack an ICC request, so as to steal information from the source component.

• Android embraces an open market model. In addition to the official Google market (called
Google Play), there exist numerous alternative app markets such as AnZhi, Wandoujia, which
impose no or limited app vetting process. Thus, malicious apps are easily delivered through
those alternative markets. Besides, Android apps may be cloned from one market to another,
opening the way for repackaging attacks.

Because of those aforementioned specificities, it is essential for the community to mitigate their
threats. Fortunately, the literature has proposed a large body of works, including both static and
dynamic analysis approaches, to secure Android apps. Because static analysis does not need to
actually execute Android apps, it can be considered as more suitable to perform market-scale analysis.
Thus, there is a strong need to perform static security analysis for Android apps.

1.2 Challenges of Static Security Analysis

In this section we introduce the technical challenges we face when conducting static security analysis
of Android apps. More specifically, we introduce the challenges that are specific to Android and that
are inherited from Java, respectively.

1.2.1 Android-specific Challenges

We now enumerate some challenges for static analysis that are mainly due to Android peculiarities.

Dalvik bytecode. Although Android apps are primarily developed in Java, they run in a Dalvik
virtual machine (DVM), a register-based instruction model. Thus, all app packages (apks) are
distributed on markets with Dalvik bytecode, and only a relatively few are distributed with source
code in open source repositories. Consequently, a static analyzer for Android must be capable of
directly tackling Dalvik bytecode, or at least of translating it to a supported format. Thus, most Java
and Java bytecode analyzers, which could have been leveraged, are actually useless in the Android
ecosystem. As an example, the mature FindBugsiii tool, which has demonstrated its capabilities to
discover bugs in Java bytecode, cannot readily be exploited for Android programs.

Program entry point. Unlike programs in most general programming languages such as Java and
C, Android apps do not have a main method. Instead, each app program contains several entry
points which are called by the Android framework at runtime. Consequently, it is difficult for a
static analyzer to build a global call graph of the app. Instead, the analyzer has to first search for all
entry-points and build several call graphs with no assurance on how these graphs connect to each
other, if ever.

Component Lifecycle. In Android, unlike in Java or C, different components of an application,
have their own lifecycle. Each component indeed implements its lifecyle methods which are called by
the Android system to start/stop/resume the component following environment needs. Figure 1.1
illustrates an example of a typical lifecycle of Android Activities, where at least six lifecycle methods
(e.g., onPause) are involved in an Activity’s life time. In practice, an application in the background
(i.e., invisible lifetime), can first be stopped, when the system is under memory pressure, and later be
restarted when the user attempts to put it in the foreground. Unfortunately, because these lifecycle
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onCreate onStart onResume onPause onStop onDestoryRUNNING

onReStartSTART END

(C)(B)(A)

(E) (D)

(A): Another activity comes into the foreground

(B): The activity is no longer visible

(F)

(C): The activity is finishing or being destroyed by the system

(D): The process of App is killed

(E): User navigates to the activity

(F): User returns to the activity

Figure 1.1: The Lifecycle of Android Activities.

methods are not directly connected to the execution flow, they hinder the soundness of some analysis
scenarios.

Callback Methods. With the user-centric nature of Android apps, a user can interact a lot with
the apps (or system) through the touch screen. The management of user inputs is mainly done by
handling specific callback methods such as the onClick() method which is called when users click a
button. However, like lifecycle methods, callback methods are not directly connected as well (with
the main context) and thus could also impact the soundness of some static analyses.

User/System Events Besides lifecycle methods, methods for handling user events (e.g., UI actions)
and system events (e.g., sensor inputs [141]) constitute a challenge for static analysis of Android
apps. Indeed, as such events can be fired at any time, static analysers cannot build and maintain a
reliable model of the events [2]. It is further expensive to consider all the possible variants of a given
model, due to limited resources [174,242]. Nevertheless, not taking into account paths that include
event-related methods may render some analysis scenarios unsound.

Inter-Component Communication (ICC). Android has introduced a special mechanism for
allowing an application’s components to exchange messages through the system with components of
the same application or of other applications. This communication is usually triggered by specific
methods, hereafter referred to as ICC methods. ICC methods use a special parameter, containing all
necessary information, to specify their target components and the action requested. Similar to the
lifecycle methods, ICC methods are actually processed by the system who is in charge of resolving and
brokering it at runtime. Consequently, static analyzer will find it hazardous to hypothesize on how
components connect to one another unless using advanced heuristics. As an example, FlowDroid [10],
one of the most-advanced static analyzers for Android, fails to take into account ICCs in its analysis.

Libraries. An Android apk is a standalone package containing a Dalvik bytecode consisting of the
actual app code and all library suites, such as advertisement libraries and burdensome frameworks.
These libraries may represent thousands of lines of code, leading to the size of actual app to be
significantly smaller than the included libraries. This situation causes two major difficulties: (1) the
analysis of an app may spend more time on vetting library code than on real code; (2) the analysis
results may comprise too many false positives due to the analysis of library “dead code”. As an
example, analyzing all method calls in an apk file to discover the set of permissions required may
lead to listing permissions which are not actually necessary for the actual app code.

1.2.2 Java-inherited Challenges

Since Android apps are mainly written in Java, developers of static analyzers for such apps are faced
with the same challenges as with Java programs, including the issues of handling dynamic code
loading, reflection, native code integration, multi-threading and the support of polymorphism.

Reflection. In the case of dynamic code loading and reflective calls, it is currently difficult to
statically handle them. The classes that are loaded at runtime are often practically impossible to
analyze since they often sit in remote locations, or may be generated on the fly.
iiihttp://findbugs.sourceforge.net
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Native Code. Addressing the issue of native code is a different research adventure. Most of the
time, such code comes in a compiled binary format, making it difficult to analyze.

Multi-threading. Analyzing multi-threaded programs is challenging as it is complicated to charac-
terize the effect of the interactions between threads. Besides, to analyze all interleavings of statements
from parallel threads usually result in exponential analysis times.

Polymorphism. Finally, polymorphic features also add extra difficulties for static analysis. As an
example, let us assume that method m1 of class A has been overridden in class B (B extends A).
For statement a.m1(), where a is an instance of A, a static analyzer by default will consider the body
of m1() in A instead of the actual body of m1() in B, even if a was instantiated from B (e.g., with
A a = new B()). This obvious situation is however tedious to resolve in practice by most static
analyzers and thus leads to unsound results.

1.3 Contributions

We now summarize the contributions of this dissertation as follows:

• An SLR on static analysis of Android Apps. We provide a clear view of the state-of-the-
art works that statically analyze Android apps, from which we highlight the trends of static
analysis approaches, pinpoint where the focus has been put and enumerate the key aspects
where future researches are still needed. In particular, we have performed a systematic literature
review (SLR) which involves studying 124 research papers published in software engineering,
programming languages and security venues in the last 5 years (January 2011 - December 2015).
Our in-depth examination on those papers has led to several key findings: 1) Static analysis is
largely performed to uncover security and privacy issues; 2) The Soot framework and the Jimple
intermediate representation are the most adopted basic support tool and format, respectively; 3)
Taint analysis remains the most applied technique in research approaches; 4) Most approaches
support several analysis sensitivities, but very few approaches consider path-sensitivity; 5)
There is no single work that has been proposed to tackle all challenges of static analysis that
are related to Android programming; and 6) Only a small portion of state-of-the-art works have
made their artifacts publicly available.

This work has led to a technical report entitled “Static Analysis of Android Apps: A Systematic
Literature Review”, which is currently under submission to an international peer-reviewed
journal.

• A code instrumentation based approach that bridges ICC for static analysis. We
present IccTA, a code instrumentation based approach, to detect privacy leaks among compo-
nents in Android apps, where different components are explicitly connected through instrumented
glue code. IccTA goes beyond state-of-the-art approaches by supporting inter-component detec-
tion. By propagating context information among components, IccTA improves the precision of
the analysis. IccTA outperforms existing tools on two benchmarks for ICC-leak detectors: Droid-
Bench and ICC-Bench. Moreover, IccTA detects 534 ICC leaks in 108 apps from MalGenome
and 2,395 ICC leaks in 337 apps in a set of 15,000 Google Play apps.

This work has led to a research paper published to the 37th International Conference on Software
Engineering (ICSE 2015).

• A tool-based approach that reduces IAC problems to ICC problems. We present a
tool called ApkCombiner which aims at reducing an IAC problem to an intra-app ICC problem.
In practice, ApkCombiner combines different apps into a single apk on which existing tools
can indirectly perform inter-app analysis. We have evaluated ApkCombiner on a dataset of
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3,000 real-world Android apps, to demonstrate its capability to support static context-aware
inter-app analysis scenarios.

This work has led to a research paper published to the 30th International Information Security
and Privacy Conference (IFIP SEC 2015).

• A code instrumentation based approach that tames reflection for static analysis.
We propose DroidRA, a code instrumentation based approach, to support reflection-aware static
analysis in a non-invasive way. With DroidRA, we reduce the resolution of reflective calls to a
composite constant propagation problem. We leverage the COAL solver to infer the values of
reflection targets and app, and we eventually instrument this app to include the corresponding
traditional Java call for each reflective call. DroidRA allows to boost an app so that it can
be immediately analyzable, including such static analyzers that were not reflection-aware. We
evaluate DroidRA on benchmark apps as well as on real-world apps, and demonstrate that it
can allow state-of-the-art tools to provide more sound and complete analysis results.

This work has led to a research paper published to the 2016 International Symposium on
Software Testing and Analysis (ISSTA 2016) and a tool demonstration paper published to the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016).

• A code instrumentation based approach that cuts off common libraries for static
analysis. We leverage a dataset of about 1.5 million apps from Google Play to harvest potential
common libraries, including advertisement libraries. With several steps of refinements, we
finally collect by far the largest set of 1,113 libraries supporting common functionality and
240 libraries for advertisement. We use the dataset to investigates several aspects of Android
libraries, including their popularity and their proportion in Android app code. Based on these
datasets, we have further performed several empirical investigations that demonstrate that (1)
including common libraries will introduce both false positives and false negatives for pairwise
app clone detection; (2) excluding common libraries can increase the accuracy of machine
learning based Android malware detection approaches; and (3) excluding common libraries can
significantly improve the time/memory performance of static security analysis tools.

This work has led to a research paper published to the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER 2016).

• A thorough dissection on piggybacked apps for understanding malicious behaviors.
Malware writers can actually build on top of popular apps to ensure a wide diffusion of their
malicious code within the Android ecosystem. In order to have a better understanding on
how malware behaves, we choose piggybacked apps as the targets of investigation in this work
because the malicious payload of piggybacked apps can be easily identified. Although recent
research has produced approaches and tools to identify piggybacked apps, the literature lacks
a comprehensive investigation into such phenomenon. We fill this gap by 1) systematically
building a large set of piggybacked and benign apps pairs, which we release to the community, 2)
empirically studying the characteristics of malicious piggybacked apps in comparison with their
benign counterparts, and 3) providing insights on piggybacking processes. Experimental results
show that piggybacking operations not only concern app code, but also extensively manipulate
app resource files, largely contradicting common beliefs. We also find that piggybacking is done
with little sophistication, in many cases automatically, and often via library code.

This work has led to a technical report entitled “Understanding Android App Piggybacking”,
which is currently under submission to an international peer-reviewed journal.
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Chapter 3
A Systematic Literature Review on Static Analysis of Android Apps

Chapter 2
Background

Android Static Analysis Code 
Instrumentation

Chapter 4
Bridging ICC and IAC

Chapter 5
Taming Reflection

Chapter 6
Detaching Library

Chapter 7
Understanding Malicious Behaviors

Chapter 8
Conclusion and Future Work

Code Instrumentation-based Approaches

Figure 1.2: Roadmap of This Dissertation.

1.4 Roadmap

Figure 1.2 illustrates the roadmap of this dissertation. Chapter 2 gives a brief introduction on the
necessary background information, including Android, static analysis and code instrumentation.
In Chapter 3, we present an SLR on static analysis of Android apps, summarizing the state-of-
the-art works that perform static security analysis for Android apps. In Chapters 4, 5, and 6,
we present three different approaches, which bridge inter-component communication (ICC) and
inter-app communication (IAC), tame reflection, and detach library respectively, for boosting static
analysis of Android apps. It is worth to mention that all of these three approaches have leveraged
code instrumentation to solve the challenges of statically analyzing Android apps. Thanks to these
approaches, we are able to automatically identify malicious apps. However, it is still unknown how
malicious payloads are introduced into those malicious apps. As a perspective for our future research,
we then conduct an in-depth analysis on piggybacked apps (whose malicious payloads are easily
identifiable) in Chapter 7. Finally, in Chapter 8, we conclude this dissertation and discuss some
potential future works.
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2 Background

In this chapter, we provide the preliminary details that are necessary to understand the purpose,
techniques and key concerns of the various research works that we have conducted in this dissertation.
Mainly, we revisit some details of the Android programming model, summarize the general aspect of
static analysis, and delineate the idea of code instrumentation, respectively.
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Chapter 2. Background

2.1 Android

Android is a software system that is presented for phones, tablets, and more generally for any kinds
of smart devices. It was originally developed by a company called Android Inc. in the early 2000’s.
Google acquired it in 2005 and made a first public release in 2008, which was running Android 1.0.
Since then, there has been over 20 versions releasedi. Each version has been specified with an API
level to manage app compatibility between those different versions. Indeed, as the Android platform
evolves to include new features and address new hardware requirements, new Android versions are
released with each version being assigned a unique integer identifier, called API level. In practice,
each release of Android is referred to by multiple names: (1) its version number (e.g., Android 4.4);
(2) its API level (e.g., API level 19); and (3) a name of sweet (e.g., KitKat). Figure 2.1 overviews the
adoption of API levels by millions of Android-powered devices using Google Play official store as of
March 2016ii.

GingerBread
2.6%

Level 10, Feb. 2011, 2.6%,

API Level 15, Dec. 2011, 2.3%
IceCream Sandwich

2.3%

Jelly Bean
22.3%

Level 16, Jul. 2012, 8.1%
Level 17, Nov. 2012, 11%
Level 18, Jul. 2013, 3.2%

Level 19, Oct. 2013, 34.3%
Kitkat
34.3%

Lollipop
36.1%

Level 21, Nov. 2014, 16.9%
Level 22, mar. 2015, 19.2%

API 23, Oct. 2015, 2.3%
Marshmallow

2.3%

Figure 2.1: Distributions of API Levels Supported by Android-powered Devices (Versions with less than 1%
are not Shown).

It is noteworthy that, approximately every 6 months, the API level is upgraded, suggesting substantial
updates in the APIs set provided to Android developers. In any case, at a given time, an Android
device supports exactly one API level which represents the version of the libraries that developer apps
can invoke at runtime. The API level is even used to determine whether an application is compatible
with an Android framework version prior to installing the application on the device.

Android is actually a software stack that features four software layers (cf. Figure 2.2). From bottom
to top, they are

• Linux kernel layer. This layer provides not only operating system (OS) services, but also drivers
that allow the OS to access the low-level hardware.

• Android runtime and native libraries layer. Android runtime features a Dalvik virtual machine
(DVM) that executes Android apps’ Dalvik bytecode, like Java virtual machine (JVM) for
executing Java bytecode. Native libraries are shipped with native code that can be executed by
the CPU directly and thus can provide fast solutions for time-intensive functionality.

• Application framework layer. This layer provides an interface for Android apps to access the
system resources. As an example, LocationManager is presented in this layer to support Android
apps retrieving GPS coordinates of a device. In development mode, this layer actually plays
the role of the Android SDK, where Android apps are developed upon.

• Applications layer. This layer supports all the running apps, including system apps such as
Home, Contact, etc. that are usually shipped with Android devices, and third-party apps such
as Facebook, Twitter. that can be installed by Android users on-demand form Android markets
(e.g., from Google Play, the official market maintained by Google).

ihttps://en.wikipedia.org/wiki/Android_version_history
iihttp://developer.android.com/about/dashboards/index.html
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Linux Kernel

Binder DriverCamera Driver Wifi Driver ... ...

Native Libraries Android Runtime

Camera Driver Binder Driver Dalvik VM... ...

Application Framework

Content Provider Activity Manager View System ... ...

Applications

Contacts Home Browser ... ...

Figure 2.2: Android Architecture.

Our objective in this dissertation is to perform security analysis of Android apps. Therefore, our
main focus is on the Android applications layer. In order to better explain this layer, in the next
sub-section, we present more details on the structure of Android apps. Since we are going to solve
the challenges caused by ICC and Reflection for static analysis, we give more details about them in
Section 2.1.2 and Section 2.1.3 respectively.

2.1.1 App Structure

Android apps are written in the Java programming language on traditional desktop computing
platforms. Before released, the Java code will be transformed to Dalvik bytecode and eventually
assembled to an Android Application Package (APK) file, which in fact is a zip archive file. Table 2.1
enumerates the structured files of a given APK file. The most important files relating to static
analysis of Android apps are the classes.dex file and the AndroidManifest.xml file. The file classes.dex
contains the real app code, i.e., the implementation of app functionality, which is the main focus of
this dissertation, we thus detail it independently in the next sub-section. We now briefly explain the
structure of the AndroidManifest.xml file.

Table 2.1: The File Structures of an Android App.
Structured Files Description
AndroidManifest.xml App configuration like the declaration of components, permissions, etc.
classes.dex Dalvik bytecode, generated from Java code
resources.arsc Compressed resource file
META-INF/ Meta-data related to the APK file contents
res/ Resource directory, storing files like image, layout, etc.
assets/ Data directory, storing files that will be compiled into APK file

Listing 2.1 illustrates a simplified example of an Android manifest file, which is extracted from an
app named ActivityCommunication3 of DroidBenchiii. There are several main attributes that are
important for static analysis of Android apps. We now summarize them as follows:

• package. The package attribute (cf. line 3) depicts the name of a given Android app. Ideally,
this name should be unique in the world of Android apps. Thus, by using this name, it is

iiihttps://github.com/secure-software-engineering/DroidBench
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1 <?xml version ="1.0" encoding ="utf -8"?>
2 <manifest xmlns : android ="http :// schemas . android .com/apk/res/ android "
3 package ="de. ecspride "
4 android : versionCode ="1"
5 android : versionName ="1.0" >
6
7 <uses -sdk
8 android : minSdkVersion ="8"
9 android : targetSdkVersion ="17" />
10 <uses - permission android :name=" android . permission . READ_PHONE_STATE " />
11
12 <application
13 android : allowBackup ="true"
14 android :icon=" @drawable / ic_launcher "
15 android : label =" @string / app_name "
16 android : theme =" @style / AppTheme " >
17 <activity
18 android :name="edu.mit. icc_componentname_class_constant . OutFlowActivity "
19 android : label =" @string / app_name " >
20 <intent -filter >
21 <action android :name=" android . intent . action .MAIN" />
22 <category android :name=" android . intent . category . LAUNCHER " />
23 </intent -filter >
24 </activity >
25 <activity
26 android :name="edu.mit. icc_componentname_class_constant . InFlowActivity "
27 android : label =" @string / app_name " >
28 <intent -filter >
29 <action android :name="edu.mit. icc_component_class_constant . ACTION " />
30 <category android :name=" android . intent . category . DEFAULT " />
31 </intent -filter >
32 </activity >
33 </ application >
34 </manifest >

Listing 2.1: Example of an Android Manifest.

possible for static analyzers to localize same apps.

• sdkVersion. The manifest leverages the uses-sdk element to express an app’s compatibility
with one or more versions of Android platform. The uses-sdk element features three attributes:
minSdkVersion, targetSdkVersion, and maxSdkVersion. Attributes minSdkVersion and maxS-
dkVersion are designated to specify the minimum, and maximum API level required for a
given app to run. Attribute targetSdkVersion specifies the targeted version that a given app
targets, which informs the Android system that the app is tested against the target version
and the system should not enable any compatibility features to maintain forward-compatibility.
Therefore, when developers build their apps, they can specify in the Manifest file included in
the Android package (apk) the target API level that the app is built to run on as well as the
minimum API that is required to run the app and the maximum API level on which the app
can run (we will give more details later.). These values help the SDK tools warn developers on
the use of APIs. The flexibility of supporting a range of API levels is further put in place to
ensure a larger compatibility of apps with devices in the wild.

• permission. A permission is specified in the manifest through the uses-permission element.
Each declared permission indicates that the app is allowed to perform some permission-protected
actions. As an example, permission READ_PHONE_STATE, declared in line 11, allows the
app to read the phone state information like device id, which otherwise is forbidden.

• components. Android apps are made up of components, and those components should
normally be declared in the manifest, except the rare cases that components are registered
dynamically (in app code). Figure 2.3 illustrates the four different types of components: 1)
Activity, which represents the visible part of Android apps, the user interfaces. Listing 2.1 has
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actually declared two Activities: OutFlowActivity (line 19) and InFlowActivity (line 27); 2)
Service, which is dedicated to execute (time-intensive) tasks in the background; 3) Broadcast
Receiver, which waits to receive user-specific events as well as system events (e.g., the phone is
rebooted); 4) Content Provider, which acts as a standard interface for other components/apps
to access structured data.

ActivityCommunication3

OutFlowActivity

InFlowActivity

Android App

Component

Explicit ICC

Implicit ICCApp1

Activity

Service Broadcast
Receiver

Content 
Provider

IAC
ICC

Figure 2.3: Overview of Basic Concepts of Android Apps.

2.1.2 Inter-Component Communication (ICC)

Android components communicate with one another through specific methods, such as startActivity(),
which are used to trigger inter-component communications (ICC). ICC methods take an Intent object
as a parameter which includes information about the target component that the source component
wants to communicate with. There are two types of ICC interactions:

• explicit ICC where the intent object contains the name of the target component (e.g., explicit
ICC example in Listing 2.2)

• implicit ICC where the intent object specifies the capability (or action) that the target component
must have (e.g., implicit ICC example in Listing 2.2).

1 // Explicit ICC , ActivityCommunication3 ( OutFlowActivity )
2 ComponentName comp = new ComponentName ( getPackageName () ,

InFlowActivity . class . getName ());
3 Intent i = new Intent (). setComponent (comp);
4 startActivity (i);
5
6 // Implicit ICC , App1 ( Broadcast Receiver )
7 Intent i = new Intent ();
8 i. setAction ("edu.mit. icc_component_class_constant . ACTION ");
9 startActivity (i);

Listing 2.2: Example Snippet for Triggering ICC Calls.

In the case of implicit ICC, it must specify an Intent Filter in its Manifest configuration file, declaring
what kind of Intents it is capable of handling, i.e., what kind of actions it can perform or what kind of
data it can process. Let us take Listing 2.1 again as an example, there are two Intent Filters defined:
one at lines 21-24, which is declared for Activity OutFlowActivity and another at lines 29-32, which is
declared for Activity InFlowActivity. Intent Filters can declare either a system action predefined by
the Android system or a user action specifically defined by developers. Action action.MAIN (line 22) is
actually a system action, which states that OutFlowActivity is able to handle the app launch event, i.e.,
OutFlowActivity is the entry point of the app. In contrast, icc_component_class_constant.ACTION
(line 30) is a user-defined action.

Inter-App Communication (IAC) in Android shares the same mechanism of ICC. The only difference
is that components which communicate with one another are now in different apps. As an example,
the red dot line between App1 and ActivityCommunication3 in Figure 2.3 illustrates an IAC. The
source code that triggers this IAC is presented in Listing 2.2.
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2.1.3 Reflection

Reflection is a property that, in some modern programming languages, enables a running program
to examine itself and its software environment, and to change what it does depending on what it
finds [74]. In Java, reflection is used as a convenient means to handle genericity or to process Java
annotations inside classes. Along with many Java features, Android has inherited the Java Reflection
APIs which are packaged and included in the Android SDK for developers to use.

We have parsed Android developer blogs and reviewed some apps to understand when developers need
to inspect and determine program characteristics at runtime leveraging the Java reflection feature.
Through this process, we have found 4 typical ways leveraging reflective calls.

1 // Example (1): providing genericity
2 Class collectionClass ;
3 Object collectionData ;
4 public XmlToCollectionProcessor (Str s, Class c) {
5 collectionClass = c;
6 Class c1 = Class . forName ("java.util.List");
7 if (c1 == c) {
8 this . collectionData = new ArrayList ();
9 }
10 Class c2 = Class . forName ("java.util.Set");
11 if (c2 == c){
12 this . collectionData = new HashSet ();
13 }}
14
15 // Example (2): maintaining backward compatibility
16 try {
17 Class . forName (" android . speech .tts. TextToSpeech ");
18 } catch ( Exception ex) {
19 // Deal with exception
20 }
21
22 // Example (3): accessing hidden / internal API
23 // android .os. ServiceManager is a hidden class .
24 Class c = Class . forName (" android .os. ServiceManager ");
25 Method m = c. getMethod (" getService ", new Class [] { String . class });
26 Object o = m. invoke ($obj , new String [] {" phone "});
27 IBinder binder = ( IBinder ) o;
28 // ITelephony is an internal class .
29 // The original code is called through reflection .
30 ITelephony .Stub. asInterface ( binder );

Listing 2.3: Reflection Usage in Real Android Apps.

Providing Genericity. Just like in any Java-based software, Android developers can write apps by
leveraging reflection to implement generic functionality. Example (1) in Listing 2.3) shows how a
real-world Android app implements genericity with reflection. In this example, a fiction reader app,
sunkay.BookXueshanfeihu (4226F8iv), uses reflection to produce the initialization of Collection List
and Set.

Maintaining Backward Compatibility. In an example case, app com.allen.cc (44B232, an app
for cell phone bill management) exploits reflection techniques to check at runtime the targetSdkVersion
of a device, and, based on its value, to realize different behaviors. A similar use scenario consists in
checking whether a specific class exists or not, in order to enable the use of advanced functionality
whenever possible. For example, the code snippet (Example (2) in Listing 2.3), extracted from app
com.gp.monolith (61BF01, a 3D game app), relies on reflection to verify whether the running Android
version, includes the text-to-speech module. Such uses are widespread in the Android community as
they represent the recommended wayv of ensuring backward compatibility for different devices, and
SDK versions.
ivIn this work, we represent an app with the last six letters of its sha256 code.
vhttp://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html
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2.2. Static Analysis

Reinforcing App Security. In order to prevent simple reverse engineering, developers separate
their app’s core functionality into an independent library and load it dynamically (through reflection)
when the app is launched: this is a common means to obfuscate app code. As an example, developers
usually dynamically load code containing premium features that must be shipped after a separate
purchase.

Accessing Hidden/Internal API. In development phase, Android developers write apps that
use the android.jar library package containing the SDK API exposed to apps. Interestingly, in
production, when apps are running on a device, the used library is actually different, i.e., richer.
Indeed, some APIs (e.g., getService() of class ServiceManager) are only available in the platform
SDK as they might still be unstable or were designed only for system apps. However, by using
reflection, such previously hidden APIs can be exploited at runtime. Example (3), found in a wireless
management app –com.wirelessnow (314D51)–, illustrates how a hidden API can be targeted by a
reflective call.

2.2 Static Analysis

Android
App Call Graph ICFG

(1)

Call Graph 
Construction

(2)

Control-Flow Graph 
Construction

Results
(3)

Data Flow 
Analysis

Figure 2.4: Static Analysis Overview.

Static analysis of Android apps generally involves an automated approach that takes as input the binary
code (or source code in some cases) of Android apps, examines the code without executing it, and
yields results by checking the code structure, the sequences of statements, and the data propagation
between method calls. The main advantage of static analysis is that it can reveal bugs, errors, or
vulnerabilities long before the software is released to the public. Figure 2.4 illustrates the typical
process of statically analyzing Android apps: (1) Call Graph (CG) Construction; (2) Control-Flow
Graph (CFG) Construction; and (3) Data Flow Analysis. We now detail them respectively.

Because Android supports the object-oriented programming scheme with the Java language, in the
remainder of this section we focus on the analysis of Object-Oriented programs. Such programs are
made of classes, each representing a concept (e.g. a car) and including a set of fields to represent
other objects (e.g., wheels) and a set of methods containing code to manipulate objects (e.g, drive
the car forward). The code in a method can call other methods to create instances of objects or
manipulate existing objects.

2.2.1 Call Graph (CG) Construction

A program usually starts with a single entry point referred to in Java as the main method. A
quick inspection of the main method’s code can list the method(s) that it calls. Then, iterating this
process on the code of the called methods leads to the construction of a directed graph (e.g., see
Figure 2.5), commonly known as the call graph in program analysis. Although the concept of a call
graph is standard in static analysis approaches, different concerns, such as precision requirements,
may impact the algorithms used to construct a program’s call graph. For Java programs, a number
of popular algorithms have been proposed, including CHA [58], RTA [19], VTA [215], Andersen [5],
Steensguard [208], etc., each being more or less sensitive to different properties of program executions.
We detail some of the main properties in Table 2.2 to allow a clear differentiation between research
works in the literature.
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Table 2.2: A Summary of Different Sensitivities that CG Constructors may Take into Account.
Sensitivity Explanation

Context Each method has only a single model of parameter and return value.
Object The caller objects are taken into account,

i.e., the invocation of methods made on different objects are distinguished.
Flow Methods are aware of their calling orders.
Path The execution paths are taken into account (for conditional statements).

1 void main () {
2 int x = secret ();
3 int y = 0;
4 y = foo(x);
5 print (y);
6 }
7 int secret () {
8 int q = deviceid ();
9 return q;

10 }
11 int foo(int p) { return p; }

a Source Code.

main

secret foo print

deviceid

b Call Graph.

Figure 2.5: Source Code of a Simple Example and its Call Graph Generated from the main Method.

2.2.2 Control-Flow Graph (CFG) Construction

CFG differs from CG in a way that it considers not only the method calls but also the statements of
each method call. CFG is frequently used in programming analysis to represent a program, where
statements and their sequences are usually represented as nodes and directed edges, respectively. Let
us take the program shown in Figure 2.5a as an example, based on the previous definition, we could
build three CFGs with one for each of its user-defined method (cf. Figure 2.6a). Those CFGs are
built through single method base, which is thus insufficient to represent Android apps that involves
frequently invocations from one method to another.

To record the invocation mechanism of methods, the concept of inter-procedural control-flow graph
(ICFG) is introduced. In addition to the original edges (hereinafter we call it as Normal edges),
ICFG introduces three new types of edges to connect intra-procedural CFGs. In order to better
represent those newly introduced edges, ICFG further introduce a new node, namely call-to-return
node, for each method call node. As an example, node y = foo(x) in method main’s CFG will now
be represented as y = foo(x)→ call − to− return : foo (cf. Figure 2.6b).

• Call edge: connecting caller method node to callee method node and passing information like
method arguments between them.

• Return edge: connecting callee method node to caller method’s call-to-return node and
passing return value between them.

• Call-to-return edge: connecting caller method node to call-to-return node and passing
information from the caller method to all its successor nodes. This edge typically pass information
that does not concern the callee node. The purpose of introducing this edge type, along with
the call-to-return node, is actually to avoid loops. Imaging there is no call-to-return node, the
return edge would directly point to the caller method node, which can traverse again into the
callee method node through a call edge, and then back to the caller method node through
return edge, resulting in a loop.
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Enter main

x = secret()

y = foo(x)

print(y)

Enter secret

q = deviceid()

return

Enter foo

return

return

a CFG.

Enter main

x = secret()

call-to-return
secret

y = foo(x)

Enter secret

q = deviceid()

return

Enter foo

returncall-to-return
foo

print(y)

return

Call edge

Call-to-return edge

Return edge

b ICFG.

Figure 2.6: CFG and ICFG of the Example Code Shown in Figure 2.5a.

2.2.3 Data-Flow Analysis

A data-flow analysis is a technique to compute at every point the possible values of program variables.
Generally, data flow analyses use a so-called equation system to compute information at each
statement. In equation system, a statement s can be represented as s :=< in, out, gen, kill >, where
in, out, gen, kill are four sets of possible values. We now depict them:

• in(s) presents the set of information that are valid before statement s.

• out(s) presents the set of information valid after s.

• gen(s) presents a set of newly created values.

• kill(s) presents a set of existing values that are killed by s.

Let succs(s) and preds(s) be statement s’s immediate successor and predecessor sets respectively.
Based on the aforementioned definition, we can compute in(s) and out(s) through Formula 2.1.
The function f : in(s) → out(s) that transfers in(s) to out(s) is called transfer function (or flow
function).

in(s) = ∪s′∈preds(s)out(s′)
out(s) = gen(s) ∪ (in(s) \ kill(s))

(2.1)

Note that Formula 2.1 works only for forward data-flow analysis. For backward data-flow analysis, we
need to propagate values from out(s) to in(s), whose values can be computed through Formula 2.2.

out(s) = ∪s′∈succs(s)in(s′)
in(s) = kill(s) ∪ (out(s) \ gen(s))

(2.2)

Actually, different data-flow problems may need to compute their equation system values differently
(as illustrated by Formula 2.1 and Formula 2.2). As a result, different data-flow analyzers need to
be implemented from scratch. To mitigate this, Reps, Horwitz and Sagiv present IFDS framework,

17



Chapter 2. Background

attempting to solve the inter-procedural data-flow analysis problem in a generic manner. IFDS
framework has worst-case complexity O(ED3), where E stands for the number of edges analyzed
and D is the size of the analysis domain. The main idea behinds IFDS framework is to reduce any
data-flow analysis problem to a simple graph-reachability problem.

Many data-flow problems such as “reaching definitions”, “possibly uninitialized variables”, and
“available expressions” can ready be modeled and solved by IDFS framework. However, some problems
that involves “environment” information cannot be encoded with IFDS, because the set of data-flow
facts could be infinite. As an example, when a data fact from domain D is reached at a given
statement, it may introduce other values from a secondary domain V . This relationship is the so-
called environment and is denoted as Env(D,V ). To further support this kind of data-flow problem,
the same authors present IDE framework, an extension of IFDS that effectively allows a data-flow
analysis to extend the reachability problem to a value-computation problem. The IDE framework
can be taken as a generalization of IFDS framework, where all IFDS problems can be represented as
IDE problems.

2.3 Code Instrumentation

Code instrumentation is a widely used mechanism in different software engineering areas. It can be
leveraged for reducing the analysis complexity of programs, for creating profilers and debuggers, for
detecting program errors at runtime, or for securing programs through inline reference monitoring.

Android
App

Intermediate 
Representation

New Android 
App

(1)

Decompile/Disassembile

(2)

Compile/Assemble

Code Instrumentation

(3)

Figure 2.7: Code Instrumentation Overview.

In general, code instrumentation involves removing statements and adding new statements. Updating
statements can be achieved by first removing them from the context and then adding the updated
versions at the same place. Figure 2.7 illustrates the typical process of performing code instrumentation
for Android apps. The intermediate representation can be different formats, as long as there are tools
supporting the disassemble/assemble process. Let us take SMALI codevi as an example, it is frequently
used as intermediate representation (IR) for reverse engineering Android apps, where apktool is
leveraged to disassemble/assemble Android apps. Unfortunately, to the best of our knowledge, there
is no tool that supports automatic instrumentation of SMALI code, making the instrumentation a
manual activity, preventing the corresponding instrumentation from being market-scale.

Jimple code [219] is another frequently used IR for instrumenting Android apps. The disassem-
ble/assemble process can be realized by Soot [115], with the help of Dexpler [24]. Moreover, contrary
to SMALI code, Jimple-based instrumentation can be conducted automatically with the help of Soot,
making it appropriate for instrumenting large set of apps. Therefore, in this dissertation, we select
Jimple to perform our code instrumentation.

In this dissertation, we aim at boosting existing static analyses through code instrumentation. The
reason why we choose code instrumentation is that it provides a non-invasive solution, which not only
solves the analyzing problem but also makes the solution generic (be reusable) that can benefit many
existing static analyzers without even modifying them. Let us take Figure 2.8 to better explain this.
Assuming our goal is to detect a data-flow from method m1 to m4 with going through m2 and m3
in Android apps. Because of some challenges (e.g., ICC, reflection), there is no connection between
vihttps://github.com/JesusFreke/smali
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method m2 and m3 in the default control-flow graph, say, the default output of Soot. As a result,
many existing static analyses, which simply leverage the CFG computed by Soot, would not be able
to achieve our goal. At a high level, we find three different ways to tackle the aforementioned analysis
problem, which are illustrated in Figure 2.8 with approach (A), (B), and (C), respectively.

m1

m2

m1 m2

m3 m4

m3

m4

m1 m4

m1

m2

m3

m4

m1 m4

(1)

(f1)

approach (A): 
combine the 

resulting flows 

(f2)

approach (B): 
combine the 

resulting CFGs 

approach (C): 
instrumenting the 

apps

CFG 1

CFG 2

m1

m2

CFG 1

m3

m4 CFG 2

Android
App

Android
App

New Android
App

(2)
code 

instrumentation

Figure 2.8: Benefit of Performing Code Instrumentation for Static Analysis.

In approach (A), the results of different (intra-CFG) data flows (i.e., flow f1 and f2) are combined to
yield an inter-CFG data flow. However, because the combination is performed after the analysis, no
context data (e.g., variable values such as data handled between m2 and m3) is available, therefore
the approach requires to approximate the flows between the CFGs (e.g., here line (1)). This approach
may thus lead to a significant number of false positives.

Approach (B) is an improved version of (A), it is no longer the results combined but the CFGs instead.
This approach thus supports a context-sensitive inter-CFG analysis by operating on a combined CFG
and on a data dependence graph between different CFGs. Nevertheless, such an approach cannot
be generalized to any instance of CFGs. In practice for example, the workload for combining CFGs
generated by Soot cannot even be applied in the case of CFGs generated by WALA. Hence, specific
development effort must be put into each and every static analyzer to support inter-CFG analysis.

Approach (C) considers the caveats of all previous approaches by further improving approach (B)
to yield a general approach for enabling context-sensitive inter-CFG analysis of Android apps.
To this end, approach (C) solves the previous problem by instrumenting the app bytecode. More
specifically, it adds auxiliary code to explicit connect m2 to m3, imitating the behavior through
normal method calls. The generated new app (after code instrumentation) is thus immediately ready
for analysis by existing static tools (which previously cannot).

To summarize, code instrumentation is capable to boost existing static analysis in a non-invasive
manner to perform more extensive analysis. Furthermore, the instrumentation itself is generic (can
be reused to support any static analyzer) and the output supports even context-sensitive analysis.
Because of these benefits, in this dissertation, we focus on code instrumentation for static analysis.
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3 An SLR on Static Analysis of Android Apps

In this SLR, we aim at providing a clear view on the state-of-the-art works that statically analyze
Android apps, from which we highlight the trends of static analysis approaches, pinpoint where the
focus has been put and enumerate the key aspects where future researches are still needed. Our in-depth
examination on 124 identified research papers has led to several key findings: 1) Static analysis is
largely performed to uncover security and privacy issues; 2) The Soot framework and the Jimple
intermediate representation are the most adopted basic support tool and format, respectively; 3) Taint
analysis remains the most applied technique in research approaches; 4) Most approaches support
several analysis sensitivities, but very few approaches consider path-sensitivity; 5) There is no single
work that has been proposed to tackle all challenges of static analysis that are related to Android
programming; and 6) Only a small portion of state-of-the-art works have made their artifacts publicly
available.

