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Abstract

In this thesis, we work on the structure of Leibniz algebras and develop cohomology
theories for them. The motivation comes from:

e Roytenberg, Stienon-Xu and Ginot-Grutzmann’s work on standard and naive
cohomology of Courant algebroids (Courant-Dorfman algebras).

e Kosmann-Schwarzbach, Roytenberg and Alekseev-Xu’s constructions of derived
brackets for Courant algebroids.

e The classical equivariant cohomology theory and the generalized geometry
theory.

This thesis consists of three parts:

1. We introduce standard cohomology and naive cohomology for a Leibniz algebra.
We discuss their properties and show that they are isomorphic. By similar
methods, we prove a generalization of Ginot-Grutzmann’s theorem on transitive
Courant algebroids, which was conjectured by Stienon-Xu. The relation between
standard complexes of a Leibniz algebra and its corresponding crossed product
is also discussed.

2. We observe a canonical 3-cochain in the standard complex of a Leibniz algebra.
We construct a bracket on the subspace consisting of so-called representable
cochains, and prove that the subspace becomes a graded Poisson algebra.
Finally we show that for a fat Leibniz algebra, the Leibniz bracket can be
represented as a derived bracket.

3. Inspired by the notion of a Lie algebra action and the idea of generalized
geometry, we introduce the notion of a generalized action of a Lie algebra g on
a smooth manifold M, to be a homomorphism of Leibniz algebras from g to
the generalized tangent bundle T'M & T*M. We define the interior product
and Lie derivative so that the standard complex of TM & T*M becomes a g



differential algebra, then we discuss its equivariant cohomology. We also study
the equivariant cohomology for a subcomplex of a Leibniz complex.
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Chapter 1

Introduction

A (left) Leibniz algebra L is a vector space over a field £ (£ = R or C) equipped with
a bracket o : L ® L — L, called the Leibniz bracket, satisfying the (left) Leibniz
identity:

rzo(yoz)=(rxoy)oz+yo(xroz), Va,y,z € L.

A concrete example is the omni Lie algebra ol(V) = gl(V) @ V, where V is a
vector space. It is first introduced by Weinstein [7]. The Leibniz bracket of ol(V) is
given by:

(A+v)o(B+w)=I[A,B]+ Aw,

for any A, B € gl(V), v,w € V.

Any Lie algebra is a Leibniz algebra. Conversely, any Leibniz algebra whose
Leibniz bracket is skew-symmetric is a Lie algebra. So Leibniz algebras can be viewed
as non-commutative analogue of Lie algebras.

Such objects of Leibniz algebras date back to the work of “D-algebras” by Bloh
[10, 11]. And the notion of Leibniz algebras is due to Loday [19]. In literature,
Leibniz algebras are sometimes also called Loday algebras.

In analogue to Lie algebra homology, Loday constructed the so-called Leibniz

homology of Lie algebras, which is related to Hochschild homology [21, 1&]. Later
on, Loday and Pirashvili found that similar constructions apply to Leibniz algebras,
leading to the definition of Leibniz homology of Leibniz algebras [50]. Since then,

many foundational works on Leibniz algebras are completed [51, 52, 53, 54, 55].

As a weakened version of Lie algebras, Leibniz algebras have been widely studied
and used from various aspects. Loday and Pirashvili [50] studied not only Leibniz
homology, but also Leibniz cohomology, associated with representations (or corepre-
sentations) of Leibniz algebras. They also studied universal enveloping algebras and
PBW theorem for Leibniz algebras.
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Some other theorems and properties of Lie algebras are also proved to be valid
for Leibniz algebras [7, 8, 58, 5]. For example, Engel’s theorem and a weaker version
of Levi-Malcev theorem hold for Leibniz algebras.

Nevertheless, many classical methods and results in Lie algebra theory can not
be applied and generalized directly to the case of Leibniz algebras. In fact, many
interesting questions concerning Leibniz algebras are still open. For example, the
generalization of Lie’s third theorem for Leibniz algebras as proposed by Loday [19],
namely the problem of integrating Leibniz algebras (coquecigrue problem), is not yet
answered. Partial answers are achieved by Kinyon [12]and Covez [19, 20].

Leibniz algebras have attracted more interest since the discovery of Courant
algebroids, which can be viewed as the geometric realization of Leibniz algebras in
certain sense. Courant algebroids are important objects in recent studies of Poisson
geometry, symplectic geometry and generalized complex geometry. Here is a short
account of Courant algebroids.

In [18], Courant considered a skew-symmetric bracket

(X +&Y +n] =[X, Y]+ Lxn — Ly§ — ;d(bxn — 1y§) (1.0.1)

on the generalized tangent bundle T'M & T M, where M is a smooth manifold, X +¢&
and Y + n are sections in TM & T M.
A modified version is the twisted bracket (non-skewsymmetric):

(X +&o(Y+n) =[X,Y]+ Lxn—tyd§ (1.0.2)

which was independently discovered by Dorfman [23, 22]. The most significant facts
are that the bracket 1.0.1 satisfies Jacobi identity up to homotopy, while the bracket
1.0.2 satisfies Leibniz rule. They are now known as “Courant bracket” and “Dorfman
bracket” | respectively.

The general notion of Courant algebroids was first introduced by Liu, Weinstein
and Xu in [10], as an answer to an earlier question “what kind of object is the double
of a Lie bialgebroid”. Courant algebroids have various applications in mathematics
and physics, e.g. in generalized complex geometry by Hitchin and his school [35, 31],
in 3-dimensional topological field theory by Ikeda, Park and many others [10, 11, 57,

, 03], and in supergravity [50].

In Liu, Weinstein and Xu’s original definition, a Courant algebroid is defined
in terms of Courant bracket, which is skew-symmetric and does not satisfy Jacobi
identity. In a remark, they introduced a non-skewsymmetric “twisted bracket”, which
is now known as the Dorfman bracket. The twisted bracket is a Leibniz bracket, and
the skewsymmetrization of the twisted bracket is exactly the Courant bracket.
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Roytenberg [60] proved that Courant algebroids can be equivalently defined in
terms of Dorfman bracket subject to five axioms. These axioms can also be found in

Severa’s emails to Weinstein in 1998 [64]. This definition of Courant algebroids was
published by Severa and Weinstein in [65], and by Roytenberg in [62]. Later, it was
shown that three of Roytenberg’s axioms imply the other two [09, 28, 45]. Here we

give the modern definition with only three axioms:

A Courant algebroid consists of a vector bundle £ — M, a fibrewise non-
degenerate pseudo-metric (e, ), an bundle map p: E — T'M called anchor map and
a R-bilinear map o : I'(F) ® ['(E) — I'(E) called Dorfman bracket, satisfying the
following three conditions:

1). e;o(ez0e3) = (e10e3)0e3+ez0 (€1 0e3),

2). epoey+ey0e = Od(er,e), where 9 : C*°(M) — I'(F) is defined by
(0f.€) = ple)f,

3). pler)(eq, e3) = (e1 0 eq,e3) + (e2,e1 0 e3),

for all ey, e, e5 € I'(E).

The first condition says that I'(E) is a Leibniz algebra, while the other two tell
that Courant algebroids are vector bundle version of quadratic Lie algebras.

One reason why the Dorfman bracket is more convenient than the Courant bracket,
is that it is a “derived bracket”. In 1998, Kosmann-Schwarzbach demonstrated that
the Dorfman bracket on T'M @ T*M is a derived bracket in her email to Weinstein
(the proof was published much later in [11]). Later in 2002, based on a construction
suggested by Weinstein and Severa [(4], Roytenberg [62] explicitly showed that the
Dorfman bracket for any Courant algebroid is a derived bracket. Here we mention
the key steps in this construction:

Given any Courant algebroid F, the pseudo-metric on E turns E[1] into a graded
Poisson manifold. Then there is a minimal symplectic realization (E,{e, e}) of
E[1]. The space E is exactly the symplectic NQ-manifold corresponding to F, with
Q-structure given by () = {H, e}, where H is a cubic Hamiltonian on E encoding
the Courant algebroid structure of E. The most significant fact is that the Dorfman
bracket on E can be given by the derived bracket:

(eroen)” = {{H,e1},e3}.

(Another view point of the derived bracket is given by Alekseev and Xu [1], see also
Grutzmann, Michel and Xu [30].)

Furthermore, Roytenberg [(2] defined the standard cohomology H$,(E), to be the
cohomology of the complex (A®, {H, e}), where A* is the graded algebra of polynomial
functions on E. Later in 2008, Stienon and Xu defined the naive cohomology H?, (E),
to be the cohomology of the complex (I'(A*kerp), d,,), where d,, is defined similarly
to the Chevalley-Eilenberg differential. Stienon and Xu observed that there is a
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canonical morphism ¢ : H? (E) — H2(FE), and conjectured that ¢ is an isomorphism
when F is transitive. This conjecture was proved by Ginot and Grutzmann in [20].

There are many other significant developments in the theory of Courant algebroids.
In [59], Roytenberg and Weinstein found that Courant algebroids fit into 2-term
L.-algebras. In [31], Hansen and Strobl introduced H-twisted Courant algebroids,
which are further investigated by Sheng and Liu in [67], and by Melchior Grutzmann
in [29]. In [71], Vaisman introduced pre-Courant algebroids and Courant vector
bundles, which are further studied by Armstrong and Lu in [3], and by Liu, Sheng
and Xiaomeng Xu in [17]. In [I6], Chen, Liu and Sheng introduced E-Courant
algebroids. In [64], Severa defined a cohomology class, now called Severa class, which
classifies exact Courant algebroids. In [12], Bressler defined Pontryagin class, which
is the obstruction to the existence of a Courant extension, and he related the theory
of Courant algebroids to conformal field theory.

This thesis is based on these achievements of Leibniz algebras and Courant
algebroids, especially the important role that various cohomologies play in these
theories. We wish to explore more general settings in which these cohomologies
would still exist, and see how they grasp crucial information of mathematical objects.
We shall work with Leibniz algebras and their representations, and develop two
cohomology theories: standard cohomology and equivariant cohomology.

As mentioned above, we have the standard complex (A*, { H, e}) and the standard
cohomology H?,(E) for a Courant algebroid E. In fact Roytenberg [01] showed that
the standard complex (C*(€, R),d) and the standard cohomology H$(E) can be
defined for a Courant-Dorfman algebra &£, which is a specific example of Leibniz
algebras, as well as an algebraic analogue of Courant algebroids. For any non-
degenerate Courant-Dorfman algebra &£, he defined a bracket on C*(€, R) such
that C*(€, R) becomes a graded Poisson algebra and the Dorfman bracket of &£
can be written as a derived bracket. Furthermore, when & = I'(E) is the space of
sections of a Courant algebroid F, Roytenberg proved that there is an isomorphism
of graded Poisson algebras between C*(€, R) and A®, and the standard cohomology
of € =T'(F) coincides with the standard cohomology of E.

A natural question is: can these constructions be carried out for Leibniz algebras?
We succeed to give a positive answer, it is divided into two parts:

As the first part of the answer, we shall give the definition of standard complex
C% (L, h, R), standard cohomology H$ (L, h, R) and naive cohomology H?, (L, h, R)
(Definition 3.4 and Definition 3.8), where L is a Leibniz algebra with left center Z, h
is an isotropic ideal in L containing Z, and R is a left L-module on which A acts
trivially.
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Moreover, we shall prove Theorem 3.10 for any Leibniz algebra L:
H(L,h,R)=H} (L, h,R).

Actually H3 (L, h, R) and H? (L, h, R) can be defined for a general pair (L, h) (see
Remark 3.12), in which case they are not necessarily isomorphic. Similarly, for any
transitive Courant-Dorfman algebra £, we have Theorem 3.15:

HE(E) = H;,(E).

Note that this theorem doesn’t require the symmetric bilinear form on £ to be non-
degenerate. It is a generalization of the conjecture for transitive Courant algebroids
by Stienon and Xu [68] (proved by Ginot and Grutzmann [20]).

As the second part of the answer, we shall give the construction of derived
brackets for (fat) Leibniz algebras. We will construct a bracket for “representable
cochains” (Definition 4.3) in the standard complex C%, (L, h,S*(Z)) (S*(Z) is the
symmetric tensor algebra of Z):

{wnt2wentwon—(-1)"now.

We prove that it is a Poisson bracket (see 4.2.1 and Theorem 4.4 for the detailed
construction and proof). Furthermore, we prove that the Leibniz bracket of any fat
Leibniz algebra is a derived bracket (Theorem 4.8). We hope these results will lead
to new insights into the theory of Leibniz algebras.

Another subject in this thesis is the application of equivariant cohomology theory
in Courant algebroids and Leibniz algebras. The motivation comes from the classical
equivariant cohomology theory, where one considers the action of a compact Lie
group G (or the infinitesimal action of its Lie algebra g) on a topological space
M. Topologically H& (M) is defined to be H*((EG x M)/G) [1, 39, 2]. If M is a
finite-dimensional differentiable manifold, H& (M) can be alternatively defined using
Weil model or Cartan model (Definition 2.38 and 2.39) [15]. When the action of
G is free, H%(M) is isomorphic to the cohomology of the quotient space M/G. In
fact, equivariant cohomology can be extended to any g differential algebra, with
(Q*(M),dyr) being a particular example, where M is any manifold with a g action.
By a g differential algebra, we mean a differential graded commutative algebra
(A*,d), equipped with an interior product ¢ : g — Der(A®) of degree —1 and a Lie
derivative L : g — Der(A®) of degree 0 satisfying Cartan calculus [11, 24, 32, 33].
In parallel to the geometric case of a free and proper action, when A® is of type (C)
(Definition 2.35), the equivariant cohomology of A® is proved to be isomorphic to
the cohomology of the basic complex of A® [11, 15, 24, 32, 33].
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In generalized geometry [30, 37], the generalized tangent bundle TM & T*M
plays an important role. In this thesis, we shall introduce the notion of generalized
action of a Lie algebra g on a manifold M, as a homomorphism of Leibniz algebras
from g to I'(T'M @ T*M). Given such a generalized action, we define the interior
product and the Lie derivative on the standard complex of TM & T*M, so that it
becomes a g differential algebra. Furthermore, this complex C¢,(TM & T*M) is of
type (C) under certain conditions (see Proposition 5.4), then by the classical theorem
in [14, 15, 24, 32, 33] the equivariant cohomology of C%,(T'M & T*M) is isomorphic
to the cohomology of the basic complex of C%(T'M & T*M). When M — N is
a principal G bundle, we observe that the standard complex of TN & T*N is a
subcomplex of the basic complex (C3,(T'M @ T*M))pas. And we conjecture that the
inclusion map from C%(T'N @ T*N) to (C3(T'M & T*M))pes is a quasi-isomorphism.
The work on this conjecture is still on-going.

Then we focus on equivariant cohomology for Leibniz algebras. The data we need
are the following: a Leibniz algebra L with left center Z, an isotropic subalgebra h
in L, and a left L-module as well as a commutative algebra R on which L acts as
derivations. We define multiplication, interior product and Lie derivative on (A®, dp),
where A*® is a subcomplex of the Leibniz complex (Hom(®°L, R), dy), so that A*
becomes a h differential algebra (Proposition 5.7). Furthermore, we prove that A® is
of type (C) when R is unital and L has a decomposition h @& X such that ho X C X
(Proposition 5.8).

The structure of this thesis is organized as follows.

In Chapter 2, we provide some basic knowledge of Leibniz algebras, Courant
algebroids and equivariant cohomology. In particular, the definition of the natural
bilinear product of Leibniz algebras is given in the first section; the definition of
standard cohomology and the construction of derived bracket for Courant-Dorfman
algebras are listed in the second section.

The main objective of this thesis is to develop cohomology theories for Leibniz
algebras, which are divided into the subsequent chapters.

In Chapter 3, we define the standard complex, standard cohomology and naive
cohomology for any Leibniz algebra L with left center Z. We prove the isomorphism
between standard cohomology and naive cohomology of L. And we use the same
methods to prove a similar result for transitive Courant-Dorfman algebras. Moreover,
we construct a Courant-Dorfman algebra structure on S*(Z) ® L, and prove that
under certain conditions the standard complex of L is isomorphic to the standard
complex of S*(Z) ® L.

In Chapter 4, we focus on the construction of the derived bracket for a Leibniz
algebra. We work on the standard complex of a Leibniz algebra throughout this
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chapter. We define a canonical 3-cochain © and construct a bracket {e, e} for certain
cochains, which we call “representable” cochains. We prove that all representable
cochains form a graded Poisson algebra under this bracket. And finally we prove
that the Leibniz bracket of any fat Leibniz algebra can be represented as a derived
bracket.

Chapter 5 is devoted to the application of equivariant cohomology theory in
Courant algebroids and Leibniz algebras. We consider two specific types of g
differential algebras. The first one is the standard complex of the standard Courant
algebroid, based on the generalized action of a Lie algebra on a manifold. The second
is a certain subspace of the Leibniz complex. We define interior products ¢ and
Lie derivatives L¢ for both of them, so that they become g differential algebras.
Furthermore, we prove that they are of type (C) under certain assumptions.

We would like to point out other works that might be related to this thesis:
Kolesnikov’s work [13] on conformal representations of Leibniz algebras; Uchino’s
work [70] on the derived bracket construction concerning strongly homotopy Leibniz
algebras; Benayadi and Hidri’s work [9] on quadratic Leibniz algebras; Ginzburg’s
work [27] on equivariant cohomology for Poisson manifolds; and [13] by Bruzzo, Cirio,
Rossi and Rubtsov on equivariant cohomology for Lie algebroids.
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Chapter 2

Preliminaries

2.1 Leibniz algebras

In this section we list some basic knowledge about Leibniz algebras. For more details,
we refer to [50].

Definition 2.1. A (left) Leibniz algebra is a vector space L over a field ¢ (£ = R
for our main interest), endowed with a bilinear map (called Leibniz bracket) o :
L ® L — L, which satisfies (left) Leibniz rule:

ero(egoez) = (eyoey)oeg+ego(egoey) Vey, e ez €L

It’s easily seen that if the Leibniz bracket of L is skew-symmetric, then the
Leibniz rule is equivalent to the Jacobi identity, thus L is a Lie algebra. So roughly
speaking, a Leibniz algebra is a “weakened” Lie algebra without skew-symmetricity.

A Leibniz subalgebra of L is a vector subspace which is closed under Leibniz
bracket.

Given two Leibniz algebras (Lq,01) and (Lg, 02), a homomorphism ¢ from L; to
Ly is a linear map ¢ : L; — Lo preserving Leibniz brackets, i.e.

(e 01 e3) = p(er) o2 p(ea), Ver,es € L.

Leibniz algebras together with homomorphisms defined above form a category.
Given a Leibniz algebra L, denote by Z the left center of L, i.e.

Z={ecLleoe =0, Ve € L}.
We have the following;:

17
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Proposition 2.2. Z is an ideal of L, and the Leibniz bracket of L induces a Lie
bracket on L/Z.

Proof. By Leibniz identity
(eof)oe' =eo(foe)—fo(eoe)=0, Ve, €L, feZ,

soeo f €.
Sine foe=01is also in Z, Z is an ideal of L.
So the Leibniz bracket of L induces a Leibniz bracket on the quotient L/Z:

— - A —
€1 0€eg = €1 O €9,

where € is the equivalence class of e € L in L/Z. In order for this bracket to be a
Lie bracket, we only need to prove that it is skew-symmetric, i.e.

6710672+6720€1:0€L/Z,

or equivalently
€1 0€y +€e90¢€ € .

This is true because:

(e1oeytegoer)oe =ejo(eg0e)—ego(ejoe)+eyo(ejoe)—ejo(egoe) =0, Ve € L.
|

In the proof above, we see that e; o ey + 5061 € Z, Vey, ey € L, this leads to
the following definition:

Definition 2.3. With the above notations, we can naturally define the symmetric
bilinear product (e,e): L ® L — Z to be:

A
(e1,62) = €106g+ €z 06,
It induces a map

(8): L — Hom(L,Z)
)

) & (e).

This product (e, e) will be constantly used in the subsequent chapters.
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Proposition 2.4. The bilinear product (e, e) is invariant, i.e.

(e1,(e2,e3)) = (e1 0 e2,e3) + (e2,€1 0 €3).

Proof.
(e1,(e2,e3)) = ero(ez,e3)+ (ez,e3)0e;
= e1o(eg0e3+ez0ey)
= (e1oey)oeg+ego(egoes)+ (e10e3)oey+ego(egoes)
= (e10ey,e3) + (2,61 0€3).
]

Example 2.5. Given any Lie algebra g and its representation (V) p), the semi-direct
product g x V equipped with a bilinear operation o defined by

(A+v)o(B+w):=[A, B]+p(Aw, VA Beg, vyweV

forms a Leibniz algebra.
In particular, gl(V) @ V is a Leibniz algebra with Leibniz bracket

(A+v)o(B+w)=I[A B+ Aw, VA Begl(V), v,weV.

It is called an omni Lie algebra, and denoted by ol(V). The notion of omni Lie
algebra was introduced by Weinstein in [71] as the linearization of the standard
Courant algebroid TR™ @ T*R"™ (the Leibniz subalgebra consisting of all the sections
of linear vector fields and constant 1-forms). The left center of ol(V') is obviously V,
so the quotient Lie algebra in Proposition 2.2 is exactly g{(V'). The bilinear product
of ol(V):

(A+v,B+w) = Aw+ Bv

is exactly the the restriction of the symmetric bilinear form of TR™ & T*R"™. See the
next section for the definition of Courant algebroids.

Weinstein called ol(V') an omni Lie algebra because all Lie algebra structures on
V' can be characterized by the Dirac structures in ol(V'):

Theorem 2.6. Let B be a skew-symmetric bilinear operation on V', denote by
adg : V — gl(V) the adjoint operator, i.e. adp(vi)(vy) £ B(vy,vs), and denote by
Laay € ol(V) the graph of adp, then B satisfies Jacobi identity if and only if g,
is closed under the Leibniz bracket of ol(V)). When this condition is satisfied, the
restriction to 'y, of the natural projection from ol(V') to V is an isomorphism of
Lie algebras between I'yq, and V.
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Next we define representations of Leibniz algebras.