This chapter is based on the work published in the following technical report:

• Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien
Octeau, Jacques Klein, and Yves Le Traon. Static Analysis of Android Apps: A Systematic
Literature Review. Technical Report, ISBN 978-2-87971-150-8 TR-SNT-2016-3, 2016
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Chapter 3. An SLR on Static Analysis of Android Apps

3.1 Introduction

As Android apps pervade all user activities, ill-designed and malicious apps have become big threats
that can lead to damages of varying severity (e.g., app crashes, financial losses with malware sending
premium-rate SMS, reputation issues with private data leaks). Data from anti-virus vendors and
security experts regularly report on the rise of malware in the Android ecosystem. For example, G
DATA has reported that the 560,671 new Android malware samples collected in the second quarter
of 2015 revealed a 27% increase, compared to the malware distributed in the first quarter of the same
yeari.

To deal with the aforementioned threats, the research community has investigated various aspects of
Android development, and proposed a wide range of program analyses to identify syntactical errors
and semantic bugs [183], to discover sensitive data leaks [10,124], to uncover vulnerabilities [158,181],
etc. In most cases, these analyses are performed statically, i.e., without actually running the Android
app code, in order not only to ensure scalability when targeting thousands of apps in stores, but also
to guarantee a traversal of all possible execution paths. Unfortunately, static analysis of Android
programs is not a trivial endeavour since one must account for several specific features of Android,
to ensure both soundness and completeness of the analysis. Common barriers to the design and
implementation of performant tools include the need to support Dalvik bytecode analysis or translation,
the absence of a main entry point to start the call graph construction and the constraint to account
for event handlers through which the whole Android program works. Besides these specific challenges,
Android carries a number of challenges for the analysis of Java programs, such as how to resolve
the targets of Java reflection statements and deal with dynamic code loading. Thus, despite much
efforts in the community, state-of-the-art tools are still challenged by their lack of support for some
analysis features. For example, the state-of-the-art FlowDroid [10] taint analyzer cannot track data
leaks across components since it is unaware of the Android Inter-Component Communication (ICC)
scheme. More recent tools which focus on ICC calls may not account for reflective calls.

Because of the various of concerns in static analysis of Android apps, it is important for the field,
which has already produced substantial amount of approaches and tools, to reflect on what has
already been done, and on what remains to do. Although a recent survey [213] on securing Android
has mentioned some well-known static analysis approaches, a significant part of current works has
been skipped from the study. Furthermore, the study only focused on general aspects of Android
security research, neglecting basic characteristics about the static analyses used, and missing an
in-depth analysis of the support for some Android-specific features (e.g., XML Layout, or ICC ).

This review is an attempt to fulfill the need of a comprehensive study for static analysis of Android
apps. To reach our goal, we performed a systematic literature review (SLR) on all the influential
state-of-the-art approaches. After identifying thoroughly the set of related research publications,
we perform a trend analysis and provide a detailed overview on key aspects of static analysis of
Android apps such as the characteristics of static analysis, the Android-specific features, the addressed
problems (e.g. security or energy leaks) and also some evaluation-based empirical results. Finally, we
summarize the current limitations of static analysis of Android apps and point out potential future
research directions.

The main contributions of this section are:

• We build a comprehensive and searchable repositoryii of research works dealing with static
analysis for Android apps. These works are categorized following several criteria related to their
support of common analysis characteristics as well as Android-specific concerns.

ihttps://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.
pdf

iiRepository available at: http://lilicoding.github.io/SA3Repo
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3.2. Methodology for the SLR

• We analyze in detail key aspects of static analysis to summarize the research efforts and the
reached results.

• We further enumerate the limitations of current static analysis approaches (on Android) and
provide insights for potential future research directions.

• Finally, we provide a trend analysis on this research field to report on the latest focus as well as
the level of maturity in key analysis problems.

The remainder of this chapter is organized as follows: Section 3.2 introduces the methodology applied
by this SLR, where research questions, search strategies, primary publication selections, etc. are
detailed. Section 3.3 briefly outlines the dimensions this SLR investigates and Section 3.4 summarizes
the corresponding findings for each dimension enumerated. Section 3.5 discusses different aspects
raised by the research and practice of static Android app analysis. Finally, in Section 3.6 we introduce
some closely related work and we close this chapter with conclusion in Section 3.7.

3.2 Methodology for the SLR
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Figure 3.1: Overview of our SLR Process.

The methodology that we follow for this SLR is based on the guidelines provided by Kitchenham [111].
Figure 3.1 illustrates the protocol that we have designed to conduct the SLR:

• In the first step we define the research questions motivating this SLR, and subsequently identify
the relevant information to collect from the publications in the literature (cf. Section 3.2.1).

• Then, we enumerate the different search keywords that allow us to crawl the possibly largest
set of relevant publications within the scope of this SLR (cf. Section 3.2.2).

• The search process itself is conducted following two scenarios: the first one considers the
well-known publication repositories, while the second one focuses on the lists of publications
from top venues, including both conferences and journals (cf. Section 3.2.2).

• To limit our study to very relevant papers, we apply exclusion criteria on the search results,
thus filtering out papers of likely limited interest (cf. Section 3.2.3).

• Then we merge the sets of results from both search scenarios to produce the overall list of
publications to review. We further consolidate this list by applying another set of exclusion
criteria based on the content of the papers’ abstracts (cf. Section 3.2.3).

• Finally, we perform a lightweight backward-snowballing on the selected publications. The final
list of papers is hereafter referred to as primary publications/studies (cf. Section 3.2.4).
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Given the large number of publications relevant to the systematic literature review that we undertake
to conduct, we must devise a strategy of review which guarantees that each publication is investigated
thoroughly and that the extracted information is reliable. To that end, we further proceed with the
following steps:

• First, we assign the primary publications to the authors of this SLR who share the heavy
workload of paper examinations.

• Then, each primary publication is fully reviewed by the SLR author to whom it is attributed.
Based on their reviews, each SLR author must fill a common spreadsheet with relevant informa-
tion in categories that have been previously enumerated.

• To ensure that the review information for a given paper is reliable, we first cross-check these
reviews among reviewers. Then, once all information is collected, we engage in a self-checking
process where we forward our findings to the authors of the reviewed papers. These authors
then confirm our investigation results or demonstrate any inaccuracies in the classifications.

• Eventually, we report on the findings to the research community.

3.2.1 Research Questions

This SLR aims to address the following research questions:

RQ1: What are the purposes of the Analyses? With this research question, we will survey the
various issues targeted by static analysis, i.e., the concerns in the Android ecosystem that researchers
attempt to resolve by statically analyzing app code.

RQ2: How are the analyses designed and implemented? In this second research question, we
study in detail the depth of analysis that are developed by researchers. To that end, we investigate
the following sub-questions:

RQ 2.1: What code representations are used in the analysis process? To facilitate analysis with
existing frameworks, analyses often require that the app byte code is translated back to Java or other
intermediate representations.

RQ 2.2: What fundamental techniques are used by the community of static analysis of Android
apps?

RQ 2.3: What sensitivity-related metrics are applied?

RQ 2.4: What Android-specific characteristics are taken into account?

RQ3: Are the research outputs available and usable? With this research question, we are
interested in whether the developed tools are readily available to practitioners and/or the reported
experiments can be reproduced by other researchers. For each technical contribution, we check if
the data sets used in the validation of approaches are available, and if the experimental protocol is
described in detail.

RQ4: What challenges remain to be addressed? Finally, with this fourth research question
we survey the issues that have not yet benefited from a significant research effort. To that end, we
investigate the following questions:

RQ 4.1: To what extent are the enumerated analysis challenges covered? We survey the proportion
of research approaches that account for reflective calls, native code, multi-threading, etc.

RQ 4.2: What are the trends in the analyses? We study how the focus of researchers evolved over
time and whether this correlates with the needs of practitioners.
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3.2.2 Search Strategy

We now detail the search keywords and the datasets that we leverage for the search of our relevant
publications.

3.2.2.1 Search keywords

Thanks to the research questions outlined in Section 3.2.1, we can summarize our search terms with
keywords that are (1) related to analysis activities, or (2) related to key aspects of static analysis,
and (3) related to the target programs. Table 3.1 depicts the actual keywords that we used based on
a manual investigation of some relevant publications.

Table 3.1: Search Keywords.
Line Keywords
1 Analysis; Analyz*; Analys*;
2 Data-Flow; “Data Flow*”; Control-Flow; “Control Flow*”; “Information-Flow*”;

“Information Flow*”; Static*; Taint;
3 Android; Mobile; Smartphone*; “Smart Phone*”;

Our search string s is formed as a conjunction of the three lines of keywords, i.e., s =: l1 AND l2
AND l3, where each line is represented as a disjunction of its keywords, e.g., l1 =: {Analysis OR
Analyz* OR Analys*}.

3.2.2.2 Search datasets

As shown in Fig. 3.1, our data search is based on repositories and is complemented by a check against
top venues in software engineering and security. Repository search is intended for finding the relevant
publications, while the top venue check is used only as an additional checking process, to ensure
that the repository search has not missed any major publication. We now give more details of them
separately.

Repository Search To find datasets of publications we first leverage five well-known electronic
repositories, namely ACM Digital Libraryiii, IEEE Xplore Digital Libraryiv, SpringerLinkv, Web
of Knowledgevi and ScienceDirectvii. Because in some cases the repository search engine imposes
a limit to the amount of search result (e.g., meta-data) that can be downloaded, for such cases,
we split the search string and iterating until we collect all relevant meta-data of publications. For
example, SpringerLink only allows to collect information on the first 1,000 items from its search
results. Unfortunately, by applying our predefined search string, we get more than 10,000 results
on this repository. Consequently, we must split our search string to narrow down the findings and
afterwards combine all the findings into a final set. In other cases, such as with ACM Digital Library,
where the repository search engine does not provide a way to download a batch of search results
(meta-data), we resort to python scripts to scale up the collection of relevant publications.

iiihttp://dl.acm.org
ivhttp://ieeexplore.ieee.org
vhttp://link.springer.com

vihttp://apps.webofknowledge.com
viihttp://www.sciencedirect.com
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Chapter 3. An SLR on Static Analysis of Android Apps

Top Venue Check A few conference and journal venues, such as the Network and Distributed
System Security Symposium, have policies (e.g., open proceedings) that make their publications
unavailable in the previously listed electronic repositories. Thus, to ensure that our repository search
results are, to some extent, exhaustive, we consider all publications from well-known venues. For this
SLR we have considered the topviii 20 venues: 10 venues are from the field of software engineering and
programming languages while the other 10 venues are from the security and privacy field. Table 3.2
lists these venues considered at the time of review, where some venues on cryptography fields (including
EUROCRYPT, CRYPTO, TCC, CHES and PKC), parallel programming (PPoPP), magazines (such
as IEEE Software) and non-official proceedings (e.g., arXiv Cryptography and Security) are excluded,
because those venues are mainly not the focuses of static analysis of Android apps. The H5-index in
Table 3.2 is defined by Google Scholar as a special h-index where only those of its articles published
in the last 5 complete calendar years (in our case is from 2010 to 2014) are considered. The h-index
of a publication is the largest number h such that at least h articles in that publication were cited at
least h times each. Intuitively, the higher H5-index, the better the venue.

Table 3.2: The Top 20 Venues Including Both Conference Proceedings and Journals in SE/PL and SEC
fields.
Acronym Full Name H5-index

Software Engineering and Programming Languages (SE/PL)
ICSE International Conference on Software Engineering 57
TSE IEEE Transactions on Software Engineering 47
PLDI SIGPLAN Conference on Programming Language Design and Implementation 46
IST Information and Software Technology 45
POPL ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 45
JSS Journal of Systems and Software 41
FSE Foundations of Software Engineering 38

OOPSLA Conference on Object-Oriented Programming Systems, 34Languages, and Applications
ISSTA International Symposium on Software Testing and Analysis 31

TACAS International Conference on Tools and Algorithms for the Construction 31and Analysis of Systems
Security and Privacy (S&P)

CCS ACM Conference on Computer and Communications Security 65
S&P IEEE Symposium on Security and Privacy 53
SEC USENIX Security Symposium 51
TISSEC IEEE Transactions on Information Forensics and Security 47
NDSS Network and Distributed System Security Symposium 39
TDSC IEEE Transactions on Dependable and Secure Computing 39

ASIACRYPT International Conference on The Theory and Application 34of Cryptology and Information Security
COMPSEC Computers & Security 34
ACSAC Annual Computer Security Applications Conference 29
SOUPS Symposium On Usable Privacy and Security 29

Our top 20 venues check is performed on DBLPix. We only use such keywords that are listed in line 3
in Table 3.1 for this search. As DBLP provides papers’ title only, it is not necessary for us to use
the same keywords that we use in the repository search step. Ideally, all the papers that are related
to smartphones (including Android, Windows, iOS and so on) are taken into account. As a result,
this coarse-granularity strategy has introduced some irrelevant papers (e.g., papers that analyze iOS
apps). Fortunately, because of the small number of venues, we are able to manually exclude those
irrelevant papers from our interesting set, more details are given in the next section.

viiiFollowing Google Scholar Metrics: https://scholar.google.lu/citations?view_op=top_venues&hl=en
ixhttp://dblp.uni-trier.de
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3.2.3 Exclusion Criteria

The search terms provided above are purposely broad to allow the collection of a near exhaustive list
of publications. However, this broadness also suggests that many of the search results may actually
be irrelevant. We thus propose the following exclusion criteria to allow us focus only on the most
relevant publications.

1. First to account for the common language spoken by the reviewers, and the fact that most of
today’s scientific works are published in English, we filter out non-English written publications.

2. Second, we want to focus on extensive works with detailed publications. Thus, we exclude short
papers, i.e., heuristically, papers with less than 7 pages in LNCS single-column format or with
less than 5 pages in IEEE/ACM-like double-column format. Further, it should be noted that
such papers are often preliminary work that are later published in full format and are thus
likely to be included in the final set.

3. Third, related to the second exclusion criteria, we attempt to identify duplicate papers for
exclusion. Usually, those are papers published in the context of a conference venue and extended
to a journal venue. We look for such papers by first comparing systematically the lists of
authors, paper titles and abstract texts. Then we manually check whether suspicious pairs of
identified papers share a lot of content or not. When duplication is confirmed we filter out the
less extensive publication.

4. Fourth, because our search terms include “mobile” to collect most papers, the collected set
includes papers about “mobile networking” or iOS/Windows platforms. We exclude such non
Android-related papers. This exclusion criterion allows to remove over half of the collected
papers, now creating the opportunity for an acceptable manual effort of assessing the relevancy
of remaining papers.

5. Last, we quickly skim through the remaining papers and exclude those that target Android
but do not deal with static analysis techniques. For example, publications about dynamic
analysis/testing of Android apps are excluded.

Since Android has been a hot topic in the latest years, the set of relevant papers constituted after
having applied the above exclusion criteria is still large. These are all papers that propose approaches
relevant to Android, based on static analysis of the apps. We have noticed that some of the collected
papers 1) do not contribute to the research on static analysis of Android apps, or 2) simply grep or
match API names. For example, some approaches simply read the manifest file to list permissions
requested, or simply attempt to match specific API names in function calls. Thus, we devise four
more exclusion criteria to filter out such publications:

6. We exclude papers that statically analyze Android Operating System (OS) rather than Android
apps. Because our main focus in this survey is to survey works related to static analysis of
Android apps. As examples, we have dismissed PSCout [12] and EdgeMiner [39] in this review
because they are dedicated to analyzing the Android framework.

7. We dismiss papers that do not actually parse the app program code, e.g., research papers that
only perform static analysis on the meta-data (i.e., descriptions, configuration files.) of apps
are excluded.

8. We filter out technical reports, such as SCanDroid [75]. Such non-peer-reviewed papers are
often re-published in a conference and journal venue, and are thus likely to be included in
our search set with a different title and author list. For example, the technical report paper
on IccTA [128] has eventually appeared in a conference proceeding [124], which was indeed
considered by this SLR.
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Table 3.3: Summary of the Selection of Primary Publications. The Total Number of Searched Publications
are Given only after the Merge Step.

Steps IEEE ACM Springer Elsevier Web of Knowledge Top-20-venues Total
Search results 1,048 387 11,826 2,416 655 155 -
Scripts verification (with same keywords) 369 302 70 17 453 155 -
Scripts exclusion (criterion 3) 264 289 57 16 453 155 -
Merge 1123
After reviewing title/abstract (criteria 4 → 5) 302
After skimming full paper (criteria 6, 7 and 8) 142
After final discussion 118
Author recommendation +4
Backward Snowballing +2
Total 124

9. We also dismiss papers that simply leverage the statement sequences, or grep API names from
the source/app code. As an example, we exclude Juxtapp [89], a clone detection approach, from
consideration since it simply takes opcode sequences for its static analysis.

3.2.4 Backward Snowballing

As recommended in the guidelines of Kitchenham and Charters [111], we perform a lightweightx
backward snowballing from reference lists of the articles identified via repository and top-venue search.
The objective is to find additional relevant papers in the literature that may have not been matched
via our search keywords.

It is tedious and time-consuming to perform this step manually. Thus, we leverage python scripts
to automatically extract references from our selected primary publications. In particular, we first
leverage pdfxxi to transfer a given paper from pdf to text format. Then, we retrieve all the references
from the previously generated text files. To further mitigate manual efforts, we again use scripts to
filter out references whose publication date fall outside of our SLR timeline and whose titles appear
without keywords that are defined in the scope of this SLR. After these steps, we manually read and
check the remaining references. If a given reference (paper) is in line with this work but is not yet
available in our primary publication set, we then include it into our final paper set.

3.2.5 Primary publications selection

In this section, we give details on our final selection results of primary publications, which are
summarized in Table 3.3.

The first two lines (search results and scripts verification) provide statistics on papers found through
the keywords defined previously. In the first line, we focus on the output from the repository search
(with full paper search, whenever possible, because we want to collect as many relevant papers
as possible in this phase). Through this repository search, we collect data such as paper title or
paper abstract. The second line shows the results of an additional verification step on the collected
data. More specifically, we perform automated keywords search on the data (with exactly the same
keywords as the previous step). We adopt this second step because of the flaws in “advanced” search
functionality of the five repositories, where the search results are often inaccurate, resulting in a set
noised by some irrelevant papers. After performing the second step (line 2), the number of potential
relevant papers is significantly reduced.

The third line shows the results of applying our exclusion criterion 3 (to exclude short papers) for
the results of line 2. The only big difference happens in IEEE repository. We further look into the

xWe only perform backward-snowballing once, meaning that the newly found publications are not considered for
snowballing.

xihttps://github.com/metachris/pdfx
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Figure 3.2: Statistics of Examined Publications.

publications of IEEE and found that those short papers are mostly 4 page conference papers with
insufficient description of their proposed approaches/tools. Therefore it makes sense for us to remove
those short papers from our interesting set.

Line 4 merges the results of line 3 to one set in order to avert redundant workload (otherwise, a same
paper in two repositories would be reviewed twice). We have noticed that the redundancy occurs in
three cases:

1. The ACM repository may contain papers that originally published in IEEE or Springer.

2. The Web of Knowledge repository may contain papers that published in Elsevier.

3. The five repositories may contain papers that appear in the top-20-venues set.

After the merge step, we split the searched papers to all the co-authors of this review. We manually
review the title/abstract and examine the full content of the selected papers, with applying the
exclusion criteria 4-8. With final discussion between authors, we finally select 118 papers as primary
publications.

For the self-checking process, we have collected 343 distinct email addresses of 419 authors for the
88 primary publications selected in our search (up to May 2015). We then send the SLR to these
authors and request their help in checking if their publications are correctly classified. Within a
week, we have received 25 feedback messages which we take into account. Authors have further
recommended a total of 19 papers to include in the SLR. Fifteen of them are already considered by
our SLR (from Jul. 2015 to Dec. 2015). The remaining 4 of those recommended papers are found to
be borderline with regards to our exclusion criteria (e.g., dynamic approaches which resort to some
limited static analyses). We review them against our inclusion criteria and decide to include them
(Table 3.3, line 8).

Regarding the backward-snowballing, overall, we have identified 1815 referenced articles whose
publication date fall within our SLR timeline. Only 53 of these articles have titles without keywords
that could be matched by search. We reviewed these papers and found that only 2 fit our criteria
(i.e., deal with static analysis in the context of Android apps).

In total, our SLR examines 124 publications (the full list is shown in Table 3.7 and Table 3.8).
Fig. 3.2 illustrates the distributions of these publications by types(Fig 3.2a) and publication domains
(Fig. 3.2b). Over 70% of our collected papers are published in conferences. Workshops, generally
co-located with top conferences, have also seen as a fair share of contributions on Android static
analysis. These findings are not surprising, since the high competition in Android research forces
authors to aim for targets where publication process is fast. Presentations in conferences can also
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Figure 3.3: Word Cloud of All the Conference Names of Examined Publications. Journal and Workshop
Publications are not Considered.

stimulate more collaborations as can be seen in most recent papers on Android analysis. We further
find that half of the publications were made in Security venues while another larger proportion was
published in Software Engineering venues. Very few contributions were published in other types of
venues. MIGDroid [97], published in the Network domain and CloneCloud [50], published in the
Systems domain, are the rare exceptions. This finding comforts our initial heuristics of considering
top venues in SE/PL and SEC to verify that our repository search is exhaustive.

Fig. 3.3 shows a word cloud of the conference names where our primary publications were presented.
Most of the reviewed publications are from top conference venues (e.g., ICSE, NDSS and CCS),
suggesting that the state-of-the-art research has been included at a substantial scale.

3.3 Data Extraction

Once relevant papers have been collected, we build a taxonomy of the information that must be
extracted from each paper in order (1) to cover the research questions enumerated above, (2) to be
systematic in the assessment of each paper, and (3) to provide a baseline for classifying and comparing
the different approaches. We now overview the metrics extracted from the selected publications:

Targeted Problems. Approaches are also classified on the targeted problems. Examples of problems
include privacy leakage, permission management, energy optimization, etc.

Fundamental Techniques. This dimension focuses on the fundamental techniques adopted by
examined primary publications. The fundamental techniques in this work include not only such
techniques like taint analysis and program slicing that solve problems through different means but
also the existing tools such as Soot or WALA that are leveraged.

Static Analysis Metrics. This dimension includes static analysis related metrics. Given a primary
publication, we would like to check whether it is context-sensitive, flow-sensitive, path-sensitive, object-
sensitive, field-sensitive, static-aware, implicit-flow-aware, and alias-aware. Besides, in this dimension,
the dynamic code loading, reflection supporting, native code supporting are also inspected.

Android Characteristics. This dimension includes such metrics that are closely related to Android
such as ICC, IAC (Inter-App Communication) and so on. Questions like “Do they take care of the
lifecycle or callback methods?” or “Do the studied approaches support ICC or IAC?” belong to this
dimension.
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Evaluation Metrics. This dimension focuses on the evaluation methods of primary publications,
intending to answer the question how their approaches are evaluated. To this end, this dimension
will count whether their approaches are evaluated through in-the-lab apps (i.e., artificial apps with
knowing the ground truth in advance) or in-the-wild apps (i.e., the real-world apps). Questions like
how many in-the-wild apps are evaluated are also addressed in this dimension.

3.4 Summary of Findings

We now report on the findings of this SLR in light of the research questions enumerated in Sec-
tion 3.2.1.

3.4.1 Purposes of the Analyses

In the literature of Android, static analysis has been applied for achieving various tasks. Among
others, such analysis is implemented to highlight various security issues (such as private data leaks
or permission management concerns), to verify code, to compare apps for detecting clones, to
automate the generation of test cases, or to assess code efficiency in terms of performance and
energy consumption. We have identified eight recurring purposes of Android-targeted static analysis
approaches in the literature. We detail these purposes and provide statistics of approaches that target
them.

Private Data Leaks. Recently, concerns on privacy with Android apps have led researchers to focus
on the private data leaks. FlowDroid [10], introduced in 2014, is probably the most advanced approach
addressing this issue. It performs static taint analysis on Android apps with a flow-, context-, field-,
object-sensitive and implicit flow-, lifecycle-, static-, alias-aware analysis, resulting in a highly precise
approach. The associated tool has been open-sourced and many other approaches [13,112,124,125,189]
have leveraged it to perform more extensive analysis.

Vulnerabilities. Security vulnerabilities are another concern for app users who must be protected
against malware exploiting the data and privileges of benign apps. Many of the vulnerabilities
addressed in the literature are related to the ICC mechanism and its potential misuses such as for
component hijacking (i.e., gain unauthorized access to protected or private resources through exported
components in vulnerable apps) or intent injection (i.e., manipulate user input data to execute code
through it). For example, CHEX [158] detects potential component hijacking-based flows through
reachability analysis on customized system dependence graphs. Epicc [181] and IC3 [180] are tools
that propose static analysis techniques for implementing detection scenarios of inter-component
vulnerabilities. Based on this, PCLeaks [125] goes one step further by performing sensitive data-flow
analysis on top of component vulnerabilities, enabling it to not only know what is the issue but also
to know what sensitive data will leak through that issue. Similar to PCLeaks, ContentScope [258]
detects sensitive data leaks focusing on Content Provider-based vulnerabilities in Android apps.

Permission Misuse. Permission checking is a pillar in the security architecture of Android. The
Android permission-based security model associates sensitive resources with a set of permissions that
must be granted before access. However, as shown by Bartel et al. [23, 25], this permission model
is an intrinsic risk, since apps can be granted more permissions than they actually need. Malware
may indeed leverage permissions (which are unnecessary to the core app functionality) to achieve
their malicious goals. PSCout [12] is currently the most extensive work that dissects the Android
permission specification from Android OS source code using static analysis. However, we do not take
PSCout into consideration in this SLR as our focus is static analysis of Android apps rather than
Android OS.
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Energy Consumption. Battery stand-by time has been a problem for mobile devices for a long
time. Larger screens found in modern smartphones constitute the most energy consuming components.
As shown by Li et al. [119], modern smart phones use OLED, which consumes more energy when
displaying light colors than dark colors. In their investigation, the energy consumption could be
reduced by 40% if more efficient web pages are built for mobile systems (e.g., in dark background).
To reach this conclusion, they performed extensive program analysis on the structure of web apps,
more specifically, through automatically rewriting web apps so as to generate more efficient web pages.
Li et al. [117] present a tool to calculate source line level energy consumption through combining
program analysis and statistical modeling.

Other Purposes. Besides the four aforementioned concerns, state-of-the-art works have also
targeted less hot topics, often about highly specific issues. More representatively, works such as
CryptoLint [64] and CMA [206] have leveraged static analysis to identify cryptography implementation
problems in Android apps. Researchers have extended the Julia [183] static analyzer to perform code
verification through formal analyses of Android programs. Other works such as AppIntent [238] and
SIG-Droid [171] are proposed to automatically generate test cases for Android apps. Researchers have
also leverage static analysis to perform clone detection of Android apps. As examples, DNADroid [53]
and AnDarwin [54] are proposed to compute the similarity of apps based on program dependency
graphs extracted from Android apps.
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Figure 3.4: Statistics of the Analyzed Purposes Addressed by Examined Publications.

The summary statistics in Fig. 3.4 show that Security concerns are the focus of most static analysis
approaches for Android. Energy efficiency is also a popular concern ahead of test case generation.

RQ 1: Static analysis is largely performed on Android programs to uncover security and
privacy issues.

3.4.2 Form and Extent of Analysis

We now investigate how the analyses described in the literature are implemented. In particular, we
study the support tools that they leverage (Section 3.4.2.1), the fundamental analysis methods that
they apply (Section 3.4.2.2), the sensitivities supported by their analysis (Section 3.4.2.3) as well as
the Android peculiarities that they deal with (Section 3.4.2.4).

3.4.2.1 Code Representations and Support Tools

Table 3.4 enumerates the recurrent tools that are used by approaches in the literature to support
their analyses. Such tools often come as off-the-shelf components that implement common analysis
processes (e.g., for the translation between bytecode forms or for the automatic construction of
call-graphs). The table also provides for each tool information on the intermediate representation (IR)
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Table 3.4: List of Recurrent Support Tools for Static Analysis of Android Apps.
TOOL Brief Description IR Example Usages
Soot [115] A Java/Android static analysis

and optimization framework
JIMPLE, JASMIN FlowDroid [10], IccTA [124], Ap-

pIntent [238]
WALAa A Java/Javascript static analysis

framework
WALA-IR (SSA-based) AsDroid [100], Asynchro-

nizer [146], ORBIT [234]
Chord [210] A Java program analysis plat-

form
CHORD-IR (SSA-based) CloneCloud [50]

Androguard [62,63] Reverse engineering, malware/-
goodware analysis of Android
apps

DEX_ASSEMBLER MalloDroid [70], Relda [87]

Ded [177] A DEX to Java bytecode transla-
tor

JAVA_CLASS Enck et al. [68]

Dare [179] A DEX to Java bytecode transla-
tor

JAVA_CLASS Epicc [181], IC3 [180]

Dexpler [24] A DEX to Jimple translator JIMPLE BlueSeal [205]
Smali/Baksmalib A DEX to Smali translator (and

verse visa)
SMALI Woodpecker [85], SEFA [229]

Apktoolc A tool for reverse engineering An-
droid apps

SMALI PaddyFrog [228], Androlizer [28]

dex2jard A DEX to Java bytecode transla-
tor

JAVA_CLASS DroidChecker [42], Vekris et
al. [220]

dedexere A disassembler for DEX files DEX_ASSEMBLER Brox [161], AQUA [109]
dexdump A disassembler for DEX files DEX_ASSEMBLER ScanDal [110]
dx A Java bytecode to DEX transla-

tor
DEX_ASSEMBLER EdgeMiner [39]

jd-guif A Java bytecode to source code
translator (and also an IDE)

JAVA_CLASS Wang et al. [225]

ASM [37,113] A Java manipulation and analy-
sis framework

JAVA_CLASS COPES [23]

BCELg A library for analyzing and in-
strumenting Java bytecode

JAVA_CLASS vLens [117], Julia [183],
Nyx [119]

Redexer A reengineering tool that manip-
ulates Android app binaries

DEX_ASSEMBLER Brahmastra [30]

ahttp://wala.sourceforge.net
bhttp://baksmali.com
chttp://ibotpeaches.github.io/Apktool/
dhttps://github.com/pxb1988/dex2jar
ehttp://dedexer.sourceforge.net
fhttps://github.com/java-decompiler/jd-gui
ghttps://commons.apache.org/bcel/

that it deals with. The IR is a simplified code format to represent the original Dalvik bytecode and
facilitate processing since Android Dalvik itself is known to be complex and challenging to manipulate.
Finally, the table highlights the usage of such tools in specific reviewed approaches.

Table 3.5 goes into more details on the adoption of the different code representations by the examined
approaches. Fig. 3.5 summarizes the frequency of usages, where Jimple, which is used by the popular
Soot tool, appears as the most used IR followed by the Smali intermediate representation, which is
used by Apktool.
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RQ 2.1: The Soot framework and the Jimple intermediate representation are the most
adopted basic support tool and format for static analysis of Android apps.
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Table 3.5: Summary of Examined Approaches through the Code Representations They Use.
Code Representation Publications
OTHER SIG-Droid [171], Cortesi et al. [52], Amandroid [226], FUSE [192], Nyx [119]

SMALI MobSafe [231], I-ARM-Droid [57], A3 [160], MIGDroid [97], SMV-Hunter [207], Androlizer [28],
Wognsen et al. [227], SmartDroid [253], Woodpecker [85], CredMiner [260], SEFA [229],
Uranine [191], AppCaulk [202], ContentScope [258], Apparecium [216], Zuo et al. [261],
ClickRelease [170], SAAF [94], CMA [206], Anadroid [142], DroidSim [214], Chen et al. [45],
SADroid [88], AdRisk [84], PaddyFrog [228], Jensen et al. [105]

JIMPLE DescribeMe [243], DEvA [198], Capper [246], AppContext [235], DroidSafe [81], Violist [118],
Bartel et al. [25], HelDroid [6], Gator [195], A5 [222], Gator2 [233], FlowDroid [10], Lo-
track [143], DidFail [112], TASMAN [11], ACTEve [4], DroidJust [47], AppSealer [245],
ApkCombiner [123], Bastani et al. [27], PerfChecker [152], EcoDroid [102], W2AIScanner [93],
Vekris et al. [220], Apposcopy [73], COPES [23], Gator3 [233], IC3 [180], Sufatrio et al. [212],
Epicc [181], Gallingani et al. [76], IccTA [124], android-app-analysis-tool [78], BlueSeal [205],
AutoPPG [241], WeChecker [55], Covert [20], AppIntent [238]

DEX_ASSEMBLER Mann et al. [165], Brox [161], Androguard2 [63], Androguard [62], MalloDroid [70], An-
dRadar [151], Dflow+DroidInfer [101], AQUA [109], Brahmastra [30], Redexer [106], Relda [87],
CryptoLint [64], StaDynA [251], Lin et al. [144], Adagio [77], ComDroid [48], Scandal [110]

JAVA_CLASS Chen et al. [44], AppAudit [230], PermissionFlow [201], Bartsch et al. [26], EvoDroid [163],
Lu et al. [159], DroidAlarm [254], AsyncDroid [145], DroidChecker [42], DroidSIFT [244],
eLens [90], CloneCloud [50], DPartner [248], Wang et al. [225], TrustDroid [250], Choi et
al. [49], IFT [69], Pathak et al. [182], Pegasus [46], SIF [91], vLens [117], Julia [183]

WALA_IR AnDarwin [54], Poeplau et al. [185], Asynchronizer [146], CHEX [158], ORBIT [234],
AAPL [157], AndroidLeaks [79], A3E [14], THRESHER [31], AsDroid [100], Hopper [32],
DNADroid [53]

3.4.2.2 Fundamental Analysis Methods

While all reviewed approaches build on control-flow or data-flow analyses, specific techniques are
employed to enhance the results and thus to reach the target purposes. In our study, we have identified
six fundamental techniques which are used, often in conjunction, in the literature.

Abstract Interpretation. Abstract interpretation is a theory of approximating the semantics of
programs, where soundness of the analysis can be guaranteed and thereby to avoid yielding false
negative results. A concrete implementation of abstract interpretation is through formal program
analysis. As an example, Julia [183] is a tool that uses abstract interpretation to automatically
static analyze Java and Android apps for the development of high-quality, formally verified products.
SCanDal [110], another sound and automatic static analyzer, also leverages abstract interpretation to
detect privacy leaks in Android apps.

Taint Analysis. Taint analysis is implemented by at first tainting a data if it is defined to be
sensitive, and then tracking it through data-flow analysis. If a tainted data flows to a point where it
should not be, specific instructions can be applied, e.g., to stop this behavior and report it to the
users. As an example, AppSealer [245] leverages taint analysis to automatically generate patches
for Android component hijacking attacks. When a tainted data is going to violate the predefined
policies, AppSealer injects a patch before the violation to alert the app user through a pop-up dialog
box. FlowDroid [10], as another example, performs static taint analysis to detect sensitive data leaks.
Based on a predefined set of source and sink methods, which are automatically extracted from the
Android SDK (cf. SUSI [188]), sensitive data leaks are reported if and only if the data are obtained
from source methods (i.e., when these data are tainted) and eventually flow to sink methods (i.e.,
when violating security polices).

Symbolic Execution. Symbolic execution is an approach to generate possible program inputs,
which is different from abstract interpretation, because it assumes symbolic values for inputs rather
than obtaining actual inputs as abstract interpretation does. As an example, AppIntent [238] uses
symbolic execution to generate a sequence of GUI manipulations that lead to data transmission. As
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the basic straightforward symbolic execution is too time-consuming for Android apps, AppIntent
leverages the unique Android execution model to reduce the search space without sacrificing code
coverage.

Program Slicing. Program slicing has been used as a common means in the field of program
analysis to reduce the set of program behaviors, meanwhile to keep the interesting program behavior
unchanged. Given a variable v in program p that we are interested in, a possible slice would consist
of all statements in p that may affect the value of v. As an example, Hoffmann et al. [94] present a
framework called SAAF to create program slices so as to perform backward data-flow analysis to
track parameter values for a given Android method. CryptoLint [64] computes static program slices
that terminate in calls to cryptographic API methods, and then extract the necessary information
from these slices.

Code Instrumentation. Static analysis is often necessary to find sweet spots where to insert code
for collecting runtime behaviour data (cf. SIF framework [91]). In recent works, code instrumentation
has also been employed to address challenges for static analysis in Android apps, including artificially
linking components for inter-component communication detection [124], or replacing reflection calls
with standard java calls so as to reduce incomplete analyses due to broken control-flows [133]. In
Android community, Arzt et al. [9] have introduced several means to instrument Android apps based
on Soot. As an example, IccTA [124] instruments Android apps to reduce an inter-component taint
propagation problem to an intra-component problem. Nyx [119] instruments android web app to
modify the background of web pages, so as to reduce the display power consumption and thereby
making web app become more energy efficient. Besides Soot, other tools/frameworks such as WALA
and ASM are also able to support instrumentation of Android apps.

Type/Model Checking. Type and model checking are two prevalent approaches to program
verification. The main difference between them is that type checking is usually based on syntactic
and modular style whereas model checking is usually defined in a semantic and whole-program style.
Actually, this difference makes these two approaches complementary to one another: type checking is
good at explaining why a program was accepted while model checking is good at explaining why a
program was rejected [175]. As an example, COVERT [20] first extracts relevant security specifications
from a given app and then applies a formal model checking engine to verify whether the analyzed app
is safe or not. For type checking, Cassandra [156] is presented to enable users of mobile devices to
check whether Android apps comply with their personal privacy requirements even before installing
these apps. Ernst et al. [69] also present a type checking system for Android apps, which checks the
information flow type qualifiers and ensures that only such flows defined beforehand can occur at run
time.

Table 3.6 provides information on the works that use different techniques. The summary statistics
show that taint analysis, which is used for tracking data, is the most applied technique (30.6% of
primary publications), while 18.5% primary publications involve code instrumentation and 12.1%
primary publications have applied program slicing technique in their approaches. Type/Model
checking, abstract interpretation, and symbolic execution are applied in 6.5% primary publications
respectively.

RQ 2.2: Taint analysis remains the most applied technique in static analysis of Android
apps. This is in line with the finding in RQ1 which shows that the most recurrent purpose
of state-of-the-art approaches is on security and privacy.