Definition 2.7. A representation of a Leibniz algebra L is a triple (V,1,r), where
V' is a vector space equipped with two linear maps: left action [ : L — gl(V) and
right action r : L — gl(V) satisfying the following equations:

leyoes = leys leg]s Tejoes = leys Tes), Tey ©ley = —Tey OTey, Vep,eg € L, (2.1.1)

where the brackets on the right hand side are the commutators in gli(V').

If V' is only equipped with left action [ : L — gl(V') which satisfies le,oe, = [leys les],
we call (V1) a left representation of L.

For (V,1,r)(or (V,[)) a representation (or left representation) of L, we call V' an
L-module (or left L-module).

A homomorphism ¢ from an L-module (V,,r) to another L-module (V',I',7') is
a linear map ¢ : V — V’/commuting with the left actions as well as the right actions,
ie.

o(lv) = ULo(v), ¢(rv) =rig(v), Vee L, veV.

L-modules together with homomorphisms defined above form a category.

Given a left representation (V,1), there are two standard ways to extend V' to
an L-module. One is called symmetric extension, with the right action defined as
r. = —l.; the other is called antisymmetric extension, with the right action defined
as r, = 0. It is obvious that both right actions satisfy the second and third equations
in 2.1.1.

The left center Z is a natural example of left L-module:

Proposition 2.8. Leibniz bracket of L induces a left L-module structure on Z.

Proof. In the proof of Proposition 2.2, we see that eo f € Z, Ve e L, f € Z.
So we can define a map

p:L—gl(Z): ple)f Zeof.

In order for (Z, p) to be a left representation, we only need to prove p(e; o ey) =

[p(e1), ple2)].
Since

pleroey)f = (ejoey)of,
[p(er), ple2)]f = ero(ez0f) —ezo(erof),

by Leibniz identity, p(e; o e2) = [p(e1), p(ea)].
The proof is finished. m
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Similar to the case of Lie algebras, we have the following definition of Leibniz
cohomology:

Definition 2.9. Given a Leibniz algebra L and an L-module (V,[,7), the Leibniz
cohomology of L with coefficients in V' is the cohomology of the cochain complex
C™(L,V) = Hom(®"L,V) (n > 0) with the coboundary operator dy : C"(L,V) —
C" (L, V) given by:

(doO() (617 Tty en—i-l)
n
= Z(—l)““leaa(el, e Cu s engn) (=D)L aler, o en)
a=1
+ Z (_1)aa(617"' 762“--- ,éb,6a06b,"' 7en+1)
1<a<b<n+1

The resulting cohomology is denoted by H*(L;V,l,r), or simply H*(L,V) if it
causes no confusion.

Example 2.10. (1). (R,0,0) is a representation of L, called the trivial representation.
The corresponding Leibniz cochain complex is denoted by C*(L;R), and Leibniz
cohomology by H*(L;R).

(2). L itself is an L-module, with left action ady(e)(e’) := e o €’ and right action
adr(e)(e') :=¢€'oe, Ve,e' € L. (L,ady,adg) is called the adjoint representation of
L, and the corresponding Leibniz cochain complex is denoted by C*(L;ady, adg),
and Leibniz cohomology by H*(L;ady, adg).

The graded vector space @,C"(g,¢) is a graded Lie algebra with the standard
commutator as Lie bracket:

[a,f] =ao B+ (-1)""Boa, VaeC**'L,L), B€C"(L,L),
where a0 f € CTP+1(L, L) is defined by:

(Oé © B)(elv e 7€a+b+1)

D IC I MNC

=0 o€sh(i,b)
@(60(1), RLZOF 6(60(i+1)7 T €o(idb)s €i+b+1)7 Citbt2, """ 76a+b+1)
Vela"' s €atbtl € L.

(Refer to [0, 25] for more details.)
In particular, when o € C*(L, L),

[, a(eq, €9, e3) = 2(aoar)(eq, €2, e3) = 2(a(a(er, ea), e3)—aler, a(ea, e3))+a(es, aler, e3))).

We see that o defines a Leibniz bracket on L iff [o, o] = 0.
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2.2 Courant algebroids and Courant-Dorfman al-
gebras

Definition 2.11. A Courant algebroid consists of a vector bundle ¥ — M, a
fibrewise non-degenerate psedo-metric (e, o), a bundle map p : £ — TM called
anchor map and a R-bilinear operation o on I'(F) called Dorfman bracket, which
satisfy the following relations for all f € C*°(M), e, e1,eq,e3 € I'(E):
1). e;o(ez0e3) =(e10eg)oez+ez0(eg0e3)
ple1oex) = [p(e1), plez)]
e1o(fea) = (p(er)flea + fler o ez)
e10ey+ey0e; =0(eq,es)
Of oe=0
. pler)(ea, e3) = (e1 0 ea,e3) + (e2,e1 0 €3)
where 0 : C®°(M) — I'(E) is the R-linear map defined by (9f,e) = p(e)f.

W N

S O~
— — — — —

This definition is an equivalent version of the original one in [16]. The Courant
bracket there is the skew-symmetric part [eq, es] = %(61 oeg — ey 0eq) of the Dorfman
bracket.

Example 2.12. 1). If M is a point, then the anchor map p (and thus 9) is trivial,
and F is just a vector space. The properties 2), 3), 5) above are trivial. 1) implies
that E is a Leibniz algebra, and 4) implies that the Leibniz bracket is skew-symmetric,
thus F is a Lie algebra. 6) says that E is endowed with an invariant inner product.
As a conclusion, F is a quadratic Lie algebra.

2). Given a manifold M, TM @ T*M with anchor map given by the projection,
with pseudo-metric given by

(X +6Y +n) = (X, n) 4+ (Y,€),

where (-, -) is the natural pairing of T'M and T* M, and with Dorfman bracket given
by

(X +&o(Y+n):=[X, Y]+ Lxn—ydué, VXY €X(M), &neQ(M),

becomes a Courant algebroid. This is called the standard Courant algebroid. The
skew-symmetric part

X+ &Y 4] = [X, Y]+ Ly — Ly€ — zd(n(X) ~ £(V)

is the original bracket introduced by Courant in [15].
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Given a Courant algebroid F — M, E* (or I'(E*)) is isomorphic to E (or I'(E)
resp.) by pseudo-metric. The isomorphism maps are denoted by

() E*—=FE

and
() :E— E".

Sometimes we simply omit these two notations and identify E* with E.
The dual of the anchor
pt T"M — E*
is called the coanchor map. Since E* can be identified with £ by pseudo-metric, the
coanchor map can be viewed as a map

prr T"M — FE

such that
(", e) = a(p(e)).
Property 5) and 6) in Definition 2.11 implies that

p(0f) =0, ¥f € C®(M).

It follows that
pop =0.

Identifying E* with E by pseudo-metric, it is easily seen that (kerp)t, the
subbundle of E orthogonal to kerp, coincides with p*(7T*M), the subbundle of £
generated by the image of 9 : C*°(M) — T'(E). Thus any a € I'((kerp)t) can
be written as Y, fi0¢;, fi,g9; € C*°(M). Since po d = 0, it follows that kerp is
coisotropic, i.e. (kerp)t C kerp.

A Courant algebroid F is called exact iff

0—=TM L5 E-sTM—0

is an exact sequence of vector bundles.

The standard Courant algebroid is the prototypical example of an exact Courant
algebroid.

Severa in [04] gave a classification of exact Courant algebroids by cohomology
classes in H?(M,R), called Severa classes. In particular, the Severa class for the
standard Courant algebroid is 0 € H3(M,R).



24 CHAPTER 2. PRELIMINARIES

A slightly more general notion is a transitive Courant algebroid: a Courant
algebroid F is called transitive if the anchor map p is surjective.

A further more general notion is a regular Courant algebroid: a Courant algebroid
E is called regular if F':= imp has constant rank, in which case F'is an integrable
distribution on M. Moreover, if E is regular, then kerp and (kerp)* are smooth
constant rank subbundles of F and the quotients E/kerp and E/(kerp)* are Lie
algebroids. It is obvious that E/kerp and F are canonically isomorphic. (kerp)t
and F* are also isomorphic. We call E/(kerp)* the ample Lie algebroid associated
to E. Let G = kerp/(kerp)*t, and denote by 7 the projection map kerp — G. The
Dorfman bracket on I'(E) induces a C*°(M)-bilinear and skew-symmetric bracket
on I'(G) as follows:

[m(e1),m(ez)]g £ m(e10ey), Vei, ey € I'(kerp).

G becomes a bundle of Lie algebras under the bracket [e, o]g. Moreover, the map
(e, @)g defined by

(m(e1), m(e2))g = (er,e2), Ver, ez € I'(kerp)

is a well-defined non-degenerate symmetric and ad-invariant pseudo-metric on G,
turning G into a bundle of quadratic Lie algebras. Chen, Stienon and Xu in [17]
gave the following:

Definition 2.13. Let F be a regular Courant algebroid with characteristic distribu-
tion F' and bundle of quadratic Lie algebras G. A dissection of F is an isomorphism

of vector bundles
v: HFogolF - F

such that V&, n € I'(F*), r,s € I'(G), =,y € T'(F),

(W +7+2),U(n+s+y) =y + 0,2) +(r,5)g,

where (e, @) on the right hand side is the natural pairing of F' and F**, and (e, e)g
is the symmetric bilinear form of G.

A standard dissection of E is a dissection satisfying two more conditions:

D). p(U(E+r+ 1)) = 2

2). Pro(U1(¥(r) o W(s))) = [r, slg.

The Courant algebroid structure of £ can be transported to F™* & G & I’ through
W, turning ¥ into an isomorphism of Courant algebroids.

Chen, Stienon and Xu proved that standard dissections always exist for regular
Courant algebroids.
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Each dissection of F induces three canonical maps (Pr is the projection map):

1). V:I(F)®I'(G) - T(G) :
Vyr = Prg(zor), Vzel(F), rel(G);
2). R:T'(F)®I'(F) = TI(G):
R(z,y) == Prg(zoy), Va,yel(F);
3. H:T(F)@T(F)@T(F) = C®°(M) :
H(z,y,z) .= (Prp-(zovy),z), Vx,y,z€(F).
These maps (V, R, H) satisfy the following properties:
Proposition 2.14. 1). V is a covariant derivative:
Vier = fV,r
Volfr) = [Var+ (a(f))r
Ve e I(F), r€T(G), fe€C®(M);

2). R is skew-symmetric and C*°(M)-bilinear. It can thus be regarded as a bundle
map N°F — G;

3). H is skew-symmetric and C*(M)-trilinear. It can thus be regarded as a
section of N3F™*.

Chen, Stienon and Xu proved that the Dorfman bracket on I'(F* & G @ F') can
be recovered from (V, R, H):

Lemma 2.15. Let P:T(G) @ T'(G) = T'(F*) and Q : T'(F) @ I'(G) — ['(F*) be the
maps defined by:

(P(r,s),x) = (s,Vur)g
<Q($,T),y> = (T’ R(fl],y))g.
Then we have

roy = H(l’,y,)—FR(l’,y)—i—[l’,y]

ros = P(r,s)+[rs]g

or = ro&=0

Eon = 0

xoé = L&

Eox = —L,&+dy x)

rzor = —rox=—Q(x,r)+ V,r

Va,y € T(F), r,s € T(G), §&n e T(F).
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Remark 2.16. Suppose F' is an integrable subbundle of T'M and G is a bundle of
quadratic Lie algebras over M. Given (V, R, H) satisfying the properties in 2.14, it
is easy to prove that F* & G & F with anchor map

plE+r—+x)=ux,
pseudo-metric

(§+T+$=77+3+y) = <§ay>+<7i,x>+(7’as)g7

and Dorfman bracket defined as in 2.15 is a (regular) Courant algebroid. And
F*® G @ F is a standard dissection of itself.

Extracting the properties of I'(F), we have the following definition of algebraic
version (given by D. Roytenberg in [01]):

Definition 2.17. A Courant-Dorfman algebra (€, R, (e, ®), 0, 0) consists of the fol-
lowing data:

a commutative algebra R (over a commutative ring K which contalns =, or R for
our main interest);

an R-module &;

a symmetric bilinear form (e,8): £ ®p & — R;

a derivation 0 : R — &;

a Dorfman bracket o: £€® & — €.

These data are required to satisfy the following conditions for any e, e;, es,e3 € £
and f,g € R:

). ero(fe2) = f(e10e2) + (e1,0f)es;

2). (e1,0(eq,e3)) = (€1 0 eq,€3) + (e2,€1 0 €3)
). e1oeg+ex0e; = 0(ep,e);
). e1o(exo0e3) = (e 0ez)oez+exo(eroes);
). df oe=0;
(6). (0f,09) = 0.

Given any Courant algebroid £ — M, I'(E) is obviously a Courant-Dorfman
algebra with the commutative algebra R = C°°(M). And it has an additional
property that the symmetric bilinear form on £ =I'(E) induces an isomorphism

E— &Y =Homg(E,R).

(1
(
(3
(4
(5

We call the symmetric bilinear form with this property strongly non-degenerate
and the corresponding Courant-Dorfman algebra non-degenerate. Similarly the
isomorphism maps can be denoted by

(-)ﬁ:gv—ﬂf
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and
()Y:E=EY.
Given a Courant-Dorfman algebra &£, we can recover the anchor map
p: &€= X'= Der(R,R)
from the derivation 0 by setting:

ple) - f 2 (e, ). (22.1)

Let Q' be the R-module of Kahler differentials with the universal derivation
dr : R — Q' By the universal property of Q!, there is a unique homomorphism of
R-modules p* : Q' — £ such that

5 (dnf) 2 0f. (2.2.2)

p* is called the coanchor map of £. When & is non-degenerate, analogously to the
case of Courant algebroids, p* can be equivalently defined by

(5" ase) = (o, p(e)).

From the conditions in Definition 2.17, it is easily proved that p*(Q') = ROR is
an isotropic ideal in £. So the Dorfman bracket of £ induces a Leibniz bracket on
the quotient £/p*(2'). The induced bracket is skew-symmetric since

e1oey+eyoe; =0(ey,e) € pH(QY), Vey,en€E.

Actually £/p*(Q') is a Lie-Rinehart algebra with anchor map given by Equation
2.2.1.

Remark 2.18. From the fourth condition in Definition 2.17, we see that any Courant-
Dorfman algebra is a Leibniz algebra. Conversely, given any Leibniz algebra L with
left center Z, if we replace in Definition 2.17 £ with L, R with Z, symmetric bilinear
form of £ with the naturally defined bilinear product (e, e), Dorfman bracket with
Leibniz bracket of L, and the derivation map 0 : R — &£ with the inclusion map
Z — L, it is obvious that the last four conditions in 2.17 are still satisfied.

Condition (3): e; oey +ey0e; = (e1,e3), Ve, es € L.

This is the definition of bilinear product (e, e).

Condition (4): e; o (eg0e3) = (e10e3) 0eg+eg0 (e 0e3), Ver,es, ez € L.

This is the Leibniz identity.

Condition (5): foe=0, Vf € Ze€ L.

This is true by definition of Z.
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Condition (6): (f,9) =0, Vf,g € Z.

This is true by definition of Z and (e, e).

And Condition (2) also holds by Proposition 2.4.

In Chapter 3, we will construct a Courant-Dorfman algebra structure on the
tensor product S*(Z) ® L, check 3.21 for details.

The Courant bracket of a Courant algebroid can be realized as a derived bracket
on a degree 2 graded symplectic manifold, and the standard cohomology is defined
to be the cohomology of the complex of graded polynomial functions on this graded
manifold [02]. These constructions concerning graded manifolds are included in the
appendix. In the following, we focus on the corresponding algebraic construction for
a Courant-Dorfman algebra.

The following construction of standard complex is due to Roytenberg [(1]:

Given a Courant-Dorfman algebra &, denote by C™ (&, R) the space of all sequences
w = (wo,*+ ,wyz]), where wy, is a linear map from @" k€ @ ©FR to R, Vk, satisfying
the following conditions:

1). Derivation: wy is a derivation in each argument in R.

2). Weak skew-symmetricity (in arguments in £): wy, is weakly skew-symmetric
up to wg41:

wk(ela"' y€as €at1, """ 7en—2k;f17"' afk) +w/€(617"' 7ea+176a7"'6n—2k;f17"' 7f/€)
= _wk+1(617”' 7627 6;:1,"' 7en72k;<€aaea+1>7f17"' 7fk)

Vk, Ve, €&, Vfi € R
3). Weak R-linearity (in arguments in &): wy, is weakly- R-linear up to wy1:

wk<€1a"' 7f6a7"' 7€n—2k;f17”' 7fk)
- fwk((617"' y€ay 7€n—2k;f17"' 7fk)

+Z<_1)bia(eaaeb)wk+l("' 7627"' 7é\ba"' ;fafla"' 7fk>

b>a

Vk, Ve, € &, Vf, f; € R.

The third condition above implies the property that wy is R-linear in the last
argument in £. Conversely, this property together with the second condition induce
the third condition. So the third condition can be replaced by this property.

C*(€, R) is an algebra with multiplication map given by:

(w-n)kler, - entm—sk; f1,- - fr)

= X 2 > (=1

a+b=k oc€sh(n—2a,m—2b) T€sh(a,b)
Wa(eo(l)a 5 €o(n—2a), fT(l); te 7f7'(a)) : nb(ea(n—2a+1)7 5 Co(nt+m—2k), fT(a+1)7 ) fT(k))
Ywe C"(E,R), ne C™(E,R), Vk, Ve, € E, Vf; € R.
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For any w € C"(€, R), define dw = ((dw)o, - - -, (dW)[nTH]) by setting
(dw)i(er, - s entioni [+ fr)
= Y. (=D"™plea)wr(-++ €3 fr o fi)

a
+Z(_1)awk( 7é;a"' 7é\baeaoeb7'“ 7)

a<b

+> w1 (0fiser, - enaon f1, i  fr)
Yk, Ve, € £, Vfi € R

The first two terms in the equation above is just the Leibniz cohomology differ-
ential dy with £ viewed as Leibniz algebra and R viewed as its module

lef =ple)- [ =—ref.
To be more precise, the Leibniz module involved here is actually
{a € Hom(®"R, R)|a is a derivation in each argument}.
Denoting by (dw)y the last term, the equation above can be summarized as
d=dy+6.
We have the following:

Proposition 2.19. The operator d is a derivation of the algebra C*(E, R) of degree
+1, and it squares to zero.

Definition 2.20. The cochain complex (C*(€, R),d) is called the standard (cochain)
complex of Courant-Dorfman algebra &, the resulting cohomology is called the
standard cohomology of £, and denoted by H?,(E).

Remark 2.21. Actually Roytenberg [01] described an alternative point of view of the
standard complex and standard cohomology.

The new standard complex is denoted by (C*(€, R),d). An n-cochain in C*(&, R)
is a sequence W = (Wp, -+ ,Wz]), where @y is a linear map from ®"**€ ® ©*Q' to
R, satisfying the following conditions:

1). R-linearity: @y is R-linear in each argument in Q!,

2). Weak skew-symmetricity (in arguments in &),

3). Weak R-linearity (in arguments in £).
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And the codifferential dw = ((d), - - - , (d@)[%l}) is given by:

(d)i(er, - enti—aw;an, -+, Q)
e Z(_l)a+1p<€a)a}k< 7é;7... ’)
+Z(_]—)aa}]€<' ’é;7... ’éz?eaoebj... ;...)
a<b
—|’Z(Dk—1(P*O¢ia€1a"' yt aa\ia”')
_|_Z(_1)aa]k(.. ’é;,... O ’6[;’ [’p(ea)dROé’Iﬁ”')

Ve, € €, Ya; € Q.

Denoting by (d'@w)j the last term in the equation above, then we have

d=dy+6+d.
There is a 1-1 correspondence between w € C*(€, R) and @ € C*(&, R):

Wr( e sdpfi, oo drfi) = we(oo 5 fi, o fi),s

which induces an isomorphism of complexes.
Therefore, the standard cohomology H¢,(€) can be equivalently defined as the

cohomology of (C(€, R),d).

Now suppose £ is a non-degenerate Courant-Dorfman algebra. Any e € £ can be
identified with €’ € C'(&, R) by pseudo-metric. In the following we will construct a
3-cocycle © and a bracket {e, e} on C*(&, R) so that the Dorfman bracket of £ is
realized as a derived bracket:

(61 © 62)b = _{{@7 ebl}a 65}

The construction is also due to Roytenberg [01]:
First, © = (O, ©1) is defined as follows:

@0(61,62763) = (61062,63)

Ou(e; f) = —(e,0f)

Proposition 2.22. [01/0 is a cocycle in C*(E, R).
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We call © the canonical cocycle of £, and its class [0] € H3(E) the canonical
class of £.

The bracket {e, o} on C*(€, R) for a non-degenerate Courant-Dorfman algebra £
is constructed as follows (actually the construction applies to any R-module with
strongly non-degenerate bilinear form):

Yw € C™(E, R),
wp: " *6Q0FR > R

is R-linear in the (n — 2k)-th argument, so it gives rise to a linear map
O . @*71E 5 Der(0FR, EY),

where any element in Der(®*R,EY) = Hompg(S*Q!, EY) is a linear map GFR — £V
which is a derivation in each argument R.
wy, is defined as follows:

wrler - enon-1)(f1- fr)(€) = wiler - en—op—1,€; fi- - fr).
Composing (-)* : &Y — & with @, the resulting map is denoted by
wh = (@)t : @€ - Der(OFR, E).
Va € Der(O'R,E), B € Der(®’R,E), define (« - ) € Der(®™ R, R) as follows:

(- B)Y(frs s fing)
= Z (a(fa(l)"” 7f0(i)>76(f0(i+1)7"' 7fo'(i+j)))

o€sh(i,j)

Vv € Der(®'R, R), § € Der(®’/R, R), define yo§ € Der(®"'R, R) as follows:

(o d)(fi, , firi—1)
= Z 7(6<f0'(1)7 7f0'(j))7f0’(j+1)7”' 7fcr(i+j—1))
oesh(ji—1)
Finally given w € C"(&€, R), n € C™(&, R), the bracket {w,n} € C"t" 2(€, R)
is defined by:
{wnf=wentwon—(=1)"now
where wen = ((wen)y, (wen)i, ) with (wen), : @272k — Der(GFR, R)
defined by:

(wen)uler, , enym—2-2k)
= ()"t Y > (=1)7
i+j=k o€sh(n—2i—1,m—2j—1)

<w§<€a(l)7 Tty ea(n72i71)> : 775’(60(11721')7 T 7€o(n+m7272k))>7
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and won = ((won)y, (wWon)y, ) with (won)y: ™ 2728€ — Der(®*R, R)
defined by:

(w <o 77)k(€1, te 7€n+m—2—2k)

- > X (w

i+j=k o€sh(n—2i—2,m—2j)
Wi+l(€a(1)7 T 60(71—272—2)) SN (ea(n—Zi—l)) T 60(n+m—2—2k))'
O and {e, e} constructed above satisfy the following:

Theorem 2.23. ([01]) With the above notations, we have:
(1). {-,-} is a non-degenerate Poisson bracket on the algebra C*(E, R) of degree

—2;
(2). {©,0}=0;
(3). dw = —{O,w}, Yw € C*(E, R);
and

Theorem 2.24. ([01]) With the above notations, we have
(e10er) = —{{O,e},e}}, Vey,es €€,
which implies that the Dorfman bracket of £ is a derived bracket.

The following theorem asserts the equivalence between the standard cohomology
of E (Definition A.8) and the standard cohomology of & = I'(E):

Theorem 2.25. ([01])Suppose E — M is a Courant algebroid, € = I'(E), R =
C>®(M). Then the map

O (Cy(E):=A%{H, })— (C*(&E,R),d)
given, for any w € CL(E), by
(Pw)r(er, -« en—ani fr 5 fr)
(n—2k)(n—2k—1)
= (_1> 2 {"'{w7€b1}7’"}761—2k}7f1}7”'fk}
is an isomorphism of graded Poisson algebras.

It is easily checked that the image of the cubic Hamiltonian H under the isomor-
phism map ® is —©. So the equations in Theorem 2.23 and Theorem 2.24 correspond
to the facts that

{H,H} = 0,
Q = {HJ '}7
(e10 62)b = {{H, 6?}, 6;}



2.2. COURANT ALGEBROIDS AND COURANT-DORFMAN ALGEBRAS 33

Next, we direct our attention to the definition of naive cohomologies, for both
Courant algebroids and Courant-Dorfman algebras.

Given a Courant algebroid F, mimicking the definition of Chevalley-Eilenberg
differential, we can consider the operator

dpo : T(Akerp) — T(A*T'E)
defined by:

(dm,w, [SWARERNA 6n+1)
= D (FD"™plea)(wer A A Aepa)

1<a<n+1
+ > (=D)"(w,(eqoep) Aer A AEgr Ay Aent)
1<a<b<n+1

VYw € I'(A"kerp), Ve, € I'(E).

Note that we identify A*E and A®*E* by pseudo-metric in the above.
Stienon-Xu [08] proved the following:

Lemma 2.26. d,,['(A"kerp) C T'(A""kerp), and (U(A°kerp),d,,) is a cochain
complez.

And they gave the following definition:

Definition 2.27. The cohomology of (I'(A®kerp), d,,) is called the naive cohomology
of £, and denoted by H} (E).

Elements of I'(A®*E) can be viewed as super functions on E[1] via the pseudo-
metric, and can further be pulled back to the minimal symplectic realization E. So
we can identify I'(A®kerp) with a subalgebra of A® (see appendix for the construction
of E and A°®). Stienon-Xu [08] proved the following:

Lemma 2.28. 1). If w € ['(A"kerp), then Qw = d,,w.
2). If w € T'(A"E) satisfies Qw = 0, then w € I'(A"kerp) and dp,w = 0.

Thus the naive complex (I'(A*kerp), d,,,,) could be viewed as a subcomplex of the
standard complex (A°*, @), and we have a homomorphism

¢: Hy, (E) = HG(E).

The following theorem is conjectured by Stienon-Xu [08], and proved by Ginot-
Grutzmann in [26] using the tool of spectral sequence:
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Theorem 2.29. If F is a transitive Courant algebroid, ¢ is an isomorphism.

Actually Ginot-Grutzmann [26] computed the standard cohomology for more
general case: a Courant algebroid £ — M is said to have split base iff M = L x N
and imp = TLx N CTM.

Theorem 2.30. The standard cohomology of a Courant algebroid E with split base

s given by .
Hy(E)= D H,,(E)/(T3) @ XM™(N),

l+m=n

where (T3) is the ideal in Hy (E) generated by the image of

Ts: X(N) — H3 (E)
Ty(q) = [{H, q}]

(q € X(N) is viewed as a degree 2 graded function), and X*™(N) is the space
of “symmetric Killing multivector fields” Sm/z( )(X’”l(N)) with the convention that

XFLm(NY) = {0} for odd m, X*!(N) is the kernel of Ty (elements of it are called
Killing vector fields).

Remark 2.31. When E is a regular Courant algebroid, it is easily seen that the
naive complex (I'(A*kerp), d,,) coincides with the Chevalley-Eilenberg complex of
the ample Lie algebroid E/(kerp)*. Thus the naive cohomology of E is isomorphic
to the Lie algebroid cohomology of E/(kerp)*.

2.3 Equivariant cohomology theory

In this section, we give the definitions of g-differential complex, Weil algebra, equiv-
ariant cohomology, etc, and then we introduce the equivariant de Rham theorem.
For more details, we refer to [15, 24, 32, 33, 27].

Throughout this section, let G be a Lie group, g be its Lie algebra, {£;}1<i<, be
a basis of g and M be a manifold acted on by G.

We consider the de Rham complex (2°(M),d). The G action on M naturally
induces an action p of G on 2°(M). The infinitesimal action of g on Q°*(M) is defined
by

d d
Lew := %]tzop(exp(té))w = %\tzo(exp(—tf))*w

Denote by é the vector field

) 2 Sloleap(—9)(x), Vo€ M,
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we see that L is simply the Lie derivative along é . We call é the vector field

corresponding to § on M. Denote by ¢¢ the interior product by the vector field é .Itisa
well-known result that, p(a) (Va € G) acts on Q°(M) as automorphism, Lg, t¢, d (V€ €
g) act on Q°*(M) as derivations, and they satisfy the following equations:

pla)odop(a™) = d
p(a)o%op(a_l) = lAdee

pla)oLeopla™) = Laa
Le = douw+icod

Leod = dolLg (2.3.1)
[’f e} l’77 = _L77L§

Lign = [Le, Ly

e = [Le, ).

Motivated by the example above, we have the following:

Definition 2.32. A G differential complex (or G* module by some authors) is a
complex (A*,d) equipped with a G action p : G — GI(A®) of degree 0, and a linear
map ¢ : g — gl(A®) of degree —1, such that the following conditions hold for any
aeG, {neg:

1). pla)odopla™) =d;

2). p(a)otgop(a™) = tag,e;

3). Le =teod+doug

(Le == 4|,_op(exp(t€)) is the infinitesimal action of g on A*)

4). teoty+1y0te =0.

A G differential algebra (or G* algebra by some authors) is a differential graded
commutative algebra (A®, d) which is a G differential complex with the additional
condition that G acts as algebra automorphisms and ¢ acts on A*® as derivation for
any £ € g (thus L¢ also acts as derivation).

From the conditions in the definition above, it is easy to deduce the other equations
in 2.3.1.

If instead of a G action, (A®,d) carries only an infinitesimal action of g, we have
the following:

Definition 2.33. A g differential complex is a complex (A®,d) equipped with a
g-action L : g — gl(A®) of degree 0, and a linear map ¢ : g — gl(A®) of degree —1,
such that the following conditions hold for any &, 7 € g:

1). Leod=do Lg;
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2). [Le, tn] = tie;

3). Le =doue+ e 0d;

4). tg oty +ty0te =0.

A g differential algebra is a differential graded commutative algebra (A®,d)
which is a g differential complex with the additional condition that ¢s acts on A® as
derivation for any & € g (thus Lealso acts as derivation).

(Q*(M),d) is obviously a G(g) differential algebra, with L being the Lie derivative
along the corresponding vector field f , and ¢¢ being the interior product by f .

Remark 2.34. Actually the data of a g differential complex (A*, d) can be encoded in
an action of the graded Lie algebra g :=g_1 @ go ® g1 on A®, where g_; and g, are
copies of g as vector spaces, g; is one-dimensional vector space with distinguished
generator d. V¢ € g, we denote the corresponding element in g_; by ¢ and the
corresponding element in gy by L¢. The Lie brackets of g are given by the Cartan
commutation relations:

(e, L] 0
[Le, Ly] Lig.y)
[d,d] = 0
[Le,tn] = e
[d7 Lﬁ] = L5

[LE? d] =0

Let’s return to the prototypical example. If G is a compact Lie group, and it acts
freely on a manifold M, then the quotient M /G is also a manifold, so we have the de
Rham cohomology H3n(M/G) = H*(Q2*(M/G),d). For general case, when the action
is not free, the quotient M /G is no longer a manifold, but we can take (M x EG)/G
as a substitute, where EG is the universal bundle of G. EG is contractible and
G acts freely on EG, so M x EG is homotopy equivalent to M and the diagonal
action of G on M x EG is also free, thus (M x EG)/G is a manifold. We define the
equivariant cohomology HZ, (M) to be the de Rham cohomology Hip((M x EG)/G).
This is the geometric version of equivariant cohomology.

For a G(or g) differential complex (A®, d), we want to find the algebraic substitutes
for “free action”, “quotient” and the universal bundle FG, and define the equivariant
cohomology H, (A®) analogously.

We know that an action of G on M is said to be locally free, iff the corresponding
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infinitesimal action of g is free, i.e. the map

g — X(M)

£ — &
is injective. Let {&}1<i<n be a basis of g, the duals of the corresponding vector
fields &;, denoted by 6° (€ Q' (M)), satisty tg,67 = &!. Moreover if G is compact, by
averaging over the group if necessary, we can arrange that {6’} transform like the
coadjoint representation, i.e. L¢,67 = —C%.0%, where CY,s are the structure constants

of g. Conversely, if there are differential 1 forms {6"},<;<, such that t¢,67 = 5f , V1,7,
the action is obviously locally free. These lead to the following:

Definition 2.35. A G(or g) differential complex (A®,d) is said to be locally free, if
there exist {0'}1<;<, € A', such that

w0’ =01, Vi, j.

If moreover the space spanned by {#’} is invariant under G(or g), we say that (A®, d)
is of type (C).

Next we consider the substitute for "quotient”. Suppose G acts freely on M,
denote by 7 the projection map M — M/G. It is easily proved that the image of

™ QY (M/G) - Q*(M)
consists of all forms w € Q°(M) satisfying

ng =0
ng = O,

V¢ € g. This leads to the following:

Definition 2.36. An element w in a G(or g) differential complex (A*,d) is called a
basis element if it satisfies

tew = 0
ng = O,

V¢ € g. All basic elements form a subcomplex of (A®, d), called the basic complex,
and denoted by Aj,

bas*
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Finally we consider the substitute for the universal bundle £FG. Since EG is
contractible and G acts freely on EG, an ideal substitute must be a G differential
algebra E* which is acyclic and of type (C), and then we can define the equivariant
cohomology of a G(or g) differential complex (A°®, d) to be H*((A®* @ E®)pes): the
cohomology of the basic complex of A®*® E*. The following theorem gives an example
for such a substitute:

Theorem 2.37. Weil algebra (W*(g),dw) is an acyclic G differential algebra of type
(C).

Weil algebra W*(g) (or W* for simplicity) in the above theorem is constructed
as follows:
Let

wWh= @ ANg® S g").
pt2q=n
The dual basis of {&} in Alg* ® S%(g*) is denoted by {#'}, and the dual basis
of {&} in Ag* @ S'(g*) is denoted by {u'}. Obviously €%, 4 generate W* as an
algebra.
Let

1 o
dwt" = —SCE0'0 +ut
k. _ ki, j

then (W*, dy ) form a differential graded algebra.
Moreover, let G' acts on W* via the coadjoint representation, and let the interior
product be taken on the A®g* component, i.e.

e, = ol
! = 0
Le = —C0"
Lep/ = —Chp*

then (W*,dy ) become a G differential algebra.

Definition 2.38. The equivariant cohomology of a G(or g) differential complex
(A®,d) is defined to be

He.q<A.) = H.((A. & W.)bas)'
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This definition is also called the Weil model for equivariant cohomology. There is
an equivalent definition: the Cartan model for equivariant cohomology.

Definition 2.39. For any G(or g) differential complex (A®, d), let
Cy(A) = D (A 5g")",
p+2q=n
the g invariant elements in A? ® S9(g*)(with diagonal action).
Let dg : C3(A) = C3™(A) be the map:
dyg=d®1— 1, @',

then (Cj(A),d,) is a complex.

The resulting cohomology is called (the Cartan model for) the equivariant coho-
mology of A*, denoted by Hy(A®).

Actually any w € Cj(A) can be viewed as an A*-valued polynomial function on
g, and the differential d; is interpreted as

(dgw)(§) = d(w(§)) — rew(§), V€ € g.
The following theorem tells the equivalence of the above two definitions:
Theorem 2.40. H*((A®* ®@ W*)p.s) = H3 (A®).

The proof of this theorem uses Mathai-Quillen isomorphism, for details we refer
to [32, 33].

We know that when the action of a compact Lie group G on M is free, the
equivariant cohomology H¢, (M) is isomorphic to the de Rham cohomology of the
quotient manifold M/G. Analogously we have the following:

Theorem 2.41. If (A®,d) is a G(or g) differential algebra of type (C), then
HE(A) = H*(A,,).
This theorem can further be generalized to:

Theorem 2.42. [f (A*,d4) is a G(or g) differential algebra of type (C), and (B*,dp)
is a G(or g) differential A®-module , then
HZ(B%) = H*(Bg,).

A G(or g) differential A*-module means a differential graded A®*-module (B*, dp)
with action map A®* ® B®* — B*® being a homomorphism of G(or g) differential
complexes (i.e. commuting with v, L, d V€ € g).



40

CHAPTER 2. PRELIMINARIES



Chapter 3

Standard Cohomology

In this chapter, we define standard cohomology and naive cohomology of Leibniz
algebra analogously to the case of Courant-Dorfman algebra. And we prove a similar
result to proposition 2.29, asserting the isomorphism between standard and naive
cohomologies of Leibniz algebra. We also discuss the relation between standard
cohomology of Leibniz algebra and Courant-Dorfman algebra.

3.1 Definitions and properties

Given a Leibniz algebra L with left center Z and bilinear product (e,e). Let h O Z
be an isotropic ideal in L. Let R be a left module of L on which h acts trivially. For
example, Z is such an module with left action p induced by the Leibniz bracket of L
(see Proposition 2.8). By abuse of notation, we still denote by p the left action of L
on R.

Denote by C*(L, h, R) (or C*(L) for short if it causes no confusion) the graded
vector space with degree n subspace defined as:

C"L)= @ Hom(®’L®®'h,R)= @ Hom(®"L,R)® S!h").

p+2g=n p+29=n

Any w € C"(L) can be regarded as a sequence (wo,wr, - - - wiz]), where wy, is a linear
map
(@ *L)® (&"h) — R.

w(wy, respectively) can also be viewed as a polynomial map from h to Hom(®*L, R)(Hom(®" **L, R)
respectively). Taking the symmetric extension of the left action, R becomes an L-
module. We denote by dy the coboundary differential of the corresponding Leibniz
cohomology. Obviously C*(L) becomes a cochain complex under the coboundary

41
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differential dy ® td. We will abuse the notation and simply write dy ® id as dy from

now on.
Now consider a graded subspace C%(L, h, R) of C*(L) defined as follows:

Ca(L, h, R)
= {we C"(L)|wk(er, - e iq1, s lnoak fr,o o fu) T wi(--+ ,€ig1 €50
— _Wk+1("' ’@’ei/i’... ;(€i7€i+1)7"'>7 Vk}
Vw = (wo, Wk, Wet1,- ) € CL(L,h,R), we say that wy is “weakly skew-

symmetric” up to wyy1.
We'll write C%,(L, h, R) simply as C%,(L) if it causes no confusion.

C?,(L) is not a subcomplex of (C*(L),dy) because it is not closed under dy, but

we have the following:

Theorem 3.1. C%(L) is a cochain complex with coboundary differential d = dy +

d +9,
where 6 : C*(L) — C*TY(L) is the operator defined by:

(5W)k(617~ .. 76n+172k;f17' . 7fk)
= Z wk*1<fj7€17"'7€n+172k;f17”'7fj7"‘fk)

n—+1
2

Vn, Yw € C"(L), Vk < | ]

((dw)o is defined to be 0),
and d' : C*(L) — C**Y(L) is the operator defined by:

(dlw)k(ely Cy En 12k fi,o-- ,fk)
= Z Z (_1)a+1CUk(617'"é\ay"'en+1—2k2;f15'”fj7.fjOBLL?”'fk‘)

1<a<n+1—2k 1<j<k

1
Vn, Vw € C™(L), Wk <[22

].
First, we prove two lemmas.
Lemma 3.2. C%,(L) is closed under dy + 0.

Proof. We need to prove:

((do + O)w)rler - eiseir1 - enyiar; f1- - fx) + ((do + O)w)k(- - - €iprs€i v 5+

+ ((do+0)w)ps1(- -+, €, €41, 5 (€35 €i41), -+ ) =0

)
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The dy part equals:
S (1) plea) (Wil B iy ipre i) AWk Ear e eigry i )
aiyi+1
+Wk+1("‘ 76;... 761'767\-1-17"' ;(ei,ei-&-l),"'))
H=D)™ p(e)wr (- s & ey oo o) (1) pleirn)wr(- - s eq €y o)
+(—1)i+1,0(€i+1)wk(“’ ,67:1,61‘,'-- ;...)_|_ (—1)ip(ei)wk("' 7€i+1;@7"' 7)

+ Z (_1)a(wk("'7527"'>€aoeb7"'7€i7€i+17'“;"'>
(a<b)#i,i+1

+w/€( 1€asy 3 €a O €hy 641,64y ?)
_|_wk+1( 760,7”' 7eaoeb’... 761'767;-"-17'.. ;(61'761'4-1)7”'))

+ D (D) A+ ()" k(- &y eigr, o eioep i)

b>i+1

+ Z ((_]-)H_l—l—(_l)l)wk( a6i7€/i-\+17"' y€i41 O € a)
b>i+1

+Z<_1)a(wk(...€;...6aoei7ei+1... ;...)+wk(...é;...ei+17eaoei... ,.))
a<i

+Z(_1)a<wk(...é;...€i7eao€i+1... ;...)+wk(...é;...eao€i+1’ei... ,.))
a<i

+(_1)2wk(- 7eio€i+17"' 7.)+(_1)7/w]€( 7€i+1oei’... ;...)

= Z(—l)a+lwk+1("' v€as 560, €it1, i (€a 0 €y €it1) (€4, €0 0 €ip1), 00 0)
a<i

+(=1)'wi(- - &, €1, (€qy €iga), w50 )

= Z(_l)a+1wk+1(“' 7527"' 7é\i767\+17"' ;(em(eiaeiJrl))a"')
a<i

+(_1)2wk( : 'é\he/i\Jrla <€i>ei+1)7 T )

e Z(_l)a((.&”{}< >ea7(€i7€i+1>76a+17"' ’é\i,e/i-;l’... ;...)
a<i

+wk( 7€a—1;<€i7€i+1),€a7“‘ 7é\7,'7ei/<?17"' ’))
+(—1) wr (- - €, €1, (€5, €341), - 30 )

= _wk((eiyeiﬁ-l)ael?'“ 7é\i7€7-:1a"' ;) (311)

The ¢ part equals:
Z(Wk—l(fjael"'eiaei—i-l"' ;'"fj"')+Wk—1(fjael"'€i+1aei"' ,f]))

J
+Zwk(fjaela"' 7é\ia6/i\+17"' ;(eivei—‘rl))"' af]v)
J
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+wi((€;,€i01), €1, iy €ix1, v 3o )
= wi((€,€ir1), €1, iyt i)

So their sum is 0, the lemma is proved. m
Lemma 3.3. C%(L) is closed under d'.

Proof.

(d/w)k(€1 S @i, €41 Cpg1—ok; f1 e fk) + (dlw)k(el Tt Ci1, 64 Cpp1 -2k )

— Z (—1)a+1(Wk("',éa;"',€i7€i+17"’;"'7fjoea7"')
J,a7#4,1+1
+wk< ,eAa,.‘. ;6i+176’£7"' MR ’fjoeaj...>)
+Z(—1)i+lwk('“ y€isivty e, fjoe o)
J
) (D' e €ia, s, fjo e, )
J
+Z(_1)Z+1wk( 76/1'\—‘,-176737"' e 7fjo€7§+17"')
J
+Z(_1)1wk(.. 7e’i+17é\ia”. R ,fjoei’...)
J
— Z (—1)awk+1("'7€Aa7"'7éi76/i\+17"‘;(ei;€i+1>>"'7fjoea7"')
J,a#4,1+1
= (W (- €€, (e €ipn), o) (3.1.2)

the lemma is proved. m

Proof of Theorem 3.1:

Proof. From the lemmas above we see that C?%,(L) is closed under d = dy + 6 + d'.
So we only need to prove that d? = 0.

d? can be divided into six parts

d=di+0°+ (dyod+dody)+ (dyod +d ody)+ (dod +d od)+d?*

The first part equals 0, so we only need to compute the other five parts:
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(52w)k

= Z(&u

(617'” 7en+272k;f17”' 7fk)

)k—l(fz'7€17"' y Ent2—-2k; * 7.fi7"')

= SN wia(fi fore e iy 7fj,...)

1 jF£L

— Z(wk—2(fjafz’7"' o fi e Y wnea (i iy e fa ,fj’...))