3.4.2.3 Static Analysis Sensitivities

We now investigate the depth of the analyses presented in the primary publications. To that end we
assess the sensitivities (cf. Figure 3.6) that different approaches take into account. Field-sensitivity
appears to be the most considered with 48 primary publications taking it into account. This finding is

35



Chapter 3. An SLR on Static Analysis of Android Apps

Table 3.6: Summary through the Adoption of Different Fundamental Techniques (Only Relevant Works,
e.g., with at Least One Check are Presented).
Techniques Publications Percentagexii
Abstract Interpretation Mann et al. [165], Anadroid [142], Cortesi et al. [52], Rocha et al. [194], Lu et

al. [159], Hopper [32], Scandal [110], Julia [183]
6.5%

Taint Analysis MobSafe [231], CHEX [158], PermissionFlow [201], DescribeMe [243], Cortesi et
al. [52], Capper [246], AppContext [235], DroidSafe [81], DroidChecker [42], Hel-
Droid [6], FlowDroid [10], Lotrack [143], Amandroid [226], DidFail [112], FUSE [192],
CredMiner [260], SEFA [229], TASMAN [11], Uranine [191], Mann et al. [165],
AppCaulk [202], Brox [161], AppAudit [230], AndroidLeaks [79], Apparecium [216],
DroidJust [47], AppSealer [245], Bastani et al. [27], Dflow+DroidInfer [101],
W2AIScanner [93], Apposcopy [73], Sufatrio et al. [212], Anadroid [142], Trust-
Droid [250], AAPL [157], Gallingani et al. [76], IccTA [124], WeChecker [55]

30.6%

Symbolic Execution W2AIScanner [93], SIG-Droid [171], ACTEve [4], Gallingani et al. [76], ClickRe-
lease [170], TASMAN [11], AppIntent [238], Jensen et al. [105]

6.5%

Program Slicing MobSafe [231], AppCaulk [202], Brox [161], Poeplau et al. [185], Capper [246],
AndroidLeaks [79], Apparecium [216], AppSealer [245], Hopper [32], eLens [90],
SAAF [94], AQUA [109], Rocha et al. [194], CryptoLint [64], CredMiner [260]

12.1%

Code Instrumentation Cassandra [156], Uranine [191], AppCaulk [202], I-ARM-Droid [57], Andro-
guard2 [63], Capper [246], DroidSafe [81], ACTEve [4], AsyncDroid [145],
AppSealer [245], Bastani et al. [27], CMA [206], SmartDroid [253], Brahmastra [30],
Sufatrio et al. [212], ORBIT [234], Rocha et al. [194], IccTA [124], android-app-
analysis-tool [78], DidFail [112], SIF [91], vLens [117], Nyx [119]

18.5%

Type/Model Checking Mann et al. [165], Choi et al. [49], Lu et al. [159], DroidAlarm [254], IFT [69],
Dflow+DroidInfer [101], SADroid [88], Covert [20]

6.5%

reasonable since Android apps are generally written in Java, an Object-Oriented Programming (OOP)
language where object fields are pervasively used to hold data. Context-sensitivity and Flow-sensitivity
are also largely taken into account (with 42 and 40 publications respectively). The least considered
sensitivity is Path-sensitivity (only 6 publications), probability due to the scalability issues that it
raises.

In theory, the more sensitivities considered, the more precise the analysis is. Indeed, as shown by
Arzt et al. [10], the authors of FlowDroid, who claimed that the design of being context-, flow-,
field-, and object-sensitive maximizes precision and recall, i.e., aims at minimizing the number of
missed leaks and false warnings. Livshits et al. [154, 155] also stated that both context-sensitivity
and path-sensitivity are necessary to achieve a low false positive rate (i.e., higher precision). It is
thus reasonable to state that only two approaches, namely TRESHER [31] and Hopper [32], achieves
high precision by taking into account all sensitivities. However, given the relatively high precision
of existing state-of-the-art works, it seems unnecessary to support all sensitivities to be useful in
practice.
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Figure 3.6: Statistics of Sensitivities Considered by the Publications.
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RQ 2.3: Most approaches support up to 3 of the 5 sensitivities in Call-Graph construction
for static analysis. Path-sensitivity is the least taken into account by the Android research
community.

3.4.2.4 Android Specificities

Although Android apps are written in Java, they present specific characteristics in their functioning.
Typically, they extensively make use of a set of lifecycle event-based methods that the system
requires to interact with apps, and rely on the inter-component communication mechanism to make
application parts interact. These characteristics however may constitute challenges for a static analysis
approach.

Component Lifecycle. Because lifecycle callback methods (i.e., onStop(), onStart(), onRestart(),
onPause() and onResume()) have neither connection among them nor directly with app code, it is
challenging for static analysis approaches to build control-flow graphs (e.g., to continuously keep
track of sensitive data flows). We found that 57 of the reviewed publications propose static analysis
approaches that take into account component lifecyle.

UI Callbacks. Besides lifecycle methods, a number of callbacks are used in Android to handle
various events. In particular, UI events are detected by the system and notified to developer apps
through callback methods (e.g., to react when a user clicks on a button). There are several such
callbacks defined in various Android classes. Similar to lifecycle methods, taking into account such
callback methods leads to a more complete control-flow graph. Our review reveals that 64 of examined
publications are considering specific analysis processes that take into account callback methods.

EntryPoint. Most static approaches for Android apps must build an entry point, in the form of
a dummy main, to allow the construction of call-graph by state-of-the-art tools such as Soot and
WALA. Seventy four publications from our set have explicitly discussed their handling of the single
entry-point issue.

ICC. The inter-component communication (ICC) is well-known to challenge static analysis of Android
programs. Recently, several works have focused on its inner-working to highlight vulnerabilities and
malicious activities in Android apps. Among the set of collected primary publications, 30 research
papers explicitly deal with ICC. As examples, Epicc [181] and IC3 [180] attempt to extract the necessary
information of ICC in Android apps which can support other approaches, including IccTA [124], and
DidFail [112] , in performing ICC-aware analyses across components. AmanDroid [226] also resolves
ICC information for supporting inter-component data-flow analysis, for the purpose of vetting the
security of Android apps.

IAC. The inter-app communication (IAC) mechanism extends the ICC mechanism for components
across different apps. Because, most approaches focus on analyzing a single app, IAC-supported
analyses are scarce in the literature. We found only 6 publications that deal with such scenarios
of interactions. A main challenge of tackling IAC-aware analyses is the support of scalability for
market-scale analyses.

XML-Layout. The structure of user interfaces of Android apps are defined by layouts, which can
be declared in either XML configurations or Java code. The XML layout mechanism provides a
well-defined vocabulary corresponding to the View classes, sub-classes and also their possible event
handlers. We found that 30 publications, from our set, take into account XML layouts to support
more complete analysis scenarios. Mostly, those analyses of tracking callback methods indicated in
XML files but which are not explicitly registered in the app code. For example, the code snippets in
Listing 3.1 provide two distinct, but equivalent, implementations for registering a listener to a layout
Button. If the XML implementation is retained, function myFancyMethod would be considered as
dead code for any analyzer not taking into account XML information.
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1 // Registration of onClickListener in app code
2 Button btn = ( Button ) findViewById (R.id. mybutton );
3 btn. setOnClickListener (new View. OnClickListener () {
4 @Override
5 public void onClick (View v) {
6 myFancyMethod (v);
7 }
8 });
9
10 // Registration of onClickListener through XML
11 <Button android :id="@+id/ mybutton "
12 android :text=" Click Me!"
13 android : onClick =" myFancyMethod " />

Listing 3.1: Registering a Callback Function for a Button

Overall, Figure 3.7 summarizes the support for addressing the enumerated challenges by approaches
from the literature. We illustrate in this figure only those publications from our collected set that are
explicitly addressing at least one of the challenges.
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Figure 3.7: Statistics of Android Specificities Addressed by the Publications.

RQ 2.4: Only few works in the literature has proposed to tackle at once all challenges
due to Android specificities. Instead, most approaches select to deal partially with those
challenges, which are further delivered directly within their implementation (as a whole),
leaving little opportunities for reuse by other approaches.

3.4.3 Usability of Research Output

We now investigate whether the works behind our primary publications have produced usable tools
and whether their evaluations are extensive enough to make their conclusions reliable or meaningful.

Among the 124 reviewed papers, 41 (i.e., only 33%) have provided a publicly available tool. This
finding suggests that, currently, despite the increasing size of the community working on static
analysis of Android apps, sharing of research efforts is still limited. Among those 41 publicly available
approaches, 34 of them are further open-sourced.

We now consider how researchers in the field of static analysis of Android apps evaluate their
approaches. We differentiate in-the-lab experiments, which are mainly performed with a few hand-
crafted test cases to highlight efficacy and/or correctness, from in-the-wild experiments, which consider
a large number of real-world apps to demonstrate efficiency and/or scalability. In-the-lab experiments
help to quantify an approach through standard metrics (e.g., precision and recall), which is very
difficult to obtain through in-the-wild experiments, because of missing of ground truth. In-the-wild
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Figure 3.9: Distribution of Examined Publications through Published Year.

experiments are however also essential for static approaches. They are dedicated for finding and
possibly solving real problems of real-word apps, which may have already been used by thousands of
users. Among all the reviewed approaches, only 7 of them have taken into account in-the-lab and
in-the-wild experiments at the same time.

Figure 3.8 further plots the distribution of the number of apps evaluated through in-the-wild
experiments by the approaches reviewed in this work. The median number of apps that those
in-the-wild experiments consider are 374. The maximum number of evaluated apps is 318,515, which
is considered by AndRadar [151].

RQ3: Only a small portion of state-of-the-art works that perform static analysis on Android
apps have made their contributions available in public (e.g., tool support). Among those
approaches, only a few have evaluated their approaches in both in-the-lab and in-the-wild
experiments.

3.4.4 Trends and Overlooked Challenges

Although Android is a recent ecosystem, research on analyzing its programs has flourished. We
investigate the general trends in the research and make an overview of the challenges that are (or are
not) dealt with.

3.4.4.1 Trend Analysis

Fig. 3.9 shows the distribution of publications from our set according to their year of publication.
Research papers meeting our criteria appear to have started in 2011, about two and a half years after
the first commercial release of Android in September 2008. Then, a rush of papers have ensued for
both Security and Software engineering communities.
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Figure 3.10: Trend of ICC.

1 SmsManager sms = SmsManager . getDefault ();
2 // sms. sendTextMessage ("+49 1234" , null , "123" , null , null);
3 for (int i = 0; i < 123; i++)
4 sms. sendTextMessage ("+49 1234", null , " count ", null , null );

Listing 3.2: Example of an Implicit Flow.

Fig. 3.10 shows that, as time goes by, research works are considering more sensitivities and addressing
more challenges to produce precise analyzers which are aware of more and more analysis specificities.
We further look into the ICC challenge for static analyzers to show the rapid increase of related
publications.

RQ 4.1: Research on static analysis for Android is maturing, yielding more analysis
approaches which consider more analysis sensitivities and are aware of more specificities of
Android.

3.4.4.2 Dealing with Analysis Challenges

We now discuss our findings on the different challenges addressed in analyses to make them static-,
implicit-flow, alias-, dynamic-code-loading-, reflection-, native-code-, and multi-threading-aware.

We consider an approach to be static-aware when it takes into account static object values in Java
program to improve analysis precision. Thirty two approaches explicitly take this into account. Thirty
primary publications consider aliases. Both challenges are the most considered in approaches from
the literature as they are essential for performing precise static analysis.

We found 23 primary publications which take into account multi-threading. We further investigate
these supports since multi-threading is well-known to be challenging even in Java ecosystem. We
note that those approaches partially solve multi-threading issues in a very simple manner, based
on a predefined whitelist of multi-threading mechanisms. For example, when Thread.start() is
launched, they simply bridge the gap between method start() and run() through an explicit call
graph edge. However, other complex multi-threading processes (e.g., those unknown in advance)
or the synchronization among different threads are not yet addressed by the community of static
analysis researchers for Android apps.

Another challenge is implicit flows, i.e., flow information inferred from control-flow dependencies [240].
Let us take Listing 3.2 as an example, if an Android app does not send out message 123 directly, but
sends 123 times the word “count”, the attacker can actually gain the same information as if the app
had directly sent the 123 value.

The remaining challenges include reflection, native code and dynamic code loading (DCL) which are
taken into account by 15, 3 and 3 publications respectively.
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3.5. Discussion on Findings

Fig 3.11 provides information on which challenges are addressed by the studied papers.
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Figure 3.11: Statistics of Different Aspects of Static Analysis.

RQ 4.2: There are a number of analysis challenges that remain to be addressed further by
the community to build approaches that are aware of implicit-flows, dynamic code loading
features, reflective calls, native code and multi-threading, so as to implement sound and
highly precise static analyzers. As it is hard for a single tool to efficiently address all the
challenges we discussed in this section, we suggest that those challenges should be solved in
a reusable way so that the forthcoming approaches can directly benefit from them.

3.5 Discussion on Findings

The findings yielded while investigating the research questions of this SLR constitute as many
discussion points around the research and practice of Android.

3.5.1 Security will remain a strong focus of Android research

Static analysis of Android apps, as shown in the investigation of RQ1, is largely focused on uncovering
security and privacy issues. This suggests that security and privacy are a big concern for both users
and researchers nowadays. Several studies have already shown how the permission system can be
misused [25] and more recently how app uninstallation can leave residual data which can be exploited
in attacks [247].

On the one hand, the open source nature of Android development code base is central in the interest
that it generates in the research community. While it is easy for malware writers to find exploitable
security holes, researchers can also more readily collect data, perform experiments and test solutions
on this platform.

On the other hand, time-to-market pressure is substantially higher in the mobile ecosystem than in
traditional desktop computing, making testing a neglected concern by developers and users.

3.5.2 Considering external code is essential for a sound analysis

There are two types of external code available in Android apps outside the main classes.dex: Dalvik
bytecode (often hidden via the extension of another file format such as xml) and binary code. Dalvik
bytecode can be accessed through reflection and dynamic code loading (DCL) while binary code can
be leveraged via the Java native interface (JNI) APIs. Unfortunately, both DCL and native code are
rarely considered by the state-of-the-art static analyzers. As a result, current analyses, which do not
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consider DCL and native code in their implementation, miss the opportunity to discover problems
hidden inside external code, leading to incomplete results.

3.5.3 Improving basic support tools such as Soot is a priority

The majority of research works reviewed in this SLR build their analyses based on support tools
such as Soot and WALA. Unfortunately, these tools present various limitations. For example, the
transformation performed by Soot to translate Dalvik bytecode into Jimple and back to bytecode
is still without guarantees that the rebuilt application is runnable (i.e., will not crash during
execution). Several approaches and tools that instrument apps, such as AppSealer, are impacted
by this limitation. It is thus essential that researchers focus on contributing in improving the
static analysis and transformations supported by these support tools. It is noteworthy that a small
improvement in the performance of these tools (e.g., providing more precise call graph) will benefit
many more research approaches (e.g., all the approaches relying on call graph construction).

3.5.4 Sensitivities are key in the trade-off between precision and performance

The more sensitivities a static analysis takes into account, the more precise its results will be. However,
as showcased in FlowDroid [10], this precision will come at the cost of performance: execution then
becomes time consuming, and may even fail on more corner case apps. Limiting the sensitivities may
yield some false positives and false negatives, but will produce an approach that could be successfully
applied at the scale of markets. For instance, an imprecise but fast approach could be used to quickly
filter a huge set of applications. The remaining application set, which should be much smaller than
the initial set, is then analyzed using a more precise, but much slower, analysis.

3.5.5 Android specificities can help improve code coverage

Android specificities such as lifecycle awareness are a must to not miss any code of the application
related to individual Android components. For an ICC-aware static analysis, handling the inter-
component communication precisely would increase the connectivity of the call-graph and would
thus reduce the overall analysis time. Indeed, some connection between components would now be
recognized as over-approximations and will no longer be taken into account by the analysis.

The analysis for Android specificities are often intertwined with the main static analysis itself. The
precision of one analysis has a direct impact on the other. For instance, the lifecycle awareness
requires to cover the whole call graph. Having a precise call graph, by handling many sensitivities,
may increase the precision in considering component’s lifecycle.

3.5.6 Researchers must strive to provide clean and reusable artifacts

Our SLR showed that most approaches select a subset of challenges that they address directly within
their implementation, while providing little opportunity for reuse in other approaches. Furthermore,
only a few have made their tools publicly available. This leads to a situation where redundant
contributions are made in the community without any comparison among state-of-the-art to further
advance the research. Researchers should thus be strongly encouraged to make available at least the
datasets used in their assessment experiments.
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3.5.7 The booming Android ecosystem is appealing for holistic analysis

The number of apps considered by the state-of-the-art works is much less than the total number of
existing Android apps (e.g., over 2.4 million apps available on Google Play)xiii. There is thus a need
to develop static analyzers that are capable of market-scale analysis. Furthermore, since attackers can
orchestrate several apps to perform advanced attacks in order to bypass analyzers that only target
single application [66], there is also a need to perform compositional analysis among multiple Android
apps. Unfortunately, inter-app analysis is not yet well investigated by the community. Actually,
less than 5% of approaches examined in this SLR have taken into account inter-app analysis. More
urgently, researchers should at least consider all the apps installed in a device as a whole to perform
holistic analysis and contribute to minimize end-user exposure to security threats.

3.5.8 Combining multiple approaches could be the key towards highly precise
analysis

Static analysis leads to over-approximations for multiple reasons, one being that it analyzes all code,
including dead code. As a result, static analyses may generate false positives. On the contrary,
dynamic analyses under-approximates, as it is challenging to cover all code, and thus tend to produce
false negatives. Both approaches are thus complementary and can be combined to perform practical
analyses. Typically, dynamic analysis can focus on checking if the reported results of static analysis
are false positives, thus reducing the number of false alarms.

Besides combining static and dynamic analysis approaches, the community should consider also
combining several static approaches to conduct highly precise analysis. Recently, TASMAN [11] has
proposed to perform targeted symbolic execution to remove false data leaks reported by FlowDroid,
where FlowDroid leverages static taint analysis to detect data leaks. TASMAN’s promising results
are encouraging for the research direction on using multiple static approaches to ensure a minimum
false positives in analysis approaches.

3.6 Related Work

To the best of our knowledge, there is no systematic literature review in the research area of static
analysis of Android apps. There is also no survey that specifically focuses on this research area.
However, several Android security related surveys have been proposed in the literature. Unlike our
approach, these approaches are actually not done systematically (not SLRs). As a result, there are
always some well-known publications missing. Indeed, our review in this report has shown better
coverage than those surveys in terms of publications in the area of static analysis of Android apps.

Sufatrio et al. [213] present a survey on general Android security, including both static and dynamic
approaches. This survey first introduces a taxonomy with five main categories based on the existing
security solutions on Android. Then, it classifies existing works into those five categories and thereby
comparatively examines them. In the end, this survey has highlighted the limitation of existing works
and also discussed potential future research directions. The survey shows in particular, that most
research solutions addressing security issues in Android are leveraging static analysis. This relates to
the finding in our SLR that most static analysis works for Android target security concerns. In their
discussion of static analysis for Android, they also enumerate the different challenges of Android
programming (e.g., multiple entry points, GUI, call-backs in event-based system) that analyzers must
account for. In our SLR, we detail those challenges and further clarify which works deal with which
challenge.

xiiihttps://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
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Faruki et al. [71] present another survey mainly focusing on a set of known Android malware detection
approaches/tools, e.g., the growth of malware, the existence of anti-analysis techniques (i.e., being
able to detect and thus evade analyzing systems [221]) . This survey highlights the need to take into
account the existence of anti-analysis techniques (i.e., techniques that allow a malicious sample to
detect and evade analyzing systems [221]). For example, they discuss how traditional signature-based
and static analysis-based approaches can be vulnerable to stealthy techniques such as encryption.
Eventually, it offers an overall overview for the directions that must be taken to tackle the remaining
issues in statically analyzing Android apps.

Rashidi et al. [187] present another survey on existing Android security threats and security enforce-
ment solutions. This survey classifies Android security mechanisms into four dimensions: Information
Leaks, Vulnerabilities (Privilege Escalation and Colluding), Denial of Service (DoS) attacks, and App
Clones. Our SLR finds that security papers using static analysis indeed target issues mainly in three
of the dimensions they consider. We have not found any work that statically detects or hints on
DoS attacks, which is reasonable. In contrast with their approach, the systematic nature of the SLR,
allowed us to find papers in another security-related dimension, namely Cryptography misuses.

Haris et al. [92] present a survey focusing on privacy leaks and their associated risks in mobile
computing. This survey has studied privacy in the area of mobile connectivity (e.g., cellular and
surveillance technology) and in the area of mobile sensing (e.g., users prospects on sensor data).
Besides, the authors have studied not only Android-specific leakages but also other mobile platforms
including iOS and Windows. Similarly, [114] and [211] present state-of-the-art reviews with considering
multiple mobile platforms.

More recently, Martin et al. [167] produce a technical report that reviews the state-of-the-art works
on app store analysis in the software engineering field. In their survey, they have reported both
non-technical and technical information to learn behaviors and trends of software repositories. More
specifically, they have reviewed the literature works in 7 dimensions: API Analysis, Feature Analysis,
Review Analysis, Security, Store Ecosystem, Size and Effort Prediction, and Others, including 127
non-technical and 60 technical papers. In their findings, they report that security is a pervasive
concern in reviewed papers. This finding is inline with one of our SLR finding stating that static
analysis is mainly used for the purpose of assessing app security. The whole focus of their work is
however different from ours.

Sadeghi et al. [197] also present a technical report that studies the taxonomy and qualitative
comparison of program analysis techniques, with a special focus on Android security. They have
examined 100 research papers, including both static analysis and dynamic analysis approaches.
Comparing to their review, in this SLR, we focus on static analysis of Android apps only. Among the
findings, Sadeghi et al. show that the most used intermediate representation (IR) for their examined
approaches are Jimple, accounting for 29%, which is in line with our findings. Besides, they also show
that it is difficult to perform replication study on security-based researches, because most research
tools and their evaluated artifacts are not publicly available.

All in all, our SLR differs from all the aforementioned surveys in a way that we exclusively focus on
static analysis of Android apps. We believe those surveys can compliment ours and thus to provide a
better view on the landscape of Android-based researches.

3.7 Conclusions

Research on static analysis of Android apps is quickly maturing, producing more and more advanced
approaches for statically uncovering security issues in app code. To summarize the state-of-the-art and
enumerate the challenges to be addressed by the research community we have conducted a systematic
literature review of publications on approaches involving the use of static analysis on Android apps.
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In the process of this review, we have collected 124 research papers published in Software engineering,
programming languages and security conference and journal venues.

Our review has consisted of investigating the categories of issues targeted by static analysis, the
fundamental techniques leveraged in the approaches, the implementation of the analysis itself (i.e.,
which analysis sensitivities are considered, and what Android characteristics are taken into account?),
how the evaluation has been performed, and whether the research output is available for use by the
community.

We have found that, (1) most analyses are performed to uncover security flaws in Android apps; (2)
many approaches are built on top of a single analysis framework, namely Soot; (3) taint analysis is
the most applied fundamental analysis technique in the publications; (4) although most approaches
support multiple sensitivities, path sensitivity appears overlooked; (5) all approaches have missed
to consider at least 1 characteristic of Android programming in their analysis; (6) finally, research
contributions artifacts, such as tools and datasets, are often unpublished.
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Table 3.7: The Full List of Examined Publications (Part I).
Year Title
2015 StaDynA : Addressing the Problem of Dynamic Code Updates in the Security Analysis of Android Applications [251]
2015 Using targeted symbolic execution for reducing false-positives in dataflow analysis [11]
2015 Interactively verifying absence of explicit information flows in Android apps [27]
2015 Uranine: Real-time Privacy Leakage Monitoring without System Modification for Android [191]
2015 Information-Flow Analysis of Android Applications in DroidSafe [81]
2015 Scalable and precise taint analysis for Android [101]
2015 Static Control-Flow Analysis of User-Driven Callbacks in Android Applications [233]
2015 Composite Constant Propagation: Application to Android Inter-Component Communication Analysis [180]
2015 ApkCombiner : Combining Multiple Android Apps to Support Inter-App Analysis [123]
2015 Harvesting developer credentials in Android apps [260]
2015 Static Detection and Automatic Exploitation of Intent Message Vulnerabilities in Android Applications [76]
2015 Web-to-Application Injection Attacks on Android: Characterization and Detection [93]
2015 Datacentric Semantics for Verification of Privacy Policy Compliance by Mobile Applications [52]
2015 Automatically Detecting SSL Error-Handling Vulnerabilities in Hybrid Mobile Web Apps [261]
2015 Effective Real-Time Android Application Auditing [230]
2015 COVERT: Compositional Analysis of Android Inter-App Permission Leakage [20]
2015 Apparecium: Revealing Data Flows in Android Applications [216]
2015 SIG-Droid: Automated system input generation for Android applications [171]
2015 PaddyFrog: systematically detecting confused deputy vulnerability in Android applications [228]
2015 Towards Automatic Generation of Security-Centric Descriptions for Android Apps [243]
2015 Study and Refactoring of Android Asynchronous Programming [145]
2015 IccTA : Detecting Inter-Component Privacy Leaks in Android Apps [124]
2015 String Analysis for Java and Android Applications [118]
2015 HelDroid: Dissecting and Detecting Mobile Ransomware [6]
2015 Checking Interaction-Based Declassification Policies for Android Using Symbolic Execution [170]
2015 DroidJust: automated functionality-aware privacy leakage analysis for Android applications [47]
2015 Static Window Transition Graphs for Android [233]
2015 Accurate Specification for Robust Detection of Malicious Behavior in Mobile Environments [212]
2015 Detecting Event Anomalies in Event-Based Systems [198]
2015 WeChecker: efficient and precise detection of privilege escalation vulnerabilities in Android apps [55]
2015 AutoPPG: Towards Automatic Generation of Privacy Policy for Android Applications [241]
2015 Selective Control-Flow Abstraction via Jumping [32]
2015 EcoDroid: an approach for energy-based ranking of Android apps [102]
2015 A Permission verification approach for android mobile applications [78]
2015 AppContext: Differentiating Malicious and Benign Mobile App Behaviors Using Context [235]
2015 Checking More and Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis and Peer Voting [157]
2014 Cassandra: Towards a Certifying App Store for Android [156]
2014 Systematic Analysis and Detection of Misconfiguration Vulnerabilities in Android Smartphones [88]
2014 Brahmastra: Driving Apps to Test the Security of Third-Party Components [30]
2014 Modelling Analysis and Auto-detection of Cryptographic Misuse in Android Applications [206]
2014 Execute this! analyzing unsafe and malicious dynamic code loading in android applications [185]
2014 AndRadar: Fast Discovery of Android Applications in Alternative Markets [151]
2014 Achieving accuracy and scalability simultaneously in detecting application clones on Android markets [45]
2014 Android taint flow analysis for app sets [112]
2014 Static Reference Analysis for GUI Objects in Android Software [195]
2014 Protection against Code Obfuscation Attacks based on control dependencies in Android Systems [82]
2014 Static Analysis for Extracting Permission Checks of a Large Scale Framework: The Challenges And Solutions for

Analyzing Android [25]
2014 Tracking Load-time Configuration Options [143]
2014 Modeling Users’ Mobile App Privacy Preferences : Restoring Usability in a Sea of Permission Settings [144]
2014 Characterizing and detecting performance bugs for smartphone applications [152]
2014 Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs Categories

and Subject Descriptors [244]
2014 AppCaulk: Data Leak Prevention by Injecting Targeted Taint Tracking Into Android Apps [202]
2014 Retrofitting concurrency for Android applications through refactoring [146]
2014 Making web applications more energy efficient for OLED smartphones [119]
2014 Formalisation and analysis of Dalvik bytecode [227]
2014 MIGDroid: Detecting APP-Repackaging Android malware via method invocation graph [97]
2014 AsDroid : Detecting Stealthy Behaviors in Android Applications by User Interface and Program Behavior Contradic-

tion [100]
2014 Apposcopy : Semantics-Based Detection of Android Malware Through Static Analysis [73]
2014 FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps [10]
2014 A5 : Automated Analysis of Adversarial Android Applications [222]
2014 Detecting Code Reuse in Android Applications Using Component-Based Control Flow Graph [214]
2014 A type and effect system for activation flow of components in Android programs [49]
2014 AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks in

Android Applications [245]
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Table 3.8: The Full List of Examined Publications (Part II).
Year Title
2014 Collaborative Verification of Information Flow for a High-Assurance App Store [69]
2014 Information flows as a permission mechanism [205]
2014 SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android

Apps [207]
2014 Amandroid : A Precise and General Inter-component Data Flow Analysis Framework for Security Vetting of Android

Apps Categories and Subject Descriptors [226]
2014 EvoDroid: segmented evolutionary testing of Android apps [163]
2014 Efficient, Context-Aware Privacy Leakage Confinement for Android Applications without Firmware Modding [246]
2014 Multi-App Security Analysis with FUSE : Statically Detecting Android App Collusion [192]
2014 Detecting Mobile Application Malicious Behaviors Based on Data Flow of Source Code [44]
2013 Effective Inter-Component Communication Mapping in Android with Epicc : An Essential Step Towards Holistic

Security Analysis [181]
2013 Contextual Policy Enforcement in Android Applications with Permission Event Graphs [46]
2013 The impact of vendor customizations on android security [229]
2013 A3: Automatic Analysis of Android Malware [160]
2013 Detecting passive content leaks and pollution in android applications [258]
2013 AppIntent : Analyzing Sensitive Data Transmission in Android for Privacy Leakage Detection [238]
2013 The Transitivity-of-Trust Problem in Android Application Interaction [26]
2013 MobSafe: cloud computing based forensic analysis for massive mobile applications using data mining [231]
2013 Targeted and depth-first exploration for systematic testing of android apps [14]
2013 Hybrid static-runtime information flow and declassification enforcement [194]
2013 A grey-box approach for automated GUI-model generation of mobile applications [234]
2013 SIF: A Selective Instrumentation Framework for Mobile Applications [91]
2013 Thresher: precise refutations for heap reachability [31]
2013 automated testing with targeted event sequence generation [105]
2013 Calculating source line level energy information for Android applications [117]
2013 Automatic Detection of Inter-application Permission Leaks in Android Applications [201]
2013 Characterizing and detecting resource leaks in Android applications [87]
2013 Scalable semantics-based detection of similar Android applications [54]
2013 Slicing droids: program slicing for smali code [94]
2013 Sound and precise malware analysis for android via pushdown reachability and entry-point saturation [142]
2013 DroidAlarm: an all-sided static analysis tool for android privilege-escalation malware [254]
2013 An empirical study of cryptographic misuse in android applications [64]
2013 Estimating mobile application energy consumption using program analysis [90]
2013 Detecting GPS information leakage in Android applications [161]
2013 Structural Detection of Android Malware using Embedded Call Graphs [77]
2012 DroidChecker : Analyzing Android Applications for Capability Leak [42]
2012 Towards verifying android apps for the absence of no-sleep energy bugs [220]
2012 Automatically securing permission-based software by reducing the attack surface: An application to android [23]
2012 CHEX : Statically Vetting Android Apps for Component Hijacking Vulnerabilities Categories and Subject Descrip-

tors [158]
2012 Unsafe exposure analysis of mobile in-app advertisements [84]
2012 A framework for static detection of privacy leaks in android applications [165]
2012 Refactoring android Java code for on-demand computation offloading [248]
2012 Detect and optimize the energy consumption of mobile app through static analysis: an initial research [225]
2012 Dr . Android and Mr . Hide : Fine-grained Permissions in Android Applications Categories and Subject Descrip-

tors [106]
2012 Smartdroid: an automatic system for revealing ui-based trigger conditions in android applications [253]
2012 I-ARM-Droid: A Rewriting Framework for In-App Reference Monitors for Android Applications [57]
2012 Systematic Detection of Capability Leaks in Stock Android Smartphones. [85]
2012 Model-based static source code analysis of java programs with applications to android security [159]
2012 Automated Concolic Testing of Smartphone Apps [4]
2012 what is keeping my phone awake? characterizing and detecting no-sleep energy bugs in smartphone apps [182]
2012 Android: Static analysis using similarity distance [62]
2012 TrustDroid: Preventing the use of SmartPhones for information leaking in corporate networks through the used of

static analysis taint tracking [250]
2012 Attack of the clones: detecting cloned applications on Android markets [53]
2012 Detecting control flow in smarphones: Combining static and dynamic analyses [83]
2012 AQUA: Android QUery Analyzer [109]
2012 Scandal: Static Analyzer for Detecting Privacy Leaks in Android Applications [110]
2012 Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security [70]
2012 AndroidLeaks: Automatically detecting potential privacy leaks in Android applications on a large scale [79]
2012 Static analysis of Android programs [183]
2011 Analyzing Inter-Application Communication in Android [48]
2011 Android : From Reversing to Decompilation [63]
2011 Clonecloud: elastic execution between mobile device and cloud [50]
2011 Using Static Analysis for Automatic Assessment and Mitigation of Unwanted and Malicious Activities Within Android

Applications [28]
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4 Bridging Inter-Component Communication

Inter-Component Communication (ICC) mechanism is actually conducted by the Android system
at runtime, making static analyzers that simply manipulate app-level code ICC-unaware. Therefore,
in this chapter, we propose an instrumentation-based approach which represents explicitly ICC with
traditional Java calls. As a result, existing static analyzers, without any modification, are able to
perform ICC-aware analysis. Moreover, because Inter-App Communication (IAC) shares the same
mechanism of ICC, we propose to combine multiple Android apps to further support IAC-aware
analysis.

This chapter is based on the work published in the following papers:

• Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt,
Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. IccTA: Detecting
Inter-Component Privacy Leaks in Android Apps. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), 2015

• Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. ApkCom-
biner: Combining Multiple Android Apps to Support Inter-App Analysis. In Proceedings of the
30th International Information Security and Privacy Conference (IFIP SEC), 2015
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Chapter 4. Bridging Inter-Component Communication

4.1 Introduction

The success of the Android OS in its user base as well as in its developer base can partly be attributed
to its communication model, named Inter-Component Communication (ICC), which promotes the
development of loosely-coupled applications. By dividing applications into components that can
exchange data within a single application or even across several applications, Android encourages
software reuse, and thus reduces developer burden.

Unfortunately, the ICC model, which provides a message passing mechanism for data exchange
among components, can be misused by malicious apps to threaten user privacy. Indeed, researchers
have shown that Android apps frequently send user’s private data outside the device without their
prior consent [257]. Those applications are said to leak private data. Recently, researchers have
investigated ICC methods as features for vulnerability detection [164], in lieu of permissions and API
calls. However, there is still a lack of a comprehensive study on the characteristics of the usage of
ICCs by Android malware. Typically, what is the extent of the presence of privacy leaks in Android
malware?

To answer such a question, an Android analysis tool has to be developed for tracking privacy leaks.
Although, most of the privacy leaks are simple, i.e., easily identifiable as they operate within a single
component, there have recently been reports of cross-components privacy leaks [135]. Thus, analyzing
components separately is not enough to detect leaks: it is necessary to perform an inter-component
analysis of applications. Android app analysts could leverage such a tool to identify malicious apps
that leak private data. For the tool to be useful, it has to be highly precise and minimize the false
positive rate when reporting applications leaking private data.

In this chapter, we use a static taint analysis technique to find privacy leaks, e.g., paths from
sensitive data, called sources, to statements sending the data outside the application or device,
called sinks. A path may be within a single component or cross multiple components (or apps).
State-of-the-art approaches using static analysis to detect privacy leaks on Android apps mainly focus
on detecting intra-component sensitive data leaks. CHEX [158], for example, uses static analysis to
detect component hijacking vulnerabilities by tracking taints between sensitive sources and sinks.
FlowDroid [10] performs taint analysis within single components of Android applications but with a
better precision. More recently, Amandroid [226] has been proposed to detect ICC-based privacy
leaks in Android apps. However, it does not currently tackle Content Provider, one of the four
Android components. It is also not sensitive to some complicated ICC methods such as bindService
and startActivityForResult.

Thus, we propose IccTA, an Inter-component communication Taint Analysis tool, for a sound and
precise detection of ICC links and leaks. Although our approach is generic and can be used for any
data-flow analysis, we focus in this chapter on using IccTA to detect ICC-based privacy leaks. To
verify our approach, we developed 22 apps containing ICC-based privacy leaks. We have added these
applications to DroidBenchi, an open test suite for evaluating the effectiveness and accuracy of taint
analysis tools specific for Android apps. The 22 apps cover the top 8 used ICC methods illustrated in
Table 4.1 (we give more details later). Besides, we test IccTA on 15,000 real-world apps randomly
selected from Google Play market in which we detect 2,395 ICC leaks in 337 apps. We also launch
IccTA on the MalGenome set containing 1260 malware, where IccTA reports 108 apps with 534
ICC leaks. By comparing the detecting rate r = # of detected apps

# of tested apps of the two data sets, we found
that rMalGenome = 8.6% is much higher than rGoogleP lay = 2.2%. Thus, we can conclude that ICC
are significantly used by malware to leak private data, making ICC a potential feature for malware
detection.

The privacy leaks in Android are further exacerbated by the fact that several applications can interact
and “collaborate” to leak data using the inter-app communication (IAC) mechanism. IAC and ICC

ihttps://github.com/secure-software-engineering/DroidBench
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are similar in Android, and thus present the same vulnerabilities. Unfortunately, state-of-the-art
analysis tools are focused on ICC by analyzing a single app at a time. Consequently, inter-app privacy
leaks cannot be identified and managed by existing tools and approaches from the literature.

In this chapter, we propose to empower existing static analysis tools for Android to work beyond
the boundaries of a single app, so as to highlight security flaws in the interactions between two or
more apps. To that end we have designed and developed a tool called ApkCombiner which takes
as input several apps that may cohabit in the same device, and yields a single app package (i.e.,
apk) combining the different components from the different apps. The resulting package is ensured
to be ready for analysis by existing tools. Thus, since the IAC mechanism is the same as the ICC
mechanism, by combining apps, ApkCombiner reduces an IAC problem to an ICC problem, allowing
existing tools to indirectly perform inter-app analysis without any modification.

During the combination of multiple Android apps, some classes may conflict with one another. In
this work, we take into account two types of conflict: 1) the conflicted classes are exactly same (same
name and same content), we solve this type of conflicts by simply dropping the duplicated classes
and 2) the conflicted classes are different (same name but different content), we solve this type of
conflicts by first renaming the conflicted classes, and then ensuring that all dependencies and calls
related to those classes are respected throughout the app code.

The contributions of this chapter are as follows:

• We present the findings of an empirical study on the use of ICC in Android malware and benign
apps.

• We propose a novel methodology to resolve the ICC problem by directly connecting the
discontinuities of Android apps at the code level. More specifically, we provide a tool-based
approach called IccTA, which leverages FlowDroid to perform inter-component static taint
analysis.

• We discuss the need for tools to support inter-app analysis, and present a non-intrusive approach
that can be leveraged by existing tools which are focused on intra-app analysis. In particular,
we provide a prototype implementation called ApkCombiner that uses an effective algorithm to
solve different conflicts which may arise during the combination of multiple Android apps.

• Finally, we present an assessment of IccTA using i) the DroidBench and ICC-Bench test suites,
ii) 15,000 real-world Android applications, iii) 1,260 malware apps from MalGenome and an
evaluation of ApkCombiner using both benchmark apps and real-world Android apps.