1<J

= 0

((dyod+dody)w)kler, - entaor; fr, - fr)

Y (=) plea) (w)r(er - €a- - ensa ki)

+ Z(—l)a<5w)k(€1 e €at € O €y, Cryn ki)
a<b

+ Z(dow)kfl(fb €1 Cnp2-2k; """ >fi7 )

Z(_l)a+1p(ea)wk—l(fia €1 éaa CrrCp2—2ks Tt ]?iv T )

a,i

—i—Z Jiwr—1(fiye1- -, €ay  r€a0 €y, eppaops fiy o)
1,a<b

+Z plea)wr—1(fiser - €a---enyaopi-- fi-+)

+Z Dwi—1(e1-++ ,€q, fio€a€nyaop;- - fi--)

+Z D) wp_q(fiser e €0y €a0 e, enpook; e, fise )
i,a<b

_Zwk—l(ela"' s€as fio€ay  Cnyaaks ey fiy o)

((dood/—i—d/Odo)w)k(el,"'€n+2—2k§f17"‘fk>
= Z( D ple,)(dw )k(...éa...;...)+Z(_1)a<d’w)k(...éa...eaoec...;...

+Z

= Z(_

j,b<a

a<c

b+1dw ( ’é\b’...;...’fjoeb’...)

1)a+1p(ea>(_1>b+1wk(”. 7é‘b7... ’é\a’... gee 7fjoeb7...)
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+ Z (=) ple) (1) Pwi(- -+ €qyevv  Epyoreje fioep )

7,b>a

+ Z (_1>a+b+1w(
J,b<a<c

+ Z ( 1)a+b k(
J,a<b<c

BN S Y < N PRI 7fjo€b7"')

. ’ea7...é\b’... ,€q O €Coyrrm jmee 7fjo€b7”')

4 Z(_l)(z-i-cwk(... 7é\a7...é\m... peee 7fjo(€aoec)7...)

S D A © I CPIIEINY ) SUCIEMEO 7fjo€b7“')

(l)wk( ’é\a’... 7é\b)"' U 7fjoeb7...)

+ Z (_1)a+b+1p(ea)wk(... ;éba"'eAaa"' peee 7fj oel”...)

+ Z (_1>b+1+awk('_.

J,a<c<b

+ Z (_1)b+1+awk('”

j,a<b<lc

+ Z b-&-l-&—a-i—lcu
j,b<a<c

Z (=) Cwp (-, Eqy e

J,a<c

(bod +d

A~

3 €ayt€q O Ceyt Cpy ’fjoeb’...)

A~

3 €ay 3 €hy €GO Cy ’fjoeb,...)

k( ’é\b’... 7€Aa7”'ea0607"' ERX 7fjo€b7'.')

€y t yr e 7fjo(eac)ec)?...)

od)w)k(er, - enta—ok; fr. - fx)

= Z(d/w)k 1(fiser- - enyoop; - 7fi:"')

+Z et

— Z(_1)1+1wk

J#i

16w (1"'6Aa"'en+2—2k;”'fj7fjOea;”')

71("';"‘7fi7"'7fjofi7"')

"‘Z ch1fza"'>éaa"';"'7fi7"'>fjoea7"')

J#ia

+ Z(_l)a+1wk—l(fia"' 7€Aaa"' Yot 7fi7"' 7fjoea7"')

i#£j,a

+Z et

1wk 1 f Oeg, - ,Eyyrrrjon ,fj,---)

= Z(_l)a+1wk l(f OC€q,- - aé\aa"' yr 7.]?j7"')

j7a
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(dPw)r(er, - enyoop; fi, -

= Z(_1)a+1(d’w)k(... Gyt e

a,

— Z (_1)a+1+b—|—1wk(_ .

b<a,j#i

4 Z a+1+b k(

b>a,j#i

+ Z (_1)a+1+b+1wk(. .

b<a,i

4 Z a+1+b

b>a,i

a<b,i

A

A

= Z(_l)a"‘bwk(...éa...éb

So the sum of the above parts is:

Thus C?,(L) becomes a cochain complex with coboundary differential d. m

(dPw)i(er, - €nta—on; f1, -+ fr)

Z(—l)a+1wk71(]£joeaa"' ’éa’... e 7fj7" )

7,a

_Zwk_l(... fioeq, e fiee)

+Z a+b "'76Aa;"'éb7"'; ’fj (@aoeb)
j,a<b

+Z a+b "'7éaa"'7éb7"';"'7(f'06b)06a
a<b,i

Z(_l)a+b<wk_1(. 7fioea’€b7...é\a’... ;... 7fA7:’...

i,b<a
+wk_1(...€b’fioe(“...é\a,... 7 7fAi7"'))

+Z a—l—b '7éaa"'7éba"';"'7(6a7fio€b)7"'

i,a<b

0

fr)

7667".

y€ay

) "ﬁa(fioeb)oea_

, Ji o €a, )
€yt s fi0€ay e, fjO€p,
y €y fi0€ay e, fjO ey
6y (fioeq)oep,c)
6y (fioea)oep, )

(fioea)oep, -
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Definition 3.4. (C%(L, h, R),d) is called the standard complex of L with respect

to the ideal h and module R. And the resulting cohomology HZ(L,h, R)

H*(C%(L,h, R),d) is called the standard cohomology of L with respect to h and R.
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We'll write H3 (L, h, R) simply as H3(L) if it causes no confusion.

Remark 3.5. Given any Courant-Dorfman algebra (£, R, (e,e),0,0), the standard
complex C*(&, R) and standard cohomology H$,(&) is defined as in Definition 2.20.
If we view € as a Leibniz algebra, and take h = p*(Q') = ROR, then we also have the
standard complex C%,(€, h, R) and standard cohomology HZ,(E, h, R) as defined in
Definition 3.4. We see that C%,(€, h, R) are different from C*(€, R). The differences
rely on the R-module structure of £: cochains in C*(&, R) are required to be weakly
R-linear in each argument of £ and be a derivation in each argument of R, while
cochains in C%(&, h, R) have no such requirements.

Let’s consider the standard cohomology in lower degrees:
Degree 0:
HY.(L) is the submodule of R consisting of all invariants, i.e.

HY(L) = {r € R|p(e)r =0, Ve € L}.

Degree 1:
A cocycle w in CL(L) is a map wy : L — R satisfying:

wo(er o ea) = per)wo(es) — ples)woler), Ver,ex € L

and

WO(f) = 0, Vf € h.

The first equation above tells that wy is a derivation from L to R, while the
second equation tells that wy induces a map from L/h to R.
n € CL(L) is a coboundary iff there exists a € R such that:

m(e) = ple)a, Vee L,

i.e. 1 is an inner derivation from L to R.

Thus H, (L) is the space of “outer derivations”: {derivations}/{inner derivations}
from L to R acting trivially on h. Or equivalently, H} (L) is the space of outer
derivations from L/h to R.

Degree 2:

w = (wp,w1) € C4(L) is a 2-cocycle iff:

pler)wo(ez, e3) — plea)woler, ez) + p(es)woler, €2)
—w0(€1 O €9, 63) - W0(€2> €10 63) + WO(€1> €20 63) = 0 Vepez,e3€lL

and
p(e)wl(f)+w0(f76)+wl(fo€):Oa veELafeh'
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The first equation above holds iff the bracket on L £ L @ R defined for any
e1,e0 € L, ri,15 € R by:

(1 +71)o(eatre) Seroen+ (0(61)7"2 — ple2)r1 + wo(e, 62))

is a Leibniz bracket, while the second equation above tells that

h & {f —wi()f €h}

is an ideal of L. So a 2-cocycle w induces a Leibniz bracket (actually it is a Lie
bracket) on L/h = (L/h) @ R.

In other words, 2-cocycles are in 1-1 correspondence with abelian extensions of
the Leibniz algebra L by R:

0R—L—>L—0

such that A is an ideal of L.
w = (wp,w1) € C4(L) is a 2-coboundary iff there exists a € C,(L) such that:

woler, ea) = pler)ap(ez) — plea)ap(er) — aple o eg), Ver,en € L

and
wi(f) = ao(f), VfE€h,

So 2-coboundaries are in 1-1 correspondence with abelian extensions of L by R
such that B
0O—+R—-L—-L—=0

is split in the category of Leibniz algebras.

Therefore, H2(L) classifies the equivalence classes of abelian extensions of L by
R satisfying that h is an ideal of L. (By Theorem 3.10 in the next section, we see
that H%(L) actually classifies the equivalence classes of abelian extensions of the Lie

algebra L/h by R.)

Proposition 3.6. If R is endowed with an algebra structure, then we can define
a multiplication on C3(L) so that C%(L) becomes a differential graded algebra.
Furthermore if R is commutative, C3(L) is graded-commutative.

Proof. Yw € CZ(L), n € C%(L), define the multiplication w - 1 as:

(w ' n)k(elv e Jen+m—2k;f17 e 7fk)

= 22 > (=1

i+j=k o€sh(n—2i,m—2j5) T€sh(i,j)

Wi(ea(l) © €o(n—2i); fr(1) T fT(i))nj(eo(nf%Jrl) * €o(n+m—2k); fT(i+1) T fT(k))



50 CHAPTER 3. STANDARD COHOMOLOGY

We give the proof in 4 steps.
Step 1:
C?(L) is closed under the multiplication, i.e. w-n € C&™™(L):

(W mk( - s €asCaprm o5 froeo s fi) F (@M Caprs €ar o5 1o i)

= 2 2 > (=1

i+j=k o€sh(n—2i,m—25),0 " 1(a),0~1(a+1)<n—2i T€sh(:,j)
(Wil € €arr 5 ) @il s €arns€areeeioee) )iy +)

> 2 > (=17

i+j=k o€sh(n—2i,m—2j),0~1(a),0 "1 (a+1)>n—2i T€sh(:,))
wl()(nj<. ,ea’€a+1’... ;...) +777,( ’€a+1’ea7... 7))

> 2 > (=1

i+j=k o€sh(n—2i,m—25),0 =1 (a)<n—2i<o~1(a+1) T€sh(i,j)
(wl(ea ’)nj(€a+1 ’)+wz(ea+1 7)77j(ea ’))

> > > (=17

i+j=k o€sh(n—2i,m—2j),0 =1 (a+1)<n—2i<oc~1(a) TE€sh(i,))

(wi(...ea+1... ;...)fr/j(...ea... ,)+wz(€a ;...)nj(...ea+1... ’.))
(note that the same sequence (+-+ €4, ,€q11, ) viewed as permutations
of (+++ ,€ay€ar1, ) and (--+ ,eqi1,€q,- - ) have opposite signs)

- ¥ > > (-

i+j=k o€sh(n—2i,m—2j),0 1 (a),0 1 (a+1)<n—2i T€sh(i,7)
wi+1(' 5 €ayCatly (em ea+1)7 U )77]( ’ )

+ > 2 > (=p7

i+j=k o€sh(n—2i,m—25),0"1(a),0 1 (a+1)>n—2i TE€sh(s,j)
wi(- - )7]j+1(' “€as€atty s (€as€ay)y )

- ¥ 3 3 (=17 w5 (eas€atr)s (- ++)

I+j=k+1 oesh(n—2l,m—2j) r€sh(l,7),7~* ((ea,ea+1)) <l

DS S DTl eas ) )

i+l=k+1 oesh(n—2i,m—21) r€sh(i,l),7~ ((eq,ea+1))>1

- _(w'n)k-l—l(el?"' 7€a\a6;—‘:17"' ;(6a76a+1)7“')

Step 2:

The multiplication is associative:

Vw e C(L), n e C(L), A € C',(L), by definition it is an easy calculation that,
((wn)-Ae(er, -+ enpmai—2x; f1, -+ 5 fie) and (w-(n-A))ler, -+, enpmrr—ans fr, -+ i)
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both equal to:

Z Z Z (—1)0%('")Ub("'))\c("')

a+b+c=k geshuf fle(n—2a,m—2b,l—2c) T€shuf fle(a,b,c)

Step 3:
In order for C%(L) to be a differential graded algebra, we need to prove the
following;:

d(w-n) = (dw) -0+ (=1)"w - (dn), Yw € CH(L), n € CZ(L).

Since d = dy + d’' + ¢, it suffices to prove the equation for dy, d’, d respectively.

For dy, we only give the proof for the case of degree 0 here, since the proof is
almost the same for cases of higher degrees (the only difference is that the sum
should be taken over permutations of the arguments in h as well).

(do(w-m))oler, + , enpme1)
= Z(—l)““p(ea)(w (- €y--0) + Z(_l)a(w )o(- €y €peqoep- )

a a<b

= Y0l X (D) wolCoy - Cotm)Mo(€onin) - Etnim))

oesh(nm){-,a,- }

+> (=1)° > (=17

a<b o€sh(n,m){-a, },o0~1(b)<n+1

WO(ea(l)a €y €q O Epy e ea(n))WO(ea(nJrl)a T ea(n+m+1))
+ (=1)° ) (—=1)7

a<b oesh(n,m){-a,- },o0~1(b)>n

wol€o(1)s " * €o(n))M0(Co(nt1)s "+ » €by€a © €by " * * Co(nim+1))

(letting o1 be the permutation adding a to o in front,

o9 be the permutation adding a to o at back)

=X X (o

a gresh(n+1,m)
(ﬂ(ea)wo(em(l) o €y (07 @)21) T 601(n+1)))770(601(n+2) "t oy (nmt))

+ Z Z (_1)a+1<_1)02+0;1(a)7a

a gyesh(n,m+1)
C'L)O(eag(l) e eag(n)) (p(ea)n()(eag(n—i-l) e éa; 60-2(0-2*1(a)+1) e eog(n-l—m—i-l)))

2 )3 (=1 (e

a<b gy esh(n+1,m), o *(b)<n+2
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WO(eal(l) ea) eo'l(o' (a )+1) éba € O€y - )nO(eal(n-‘rQ) cr o €oy (n—i—m—‘rl))

> )3 (1) (= yetes e

a<b gyesh(nm+1), oy t(b)>n+1

WO(eag(l) o )nO(eog(nJrl) e éaa 60-2(02*1(a)+1) o éba €a O €y - 602(n+m+1))

S EILENS SRR
o1 ar:=07 H(a)<n+2

—

(P(eal(al))wo(eal(l) “Coy(ag) " eal(n+1>))770(€al(n+2) “t oy (nmt))

5 ST SR
71 ari=07 (a)<bi:=0y ' (b)<n+2

Wo(€ay(1) " * €ay(ar) " * Cor(b1)s Cor(ar) © Car(br) * * )M0(€oy(n42) * * * €t (ntmr1))

+Z (=17 "wo(€om)s s Coam) D

ag::agl(a)
—_—

(_1>a2in+1p(602(a2))n()(ecm(n—i-l)7 * 5 €og(ag)y 7602(n+m+1))

+Z D)7 wo(€0y(1), 7+ €an(n)) - >

n<a2::051(a)<b2::051(b)
(_1>a27n770(602(n+1) T @ T 6/02@7 €oa(a2) o Coy(ba) " 602(n+m+1))
= ((dow) - n+ (=1)"w - (dom)) (€1, Entmsn)

For d',
(d'(w-n))uler, - s entmri—ons fro o, fi)
= Z(—l)m(w'n)k('“ iy f fioen )
4,3
= 20Ty Y > (=1)°
i,J a+b=k o€sh(n—2a,m—2b) T€sh(a,b), 7~ 1(fjoe;)<a
wa<€a(1)7"' 7éi7"' €o(n—2a); """ 7f]7f]oel>“')77b("')

+2 (=17 Y > > (~1)7

%,J a+b=k oe€sh(n—2a,m—2b) T€sh(a,b),7—1(fjoe;)>a

wa(' s )nb(ea(n—Qa—‘rl)u T 7éi7 C s €o(nbm—2k); " 7fj7 fj C€jy: - )
(insert e; at front and at back to o respectively)

-y ¥ ¥ Syt

a+b=k c€sh(n—2a+1,m—2b) T€sh(a,b) o~ 1(e;)<n—2a+1,7~1(fjoe;)<a
wa(‘eo(l);' e 760'(0_1(1'))7' “ 5 €o(n—2a); " " >fj>f] o€, )nb( : )

rY Yy S e

a+b=k o€sh(n—2a,m—2b+1) 7€sh(a,b) c~1(e;)>n—2a,7~1(fjoe;)>a
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—

Wa (- )M(€o(n=2a41)s """ +Colo=1(0))> """ » Colntm+i—2k)i "~ > Ji> fj0 € ")

= X > > (=D7(dw)a( ()

a+b=k c€sh(n—2a+1,m—2b) T€sh(a,b)

+ > > > (D)7 Mwa( ) dms(- )

a+b=k oc€sh(n—2a,m—2b+1) T€sh(a,b)

= ((dw) () + (=1)"(w - (dn))k(---)

For 9,

(O(w-m)eler, -, enpmyi—ors f1,0 -+ fr)
= Z(W “Me—1(fire1, s enpmi1—2k; ,fi, )

=Y ¥ > > (0 walfir e fo o mle)

i a+b=k—1oesh(n—2a,m—2b),0 1 (f;)<n—2a T€sh(a,b)

DY > S (Ul i i)

i a+b=k—1co€esh(n—2a,m—2b),c~1(f;)>n—2a T€sh(a,b)
(removing f; from o, adding f; to T in front and at back respectively)
= X > > (=1

a+b=k c€sh(n+1—2a,m—2b) T€sh(a,b)

—

> wari(fisoqys i Fra1qy)s )M )

T71(i)<a

+ Z Z Z (_1)0+n
a+b=k oc€sh(n—2a,m+1—-2b) T€sh(a,b)

—

Z wa(' T )nbfl<fi7 eo(n72a+1)7 gyt 7f'r(7'—1(i))7 o )
77 1(i)>a
= ((0w) - k(- ) + (=1)™(w - (7)) (---)
Step 4:

If R is commutative, C%,(L) is graded-commutative:

(7] : W)k(el, T Cndm—2k; f17 e 7fk)

= X Y Y 0ml el

a+b=k c€sh(n—2a,m—2b) T€sh(a,b)

= 2 > > ()7 wy( e )al- )

b+a=k oc€sh(m—2b,n—2a) T€sh(b,a)
= (=1)""(w mklen, -, enpm—oni fr. o5 Ji)

Thus the proposition is proved. m
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Next, we consider a graded subspace of C?,(L):
Cr (L) = {we Co(L)|wr, =0, Vk >0 & tjwy =0, Vf € h},
ie. Cp (L) consists of all B € Hom(A*L, R), vy =0, Vf € h.
Proposition 3.7. C? (L) is a subcomplex of C?%,(L).

Proof. 1t’s easily seen from the definitions that § and d’equals 0 on C%, (L), so d = dj.
V5 e (L),

(d05)(617 T P 7 NN P €n+1) + (dOﬂ)(eb 641,64, 0 en+1)

— Z (_1)a+1p(ea)(ﬁ(... Gy i inty ) Bl Gy 761.“’62.,...))

+(=D)"ple)B(-- - i eina, )+ (1) pleis)B(- - e éia, - -)
)Hlp(@iﬂ B+ g1, €55 ) + (‘U%(@)ﬁ(' €1, €4y )
b (B e i)

+6( eaa *€q O €y 76i+176’i7"'))
+Z(_1 a(ﬂ 7€Aa7"'eaoe’iaei+17"'>+ﬁ<"' 76Aa>"' ,€i+1,€a06i,"')>

a<i
+Z(_1)CL(/B(... 76:17...67:76&062._’_17...)_i_B(... ’é\(“... 76(1067:_‘_1767:7...))
a<i
+ 2 (F) H+ (F1)THB(- - éi e, eioen, )
b>i+1
+ Z l+1 _1)i)ﬁ(."7ei>€/i\+17"'ei+1oeb7'”)
b>i+1
+(_1)26(. ’eioei+1,...)+(_1)z/8(... 7€i+loeia”')

= 0

tp(doB)(ers - s en)
= (dﬂﬁ)(faeh'”en)
= p(N)BC)+ 2 (=1)"p(ea) B(Sf, -+ €ar )
+Z(—1)15("',f06a," +Z DM B(f, Cuy v 1€q 0 €Cy, ")
a a<b

=0

So C? (L) is a subcomplex of C%(L). m



3.2. ISOMORPHISM THEOREMS 35

Definition 3.8. (C% (L), dp) is called the naive complex of L with respect to the
ideal h and module R. The resulting cohomology H» (L) = H*(C»,(L),d) is called

the naive cohomology of L with respect to h and R.

This definition is analogous to the naive cohomology of Courant algebroid. And
similar to that case, we have the following:

Proposition 3.9. With the above notations, we have

where Cp(L/h, R) is the Chevalley-FEilenberg cochain complex of Lie algebra L/h
with coefficients in the module R.

Proof. Given any € C' (L), we define ¢(5) € C&r(L/h, R) to be:

p(B)(leads -+ lenl) := Bler, -+ s en).

Conversely, given any o € C&g(L/h, R), we define ¢(a) € CJ, (L) to be:

d(a)(er, - -en) = aled], - -~ [en])-

It’s easily checked that ¢, ¢ are well-defined cochain maps and are invertible to
each other, so they induce isomorphisms on cohomology. =

3.2 Isomorphism theorems

First, we prove an isomorphism theorem for Leibniz algebras.

Theorem 3.10. Suppose L is a Leibniz algebra with left center Z, h O Z is an
isotropic ideal in L, and R is a left L-module on which h acts trivially, then we have:

HG(L) = Hy,(L).
First we prove the following key lemma:

Lemma 3.11. For any w € C%,(L) which satisfies (dw)x = 0, Yk > 0, there exists
peCn (L) and X € C (L) such that w = 3+ dA.

Proof. Given any vector space decomposition: L = h & X, we will give an inductive
construction of A and . The construction below depends on the decomposition, but
the cohomology class of 5 doesn’t depend on the decomposition.
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Suppose n = 2m or 2m — 1, we will define \,,_1, A\;,_2,- -+, Ag one by one, so that
each \, : " 1"#L ® @Ph — R, 0 < p < m — 1 satisfies the following conditions,
which we call “Lambda Conditions”:

1). A, is weakly skew-symmetric up to A1,

2). wpi1 = (dA)p+1, A

3). Xilwp—dodp—d'Np)(fiser, -+ en1-op; f1, s fis o fpr1) =0, Vf; € hyeq €

The construction of \,,,_1, A2, - -+, Ao is done in the following four steps.
Step 1:

Construction of A,,_1:

When n = 2m — 1 is odd, let

Am—1(fi, fme1) =0, Vfi € A

When n = 2m is even, let

1
)\mfl(g; fla' o 7fm71> = %wm(gmfla e 7fm71)7 v9>fz ch

and
)\mfl(x; f17 o 'fm71> = 07 Vo € X7 f’L € h.

It is obvious that A,,_; defined above satisfies Lambda Conditions 1) and 2). So
we only need to prove Condition 3).
When n = 2m — 1, the left hand side in condition 3) equals

When n = 2m, the left hand side in condition 3) equals

S (Wm1 = dodm1 — d A1) (fire- o, fi o)

= Gl ) A
—l—Zp(@))\m—l(fi;"'afi,"')+z)\m—1(fz'oe;"' i)

N G D WY G iy fiofi-)
i
+> Amoa(fis- o i fioe)
i
= (0w)m(€; fr, s fm) + ple)wm(fi, 5 fin)
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+7717/;wm(.” 7fi06;"')
_'_Z(_l))\m*l(e?flofJ_FfJOf’w 7fAi7"' 7]2:.7'7”')

1<)

+%Zzwm( ’fjoe’...)

= (dw)m(e; fr, -, fm)

Step 2:

Suppose A1, , Ag(k > 0) are already defined so that they satisfy Lambda
Conditions, we will construct A\;_1, so that it also satisfies Lambda Conditions.

To determine \,_q, first we let

Ak—l(gh"' y i, Ty e o axn+1—2k2—l;f17"'fk—l) (321)
1 : «
L T () e dode = A G 0 )
=G

Vg, fs € h,x, € X

(We call (g,--- ,g,z,-- , ) a regular permutation. )
Note that if [ = 0, the sum above has no summand, and we simply let

)\k—1($1, T ,$n+1—2k§f17”’ ufk—l) =0.

Then for any permutation o of (gq -« g, 1 Tns1-2k1)s Me—1(05 f1, 5 fr_1)
is defined as follows:

First, move the last element in X of o to the last position by weakly skew-
symmetric property (i.e. switch the last element in X of o with rearward elements
one by one, each switch brings in a \g).

Next, move the last element but one in X of ¢ to the last position but one by
weakly skew-symmetric property.

Finally, we will get a A\y_1(0; f1,- -+, fr_1) with ¢ being a regular permutation,
this value is already defined by 3.2.1. Thus the value of A\._1(o; f1,- -, fr_1) is
uniquely determined.
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As a summary, the extension could be written as a formula: A\g_1(o; f1, -, fr_1) =
(D) Ae—1(a;- -+ ) + > (£1)Ae(o; ®). We observe that, for different k, if we do exactly
the same switches, then the extension formulas should be similar (each term has the
same sign, with the subscripts modified correspondingly). For example, if we have an
extension formula for k: Ag(o; fi, -+, fi) = (£1) (05 -+ ) + 2 (E£1) Akt1(o; @), then
for k — 1, we have similar formula: A\, 1(¢',0,2";--+) = (£1)\e_1(g,0,2";--+) +
X(ED)Ak(g' @, 2" 0).

Step 3:

We need to prove that \,_; constructed above satisfies Lambda Conditions:

Proof of Lambda Condition 1):

First we prove that \;_; for regular permutations is weakly skew-symmetric up
to A for the arguments in h and X respectively.

When the number of arguments in A is 0, the result is obvious.

Otherwise, for the arguments in h,

Ak—l(gl,"'9r>gr+1>“'$1,"‘ ?fla"'fkfl) +)\k71(917'"gr+1,gr,"'$1,'" e

1 r r ~
= m((_l) i + (_1) )(wk - dO)‘k - dl}‘k)( Gy g1 5 Gry )
1 r r —
(DT (DT ke = dode = A g G g )
1 . A
_'_m Z (_1)]+1{(wk - do)\k - d/)‘k)( i Gy Gyl 3 95,0 )
j#Err+1
—|—((.Uk - dO)\k - d/)\k)( T 7§j7 s Gr415Gr, 00 1G5, 0 )}
1 A
- S
k‘+l—1#w+l

{(doMi) G5y G155, )+ (doM) G5 Gra1, Gr s 595, )
F AN G G G5 G5 ) (M) Gy Gt G 5950 ) )
(by equation 3.1.1 and 3.1.2)

1 J
EETIE TP R

Grr+1
{—do)\k+1("'§j"'9%97;1"' ;(gmgr_‘_l)’gj?...)
~Me((Gry Grs1)s 915 G Gy G 3 G450 )
_d/)\k+1("'§j"'jr>g?1"' ;(gr’gr+1)7gj’...)}

= 0

For the arguments in X,
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)\k—l(gl"'gl>$1"'zaaxa+1"' ;"')+>\k—1(gl"'glaml"'xa+1>$a"' o
+>\k(917 7glax17"' 735‘\(17‘/11‘(1/\4-17”' ;('rawra—i-l);"')

1 . .
e S (S (w0 — dode — AN T T g5 )
k+1-1,52,

+(wk§_d0AkJ_d/Ak>(". 7.9/\]‘"'.3717." 7‘/1;(1"1‘1"/1/‘&7'.. ;gj?"’)}

1

t O (-1
k+l1§j§l
(wWrt1 — doAg1 — d/)\k+1)<' i Loy Tag1 5 Y, (Tar Tag1), - -
(by equation 3.1.1 and 3.1.2)
1 ‘
Z (_1)]+1
k+1—-1 1S5
{_warl("' 7gAj7"' 7‘fa7$/a:17'” ;gj7(‘raaxa+1>7"')
+d0>\k+l("' ag/\jy"' a:fawl?/a-i\-la”' ;gja(xawxa-f—l)v”')
+Ak((xa7'ra+1)7glv"'gAja"' 7fa7x/a——&\-1)"' 7gj))
+d,)‘k+1("' 79}7"' 7fa>$/aIla"' ;gjv(xathﬂrl)f")}
1 .
tm ¥ (-1
k:+l1§j§l
(wk+1 — do g1 — d,)\k+1)(‘ : gAg o 'fa@;ﬁ 5 9y, (xa,%ﬂ), T
1 .
(—1)
(k+1— D)k +1) g.gl
(Wkﬂ — doAp1 — d/)\k+1)<' e gje Loy Taqr 1955 (%,%H), T
1 )
- - —1)7t+1y W Ta oGy By Tar,
+k’+l— 1 1;[( ) k((x x +1)>g17 9j, Loy La+1
1 . .
(=1 (=1)
(k—i—l—l)(k—i—l)lg;q ;
(Wrt1 — doMes1 — d'Neg1) (Tas Tag1)s - Giw o G- Loy Tagr -+
1 . .
4 (_1)]+1 (_1)z+1
(k+l—1)(k;+l)1§§l ;
(Wrr1 = dodr1 — d' Xes 1) ((Tay Tagr), -Gy Giw o Loy Tagr -
1 o o
—1 i+j+1 -1 i+J
(k+z—1)(k+z)1§%§(( T =DT)

(wWr41 — doAg1 — dl)\kﬂ)((%a Tat1)s G i Tay Tagr

;gjv"')

19i, 957

95,9

19i, 95

99



60 CHAPTER 3. STANDARD COHOMOLOGY

= 0

Next, for general permutation o, we give the proof in the following three cases:

(1). Ae—1(o1, 91, 92,025 -+ ) + M—1(01, 92, 91,095+ ) = 0, Vg1, 92 € b
If every element in oy is in A, then

Ne—1(01, 91, 92,025 -+ ) + Xe—1(01, G2, 91, 025+ - +)

= (FD)Ma(01, 91,692,095+ ) + 2 (FD (01, 61, 90, 97 0)
H(ED N1 (01, g2, 91, G25 -+ ) + D (FD) (01, g2, g1, 03 )

= (1) (Me-1(01,91,92. 925 --) + A1 (01, 92, 91, 23 ) )
+Z(i1)()\k(017£]1792, o 0)+ \i(01, 02,01, ; o))

= 0

Now suppose (1) holds for o; containing at most m elements in X, consider the
case when o contains m + 1 elements in X, suppose x is the last element of them,
move z to the last position and denote the elements in front of x as g1, g7 contains
m elements in X.

Ai=1(01, g1, 92,025+ -+ ) + Ne—1(01, 92, 91, 025+ +)
= (£1)M—1(o1, 91, 92,02 -+ ) + D _(£1)A\i(01, 91, 9o, @3 @)
+(ED)Nez1(01, g2, 91,25+ -+ ) + > _(£D)Me(01, g2, g1, @3 @)
= (1) (M0, 91,92, 52+ +) + Me1(01, 92, 91,023+
= (il)((il)/\k—l(ﬁfb17,91,92, Ga; o)+ ) _(ED)Ae(®, g1, g2, 093 8)
HED A1 (01,7, 92, 91,025+ +) + D_(EDAk(®, 92, 91, 527 @)
= (1) (Me1(01, 7, 91, 92, 025+ ) + N1 (61, 2, 92, 01, 05+ )
= (il)( — Ak(01, 92,025 (2, 91), -+ ) + A(01, 91, 025 (2, 92), -+ )
+Ak-1(01, g1, 92, T, 023+ ) — Me(G1, 91,023 (@, G2), -+ )
+A(01, 92,023 (2, 91), -+ ) + Ak=1(F1, 92, 91, @, 023 - "))
= (il)(/\k—1(0~1>91792,$, 025+ ) + Me—1(G1, 92, 91, T, 025 -+ ))
=0

By induction, (1) is proved.

(2) )\k‘—l(alv.g)yao-%”') +)\k—1(017y7g702;"') = _)\k(alao-Q;(gay))"')) v.g €
h, ye X
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Ae=1(0159,Y, 02+ ) + Ne—1(01, Y, g, 025+
= (EDN1(01.9,y, 023+ ) + D (ED (01, 9,9, 97 0)
HEDN—1 (01,9, 9,02+ ) + D (FD) (01,9, 9, 95 0)
= (il)(Ak—l(Ulaga%UE;”')+>\k—1(<717y7970_2§“‘))
+ (D) (Ml01, 9,4, 9:0) + Me(01, 4, 9, 93 0))
= () (Ne-1(01, 99,025+ ) + (“Aul01, 05 (9:.9): ) = Nem1(01,9,9, 623+ -)) )
- Z(il))‘k—l—l(gh * (y,9),0)
- _((il))\k(0170_2§(yyg)f")+Z(il)Ak-&-l(Ula.;(yag)a.))
(by the observation above)
= —Xlon,095(y,9), )
(3). A1(o1, 91,92, 095+ ) + Ap—1(01, Y2, 41,025+ ) = —Ai(01, 095 (Y1, Y2), -+ ),

vylayZ S X
Suppose g = (g1, ** , Ga, T1,* -+ ,Tp), then

Ae—1(01, Y1, Y2, 025+ -+ ) + Ae—1 (01, Y2, Y1, 025 )
= ( Z (_1)i)\k<01ay17?j27gla"' 7gAi7"' y9as L1, " axb;<y2agi)7"')

1<i<a
+(_1>a>\k—1(017y17917"' yGar Y2, L1, " 7$b;"'))
+( Z (_1)j>\k(017y273j17917'” 7gAj7'“ yGa, L1, ", Tp; (ylag])7>

1<j<a
+(_1)a)‘]€*1(0-17y2>g17"' yGas Y1, L1, ?mln))
= Z(—l)i( > (1 Neri(on, Gn G2, g1 Gy Gi o G @ (01, 95)s (Y2090 )

7 1<j<i
—i—z )\k+1 o1, Y1, Y2, 91 Gi - ’ﬁj"'ga,%'"wb;(yhgj),(yzagi)“')
7>
( ) (0‘1 g1, 7§ia"' yGar Y1, L1, T, (y27gz)a))
a( ])‘k 01 g1, 7gj7"' y9a, Y2, L1, 7xb;<ylagj)7”')
1<j<a

+(_1)a)\k*1(017917"' y9a;Y1,Y2, L1, " -+ ?xln))
+Z(—1)j( S (=D Nes1 (01, 2, G g1 Giv oo Gy 5 (Y1, 95), (Y2, 94) - )

j 1<i<j
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+) (1) Nea (o1, G2, 91,91 G5 Gi - Gas 1 s (Y1, 95), (Y2, 94) -+ )
1>7
+<_1)a+1)\k(017917”' 7.qu7"' yGas Y2, L1, 7xba(y17g]>7>)
+(_1)a( Z (_1)iAk(01>gl)"' 7§7§a"' yGar Y1, L1, " 7Ib;(y27gi)7"')
1<i<a
+(_1)aAk—1(0-17917"' yGar Y2, Y1, L1, " - - ,J}'b,))
- )\k—1<01791'"gaayl,y%l’l"'l’b;”')‘|‘)\k—1(01791"'9a7y2,yl7$1"'1’b§"')
Thus

Me—1(01, Y1, Y2, 095 -+ ) + Ae—1(01, Yo, Y1, 093+ + )

= (:l:l))‘k—l(017 Y1, Y2, 025 ) + Z(il))\k(ah Y1, Y2, ®; .)

+<j:1))‘k—1(0-17 Y2,Y1,02; " ) + Z(il)kk(ah Y2, Y1, ®; .)

= (il)(Ak—l(m,yl,ym@; )+ Me—1(01, Y2, Y1, 095 - - ))

+ Z(i1)<)\k<0_1a Y1,Y2, 9, .) + )\k(ala Y2,Y1, ®; .))

= (il)()\k*1<0-17gl7 90y Y1, Y2, L1, 00, Ty )

+Ak—1(017917 590, Y2, Y1, X1y Tyt ))

= (ED N1 (o1, G1, P, @ (Y1, 42), @)
(denote by T the permutation (01,1, , ga))

= (:l:l) ((il))\kfl@t?yl’ Y2,T1, Ty ) =+ Z(il))\k(.v Y1,Y2,T1," ", T .)

+(i1)Ak—1(7t7y27y17 Ty, Ty ) + Z(il))‘k(.7y27 Y1,T1, 5 T, .))
= (D) Xiy1(01, U1, G2, 0 (Y1, 42), @)

= _(il)((il)Ak(%ayAbyA%xla T, T, (ylayQ)a o )

+ > (ED)Aes1 (0, G, o, 1, -, T (y1>y2),‘>)
_Z(il))\k+1(017ﬁl7y§7‘; (yl,yz) ')

= —(ED)M(7, 01, %2, 21, T (Y1, 92), 000 ) — Z(il)AkH(Ul;yl;ZJ% s (Y1, y2), @)
= ((il)/\k(ahylay%o—?)(y17y2 )+ D (ED Ny (01, 91, G, 05 (41, 52), @ ))

(by the observation above)

= —)\k(Ul,%,%,UQ; <y17y2>7 i )

Proof of Lambda Condition 2):
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For regular permutations:

(5)\>k(917 . 7917$1;' .. 7xn—2k—l;f17" fk)
- Z Ak—l(fi),gl)”' y g1, L1,y Upn—2k—1, """ 7fi7"')

1<i<k

1
= 77 (Wk:_do)\k_d/Akxgl?"'agla"';flv"'afk:)
k41,52,
1

g 2 2 CV @ —dod = dA(fisgre e Gyeergeee g5 S

1<i<k 1<5<1

k
= m(wk_do)\k_d/)\k)(gla"' s i, ;fl;'” 7fk)
1 ) R
+m (—1)](_1)(Wk _dO)\k _d,Ak)(gjagla'” y G5, 41, ;fla"' 7.fk)
1<5<
k+1
= m(wk_do)\k_dl)‘k)(gla"’ g f, 7fk)

SO W = (d)\)k on (gla gL, T, 73:11—2]4:—1)'

For general permutations, since both sides in the above equation are weakly
skew-symmetric up to w1 = (dA\)g11, S0 wr = (dN)g still holds.

Proof of Lambda Condition 3):

Equivalently, we will prove the following:
Z(Wk—l — doAp—1 — d/)\k—l)(fu €1, s Cnyi—2k; f1,7 7fi7 T fk:)
= (dw)iler,  +  ent1-ok; f1,00 5 fx)

that is

(dowk +d,CUk)(€1,"' a6n+1—2k;f1a"' 7fk)
+Z(d0)\k_1 +d/)\k—1)<fi7€1a"' 76n+1—2k’;f17“' ’fufk)

= (dowk+d/wk)(ela"' ent1—2k f1.0 5 fr)

+ZZ ea)\k 1(]('“...’62”...;...’]?@.’..‘)
+ZZ a+1Ak 1 f’w' : 76/\(17"' 1€a O €py v i afiu'”)

i a<b

—i—ZZ DXeci(en, =+, fioea o fi)
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+ZZ)\k—l(ela"' y Ent1-2k; " " 7fi7"' afjofi7"')

i jF#L
+ZZ )\klf“.. 7(Z7”';"'7fi7"'7fjo€a7"')
i a,j7#i

= (dowr + d'wi)(er, -+ eny1-ok; f1, 5 )
+Z(_1)aﬂ(ea)(wk — doAp — d/)\k)(' s €ay s f1y 7fk)

+Z D wp — dodie = dN) (- €y eqoen, o fie e fi)

a<b

+Z D Ae—1(e1, - fioeay"';"'vfiv"')

+Z>\k—1 €1,y enyi2k; fio fj+ fio fi, - i 7fj7"'>
i<j

+<Z(_1>a(wk_d0)\k_dl>\k)( 7€Aa’... R ’fjoea,...)

_Z Ak‘l Oea’...’eA(J/,-..;.--’fj’...))

= ((d2+d00d)/\) (€1, s entiok; f1,+, fr)

+Z DAe—1(eq, - fioem"';"':fia"')
((d’ ody+ d*)N)iler, -, ensi—ok f1o o, fr)
+Z a+1Ak1fOeau"'7é\a7.";”.7f/\j7.”>
= ((do +d 40 Niler, ensi—ons f1, s fr)
=0
Thus A;_; satisfies Lambda Conditions.
Step 4:
By mathematical induction, finally we obtain (Ao, -+, A,—1) with each A, satis-

fying Lambda Conditions.

n—
Cst

Let A 2 (Ao, -+, Am_1), Lambda Condition 1) implies that A is a cochain in
Y(L).

Let 8 £ w—d\ € CL(L).

By Lambda Condition 2), /8 = (wo— (d)\)o, 0, ce 70) = (wo—d())\o—d,Ao, 0, ce ,0)
By Lambda Condition 3), (wo—doAo—d'\o)(f, €1, ,en_1) =0, Vf €h, e; € L.
So vpfy = tp(wo — doho — d'Xg) =0, Vf € h, which implies that § € C}},(L).
Thus w = B +d\, B €C" (L), A € C& (L), the proof is finished. m

Now we go to the proof of Theorem 3.10:
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Proof. As explained in the previous section, C», (L) is a subcomplex of C%,(L). The
inclusion map 1 from C7 (L) to C%,(L) which sends g to (3,0,---,0) is a cochain
map since d(3,0,---,0) = (dpf3,0,---,0), so it induces a map 1), on cohomology.
We need to check that 1, is an isomorphism.

1). 9, is surjective.

Given any [w| € HZ(L), since w is closed, by Lemma 3.11, there exists 5 € C!, (L)
and \ € C2'(L) such that w = 8+ d\. We see that 3 = w — d\ is itself a cocycle,
thus ¢, ([5]) = [w].

2). 1), is injective.

Given o € C7' (L), suppose pa = (a,0,---,0) is exact in C%(L), i.e. Jw €
C% (L), dw = (,0,---,0), we need to prove that « itself is exact in C" (L).

Since (dw)r = 0, Yk > 0, by Lemma 3.11, there exists § € C™ (L) and
A € C%2(L) such that w = 34 d\. Thus dw = (,0,---,0) = dB = (do3,0,---,0),
which implies that a = dyf5 is exact in CJ}, (L).

Thus the theorem is proved. =

Remark 3.12. In our definition of the standard complex (C%,(L, h, R),d) (3.4), we
assume that h is an isotropic ideal in L, i.e. h — L is an injective homomorphism.
Such a pair (L, h) can be viewed as a “transitive” pair of Leibniz algebras, and
Theorem 3.10 holds for a transitive pair (L, h).

Actually the standard complex and naive complex can be similarly defined for a
general pair (L, h) of Leibniz algebras: h is required to be a Leibniz algebra fitting

into a sequence Z £> h 5 L, where ¢ is a homomorphism of Leibniz algebras, and
there is required to be a map ¢ : h ® L — h satisfying certain conditions. In this
general case, the standard cohomology H?,(L, h, R) is not necessarily isomorphic to
the naive cohomology H?, (L, h, R).

In fact, the methods above also apply to the case of transitive Courant-Dorfman
algebras:

Definition 3.13. A Courant-Dorfman algebra (€, R, (e, ), 0, 0) is called transitive,
if the coanchor map p* : Q! — £ as defined by Equation 2.2.2 is injective.

We see that when €& = I'(E) is the space of sections of a Courant algebroid E, £
is transitive iff E is transitive.

Next, in parallel to Definition 2.27, the naive cohomology of £ is defined as
follows:
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Definition 3.14. Given a Courant-Dorfman algebra (€, R, (e, ), 0, 0), the standard
complex (C*(€, R),d) is defined as in Definition 2.20. Let

C*(E,R) £ {w e C*(&,R)|wp =0, Yk > 1, 1p5w9 =0, Vf € R}.

Obviously (C2, (€, R), dp) is a subcomplex of (C*(E, R),d), and is called the naive
complex of £. The resulting cohomology, denoted by H?, (£), is called the naive
cohomology of &£.

It is easily seen that the naive complex C? (€, R) defined above is isomorphic
to the Chevalley-Eilenberg complex of the Lie-Rinehart algebra &/p*(Q') with
coefficients in its module R, so we have

H,(€) = Hop(E/p" (), R).

If £ =T(F) is the space of sections of a Courant algebroid E, then &£ is non-
degenerate. Since (e, df) = p(e) - f, any a € I'(A®kerp) can be characterized as an
element & € I'(A*E*) = Homp(A%RE, R) such that 1pra =0, Vf € R (identification
of £ and &Y applied here), i.e. @ € C* (€, R). So the map a +— & is an isomorphism
from the naive complex (I'(A*kerp), d,,) of E to the naive complex (C%, (€, R),dy)
of €. Therefore, Definition 3.14 recovers Definition 2.27 when £ = I'(E).

Now we can describe the isomorphism theorem for transitive Courant-Dorfman
algebras:

Theorem 3.15. If £ is a transitive Courant-Dorfman algebra, the inclusion map of
complexes

Cr,(E,R) = C*(E,R)
induces an isomorphism between H? (£) and H2(E).