We make available online our full implementation as an open source project, along with the extended
DroidBench apps and the scripts to reproduce our experimental results on

https://sites.google.com/site/icctawebpage/

The remainder of this chapter is organized as follows. We first motivate our approach in Section 4.2.
Then, we detail in Section 4.3 how our approach instruments Android apps for bridging ICC for
static analysis. Next, we point our how our approach combines Android apps and how our approach
solves class conflicts in Section 4.4. Section 4.5 evaluates our approach and Section 4.6 discusses some
closely related work. Finally in Section 4.7 we close this work with conclusion.

4.2 Motivation

To motivate our work, we present an empirical study on how ICCs are used in Android apps, to
expose the difference of usage between malware and benign apps (cf. Section 4.2.1). We then give
concrete examples to introduce ICC and IAC leaks in Section 4.2.2 and Section 4.2.3, respectively.
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Figure 4.1: The Comparison between MalGenome and GooglePlay Apps. (“M” Means MalGenome, “G”
Means GooglePlay, “Ex” Means Explicit and “Im” Means Implicit).

4.2.1 ICC Usage in Android Apps

To the best of our knowledge there have been no empirical investigation of the usage of ICC in
Android apps. Yet, given the importance of ICC in the Android development model, as well as its
potential correlation with malware functioning as introduced above, a thorough study on real-world
apps can provide answers to the following important questions:

How often are ICCs used in Android apps? This question will lead to the investigation of the extent
to which each of the different ICC methods are used in apps, and what types of components they are
targeting.

What kind of Intents are used for ICC in apps? This question is important to estimate the differences
in the instantiations of implicit Intents and explicit Intents.

Is the usage of ICC different between malware and benign apps? Investigating this question may open
directions for malware detection research, which seeks reliable app features to use in machine-learning
processes.

Datasets: We attempt to provide answers to the questions above, using two distinct datasets of
over one thousand applications each.

The first dataset, named MalGenome, includes 1, 023 Android malware samples collected by Zhou et
al. [257]. Although the originally published dataset contains 1, 260 apps, some of these apps share
the same package names, therefore we consider them as duplicates.

The second dataset, hereafter referred to as GooglePlay, is a set of 1, 023 Android appsii randomly
selected from the official Google market.

Results: We now present the findings of our investigation.

First, we compute the usage rate of ICC methods. To that end, we parse the app byte code to count
the instances of specific method calls based on a catalog of ICC method names. This analysis was
performed on all the 1, 023 × 2 apps. Table 4.1 shows the usage rate of the ICC method names,
separating the top 8 most used, from all other ICC methods.

The # of Calls represents the absolute number of ICC method calls from the entire two sets. The # of
Apps represents the number of apps using at least once the corresponding ICC method. 96.4% of the
apps in our dataset use the startActivity ICC method, which accounts for 56.01% of the total ICC
methods calls. startActivity is used to launch a new Activity component, e.g., to switch from one
user interface window to another. The second most used ICC method is startActivityForResult
which also launches a new Activity component. In this case however, the flow goes back to the calling
component. Then follows query, an ICC method used to access content providers. startService,
which appears in 78.1% of the apps, is used to launch a new Service.

iiWe choose 1, 023 apps to avoid a class imbalance issue.
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4.2. Motivation

Table 4.1: The Top 8 Used ICC Methods. When These Methods are Overloaded, We Consider the One
with most Number of Calls.

ICC Method # of Calls # of Apps
startActivity 54,334 (56.01%) 1,972 (96.4%)

startActivityForResult 11,118 (11.46%) 1,409 (68.7%)
query 8,191 (8.44%) 1,374 (67.2%)

startService 6,660 (6.86%) 1,597 (78.1%)
sendBroadcast 5,119 (5.28%) 1,035 (50.1%)

insert 2,164 (2.23%) 780 (38.1%)
bindService 1,638 (1.69%) 512 (25.0%)

delete 1,633 (1.69%) 472 (23.1%)
Other ICC Methods 6,155 (6.34%) -

Total 97,012 (100%) -

We now investigate the number of Intentsiii leveraged by the dataset apps. We compare the sizes of
apps across the MalGenome and GooglePlay sets. Fig. 4.1a represents the boxplot of the size of the
apps for both sets. The median value for the MalGenome set is 187 KB whereas the median value is
1195 KB for the GooglePlay set. We ensure that this difference of median sizes between the datasets
is significantly different by performing a Mann-Whitney-Wilcoxon (MWW). The resulting p-value
confirms that the difference is significant at a significance leveliv at 0.001.

To account for any potential bias that the difference of app sizes between datasets may introduce,
we proceed to normalize all results according to a unit of dex code size. A normalized result nR is
obtained by applying the formula nR = iR

dbS÷100Ke , where iR is the initial result and bS is the byte
code size.

Absolute number of Intents: Fig. 4.1b represents the boxplot of the normalized numbers of
Intents per apps. The median number of Intents is 5.5 per 100KB per app for the MalGenome dataset,
and 1.9 for the GooglePlay dataset. The MWW test again shows that this difference is statistically
significant.

Number of Intents vs Component types: We further investigate the difference of number of
Intents per app in the two datasets by comparing the usage of Intents for ICC exchange with specific
types of components. Fig. 4.1c shows the boxplot of number of Intents used to launch an Activity (left
two) and a Service (right two). The median values are respectively 3.50 and 0.50 for the MalGenome
dataset, and 1.48 and 0.00 for the GooglePlay dataset.

Explicit Intents vs Implicit Intents: Table 4.2 provides comparison data on the proportion of
implicit and explicit Intents among the overall numbers of Intents. In the MalGenome set, 27,278
Intents in total are found, where 14,034 (51.4%) are explicit Intents. In the Google Play set, however,
only 40.1% (22,955 out of 56,213) of the Intents are explicit Intents.

Fig. 4.1d presents boxplots detailing the normalized number of implicit and explicit Intents for both
Activity and Service. The median values between the MalGenome dataset and the GooglePlay dataset
are close in the case of implicit Intents. On the other hand, there is a larger difference for explicit
Intents. We further confirm that this difference is statistically significant via the MWW test, using a
significance level of α = 0.0001.

This empirical investigation of ICC in malware and benign apps highlights the importance of ICC
in the context of Android app security management. In particular, the focus of this study has
demonstrated that some Android properties, e.g., possibility to explicitly target a component, thus
bypassing user’s choice, are exploited by malicious apps. Such apps can indeed leak private data
iiiNote that we do not distinguish the difference between Intents and ICC methods since basically an Intent is

corresponding to an ICC method.
ivGiven a significance level α = 0.001, if p-value < α, there is one chance in a thousand that the difference between the

datasets is due to a coincidence.
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Table 4.2: Comparison of the Use of Intents in the Data Sets.
Dataset Activity Service Receiver Total

(expl./impl.) (expl./impl.) (expl./impl.) (expl./impl.)
MalGenome 8803/9569 5204/422 27/3253 14034/13244
Google Play 20018/30461 2715/828 222/1969 22955/ 33258

1 // TelephonyManager telMnger ; ( default )
2 // SmsManager sms; ( default )
3 class Activity1 extends Activity {
4 void onCreate ( Bundle state ) {
5 Button to2 = ( Button ) findViewById (to2a);
6 to2. setOnClickListener (new OnClickListener (){
7 void onClick (View v) {
8 String id = telMnger . getDeviceId ();
9 Intent i = new Intent ( Activity1 .this , Activity2 . class );
10 i. putExtra (" sensitive ", id);
11 Activity1 .this. startActivity (i);
12 }}) ;}}
13 class Activity2 extends Activity {
14 void onStart () {
15 Intent i = getIntent ();
16 String s = i. getStringExtra (" sensitive ");
17 sms. sendTextMessage (number ,null ,s,null , null );
18 }}

Listing 4.1: A Running Example.

across components. After presenting our approach for detecting leaks that are related to ICC, we
will perform a final experiment to investigate whether there is a correlation between the number of
Intents and the number of ICC leaks. A positive correlation will thus provide confirmation that ICC
can be explored as a feature for malware detection.

4.2.2 ICC Leak Example

We define a privacy leak as a path from sensitive data, called source, to statements sending this data
outside the application or device, called sink. A path may be within a single component or across
multiple components. In this chapter, the sources and sinks we use are provided by SUSI [188].

Listing 4.1 illustrates the concept of ICC leak through a concrete example. The code snippets present
two Activities: Activity1 and Activity2. Activity1 registers an anonymous button listener for
the to2 button (lines 5-11). An ICC method startActivity is used by this anonymous listener.
When button to2 is clicked, the onClick method is executed and the user interface will change to
Activity2. An Intent containing the device ID (lines 15), considered as sensitive data, is then
exchanged between the two components by first attaching the data to the Intent with the putExtra
method (lines 10) and then by invoking the ICC method startActivity (lines 11). Note that the
Intent is created by explicitly specifying the target class (Activity2).

In this example, sendTextMessage is systematically executed when Activity2 is loaded since onStart
is in the execution lifecycle of an Activity. The data retrieved from the Intent is thus sent as a SMS
message to the specified phone number: there is an ICC leak triggered by button to2. When to2 is
clicked, the device ID is transferred from Activity1 to Activity2 and then outside the application.

In this chapter, we aim to perform static taint analysis for Android apps to detect such inter-component
communication (ICC) based privacy leaks. In static taint analysis, a leak k corresponds to a sequence
of statements, which starts from a source s and ends with a sink d. Sources are identified as they
return private data from the user’s point of view into the application code, while Sinks are identified
as they send data out of the application. An ICC leak is a special leak which contains, in its statement
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sequence, at least one ICC method. Normally, C(s) 6= C(d), where C(s) means the component of
method s. But in some cases, C(s) can equal to C(d). Take ICC method startActivityForResult
as an example, component C1 can use this method to start a component C2 (in method m1). Once
C2 finishes running, C1 runs again (in method m2) with some result data returned from C2. An ICC
leak may occur as m1 → C2 → m2 but in this situation C(m1) == C(m2).

4.2.3 IAC Leak Example

Fig. 4.2 presents a running example that shows an IAC vulnerability. The example is extracted from
a test case of DroidBenchv referred among its list as InterAppCommunication_sendBroadcast1. The
example consists of two Android applications, referred to as sendBroadcast1_source and sendBroad-
cast1_sink.

11: class InFlowActivity extends Activity 
12: {
13: protected void onCreate(Bundle b) {
14: Intent i = getIntent();
15:  String imei = i.getStringExtra("DroidBench");
16:  Log.i("DroidBench", imei);
17: }}

1: class OutFlowActivity extends Activity{
2: protected void onCreate(Bundle b) {
3: //tm = default TelephonyManager; 
4: String imei = tm.getDeviceId();
5: Intent i = new Intent();
6: i.setAction("lu.uni.serval.iac_sendbroadcast1.ACTION");
7: i.putExtra("DroidBench", imei);
8: sendBroadcast(i); }}

21: <activity android:label="@string/app_name" android:name="lu.uni.serval.iac_sendbroadcast1_sink.InFlowReceiver">
22:  <intent-filter>
23:   <action android:name="lu.uni.serval.iac_sendbroadcast1.ACTION" />
24:   <category android:name="android.intent.category.DEFAULT" />
25:  </intent-filter>
26: </activity>

App1: sendbroadcast1_source App2: sendbroadcast1_sink

App2: AndroidManifest

Figure 4.2: A Running Example that Shows an Inter-app Vulnerability.

App sendBroadcast1_source contains a simple Activity component, named OutFlowActivity, which
first obtains the device ID (line 4) and then stores it into an Intent (line 7) which is then forwarded
to other components (potentially in other applications since the Intent is implicit (line 6)). App
sendBroadcast1_sink contains a component called InFlowActivity, which first extracts data from
the received Intent and then logs it into disk.

In this example, we consider device ID, which is protected by a permission check of the Android
system, to be sensitive data. We also consider the log() method to be dangerous behavior since it
writes data into disk, therefore leaving it accessible to any applications, including anyone which does
not have permission to access the device ID through the Android OS. Thanks to the declarations in
the Manifest file in the package of sendBroadcast1_sink, OutFlowActivity is able to communicate
with InFlowActivity using the sendBroadcast() ICC method. Thus, through the interaction between
these two apps, a sensitive data can be leaked.

Unfortunately, the current state-of-the-art static analysis tools, including IccTA for which we will
detail in this chapter, by default, cannot tackle this kind of IAC problem. Since IccTA is designed to
be efficient in statically identifying bugs and leaks across components inside a single app, we aim
at enabling them to do the same across applications. We further put a constrain on remaining non
intrusive, i.e., to avoid applying any modification on them, so as to avoid introducing limitations or
new bugs in these tools. We thus propose ApkCombiner, which, by combining multiple apps into

vDroidBench is a set of hand-crafted Android apps used as a ground truth dataset to evaluate how well static and
dynamic security tools find data leaks. https://github.com/secure-software-engineering/DroidBench
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Figure 4.3: Overview of IccTA.

one, reduces the IAC problem to an ICC problem that state-of-the-art tools can solve in an intra-app
analysis.

4.3 IccTA

In this section, we present an overview of our tool called IccTA, which is designed to detect ICC leaks
in Section 4.3.1. IccTA uses a two-step approach: 1) ICC links extraction; 2) Taint flow analysis for
ICC. Sections 4.3.2 and 4.3.3 detail these two steps respectively.

4.3.1 Overview

Fig. 4.3 shows the overview of IccTA, our open source tool to detect ICC leaks. Even if Android apps
are implemented in Java, an app is compiled into Dalvik bytecode instead of the traditional Java
bytecode. In a first step, IccTA uses Dexpler [24] to transform this Dalvik bytecode into Jimple, a
Soot’s internal representation [115]. Soot is a popular framework to analyze Java based apps. In
the second step (arrows 2.∗), IccTA extracts the ICC links, and in step 3, stores them as well as
all the collected data (e.g., ICC call parameters or Intent Filter values) into a database. Based
on the ICC links, in step 4.1, IccTA modifies the Jimple representation to directly connect the
components to enable data-flow analysis between components. In step 4.2, by using a modified
version of FlowDroid [10], a high precise intra-component taint analysis tool for Android apps, IccTA
builds a complete control-flow graph of the whole Android application. This allows propagating
the context (e.g., the value of Intents) between Android components and yielding a highly precise
data-flow analysis. To the best of our knowledge, this is the first approach that precisely connects
components for data-flow analysis. At last (step 5), IccTA stores the reported tainted paths (leaks)
into database.

In both steps (3) and (5), we store all the results including the ICC methods with their attribute
values such as URI and Intent, the target components with their Intent Filter values, the built ICC
links and the reported ICC leaks into a database. This allows to only analyze an app once, and then
reuse the results from the database. Besides, we can easily based on the database to perform future
statistically study. The database also enables us to easily build inter-app links. In the next two
sections, we detail the main technical contributions of IccTA, which lie in steps (2) and (4).

4.3.2 ICC Links Extraction

In this section, we detail our approach to extract the ICC links of the analyzed apps. An ICC link
l : m→ C is used to link two components in which the source component contains an ICC method m
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// modifications of Activity1
- Activity1 .this. startActivity (i);
+ IpcSC . redirect0 (i);

(A)

// creation of a helper class
+ class IpcSC {
+ static void redirect0 ( Intent i) {
+ Activity2 a2 = new Activity2 (i);
+ a2. dummyMain ();
+ }
+}

(B)

// modifications in Activity2
+ public Activity2 ( Intent i) {
+ this . intent_for_ipc = i;
+}
public Intent getIntent () {
+ return this . intent_for_ipc ;
}
+ public void dummyMain () {
+ // lifecycle and callbacks
+ // are called here
+}

(C)

Figure 4.4: Handling startActivity ICC Method.

that holds information (e.g., the class name for an explicit Intent or the action, category, mimetype,
. . . information for an implicit Intent) to access the target component C.

As shown in Fig. 4.3, IccTA uses three steps to extract the ICC links from an app. In step (2.1), IccTA
leverages Epicc [181] to obtain the ICC methods and their parameters (e.g., action of Intents). Epicc
is a tool, based on Soot and Heros [33], to identify ICC methods as well as their parameter values
(e.g., action, category). In IccTA, we use IC3 [180], an advanced tool that implements the idea of
Epicc, to also parse the URIs (e.g., scheme, host) to support Content Provider related ICC methods
(e.g., query) and to fully support the data field of Intents [178]. In step (2.2), IccTA identifies all the
possible target components by parsing the configuration file named AndroidManifest of an app to
retrieve the values of the Intent Filters. In some situations, analyzing the bytecode is also necessary
since Broadcast Receiver can be registered at runtime. In step (2.3), we match ICC methods with
their target components, i.e., the Intents with Intent Filters, through the rules introduced by the
Android documentationvi.

4.3.3 Taint Flow Analysis for ICC

In this section, we detail our instrumentation approach to perform taint flow analysis for ICC. Actually,
there are three types of discontinuities in Android: (1) ICC methods, (2) lifecycle methods and (3)
callback methods. We first describe how IccTA tackles ICC methods in Section 4.3.3.1. Then, we
detail how IccTA resolves lifecycle and callback methods in Section 4.3.3.2.

4.3.3.1 ICC Methods

In step (4.1) of Fig. 4.3, the Jimple code is instrumented by IccTA to connect components. This code
modification is required for all ICC methods (listed in Table 4.1). The main idea of the transformation
is to replace an ICC method call with an instantiation of the target component with the appropriate
Intent. We detail these modifications for the two most used ICC methods: startActivity and
startActivityForResult. We handle ICC methods for Services and Broadcast Receivers in a similar
way.

StartActivity. Fig. 4.4 shows the code transformation done by IccTA for
the ICC link between Activity1 and Activity2 of our running example.
IccTA first creates a helper class named IpcSC (B in Fig. 4.4) which acts as a bridge con-
necting the source and destination components. Then, the startActivity ICC method is removed
and replaced by a statement calling the generated helper method (redirect0) (A).

In (C), IccTA generates a constructor method taking an Intent as parameter, a dummyMain method
to call all related methods of the component (i.e., lifecycle and callback methods) and overrides the
getIntent method. An Intent is transferred by the Android system from the caller component to the
vihttps://developer.android.com/reference/android/content/IntentFilter.html
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Figure 4.5: The Control-flow of startActivityForResult.

callee component. We model the behavior of the Android system by explicitly transferring the Intent
to the destination component using a customized constructor method, Activity2(Intent i), which
takes an Intent as its parameter and stores the Intent to a newly generated field intent_for_ipc.
The original getIntent method asks the Android system for the incoming Intent object. The new
getIntent method models the Android system behavior by returning the Intent object given as
parameter to the new constructor method.

The helper method redirect0 constructs an object of type Activity2 (the target component) and
initializes the new object with the Intent given as parameter to the helper method. Then, it calls
the dummyMain method of Activity2.

To resolve the target component, i.e., to automatically infer what is the type that has to be used in
the method redirect0 (in our example, to infer Activity2), IccTA uses the ICC links stored in step
(3) in which not only the explicit Intents but also the implicit Intents are resolved. Therefore, there
is no difference for IccTA to handle explicit or implicit Intents based ICCs.

StartActivityForResult. A component C1 can use this method to start a component C2. Once
C2 finishes running, C1 runs again with some result data returned from C2. Fig. 4.5 shows the
control-flow mechanism of startActivityForResult ICC method. There are two discontinuities:
one from (1) to (2), similar to the discontinuity of the startActivity method, and the other from
(3) to (4).

The startActivityForResult ICC method has a more complex semantic compared to common
ICC methods that only trigger one-way communication between components (e.g., startActivity).
Fig. 4.6 shows how the code is instrumented to handle the startActivityForResult method for
Fig. 4.5. To stay consistent with common ICC methods, we do not instrument the finish method of
C2 to call onActivityResult method. Instead, we generate a field intent_for_ar to store the Intent
which will be transferred back to C1. The Intent that will be transferred back is set by the setResult
method. We override the setResult method to store the value of Intent to intent_for_ar. The
helper method IpcSC.redirect0 does two modifications to link these two components directly. First,
it calls the dummyMain method of the destination component. Then, it calls the onActivityResult
method of the source component.

4.3.3.2 Lifecycle and Callback Methods

One challenge when analyzing Android applications is to tackle callback and lifecycle methods of
components. An introduction about lifecycle and callback methods can be found in [126]. There is
no direct call among those methods in the code of applications since the Android system handles
lifecycles and callbacks. For callback methods, we need to take care of not only the methods triggered
by the User Interface (UI) events (e.g., onClick) but also callbacks triggered by Java or the Android
system (e.g., the onCreate method). In Android, every component has its own lifecycle methods. To
solve this problem, IccTA generates a dummyMain method for each component in which we model
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- act. startActivityForResult (i);
+ IpcSC . redirect0 (act , i);(A)

void setResult ( Intent i) {
+ this . intent_for_ar = i;
}
+ public Intent getIntentFAR () {
+ return this . intent_for_ar ;
+}

(C)

+ class IpcSC {
+ static void redirect0 (C1 c1 ,
+ Intent i){
+ C2 c2 = new C2(i);
+ c2. dummyMain ();
+ Intent retI = c2. getIntentFAR ();
+ c1. onActivityResult (retI);
+ }
+}

(B)

Figure 4.6: Handing the startActivityForResult ICC Method. (A) and (C) Represents the Modified
Code of C1 and C2 Respectively. (B) is the Glue Code Connecting C1 and C2. Some Method Parameters are
not Represented to Simplify the Code.

all the methods mentioned above so that our CFG based approach is aware of them. Note that
FlowDroid also generates a dummyMain method, but it is generated for the whole app instead of for
each component like we do.

4.4 ApkCombiner

We now discuss the design and implementation of ApkCombiner. First we present an overview of the
approach in Section 4.4.1 before providing details on how we address the case of conflicting code,
typically same-name classes, when combining apps (cf. Section 4.4.2). Although, for the sake of
simplicity, we describe the case of merging two apps, the approach, and the prototype tool, can
perform on merging any number of apps.

4.4.1 Overview

The main objective of our work is to enable Android-targeted state-of-the-art static analysis tools,
which have proven to be effective in intra-app analyses, to perform as well in inter-app analyses.
ApkCombiner takes a set of Android apps as input and yields a new Android app in output. The
newly generated app contains all the features of the input apps except for their IAC features: there is
no more IAC but only ICC in the new generated app.

The different steps of how ApkCombiner works are shown in Fig. 4.7. Each app is first disassembled
into smali files and a Manifest file using a tool for reverse engineering Android apk files, namely
android-apktool vii. Second, all files from the apps are checked together for conflicts and integrated
(with conflicts solved) into a directory. The Manifest files, one from each app, are merged into a single
Manifest file. Finally, ApkCombiner assembles the smali files and the Manifest file along with all other
resources, such as image files, into a single apk. Although potential conflicts on such extra-resources
may be met, ApkCombiner does not take them into account since the objective is not to produce a
runnable apk, but an apk that can be analyzed statically.

App 1 Smali Files + Manifest1

Conflicts 
Solving

Smali Files

Merged
ManifestApp 2 Smali Files + Manifest2

New
App

Figure 4.7: Working Steps of ApkCombiner.

viihttps://code.google.com/p/android-apktool/
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4.4.2 Resolution of Conflicts

Our prototype of ApkCombiner is focused on solving conflicts that may arise in the merging of code
from two different apps. Such conflicts occur when two classes have the same name (up to the package
level, i.e., the absolutely full qualified name). Thus, given class c1 in app a1 and class c2 in app a2, if
name(c1) = name(c2), we consider that there is a conflict between a1 and a2.

Fig. 4.8 illustrates the process of conflict checks we use. ApkCombiner considers that there is no
conflict when two classes are named differently. If the name of two classes are the same, ApkCombiner
distinguishes two cases according to the content of the classes. In a first type of conflict, the classes
share the same name and their content is also the same (after verification of their footprint with the
cryptographic hash), In this case, one copy of the class files is simply dropped. In the second type of
conflict, i.e., when the content of the conflicting files are different, a thorough refactoring is necessary.
This type of conflict occurs when, for example, two classes are actually from two different versions of
the same library used in the two apps.

name(cls1) == name(cls2) hash(cls1) == hash(cls2)
T TClass 

cls1 and cls2

No 
conflict

The second type 
of conflict (C2)

The first type 
of conflict (C1)

F F

Figure 4.8: The Conflict Checking Process of ApkCombiner. Class cls1 and cls2 are from Different Apps.

Algorithm 1 details the described strategy for solving conflicts during merging as implemented by the
procedure CheckAndSolveConflicts(). Given two sets (set1 and set2) of class files corresponding
to the code of two apps (a1 and a2), the algorithm must identify and manage all conflicts.

Algorithm 1 Checking and Solving Conflicts
1: procedure CheckAndSolveConflicts(set1, set2)
2: confliSameMap← new Map()
3: confliDiffMap← new Map()
4: for all cls1 ∈ set1 do
5: if set2.contain(cls1) then
6: cls2← set2.get(cls1)
7: if hash(class(cls1)) == hash(class(cls2)) then
8: confliSameMap.put(cls1, cls2)
9: else
10: confliDiffMap.put(cls1, cls2)
11: end if
12: end if
13: end for
14: if empty(confliSameMap, confliDiffMap) then
15: return
16: end if
17: for all cls1, cls2 ∈ confliSameMap do
18: remove class(cls2)
19: if isComponent(cls2) then
20: remove cls2 from Manifest2
21: end if
22: end for
23: for all cls1, cls2 ∈ confliDiffMap do
24: rename cls2
25: solvingDependence(cls2, set2)
26: if isComponent(cls2) then
27: rename cls2 in Manifest2
28: end if
29: end for
30: end procedure

First, two maps, referred to as confliSameMap and confliDiffMap are created to keep track of
the classes that belong to the two types of conflict (lines 2-3). After identifying the kind of conflict
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that exists for each pair of classes across the two sets, the algorithm can attempt to solve the eventual
conflicts. This resolution is performed in a two-step process. In step 1 (lines 17-22), the algorithm
addresses the cases of type 1 conflicts. In step 2, type 2 conflicts are solved by refactoring the code.

Refactoring the code to solve conflicts is not as straightforward as renaming the conflicting classes.
Indeed, there is a lot of dependencies to consider within the code of other classes. Procedure
solvingDependence(), in line 25, is used to handle these dependencies, where we take into account
three types of dependencies: 1) for a given class c we need to rename, another class ci may use it
as one of its attribute, 2) method mi of class ci may hold a parameter of c and 3) statement si of
method mi may use c as a variable. For the third type of dependency, we deal with statements that
instantiate the variable as well as access the variable’s attributes and methods because only such
statements hold information related to class c.

To combine multiple Android apps to one, we need not only to integrate the different apps’ bytecode,
but also to merge their Manifest files. In particular the merge of Manifest files must take into account
the fact that some classes where dropped while others were renamed. If those classes represent
Android components, and not helper code, these changes should be reflected in the final Manifest of
the new app (line 20 and 27).

4.5 Evaluation

Our evaluation addresses the following research questions:

RQ1 How does IccTA compare with existing tools?

RQ2 Can IccTA find ICC leaks in real-world apps?

RQ3 Can ApkCombiner support IccTA for IAC leaks?

RQ4 What is the runtime performance of IccTA and ApkCombiner?

All the experiments discussed in this section are performed on a Core i7 CPU running a Java VM
with 8GB of heap size.

4.5.1 RQ1: Comparing IccTA With Existing Tools

In this research question, we compare IccTA with four existing tools: FlowDroid [10], IBM AppScan
Source 9.0viii, DidFail [112] and Amandroid [226]. FlowDroid is a state-of-the-art open-source tool
for intra-component static taint analysis, AppScan Source is a commercial tool released by IBM,
while DidFail and Amandroid are two recent state-of-the-art tools for detecting Android ICC leaks.
All the tools are able to directly analyze Android bytecode except AppScan Source, which is only
able to analyze the source code of the apps. Unfortunately, we were unable to compare IccTA with
other static taint analysis tools as either they fail to report any leaks (e.g., SCanDroid [75]) or their
authors did not make them available (e.g., SEFA [229]).

viiihttp://www-03.ibm.com/software/products/en/appscan-source
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4.5.1.1 Experimental Setup

We assess the efficacy of all aforementioned tools by running them against about 30 test cases, for
ICC leaks, from two benchmarks: DroidBench and ICC-Bench.

DroidBench. DroidBench is a set of hand crafted Android applications for which all leaks are
known in advance. These leaks are used as ground truth to evaluate how well static and dynamic
security tools find data leaks. As all the samples in DroidBench are intra-component privacy leaks,
we developed 22 test cases to extend DroidBench with ICC leaks. The new set of test cases covers
each of the top 8 ICC methods in Table 4.1. Among the 22 new test case applications, we included
four (startActivity{4,5,6,7}) that do not contain any privacy leaks and thus will help detect false
alarm rates of analysis tools. Finally, for each test case application we add an unreachable component
containing a sink. These unreachable components are used to flag tools that do not properly construct
links between components.

ICC-Bench. ICC-Bench is another set of apps introduced by Amandroid [226]. It contains 9 test
case applications, where one of them uses explicit Intents, 6 of them use implicit Intents and the
remaining two use dynamic techniques to register the target component. However, each of the test
case app contains only one ICC leak and do not contain any unreachable component as DroidBench
does. Because the source code of apps in the ICC-Bench were not available, we could not evaluate
AppScan on this benchmark.

4.5.1.2 ICC Data Leak Test

Table 4.3 presents the results for comparing how related tools perform in the detection of ICC leaks.
All 31 (22 added to DroidBench + 9 from ICC-Bench) test cases, and the corresponding detection
outcome for the tools are listed in this table.

FlowDroid. Because FlowDroid has already been evaluated on the first version of DroidBench [10],
we present in Table 4.3 its test results for the newly added 22 test cases which are dedicated to
ICC leaks. Although, as mentioned earlier, FlowDroid was initially proposed to detect leaks in
single Android components, we can use FlowDroid in a way that it computes paths for all individual
components and then combines all these paths together (whether there is a real link or not). Thus,
we expect FlowDroid to detect most of the leaks, although with false positives. Results of Table 4.3
confirm this, since FlowDroid shows a high recall (70.0%) and a low precision (27.4%). Furthermore,
FlowDroid misses three more leaks than IccTA in bindService{2,3,4}. After investigation, we
discovered that this is due to the fact that FlowDroid does not consider some callback methods for
service components.

AppScan Source 9.0. AppScan requires a lot of manual initialization work since it has no default
sources/sinks configuration file and is unable to analyze Android applications without specifying the
entry points of every component. We define the getDeviceId and log methods, which we always
use in DroidBench for ICC leaks, as source and sink, respectively. We also add all components’
entry point methods (such as onCreate for Activities) as callback methods so AppScan knows
where to start the analysis. AppScan is natively unable to detect inter-component data-flows and
only detects intra-component flows. AppScan has the same drawbacks as FlowDroid and should
have a high recall and low precision on DroidBench. We use an additional script to combine the
flows between components. As expected, AppScan’s recall is high (56.5%) and its precision is low
(21.0%). Compared to FlowDroid, AppScan does worse. Indeed, AppScan does not correctly handle
startActivityForResult and thus misses leaks going through methods receiving results from the
called Activities in startActivityForResult{2,3,4} test cases.

DidFail. Since DidFail does not handle explicit ICC, it fails to report leaks for test cases that use
explicit Intents between components. For implicit ICC, it is able to report all the leaks for test
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cases Implicit{1,2,3,4,5,6} even when those implicit ICCs use advanced features like mimetype
or data. However, DidFail fails on case startActivity{4,5} test cases indicate that DidFail is
not sensitive on mimetype and data. Our assumption is that DidFail uses an over-approximation
approach to build implicit ICC links. As long as action and category are matched, an ICC link is
constructed. Indeed, startActivity{4,5} use mimetype or data, but do not contain any real ICC
link. Because DidFail currently only focuses on Activity, it fails to report any leak for the Service,
Broadcast Receiver (dynamically registered or not) and Content Provider test cases.

Amandroid. Amandroid is the most recent state-of-the-art tool that is able to detect ICC leaks.
Overall, for the 31 test cases, Amandroid reaches a precision of 78.9% (15 true positives, 4 false
positives) and a recall of 51.7% (14 missed leaks). Three of the missed leaks and two of the false alarmed
leaks are caused by startActivityForResult, where Amandroid is not able to combine setResult
method to onActivityResult method. The startService2 test case uses IntentService instead
of Service which is used by test case startService1 to implement the service. Amandroid is able
to report a leak on startService1 but fails to report a leak on startService2. This indicates
that it does not completely model Service’s lifecycles. When the callback method changes from
onStartCommand to onHandleIntent, Amandroid is not able to deal with it anymore. Eight other
missed leaks indicate that Amandroid currently does not handle the bindService method and Content
Provider components. Amandroid reports two false positives for startActivity{6,7}, which
indicates that it is not able to distinguish the extra keys of an Intent. Indeed, startActivity{6,7}
do not contain any leaks because they use different extra keys for the transferred Intent. Finally,
Amandroid misses a leak on test case DynRegister2 because DynRegister2 uses string operations
(e.g., StringBuilder Objects to contact multiple strings) which Amandroid cannot parse.

IccTA. Our tool, IccTA, also misses a leak on case DynRegister2 like Amandroid, because, currently,
it cannot parse complicated string operations as well. The same reason causes IccTA to yield a false
positive on case startActivity7, where one extra key is built through complicated string operations.
The current version of IccTA performs a simple string analysis to distinguish the extra keys of an
Intent between one another.

4.5.2 RQ2: Detecting ICC Leaks

To evaluate our approach, we launch IccTA on two Android app sets: 1) MalGenome which contains
1260 Malware apps and 2) from GooglePlay, with 15,000 randomly selected apps.

For MalGenome, IccTA reports 108 apps (rMalGenome = 8.7%) containing at least one ICC leak, with
a total of 534 leaks. And for GooglePlay, IccTA detects 337 apps (rGoogleP lay = 2.2%) with 2,395
ICC leaks. Since rMalGenome is significantly higher than rGoogleP lay, we can conclude that malware
indeed use ICC to leak private data. We further studied the correlations between the number of
Intents and the number of detected ICC leaks for the two data sets. In this study, only apps that
contain ICC leaks are considered. Interestingly, our results show that there is no correlation for
GooglePlay apps. However, there exists a positive correlation for MalGenome. The Spearman’s rho
for MalGenome yielded the value 0.42 (p-value < 0.001), suggesting that the malware do use ICC to
leak private data.

In total, IccTA detects 445 (108 + 337) apps from the MalGenome and GooglePlay sets. We
summarize the most frequently used source methods and sink categories (Java classes) from those
apps in Table 4.4. The most used source method is getLongitude: it is used 427 times. The most
used sink category is SharedPreferences: it is used 1188 times. The reason why we study sink
category instead of sink methods is that there are a lot of sink methods belonging to a same sink
category (e.g., Log sink category includes eight sink methods which save private data to disk).

We further studied the < sourceMethod, sinkCategory > pairs of the detected leaks. We found
that the most frequently used pair is < getLongitude, SharedPreferences >, which happened
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Table 4.3: Test Results on DroidBench and ICC-Bench, where Multiple Circles in One Row Means Multiple
Leaks Expected and an All Empty Row Means no Leaks Expected as well as no Leaks Reported.

† Indicates the Tool Crashed on that Test Case. Because FlowDroid and AppScan are not Able to Directly Report
ICC Leaks, We Try Our Best to Manually Match Their Results to Report ICC Leaks. For the Rest Tools, We only

Consider Their Reported ICC Leaks.
? = True Positive (Correct Warning), ? = False Positive (False Warning), = False Negative (Missed Leak)

Test # of Unreachable Explicit FlowDroid AppScan DidFail Amandroid IccTA
Case Comp. Comp. ICC

DroidBench
startActivity1 3 T T ? ? ? ? ? ?

startActivity2 4 T T ? (4 ? ) ? (4 ? ) ? ?

startActivity3 6 T T ? (32 ? ) ? (32 ? ) ? ?

startActivity4 3 T F ? ? ? ? ?

startActivity5 3 T F ? ? ? ? ?

startActivity6 3 T T ? ? ? ? ?

startActivity7 3 T T ? ? ? ? ? ?

startActivityForResult1 3 T T ? ? ? ?

startActivityForResult2 3 T T ? ?

startActivityForResult3 3 T T ? ? ? ?

startActivityForResult4 3 T T ? ? ? ? ? ? ? ?

startService1 3 T T ? ? ? ? ? ?

startService2 3 T T ? ? ? ? ?

bindService1 3 T T ? ? ? ? ?

bindService2 3 T T † ?

bindService3 3 T T † ?

bindService4 3 T T ? ? ? ? ? ?

sendBroadcast1 3 T F ? ? ? ? ? ?

insert1 3 T F ?

delete1 3 T F ?

update1 3 T F ?

query1 3 T F ?

ICC-Bench
Explicit1 2 F T ? - ? ?

Implicit1 2 F F ? - ? ? ?

Implicit2 2 F F ? - ? ? ?

Implicit3 2 F F ? - ? ? ?

Implicit4 2 F F ? - ? ? ?

Implicit5 3 F F ? ? - ? ? ?

Implicit6 2 F F ? - ? ? ?

DynRegister1 2 F F - † ? ?

DynRegister2 2 F F - †

Sum, Precision, Recall and F1
? , higher is better - - - 20 10 6 15 28
? , lower is better - - - 53 46 2 4 1
, lower is better - - - 9 10 23 14 1

Precision p = ? /( ? + ?) - - - 27.4% 17.9% 75% 78.9% 96.6%
Recall r = ? /( ? + ) - - - 70.0% 50.0% 20.7% 51.7% 96.6%
F1-measure 2pr/(p + r) - - - 0.39 0.26 0.32 0.63 0.97

208 times. For example, in MalGenome, app com.evilsunflower.farmer obtains its longitude in
class SetPreferences and transfers it into component PushService, in which the longitude is
leaked. It also frequently happened in GooglePlay such as in app infire.beautyleg.sexy.girls and
ro.an.moneymanagerfree.

Now, we give one case study to describe the detail of a leak. com.wanpu.shuijinddp (version 11) is an
app in which an ICC leak has been reported by IccTA. It takes the device id (we consider the device
id as sensitive data) as an unique user id to communicate with a remote serverix via HTTP. It first
reads the device id and stores the id to a private field in class com.waps.AppConnect. Then, method
showOffers of class AppConnect transfers the device id to component OffersWebView in which the
device id has been sent to a remote server through a HTTP parameter. In this case, the device id
has been leaked to a specified remote server through an ICC. Besides, the device id may be captured
by hackers since it only uses HTTP instead of HTTPS to communicate with the remote server.

Finally, we investigated the total reported leaks and we found that 1812 out of 2929 (61.9%) leaks
are leaked through Service components. These findings are interesting since using ICC makes leak
detection difficult for analysis tools, while using Services hides those leaks to the user. Indeed
Service components are running in the background with no interaction with the user (contrary to
Activity components).
ixhttp://app.dwap.com:8000/action/
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Table 4.4: The Top 5 Used Source Methods and Sink Categories
Method/Type Counts(#) Detail

Source Methods
getLongitude 427 get longitude
getLatitude 302 get latitude
getDeviceId 289 get IMEI or ESN

getLastKnownLocation 141 get location
getLine1Number 71 get phone no. of line 1

Sink Categories
SharedPreferences 1188 putInt, putString

HTTP 665 execute
Log 301 error or warn
File 38 write(string)

Message 15 sendTextMessage

4.5.3 RQ3: Detecting IAC Leaks

We now leverage IccTA to validate our approach for investigating the effectiveness of ApkCombiner
in supporting existing tools for performing inter-app analyses.