Similar to the proof of Theorem 3.10, we need to prove the following lemma first:

Lemma 3.16. Vw € C™(&, R), if (dw)r, = 0, Yk > 0, there exists § € C' (€, R) and
A€ C" Y&, R) such that w = 8+ dX\.

Proof. The proof is quite similar to that of Lemma 3.11. We list the key steps, as
well as the different settings here. Most details will be omitted.

Suppose € = p*(2!) & X as R-module.

Suppose n = 2m or 2m — 1.

We will define A\, 1, A1, -+, Ao one by one, so that each ), : @ 1"?EQEPR —
R satisfies the following so-called “Lambda Conditions”:

1). A, is weakly skew-symmetric up to A\pi1,
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2). Wp+1 = (d/\)p—Ha .

3). Xilwp —dop)(Ofisen, s en1-9pi fr,oo s fis o fpr1) =0, Vf; € Roeqg €E,
4). ), is weakly R-linear in each argument of &,

5). A, is a derivation in each argument of R.

The construction of \,,_1, -+, Ag is done in the following four steps.

Step 1:

Construction of \,,_1:

When n =2m — 1, let

)\m—l(fla"' 7fm—1):07 vfzeR

When n = 2m, let

/

)‘M—l(g,ag; f17 T 7fm—1) = %wm(g7 f17 e 7fm—1)’

and
)‘m—l(x; flu e 7fm—1) - 07

Vo', g9, fi € R, x € X.
It is easily checked that \,,_; satisfies Lambda Conditions.
Step 2:
Suppose A1, , Ag(k > 0) are already defined so that they satisfy Lambda
Conditions, we will construct A\p_; so that it also satisfies Lambda Conditions.
The value of A\;_; for regular permutation (dg, - - - dg, z,---x) is determined by:

Me—1(0g1, -+, 0g1, @1, -+ Tpy1—ok—1; f1, - fo—1)

1 ) o
£ ———— > (=1 (wk — doA) (g1, -+ Dgj, - Ogi, w1, 5 G5, f1, )
k+l_11§j§l

Vfi,gj € R, z, € X.

Then by weak R-linearity in arguments of &, the value of A\;_; for regular
permutation (¢'dg,- - ¢'dg,x,- - x) can be determined.
Here in order for A\;_; to be well-defined, we need to check that

)\k—1<8917 T a(glgna Ty ;fv o )
= Ne—1(091, - @0gp, @, 5 fy o)+ M1 (09, - g 0gn, w5 f o)
Finally by weak skew-symmetricity in arguments of &£, the value of A\;_; for

general permutation can be determined.
Step 3:
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We need to prove that A\p_; defined above satisfies Lambda Conditions.

Step 4:

By mathematical induction, we will eventually obtain (A, -+, A\j,—1) with each
A, satisfying Lambda Conditions.

Let A 2 (Ao, -+, Am_1), Lambda Condition 1), 4) and 5) implies that \ is a
cochain in C"" (&, R).

Let 82 w—d\ e C"(E,R).

By Lambda Condition 2), 8 = (wy — (dA)o, 0, -+ ,0) = (wo — doXo, 0, -+ ,0).

By Lambda Condition 3), (wg — doXo)(0f, €1, ,en1) =0, Vf € R, ¢; € £.

So tafBo = taf(wo — doXo) = 0, Vf € R, which implies that 8 € C7 (£, R).

Thus w = B+ d\, B € C" (&, R), A\ € C" Y&, R), the proof is finished. m

Applying the lemma above, the proof of Theorem 3.15 can be done almost the
same with that of Theorem 3.10. We omit it here.

Theorem 3.15 is a generalization of Theorem 2.29. When £ = I'(E) is the space
of sections of a transitive Courant algebroid F, they give the same result. Note that
Theorem 3.15 holds even if the symmetric bilinear form of £ is degenerate.

In the last of this section, we compute standard cohomology for some examples
of Leibniz algebras.

First we consider the omni Lie algebra ol(V'). The left center is V. Given any left
module R of ol(V), since any v € V equals to e; o e + e5 0 e for some ey, e5 € ol(V),
it is easily deduced that V' acts trivially on R, so Theorem 3.10 tells that

H,(0l(V), V, R) = Hep(gl(V), ).

If R =V with Leibniz module structure given by p(A+v)w = Aw, it is a well-known
result that
Heg(gl(V),V) =0, ¥n.

So we have the following:
Proposition 3.17. HZ(ol(V),V,V) =0, Vn.

Similarly, based on the standard Courant algebroid TR™ & T*R", if we take the
sections of all linear vector fields and linear 1-forms, we can also obtain a Leibniz
algebra

ol' (V) £ gl(V) & Q'(V),

where Q'(V') denotes the linear 1-forms. Suppose {z'};<;<, is a chart of R", then
any & € QY(V) can be uniquely written as & = & a'da?, so QY(V) = gl(V) as
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vector spaces. (Any A = (Af ) € gl(V) viewed as linear vector field is AJ Za‘l )
VA, B € gl(V), &n € QY V), the Courant bracket

(A+&) o (B+n)
= [A, B+ Lan — tpd¢
= [A, Bl +d(can) + ta(dn) — vpd§
= [A,B] + d((Agxiaij, N da?)) 4 va(nijda’ A da?) — 1p(€da’ A da?)
= [A, B] + Alngatda® + Almgatda’ + nij(cada’)da? — i (eada?)da’
—&;(Lpda’)da’ + & (1pda?)dx’
= [A,B]+ Aknjkx’dmj + Aknmx dz? + Aknijxkdxj — A{;mjxkdxi
—Bi&atda? + Blg;a"
= [A Bl + (Afny + A?Uzk + Afmy — Afnje)atde’ — (B — Bi&p)x'da?
= [A Bl + (naA} + Afmy — Bi&, + Bi¢;)a'da?

So the Leibniz bracket of ol'(V) is given by
(A+& o (B+n)=[A Bl +nA" + An— B¢+ BE", VA, B € gl(V), &€ Q'(V).
Proposition 3.18. The left center of ol* (V) is sym(V) = {£€ € QL(V)|¢ = €T}

Proof. Suppose A + £ is in the left center.

First let n = 0, then (A+ &) o B = [A,B] + B(¢T — &) = 0, VB implies that
[A,B] =0, VB and ¢T = ¢, s0 A = al for some a € R.

Next let B =0, we have (A + &) on =nAl + An = 2an =0, Vn, so a = 0, thus
A=0. =

ol' (V) /sym(V) = gl(V) & (' (V) /sym(V')) = gl(V) & asym(V')
is a Lie algebra with Lie bracket:

[A+a, B+ ]
(A+a)o(B+p)
[A, B] + (BAT + A3 — Ba + BaT)
= [AB]+ 1{(BAT + AB — Ba+ Ba®") — (BA” + AB — Ba + Ba")"}
[A, B] + A + BAT — Ba — aB”
VA,B € gl(V), Ya,p € asym(V)
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Let R = sym(V'), with Leibniz module structure given by
p(A+8&n = An+nA", VAegl(V), £€QY(V), nesym(V),
then 3.10 tells that
Proposition 3.19. H2,(ol'(V), sym(V), sym(V)) = Hep(gl(V)Dasym(V), sym(V)).

In the following, we compute the degree 0 and degree 1 cohomology:
Degree 0:
Suppose w € C2((gl(V) & asym(V), sym(V)) is a cocycle, i.e.

dw(A+a) = p(A+ a)w = Aw + wAT =0, VA € gl(V), a € asym(V).
Let A =1, it follows that w = 0. So degree 0 cohomology is trivial:
HO,,(gl(V) @ asym(V'), sym(V')) = 0.

Degree 1:
Suppose w is a 1-cocycle, i.e.

dw(A+ «a, B+ f)

p(A+ a)w(B+ 8)— p(B+ Blw(A+a) —w([A+a, B+ f])
= 0

VA, B e gl(V), «, B € asym(V)

Let B=1, g =0, we have
p(Nw(A+a) =2w(A+a) =p(A+ a)w(l) —w([A+ a,I]) = p(A)w(]) + 2w(a).

It follows that ]
w(A) = 5p(Aw(I) = (dN)(4),

where A\ £ Lw(I) € C2L((gl(V) @ asym(V),sym(V)). In order for w(A + a) =

2
(dN)(A + a) + w(a) to be closed, it suffices that

p(A)w(B)—p(B)w()—w(AB+BAT— Ba—aBT) = 0, YA, B € gl(V), a, 8 € asym(V),
or equivalently

p(A)w(B) = w(AB + BAT) = w(p(A)B), VA € gl(V), B € asym(V).
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(Note that asym(V) is also a ol*(V') module with the same action map p(A + &)3 =
AB + BAT.)
Thus

Hep(gl(V) @ asym(V'), sym(V'))
= {f € Hom(asym(V),sym(V))| f is equivariant w.r.t. ol*(V)}.

Using the same methods, we can obtain Leibniz algebras
ol (V) 2 gl(V) & Q*(V),
where QF(V) is the set of 1-forms of homogeneous degree k

£ > fiz)da'|fi(z) is a degree k polynomial},

and Leibniz algebras

ol=F(V) £ gl(V)) @ Q=F(V),

with Leibniz brackets induced by the standard Courant algebroid. Since Q(R™) is an
isotropic ideal of I'(TR™ & T*R™), QF(V) (or Q=*(V)) is an isotropic ideal of ol*(V)
(or ol=k(V) resp.). For R = V with the usual module structure, applying Theorem
3.10, we have the following

Proposition 3.20. Vk,n € N, we have
Hj,(ol*(V), Q5(V),V) =0

and

H(ol=F(V), Q=k(V), V) = 0.

3.3 Crossed products of Leibniz algebras

Given a Leibniz algebra L with left center Z, let S*(Z) be the algebra of symmetric
tensors of Z. We construct a Courant-Dorfman algebra structure on the tensor
product S*(Z) ® L as follows:

the associated commutative algebra is taken to be S*(Z);

the S*(Z)-module structure of S*(Z) ® L is given by multiplication of S*(Z%), i.e.

fi- (fo®e) & (fifo) ®e;

(For simplicity, we will write f ® e (f € S*(Z), e € L) as fe from now on.)
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the symmetric bilinear form of S*(Z) ® L, still denoted by (e, e), is the S*(Z)-
bilinear extension of the bilinear product of L, i.e.

(fie1, fae2) = fifa(er, e2);

the derivation 0 : S*(Z) — S*(Z) ® L is the extension of the inclusion map
Z — L by Leibniz rule, i.e.

a(fl"'fk)é Z (fl"' i"'fk)afi§

1<i<k

the Dorfman bracket on S*(Z) ® L, still denoted by o, is the extension of the
Leibniz bracket of L:

fie1 0 faea £ fifaler 0 e2) + (€1, €2) foOf 1 + (e1,0[2) fres — (e2,0f1) faer.

Proposition 3.21. With the above notations, (S*(Z)®L,S*(Z), (e, e),0,0) becomes
a Courant-Dorfman algebra (called the crossed product of L).

Proof. We need to check all the six conditions of Courant-Dorfman algebra.

1). fiex o f(faea) = f(fre1 0 faea) + (fre1, Of) foea

The LHS
= ff1f2(€1 © 62) + (61, 62)ff23f1 + (617 a(ff2))fl€2 - (62, 6’fl)ffzel
= ffifa(eroes) + (er,e2) ff20f1 + f(e1,0f2) fiea + faler, Of) frea — (e2,0f1) f faer

The RHS
= ffifa(eroes) + fler,e2) f20f1 + f(e1,0f2) frea — f(e2, 0f1) faer + fi(e1, Of) faes

Thus the equation holds.
2). (fie1, O(f2e2, fze3)) = (fie1 0 faez, f3e3) + (f2€2, fre1 0 f3e3)

The LHS
= filer,0(f2f3(e2,€3)))
= fifafs(e1,0(ez,e3)) + fifalez, es)(e1, Ofs) + fifs(ez, e3)(er, Of2)
= f1f2f3<(€1 © €y, 63) + (62, €10 63)) + fifa(ez, 63)(617 5f3) + f1f3(€2, 63)(617 an)
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The RHS

= <f1f2(€1 © 62) + (61, 62)f23f1 + (61, 3f2)f1€2 - (627af1)f2€1, f363)

+(fae2, fifsler o es) + (e1, €3) f30fs + (e1,0fs) fres — (es, 0.f1) faer )

= fifafs(eioea,e3) + fafs(er, ea)(es, 0f1)

+f1fs(ea, e3)(e1,0f2) — fafs(er, es)(ez, 0f1)
+fifafs(ez, e10e3) + fafs(er, es)(ea, Of1)
+f1f2(e2,e3)(e1,0f3) — fafa(er, ea)(es, Of1)

= f1f2f3((61 o ey, e3) + (€2,€1 0 63)) + fifa(ez, e3)(e1, 0f3) + fifs(ea, e3)(e1, O fa)
= The LHS.

3). fie1 0 faea + foea o frer = O(fren, faez)

The LHS
= fifa(er o ez) + (e1,e2) f20f1 + (e1,0f2) frea — (e2,0f1) faer
+fifalez 0 er) + (er, e2) f10f2 + (e2,0f1) faer — (e1,0f2) frea
= f1f2a(61, 62) + (61, e2) f20f1 + (61, 62)f18f2
= The RHS.
Combining 1) and 3), we get the following:

f(fie1) o faez
= ( f(fie1) o faea + faez 0 f(fie1)) — faea o f(fie1)
= O(f(fier), fae2) — (f(f2e2 0 fier) + (faeo, Of) frex
= (fie1, foe2)0f + fO(fie1, fae2) — f(faea 0 fre1) — (faeo,0f) fren
= f(fier0 fae2) + (fre1, fae2)0f — (fae2, Of) fren
4). (0f,09) = 0.

We only need to consider the case of monomials: suppose f = fifo- - fr, g =

9192 - - 91, flvgj S Z7 then

(0f,09)
- (Z(f """" fk)afzaZ( g 91)095)
i j
= Z(fl"‘Ai"'fkgl"‘gj"'gl)(afiOagj+89j08fi)
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5). df o (ge) =0

First we prove that 0f oe =0, Vf € S*(Z), e € L.

We only need to consider the case of monomials: suppose f = fifo--- fx, fi € Z.

When k=1, ie. f=fi € Z, the equation is trivial.

Now suppose the equation holds for any & < m, let’s consider the case of
k=m+ 1.

I fifa- fms1) o€
((fl o )0 fmsr + frnaO(f1 - fm)) oe
- (fl te fm)(afm—i-l o 6) + (8fm+1,e)8(f1 s fm) — (e’8<f1 ce fm))ﬁfm—o—l

Lot (O(f1 - fr) 0 €) + (O(f1 -+ fm): €0 Fmsr — (€, 0fims1)O(f1 -+ fi)
=0

Thus by induction, the equation holds for any k.
Combining with 1) and 4), we have

df o(ge) = g(0foe)+ (0f, 0g)e =0

6). fie1 o (faez 0 fzez) = (fie1 0 faea) o fzez + foes o (fie1 o faes)

First we prove the equation for the case fo = f3 = 1:

fiero(ez0es) = (fieg oez) oes+ ey o (freq oes)
The LHS = fi(e10(egoes))+ (e1,ea0e3)0f1 — (ea0e3,0f1)er

The RHS

= (f1(61 o eg) + (e1,e2)0f1 — (ea, (9f1)el> oes
+eg 0 (f1(€1 oe3) + (e1,e3)0f1 — (es, 5f1)61)

= fi((e1oex)oe3) + (e10eg,e3)df1 — (e3,0f1)(e1 0 e3)
+(e1,e2)(0f1 0e3) + (Of1,e3)(er,e2) — (e3,0(e1,€2))0f1
—((e2,0f1)(er 0 €3) + (€1, €3)D(e2,0f1) — (e3,0(e2,0f1))er )
+/fi(e2 0 (e1 0 €3) + (€2, 0f1)(e1 0 €3)
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+(€ 63)(62 (¢] 8f1) (62, 3(61, €3>>af1
—((e3,0f1)(e2 0 €1) + (e2,9(e3,0f1))er)
1((e10ez) oes) + fi(ez o (e10e3)

((
((61 o €9, e3) — (e3,0(e1,e3)) + (e2,0(eq, 63)))8f1
((e3,0(e2,0f1)) — (e2,0(es,0f1)) ) ex

Il
4+ o=

+ +

(e1, ) (e2 0 0fr — D(ea, 1))
(e3, 0f1 )( (e1,69) —€1 069 — €90 61)
+(e1,e9)(0f1 0e3) + (e2,0f1)(e1 0 e3) — (ea,df1)(e1 0 €3)

= fileyo(ez0e3)) + ((62, d(e1,e3)) — (e 0 ey, 63))8f1 — (eg 0 e3,0f1)eq
= The LHS

+

Then we prove the equation for the case only f3 = 1:

fie1 o (faea 0 e3) = (fie1 0 faea) 0 €3 + faea o (fier 0 e3)
For simplicity, we write fie; as x; € S*(Z) ® L.

The LHS
= 10 (f2(€2 oe3) + (€2,e3)0f2 — (es, af2)€2)
= fa(z10(ez0e3)) + (21,0/2)(e2 0 e3)
+(e2,e3)(x1 0 dfs) + (x1,0(ez, €3))0f2
—((63, Ofs)(x1 0 €2) + (x1, 0(es, (9f2))62)

The RHS

= (fg(:pl oeg) + (l’1,6f2>€2> oes
+fa(ez 0 (z10e€3)) + (€9, 11 0e3)0fo — (z1 0 €3,0f2)es

= fol(r10e3) 0e3) + (x10e,e3)0fy — (e3,0f2)(x1 0 €3)
+(z1,0f2)(e2 0 €3) + (ea,€3)0(x1,Df2) — (e3,0(x1,0f2))es
+fa(eg 0 (x10€3)) + (e, 71 0 €3)0fy — (x1 0 €3,0f2)es

= fo((x10e3) 0e3) + fa(eg 0 (210 63)) + (21, 0f2) (e 0 €3)
+(e2, e3)0(x1,0f2) + ( T10ey,e3) + (€2, 71 0 63))5f2

—((e3,0f2) (21 0 €2) + ((es, (an, 3f2)) (w10 e3,0f2))e2)
= The LHS.
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Finally, write foes as w9, we will prove the following:

x1 0 (220 f3e3) = (x1 0x2) © fzez + a2 0 (71 © fses)

The LHS
= 110 (f3(9€2 oez) + (37273f3)€3>
= f(z10(wa0e3)) + (21,0f3) (w2 0 e3) + (22,0f3)(x1 0 €3) + (21, 0(x2,0f3))es

The RHS
= f((;z:l o LCQ) o 63) + (I‘l O Ta, af3)€3

+f(z20 (w1 0e3)) + (22,0f3) (w1 0 e3) + (1,0f3)(v2 0 €3) + (x2,0(x1,0f3))es
= The LHS.

Thus the proposition is proved. m

Obviously, when the bilinear product of L is non-degenerate, the induced sym-
metric bilinear form of S*(Z) ® L is also non-degenerate. But it is not strongly
non-degenerate in general.

Suppose h D Z is an isotropic ideal in L, R is a left L-module on which h acts
trivially, then we have the following

Proposition 3.22. With the above notations,

1). 5°(Z) ® L is transitive.

2). S*(Z) ® h is an isotropic ideal in S*(Z) ® L

3). S*(Z)® (L/h) = (S*(Z)® L)/(S*(Z) ® h) is a Lie-Rinehart algebra with
anchor T : S*(Z) ® (L/h) — Der(S*(Z),S*(Z)) defined as:

A

T(fleD)(ffe) 2 D2 fufir-fileo fi), Ve € L, f€S%Z), feZ

1<i<k

and bracket induced by the Dorfman bracket of S*(Z) ® L.
4). The left L-module structure on R can be extended to a left S®(Z) @ L-module
structure (module of Leibniz algebra) on S*(Z) ® R as following:

plfre)(for) 2 fi(p(e)(for)) 2 Fi((e, 0f2)r+folple)r)), Vi, fo € S°(Z), e € L, 7 € R

Furthermore, it induces a Lie-Rinehart module structure of S*(Z) ® (L/h) on
S*(Z)® R.
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Proof. 1). We need to prove that the coanchor map p* of S*(Z) ® L is injective.
Since p*(dge(z)f) = Of (see 2.2.2), it suffices to prove kerd = S°(Z)(= R), i.e. we
need to prove that 0f # 0, Vf € S*=1(2).

Suppose { fi }1<i<m is a basis of Z.

Since 0 : Z — L is injective and 0 is extended by Leibniz rule, any nonzero
monomial f in S*=1(7) satisfies Of # 0.

Now suppose there is a nonzero polynomial g € S*=(Z) satisfies 9g = 0. If
g1, 92 € S*2Y(Z) contain different powers of fi, e.g. g1 = fi'g), g2 = f2g,, I #
la, g1, 95 € S*(Z) don’t contain fi, it’s obvious that d(g; + g2) = 0 implies dg; =
0 & 0go = 0. So without loss of generality, we can assume that every monomial in g
contains the same power of f;. Conducting the same discussions for fo, f5,- -+, [,
finally we can obtain a nonzero monomial f € S*='(Z), 0f = 0, this is a contradiction.
Thus 1). is proved.

2). Since the bilinear form of S*(Z) ® L is just the linear extension of that of
L, S*(Z) ® h is isotropic in S*(Z) ® L. Then from the definition of the bracket of
S*(Z)® L:

fie1 0 faea = fifaler o ez) + (€1, €2) f20f1 + (e1,0f2) fiea — (e2,0f1) faer

we can see that S®(Z) ® h is an ideal in S*(Z) ® L(note that (e,df) =0, Ve €
h, feS*(Z)).

3). Due to 2), the bracket on S*(Z) ® L induces one on S*(Z) ® L/h. We need
to check the following:

(1). zy0x9 = —x9 01 V1,29 € S*(Z) R L/I

Suppose z; = [yi], yi € S*(Z) ® L, then

T10X2+To0Ty = [yl S —|—ygoy1] = [8(91792)] =0.

(2). xyo(fae) = f(z10x) + (7(21) f)22, V1,20 € S*(Z)Q L/h, Vf € S*(Z)

From the definition of 7, it’s easily seen that 7(x)f = (z,0f), Vo € S*(Z) ®
L/h, f e S*(Z),so (2) can be deduced from the first condition in Definition 2.17,
since S*(Z) ® L is a Courant-Dorfman algebra.