With ApkCombiner we build app packages by combining pairs of apps. We then feed IccTA with these
newly generated apps and assess its analysis results. We evaluate the use of IccTA in combination with
ApkCombiner in two steps. In the first step, we evaluate the impact of ApkCombiner on DroidBench,
which includes three test cases related to inter-app communication leaks. We found that IccTA is able
to report inter-app privacy leaks for the analyzed apps by analyzing the combined package provided
by ApkCombiner. To the best of our knowledge, DidFail is currently the only tool which claims to be
able to perform static inter-app analysis for privacy leaks. We therefore compare DidFail with our
approach associated to an existing state-of-the-art tool for intra-app analysis. The results in Table 4.5
based the DroidBench benchmark show that IccTA, while it cannot handle inter-app analysis alone,
outperforms DidFail when it is supported by ApkCombiner. The reason why DidFail fails on two test
cases is that at the moment DidFail only focuses on Activity-based privacy leaks.

Table 4.5: Comparison between IccTA, DidFail and ApkCombiner+IccTA.
Test Case (from DroidBench) IccTA DidFail ApkCombiner+IccTA
InterAppCommunication_startactivity1 7 3 3
InterAppCommunication_startservice1 7 7 3
InterAppCommunication_sendbroadcast1 7 7 3

In the second step, we evaluate ApkCombiner on 3,000 real Android apps. We first build an IAC
graph through the results of our extended Epicc [124,181], where an app stands for a node and an
inter-app communication is modeled as an edge. For each of such edges, we launched ApkCombiner
on the associated pair of apps and then used IccTA on the generated app.

We were thus able to discover an IAC leak between app Ibadah Evaluationx and app ClipStorexi.
In the Ibadah Evaluation apk code, the source method findViewById is called in component
com.bi.mutabaah.id.activity.Statistic, where the data of a TextView is obtained. Then this
data is stored into an Intent along with two extras, a subject named android.intent.extra.SUBJECT
and the text referred to as android.intent.extra.TEXT. Subsequently, the triggering method star-
tActivity is used to transfer the Intent data to the ClipStrore app which extracts the data from the
Intent with the same extra names and writes all the data into a file named clip.txt. Note that we
consider saving sensitive data into disk as a leak.

xhttps://worldapks.com/ibadah-evaluation/, com.bi.mutabaah.id in our dataset.
xihttps://worldapks.com/clipstore/, jp.benishouga.clipstore in our dataset.

65



Chapter 4. Bridging Inter-Component Communication

5
10

20
50

10
0

T
im

e 
(s

)

FlowDroid IccTA1 Amandroid IccTA2

Figure 4.9: The Runtime Performance Comparison among Amandroid, FlowDroid and IccTA. IccTA1 does
not Count the ICC Links Extraction Time while IccTA2 does. All the Experiments are Performed with the
Default Options.

4.5.4 RQ4: Time Performance

We now investigate the time complexity of IccTA and ApkCombiner.

Performance of IccTA. We present the runtime performance analysis of FlowDroid, Amandroid
and IccTA in Fig. 4.9. We randomly selected 50 apps from our Googleplay set for our study. Among
those, only 18 apps have been successfully analyzed by all three tools altogether.

First, we compare the performance between FlowDroid and IccTA1 to check whether our bytecode
instrumentation step influences the final performance or not. As shown in Fig. 4.9, the performance
of IccTA1 is almost as good as FlowDroid. Indeed, an ICC link introduces 50 lines of Jimple code
on average, which is negligible comparing to the total code lines (e.g., 412,090 lines for 1 megabyte
bytecode on average).

Second, we compare the performance between IccTA2 and Amandroid. In this case, we take into
account the ICC links extraction time for a fair comparison since Amandroid also builds the ICC
links. Fig. 4.9 shows that the median values of IccTA and Amandroid are similar. However, the
runtime performance of IccTA2 presents significantly less variation than Amandroid’s, suggesting
that Amandroid is highly sensitive to different properties (e.g., size) of the app.

Performance of ApkCombiner. The evaluation of time performance investigates the scalability of
our approach. Indeed, a user may have on its device dozens apps that cohabit together. Thus, the
inter-app analysis may require a fast combination of all those apps. Fig. 4.10 plots the running
timesxii of ApkCombiner for each combined app. The running time is plotted against the sum size of
each pair of apps (we use the bytecode size, as resource files that are not considered in the merging
may introduce a bias).

Let C1 and C2 represent the successful combinations where conflicts of, respectively, first type and
second type were solved. Consequently, C1∪C2∪C1 ∪ C2 represents all the successful combinations.

Fig. 7.4a plots the time performance for all combinations. The linear regression between the plots
shows that there is a correlation between the execution time and the bytecode size. Comparing with
Fig. 7.4b, we note that the slope of the regression is lower when we do not consider combinations
that lead to conflicts. The limited difference in slope values (0.246 against 0.157) indicates that the
conflict solving module is not a runtime bottleneck.

The differences between Fig. 4.10c, Fig. 4.10d and Fig. 4.10e further confirm how the resolution of
second type conflicts requires more execution time than the resolution of first type conflicts.

xiiNote that in this chapter we consider the wall clock time (from start to finish of the execution). That means not
only the actual CPU time but also the waiting time (e.g., waiting for I/O) are taken into account.
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Figure 4.10: Time Performance against the Byte Code Size. C1 Represent the Set of Combinations where
First Type Conflicts were Solved, while C2 Represents the Set of Combinations with Second Type Conflicts.

4.6 Related Work

As far as we know, IccTA and ApkCombiner are the first approach to seamlessly connect Android
components (or apps) through code instrumentation in order to perform ICC based static taint
analysis [127–129]. By using a code instrumentation technique [9], the state of the context and data
(e.g., an Intent) is transferred between components.

Amandroid [226] performs an ICC analysis to detect ICC leaks, and has been developed concurrently
with IccTA. Amandroid needs to build an Inter-component Data Flow Graph (ICDFG) and an Data
Dependence Graph (DDG) to perform ICC analysis. Since IccTA uses an instrumentation approach,
it does not need to additionally build such assistant graphs. Amandroid provides a general framework
to enable analysts to build a customized analysis on Android apps. IccTA provides a source/sink
configuration to achieve the same function. Amandroid is not able to analyze Content Provider
as well as some ICC methods such as bindService and startActivityForResult. Finally, our
instrumentation approach is more flexible, and enables generating an app with all components linked
at the code level. This app can then be analyzed by any static analysis tool (e.g., Soot or Walaxiii).

DidFail [112] also leverages FlowDroid and Epicc to detect ICC leaks. Currently, it focuses on ICC
leaks between Activities through implicit Intents. Thus, it will miss leaks involving explicit Intents
and components other than Activities. Also, it does not handle some parameters for implicit Intents
(such as mimetype and data) and thus generates false links between components. The consequence
of that is a higher false positive rate.

Bati [17] is another approach proposed in this field. It features a context-, flow-, object-, and
path-sensitive analysis for Android apps. Besides, it also models the lifecycle methods of components
including even the asynchronous communicated threads.

xiiihttp://wala.sourceforge.net
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SCanDroid [75] and SEFA [229] are another two tools that perform ICC analysis. However, neither
of them keeps the context between components and thus are less precise than IccTA by design.
ComDroid [48] and Epicc [181] are two tools that tackle the ICC problem, but mainly focus on
ICC vulnerabilities and do not taint data. CHEX [158] is a tool to detect component hijacking
vulnerabilities in Android applications by tracking taints between sensitive sources and externally
accessible interfaces. However, it is limited to at most 1-object-sensitivity which leads to imprecision
in practice. PCLeaks performs data-flow analysis to detect potential component leaks, which
not only includes component hijacking vulnerabilities, but also component launch (or injection)
vulnerabilities [121,122,125]. ContentScope [258] is another tool that tackles potential component
leaks, but it only analyzes Content Provider components.

Multiple works use static analysis to detect intra-component privacy leaks in Android apps [10,16,
79, 110, 165, 237]. AndroidLeaks [79] states the ability to handle the Android lifecycle including
callback methods, but it is not context-sensitive which precludes the precise analysis of many practical
scenarios. AsDroid [100] and AppIntent [238] are two other tools using static analysis to detect privacy
leaks in Android apps. Both of them try to analyze if a data leak is a feature of the application or
not. This kind of analysis is out of the scope of this chapter.

Multiple prior works investigated privacy leaks on systems other than Android. PiOS [65] uses program
slicing and reachability analysis to detect the possible privacy leaks in iOS apps. TAJ [218] and
Andromeda [217] uses the same taint analysis technique to identify privacy leaks in web applications.

Except privacy leaks detection, there has been a rich body of work on other Android security
issues [23, 25,72,92, 177,259] such as energy bugs [51, 148] and SSL vulnerabilities [70,207]. Our work
can complement their research by providing a highly precise control-flow graph to enable them to
perform inter-component data-flow analysis and consequently to get better results.

Other approaches dynamically track the sensitive data to report security issues. TaintDroid [67] is
one of the most sophisticated dynamic taint tracking system. TaintDroid uses a modified Dalvik
virtual machine to track flows of private data. CopperDroid [193] is another dynamic testing tool
which observes interactions between Android components and the Linux system to reconstruct
high-level behavior and uses some special stimulation techniques to exercise the app to find malicious
activities. Several other systems, including AppFence [95], Aurasium [232], AppGuard [18] and
BetterPermission [22] try to mitigate the privacy leak problem by dynamically monitoring the tested
apps.

However, those dynamic approaches can be fooled by specifically designed methods to circumvent
security tracking [200]. Thus, dynamic tracking approaches may miss some data leaks and yield an
under-approximation. On the other hand, static analysis approaches may yield an over-approximation
because all the application’s code is analyzed even code that will never be executed at runtime. These
two approaches are complementary when analyzing Android applications for data leaks.

4.7 Conclusion

This chapter addresses the major challenge of performing data-flow analysis across multiple components
for Android apps. We have presented IccTA, an open source tool, to perform ICC based taint analysis.
In particular, we demonstrate that IccTA can detect ICC based privacy leaks by providing a highly
precise control-flow graph through instrumentation of the code of applications. Unlike previous
approaches, IccTA enables a data-flow analysis between two components and adequately models the
lifecycle and callback methods to detect ICC based privacy leaks. When running IccTA on DroidBench
and ICC-Bench, it reaches a precision of 96.6% and a recall of 96.6%. When running IccTA on a set
of 1,260 apps of the MalGenome project, it reports 534 ICC leaks in 108 apps (8.6%). When running
IccTA on a set of 15,000 real-world apps randomly selected from Google Play market, it detects 2,395
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ICC leaks in 337 apps (2.2%). Other existing privacy detecting tools (e.g., AndroidLeaks) could
benefit by implementing our approach to perform ICC based privacy leaks detection.

Furthermore, we discussed ApkCombiner, a tool-based approach for reducing an Inter-App Commu-
nication problem into an intra-app Inter-Component Communication problem by combining multiple
Android apps into one. After the combination, existing intra-app analysis approaches can be applied
on the generated Android app to indirectly report inter-app results. Since we combine apps at
code level, our approach is context-aware and general. We evaluate ApkCombiner to demonstrate
that, despite a conflict resolution algorithm that requires a time-consuming refactoring process, the
approach is scalable. We further showed that it can improve the capabilities of existing state-of-the-art
tools. For example, we showed that using ApkCombiner can enable tools such as IccTA to discover
IAC privacy leaks in real-world apps.
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5 Taming Reflection

Android developers heavily use reflection in their apps for legitimate reasons, but also significantly
for hiding malicious actions. Unfortunately, current state-of-the-art static analysis tools for Android
are challenged by the presence of reflective calls which they usually ignore. Thus, the results of their
security analysis, e.g., for private data leaks, are inconsistent given the measures taken by malware
writers to elude static detection. We propose the DroidRA instrumentation-based approach, which
generally shares the same idea as we applied in the previous section for bridging ICC, to address this
issue in a non-invasive way. With DroidRA, we reduce the resolution of reflective calls to a composite
constant propagation problem. We leverage the COAL solver to infer the values of reflection targets,
and we eventually instrument this app to represent the corresponding traditional Java call for each
reflective call. Our approach allows to boost an app so that it can be immediately analyzable, including
by such static analyzers that were not reflection-aware. In this chapter, we evaluate DroidRA on
benchmark apps as well as on real-world apps, and demonstrate that it can allow state-of-the-art tools
to provide more sound and complete analysis results.

This chapter is based on the work published in the following paper:

• Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. DroidRA: Taming reflection
to support whole-program analysis of android apps. In Proceedings of the 2016 International
Symposium on Software Testing and Analysis (ISSTA 2016), 2016

• Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. Reflection-aware static
analysis of android apps. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, Tool Demonstration Track, 2016
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Chapter 5. Taming Reflection

5.1 Introduction

Reflection is a property that, in some modern programming languages, enables a running program
to examine itself and its software environment, and to change what it does depending on what it
finds [74]. In Java, reflection is used as a convenient means to handle genericity or to process Java
annotations inside classes. Along with many Java features, Android has inherited the Java Reflection
APIs which are packaged and included in the Android SDK for developers to use. Because of the
fragmentation of the Android ecosystem, where many different versions of Android are concurrently
active on various devices, reflection is essential as it allows developers, with the same application
package, to target devices running different versions of Android. Indeed, developers may use reflection
techniques to determine, at runtime, if a specific class or method is available before proceeding to use
it. This allows the developer to leverage, in the same application, new APIs where available while
still maintaining backward compatibility for older devices. Reflection is also used by developers to
exploit Android hidden and private APIs, as these APIs are not exposed in the developer SDK and
consequently cannot be invoked through traditional Java method calls.

Unfortunately, recent studies on Android malware have shown that malware writers are using reflection
as a powerful technique to hide malicious operation [108]. In particular, reflection can be used to
hide the real purpose, e.g., by invoking a method at runtime to escape static scanning, or simply
to deliver malicious code [7]. We have conducted a quick review of recent contributions on static
analysis-based approaches for Android, and have found that over 90% of publications [135] from
top conferences (including ICSE and ISSTA) do not tackle reflection. Indeed, most state-of-the-art
approaches and tools for static analysis of Android simply ignore the use of reflection [73, 100] or
may treat it partially [81,192]. By doing so, the literature has produced tools that provide analysis
results which are incomplete, since some parts of the program may not be included in the app call
graph, and unsound, since the analysis does not take into account some hidden method invocations or
potential writes to object fields. In this regard, a recent study by Rastogi et al. [190] has shown that
reflection has made most of the current static analysis tools perform poorly on malware detection.

Tackling reflection is however challenging for static analysis tools. There exist ad-hoc implementa-
tions (e.g., in [192]) for dealing with specific cases of reflection patterns. Such approaches cannot
unfortunately be re-exploited in other static analysis tools. However, there is a nascent commitment
in the Android research community to propose solutions for improving the analysis of reflection. For
example, in a recent work [21], Barros et al. propose an approach for resolving reflective calls in their
Checker static analysis framework [69]. Their approach however 1) requires application source code
(which is not available for most Android apps), 2) targets specific check analyses based on developer
annotations (which thus needs additional developer efforts, e.g., learn the target framework, find the
right place to annotate.) and 3) does not provide a way to directly benefit existing static analyzers,
i.e., to support them in performing reflection-aware analyses.

Our aim in this chapter is to deal with reflection in a non-invasive way so that state-of-the-art analysis
tools can benefit from this work to better analyze application packages from app markets. To that
end, we present DroidRA, an instrumentation-based approach, for automatically taming reflection in
Android apps. In DroidRA, the targets of reflective calls are determined after running a constraint
solver to output a regular expression satisfying the constraints generated by an inter-procedural,
context-sensitive and flow-sensitive static analysis. A Booster module is then implemented to augment
reflective calls with their corresponding explicit standard Java calls. Because some code can be
loaded dynamically, before our reflection analysis, we also use heuristics to extract any would-be
dynamically-loaded code (e.g., a jar file with classes.dex inside) into our working space. Indeed, our
reflection taming approach hinges on the assumption that all the code that exist in the app package
may be loaded at runtime and thus should be considered for analysis.

This chapter makes the following contributions:
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5.2. Motivation

• We provide insights on the use of reflection in Android apps, based on an analysis of 500 apps
randomly selected from a repository of apps collected from Google Play, third-party markets,
as well as malware samples [3]. Our findings show that 1) a large portion of Android apps relies
on reflective calls and that 2) reflective calls are usually used with some common patterns. We
further show that reflective calls can be discriminated between malicious and benign apps.

• We designed and implemented DroidRA – an approach that aims at
boosting existing state-of-the-art static analysis for Android by taming re-
flection in Android apps. DroidRA models the use of reflection with
COAL [180] and is able to resolve the targets of reflective calls through a constraint
solving mechanism. By instrumenting Android apps to augment reflective calls with their
corresponding explicit standard Java calls, DroidRA complements existing analysis approaches.

• We evaluated DroidRA on a set of real applications and report on the coverage of reflection
methods that DroidRA identifies and inspects. We further rely on well-known benchmarks to
investigate the impact that DroidRA has on improving the performance of state-of-the-art static
analyzers. In particular, we show how DroidRA is useful in uncovering dangerous code (e.g.,
sensitive API calls, sensitive data leaks [10,124]) which was not visible to existing analyzers.

• We release DroidRA and the associated benchmarks as open sourcei, not only to foster research
in this direction, but also to support practitioners in their analysis needs.

The remainder of this paper is organized as follows. Section 5.2 investigates the use of reflection in
Android apps and motivates this work through a concrete example. Section 5.3 presents our approach
DroidRA, including its design and implementing details. Section 5.4 reports on the evaluation of
DroidRA while Section 5.5 discusses the related work. Finally, Section 5.6 concludes this chapter.

5.2 Motivation

To better motivate our work, in this section, we first look into the adoption of reflection in Android
apps in Section 5.2.1. After that, we leverage a concrete example to show why taming reflection is
important for static analysis of Android apps (cf. Section 5.2.2).

5.2.1 Reflection Adoption in Android Apps

To investigate the use of reflection in real Android apps, we consider a large research repository of
over 2 millions apps crawled from Google Play, third-party markets and known malware samples [3].
We randomly select 500 apps from this repository and parse the bytecode of each app, searching
for reflective calls. The strategy used consists in considering any call to a method implemented by
the four reflection-related classesii as a reflective call, except such methods that are overridden from
java.lang.Object.

5.2.1.1 Overall usage of reflection

Our analysis shows that reflection usage is widespread in Android apps, with 87.6% (438/500) of
apps making reflective calls. On average, each of the flagged apps uses 138 reflective calls. Table 5.1
summarizes the top 10 methods used in reflective calls.

ihttps://github.com/serval-snt-uni-lu/DroidRA.git
ii java.lang.reflect.Field, java.lang.reflect.Method, java.lang.Class, and

java.lang.reflect.Constructor.
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Table 5.1: Top 10 Used Reflection Methods and Their Argument Type: Either (C): Class, (M): Method
or (F): Field.

Method (belonging class) # of Calls # of Apps
getName (C) 12,588 283 (56.6%)
getSimpleName (C) 5,956 87 (17.4%)
isAssignableFrom (C) 4,886 164 (32.8%)
invoke (M) 3,026 223 (44.6%)
getClassLoader (C) 2,218 163 (32.6%)
forName (C) 2,141 227 (45.4%)
getMethod (C) 1,715 135 (27.0%)
desiredAssertionStatus (C) 1,218 202 (40.4%)
get (F) 1,139 177 (35.4%)
getCanonicalName (C) 1,115 388 (77.6%)
Others 24,708 4 (8%)
Total 60,710 438 (87.6%)

Table 5.2: Top 5 Patterns of Reflective Calls Sequences.
Sequence pattern Occurrences
Class.forName() → getMethod() → invoke() 133
getName() → getName() → getName() 120
getDeclaredMethod() → setAccessible() → invoke() 110
getName() → isAssignableFrom() → getName() 92
getFields() → getAnnotation() → set() → ... 88

We perform another study to check whether most reflective calls are only contributed by common
advertisement libraries. We thus exclude reflective calls that are invoked by common ad librariesiii.
Our results show that there are still 382 (76.4%) apps whose non-ad code include reflective calls,
suggesting the use of reflection in primary app code.

5.2.1.2 Patterns of reflective calls

In order to have a clear picture of how one can spot and deal with reflection, we further investigate
the sequences of reflective calls and summarize the patterns used by developers to implement Android
program behaviour with reflection. We consider all method calls within the 500 apps and focus on the
reflection-related sequences that are extracted following a simple, thus fast, approach considering the
natural order in which the bytecode statements are yielded by Soot. We find 34,957 such sequences
(including 1 or more reflective call). An isolated reflective call is relatively straightforward to resolve
as its parameter is usually a String value (e.g., name of class to instantiate). However, e.g., when a
method in the instantiated class must be invoked, other reflective calls may be necessary (e.g., to
get the message name in object of class), which may complicate the reflection target resolution. We
found 45 distinct patterns of sequences containing at least three reflective calls. Table 5.2 details the
top five sequences: in most cases, reflection is used to access methods and fields of a given class which
may be identified or loaded at runtime. This confirms the fundamental functionality of reflective calls
which is to access methods/fields.

We further investigate the 45 distinct patterns to focus on reflective calls that are potentially
dangerous as they may change program state. Thus we mainly focus on sequences that include a
method invocation (sequences 1 and 3 in Table 5.2) or access a field value in the code (sequence 5).
Taking into account all the relevant patterns, including 976 sequences, we infer the common pattern
which is represented in Figure 5.1. This pattern illustrates how the reflection mechanism allows to
iiiWe take into account 12 common libraries, which are published by [13] and are also used by [121]. We believe that a

bigger library set like the one provided by Li et al. [130] could further improve our results.
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Obtain Class

Initialize 
Class

Obtain Methods/
Fields from Class

Class c = Class.forName(str);
Class c = loadClass(str);

c.newInstance();
c.getConstructor(Class[]).
   newInstance(obj[]); Access the Class's 

Methods/Fields

Method m = c.getMethod();
Field f = c.getDeclaredField();

m.invoke(obj, obj[]);
f.get(obj);
f.set(obj, obj);

Figure 5.1: Abstract Pattern of Reflection Usage and Some Possible Examples.

obtain methods/fields dynamically. These methods and fields can be used directly when they are
statically declared (solid arrows in figure 5.1); they may otherwise require initializing an object of the
class, e.g., also through a reflective call to the corresponding constructor (dotted arrows). With this
common pattern, we can model most typical usages of reflection which can hinder state-of-the-art
static analysis approaches.

The model yielded allows to consider different cases in reflective call resolution: In some simple cases,
a string analysis is sufficient to extract the value of the call parameter; In other cases however, where
class objects are manipulated to point to methods indicated in field values, simple string analysis
cannot be used to help mapping the flow of a malicious operation. Finally, in some cases, there is a
need to track back to the initialization of an object by another reflective call to resolve the target.

5.2.1.3 Reflection in malicious vs benign apps

Given the potential of using reflection to hide malicious operations, which could not be statically
detected, we investigate whether reflection usage can constitute in discriminating between malicious
and benign apps. We build a basic machine learning classification scheme with reflective calls as
the unique feature set. For the experiments, we use RandomForest ensemble learning algorithm and
build our ground truth by leveraging VirusTotal scanning resultsiv on the randomly selected 500 apps.
10-Fold cross validation experimentsv yield a performance of 97.5% for F-Measure, the harmonic
mean of precision and recall. Although such a high performance can be favored by our experimental
settings, it nonetheless suggests that reflective calls may constitute a discriminate feature between
malware and goodware.

5.2.2 Reflection Example

Millions of Android apps are spread in different markets with more and more security and privacy
alerts from anti-virus vendors. A recent report from Symantec shows that in 2014 they classified
about 1 million of Android apps as malwarevi on a total of 6.3 millions of apps analyzed. These facts
urge for practical and scalable approaches and tools targeting the security analysis of large sets of
Android apps. As example of such approaches, static taint analyzers aim at tracking data across
control-flow paths to detect potential privacy leaks.

Let us consider the FlowDroid [10] state-of-the-art approach as a concrete example. FlowDroid
is used to detect private data leaks from sensitive sources, such as contact information or device
identification numbers, to sensitive sinks, such as sending HTTP posts or short messages. FlowDroid
ivhttps://www.virustotal.com: we consider an app a to be malicious if any of the anti-virus products from VirusTotal has

flagged it as malicious. Otherwise a is a benign app.
vTo address the imbalance dataset problem (only 20 out of the 500 apps are malicious), we perform oversampling using

SMOTE [43].
vihttp://know.symantec.com/LP=1123
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1 TelephonyManager telephonyManager = // default ;
2 String imei = telephonyManager . getDeviceId ();
3 Class c = Class . forName ("de. ecspride . ReflectiveClass ");
4 Object o = c. newInstance ();
5 Method m = c. getMethod (" setIme " + "i", String . class );
6 m. invoke (o, imei);
7 Method m2 = c. getMethod (" getImei ");
8 String s = ( String ) m2. invoke (o);
9 SmsManager sms = SmsManager . getDefault ();
10 sms. sendTextMessage ("+49 1234", null , s, null , null );

Listing 5.1: Code Excerpt of de.ecspride.MainActivity from DroidBench’s Reflection3.apk.

has demonstrated promising results, however, they suffer from limitations inherent to the challenges
of static analysis in Android for taking into account reflection, class loading or native code support.
In this chapter, we focus on taming reflection in Android apps to allow state-of-the-art tools such
as FlowDroid to significantly improve their results. Reflection breaks the traditional call graph
construction mechanism in static analysis, resulting in an incomplete control-flow graph (CFG) and
consequently leading to insufficient results. Dealing with reflection in static analysis tools is however
challenging. Even the Soot Java optimization framework, on top of which most state-of-the-art
approaches are built, does not address the case of reflective calls in its analyses. Thus, overall, taming
reflection at the app level will enable better analysis by state-of-the-art analysis tools to detect
security issues for app users.

We consider the case of an app included in the DroidBench benchmark [10]. The Reflection3
benchmark app is known to be improperly analyzed by many tools, including FlowDroid, because
it makes use of reflective calls. In this example app (Listing 5.1), class ReflectiveClass is first
retrieved (line 3) and initialized (line 4). Then, two methods (setImei() and getImei()) from this class
are reflectively shipped and invoked (lines 5-8). setImei(), which is matched by concatenating two
strings, will store the device ID, which was obtained at line 2, into field imei of class ReflectiveClass
(line 6). getImei(), similarly, gets back the device ID into the current context so that it can be sent
outside the device via SMS to a hard-coded (i.e., not provided by user) phone number (line 10).

The operation implemented in this code sample is malicious since the device ID is taken as sensitive
private information. The purpose of the reflective calls, which appear between the obtaining of the
device ID and its leakage outside the device, is to elude any taint tracking by confusing the traditional
flow. Thus, statically detecting such leaks becomes non trivial. For example, analyzing string patterns
can be challenged intentionally by developers, as it was done in line 5. Furthermore, simple string
analysis is not enough to resolve reflective calls, because not only the method name (e.g., getImei for
method m2) but also the method’s declaring class name (e.g., ReflectiveClass for m2) are needed.
These values must therefore be matched and tracked together: this is known as a composite constant
propagation problem.

5.3 DroidRA

In this section, we first present an overview of the architecture of DroidRA in Section 5.3.1. More
specifically, DroidRA adopts a three-module approach: JPM, RAM, and BOM, for which we will
detail them in Section 5.3.2, Section 5.3.3, and Section 5.3.4, respectively.

5.3.1 Overview

Our work is directed towards a twofold aim: (1) to resolve reflective call targets in order to expose
all program behaviours, especially for analyses that must track private data; (2) to unbreak app
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control-flow in the presence of reflective calls in order to allow static analyzers to produce more
precise results.

Figure 5.2 presents an overview of the architecture of the DroidRA approach involving three modules.
(1) The first module named JPM prepares the Android app to be properly inspected. (2) The second
module named RAM spots reflective calls and retrieves the values of their associated parameters (i.e.,
class/method/field names). All resolved reflection target values are made available to the analysts for
use in their own tools and approaches. (3) Leveraging the information yielded by the RAM module,
the BOM module instruments the app and transforms it into a new app where reflective calls are
augmented with standard java calls. The objective of BOM is to produce an equivalent app whose
analysis by state-of-the-art tools will yield more precise results [120,136].

JPM
Preprocessing

RAM
Reflection analysis

BOM
App boosting

Reflection Analysis 
Results

 - reflective calls 
   identification
   and values retrieval

 - decompilation
 - entry point construction
 - heuristic for class loading 

 - instrumentation

DroidRA

Boosted Android 
App

Figure 5.2: Overview of DroidRA.

5.3.2 JPM – Jimple Preprocessing Module

Android programming presents specific characteristics that require app code to be preprocessed before
Java standard analysis tools can be used on it. First, an Android app is distributed as an apk file
in which the code is presented in the form of Dalvik bytecode, a specific format for Android apps.
Our analysis and code instrumentation will however manipulate code in Jimple, the intermediate
representation required by Soot [115], a Java optimization framework. As a result, in a first step
JPM leverages the Dexpler [24] translator to decompile the apk and output Jimple code.

Second, similar to any other static approaches for Android, DroidRA needs to start analysis from a
single entry-point. Unfortunately, Android apps do not have a well-defined entry-point, e.g., main()
in Java applications. But instead, they have multiple entry-points since each component that declares
Intent Filters (which defines the capabilities of a component) is a possible entry-point. To address
this challenge, we use the same approach as in the FlowDroid [10] state-of-the-art work on Android
analysis, that is, to artificially assemble a dummy main method, taking into account all possible
components including their lifecycle methods (e.g., onCreate() and onStop()) and all possible callback
methods (e.g., onClick()). This enables the static analyzer to build an inter-procedural control-flow
graph and consequently to traverse all the app code.

Third, we aim to analyze the entire available app code, including such code that is dynamically
loaded (e.g., at runtime). Dynamic Code Loading (DCL), however, is yet another challenge for static
analysis, as some would-be loaded classes, which would be added at runtime (e.g., downloaded from a
remote server), may not exist at all at static analysis time. In this work, we focus on dynamically
loaded code that is included in the apk file (although in a separated archive file) and which can then
be accessed statically. We assume that this way of storing locally the code to be dynamically is the
most widespread. In any case, Google Play policy explicitly states that an app downloaded from
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Google Play may not modify, replace or update its own APK binary code using any method other
than Google Play’s update mechanismvii.

In practice, our DCL analysis is performed through heuristics: Given an app a, we first unzipviii it
and then traverse all its embedded files, noted as set F . For each file f ∈ F , if it is a Java archive
format (the file extension could vary from dat, bin to db), then we recursively look into it, to check
whether it contains a dex file through its magic number (035 ). All retrieved dex (usually come with
classes.dex) files are then taken into account for any further analysis of the app.

We tested this heuristics-based process for finding DCL code by analyzing 1,000 malicious apps
randomly selected from our data set. We found that 348 (34.8%) apps contain additional code, which
could be dynamically loaded at runtime. Among the 348 apps, we collect 1,014 archives that contain
an extra classes.dex file, giving an average of 2.9 “archives with code” per app. We also found that
the 1,014 archives are redundant in many apps: there are actually only 74 distinct archive names.
For example, library bootablemodule.jar (which contains a classes.dex file) has been used by 115 apps.
This library package was recently studied in a dynamic approach [251].

5.3.3 RAM – Reflection Analysis Module

The Reflection Analysis Module identifies reflective calls in a given app and maps their target
string/object values. For instance, considering the motivating example from the DroidBench app pre-
sented in Listing 5.1, the aim with RAM is to extract not only the method name in the m2.invoke(o)
reflective call (line 8 in Listing 5.1), but also the class name that m2 belongs to. In other words, we
have to associate m2 with getImei, but also o with de.ecspride.ReflectiveClass. To that end, based
on the motivation example and our study of reflective call patterns, we observe that the reflection
problem can be modeled as a constant propagation problem within an Android Inter-procedural
Control-Flow Graph. Indeed, mapping a reflective call eventually consists in resolving the value of
its parameters (i.e., name and type) through a context-sensitive and flow-sensitive inter-procedural
data-flow analysis. The purpose is to obtain highly precise results, which are very important since
the app will be automatically instrumented without any manual check of the results. Let us consider
the resolution of the value of m2 in line 8 (‘String s = (String) m2.invoke(o)’ in Listing 5.1) as
an example: if we cannot precisely extract the class name that m2 belongs to, say, our RAM tells
that m2 belongs to class TelephonyManager, rather than the right class ReflectiveClass, then, during
instrumentation, we will write code calling m2 as a member of TelephonyManager, which would yield
an exception at runtime (e.g., no such method error), and consequently fail the static analysis.

To build a mapping from reflective calls to their target string/object values, our static analysis adopts
an inter-procedural, context-sensitive, flow-sensitive analysis approach leveraging the composite
COnstant propAgation Language (COAL) [180] for specifying the reflection problem. In order to
use COAL, the first step is to model the reflection analysis problem independently from any app
using the abstract pattern of reflective call inferred in Section 5.2.1.2. This generic model is specified
by composite objects, e.g., a reflective method is being specified as an object (in COAL) with two
fields: the method name and its declaring class name. Once reflection analysis has been modeled,
we build on top of the COAL solver to implement a specific analyzer for reflection. This analyzer
then performs composite constant propagation to solve the previously defined composite objects and
thereby to infer the reflective call target values.

COAL-based Reflection Analysis. We now illustrate a simple example shown in Listing 5.2 to
better explain the constant propagation of reflection-related values for class Method. Specifications
for all other reflection-related classes are defined similarly. All specifications will be open-sourced
eventually. Based on the specification shown in Listing 5.2, the COAL solver generates the semilattice
that represents the analysis domain. In this case, the Method has two string fields, where Class
viihttps://play.google.com/about/developer-content-policy.html

viiiThe format of an apk is actually a compressed ZIP archive.
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1 // Java/ Android code
2 Class c; Method m;
3 if (b) {
4 c = first .Type. class ;
5 m = c. getMethod (" method1 ");
6 } else {
7 c = second .Type. class ;
8 m = c. getMethod (" method2 ");
9 }
10 m. invoke ( someArguments );
11 // Simplified COAL specification ( partial )
12 class Method {
13 Class declaringClass_method ;
14 String name_method ;
15 mod gen <Class : Method getMethod (String , Class []) >{
16 -1: replace declaringClass_method ;
17 0: replace name_method ; }
18 query <Method : Object invoke (Object , Object []) >{
19 -1: type java.lang. reflect . Method ; }
20 }

Listing 5.2: Example of COAL-based Reflection Analysis for Class Method. Similar Specifications Apply
to All Other Reflection Classes.

types (strings of characters) are modeled as fully qualified class names. In the COAL abstraction,
each value on an execution path is represented by a tuple, in which each tuple element is a field value.
More formally, let S be the set of all strings in the program and let B = (S ∪{ω})× (S ∪{ω}), where
ω represents an unknown value. Then the analysis domain is the semilattice L = (2B ,⊆), where
for any set X, 2X is the power set of X, and elements in 2B represent the set of values of Method
variables across all execution paths. Semilattice L has a bottom element ⊥ = ∅ and its top element
is the set of all elements in B. For example, the following equation models the value of object m at
line 10 of Listing 5.2:

{(first.Type, method1), (second.Type, method2)} (5.1)

The first tuple in Equation (5.1) represents the value of Method object m contributed by the first
branch of the if statement. The second tuple, on the other hand, models the value on the fall-through
branch.

In order to generate transfer functions for the calls to getMethod, the COAL solver relies on the
specification presented in lines 15-17 of Listing 5.2. The modifier mod statement specifies the
signature of the getMethod method and it describes how the method modifies the state of the
program. The gen keyword specifies that the method generates a new object of type Method (i.e., it
is a factory function). Statement -1: replace declaringClass_method indicates that the name
of the Class object on which the method is called (e.g., first.Type at line 4) is used as the field
declaringClass_method of the generated object. Note that in this statement the special -1 index
indicates a reference to the instance on which the method call is made, for example object c at line
5. Finally, statement 0: replace name_method indicates that the first argument (as indicated by
index 0) of the method is used as the name_method field of the generated object.

At the start of the propagation performed by the COAL solver, all values are associated with ⊥.
Then the COAL solver generates transfer functions that model the influence of program statements
on the values associated with reflection. Following the formalism from [180], for any v ∈ L, we define
function initv such that initv(⊥) = v. By using the specification at lines 15-17, the COAL solver
generates function init{(first.Type,method1)} for the statement at line 5. The function that summarizes
the statement at line 8 is defined in a similar manner as init{(second.Type,method2)}. Thus, when taking
the join of init{(first.Type,method1)}(⊥) with init{(second.Type,method2)}(⊥), we obtain the value given by
Equation (5.1).
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1 Object [] objs = new Object [2];
2 objs [0] = " ISSTA ";
3 objs [1] = 2016;
4 m. invoke (null , objs);
5 //m(String ,int)

Listing 5.3: Example of Use of a Varargs Parameter.

The COAL specification in Listing 5.2 includes a query statement at lines 18-19. This causes the
COAL solver to compute the values of objects of interest at specific program points. In our example,
the query statement includes the signature for the invoke method. The -1: type Method
statement specifies that objects on which the invoke method is called have type Method. Thus
using this specification the COAL solver will compute the possible values of object m at line 10 of
Listing 5.2.

Improvements to the COAL Solver. In the process of this work, we have contributed to several
improvements of the COAL solver that now enables it to perform efficiently for resolving targets of
reflective calls. At first, we extended both the COAL language and the solver to be able to query the
values of objects on which instance calls are made. For example, this allowed us to query the value of
object m in statement m.invoke(obj, args). Second, we added limited support for arrays of objects
such that the values of object arrays can be propagated to array elements. More specifically, if an
array a is associated with values v1, v2, ..., vn, for any i array element a[i], we mark it as potentially
containing all the values (from v1 to vn). While this may not be precise in theory, in the case of
reflection analysis, the arrays of constructors, returned by method getConstructors(), that we consider
typically only have a few elements. Thus, this improvement, which ensures that the propagation of
constructors is done, is precise enough in practice. Finally, we performed various optimizations to
improve overall performance of the COAL solverix.

We now detail an example of difficulty that we have encountered to retrieve the string/object values.
The difficulty is due to the fact that some reflection calls such as m.invoke(Object, Object[]) take
as parameter a varargsx. The problem here is that the object array is not the real parameter of
the method m. Indeed, the parameters are instead the elements of the array. This keeps us from
extracting the appropriate method for instrumentation.

Let us consider the example code snippet in Listing 5.3. By only looking in line 4, we would infer
that the parameter of the method m is objs. Whereas actually m has two parameters: a String
and an int (as showed in line 5). To solve this problem and infer the correct list of parameters, we
perform a backward analysis for each object array. For example, from objs in line 4, we go back to
consider both line 2 and line 3, and infer that 1) the first parameter of m is a String whose value is
ISSTA, 2) the second parameter is an int whose value is 2016.

5.3.4 BOM – Booster Module

The Booster Module considers as input an Android app represented by its Jimple instructions and
the reflection analysis results yielded by the RAM module. The output of BOM is a new reflection-
aware analysis-friendly app where instrumentation has conservatively augmented reflective calls
with the appropriate standard Java calls: reflective calls will remain in the app code to conserve
its initial behaviour for runtime execution, while standard calls are included in the call graph to
allow only static exploration of once-hidden paths. For example, in the case of Listing 5.1, the
aim is to augment “m.invoke(o, imei)” with “o.setImei(imei)” where o is a concrete instance of
class de.ecspride.ReflectiveClass (i.e. explicitly instantiated with the new operator). Boosting
ixhttps://github.com/siis/coal.git
xhttp://docs.oracle.com/javase/7/docs/technotes/guides/language/varargs.html
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1 Class c = Class . forName ("de. ecspride . ReflectiveClass ");
2 Object o = c. newInstance ();
3 + if (1 == BoM. check ())
4 + o = new ReflectiveClass ();
5 m. invoke (o, imei);
6 + if (1 == BoM. check ())
7 + o. setImei (imei);
8 String s = ( String ) m2. invoke (o);
9 + if (1 == BoM. check ())
10 + s = ( String ) o. getImei ();

Listing 5.4: The Boosting Results of Our Motivating Example.

approaches have been successful in the past in state-of-the-art frameworks for improving analysis of
specific software by reducing the cause of analysis failures. TamiFlex [34] deals with reflection in
standard Java software in this way, while IccTA [124] explicitly connects components, to improve
Inter-Component Communication analysis.

Let us consider again our motivation example presented in Listing 5.1 to better illustrate the
instrumentation proposed by BOM. Listing 5.4 presents the boosting results of Listing 5.1. Our
instrumentation tactic is straightforward: for instance if a reflection call initializes a class, we explicitly
represent the statement with the Java standard new operator (line 4 in Listing 5.4). If a method is
reflectively invoked (lines 5 and 8), we explicitly call it as well (lines 7 and 10). This instrumentation
is possible thanks to the mapping of reflective call targets yielded by the RAM module. The target
resolution in RAM indeed exposes that (1) object c is actually an instance of class ReflectiveClass;
(2) object m represents method setImei of class ReflectiveClass with a String parameter imei; (3)
object m2 represents method getImei of class ReflectiveClass.

This example illustrates why reflection target resolution is not a simple string analysis problem. In
this case, the support of composite object-analysis in RAM is warranted: In line 1 of Listing 5.4,
c is actually an object, yet the boosting logic requires information that this represents class name
“ReflectiveClass”.

Observant readers may have noticed that the new injected code is always guarded by a conditional
to add a path for the traditional calls. The check() method is declared in an interface whose
implementation is not included for static analysis (otherwise a precise analyzer could have computed
its constant return value). However for runtime execution, check() always returns false, preventing
paths added by BOM from ever being executed. Thus, The opaque predicate keeps the new injected
code from changing the app behavior, while all sound static analysis can safely assume that the path
can be executed.

Additional Instrumentations. BOM performs additional instrumentations that are not directly
related to the Reflection problem. Nevertheless, these instrumentations are useful to improve the
completeness of other static analyses. We remind that the goal of our approach is to enable existing
analyzers such as FlowDroid to perform reflection-aware static analysis in a way that improves their
security results. For instance FlowDroid aims at detecting data leaks with taint-flow static analysis.
In the presence of dynamic class loading, FlowDroid stops its analysis when a class has to be loaded.
We already explained how DroidRA tackles this problem with the JPM module (cf. Section 5.3.2).
However, not all the classes which have to be loaded are accessible. One of the reasons is that some
files are encrypted, which prevents the analysis from statically accessing them. For example, app
com.ivan.oneuninstall contains an archive file called Grid_Red_Attract.apk, which contains another
archive file called tu.zip that has been encrypted. Because it is unrealistic to implement a brute-force
technique to the password, we simply exclude such apps from our analysis. However, to allow tools
such as FlowDroid to continue their analyses, we propose an instrumentation that conservatively
solves this problem: we explicitly mock all the classes, methods and fields that are reported by the
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RAM modulexi but are not existing in the current class path (i.e. they are neither present in the
initial code of the apk, nor in the code “extracted” by the JPM module).

Let us take an example to illustrate our instrumentation. Consider the instruction “result =
o.inc(a1, a2)” where the method inc is not accessible and where a1 is tainted. Without any modification
of this code, a standard analyzer would stop its analysis. Our instrumentation consists in creating
the method inc (and the associated class if required) in a way that the taints of a1 and a2 can
be propagated. Concretely, the instrumented method inc will contain the following instruction:
return (Object) (a1.toString() + a2.toString()), assuming that the type of result is Object.

5.4 Evaluation

Overall, our goal was to enable existing state-of-the-art Android analyzers to perform reflection-aware
static analysis, thus improving the soundness and completeness of their approaches. The evaluation
of DroidRA thus investigates whether this objective is fulfilled. To that end, we consider answering
the following research questions:

RQ1 What is the coverage of reflection calls that DroidRA identifies and inspects?

RQ2 How does DroidRA compare with state-of-the-art approaches for resolving reflective call targets
in Android?

RQ3 Does DroidRA support existing static analyzers to build sounder call graphs of Android apps?

RQ4 Does DroidRA support existing static analyzers to yield reflection-aware results?

All the experiments investigated in this section are conducted on a server with 24 processors and
100GB memory. For such tools that are running on top of Java VM, we execute them with 24GB
heap size.

5.4.1 RQ1: Coverage of Reflective Calls

The goal of our reflection analysis is to provide necessary information for analysts (or other approaches)
to better understand how reflections are used by Android apps. Thus, instead of considering all
reflection-related methods, in this experiment, we select such methods that are most interesting for
analysts. These include: 1) methods that acquire Method, Constructor and Field objects. Those
method call sequences are falling in our common pattern (cf. Figure 5.1) and are critical as they can
be used, e.g., to exchange data between normal explicit code and reflectively hidden code parts. For
these calls, we perform a composite analysis and inspect the related class names and method/field
names if applicable; and 2) methods that contain at least one string parameter. For these methods,
we explore their string parameter’s possible values.

We use the corpus of 500 apps selected in Section 5.2, to investigate the coverage of reflection calls.
From each app with reflective calls we extract two information:

1. Reached: The total number of reflective calls that are identified by our RAM reflection analysis
module.

2. Resolved: The number of reflective calls that are successfully resolved (i.e., the values of
relevant class, method and field names can be extracted) by our reflection analysis.

xiThis means that we only take into account reflective calls.
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Our experimental results are shown in Figure 5.3, which illustrates with boxplots the performance of
DroidRA in reaching reflective calls from the dummy main, and in resolving their targets. Compared
to the total number of reached reflective calls, in average, DroidRA is able to correctly resolve 81.2%
of the targets.

These off-targets are mainly explained by 1) the limitations of static analysis, where runtime values
(e.g., user configuration or user inputs) cannot be solved statically at compile time; 2) the limitations
of our COAL solver, e.g., currently it is not able to fully propagate arrays of objects, although we
have provided a limited improvement on this.
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Figure 5.3: Results of the Coverage of Reflection Methods.

5.4.2 RQ2: Comparison with Checker

The approach proposed by Barros et al. [21] is the closest work to ours. Their recent publication
presents an approach, hereon referred to as Checker, to address reflection in the Information Checker
Framework (IFC) [69]. We thus compare both approaches using their evaluation dataset which
consists of 10 apps from the F-Droid open-source apps repositoryxii. Table 5.3 lists the 10 apps and
provides comparative results between Checker and DroidRA. Checker has been evaluated by providing
statistics on methods and constructors related to reflective invocations. We thus consider the same
settings for the comparison. Moreover, note that we apply DroidRA directly on the bytecode of
the apps while Checker is applied on source code. Additionally, our approach does not need extra
developer efforts while Checker needs manual annotations, e.g., one has to pinpoint good places to
put appropriate annotations.

Overall, as shown in Table 5.3, DroidRA resolves 9 more method/constructors than Checker. Now
we give more details on these results. For app RemoteKeyboard, DroidRA missed one method and
Checker reports that it is not able to resolve it as well. Our further investigation shows that it is
impossible for static approaches to resolve the reflective call in this case as the reflection target
is a runtime user input (a class name for a shell implementation). Other advanced approaches
like SUPOR [99] could be leveraged to supplement this shortfall. For app VimTouch, DroidRA
refuses to report a reflective call, namely method Service.stopForeground, because its caller method
ServiceForegroundCompat.stopForeground is not invoked at all by other methods, letting it becomes
unreachable from our entry method.

For app ComicsReader, DroidRA has resolved one more reflective method than Checker. We manually
verify in the source code that the additional reflective call is a True Positives of DroidRA. However,
with ComicsReader, DroidRA missed one methodxiii, although it resolved two additional reflective
calls that Checker missed. This missed method is actually located in a UI-gadget class which is not
an Android component (e.g., Activity). Since our dummy main only considers Android components

xiihttps://f-droid.org
xiiiView.setSystemUiVisibility().
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Table 5.3: The Comparison Results between DroidRA and Checker, where cons Means the Number of
Resolved Constructors.

App Checker DroidRA
methods cons methods cons

AbstractArt 1 0 1 0
arXiv 14 0 14 0
Bluez IME 4 2 4 2
ComicsReader 6 0 7 0
MultiPicture 1 0 1 0
PrimitiveFTP 2 0 2 7
RemoteKeyboard 1α 0 0 3
SuperGenPass 1 0 1 0
VimTouch 3β 0 2 0
VLCRemote 1 0 1 0
α Reached but not resolved.
β One from dead code.

of an app as potential entry-points, DroidRA further failed to reach this method from its dummy
main.

Last but not the least, we have found 10 more constructors located in libraries embedded in the
studied apps. Because Checker only checks the source code of apps, it could not reach and resolve
them.

5.4.3 RQ3: Call graph construction

An essential step of performing precise and sound static analysis is to build at least a complete
program’s method call graph (CG), which will be used by static analyzers to visit all the reachable
code, and thus perform a sound analysis. Indeed, methods that are not included in the CG would
never be analyzed since these methods are unreachable from the analyzer’s point of view. We
investigate whether DroidRA is able to enrich an app’s CG. To that end we build the CG of each
of the apps before and after they are instrumented by BOM. Our CG construction experiments are
performed with the popular Soot framework [115]: we consider the CHA [58] algorithm, which is the
default algorithm for CG construction in Soot, and the more recent Spark [116] algorithm which was
demonstrated to improve over CHA. Spark was demonstrated to be more precise than CHA, and
thus producing fewer edges in its constructed CG.

On average, in our study dataset of 500 apps, for each app, DroidRA improves by 3.8% and 0.6%
the number of edges in the CG constructed with Spark and CHA respectively. Since CHA is less
precise than Spark, CHA yields far more CG edges, and thus the proportion of edges added thanks
to DroidRA is smaller than for Spark.

We highlight the case of three real-world apps from our study dataset in Table 5.4. The CG edges added
(i.e., Diff column) vary between apps. We have further analyzed the added edges to check whether
they reach sensitive API methodsxiv (e.g., ActivityManager.getRunningTasks(int)) which are
protected by a system permission (e.g., GET_TASKS). The recorded number of such newly reachable
APIs (see Perm column in Table 5.4) further demonstrates how taming reflection can allow static
analysis to check the suspicious call sequences that are hidden by reflective calls. We confirmed that
this app is flagged as malicious by 24 anti-virus products from VirusTotal.

Case Study: org.bl.cadone. We consider the example of app org.bl.cadone to further highlight
the improvement in CG construction. We have computed the call graph (CG) of this app with CHA
and, for the benefit of presentation clarity, we have simplified it into a class dependency graph where

xivThe list of sensitive API methods are collected from PScout [12].
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Table 5.4: The Call Graph Results of Three Apps We Highlight for Our Evaluation. Perm Column Means
the Number of Call Graph Edges that are Actually Empowered by DroidRA and are Accessing Permission
Protected APIs.

Package Algo Original DroidRA Diff Perm

com.boyaa.bildf Spark 714 22,867 22,153 3
CHA 172,476 190,436 17,960 51

org.bl.cadone Spark 694 951 257 0
CHA 172,415 187,079 14,664 16

com.audi.light Spark 6,028 6,246 218 0
CHA 174,007 174,060 53 0

all CG edges between methods of two classes are transformed into a single graph edge where all nodes
representing methods from a single class are merged into a single node representing this class.

Figure 5.4 presents the CFG with 14,664 new edges added after applying DroidRA. Black edges
represent nodes and edges that were available in the original version of the app. The new edges
(and nodes) have been represented in green. Some of them however reach sensitive APIs, and are
highlighted in red. We found that, among the 8 permissions that protect the 16 sensitive APIs
(included in 8 classes) that are now reachable, 6 (i.e., 75%) are of the dangerous levelxv, which further
suggests that the corresponding reflective calls were meant to hide dangerous actions.

Figure 5.4: The Class Dependency Graph (Simplified Call Graph) of App org.bl.cadone (based on CHA
Algorithm). Black Color Shows the Originally Edges/Nodes, Green Color Shows Edges/Nodes that are
Introduced by DroidRA while Red Color Shows New Edges that are Further Protected by Permissions.

5.4.4 RQ4: Improvement of Static Analysis

We consider the state-of-the-art tool FlowDroid and its ICC-based extension called IccTA for assessing
to what extent DroidRA can support static analyzers in yielding reflection-aware results. Our
experiments are based on benchmark apps, for which the ground truth of reflective calls is known,
and on real-world apps, for which we check whether the runtime performance of DroidRA will not
prevent its use in complement to other static analyzers.

xvhttp://developer.android.com/guide/topics/manifest/permission-element.html
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Table 5.5: The 13 Test Cases We Use in Our In-the-lab Experiments. These 13 Cases Follow the Common
Pattern of Figure 5.1 and Each Case Contains Exactly One Sensitive Data Leak.
Case Source Reflection Usage IccTA DroidRA+IccTA
1 DroidBench forName() → newInstance() 3 3
2 DroidBench forName() → newInstance() 7 3
3 DroidBench forName() → newInstance() → m.invoke() → m.invoke() 7 3
4 DroidBench forName() → newInstance() 7 3
5 New forName() → getConstructor() → newInstance() 7 3
6 New forName() → getConstructors() → newInstance() 7 3
7 New forName() → getConstructor() → newInstance() → m.invoke() → m.invoke() 7 3
8 New loadClass() → newInstance() 7 3
9 New loadClass() → newInstance() → f.set() → m.invoke() 7 3
10 New forName() → getConstructor() → newInstance() → f.get() 7 3
11 New startActivity() → forName() → newInstance() → m.invoke() → m.invoke() 7 3
12 New forName() → getConstructor() → newInstance() → f.set() → f.get() 7 3
13 New forName() → getConstructor() → newInstance() → getFields() → f.set() → f.get() 7 7

DroidRA on benchmark apps. We assess the efficacy of DroidRA on 13 test case apps for
reflection-based sensitive data leaks. 4 of these apps are from the Droidbench benchmark where they
allowed to show the limitations of FlowDroid and IccTA. We further consider 9 other test cases to
include other reflective call patterns (e.g., the top used sequences , cf. Table 5.2). Since the test cases
are handcrafted, the data leak (e.g., leak of device id via SMS), are known in advance. In 12 of the
apps, the leak is intra-component, while in the 11th it is inter-component.

Table 5.5 provides details on the reflective calls and whether the associated data-leak is identified
by the static analysis of IccTA and/or DroidRA-supported IccTA. Expectedly, IccTA alone only
succeeds on the first test case, Reflection1 in DroidBench, where the reflective calls are not in the
data-leak path, thus not requiring a reflective call resolution for the taint analysis to detect the leak.
However, IccTA fails on all other 12 test cases. This was expected since IccTA is not a reflection-aware
approach. When reflection is tamed in the test cases by DroidRA, IccTA gains the ability to detect
a leak on 11 out of 12 test cases. In test case 13, the reflective call is not resolved because the
reflection method getFields() returns an array of fields that the current implementation of constant
propagation cannot manage to resolve. Indeed, we have enhanced COAL with limited support to
propagate array elements, complex field arrays are not addressed. Nevertheless, constructor arrays
can now be resolved, allowing DroidRA to tame reflection in test case 6.

DroidRA on real-world apps. To investigate the impact of DroidRA on the static analysis results
of real-word apps, we consider a random set of 100 real-world apps that contain reflective calls and
that contain at least one sensitive data leak (discovered by IccTA). Comparing to using IccTA on
original apps, the instrumentation by DroidRA impacts the final results by allowing IccTA to report
on median 1 more leak in a reflection-aware setting.

Runtime performance of DroidRA. We investigate the time performance of DroidRA to check
whether time overhead of DroidRA app will not be an obstacle to practical usage in complement with
state-of-the-art static analyzers. On the previous set of 91 apps, we measure the time performance of
the three modules of DroidRA. The median value for JPM, RAM, BOM on the apps are 24 seconds,
21 seconds and 8 seconds respectively leading to a total median value of 53 seconds for DroidRA.
This value is reasonable in comparison with the execution of tools such as IccTA or FlowDroid which
can run for several minutes and even hours on a given app.

5.5 Related Work

Research on static analysis of Android apps presents strong limitations related to reflection handling [28,
79,125,238]. Authors of recent approaches explicitly acknowledge such limitations, indicating that
they ignore reflection in their approaches [124, 180,235] or failing to state whether reflective calls are
handled [233] in their approach.
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The closest work to ours was concurrently proposed by Barros et al. [21] within their Checker
framework. Their work differs from ours in several ways: first, the design of their approach focus
on helping developers checking the information-flow in their own apps, using annotations in the
source code; this limits the potential use of their approach by security analysts in large markets of
Android apps such as GooglePlay or AppChina. Second, they build on intra-procedural type inference
system to resolve reflective calls, while we build on an inter-procedural precise and context-sensitive
analysis. Third, our approach is non-invasive for existing analysis tools who can now be boosted
when presented with apps where reflection is tamed.

Reflection, by itself, has been investigated in several works for Java applications. Most notably,
Bodden et al. [34] have presented TamiFlex for aiding static analysis in the presence of reflections in
Java programs. Similar to our approach, TamiFlex is implemented on top of Soot and includes a
Booster module, which enriches Java programs by “materializing” reflection methods into traditional
Java calls. However, DroidRA manipulates Jimple code directly while TamiFlex works on Java
bytecode. Furthermore, DroidRA is a pure static approach while TamiFlex needs to execute programs
after creating logging points for reflection methods to extract reflection values. Finally, although
Android apps are written in Java, TamiFlex cannot even be applied to Android apps as it uses a
special Java API that is not available in Android [251]. Another work that tackles reflection for Java
has been done by Livshits et al. [153], in which points-to analysis is leveraged to approximate the
targets of reflection calls. Unlike our approach, their approach needs users to provide an per-app
specification in order to resolve reflections, which is difficult to apply for a large scale analysis.
Similarly, Braux et al. [36] propose a static approach to optimize reflection calls at compile time, for
the purpose of increasing time performance.

Regarding Dynamic Code Loading in Android, Poeplau et al. [185] have proposed a systematic review
on how and why Android apps load additional code dynamically. In their work, they adopt an
approach that attempts to build a super CFG by replacing any invoke() call with the target method’s
entry point. This approach however fails to take into account the newInstance() reflective method
call, which initializes objects, resulting in a context-insensitive approach, potentially leading to more
false positives. StaDynA [251] was proposed to address the problem of dynamic code loading in
Android apps at runtime. This approach requires a modified version of the Android framework to log
all triggering actions of reflective calls. StaDynA is thus not market-scalable, and present a coverage
issue in dynamic execution. Our approach, DroidRA, provides a better solution for reflective method
calls, can be leveraged to compliment these approaches, so as to enhance them to conduct better
analysis.

Instrumenting Android apps to strengthen static analysis is not new [9]. For example, as we
detailed in Chapter 4, IccTA [124] is proposed to instrument Android apps to bridge ICC gaps and
eventually enable inter-component static analysis. AppSealer [245] instruments Android apps for
generating vulnerability-specific patches, which prevent component hijacking attacks at runtime.
Other approaches [202,246] apply the same idea, which injects shadow code into Android apps, to
perform privacy leaks prevention.

5.6 Conclusion

This chapter addresses a long time challenge that is to perform reflection-aware static analysis on
Android apps. We have presented DroidRA, an open source tool, to perform reflection analysis, which
models the identification of reflective calls as a composite constant propagation problem through the
COAL declarative language, and leverages the COAL solver to automatically infer reflection-based
values. We remind the reader that these reflective-based values can be directly used as basis for many
whole-program analyses of Android apps. We further illustrate this point by providing a booster
module, which is based on the previously inferred results to augment apps with traditional Java
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calls, leading to a non-invasive way of supporting existing static analyzers in performing reflection-
aware analysis, without any modification or configuration. Through various evaluations we have
demonstrated the benefits and performance of DroidRA.
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6 Detaching Common Library

The packaging model of Android apps requires the entire code necessary for the execution of an app
to be shipped into one single apk file. Thus, an analysis of Android apps often visits code which is
not part of the functionality delivered by the app. Such code is often contributed by the common
libraries which are used pervasively by all apps. Unfortunately, Android analyses, e.g., piggybacked
app detection or malware detection, can produce inaccurate results if they do not take into account the
impact of common libraries, which constitute noise in app features. Thus, there is a need to detach
common library (through code instrumentation) for other analyses.

Despite some efforts on investigating Android libraries, the momentum of Android research has not
yet produced a complete set of common libraries to further support in-depth analysis of Android apps.
In this paper, we leverage a dataset of about 1.5 million apps from Google Play to harvest potential
common libraries, including advertisement libraries. With several steps of refinements, we finally
collect by far the largest set of 1,113 libraries supporting common functionality and 240 libraries
for advertisement. We use the dataset to investigates several aspects of Android libraries, including
their popularity and their proportion in Android app code. Based on these datasets, we have further
performed several empirical investigations to confirm the motivations behind our work.

This chapter is based on the work published in the following paper:

• Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation into the use
of common libraries in android apps. In Proceedings of the 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2016
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Chapter 6. Detaching Common Library

6.1 Introduction

The research community has produced a large body of work for mitigating the emerged threats
in the Android ecosystem, essentially to guard the security and privacy of users. For scalability
and practicability reasons, a substantial number of the proposed approaches [67, 124, 226] rely on
static analysis to parse the entire code shipped in the app package to find security problems in code
instructions, to extract features for further processing or simply to compare apps in large repositories.
Unfortunately, because Android development paradigm allows to easily include third-party code,
in the form of libraries, a significant portion of an app is eventually irrelevant to certain analyses
(e.g., piggybacking analysis). Common libraries embedded in app code thus constitute a significant
barrier for the static exploration of applications code. For example, as we will detail later, common
library would introduce both false positives and false negatives for piggybacked detection approaches.
Besides, static code analysis is also often challenged by computing power and memory requirements.
In the case of FlowDroid [10], the state-of-the-art static taint analysis tool for Android apps, it was
reported that the analysis time can be too high [13]. As demonstrated in Wang et al.’s findings [224],
where 60% of app’s code are contributed by common libraries, which would thus indicate roughly
that over half of the CPU and memory consumption could be wasted on irrelevant library code,
threatening the performance of the analyzer. Therefore, there is a need to detach common library
from Android apps, in attempt to increase the precision of results and improve the performance of
analysis process. We thus leverage code instrumentationi in this work to detach common library from
Android apps.

The aforementioned case constitutes strong motivations for automatically identifying once a large
set of common libraries from market-scale apps, which could then be used by other approaches to
immediately take such libraries into account. A straightforward solution for achieving such a task is
to build a comprehensive whitelist of common libraries. Wang et al. [224] claim to have collected more
than 600 different common libraries to improve their repackaged app detection process. However, this
collection is not available to the community, and may not be representative in other datasets. Other
approaches [35, 80, 84, 184] build on top of limited whitelists collected using simplistic heuristics and
containing between only 9 (AdDroid [184]) and 103 (Book et al. [35]) libraries.

In this work we investigate the use of common libraries in Android based on a dataset of around 1.5
million apps collected from the official Google Play market. In particular, we build and maintain a
comprehensive whitelist of 1,113 Android common libraries that we share with the communities. Our
approach identifies common libraries based on the assumption that they are used by many apps as
such, i.e., without developer modification. We further label those libraries to distinguish between
advertisement libraries (or ad libraries, a specific type of common libraries) and others, using
heuristics defined from our manual investigations.

Overall, in this chapter, we make the following contributions:

• An approach to automatically harvest common libraries from market-scale Android apps. In
this work, we collect 1,113 common libraries from a dataset of around 1.5 million Android apps.

• A discriminative study of advertisement libraries, for which 240 common libraries are recognized
as ad libraries.

• An empirical investigation and evaluation of the use of common libraries in Android apps.
We show that there are indeed significant differences in the use of common libraries between
benign and malicious apps. Besides, we also show that our harvested common libraries are
indeed useful for other approaches, e.g., to reduce both false positive and false negative rates
for piggybacked apps detection.

iSince we have already demonstrated in the previous two chapters that code instrumentation is an effective approach
for boosting static security analysis, and it is actually quite simple to perform code instrumentation for detaching
common library, we will no longer detail the working process of code instrumentation in this chapter.
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• Two comprehensive whitelists of Android libraries (one for common libraries and the other for
ad libraries), that we make available online to the Android research community at:
https://github.com/serval-snt-uni-lu/CommonLibraries.git.

The rest of this chapter is organized as follows: We first introduce two concrete examples to better
explain the problems we attempt to address in Section 6.2. Then, we present our approach and its
implementation details in Section 6.3. In Section 6.4, we present our investigated data set and the
overall results. We then empirically evaluate our findings in Section 6.5, followed by related works in
Section 6.6. Finally, in Section 6.7, we conclude this chapter.

6.2 Motivating

We now motivate our work by discussing the impact of filtering out libraries from apps when
performing piggybacking detection. Piggybacking is an operation that consists in taking an existing
app, unpacking it, then modifying it by adding a (generally malicious) new payload and re-signing it,
before distributing it as a new app. Like repackaged apps (where a payload is not necessarily added),
piggybacked apps are now pervasive in the Android ecosystem where they further constitute an easy
way to build and distribute malware [255,256]. A typical approach for detecting piggybacked apps
consists in performing pairwise comparisons to identify the original app that was actually piggybacked.
In the process of computing similarity however, libraries, which may account for a large portion of
apps, can influence towards inaccurate results. We present two real-world examples of pairs of apps
where the presence of libraries can lead to a mislabelling of a legitimate app as piggybacked or a
failure to flag a piggybacked app as such.

6.2.1 Mislabeling Legitimate apps as Piggybacked

We consider in Fig. 6.1a the case of two apps (air.starq.game.ZRcards9ers and
com.taiweishiye.tom.pkjjtss) collected from an Android market. The packages in their code
structure are very similar when considering the common libraries that they integrate: one app has
86% of its codeii that is also contained in the other app. However, considering the results of a
prior investigation of a set of 1,169 known legitimate/piggybacked app pairs where we found that
most of the similarity degree ranges between 81% and 100%, we could set a threshold of 80% for

iiThe percentage is computed based on method level, where more details will be given in Section 6.3.2.

com.adobe.air
com.adobe.flashplayer

com.adobe.flashruntime
com.android.pushshow
com.android.systemtool

air.start.game

29C2D4.apk
(air.starq.game.ZRcards9ers)

287198.apk
(com.taiweishiye.tom.pkjjtss)

similarity = 86%

com.adobe.air
com.adobe.flashplayer
com.adobe.flashruntime
com.android.pushshow
com.android.systemtool

com.taiweishiye.tom
similarity = 0%

include libraries

exclude libraries

a False Positive.

com.baidu
cn.domob.android

com.v123.util
com.v123.db

com.v123.activity

F3B117.apk
(com.v123.activity)

25BC25.apk
(com.v123.activity)

similarity = 47%

com.baidu
net.youmi.android

com.v123.util
com.v123.db
com.v123.activity

similarity = 84%

include libraries

exclude libraries

b False Negative.

Figure 6.1: Two Motivating Examples Show the Importance of Excluding Common Libraries (through
Instrumentation) in Order to Perform Precise Piggybacked Apps Detection. Note that F3B117.apk and
25BC25.apk are Actually Signed by Different Certificates although They Share a Same Package Name.
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Figure 6.2: Overview of Our Detaching Common Library Approach.

identifying piggybacking cases. This unfortunately would lead to a mislabeling in the above case.
Indeed, a detailed analysis of both apps shows that they are actually using several common libraries
(e.g., com.android and com.adobe). Excluding such libraries from the similarity computation, the
similarity degree falls down to 0%, leaving no room for a false positive prediction.

6.2.2 Missing True Piggybacked Apps

We now consider in Fig. 6.1b two apps which are known to be a legitimate/piggybacked app pair.
These apps share the main package called com.v123.activity. However, library cn.domob.android
was replaced in the piggybacked app with library net.youmi.android to redirect the revenues of the
legitimate app to another developer. Nevertheless, although these two apps are piggybacked from
one to another, their similarity degree is only at 47%, which would constitute a false negative in
our detection scheme with a threshold at 80%. However, if the detection system identified first the
common libraries and dismissed them during pairwise comparison, the similarity degree would reach
84%, leading to a successful prediction.

Overall, the validity of pairwise comparison for piggybacking detection could be threatened when
substantial parts of app code are common library code. Thus, to limit both false positives and false
negatives, detaching common library is now more and more considered in state-of-the-art repackaging
and piggybacking detection approaches [45,89,224]. However, the whitelists that they leveraged is
built based on manual investigations or automatically with limited datasets. Furthermore, these
whitelists are seldom available to other researchers in the community.

One objective of our work is to provide to the community a comprehensive list of common
libraries, which can be used as a whitelist for detaching and thus supporting static code-based
analyses of Android apps.

6.3 Identification of Common Libraries

In this section we provide details on the approach that we have devised to collect common libraries
for the study.

Process Overview: Fig. 6.2 illustrates the general process of our approach, which is dedicated to
harvest common libraries in Android apps and identifying advertisement libraries among them.

First, for our approach to make sense, we need a large and representative dataset of Android apps.
Then, as a first step, we visit all the apps in the dataset and rank all packages in terms of the
frequency of their appearance in apps. For the sake of simplicity, we assume that a package with the
same name in several apps is a candidate library. Thus, Step 1 outputs a ranked list of candidate
libraries, where the highest ranked candidate library has the most recurring package name in the
dataset. In the second step we perform a more fine-grained pairwise comparison of candidate library
code within apps. The objective of Step 2 is to confirm as common library packages those recurring
packages that have the same name and are very similar in their code. Finally, in Step 3, we further
investigate the harvested libraries to label those that are advertisement libraries and thus may be
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Figure 6.3: Refinement Process for Common Libraries Identification.

treated differently in some Android analysis approaches. We now provide details on how each step
works in the following three subsections.

6.3.1 Step 1: Candidate Libraries Extraction

We assume that common libraries are such software packages that are:

• used in a large number of apps – recurring packages have very high probability of being common
libraries.

• used by developers without modifications – their code must be similar across apps. Hu et al. [96]
have found that over 80% of libraries are indeed used without modification in their dataset of
100,000 Google Play apps.

Building on those assumptions, and leveraging a large dataset, we extract all package names from
Android apps and cluster them based on their frequency of occurrence in the dataset. Theoretically,
packages that appear in at least two apps could be taken as candidate librariesiii. To reduce the
number of distinct packages considered as candidate libraries, and which must be further processed
we consider two constraints:

• We only consider the first three segmentsiv of package name or the entire name if there are less
than 3 segments. With this constraint we manage to limit the number of redundant subpackages
while still guaranteeing a large diversity in package names.

• We also exclude packages with names starting with android.support. Indeed, there are many
sub-packages within this package and they are used pervasively in Android apps. Furthermore,
since these are part of the Android framework, we do not consider them in our study.

6.3.2 Step 2: Common Libraries Confirmation

Because package naming is done in Java programming with limited constraints, any two packages
may share the same name while being completely different in terms of code functionality. Also, the
frequency of a package name may actually be contributed by piggybacking operations, obfuscation
activities (e.g., a.a.a or com.a are recurrent in many obfuscated apps) or simplistic naming (e.g.,
debug or mobile package names). Thus, we must refine the list collected in the previous step with
code similarity measurements to find actual code packages used as common libraries.

Beforehand, given the expensive property of pairwise comparison, we use heuristics to exclude from
the candidate libraries outputted by Step 1, those packages which would be irrelevant. Our refinement
process is shown in Fig. 6.3.

1) At first, we focus on those packages whose names appear in more than 10 apps to reduce the
number of candidate libraries to the most relevant ones.

2) Then, we remove such packages whose names contain only one segment. Although such short names
are indeed likely to be redundant in several apps, they are not likely to be those of packages that will
iiiActually this may not be true if the apps are from a same developer. However, since we are performing experiments

on a large set of apps, this small deviation will not impact our final results.
ivIn this work, we use the term segment to describe each domain of different levels, e.g., for package org.example, we

say it contains two segments, which are org and example.
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be distributed as common libraries. Indeed, to prevent package name collisions, one convention in
Java package namingv recommends organizations/development teams to use their reversed Internet
domain names (e.g., com.facebook) to begin their package names, which justifies our assumption that
common libraties, intended for wide distribution, have package names with several segments.

3) Next, we undertake to exclude packages with obfuscated code. However, because there is currently
no advanced approach for checking whether a package is obfuscated or not, we build on a naive
approach based on observations that we inspect from several obfuscated apps: every package that
contains a single letter segment (e.g., d of com.idreamsky.d) is considered as obfuscated.

4) To further reduce the number of candidates, we exclude such packages that are prefixes of other
packages (e.g., we remove package com.sansec if package com.sansec.AESlib exists). The idea behind
this decision is that on the one hand long packages would indicate more fine-grained examination while,
on the other hand, short packages would increase the chance of being duplicated (by accident).

5) Finally in the last step, we perform package similarity analysis to discriminate common library
packages from normal app code package. Given p, a package name, and A, a set of apps which
include a package named p, our similarity analysis works in three steps:

5.1) Pairwise combinations of apps. We consider all the pairwise combinations of apps with package
name p. Recall that every considered package name p was selected as candidate because it appears
in at least 10 apps. Thus, for any given p, there are at least

(10
2

)
= 45 pairs to compare. Google’s

ad package com.google.ads is the one for which A is the largest (247,394 apps), leading to a over 30
billions pairs that require comparisons. For scalability reasons, we randomly select for each case of a
package name p, 10 pairs of apps, allowing us to assess whether this package name indeed represents
a common package code across the apps.

5.2) Method Comparisons. Analysis of a pair of apps is performed by computing the similarity
between their methods. This similarity takes into account not only the signatures of apps but also
their respective contents. Two methods, from two different apps, with the same signature are said to
be identical only when their contents are the same. Otherwise, they are simply said to be similar.
Such methods may exist between two packages of the same library in several cases: a method in
one library package may been modified to insert malicious payload during piggybacking operations;
different obfuscation algorithms applied on different apps that include the same library may produce
methods with the same signature but different contents. To limit the impact of obfuscation, we
proceed to abstract the contents of methods by comparing the types of statements (e.g., “invoke”) in
the Jimple code, leaving out all names of variables/fields/methods. However, since obfuscation is
not expected to modify SDK API methods, we also take into account the names of such methods.
Eventually, the similarity of methods is computed as a simple text differencing.

5.3) Similarity Analysis. In the last step, we finally perform pairwise similarity analysis for packages
with the same name p. There are two thresholds, namely tp and ta, which are involved in the
similarity analysis. First, we consider that two packages p1 and p2 correspond to the same common
library p if p1 and p2 are identical or are at least similar up to a threshold tp. Second, because of
the known common phenomenon of repackaging/piggybacking in Android, which may nullify the
package similarity (because they are probably from the same original app), we must dismiss cases
where the similarity score of the pair of apps (app1 and app2) is higher than a threshold ta. Note
that the similarity between apps is computed at the method level (i.e., what percentage of methods
are identical or similar between the apps?).

To summarize, for similarity analysis, given a pair of apps (app1, app2), we compute four metrics:
identical (i.e., the number of methods that are exactly the same, both in terms of signatures and
implementation), similar (i.e., the number of methods having the same signature but with different
contents), deleted (i.e., the number of methods that exist in app1 but not in app2), and new (i.e., the
number of methods existing only in app2). These metrics are indeed good indicators for comparison

vhttps://newcircle.com/bookshelf/java_fundamentals_tutorial/packaging
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and have been leveraged in state-of-the-art Android similarity tools, such as Androguard [62]. Given
these metrics, we can compute the similarity between the pair (app1, app2) using Formula 6.1.

similarity = max{ identical

total − new
,

identical

total − deleted
} (6.1)

where
total = identical + similar + deleted + new (6.2)

Note that we use the same formula to perform the similarity analysis of a given pair of packages
(p1, p2), except that the metrics are computed by counting methods in packages rather than in apps
(e.g. identical is the number of methods that are exactly the same in p1 and p2, deleted is the number
of methods that exist in p1 but not in p2.)

6.3.3 Step 3: Identification of Ad Libraries

A specific example of type of widespread common libraries in Android is advertisement libraries. Such
libraries are indeed used pervasively as they constitute one of the main ways for app developers to be
rewarded for their development effort. Ad libraries are also often inserted during piggybacking to
redirect revenues. Their presence in an app often lead antivirus products to flag them as adware.
Recent approaches for Android security analysis are now processing ad library code in a specific way
to reduce false positives. For example, MUDFLOW [13] simply does not report any potential sensitive
data leaks through ad libraries, as they might be legitimate. To that end, they have leveraged a
limited whitelist of 12 libraries. In this context, we propose to further mine our collected set of
common libraries to identify a large set of ad libraries which could be leveraged to improve the results
of Android analyses. To that end, we consider a basic method of detection based on the library name
and a more semantic approach based on the characteristics of ad libraries.

6.3.3.1 Keywords matching

We note that ad library package names generally contain keywords that include the term “ad”.
Widespread examples of such packages are com.google.ads and com.adsdk.sdk. Unfortunately, simply
matching “ad” in the package name would lead to substantial portion of false positives as several
library package names have “ad” in their segments which are common words (e.g., shadow, gadget,
load, adapter, adobe). Thus, to work around this limitation, we collect all English words containing
“ad” from SCOWLvi (accounting for a total of 13,385 words), and dismiss packages containing such
words as potential ad libraries.