(3). T(xq0x9) = [T(x1), T(22)], V1,29 € S*(Z) R L/h

We need to prove that 7(zq 0 x9)f = 7(x1)7(22) f — 7(22)7(21) f, Vf € S*(Z):

The RHS
= (x178<x2’af)) - (w278($176f))
(x1029,0f) + (x9,x1 0 0f) — (x9,21 0 0f + Of 0 11)

(Il o I‘Q,@f)
= The LHS
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4). In order for S*(Z) ® R to become a (left) S*(Z) ® L-module, we need to
prove that

p(fier o faea) = [p(fie1), p(fae2)] (3.3.1)
- p(fie1 o faea)(fr) = p(fier)(p(fae2)(fT)) — p(fae2)(p(frer)(fT))
The LHS
= p(fifeleroe) + (e1,e2) f20f1 + (e1,0f2) frea — (e2,0f1) fae1)(f7)
= fifa((ero e, 0f)r + fpleroea)r) + (er,e2) fo((Df1, Of)r + f(Of1)r)

+(e1,0f2) fir((e2, 0f)r + fplea)r) = (e2,0f1) fa((e1, 0 )r + fp(er)r)

The RHS

= plfrex)(foles, Of)r + fofplea)r) = p(faea)(filer, Of)r + frfpler)r)

= (f1(61, I(f2(e2,01)))r + fifales, 0f )p(er)r
+filer, 0(f2f))plex)r + fifofpler)plea)r)
—(f2(€27 I(fi(e1, 0f)))r + fafi(er,0f)ple2)r
+falea, O(f1f))plex)r + fafifplez)pler)r)

= fifa((e1,0(e2,0f)) = (e2,0(e1, 0f)) )
+f1faf(plex)plez)r — plez)p(er)r)
+/f1(e2,0f)(e1, 0f2)r — faler, 0f)(e2, O f1)r
+f1f(er,0f2)p(e2)r — f2f(e2, 0 f1)p(er)r

= The LHS

It’s easily seen that the action of S*(Z) ® h on S*(Z) ® R is trivial, so p induces
a (left) S*(Z) ® L/h-module structure (module of Leibniz algebra) on S*(Z) ® R.
In order for S*(Z) ® R to become a Lie-Rinehart module of S*(Z) ® (L/h), we need
to check the following:

(1. plx)(flgr)) = fo(x)(gr) + (T(x)f)(gr), Yo € 5(Z) ® (L/h), f.g €
S*(Z), reR

The LHS
= (7(x)(fg))r + fgp(x)r

f((r(@)g)r + gp(x)r) + (7(x) f)gr
= The RHS
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(2). p(x1022) = [p(x1), p(x2)], V1,22 € S*(Z) @ (L/h)
This is a direct inference of 3.3.1.
The proof is finished. m

Proposition 3.23. If h = Z, R = S*(Z), the standard cochain complex of Leibniz
algebra L is isomorphic to the standard cochain complex of Courant-Dorfman algebra
S*(Z)® L.

Proof. Denote by (C},d;) and (C§,ds) the standard cochain complex of Leibniz
algebra L and Courant-Dorfman algebra S*(Z) ® L respectively. Given n € C%,
obviously we can obtain an associated cochain in C}' by restriction, denote this
restriction map by . ¢ is a cochain map:

(U(dan))r(er, -+, enyi—oki f1,- 5 fr)
(dem)i(er, -+ enyi—2ki f1.- - 5 fr)
S (=D plea) -+ s a1y i)

+Z(_1)a77k( 76/\a7"' y€a O €py - - ;fl:"' 7fk)

a<b

+an71(afhela'“ 7€n+172k;f17"' mfmfk)
= Z(_l)a+1p(€a)(wn)k<( 7€Aa7"' ;f1>"' 7fk>
+Z(—1)“(w?7)k("' ’éa’... ,€q 0 €py ;fb'" ;fk)

a<b

+Z(1/}77)k—1(3f¢, er, s enpioans frooo o i i)

(2

= (d1(¢ﬁ))k(61, ct G112k, f17 T 7fk)
Vk, Ve, € L, f, € Z

Next, given w € C7, we extend it to a cochain pw € CF as follows:

for the degree 2 arguments, extend w by Leibniz rule;

for the degree 1 arguments, first extend the last argument from L to S*(Z) ® L
linearly, then applying the following property we can extend the last argument but
one from L to S*(Z) ® L, then the last but two, -- -, finally we obtain a unique pw:

(€1, -+ 5 €im1, 9€is Tig1, **  Tn—2ki G15" "~ > Gk)
= gnk(eh 61,60, i1, 3 Tn—2k, 91, " ,gk)
a—1 A ~ .
+Z<_1) (eivxa)nk+1(ela 561,60, L1,y Tay s Tn—2k5 9, 91,7 7gk)
a>1

Vk,iVe, € L, x, € S*(Z)® L, g; € S*(2)
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The proof that ¢w is really a cochain in C3 is left to the lemma below 3.24.
Obviously, ¢ o ¢ =idcs, ¢ 01 =idcy. And we can easily prove thaty is also a
cochain map:

p(diw) = p(di(Y(pw))) = (Y (d2(pw))) = da(pw), Yw € C}

Thus, C} and C3 are isomorphic as cochain complex. =

Lemma 3.24. 1 := pw as constructed above is a cochain in C¥ .
Proof. We need to prove that:
Me(T1 Tay Tag1 *+  To2k3 g1+ Gi) + M(T1 7 Tas1, Ta*+ T2k )

= _nk+1($17 e 7$Aa7 xaAJrla sy Tn—2k; (xm -TaJrl)a g1, 7916) (332)
Vk,aVr; € S*(Z)® L, g; € S*(Z)

First we prove:

nk(el crr€a—1,Lay Lag+1 """ Tp—2k; " ** ) + nk(el crr€a—1,La+1,Lg " Tp—2k; ** )
= —T]k+1(61, 5, Ca—1, 'TAIM xc:—l—lv c Ly Tn—2k; (.Z’a, xa—l—l)u g1, 7gk) (333)

Vk,aVe, € L, x; € S*(Z)® L, g€ S*(Z)

(€1~ a1, Tay Tat1 - Tn—ok; ) + Mk(-+ Tag1, Ta - T2k )

= fank(el v €qy fay1€agts Tkt )

_<€a7 fa+1€a+1)77k+1<' o 76Aa7 eajrla B fa7 U )

+ Z (_1)b+a(6a7xb)nk+1(' o ,6/\@, fa+1€a+17 e 7‘,fba T ;fa7 T )
b>a+1

+fa+1nk(' © 5y €atls faem B R )

_(€a+1, faea)nk—f—l(' te 76aA+17 éaa T ;fa+17 oo )

+ Z (—1)b+a(€a+1,$b)nk+1(' “€arts Ja€ar 5 Thy s fayt, )
b>a+1

= fafa—l—lnk(' < 3€ay a1y )
+fa Z (_1>b+a+1(6a+17$b)nk+1(‘ C L €ayCarly Ly fagts )
b>a+1
+fa+l Z (_1)b+a<ea’ xb)nk-&-l(' o aeAay €at1y " 7-fba SR .fm o )
b>a+1

+ Z (_1>C+a<_1)b+a+1(ea7xc)(€a+17Ib)

at+1<b<e



3.3. CROSSED PRODUCTS OF LEIBNIZ ALGEBRAS 81

T/k—i—?( : 6Aa7€a/:i-17"' 7'fb7"' 71?(:7"' ;faafa-l-l?"')
+ Z c+a )b+a<€aax0>(ea+1axb)
a+1<c<b
T/k-l—?("' 76Aa76a/:i-17"' 7:f0)"' 7'fb7"' ;faafa—i-l?"')
+fafa+177k<- 3 €a415€ay )
+fa+1 Z (_1)b+a+1(6a7 :Ub)/r/k’—i-l(' *t 5 €atl, é\(u T 71?177 e ;fav e )
b>a+1
+fa Z (—1)b+a(€a+17xb)7lk+1(' te 7€aA+17 €a, 7fb7 T ;fa—l-la e )
b>a+1
-+ Z c+a )b+a+1 <€a+17 xc) (em wb)
at+1<b<c
T]k—‘,—Q( . ea/:i_17€:17...’fb7...7fc7...;fa7fa+17...)
+ Z c+a )b+a(ea+17 xc)(eaa mb)
a+1<c<b
77k+2("' 7ea/\4rl7éa7"' 7'f07"' 7fb7”' ;f(17f(l+17”')
~(farr(ear Car)mesa (- €aredyay 5 faree)

+fa(ea+1,€a)77k+1("' 7617:1-176&7"' §fa+17"'))
= fafa-i—l(nk(---76aa6a+1>"' ;"')_I'T/k("wea—l—lyeaa"' a))
_(fa+1(ea7ea+l)77k+1("‘ 7éaaea/\+17"' ;fav'")

+fa(ea+l, 6a)7]k+1(' o 760:%17 é\(u tr fa+17 o ))

= _nk+1<' t pézza eaA—l-la C oy Tp—2k; fafa+1(€a7 €a+1>7 e )

If n =2l is even, when £ =1 — 1, due to 3.3.3, 3.3.2 holds.
If n=20+1is odd, when k =1 — 1, 3.3.2 holds due to 3.3.3 and the following

m-1(fie1, fae2, faesi g, -+, gim1) + m-1(fie1, fses, f2e2;01, -, gim1)

= fim-1(er, fae, faez;--+) — (e1, faex)m(fses; f1,- ) + (e, faes)m(faeos f1,-++)
+fim—1(e1, faes, faeai- -+ ) — (€1, fses)m(fa2; f1, -+ ) + (€1, fae2)m(faes; fi,--)
—fim(es; (fae2, fses), )
—Ul(f161; (f2€2, f3€3), T )

Now suppose 3.3.2 holds for k£ > m, consider the case when k = m. Due to 3.3.3,
we can further suppose that 3.3.2 holds for z1,---x; € L, i < a. We will prove 3.3.2
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for the case when k =m and x1,--- , 2,1 € L:

nm(el €i-1, fi€i+* [alas fat1€at1 " 3"’>+77m< - fi€i+ far1€as1s faCa oy
= fznm( cr 6yt faeaafa+1ea+1>"' 7)
+Z b—H ez;fb€b>77m+1<"' )éi7"' 7éb7"'fa6a7fa+1€a+17"' afl>

b>1
+fim (- s €iy far1€arts fa€ay e 5 )

_'_Z b+l el:fb€b>77m+l<"' ?éia"' >éb7"'fa+1ea+17fa€a7"' afl)
b>1i

— fz(nm( 7ei7...fa€a7fa+lea+17... 7.)_|_77m(.. ;eiy"'fa+lea+17faezzy"' ’>>
+( Z (_1)b+i(6i7fbeb)77m+1("' 7éia"' 7éba"' 7fa6a7fa+1€a+1"" 7fl)

b>i,b#a,a+1

+ Z (_1)b+i(€i7fb€b>nm+l<"' )éia"' 7éba"'fa+1€a+17fa€aa"' 7fz>>

b>i,b#a,a+1
+(<_1)a+i(ei7 fae(l)nerl(' o Jéi7 ) éa? fa+1€a+17 MR fl e )

(=) e, farrear)mer (- 6 fa€asedia 3 fieee)
+((—1)a+i(€i> forr€ar)Mmsa (- 5 6 eas fa€a o5 fie )
+<_1)a+1+i(ei’ faea)nerl(' .. ;é’i7 e ’fa+1ea+17 ) éa ce 7f2 ce ))

= _flnerl( 3 €iy e 7eAa7eaA+17"' ;(faemfaJrleaJrl)?”')

- Z (_1)b+i(ei7fbeb)77m+2('"éi"'éb"'éaaeati-l"' ;(faeaafa+1ea+l)7fi"')
b>i,b#a,a+1

= —Um+1(€1,"' ;€1 fi€ir €ay a1y ;(faeaafa+lea+1)?"')

By induction, 3.3.2 is proved.
Next, by the construction of ¢, it suffices to prove

nk('xlv"' y Ui—1,9Liy ", Tp—2k; 91, * 7gk’)

= g’l’]k(l’l, C L1, Lq, 0 3 =2k 91, )gk) (334)
+Z a Z 'rwxa)nkJrl(xla”' 7'%.1'*173?2'7“' 7'fa7'” y In—2k; 9,91, " 7gk)
a>i

Vk,iVe, € L, x, € S*(Z)® L, g; € S*(Z)
When zq,--- ,z;,_1 € L,3.3.4 holds:

nk(ela"' €i— lvgfzeza"' e )
= gflnk(a i, +Z a—H ehxa)nkJrl("'7éi>"'afa7"';gfi7"'>

a>1
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— g fien, e s ) = SO(=1)" (e, w0 ) T (- -

a>1

+Z Q—H euxa)nk’—i-l("' 7éi7"' af(m"'

a>1

= 977k("‘7fi€i,“‘, +Z

a>1

Now suppose 3.3.4 holds for any k > m, and for the case when x4, - - -
i), k =m as well. Consider the case when z, - - -

nk(ela"' 7ej71;fj€j7"' ’gx“... ,)

= g g ) () e g
+ Z (_1)b+](6j=xb)nk+1("' 7éj7'” ) 7

b>7,bti

— fj(%k('“ €jy e iy )

a+z A A~ .
+Z Izaxa>77k+1("',€j;"'71'1',"'71’&""797"
a>1
1)+ ( - - .
+Z ]e]axb)(gnk-i-l(”'76j7'.'?xb7 '7$ia"')fj7”'
J<b<i
a+2 ~ A~ A~
+Z xzaxa>7]/€+2<"')€ja"'7xb7"'7xi7"'axa7"
a>1

+Z b+] ejaxb)(gnk+l("'7éj7"'7$i7"'7f

b>1
+ Z a+z 1’z>$a)77k+2("' 7éj7"'

i<a<b

+Z a+z+1 xuxa)nk-l—Q("' 7éj7"'

b<a

+<_1)Z+J(€j7g'xz)nk+l( o 7éja e 7*/fi7 tr g

xb7...

g’r]k( fje....xi...;...>
+Z a+l $l’xa)nk+1<. . f]e] .. 'fl . .fa
a>1

g(fjnk(-" € Ty )

+(— 1)i+j(ej7$z)77k+1("‘ N TR R
+ Z €J7xb)77k+1( 6y

J<b<i

+Z b+] e]axb)nk-‘rl("' 7éj7"' )
b>1

s 9fis -

) (fiess o) (- -

7gx7:7.--

by "

',xb,"'

9

)

';fj

A
.7'%.047'..

A
61:7...

N
3 €yt

y Lj—1 S L, T

I

?

)

ej’--

Y

xb?“’

xa’.--

A

- .
yLay 3G,

A

)

.))

)

)

yLay ot afia"'

iy fyy e

'fj;"'

)

;gafja"'

ag7f]7

,x; € L(j <
= fj€j7 k=m:

)

)
)
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+Z a+z xzaxa)(fjnk-i-l("' y €4yt 7fz 7'1?\(1"" 797)

a>1
b N N
+ Z +] ejaxb)nk—i-Q("' 7€y Tyttt LGy Lyt 7gaf]a)
Jj<b<i
b ~ N o ~
+Z +j+1 ej,xb)nk+2<."ejj.'.xij'.'xbj...‘ra)'.';g)fj"")
i<b<a
b ~ ~ o ~
+Z +] ej,l'b)’r]k_l,_Q("‘ 7 €5y s Lgy 3 Xyttt 3 Lpy 0t ﬂg7fj7))
b>a

The above two equals. Thus by induction, 3.3.4 is proved. =

Using the same methods as above, we can prove the following:
Proposition 3.25. C25(L/h, S*(Z)®@ R) = Cop(S*(Z) ® L/h, S*(Z)® R)

Remark 3.26. When h = Z, R = S*(Z), due to Proposition 3.23 and 3.25, Theorem
3.10 can be rephrased as:

HE(SY(Z)®L) = Hep(L/h, S°(2)) = Hep(SY(Z2)®L/h, 5*(2)) = H;, (5*(Z)QL).

So in this case, Theorem 3.10 recovers Theorem 3.15 for the specific Courant-Dorfman
algebra S*(Z) ® L.

For general case when h # Z, using the same methods as above we can prove
that the standard cochain complex of Leibniz algebra L w.r.t. the module S*(Z)® R
is isomorphic to the following cochain complex D*® of Courant-Dorfman algebra
S*(Z)® L:

A cochain w € D™ is a sequence (wo,wr, -+ ,Wjn/9) With w, : Q" 2*(5*(Z) ®
L)® OF(S*(Z) @ h) — S*(Z) ® R satisfying;

1). Wk(xla"' y Ljy L1y ;"')—i‘wk(xb"' y Lijg1y Ly = ;)
= _Wk+1(x1a"' iy Tig1, - Sa(xi,miﬂ)a"')
\V/l‘j GS.(Z)®L

2) Wk(xh fxuxz-i-lu e )
= fowr(- @ Tigr, o5 +Z )y mz,fﬁg)wkﬂ( fz',"'fj,"‘;aff“)
7>

Ve, € S*(Z)® L, feS*(Z)

3). wi(--s5fign - fuogr) = fiooc fewr(coc 591, L 0k), Vo€ S°(Z), g €
S (Z)® h
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The coboundary differential is defined as following:

(dw)g(@1, - Tng1-2k3 915+ i)
— Z(_l)a+1p(ma)wk(...fa7... 7) _|_Z(_l)awk(...fa’...xaoxb’... ’)
a a<b
+Z(_1)a+1wk("' 7faa"' o afiafio'rav"')
+Zwk71(9i,$1,"' o i)

Combining 3.25, 3.10 can be rephrased as
H*(D*) = H}p(S*(Z) ® L/h,S*(Z) ® R).

In fact the cochain complex D*® can be defined similarly for any triple (£, H,R),
where £ is a Courant-Dorfman algebra, H is an isotropic ideal of £ containing the
left center, R is an £-module (module of Leibniz algebra) on which H acts trivially.
Then we have the following conjecture, as a further generalization of Theorem 3.15:

Conjecture 3.27. H*(D*(E,H,R)) = H2p(E/H, R).
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Chapter 4

Derived brackets for fat Leibniz

algebras

Throughout this chapter, let L be a Leibniz algebra with left center Z, and h O Z be
an isotropic ideal of L. And we take C%(L) to be short for C% (L, h, S*(Z)), where
S*(Z) is the left module of L extended from Z by Leibniz rule.

By proposition 3.23, Roytenberg’s theorems 2.23 and 2.24 can be stated in the
language of Leibniz algebra:

Theorem. Suppose h = Z, and the symmetric bilinear form on S*(Z)® L is strongly
non-degenerate, then there is a bracket {e, o} defined on C3(L,Z,S*(Z)), satisfying:

1). {e, e} is a non-degenerate Poisson bracket on the algebra C%(L,Z,S*(Z)) of
degree —2;

2). {6,0} =0;

3). dw = —{0,w}, Yw e C(L,Z,5%(2));

and

Theorem. With the above assumptions,

(ey0e3) = —{{O,€)}, €}, Ve, ey € L,
where ¢ := (e, o) € CL(L, Z,5%(Z)).

Since ()’ is an isomorphism, the second theorem above implies that Leibniz

bracket of L can be represented as a derived bracket.

However, the assumptions in the theorems above are too strong. Even if the
bilinear product of L is non-degenerate, the induced symmetric bilinear form on
S*(Z) ® L is not strongly non-degenerate in general.

87
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A natural question is: what is the case for general h and weaker requirement
on the symmetric bilinear form? Can Leibniz bracket of L still be represented as a
derived bracket?

The main objective of this chapter is to answer this question.

4.1 The canonical 3-cochain
Define ©y: L& L® L — S*(Z) as
@0<61a €2, 63) = (61 O €2, 63)7

and ©; : L®h — S*(Z) as

We see that O has the same definition with Cartan 3-form of Lie algebra (but
the bilinear products are quite different). Consider the Leibniz cohomology of L
with coefficients in S*(Z) (or Z), we have the following:

Proposition 4.1. ©q is a 3-cocycle in C*(L,S*(Z)) (or C*(L, Z)).
Proof.

(do@o)(el, €2, €3, 64)
= P(61)@0(62, €3, 6’4) (62)@ (61, €3, 64) + p(€3)@0(€1, €2, 64) - P(€4)90(61, €2, 63)
Op(e2, €1 0 e3,e4) — Op(ea, e3,€1 0 €4)
+0g(e1,e3 0 e3,e4) + Op(e, 3,62 0 €4) —
= pler)(ea0e3,eq) — ples)(eg oes,eq) + ples)(er 0 eq,eq) — pleg)(er o eg,e3)
—((e10eg)oeg,eq) — (e20(e10e3),eq) — (a0 e3,€1 0 €y4)
+(e10(eg0e3),eq4) + (€1 0€3,e20€e4) — (€1 0€9,e30€y)

- ((61 o (62 o 63)7 64) + (62 ©€3,610 64))

—@0(61 O €9, €3, 64)

@0(61, €2,€30 64)

—((62 @) (61 e} 63) 64) + (61 O e€3,€690¢€y )

es, (€1 0ez) 0es) + (eq,e30 (e10e€2))
((61 o 62) O €3, 64) — (62 o (61 O 63)7 €4 —f— (61 O (62 (@) 63), 64)
—(eg0e3,e1064) + (€1 0€3,650€4) — (€1 069,63 0¢€y)
) —

(e10(eg0es),eq) —2(ea0 (e10e3),e4) —2((e1 0e2) 0es3,eq)

—l—( ez 0 (€1 0e9) 64)+(61062,63O€4)
~((
)

I
DO
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2(ejo(eg0e3) —(e1o0ey)oeg —ego0(eg0e3),ey)
= 0
Ve, eo, 63,4 € L

The proposition is proved. m

Now consider © = (0, O;) as a whole.
Proposition 4.2. O is a cochain in C3(L). When h = Z, © is a 3-cocycle.
Proof. Ve, eq,e3 € L,

Oo(e1, €2, 3) + Og(e2, €1, €3)
= (e10eg,e3)+ (ea0eq,e3)
= ((e1,€2), €3)

—0(es3; (e1, €2))

Oo(e1, e2,e3) + Og(er, €3, €2)
= (61 O €9, 63) + (61 O €3, 62)
= ple1)(e2, €3)
= —064(e1;(e2,e3))
So © is a cochain in C3(L).
When h = Z, we need to prove that dO© = ((d©)o, (dO)1, (dO)3) = 0:
For (d©)y, by Proposition 4.1, (d©)y = dy©y = 0.
For (d@)l,
(dO)1(e1, €25 f)
= —pler)(ea, f) +plez)(er, f) +(eroea, f) = (foer,ex) + (foeg,er) + (foer,er)
(feh=Z = foeg=0& foey;=0)
—((e10ea, f) + (e2,e10 f)) + (ea,e10 f) + (e1 0 ey, f)
0

For (d©)a,,

(d©)2(f1, f2)
O1(f2; f1) + O1(f1; f2)
_(f27fl) - (fl>f2)

= 0
Thus the proof is finished. m
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In fact when h = Z, by proposition 3.23, © defined above is exactly the restriction
of the canonical 3-cocycle of the Courant-Dorfman algebra S*(Z) ® L. This is the
reason why we use the same notation ©.