6.3.3.2 Ad features investigations

We consider samples from a list of ad packages summarized by Grace et al. [84] and manually
investigate how ad libraries differentiate from other common libraries, and infer a set of features
whose presence in a package would justify the tag of ad library.

viSpell Checker Oriented Word Lists: http://wordlist.aspell.net
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Internet usage All investigated libraries unsurprisingly require access to Internet to remotely upload
to a server some viewing statistics and update ad contents. Thus, apps integrating add libraries also
require the android.permission.INTERNET permission. Given this fact, we can already exclude a
number of common libraries, which appear in apps without Internet access, as ad libraries. However,
given that an app may requests the INTERNET permission for its own needs, we cannot immediately
state that a common library in such an app is an add library. Instead we must investigate whether
the code of such an app indeed declares uses Internet-related APIs. To that end, we leveraged the
whitelist of such APIs, originally shared by PSCout [12], to produce candidate ad libraries among the
common libraries.

Components declaration Our manual investigations have also revealed that ad libraries often
contain components, mainly Activities, for facilitating users’ ad-related interactions (e.g., switching
to a new full-screen ad page when users click on an advertisement banner). As a concrete example,
MoPubvii is an advertisement library targeting both Android and iOS. To integrate this library in
their apps, developers must declare four components in their apps’ manifest file. One component
in particular, MraidVideoPlayerActivity is necessary for video ads to work properly. Thus, when a
library package is associated to a declared component, we flag it as a potential ad library.

Views declaration In Android, advertisements are generally set to be visualized, which in Android
programming imply the use of view gadgets (i.e., classes extended from android.view.View). Thus,
we check whether there are View-based classes under a common library to flag it as candidate ad
library.

6.3.4 Implementation Details

We implement our approach through several languages such as Java and shell/Python scripts. In step
1, we leverage Apktoolviii to disassemble Android apps. Given an Android app, we extract the prefixes
of paths of smali files (a format used by Apktool to represent Android apps’ code) to represent its
packages. Then, we cluster all the packages of investigated apps together and rank them through
their repeated times. The packages whose size are greater than a given threshold are selected as
library candidates.

The code similarity analysis in step 2 and the ad library conformation in step 3 are implemented in
Java. More specifically, both of them leverage Soot [115] to achieve their functionality and work in
the Jimple code level, where Soot is a framework for analyzing and transforming Java/Android apps
while Jimple is an intermediate representation of Soot. The transformation from Android Dalvik
bytecode into Jimple code is powered by Dexpler [24], which currently is available as a plugin in
Soot.

6.4 Dataset and Results

In this section, we first disclose our evaluated data set in Section 6.4.1 and then we present our overall
findings including both common libraries and also ad libraries in Section 6.4.2. Finally, we present
further statistics on the libraries in Section 6.4.3 and Section 6.4.4.
viihttps://github.com/mopub/mopub-android-sdk

viiihttps://ibotpeaches.github.io/Apktool/
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6.4.1 Dataset

Our data set is made up of 1,455,516 (around 1.5 million) apps that are collected from the official
Google market (Google Play) over several months. This data set has already been applied for
large-scale experiments on Android researches such as malware detection [121] and piggybacked apps
detection [139]. We have sent all the apps into VirusTotal to check whether they are malicious or
not. Among the 1,455,516 apps, 311,490 (nearly 21%) of them are flagged by at least one anti-virus
product hosted on VirusTotal while 65,079 (nearly 4%) apps are flagged by at least five anti-virus
products.

6.4.2 Overall Results

Table 6.1: Summary of Our Investigation Results.
Type Number
#. of packages (total) 7,710,505
#. of packages (distinct) 676,674
#. of packages (Nshared_apps > 10) 19,725
#. of packages (one segment) 613
#. of packages (obfuscated) 1,461
#. of packages (prefix of others) 919
Size of final set of candidate common libraries 16,732

Table 6.1 illustrates the overall results of our investigation on a data set of around 1.5 million apps.
In total, we collect 676,674 distinct package names, where we filter out 656,949 package names that
are used by at most 10 apps, leading to a set of 19,715 package names. We further dismiss 2,993 from
consideration thanks to our library refinement process. Those 2,993 package names are composed
of 613 one segment packages, 1,461 obfuscated packages and 919 packages that are prefix of other
packages. Finally, we perform pairwise similarity analysis for 16,732 packages. For each package,
we randomly select 10 pairs of apps to do the comparison. As long as there are positive results, we
consider it as a common library, and verse visa.

6.4.2.1 Results of Common Libraries

Table 6.2: Results of Common Libraries with Different Thresholds: tp for Package-level and ta for App-level.
Common Libraries are Select if and only if Their Package-level Similarities are Bigger than tp while Their
App-level Similarities are Smaller than ta.

tp\ta 0.1 0.2 0.3 0.4
0.9 1,113 2,148 3,173 4,072
0.8 1,363 2,564 3,715 4,685
0.7 1,573 2,898 4,117 5,144
0.6 1,735 3,179 4,452 5,509

Our common libraries selection is actually depending on the two thresholds introduced in Section 6.3:
ta for app-level similarity and tp for package-level similarity. The precision of our results is positively
correlated to tp while negatively correlated to ta. Indeed, the bigger tp is, the higher the probability
that a given candidate library is an actual common library, giving the assumption that libraries are
not modified when they are used among apps. On the other hand, the smaller ta is, the lower the
probability that the compared two apps are repackaged/piggybacked from one to another. Recall
that if two apps are repackaged/piggybacked from one to another, the similarity of packages would
become meaningless, as in this case, most packages would be the same, without being necessarily
common libraries.
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Table 6.2 illustrates the results of common libraries with different thresholds. The final number of
common libraries range from 1,113 to 5,509. To better refer to our results in the remainder of the
paper, we name CLp,a the set of Common Libraries that are selected with the thresholds tp and ta.
For example, CL9,1 stands for the precise set of 1,113 common libraries we harvest with tp = 0.9
and ta = 0.1, while CL6,4 stands for the more “loose” set of common libraries, which although is the
biggest set, contains potential more false positives (less precise than CL9,1).

6.4.2.2 Results of Ad Libraries

Table 6.3: Results of Ad Libraries.
Description #. of Libraries
Ad-related keyword matching 275
Ad characteristic-based investigating 822
Merge (conservative ad libraries) 1050
Manual confirmation (keyword matching) 222
Manual confirmation (characteristic investigating) 137
Merge (precise ad libraries) 240

We then distill ad libraries from the previously harvested common libraries. We start from the
CL6,4 library set and performs two types of refinement: 1) ad-related keywords matching and 2) ad
characteristic-based investigation. The refinement results are presented in Table 6.3.

Ad-related keywords matching. By following the process described in Section 6.3.3, we were able
to automatically harvest 275 ad libraries.

Ad characteristic-based investigating. We have observed three characteristics that ad libraries
may have in Section 6.3.3. Fig. 6.4 shows the results of our investigation. Among the 5,509 libraries
in CL6,4, 1,248 of them request the INTERNET permission, 1,560 have declared View gadgets and
1,388 have declared components. The intersection results are also illustrated in Fig. 6.4. In this work,
we take the intersection of all the three characteristics as potential ad libraries, leading to a set of
822 ad libraries.

In the next step, we merge the aforementioned two ad libraries sets, leading to a set of 1,050 ad
libraries. In the remainder of the paper, we name this set AD1050.

Comp-declaration
1,388

VIew-declaration
1,560

INTERNET-permission
1,248

1,202

888 936

822

Figure 6.4: Investigation Results of Different Characteristics for Ad Libraries.

Manual confirmation. As far as we know, AD1050 is currently the largest set of ad libraries
existing in the community. However, because we start from CL6,4, mainly to start with the biggest
set (minimizing the miss of libraries), AD1050 may contain false positives. To this end, we perform a
fast but aggressive manual refinement, where only clear ad librariesix are taken into account. As a
ixTheir corresponding web pages have explicitly claimed that they function advertisements.
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result, 240 libraries are confirmed as ad librariesx, hereinafter we refer to this set as AD240. This
240 ad libraries are highly precise. We argue that a highly precise ad library set is important, which
plays as a basement that makes it possible for other approaches to also yield precise results.

6.4.3 Popularity of Common Libraries

Fig. 6.5 lists the top 20 common libraries and indicates, for each, the number of apps in which they
are used. The top used library is com.google.ads, which is used by 247,394 apps (nearly 17%) of our
data set. Moreover, the results suggest that developers often use libraries which are proposed by
popular (well-known) companies such as Google or Facebook.
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Figure 6.5: Popularity of the Top 20 Common Libraries in Our Investigation, and the Number of Apps in
which They are Used.

6.4.4 Proportion of Library code in App code

We then look into the percentage of Android apps code which come from libraries. To this end, we
consider the libraries present in CL9,1 and a set of 10,000 apps randomly selected from our initial set
of apps. For each app, we compute the size of the CL9,1 libraries (sizelib, in bytes) presented in the
app and the size of the whole app (sizeapp). We finally compute the portion p of the use of common
libraries through p = sizelib/sizeapp. The experimental results vary from 0 to 0.99, giving a median
value 0.41. Among the 10,000 apps, 4,293 (42.9%) of them have used more code in libraries than
in their real logic (p >= 0.5). This results show that Android apps are indeed using common
libraries pervasively, i.e., 41% of an Android app code on average is contributed by
common libraries.

6.5 Evaluation

Our investigation into libraries have also revealed interesting findings on the use of libraries: 1)
Well-used libraries, such as unit3d, are often used as the compromising point for malicious apps. 2)
Malware writers often name their malicious components after famous and pervasively used libraries
from reputed firms: e.g., the DroidKungFu malware family spreads malicious payload within a package
called com.google.update. Our similarity analysis allowed to detect such fraud by further investigating
outliers.

xThis does not mean the remaining 810 libraries are not ad libraries.
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Furthermore, we have also found that, except for improving the time performance of static analysis,
our collected common libraries can be also leveraged to enhance other analyses. In this chapter,
we discuss two cases where our harvested common libraries show significant improvements to the
performance of Android analysis approaches.

6.5.1 Machine Learning for Malware Detection

We investigate the case of machine-learning based approaches for Android, and study the impact
of ignoring or taking into account common libraries on the accuracy of prediction. We consider a
case study based on MUDFLOW [13] and its dataset. This dataset contains sensitive data leaks
information for 15,096 malicious apps and 2,800 benign apps. MUDFLOW is a relevant example as
the authors have originally foreseen the problem with libraries and thus attempted to exclude a small
set of ad libraries in their experiments. With our large harvested dataset of common libraries, we
investigate the performance gap that can be achieved by excluding more known libraries.

MUDFLOW performs machine learning to mine apps that use sensitive data abnormally. More
specifically, MUDFLOW takes each distinct type of sensitive data leak (from pre-defined source to
sink) and performs an one-class classification to detect abnormal apps. One-class classification is
realistic in their experimental settings with their imbalanced data set (they have much more malicious
apps than benign apps).

Since our goal is not to replicate MUDFLOW (along with its sophisticated library-unrelated parame-
ters), but to evaluate the impact of excluding common libraries for machine learning, we propose to
implement a slightly simplified approach for our experiments. Unlike MUDFLOW, which constructs
a training set based on benign apps and then applies it to predict unknown apps, we simply perform
10-fold cross validation in our evaluation. As we are working on the same imbalanced data, we also
choose one-class classification.

We have performed four types of experiments, which are detailed below:

• E5: We evaluate on all the 15,096 malicious apps. The feature set is made up of distinct
sensitive data leaks. Instead of taking into account source and sink methods, each data leak
is represented through the source and sink categories (e.g., methods like Log.i(), Log.e() are
represented as category LOG).

• E6: This experiment has similar settings as in E5, except that such sensitive data leaks that
are contributed by the 12 ad libraries considered by MUDFLOW are excluded.

• E7: This experiment has similar settings as in E6. In this case however, the excluded set of
libraries is the most constrained set of 1,113 libraries harvested in our work.

• E8: This experiment has similar settings as in E7. In this case however, the excluded set of
libraries is constituted by libraries selected based on a more loose definition of libraries. The
excluding set contains 5,509 libraries, which may include a number of false positives.

The results of these four experiments are shown in Table 6.4. Comparing E7 to E5, the accuracy is
indeed increased, which suggests that the presence of common libraries code could confuse machine
learning-based classifier. However, the accuracy remained the same between E6 and E5, suggesting
that the MUDFLOW whitelist, which contains 12 libraries, is too small to impact the final results.
Interestingly, with our largest set of libraries, the accuracy of E8 decreases slightly comparing to
that of E7. This suggests that the precision in common library identification is important: excluding
non-library code will eventually decrease the overall performance for machine learning.
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Table 6.4: Results of Our Machine Learning based Experiments Performed on the Data Set Provided by
MUDFLOW [13].

Seq. #. of Features Excluding Libs Accuracy
1 109 0 81.85%
2 109 12 (MUDFLOW [13]) 81.85%
3 109 1,113 (tp = 0.9,ta = 0.1) 83.10%
4 108 5,509 (tp = 0.6,ta = 0.4) 83.01%

6.5.2 Piggybacking Detection

Recall that in Section 6.2, we have shown that piggybacking detection approaches are likely to yield
false positives and false negatives if code contributed by common libraries are not taken into account.
We provide more empirical evidence of such threats.

For our experiments we rely on a set of pairs of apps that we have collected in the similarity analysis
of Step 2 and regrouped into two categories: the first category, FNData, contains 761 pairs of apps
where the similarity score for each pair is below 50% while the second category, FPData, includes
1,100 pairs of apps where the similarity score of each pair of apps is over 80%. Given the previously
justified threshold of 80% for deciding on piggybacking (cf. Section 6.2), we assume that all pairs in
FPData are piggybacked pairs while those in FNData are not. We now explore again the similarity
scores of the pairs when excluding from each app the common libraries (in CL91) they may include.

False positives elimination. Among the 1,100 pairs of apps in FPData, 1,029 (93.5%) remained similar
above the 80% threshold. 71 (6.5%) pairs of apps now have similarity scores below 80%, and can no
longer be supposed to be piggybacked pairs. We manually verified 10 of pairs and found that they
are indeed not piggybacked.

False negatives re-classification. Among the 761 pairs of apps in FNData, 110 (14%) have higher
similarity scores, among which 2 pairs are now beyond the threshold of 80% which would allows
to re-classify them as piggybacked pairs. We have manually verified and confirmed that these two
pairs of apps are piggybacked pairs: one pair was previously used in our motivating example section
(Fig. 6.1b).

6.6 Related Work

At first, we discuss a batch of works that investigate the issues related to libraries. Then, we show
that even if libraries are not harmful by themselves, they threaten the validity of other approaches.
Finally, we summarize the works that are dedicated to the identification of Android libraries.

Problems of Libraries. As reported by Hu et al. [96], Android libraries are currently suffering
three threats: 1) the library modification threat, where normal libraries can be modified to be
malicious. Our previous work has also confirmed this findings [139]. 2) the masquerading threat, e.g.,
a well-known malware family called DroidKungFu uses names such as com.google.update to pretend
the services are provided by Google [257]. 3) the aggressive library threat, where some legitimate
libraries have aggressive behaviors such as collecting users’ email address.

Other works [35,124,125] done by us and by others, have also shown that some libraries frequently
and aggressively collect (leak) users’ private information. For instance, the most common leaked
information is the device id, which is used by ad libraries to uniquely identify a user. This findings are
in line with the investigation of Stevens et al. [209], in which the authors show that, through libraries,
users can be tracked by a network sniffer across ad providers and by an ad provider across apps.
Besides, they also argue that ad libraries usually require permissions beyond their real needs and
some bad programmed libraries use Android’s Javascript extension mechanism insecurely. AdRisk [84]
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focuses on detecting privacy and security risks posed by ad libraries. Most notably, it shows that
some libraries even execute untrusted code from internet sources. Moreover, those untrusted code are
fetched through an unsafe mechanism, which by itself has caused serious security risks.

Gui et al. [86] have shown that free ad libraries actually come with hidden cost for developers such as
the rating of apps. As reported by Mojica et al. [172], ad libraries are indeed impacting the ratings of
Android apps. Moreover, As illustrated by Demetriou et al. [59], ad libraries can also learn from the
list of installed apps on a mobile device to infer a user’s sensitive attributes like gender, age, etc.

Although our work in this paper is not dedicated to identify problems of libraries, our findings, the list of
common (ad) libraries, can definitely benefit other approaches (e.g., API studies [29,131,147–149,196])
by giving them a good starting point for thorough analysis. For instance, Mojica et al. [196] leverages
Software Bertillonage [56] to investigate reuse among Android apps. They have found that most of
the classes reused are actually from third-party libraries. With the help of our big common library
set, the precision of their results could be much improved.

Research Works threatened by Libraries. Researchers have noticed Android libraries will
definitely influence the results of app clone detection [45, 53, 54, 186, 224], where most of them use
a list of libraries as a whitelist. As an example, Chen et al. [45] leverage a whitelist containing 73
libraries in their approach, which is far from being a complete whitelist of existing libraries, as shown
in [224], over 600 distinct libraries have been identified. However, this list is not publicly available.
Besides, comparing to our findings in this paper, this list is also considerably incomplete.

For clone detection, it is important to detect and filter out third-party libraries, as the results
may be doomed if the studied apps are dominated by common libraries. As an example, the very
first approach presented by Linares et al. [150] shows that the results are statistically significant
differences between including and excluding third-party libraries. Not only for clone detection, but
also for machine learning-based malware detection, the results are threatened by common libraries.
MUDFLOW [13], as an example, uses a list of 12 well-known ad libraries as a whitelist, to exclude
such features that fill in them. A later work done by Li et al. [121] also leverage that list in their
machine learning-based malware detection.

Our work, in this paper, provides a comprehensive list of common libraries, that can be leveraged by
other approaches and thus to significantly refine their results.

Identification of Libraries. Backes et al. [15] present a light-weight and effective approach called
LibScout to detect third-party libraries in Android apps. They devise a profile matching algorithm to
compute a similarity score for identifying library versions. Their approach has eventually identified
164 distinct third-party libraries with 2,065 different versions. Wang et al. [224] uses an automated
clustering technique to detect common libraries, in which they have found over 600 distinct libraries.
Our approach is in line with their assumptions on common libraries, however, we come with a different
approach and we also discriminate ad libraries from common libraries, for which they have not. The
recent LibRadar [162] approach extends WuKong’s clustering approach to generate unique profiles
for each detected cluster. Profiles are built from the frequency of API calls within distinct packages
in a cluster, which is also capable of being used for fast library identification. Another approach
called AdDetect [176], identifies Android ad libraries through their semantics (e.g., the usage of
Android components, or specific APIs) and then performs a ML-based classification to detect ad
libraries. However, this approach does not report any findings that can benefit the Android research
community.

6.7 Conclusion

We have presented our process for collecting a set of 1,113 common libraries and 240 ad libraries
from a dataset of about 1.5 million Android apps. To the best of our knowledge, these two sets are
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the largest ones that are publicly accessible in the community of Android research. We empirically
illustrate how these two library sets can be used as whitelists by Android analysis approaches to
improve their time performances. More specifically, we have shown that two approaches, namely
machine learning-based malware detection, and piggybacking detection, can also benefit from our
harvested libraries.
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7 Understanding Malicious Behaviors

The previous three chapters have demonstrated that existing static security analyzers could be amplified
by code instrumentation techniques to pinpoint more malicious apps. However, our endeavor is still
unable to justify how malicious payloads are introduced. As a perspective for our future research, we
thus conduct a thorough dissection on malicious apps, in an attempt to understand how malicious apps
are actually built. In this chapter, our investigation will specifically focus on piggybacked malware, a
special type of malicious apps, whose malicious payloads are easily identifiable.

Although recent research has produced approaches and tools to identify piggybacked apps, the literature
lacks a comprehensive investigation into such phenomenon. We fill this gap by 1) systematically
building a large set of piggybacked and benign apps pairs, which we release to the community, 2)
empirically studying the characteristics of malicious piggybacked apps in comparison with their benign
counterparts, and 3) providing insights on piggybacking processes. Among several findings providing
insights analysis techniques should build upon to improve the overall detection and classification
accuracy of piggybacked apps, we show that piggybacking operations not only concern app code, but
also extensively manipulates app resource files, largely contradicting common beliefs.

This chapter is based on the work published in the following technical reports:

• Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo, and
Lorenzo Cavallaro. Understanding android app piggybacking: A systematic study of malicious
code grafting. IEEE Transactions on Information Forensics & Security (TIFS), 2017

• Li Li, Daoyuan Li, Tegawendé F Bissyandé, David Lo, Jacques Klein, and Yves Le Traon.
Ungrafting Malicious Code from Piggybacked Android Apps. Technique Report, 2016
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7.1 Introduction

Unfortunately, unlike for traditional software executables, Android app package elements can be
easily modified by third parties [22]. Malware writers can thus build on top of popular apps to ensure
a wide diffusion of their malicious code within the Android ecosystem. Indeed, it may be effective to
simply unpack a benign, preferably popular, app and then graft some malicious code on it before
repackaging it and distributing it for free. The resulting app, which thus piggybacks a malicious
payload, is referred to as a piggybacked app.

Previous studies, have exposed statistics suggesting that malware is written at an industrial scale
and that a given malicious component can be extensively reused in a bulk of malware [257]. These
findings support the assumption that most malware might be simply piggybacked versions of official
applications. Evidence of the widespread use of piggybacking by malware writers is provided in
MalGenome [257], a reference dataset in the Android security community, where 80% of the malicious
samples are known to be built via repackaging other apps. A more recent analysis highlights the
fact that even Google Play security checkers are challenged in detecting fake appsi, providing further
evidence that the problem is widespread.

The problem of detecting piggybacked apps is eventually related to the problem of detecting app
clones and repackaged apps. State-of-the-art techniques, such as DroidMoss [256] and DNADroid [53],
have focused on performing pairwise similarity comparisons of app code. To alleviate the scalability
problem that exists in such approaches, PiggyApp [255] builds, for every app, a vector with normalized
values of semantic features extracted from components implementing the app’s primary functionality.
Thus, instead of computing the similarity between apps based on their code, PiggyApp computes,
as a proxy, the distance between their corresponding vectors. This approach however also remains
impractical, since one would require the dataset to contain exhaustively the piggybacked apps as well
as their corresponding original apps. In practice however, many piggybacked apps are likely to be
uploaded into different markets than where the original app can be found.

Overall, the aforementioned limitations could be overcome with approaches that leverage more
knowledge on how piggybacked apps are built. Instead of a brute-force comparison, one could use
semantic features that hint on probable piggybacking scenarios.

The goal of our work is to extensively investigate piggybacked apps for understanding how piggybacking
is performed. We make the following contributions:

• We contribute to the research community efforts by building and sharing the first publicly available
datasetii on piggybacked apps. This dataset, which was collected in a systematic way and includes
for each piggybacked app its associated original app, can be used as a reference ground truth for
assessing approaches.

• We conduct a comprehensive study of piggybacked apps and report our findings on how piggybacked
apps differentiate from benign apps, what actions are performed by piggybackers, what payloads are
inserted, etc. Among several insights, we find that piggybacking is done with little sophistication,
in many cases automatically, and often via library code.

We now provide a taxonomy to which we will refer to in the remainder of this work. Figure 7.1
illustrates the constituting parts of a piggybacked app. Such malware are built by taking a given
original app, referred to in the literature [255] as the carrier, and grafting to it a malicious payload,
referred to as the rider. The malicious behaviour will be triggered thanks to the hook code that
is inserted by the malware writer to connect his rider code to the carrier app code. The hook thus
defines the point where carrier context is switched into the rider context in the execution flow.

ihttp://goo.gl/kAFjkQ – Posted on 24 February 2016
iihttps://github.com/serval-snt-uni-lu/Piggybacking
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Figure 7.1: Piggybacking Terminology.

The remainder of this chapter is organized as follows. Section 7.2 details the dataset of piggybacked
apps we collect. Section 7.3 presents the detailed investigation we conduct on our collected dataset,
including both dimensions and findings. Section 7.4 discusses the potential outcomes of this dissection.
Section 7.5 enumerates related work and Section 7.6 concludes this chapter.

7.2 Dataset Collection

Research on Android security is challenged by the scarcity of datasets and benchmarks. Despite
the abundance of studies and approaches on detection of piggybacked apps, access to the associated
datasets is limited. Furthermore, while other studies focus on various kinds of repackaged apps, ours
targets exclusively piggybacked malware. Finally, related work apply their approach on random
datasets and then manually verify the findings to compute performance. Conversely, we take a different
approach and automate the collection of a ground truth that we share with the communityiii.

7.2.1 Process

Our collection is based on AndroZoo [3], a large repository of millions of apps crawled over several
months from several markets (including Google Play, appchina, anzhi), open source repositories
(including F-Droid) and researcher datasets (such as the MalGenome dataset). We follow the process
in Figure 7.2 to collect the ground truth dataset of piggybacked apps.

First, we send all apps to VirusTotal to collect their associated anti-virus scanning reports. Based on
VirusTotal’s results, we classify the set of apps to two subsets: one contains only benign apps while
the other contains only malicious apps.

Second, we filter out irrelevant results, in an attempt to only focus on building piggybacking pairs.
This step has further been divided into three sub-steps. In step (2.1), we filter the apps based on
Application Package name recorded in the Manifest file of each app, which should identify uniquely
the appiv. Considering the identicality of package names, we were able to focus on a subset of about
540 thousand pairs < appg, appm > of benign (appg) and maliciousv (appm) apps sharing the same
package name. This step yields our first set of candidate pairs. Before proceeding to the next step,
we ensure that for each pair, the creation date of the benign app precede the one of the malicious app.
In step (2.2), we do not consider cases where a developer may piggyback his own app to include new
iiihttps://github.com/serval-snt-uni-lu/Piggybacking
ivTwo apps with the same Application Package name cannot be installed on the same device. New versions of an app

keep the package name, allowing updates instead of multiple installs.
vIn this study, we consider an app to be malware if at least one of the anti-virus products from VirusTotal has labeled

it as such.
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Figure 7.2: The Ground Truth Build Process.

payload. Indeed, we consider piggybacking to be essentially a parasite activity, where one developer
exploits the work of another to carry his malicious payload. Furthermore, developers may later
“piggyback” their own app, e.g., to insert an advertising component to collect revenue, transforming
these apps to adware (often classified as malware). We choose to clean the dataset from such apps.
Thus, we discard all pairs where both apps are signed with the same developer certificate. This step
brings the subset to about 70 thousands pairs. In step (2.3), we focus on cases where piggybackers
do not modify version numbers and do not entirely re-implement functionality which would require
new SDK versions. By considering pairs where both apps share the same version number and SDK
requirements, we are able to compile a promising dataset of 1,497 app pairs where one app potentially
piggybacks the other to include a malicious payload.

Finally, in order to build a final ground truth, we must validate the relevance of each pair as a
piggybacking pair. To that end, we perform a similarity analysis where we expect that, given a pair
of apps < appg, appm >, appg’s code is part of appm and appm includes new code to constitute the
malicious payload.

7.2.2 Similarity Analysis

Similarity analysis is essential to understand the difference (or similarity) of two apps such as a pair
of piggybacked apps. Given a pair of apps (app1, app2), we compute the following four metrics that
have already been adopted by state-of-the-art tools such as Androguard [62]:

• identical – a given method code is exactly the same in both apps.

• similar – a given method has slightly changed (at the instruction level) between the two apps.

• new – a method has been added in the piggybacked app.

• deleted – a method has been deleted from the carrier code when including it in the piggybacked
app.

Based on these metrics, we can now calculate the similarity score of pair (app1, app2) using Formula 7.1,
for which we have already leveraged in Chapter 6.

similarity = max{ identical

total − new
,

identical

total − deleted
} (7.1)

where
total = identical + similar + deleted + new (7.2)
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7.2.2.1 Code to text Representation

In order to enable a fast comparison, our similarity analysis is based on an abstract text that represents
the logic of each app method. Given two Android apps, our similarity analysis compares their included
methods based on the sequence of statements that they implement. We first pre-define a mapping
between statement typesvi and printable characters. For example, a static invocation statement could
be mapped to the character c. Based on this mapping, every method can be represented at a high
level as a small string. In the example of Figure 7.3, the content of method onCreate() is represented
by string aabcdbe.

In addition to the fast comparison scheme, applying code to text representation for similarity analysis
brings in another advantage: it is resilient to simple obfuscation scenarios that change the names of
classes, methods and variables. As cons, the similarity measure is only an approximation.

    protected void onCreate(Bundle $param0) {
1:    Intent $Intent; 

2:    Intent $Intent_1;

3:    specialinvoke this.onCreate($param0);

4:    staticinvoke <UarcaNawren: void nvcisoewa(Context)>(this);

5:    $Intent = new Intent;

6:    specialinvoke $Intent.<init>(this, class "");

7:    virtualinvoke $Intent.addFlags(65536);
    }

a

b

a

b

d

c

e
aabcdbe

Figure 7.3: Illustration of Code to Text Transformation. Characters in the Right Box are Representations
of the Type of Statements.

7.2.2.2 Ground truth inference

Our similarity analysis allowed to consolidate our dataset by validating that apps in a piggybacking
pair were indeed very similar in terms of code content; pairs with code similarity of less than a
pre-defined 80% threshold are filtered out.

We further drop cases of app pairs where no new code has been added (e.g., only resource files have
been modified/added). The final set of ground truth is now composed of 950 pairs of apps.

7.2.2.3 Hook and rider identification

Methods that are found to be similar between a pair of app represent a sweet spot for characterizing
piggybacking. Given a method m present in two artifacts a1 and a2 but differing in their implemen-
tation, our similarity analysis takes one step further by performing a fine-grained analysis to localize
the added/changed/deleted statements of m in a2 w.r.t a1. Such statements are considered as the
hooks via which the malware writer connects his malicious code to the original app (a1). Rider code
is then inferred as the set of added methods and classes in the control-flow graph that are reachable
from the hook statements.

vihttps://ssebuild.cased.de/nightly/soot/javadoc/index.html
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Figure 7.4: Top 5 Categories (Left) and Game Sub-categories (Right) of Android Apps Used to Carry
Piggybacking Payloads.

7.2.3 Dataset Characterization

For each piggybacking pair in our dataset, we collect the metadata information (i.e., creation date,
description, categorization, download count) of the original app by looking in their Manifest file and
by crawling description pages from specialized websitesvii.

Variety of app categories. Statistics of app categories, illustrated in Figure 7.4, show that Game
apps are the most representative category in our piggybacked datasets. A random sampling on our
dataset of 2 million apps shows that Games also constitute the largest category of apps. Our dataset
of piggybacking pairs further includes piggybacked apps from a variety of 22 categories such as
Productivity, Tools, Entertainment, Personalization, Social Networking, Shopping, Sports, Weather,
Transportation or News.

Distribution channels. Piggybacked apps from our dataset were found in several markets. While
many were distributed on alternative markets such as anzhi (71%) and appChina (14%), some are
actually spread via the official Google Play market (2.2%).

Popularity of apps. The distribution of download counts of original apps in piggybacking pairs and of
a random sample of benign apps from Google Play, shows that mainly popular apps are leveraged by
malware writers to carry their malicious payloads (cf. Figure 7.5).

1,000,000+ 

100,000+ 

10,000+ 

1000+ 

1+ 

ORIGINAL APPS RANDOM APPS 

Figure 7.5: Download Counts of Apps Leveraged for Piggybacking vs. Apps Randomly Sampled in
GooglePlay. (Sets are of Same Size)

Variety of malicious behaviour. We have collected AV reports from around 50 AV engines provided by
VirusTotal for the piggybacked apps. As a proxy to the type/family of malware they are categorized
in, we rely on AV labels. Our piggybacked apps were qualified with over 1000 distinct labels by the
AVs. Even considering that each AV has its own naming system, this high number suggests a variety
of malicious behaviour implemented in the piggybacked payloads.
viiNotably bestappsmarket.com
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Piggybacking delay. For each piggybacking pair, we compute the time difference to explore the time
delay before an app is leveraged for piggybacking. Distribution in Figure 7.6 shows that piggybacking
operation can be done on apps of any age, with a median delay of 33 days. On average however,
malware writers wait half a year before using a “known” app to spread malicious payload.

0 100 200 300 400 500

Days

mean=186 days

Figure 7.6: App Age when it is Piggybacked (Median=33 Days)

Piggybacking pair similarity. Figure 7.7 plots the similarity analysis results of our collected dataset.
Generally, a small amount of methods in carrier are modified in the piggybacked code and the
remaining methods are kept identical. In most cases, piggybacked apps also introduce new methods
while piggybacked apps remove methods from the original carrier code in only a few cases.
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Figure 7.7: Overview of the Similarity Analysis Findings for the Pairs of Apps in Our Collected Dataset.

7.3 Understanding Piggybacking

Our investigation into Android app piggybacking is carried out through a dissection of Android
piggybacked apps. We overview in Section 7.3.1 the various dimensions of dissection that we used to
answer several relevant research questions for understanding the piggybacking process. Subsequently,
we detail our study and the findings in Section 7.3.2.

7.3.1 Dimensions of Dissection

Our study explores several aspects of Android app piggybacking. Overall we look into:

• Which app elements are manipulated by piggybackers?

An Android application package includes a classes.dex file that contains the main code implementing
app functionality. Besides this code, the apk file includes icons and background image files, layout
description XML files, as well as other resource files such as library Jar files and archives containing
extra code.

Image and layout resource files are important for malware writers who must ensure, beyond advertised
functionality, that the malicious app has the proper “look and feel”. Package names, launcher
activity and component lists are also essential elements described in the Manifest file that could be
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manipulated during piggybacking to ensure that the app is transparently installed on user devices,
even when the original app is already installed, and that the malicious code is triggered seamlessly.
We investigate the extent of these modifications to answer the following research questions:

RQ-01 Are resource files as much concerned by piggybacking operations as app bytecode?

RQ-02 What types of resources are included in the malicious payload?

RQ-03 Are rider code samples redundant across piggybacked apps?

RQ-04 What changes are applied to the Manifest file during piggybacking?

RQ-05 What developer certificates can be found in piggybacked apps?

• How app functionality and behaviour are impacted?

Android apps are made up of four types of components: 1) Activity, which is used to represent the
visible part of Android apps; 2) Service, which is dedicated to execute tasks in the background; 3)
Broadcast Receiver, which waits for receiving user-specific or system events; and 4) Content Provider,
which plays as a standard means for structural data access. These components may not be equally
important for spreading malicious payloads.

App components use Intents as the primary means for exchanging information. When the Android
OS resolves an intent which is not explicitly targeted to a specific component, it will look for all
registered components that have Intent filters with actions matching the intent action. Indeed, Intent
filters are used by apps to declare their capabilities. Piggybacked apps may declare new capabilities
to trick users into triggering themselves the malicious behaviour.

Finally, every Android app must be granted the necessary permissions to access every sensitive
resource or API required for its functioning. If the malicious code interacts with more sensitive
resources than the original app, new permissions must be requested in the Manifest file.

In the following research questions, we investigate in details the scenarios mentioned above.

RQ-06 Does the malicious payload require extra-permissions to execute?

RQ-07 Which types of components are more manipulated in piggybacking?

RQ-08 Is piggybacking always performed manually for every target popular app?

RQ-09 What kind of actions, encoded in Intents, are created by piggybacked rider code?

RQ-10 Are there new sensitive data leaks performed for the piggybacking needs?

• Where malicious code is hooked into benign apps?

To elude detection, malware writers must identify the sweet spots to graft malicious rider code to the
benign carrier code. Programmatically, in Android, there are mainly two ways to ensure that rider
code will be triggered during app execution. We refer to the two ways as type1 and type2 hooks.
Type1 hooks modify carrier code to insert specific method calls that connect to rider code, which
does not need to modify the Manifest file. Conversely, Type2 hooks come in as rider components
(need to register in Manifest), which can be launched independently (e.g., via user actions such as
clicking, or system events). It is thus important to investigate to what extent piggybackers place
hooks that ensure that the rider code will be executed (e.g., with only type2 hooks or both?).

Piggybackers may also attempt to elude static detection of malicious behaviour by dynamically
loading parts of the rider code. Finally, rider code may deliver malicious behaviour from various
families. We investigate these aspects through the following research questions:

RQ-11 Is the injected rider code complex?
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RQ-12 Is the piggybacking rider code limited to the statically accessible code?

RQ-13 How tightly is the rider code integrated with the carrier code?

RQ-14 Are hook code samples specific to each piggybacked app?

RQ-15 What families of malware are spread via piggybacking?

7.3.2 Findings

In this section we report on the findings yielded by our investigation of the research questions outlined
above. For each of the findings, named from F1 to F20, we provide the take-home message before
providing details on the analysis.

When a finding involves a comparison of a characteristic of piggybacked app w.r.t original apps, we
have ensured that the difference is statistically significant by performing the Mann-Whitney-
Wilcoxon (MWW) test. MWW is a non-parametric statistical hypothesis test for assessing the
statistical significance of the difference between the distributions in two datasets [166]. We adopt this
test as it does not assume any specific distribution, a suitable property for our experimental setting.
In this work, we consider a significance level at α = 0.001viii.

For readers’ quick reference, we enumerate in Table 7.1, the findings that were yielded in the
investigation of each Research question.

Table 7.1: Contributions of Findings to Research Question.
Research Contributing Research Contributing
Question Findings Question Findings
RQ-01 F1, F2 RQ-09 F15
RQ-02 F1, F2 RQ-10 F20
RQ-03 F13, F14, F15 RQ-11 F17, F18
RQ-04 F4, F5, F8, F9 F10, F11 RQ-12 F2, F17
RQ-05 F3, F19 RQ-13 F12, F13
RQ-06 F4, F5, F6, F7 RQ-14 F12, F13
RQ-07 F8 RQ-15 F16
RQ-08 F3, F6

F1I The realisation of malicious behaviour is often accompanied by a manipulation (i.e., adding/re-
moving/replacing) of app resource files.

In our dataset collection, we only considered piggybacking cases where code has been modified to
deviate from original behaviour implementation. Thus, we focus on investigating how other app
elements are treated during piggybacking. As illustrated in Fig. 7.8, most (91%) piggybacked apps
have added new resource files to the original apps, while only a few (6%) have left the resources files
of the original apps untouched.

We first investigate the cases where the piggybacked app has removed resource files from the app
carrying its malicious payload. Fig. 7.9 highlights that many image files are removed as well as
some Java serialized objects. At a lesser extent, Plain text files, which may contain configuration
information, and XML files, which may describe layouts, are also often removed/replaced.

We further investigate the removal of resource files during piggybacking. A common case that we
have found is that resource file removal actually corresponds to files renaming. For example, for the
piggybacking pair (A801CF ix to 59F8A1 ) , six PNG files under the drawable directory have been

viiiWhen the null hypothesis is rejected, there is one chance in a thousand that this is due to a coincidence.
ixIn this paper, we refer to apps using the last six letters of their SHA256 hash, to enable quick retrieval in Androzoo.
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Figure 7.8: Distribution of piggybacked apps that add/remove resource files to/from their original counter-
parts.
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Figure 7.9: Top types of resource files removed during piggybacking.

slightly renamed. Besides file names, file extensions (e.g., from PNG to GIF) and parent directories
(e.g., from drawable-480dpi to drawable-xxhdpi) can be changed during piggybacking. This finding
suggests that piggybackers attempt to mitigate any possibility of being identified in basic approaches,
e.g., through resource-based similarity analysis. We have computed for example the similarity scores
in the piggybacking pair (A801CF to 59F8A1 ), and found that the resource-based similarity score is
72.3% while the code-based similarity score reaches 99.9%.

F2I Piggybacking modifies app behaviour mostly by tampering with existing original app code.

Although classes.dex remains the main site where app functionality is implemented, Android apps
can carry extra code that may be invoked at runtime. We investigate the resource files added by
piggybacked apps to check that they do not actually constitute the more subtle means used by
malware writers to insert malicious payload. Fig. 7.10 shows that most of the added resources are
media data (i.e., audio, video and image files). Extra DEX code have been added in only 8% of
piggybacked apps. In 10% of cases, native compiled code in ELF format has been added.

These results suggest that sophisticated piggybacking which manipulates extra code is still limited.
In most cases, malware writers simply modify the original app code.
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Figure 7.10: Distribution of piggybacked apps according to the types of added resource files.

F3I Piggybacked apps are potentially built in batches.

In our effort towards understanding app piggybacking, we investigate the developers who sign the
certificates of those apps. We found that some certificates have been used for several apps. For
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example, RANGFEI.RSA certificate key appears in 71 piggybacked apps of our dataset, suggesting
that the owner of this signature is intensively producing batches of piggybacked apps.

We further consider the case of the 71 piggybacked apps signed with RANGFEI.RSA to investigate
whether the developer injected similar malicious payloads in the apps. To that end, we first cluster the
71 apps through the Expectation-Maximization algorithm [173] using rider class names as features,
yielding 8 clusters. We then investigate how different apps in one cluster are from apps in the others.
To that end, we consider the set of labels and compute the Jaccard distance between sets of labels
across clusters. We found that the clusters were highly distant (average distance > 0.7), suggesting
different payloads in the associated piggybacked apps.

F4I Piggybacking often requires new permissions to allow the realisation of malicious behaviour.

For every piggybacking pair, we check in the Manifest files how requested permissions differ. We found
that 812 (85%) piggybacked apps have requested new permissions that were not initially requested by
their original counterparts. Fig. 7.11 enumerates the top 10 newly added permissions in our dataset
of piggybacked apps. 6 out these 10 permissions are for allowing access to sensitive user/phone
information. We note that almost half of the piggybacked apps require the WAKE_LOCK permission
which enables it to keep device processor from sleeping or screen from dimming. This permission is
mostly used by apps that must keep executing tasks even when the user is not actually using his
device.
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Figure 7.11: Top 10 permissions that are newly added.

F5I Some permissions appear to be more requested by piggybacked apps than non-piggybacked apps.

From the newly added permissions of Fig. 7.11, we note that permission SYSTEM_ALERT_WINDOW,
which is requested by 458 (i.e., '50%) piggybacked apps, is only requested by 26 (i.e., 3%) original
benign apps (as illustrated in Fig. 7.12). When considering the top 10 newly added permissions only,
we note that they are requested, on average, by 65% piggybacked apps and only 26% benign original
apps.

Fig. 7.13 further shows that, excluding outliers, a given piggybacked app requests a minimum of 5,
and median number of 7 (out of the 10) from the top permissions list, while original benign apps only
request a maximum of 4.

F6I Piggybacking is probably largely automated.

Since permissions are a key element in Android app programming, a malware writer must systematically
ensure that the necessary permissions are granted to its app to enable the working of inserted
malicious payloads. We investigate how permissions are added, and note that there seems to be a
naive automated process for adding permissions. Indeed, we found that permissions requests are
often duplicated within the same Manifest file. For example, permission READ_PHONE_STATE, which
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Figure 7.13: Distribution of the number of top-10 permissions requested by original apps and piggybacked
apps.

is among the top newly added permissions by piggybacked apps, has been systematically duplicated
in 58 apps. Often both permission requests appear consecutively in the Manifest file as illustrated
in Listing 7.1 which is extracted from app 713414, suggesting that the second permission was not
manually added by a developer.

1 uses -perm:" android . permission . ACCESS_WIFI_STATE "
2 uses -perm:" android . permission . READ_PHONE_STATE "
3 uses -perm:" android . permission . READ_PHONE_STATE "
4 uses -perm:" android . permission . GET_ACCOUNTS "

Listing 7.1: Example of duplicated permission declaration.

In our dataset, we have found that there is at least one duplicate permission for 590 piggybacked
apps, where 576 of them have a permission existing already in the original apps.

F7I Piggybacked apps overly request permissions, while leveraging permissions requested by their
original apps.

As illustrated in Fig. 7.13, and discussed previously, piggybacked apps appear to “systematically”
include a larger set of permissions than their original counterparts. We investigate the control-flow
of piggybacked apps to check whether they reached the sensitive APIs that are protected by their
requested permissions (based on PScout’s results [12]). We found that 759 (or 80%) piggybacked
apps have declared more permissions than necessary. This finding is inline with previous studies [25]
on Android apps, including legitimate apps, which showed that app authors are usually unaware of
what exact permissions are needed for the APIs leveraged in their apps. Similarly, our results suggest
that piggybacked app writers are not aware of the permissions needed for the APIs accessed by their
injected payloads.

Fig. 7.14 shows that half of the piggybacked apps have requested at least two more permissions
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that they do not leverage. At the same time, rider code actually use APIs protected by permissions
originally requested by original apps.
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Figure 7.14: Distribution of the number of permissions relating to the rider code.

F8I Most piggybacked apps now include new user interfaces, implement new receivers and services,
but do not add new database structures.

Fig. 7.15 highlights the statistics of components added by piggybacking. 834 (or 88%) of apps have
added Activity components during piggybacking: these represent new user interfaces that did not
exist in the original apps. We manually check a random sample of those components and find that
they are mostly for displaying advertizement pages. We checked all such apps and their associated
original apps and found that they added new ad libraries to redirect the ad revenues to the accounts of
piggybackers. Fig. 7.16 shows that half of the piggybacked apps even add several Activity components.
Those components can represent different advertisement libraries. As an example, the piggybacking
process that led to app 90D8A5 has brought in two ad libraries: com.kuguo.ad and net.crazymedia.iad.
Although this phenomenon is not very common, it does suggest that piggybackers may take steps to
maximize the opportunities of gaining benefits.
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Figure 7.15: # of piggybacked apps adding at least one new component.

Service and Broadcast Receiver components are also largely injected by piggybacking payload. While
Broadcast Receivers register to device events (e.g., WIFI connection is active) so that the malicious
code can be triggered, Service components run background tasks which can deplete device resources
(cf. recent clicker trojansx found in GooglePlay). We found that, in most cases, when a service is
injected, a receiver will be correspondingly injected. In this case, the receiver plays as a proxy for
ensuring that the service will be launched. Indeed, it is much easier for trigger malicious behaviour
via a receiver than to make a user start a service. This finding has also been reported at a smaller
scale in our previous work [121].

Interestingly, we have found that some newly injected components are shipped with empty imple-
mentations. In Listing 7.2, component com.idpack.IRE is a newly injected class in app 39DE41.

xhttp://goo.gl/kAFjkQ
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Figure 7.16: Distribution of the number of components newly added.

In the manifest file, com.idpack.IRE has been declared with a lot of capabilities (i.e., six actions),
making it likely to be triggered. For example, it will be launched when a new app is installed (cf.
line 7) or uninstalled (cf. line 8). However, as shown in line 2, the implementation of component
com.idpack.IRE is surprisingly empty. When executing the component, it will reuse the implementa-
tion of its parent class named com.is.p.Re. Unfortunately, this indirection is often ignored in trivial
static analysis approaches, leaving the real implementation of injected components unanalyzed. It
would be interesting to investigate to what extent such tricks can impact the results of existing static
analysis approaches. This, however, is out of the scope of this paper and therefore we consider it for
future work.

1 // The implementation of component com. idpack .IRE
2 public class com. idpack .IRE extends com.is.p.Re { }
3
4 // The manifest declaration of component com. idpack .IRE
5 <receiver android :name="com. idpack .IRE">
6 <intent -filter >
7 action :" android . intent . action . PACKAGE_ADDED "
8 action :" android . intent . action . PACKAGE_REMOVED "
9 <data android : scheme =" package " />
10 </intent -filter >
11 <intent -filter >
12 action :" android .net.conn. CONNECTIVITY_CHANGE "
13 action :" android . intent . action . USER_PRESENT "
14 action :"com. lseiei . downloadManager "
15 action :"com.cdib.b"
16 </intent -filter >
17 </receiver >

Listing 7.2: An example of empty component implementation (app 39DE41 ).

Finally, we note that no piggybacked apps add new Content Provider components. This finding is
inline with the intuition that malicious apps are not targeted at structuring data for sharing with
other apps.

F9I Piggybacking often consists in inserting a component that offers the same capabilities as an
existing component in the original app.

We noted that piggybacking may add a component with a given capability which was already declared
for another component in the carrier app. This is likely typical of piggybacking since there is no
need in a benign app to implement several components with the same capabilities (e.g., two PDF
reader components in the same app). For example, in our ground truth dataset, we have found that
in each of 551 (i.e., 58%) piggybacked apps, several components have the same declared capability.
In contrast, 6% of the benign original apps included components with the same capability.

118



7.3. Understanding Piggybacking

1 receiver :com. sumase . nuatie . wulley . RsollyActivity
2 action :" android . intent . action . PACKAGE_ADDED "
3 action :" android .net.conn. CONNECTIVITY_CHANGE "
4 action :" android . intent . action . USER_PRESENT "
5 receiver :com. fuonw . suoetl . cuoll . TsenaActivity
6 action :" android . intent . action . PACKAGE_ADDED "
7 action :" android .net.conn. CONNECTIVITY_CHANGE "
8 action :" android . intent . action . BOOT_COMPLETED "
9 receiver :com. hunstun . tallsyen . blawe . RsekleeActivity
10 action :" android . intent . action . PACKAGE_ADDED "
11 action :" android .net.conn. CONNECTIVITY_CHANGE "
12 action :" android . intent . action . USER_PRESENT "
13 receiver :com. luotuy . mustn . VenrowoActivity
14 action :" android . intent . action . PACKAGE_ADDED "
15 action :" android .net.conn. CONNECTIVITY_CHANGE "
16 action :" android . intent . action . USER_PRESENT "

Listing 7.3: An example of duplicated component capabilities (app 4C35CC ).

We then perform a manual investigation of the duplicated component capabilities and make two
observations: 1) In most cases, duplicated component capabilities are associated with Broadcast
Receivers. This finding is intuitively normal since receivers can be easily triggered (e.g., by system
events) and consequently can readily lead to the execution of other (targeted) components. 2) All the
duplicated component capabilities are likely to be newly injected. Because piggybackers intend to
maximize their benefits, they will usually inject at the same time different modules. Those modules
are independent from each other and each of them will attempt to maximize its possibility of being
executed. As a result, each module declares a receiver to listen to popular system events, further
resulting in duplicated component capabilities. Listing 7.3 shows an example of duplicated component
capabilities. All the four receivers (possibly from four modules as indicated by the name of receivers)
are newly injected and all of them have declared the same capabilities.

Fig. 7.17 enumerates the top 10 duplicated capabilities that are leveraged by piggybacked apps.
The three capabilities presented in Listing 7.3 are found to be the top duplicated capabilities by
piggybackers. Actually, the corresponding system events, including 1) new app installed (PACK-
AGE_ADDED), 2) internet connection changed (CONNECTIVITY_CHANGE), and 3) phone
unlocked (USER_PRESENT ), are commonly-fired events in Android devices.
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Figure 7.17: Top 10 duplicated component capabilities (actions).

F10I Piggybacked apps can simply trick users by changing the launcher component in the app, in
order to trigger the execution of rider code.

As previously explained, Android apps include in their Manifest file an Application package name
that uniquely identifies the app. They also list in the Manifest file all important components,
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such as the LAUNCHER component with its class name. Generally Application package name and
Launcher component name are identical or related identically. However, when a malware writer
is subverting app users, she/he can replace the original Launcher with a component from his
malicious payload. The app example from Listing 7.4 illustrates such a case where the app’s package
(se.illusionlabs.labyrinth.full, line 1) and launcher (com.loading.MainFirstActivity, line
10) differ.

1 <manifest package =“se.illusionlabs.labyrinth.full”>
2 activity :"se. illusionlabs . labyrinth .full.
3 StartUpActivity "
4 action :" android . intent . action .MAIN"
5 - category :" android . intent . category . LAUNCHER "
6 + activity :“com.loading.MainFirstActivity”
7 + action :" android . intent . action .MAIN"
8 + category :" android . intent . category . LAUNCHER "
9 + receiver :"com. daoyoudao .ad.CAdR"
10 + action :" android . intent . action . PACKAGE_ADDED "
11 + <data android : scheme =" package " />
12 + service :"com. daoyoudao . dankeAd . DankeService "
13 + action :"com. daoyoudao . dankeAd . DankeService "
14 </manifest >

Listing 7.4: Simplified view of the manifest file of se.illusionlabs.labyrinth.full (app’s sha256 ends with
7EB789).

We investigate our piggybacking pairs to identify cases where the piggybacked apps has changed their
LAUNCHER component, comparing to the original benign app. Table 7.2 illustrates some examples on
the original and updated LAUNCHER. These changes in the Manifest file are essential for piggybackers
to ensure that their code is run. We found 73 cases in our dataset where the piggybacked app switched
the original launcher component to one component that was added as part of its rider code.

Table 7.2: Illustrative examples of launcher changes.
Original Launcher Updated Launcher

com.unity3d.player.UnityPlayerActivity com.sorted.android.probe.ProbeMain
com.ubermind.ilightr.iLightrActivity com.geinimi.custom.Ad3034_30340001

com.virgil.basketball.BasketBallActivity cn.cmgame.billing.ui.GameOpenActivity
game.main.CatchThatKid_UIActivity cn.dena.mobage.android.MobageActivity
jp.seec.escape.stalking.EscapeStalking com.pujiahh.Main

F11I Piggybacking is often characterized by a naming mismatch between existing and inserted
components.

Since Android apps are mostly developed in Java, different modules in the application package come
in the form of Java packages. In this programming model, developer code is structured in a way that
its own packages have related names with the Application package name (generally sharing the same
hierarchical root, e.g., com.example.*). When an app is piggybacked, the inserted code comes as
separated modules constituting the rider code with different package names. Thus, the proportions
in components that share the application package names can also be indicative of piggybacking. Such
diversity of package names can be seen in the example of Listing 7.4. The presented excerpt already
contains three different packages. Since Android apps make extensive use of Google framework
libraries, we systematically exclude those in our analysis to improve the chance of capturing the true
diversity brought by piggybacking.

Fig. 7.18 illustrates that piggybacked apps present a higher diversity of packages names in comparison
with their original benign counterparts.

F12I Malicious piggybacked payload is generally connected to the benign carrier code via a single
method call statement.
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Table 7.3: Top five type1 hooks used by piggybacked apps.
Method # piggybacked apps
< com.basyatw.bcpawsen.DaywtanActivity : void Tawo(android.content.Context) > 42
< com.gamegod.touydig : void init(android.content.Context) > 39
< com.geseng.Dienghla : void init(android.content.Context) > 34
< com.gamegod.touydig : void destroy(android.content.Context) > 24
< com.tpzfw.yopwsn.Aervlrey : void Tdasen(android.content.Context) > 15

Table 7.4: Top five methods in carrier code where hook statements are inserted.
Method # piggybacked apps
< com.unity3d.player.UnityP layerProxyActivity : void onCreate(android.os.Bundle) > 95
< com.ansca.corona.CoronaActivity : void onCreate(android.os.Bundle) > 29
< org.andengine.ui.activity.BaseGameActivity : void onCreate(android.os.Bundle) > 11
< com.prime31.UnityP layerProxyActivity : void onCreate(android.os.Bundle) > 10
< com.g5e.KDLauncherActivity : void onCreate(android.os.Bundle) > 8

Table 7.5: Statistics on the pairwise similarity between rider code of piggybacked apps.
Jaccard Method-Level Class-Level Android-API-Level
Distance # of # of Relevant # of # of Relevant # of # of Relevant

Apps Pairwise Combinations Apps Pairwise Combinations Apps Pairwise Combinations
= 0 599 8,890 605 9,078 791 11,482
≤ 0.05 806 10,178 794 10,814 914 18,662
≤ 0.1 821 10,384 813 11,222 933 25,788
≤ 0.2 845 10,718 833 11,836 967 42,660
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Figure 7.18: Distribution of the number of different packages.

Table 7.6: Top five Android APIs that are interested by rider code.
Method Count
< android.net.Uri : android.net.Uri parse(java.lang.String) > 955
< android.content.Context : java.lang.Object getSystemService(java.lang.String) > 953
< android.content.BroadcastReceiver : void < init > () > 949
< android.content.Context : android.content.pm.PackageManager getPackageManager() > 941
< android.app.Activity : void < init > () > 939

Listing 7.5 illustrates a snippet showing an example of type1 hook (cf. definition in Section 7.3.1),
where the hook (line 4) is placed immediately at the beginning of the onCreate method to trigger the
malicious payload when component UnityPlayerProxyActivity is activated. The fact that a static
method is leveraged somewhat suggests that piggybackers attempt to pay least effort to connect
benign carrier code to rider code. The simplified implementation of touydig.init() is shown in lines
11-20. Generally, this method is used to initialize three modules which are simultaneously injected
by piggybackers. All the three modules, including umeng, kuguo, and crazymedia, are injected to
provide advertizement and consequently to redirect the revenues from the original developers to
piggybackers.

In our dataset, 699 (74%) piggybacked apps use type1 hooks to connect rider code to carrier code.
Among those, 438 (i.e., 63% of type1) hooks only include a single statement, creating a weak link
between the call-graphs of rider and carrier code. Table 7.3 enumerates the most redundant hook
statements used in piggybacked apps.
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1 // In class UnityPlayerProxyActivity
2 protected void onCreate ( Bundle b) {
3 this . onCreate (b);
4 + com. gamegod . touydig .init( this );
5 $r2 = new String [2];
6 $r2 [0] = "com ... UnityPlayerActivity ";
7 $r2 [1] = "com ... UnityPlayerNativeActivity ";
8 UnityPlayerProxyActivity . copyPlayerPrefs (this , $r2);
9 }
10
11 class com. gamegod . touydig {
12 public static void init( Context $param0 ) {
13 // initialize umeng module
14 $String = $bundle . getString (" UMENG_CHANNEL ");
15 // initialize kuguo module
16 $KuguoAdsManager = KuguoAdsManager . getInstance ();
17 $KuguoAdsManager . setCooId ($param0 , " ae63b5208de5422f9313d577b3d0aa41 ");
18 // initialize crazymedia module
19 net. crazymedia .iad. AdPushManager .init($param0 , "8787", " wx1x6nkz277ruch5 ", false );
20 }}

Listing 7.5: Simplified view of the snippet of app com.SkillpodMedia.farmpopfrenzy (app’s sha256 ends
with BF3978). The ‘+‘ sign at Line 4 indicates the statement that was added to the original code.

F13I Piggybacking hooks are generally placed within library code rather than in core app code.

We look into the carrier method implementations where hook statements are placed. Table 7.4
presents the top 5 methods where hook statements can be recurrently traced to. Interestingly, all five
methods are actually part of well-known libraries that are used for benign functionality. We further
found that these libraries actually propose utility functions for Game apps.

F14I Injected payload is often reused across several piggybacked apps.

We compute the pairwise similarity of rider code using the Jaccard distance at the class level, method
level and API level. When the set of classes, methods or used APIs are the same between two apps,
the distance is zero. When there is no overlap this distance amounts to 1. Table 7.5 provides statistics
which reveal that more than half piggybacked apps include a rider code which can be found in another
piggybacked app. The Jaccard distance indeed amounts to 0 for 599, 605 and 791 piggybacked apps
when comparing at the method, class and API levels respectively. Theoretically, There are in total( 2

#ofapps
)
relevant combinations.

The similarity of comparison results at the class, method and API levels, suggest that when piggy-
backers reuse an existing rider code sample, they rarely make modifications. Finally, there are more
pairs of rider code which are similar at the API level, suggesting that many piggybacking payloads
often include code that perform similar tasks (e.g., for advertizements).

F15I Piggybacking adds code which performs sensitive actions, often without referring to device
users.

Intents are special objects used by Android apps to exchange data across components. It allows app
components to reuse functionalities implemented in other components (within or outside the app).
Intent objects include a field for indicating the action that must be performed on the data exchanged
(e.g., VIEW a PDF file, or DIAL a number). Fig. 7.19 enumerates the top actions that can be seen
in all intents used by rider code across the piggybacked apps. In most cases, intents transfer data to
be viewed, a necessary action for displaying advertizements. In many cases also, rider code installs
shortcuts, performs dialing, shares the data outside the app, etc. We also note that two of the top
actions (the 6th and 8th) are not system-defined. Instead they are defined in user code, and their
presence in many piggybacked apps further confirms the reuse of payloads across apps.
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Figure 7.19: Top 10 actions from Intents brought in rider code.

Intents are either implicit (the component which will realize the action will be selected by the user)
or explicit (a component is directly designated, bypassing user’s choice). Differences in distributions
presented in Fig. 7.20 suggest that piggybacking rider code contain more explicit intents than implicit
intents. In contrast, as shown in [124], benign apps actually attempt to use more implicit Intents (for
showing Activities).
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Figure 7.20: Use of explicit vs. implicit Intents in rider code.

F16I Piggybacking operations spread well-known malicious behaviour types.

We investigate the labels provided by AV engines and extract the top appearing names to classify
malware types. Table 7.7 provides statistics on the three outstanding types. Although most are
flagged as Adware, we note that there are overlapping with Trojans and Spyware. This is inline with
the recent analysis of a family of trojans by ESET, showing that they act as adware.

Table 7.7: Outstanding malware types reported by AV engines on the piggybacked apps.
App type # of piggybacked apps # of distinct labels
Adware 888 230
Trojan 495 451

Spyware 192 94

We further match the AV labels against 6 well-known malware family names reported in [257]. We
found that our dataset contains samples belonging to each family as described in Table 7.8. For
example, clustering the rider code of piggybacked apps in the GingerMasterxi family based on class
names and with EM algorithm yields 5 clusters, one of which contains over 80 samples, suggesting a
high reuse of a malicious payload code.

Table 7.8: Number of piggybacked apps in known malware families.
ADRD BaseBridge Geinimi GingerMaster GoldDream Pjapps
11 5 21 149 11 9

F17I Piggybacked apps increasingly hide malicious actions via the use of reflection and dynamic
class loading.

xiThese malware collect and send user info, including device ID and phone number, to a remote server.
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The Android system provides DexClassLoader, a class loader that loads classes from .jar and .apk
files. It can be used by malware writers to execute code not installed as part of their apps. We found
185 (19%) piggybacked apps whose riders dynamically load code. Such schemes are often used by
malware writers to break the control-flow of app, and thus challenge static detection of suspicious
behaviour. Fig. 7.21 provides the ratio of piggybacked apps using reflection and dynamic code loading.
The ratio has substantially improved in recent years.
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Figure 7.21: Trend in the use of reflection and dynamic class loading by piggybacked apps.

F18I Piggybacking code densifies the overall app’s call graph, while rider code can even largely exceed
in size the carrier code.

We compute the proportion of piggybacked app code which is actually brought by rider code. Fig. 7.22
(left) highlights that, for most apps (71%), the rider code is smaller than the carrier code. However,
for 29% of the piggybacked apps in our dataset, the rider code is bigger in terms of LOCs than the
carrier code.
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Figure 7.22: Impact of Piggybacking on rider code proportion (left) and CG density (right).

We further build the call graphs of piggybacked apps and compare them to the call graphs of their
corresponding original apps. Then we compute the density metricxii using the number of real edges in
the graph divided by the total number of possible edges. Distribution in Fig. 7.22 (right) highlights
that in the large majority of cases, piggybacking code increasesxiii the call graph density. This increase
can be achieved by injecting complex rider code with higher density than the carrier code. Indeed,
complex rider code is essential for piggybackers to make their code more difficult to understand by
analysts. In other words, this finding is expected because the injected rider code will likely explore
malicious scenarios that piggybackers wish to leave hidden to manual review and static analysis. On
the other hand, in 1/4 cases the call graph density has lowered. We have sampled some piggybacked
xiiWe leverage the Toolkit of GraphStream (http://graphstream-project.org) to compute the density metric. The

computation is implemented in a complexity of O(1).
xiiiAs for all comparisons, we remind the reader that we have checked that the difference was statistically significant.
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apps in such cases, and found that most use type2 hooks (i.e., via events). Only a few piggybacked
apps kept the same density metric values.

F19I Piggybacked app writers are seldom authors of benign apps.

We investigate the certificates used to sign the apps in our dataset. We collected 703 distinct
certificates in original apps against only 194 distinct certificates in piggybacked apps. We only found
14 certificates where each have been used to sign both a piggybacked and another app in the set of
originals. Looking into those certificates, we found that it is inline with the well-known copy/paste
problem. As an example, we have found that a certificate issued to Android Debug, which should
only be used to develop and test an app, is applied to released apps. Several of the overlapping
certificates were actually due to this issue.

F20I Piggybacking code brings more execution paths where sensitive data can be leaked.

Private data leaks in Android are currently a main focus in the research and practice community.
We investigate the static behaviour of piggybacked apps w.r.t the data flows that they include using
IccTA [124]. Fig. 7.23 show that piggybacked apps include, on median, 15 more flows from a sensitive
source to a sensitive sink than original apps. We also found that these flows mostly represent data
exchange across components. As an example, we have found 12 such leaks where Context information
is collected, then transferred to another component which eventually forwards it outside the device
via SMS.
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Figure 7.23: Distributions of the number of leaks.

7.4 Discussion

We now explore three potential outcomes of our findings (cf. Section 7.4.1). Then, we discuss two
problematic assumptions that have been commonly made in the Android community (Section 7.4.2)
and the potential threats to validity of this study (cf. Section 7.4.3).

7.4.1 Potential Outcomes

Understanding malicious Android apps (through piggybacked apps) can help in pushing further a
number of research directions:

1. Practical detection of piggybacked apps: With this work, we hope to follow on the steps of the
MalGenome project and drive new research on the automated detection of piggybacked apps.
Indeed, by enumerating high-level characteristics of Android malware samples, MalGenome has
opened several directions in the research on malware detection, most of which have either focused
on detecting specific malware types (e.g., malware leaking private data [124]), or are exploiting
app features, such as permissions requested, in Machine Learning classification [8]. Similarly, we
expect the devise of machine learning-based detection approaches which can effectively model
piggybacking and thus avoid the need for impractical and unscalable pairwise comparisons across
app markets. Indeed, if we consider piggybacked detection as a classification problem, we can
address the main limitation in state-of-the-art works which all require the original app in order to
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search for potential piggybacked apps that use it as a carrier. In a similar research, researchers
have already shown with Clonewise that it was possible to treat clone detection as a classification
problem [41]. In preliminary experiments, using a feature set limited to basic features whose
extraction was inexpensive (Permissions, Intents, rider API uses) we built classifiers that achieved
acceptable performance in precision and recall (both over 70%) with 10-Fold cross validation on our
dataset. More sophisticated and discriminative features can be explored from our findings. Indeed,
as shown in our technique report [139], with a set of features including new declared capabilities,
duplicated permissions, diversity of packages, etc., we are able to achieve a high performance of
97% for both precision and recall, suggesting the features built on our findings are suitable for
discriminating piggybacked apps from non-piggybacked apps.

2. Explainable malware detection: Current Machine Learning classifiers [38, 60, 199,239] for Android
malware detection are too generic to be relevant in the wild: features currently used in the
literature, such as n-grams, permissions or system calls, allow to flag apps without providing any
hint on which malicious actions are actually expected. A collection of piggybacked apps provides
new opportunities for retrieving a variety of malicious payloads that can be investigated
to infer fine-grained semantic features for malware detection.

3. Malicious code localization: In their fight against malware, practitioners are regularly challenged
by the need to localize malicious code within an app, e.g., in order to remove/block it, or to
characterize its impact. Our work can be leveraged towards understanding how malicious
code are hooked in benign app code, as well as which code features may potentially help
statically discriminate malicious parts from benign parts. In our preliminary experiments [137,139],
based on the identified behaviors of piggybacked apps, we are able to automatically localize the
hook code with an accuracy@5 (the hook code is within the top 5 packages we ranked based on
their probabilities of being hook code) of 83%, without knowing the original counterparts of the
dissected piggybacked apps.

7.4.2 Validity of Common Assumptions

Based on our study, we are able to put in perspective an assumption used in the literature for reducing
the search space of piggybacking pairs. With FSquaDRA [252], Zhauniarovich et al. have proposed
to rely on similarity of apps’ resource files to detect piggybacking. Finding F1 of our work however
supports that resource files can be extensively manipulated during piggybacking.

We further plot in Figure 7.24 the distribution of pairwise similarity for the piggybacking pairs of
our dataset to highlight the significant difference between relying on resource-based similarity and
code-based similarity.

Code

Resource

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity

Figure 7.24: Similarity Distribution.

Another common assumption in the literature is that library code is noisy for static analysis approaches
who must parse a large portion of code which is not part of app core functionality, leading to false
positives. Thus, recent research works [13,130] first heuristically prune known common libraries before
applying their approaches on apps. We have shown however with our investigation that libraries, in
particular popular libraries, are essential to malware writers who can use them to seamlessly insert
hooks for executing malicious rider code. Thus, there is a special need for analysts who want to filter
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out common libraries from their analyses to ensure that the detached libraries will not introduce
side-effects.

7.4.3 Threats to Validity

The main threat to validity of our study lies in the exhaustivity of our dataset. However, we have
made our best effort to leverage the AndroZoo largest available research dataset of over 2 million
Android apps [3] to search for piggybacked apps. Furthermore our apps span a long timeline of
6 years. Another threat to validity is that we do not include apps from the last year or so, since
the collection of AV reports in AndroZoo is delayed. We will continuously update the dataset of
piggybacked apps within the AndroZoo project [3].

With regards to the restrictions used in the identification of piggybacking pairs, we would like to
note for the readers that our focus in this work is not to exhaustively detect all piggybacking pairs.
Instead, we aimed for collecting a sufficient number of obvious, thus accurate, piggybacking pairs in
order to be able to dissect and understand piggybacking processes.

The original apps in our ground truth may not be the final original apps, i.e., they may also be
repackaged versions of a previous app. To the best of our knowledge, there is no straightforward way
to pinpoint whether a given original app from a piggybacking pair is the true original app. Therefore,
it remains an interesting future work to the community.

AV labels from VirusTotal engines may not be perfect because of AV disagreements [107]. However, in
this work, we only use them to get quick insights. Finally, by construction, our dataset of piggybacked
apps has been built with a constraint on the maliciousness (in the sense of AV detection) of the
piggybacked app by a different developer. Other “piggybacking” operations may be performed by the
same developer with “benign” code.

Recently, there are many Android app packers (e.g., Bangcle, Ijiami, etc.) introduced for com-
prehensive protection of Android apps, attempting to prevent Android apps from being reverse
engineered and repackaged/piggybacked. Intuitively, it becomes much harder to piggyback packed
apps. Unfortunately, state-of-the-art approaches including AppSpear [236] and DexHunter [249] have
already demonstrated promising results for extracting DEX code from packed apps, making it still
possible to piggyback even packed apps.

7.5 Related Work

Dissection studies: In recent years there have been a number of studies dissecting Android
malware [68, 72, 257]. Genome [257] provides an interesting overview on the landscape of Android
malware based on samples collected from forums and via experiments. Our approach for piggybacked
apps is however more systematic. Besides in Android community, dissection studies have also
been widely performed in other communities. For example, Jakobsson et al. [103] have presented
a comprehensive analysis on crimeware, attempting to understand current and emerging security
threats including bot networks, click fraud, etc.

Repackaged/Cloned app detection: Although the scope of repackaged app detection is beyond
simple code, researchers have proposed to rely on traditional code clone detection techniques to
identify similar apps [53, 54, 61, 256]. With DNADroid [53], Crussell et al. presented a method
based on program dependency graphs comparison. The authors later built on their DNADroid
approach to build AnDarwin [54], an approach that uses multi-clustering to avoid the scalability
issues induced by pairwise comparisons. DroidMOSS [256] leverages fuzzy hashing on applications’
OpCodes to build a database of application fingerprints that can then be searched through pairwise
similarity comparisons. Shahriar and Clincy [203] use frequencies of occurrence of various OpCodes
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to cluster Android malware into families. Finally, in [45], the authors use a geometry characteristic
of dependency graphs to measure the similarity between methods in two apps, to then compute
similarity score of two apps.

Instead of relying on code, other approaches build upon the similarity of app “metadata”. For instance,
Zhauniarovich et al. proposed FSquaDRA [252] to compute a measure of similarity on the apps’
resource files. Similarly, ResDroid [204] uses application resources such as GUI description files to
extract features that can then be clustered to detect similar apps. In their large-scale study, Viennot,
Garcia, and Nieh [223] also used assets and resources to demonstrate the presence of large quantities
of either rebranded or cloned applications in the official Google Play market.

Piggybacked app search and Malware variants detection: Cesare and Xiang [40] have pro-
posed to use similarity on Control Flow Graphs to detect variants of known malware. Hu, Chiueh,
and Shin [98] described SMIT, a scalable approach relying on pruning function Call Graphs of x86
malware to reduce the cost of computing graph distances. SMIT leverages a Vantage Point Tree
but for large scale malware indexing and queries. Similarly, BitShred [104] focuses on large-scale
malware triage analysis by using feature hashing techniques to dramatically reduce the dimensions in
the constructed malware feature space. After reduction, pair-wise comparison is still necessary to
infer similar malware families.

Recently, Meng et al. [169] present an automatic analysis framework, namely SMART, to comprehend,
detect, and classify malicious Android apps. At first, SMART learns deterministic symbolic automaton
(DSA) from known malware families. Then, it extracts semantic features from the summarized DSA to
classify new malware. The authors have also presented a framework called Mystique to automatically
generate malware variants [168], in a hope to prepare labeled malware for boosting the evaluation of
existing malware detection approaches.

PiggyApp [255] is the work that improves over their previous work, namely DroidMoss, to deal with
repackaged app detection. PiggyApp is based on the assumption that a piece of code added to an
already existing app will be loosely coupled with rest of the application’s code. Consequently, given
an app, they build its program dependency graph, and assigns weights to the edges in accordance to
the degree of relationship between the packages. Then using an agglomerative algorithm to cluster the
packages and select primary modules. To find piggybacked apps, they perform comparison between
primary modules of apps. To escape the scalability problem with pair-wise comparisons, they rely on
the Vantage Point Tree data structure to partition the metric space.

7.6 Conclusion

We have investigated Android piggybacked apps to provide the research community with a compre-
hensive characterization of piggybacking. We then build on our findings to put in perspective some
common assumptions in the literature. We expect this study to initiate various research directions
for practical and scalable piggybacked app detection, explainable malware detection, malicious code
localization, and so on.
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8 Conclusions and Future Work

In this chapter, we revisit the main contributions of this dissertation and present potential future
research directions.
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Chapter 8. Conclusions and Future Work

8.1 Conclusions

In this work, we presented techniques for boosting static security analysis of Android apps based
on code instrumentation. We select code instrumentation because it is able to 1) provide generic
solutions where the instrumented code can benefit any existing up-front static analyzers and 2)
support context-sensitive analysis since the disconnected parts can be bridged via glue code. More
specifically, we scheduled this dissertation in three parts: 1) Systematic literature review on static
analysis of Android apps; 2) Code instrumentation for static security analysis; and 3) Thorough
understanding on Android malicious behaviors. We now detail them.

Regarding the first part, our objective is to provide a clear view on the state-of-the-art works that
secure Android apps through static analysis and thereby to highlight the trends, pinpoint the main
focus of static analysis approaches, and enumerate the key aspects of future directions. We thus
performed an SLR that surveyed five dimensions of static analyses: problems targeted, fundamental
techniques leveraged, static analysis sensitivities considered, Android characteristics taken into
account, and the scalability of evaluation performed. The results of review show that the research
community is still facing a number of challenges for building approaches that are aware altogether
of implicit flows, dynamic code loading features, reflective calls, native code and multi-threading
features, in order to implement sound and highly precise static analysis approaches.

For the second part, we presented three different approaches to support static security analysis, where
all of them have leveraged code instrumentation to mitigate static analysis challenges. In particular,
we first proposed an approach called IccTA, which performs ICC-aware static taint analysis for
detecting inter-component privacy leaks. The code instrumentation technique is applied to reduce the
challenge of inter-component communication, where the ICC mechanism is simulated with injected
glue code. Similarly, following the idea of IccTA, we proposed another approach called DroidRA, which
represents reflective calls with traditional Java calls. As a result, the ICC calls and reflective calls no
longer exist for static analysis. Thus, any existing static analyzer, even if it does not support ICC and
reflection, can yield ICC-aware and reflection-aware results. Finally, based on our experiments, we
found that common libraries are very noisy for static security analysis approaches, as what we shown
in this dissertation, both piggybacking detection and ML-based malware detection could be doomed
by the existence of common libraries. We come to an instrumentation-based approach which detaches
common libraries from a given app before sending them to the final analysis. Our experimental
results demonstrated that detaching common libraries can indeed improve the accuracy of other
approaches.

As a final part, we conducted an in-depth dissecting on piggybacked apps, where we are able to
identify and un-graft their malicious payloads, to have a better understanding on the malicious
behaviors of Android apps. Our dissection is an attempt to go one step further by not only detecting
malicious apps but also being able to explain why a given app is malicious.

8.2 Future Work

We now summarize potential future directions that are in line with this dissertation.

• Supporting Code Instrumentation with Framework. The code instrumentation process
in this dissertation are actually conducted separately, making a lot of efforts that could be
reused wasted. Therefore, as future work, we would like to implement a generic framework
to support code instrumentation. This framework can further be integrated into Apkpler, a
plugin-based system for reusing instrumentation-based solutions (e.g., making IccTA available
for other approaches).
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• Considering more Challenging Artifacts for Instrumentation. As it is hard for a
single tool to efficiently address all of the various challenges of Android programming that
make analysis difficult, we propose in this dissertation instrumentation-based approaches to
manipulate the app code for reducing the analysis complexity, e.g., transforming a hard problem
to a easy-resolvable one. In this dissertation, we have already taken into account the ICC and
reflection challenges. The experimental results have demonstrated that code instrumentation
is promising for supporting static analysis. However, there are many other artifacts such as
native code, multiple threads in Android apps. In our future work, we would like to apply
code instrumentation to reducing these challenging artifacts as well, in order to facilitate static
security analysis.

• Predicting Piggybacked Apps through Semantic Features. Our thorough investigation
into the Android piggybacking behaviors has led to many promising findings. Our previous
work, which applies only simple features built from a small number of findings, has presented
promising results for predicting piggybacked apps. By considering the whole set of findings,
the prediction results could be further improved. We thus plan to put more efforts into this
direction in an attempt to build semantic features for ML-based piggybacked apps detection.
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