4.2 The Poisson algebra structure on C%(L)

In this section, we define a bracket for certain cochains in C?,(L). The construction
is analogous to the case of Courant-Dorfman algebra.

Let LY £ Hom(L, S*(Z)).

Vw € C%(L), wy, gives rise to a map wy, : L1 @ S¥(h) — LV :

Wi(er, -+, en—ap—1; f1, -, fr)(e)

(Lfk rrlfiley opq " L61wk)(e)

= wiler, a1, € fr, 0 f).
The bilinear product of L induces a map
(o, ): S*(Z)® L — L".
In fact it is the S*(Z)-linear extension of ()’ : L — Hom(L, Z) (2.3).

Definition 4.3. Yw € C%,(L), if the image of wy falls into the image of (e, ), Vk,
we call w a “representable” cochain. The graded subspace of C§,(L) consisting of all
representable cochains is denoted by C2%,(L).

Obviously, © and ¢’ are representable cochains.
Given w € CZ(L), wy can induce a map

WGy o LEHE s Hom(S™(h), S*(Z) ® L),
which is defined by

Gelers - s en—an—1)(fr, - 5 fx)

2 (o, )’1(@k(61,-~ sen—ak—1; f1, fr))

Note that i depends on the choices of preimage of wi(e1, -, €n_ok—1; f1, , fx)s
so it is not uniquely determined unless (e, ) is injective (i.e. the bilinear product of
L is non-degenerate).

Vo € Hom(S*(h), S*(Z)® L), 8 € Hom(S'(h), S*(Z) ® L), define (a - ) €
Hom(S*(h), S*(Z)) as

(a-B)Y(fr, - for) = D (@lfotrys s fom)s BUotsrys s fotern))-

o€sh(k,l)
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Vy € Hom(S*(h), S*(Z)), 6 € Hom(S'(h), S*(Z)), define yo§ € Hom(S*T=1(h), S*(Z))

as

Yo 5(fi, v frome) E Y Aoy s o)y fotrnys o s fotirh-1));

o€sh(l,k—1)

where ¥ : S*(Z) ® S*1(h) — S*(Z) is the extension of v by Leibniz rule w.r.t
the first argument.
Now given w € C%(L), n € C(L), we define the bracket {w,n} as follows:

{w,n} Ewentwon—(—1)""nouw, (4.2.1)

where wen = ((wen)g, (wen)1, - -+ ), with (wen), : T™=272k[, — Hom(S*(h), S*(Z))
defined by

(w d n)k(ela T 76n+m—2—2k)

&yt Y >

i+j=k o€sh(n—2i—1,m—25—1)

<U7i(60(1)7 T 7€a(n—2i—1)) : ﬁj(ea(n—%)7 T 7ea(n+m—2—2k))>7

(obviously the value does not depend on the choices of «; and 17;, so it is well-
defined)

and won = ((won)o, (won)1, - -+ ), with (won)g : @M 272K[, — Hom(S*(h), S*(Z))
defined by

(w < 7])k<617 e 76n+m—2—2k>
£ Z Z <—1)Uwi+1(€a(1) e 'ea(n—Qi—Q)) o nj(ecr(n—%—l) ce eo(n+m—2—2k))-
i+j=k o€sh(n—2i—2,m—2j)

Analogously to theorem 2.23, we have the following:

Theorem 4.4. With the above notations,
1). C*%(L) form a graded-commutative Poisson algebra under the bracket {e, o}.

2). {8,n} = =(do + 8)n.
First we prove a lemma.

Lemma 4.5. wen, won, {w,n} are all cochains in C™ 2(L).
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Proof. w e is a cochain in C7"™ (L) because:
(wen)k(er - eq Car1 - Cngpmz—ok; J1- - fi) T (Won)(- - Cagr,€a ;)
(_1)m—1 Z
i+j=k
{ Z (_1)0@1'(60(1) ceegr ) 77j(€a(n—2i) MR PR I ea(n+m—2—2k))>
o,acw,a+1€n
+ Y (1)%@i(ay€a ) Mi(Cotnai) * Catl Eo(nrm—2—2k))) }
o,a€En,a+lew
+(_1)m—1 Z
i+j=k
{ Y (=)7@ileoq) - eatr, ) - Mi(Cotm—gi) s €a" " Cotnim—2-2k)))
o,a€en,a+1€w
+ Z (_1>U<di(€a(1) ERCT RS B ) : ﬁj(eo(nfm) cr€q eo(n+m7272k))>}
o,acw,a+1€n
+(_1)m—1 Z
i+j=k

{ Z (_1)a<u7z‘(€a(1) Tt €ay €41 ) ) ﬁj(ea(n—Qi) T ea(n+m—2—2kz))>

o,acw,a+1€w

+ Y (D)7 (Wiles) €at1r€ar ) i (€otn—2i)  * * €o(ntm—2-2k))) }

o,a€w,a+1€w

H=mT Y

i+j=k
{ Z (—1)0@71‘(60(1) s ) : ﬁj(ea(n—zi) I TRCTRE B €o(n+m—2—2k))>
o,a€n,a+1€n
+ > (=D)@ileoq) ) Mi(eom—2i)  €ar1, €0 )}
o,a€n,a+1en

()™ X > (=1)7(=1)

i+j=k oc€sh(n—2i—1,m—2j—1),a€w,a+1€w
<Wi~+1(€a(1) “r€ayCay1 *€o(n—2i—1); (6117 €a+1)) : ﬁj(ea(nf%) T ))

+HE=D Y > (=1)7(=1)

i+j=k oc€sh(n—2i—1,m—2j—1),a€w,a+1€w
<di(eo(1) e ) ' nj;l (ea(n—2i) e éom eaAJrl T ea(n+m—2—2k); (eay €a+1)>>
!
)a

SULEDS 2 (-1 2

i'+j=k+1o0’€sh(n—2i'—1,m—2j—1) T€sh(i',5),(€a,ea+1)EwW
(Wir(eor1) -+ )((€ar €at1)s fr) -+ )y Mi(€or(neziry ==+ ) (fr@y == fri)))

+H=D™ > > (-1)7 >

i+j'=k+1 o’ €sh(n—2i—1,m—25'—1) T€sh(i,5'),(earea+1)EN
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(@i(@a'(l) T )(fT(l) T )7 U}’(ea'(n—%) T )(<€aa 6a+1)7 fT(i+1) e fT(k‘)))
= —((.U b 77>k+1(617 R éa? eajrh cty Endm—2—2k; (e(h ea+1)7 f17 T fk>

w o1 is a cochain in O™ (L) because:

(Won) k(- s eareart 3 frfu) + (Won) (- €qp1req i)
— Z { Z (—1)(7(&)2'_,_1(60(1)"'ea"')onj(ea'(nf%fl)"'ea+1"')

i+j=k o,a€w,a+1€n

+ Z <_1)0wi+1(60(1) BT R ) © T]j(eo(n—Zi—l) BT R )}
o,a€EN,a+1€w

+ Z { Z (—1)Uwi+1(€a(1) “€ap1tr) O nj(ea(n—%—l) e )

i+j=k o,a€n,a+lcw
+ Z <_1)Uwi+1<eo(1) tt€qy1vtt) O nj(eo(nf%fl) eq )}

o,acw,a+1€n

+ Z { Z (_1)0wi+1(60(1) "€y €atl ) o 7’]]'(60(”,21-,1) cee )

i+j=k o0,0€w,a+lcw
+ Z (=1)wit1(eor)* * €atr1s€a ) 0 Nj(€o(n2i-1) - )}

o,acw,a+1€w

+ Z { Z (_1)ng‘+1(€a(1) o ) © nj(ea(n—%—l) ©t€qyCat1 )

i+j=k o,a€n,at+len

+ > (D)%wisa(eoq) ) 0 Nj(Catn—ni-1) - Cat1,€a- )}
o,a€n,a+1en

= 2 > (=D)7(=1)

i+j=k c€sh(n—2i—2,m—2j),acw,a+1€w
wi+2(€o(1) ©t€ay €41t Co(n—2i—2)5 (ea, €a+1)) © nj(ea(n—Qi—l) s )

+ > > (=D)7(=1)

i+j=k o€sh(n—2i—2,m—2j5),a€n,a+1€n

W’H—l(ea(l) T ea(n—?i—?)) © 77j+1<€a(n—2i—1) SRR (ea, €a+1))
> > (-1)7 >
i'+j=k+1 o’ €sh(n—2i' —2,m—2j) T€sh(j,i’—1),(ea,ea+1)EwW

wi/+1(€a'(1) T ;nj(eo’(n—%’—l) T ;fT(l) T ), (ea, €a+1), fT(j—‘rl) T fT(k))

o 2 (-1 2

i+j'=k+1 o' E€sh(n—2i—2,m—2j") T€sh(j'—1,i),(€a,ea+1)€EN
Wir1(€or(1y -+ 3Ny (€orn—2i-1) = 5 (€as €ar1), fr1) = )y fri) = frik))
= _(won)k-i-l(eh'” aé\(mea/:f-la"' 7€n+m—2—2k;(etmea—i—l)vfl)'” afk?)

So {w,n} =wen+won—(—1)"now is also a cochain in C%;T(L). m
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Proof of theorem 4.4:

Proof. 1) Due to the lemma above, in order for { , } to be a graded-commutative
Poisson bracket, we need to prove the following three properties:

(1). For any two representable cochains w,n, {w,n} = —(—1)""{n,w},

(2). It n € C(L), ) € C*,(L), then n\ € 0’”“ (L), and

{w, A} = {w, A + (=1)""n{w, A},

(3). The bracket of any two representable cochains is still a representable cochain,

and
{w, {n, A} = {{w,n}, A} + (=1)""{n, {w, A}}.

For (1), it suffices to prove w e = —(—1)""n e w.

Vo € sh(n—2i—1,m—2j—1), switching the first n—2i—1 arguments with the last
m —2j — 1 arguments results in a sign difference (—1)"~("=1) 50 by definition there
is merely a sign difference between w 7 and new of (—1)"~m+r=Dm=1) — (_1)nm+1,

Thus (1) is proved.

For (2), in order for nA to be a representable cochain, we need to check that

(MA)e(ers - s empi—ars f1, 5 fo) = (emti—ok, @), VE

(n)‘)k<€1a"' s Cml—2k; f1,7 »fk)

= 2 > (=17

i+j=k o€sh(m—2i,l—2j) T€sh(i,j)
ni(eo(l) f f’T ) (eam 2i4+1) * ** €o(m+1—2k); fT i+1) fT(k)

= 2 Z > (=1

i+j=k oc€sh(m—2i,1—25),0~ ! (m+1—2k)=m—2i T€sh(i,5)
(s emiians )y emprak) (- 500 )

+ b > (=1

i+j=k o€sh(m—2i,l—2j),0 1 (m+1—2k)=m+1—2k TEsh(i,j)
M5 )N G emgi-anks ), emei—2k)

- (em+l72k7

{ Z Z Z (_1)6-1-1

i+j=k g€sh(m—2i—1,1—-2j5) T€sh(i,j)
ﬁi(e&(l), s frays )Aj(e&(mf%) s fray, )

+ 2 > (=17

i+j=k g€sh(m—2i,l—2j—1) T€sh(i,j)
ni(esq) -5 fr@ys )N (€am—zir1) ==+ friirn)s o)}
)
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Next, we prove that {w, e} is a graded derivative.

{Wa U/\}k(el, C Cngmtl—2—2k) J1, 0 7fk)
= (WonA(---) + (WonA)p(---) + (=1)" "™ H (nr o w)y(---)

We calculate the three parts above respectively:

(wenN)i(er, -, entmii—2—2k; f1,- -+ 5 f)

— (_1)m+l+1 Z Z Z
a+b=k cesh(n—2a—1,m+1—2b—1) T€sh(a,b)

—_—~—

(Waleoqys 5 frrys o+ 5 fr@)s (A )b(€o(n—24)s " * s Conimti—2—2k); "))

_ (_1)m+l+1 Z Z Z (_1)o+l
a+b+c=k o€sh(n—2a—1,m—2b—1,1—2c) T€sh(a,b,c)

(wa(ea(l) AR )7 77b(6¢7(n—2a) Tyt ))\c<€n+m—2a—2b—1 R ))

+(_1)m+l+1 Z Z Z (_1)0
a+b+c=k o€sh(n—2a—1,m—2b,l—2c—1) T€sh(a,b,c)

(CJa(ea(l) cee e )’ Ub(ecr(n—2a) cee e ))\C(en+m72a72b cee e ))

= 2 > > (=1

a+c=k oc€sh(n+m—2a—2,1—2¢c) T€sh(a,c)
(we n)a(ea(1)7 s ;fT(1)7 s ))‘C(ea(n-i—m—?a—l)? e ;fT(a+1)7 )

+ > D > (=prremim-ym

b+a=k oc€sh(m—2b,n+1—2a—2) T€sh(b,a)
77b(€o(1)7 s frays e J(we /\)a(ea(mbeJrl)a s frernys *)

= (o X))+ (M (e (we ), ()

(wonA)k(er, -, enymii—2—2k; f1, 5 fr)

= X 2. > (=1

a+b=k c€sh(n—2a—2,m+1—2b) T€sh(b,a)
Wa+1 (eo(l) © €o(n—2a—2); (n)\)b(ea(n—2a—1) B fT(l) Tt )7 fT(b-‘rl) tee )

= > 2. >, (=1

a+b+c=k oc€sh(n—2a—2,m—2b,l—2c) T€sh(b,c,a)

Wa+1 (60(1) U ;nb(ea(n—Za—l) Ty )Ac(ea(n+m—2a—2b—1) AR )7 T )

= 2 > (=1

a+b+c=k o€sh(n—2a—2,m—2b,l—2c) T€sh(b,a,c)
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wa—l—l(ea(l) T ;nb(ea(n—Qa—l) R )7 e ))‘c(ea(n+m—2a—2b—1) R )

+ o 2 >, (=y7

a+b+c=k o€sh(m—2bn—2a—2,l—2c) T€sh(b,c,a)

77b(€0(1) B T )wa-l—l (ea(mf2b+1) ! )\c<eo(n+m72a72b71) Tyt )7 o )

= 2 2 > (=1

a+c=k c€sh(n+m—2a—2,l—2c) T€sh(a,c)
(wonaleay, 5 frrys - ) Ael€otnrm—2a=1), 5 fr(arn)s - -)

+H=D" Y > > (=1

a+b=k oc€sh(m—2b,n+1—2a—2) T€sh(b,a)
(o), 5 frays - )W o Nal€omozotr1), -+ frorr), )

= (wom)-A) (- )+ ()" (n-(woN) ()

(—1)n(m+l)+1(7])\ % w)k(el, C oy Cndml—2—2k; f1, T 7fk)

— Z Z Z (_1)nm+nl+1+a

a+c=k oc€sh(m+l—2a—2,n—2c) T€sh(c,a)
(77>\)a+1(€0(1)7 U ;wC(eU(m+l—2a—1)7 ! fT(1)7 T )7 fT(C—i—l)? e )

— Z Z Z (_1)nm+nl+1+0+nl

a+b+c=k o€sh(m—2a—2,n—2¢,l—2b) T€sh(c,a,b)

Na+1 (60(1) T ;wc(ea(m—Qa—l) Tyt )7 U ))‘b(ea(n+m—2a—20—1) Tyt )

P>y S (e

a+b+c=k o€sh(m—2a,l—2b—2,n—2c) T€sh(a,c,b)
77(1(60'(1) Tyt ))\b+1(ea(m72a+1) T ;Wc(ea(m+l72a72b71) R )7 T )

- > ¥ > (-

a+b=k oc€sh(m+n—2a—2,1—2b) T€sh(a,b)
(now)alesay, 3 fray, -+ ) No(€onim—2a—1)s " 5 fr(at1), ")

+ 2 > > (=M=

a+b=k g€sh(m—2a,n+1—2b—2) T€sh(a,b)
Na€oy, 5 frys ) - (=1 (N ow)p(€om-2ar1): 3 fr(at1), )
= ()" ((mow) - A) () + (=)™ (=)™ (- (Aow)) ()

The sum of the three equations above is:

{w,nAti(er, -, engmai—a—2k; f1, -+ fi)
= ((wem)-A) () + (=) (n-(@eN) ()
H(@on) - A) () + (=)™ (- (wo ), ()
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=1 ((ow) - A) () + (=)™ (=)™ (n- (Aow)) (--+)
= ({wn}- Nl ) + (0" 0 - {w, Ae(---)
Thus {w, e} is a graded derivative, (2) is proved.
For (3), in order for {w,n} to be a representable cochain, we need to prove
{w7 n}k(elv c Cndm—2k; f17 e 7fk) = (€n+m—2k:7 .)7 Vk.
{w,nte(er, -+ entm—s—ori f1,- -, fr)
= (=)™t X ) > (=1
a+b=k cesh(n—2a—1,m—2b—1) T€sh(a,b)
(CJa(ea(lﬁ ey fT(1)7 e )7 ﬁb(eo(n—Za)7 ey fT(a+1)7 U ))
+ 2 D >, (=1
a+b=k cesh(n—2a—2,m—2b) T€sh(b,a)
wa—l—l(ea(l)a T ;nb(ea(n72a71)a T fT(1)7 T )7 fT(b+1)7 U )
+<_1)nm+1 Z Z Z (_1)0
a+b=k c€sh(m—2a—2,n—2b) T€sh(b,a)
77a+1(60(1)7 o ;wb(eo(m—2a—1)7 S fT(1)7 to )7 fT(b+1)7 e )
= GO Y > > (yrt
a+b=k c€sh(n—2a—2,m—2b—1) T7€sh(b,a)
wa<€a(1) *€o(n—2a—2)s Entm—2-2k, ﬁb(ea(n—2a—1) MR fT(l) T )7 fT(b+1) T )
+(_1)m+1 Z Z Z (_1)U+(n—1)m
a+b=k c€sh(m—2b—2,n—2a—1) T€sh(a,b)
nb(ea(l) © Co(m—20—2)s Entm—2—2k, (*Ja(ea(m—2b—l) Ty fT(l) e )7 fT(a—i—l) e )

+{ (€n+m—2—2k7 .>

p> 2 > (=)

a+b=k oc€sh(n—2a—2,m—2b—1) T€sh(b,a)
Wat1(o1)s 3 (M(€o(n—2a=1)s " i fr)s =), €ngm—2—2k)s frp+1), )}
+{(€n+m—2—2k7 .)

=D Y > > (=1

a+b=k cesh(m—2a—2,n—2b—1) T€sh(b,a)
77a+1(€o(1); Ty (db(eo(m—Qa—l)v M fT(l); T )7 en+m7272k)7 fT(b+1)7 to )}

- (en+m—2—2k7 .)

+ 3 3 > (1) wa(- - engmes—ok, (- )i )

a+b=k c€sh(n—2a—2,m—2b—1) T€sh(b,a)

+ Z Z Z (_1)U+nm+177b(' o 7€n+m—2—2k7c‘ja(' o ); T

a+b=k oc€sh(m—2b—2,n—2a—1) T€sh(a,b)

97
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+ 2 2 > (=

a+b=k c€sh(n—2a—2,m—2b—1) T€sh(b,a)
{wa(- -+ enpm—a—ob, (- )5 ) FwWale o (), Enpm—n—2k; )}

+ 2 D > (=p7em

a+b=k cesh(m—2a—2,n—2b—1) T€sh(b,a)
{na<. .. 76n+m7272k7(ﬁb<' .. )7 “. ) —+ ?704(‘ .. ’db(. .. )’ €ntm—2-2k;" " )}

= (en+m—2—2ka .)

Thus (3) is proved.
2)

(@ L4 T])k(fil, T Em41-2k; fl, T 7fk>
= (-1t > (=1)7(O0(€s1); €o(2))s Mh(€o(3) - * * Co(mr1—2k); "))

o€sh(2,m—2k—1)

+(_1)m_1 Z (él(fr(l))a 7715—1(61, Tty Emt1-2k; fT(2)7 T 7f7(k)))

T€sh(1,k—1)
- m 12 a+b+1 o€b7ﬁk(€1"” 7éa7"' 7éba"'€m+1—2k;fla"'fk))
a<b

m IZ fu77k 1 61,' ©y emai—2k; f1, 0 ,fi,"' 7fk))

= (_1)m Z<_1)a+bnk(el7 N 76:“ e 7éb7 Cc L Cmg1—2k, €q O €p; f17 e 7,fk‘)

a<b

_1)mz77k:—1(‘317"' 7em+1—2k‘afi;f17"' 7fia"' 7fk:)

(O on)kler, -, emr1—2k; f1.- -, fr)
= Z(_l)a+1@1(€a) o 77k(617 oy €qytt ,€m+172k)

a

= D (D)D) e mrlers - €y empran; froo o fi)

a

- Z(_l)ap(ea)nk(el7'” 76/;17"' 76m+1—2k;f17"' 7fk3>

a

(—1)m+1("7<>@)k(€17"‘ semii-2k; 1,75 fx)
— (_1)m+1 Z (_1)0

o€sh(m—2k—2,3)

Mke+1 (60(1)7 T 7ea(m72k72)) o 60(6a(m72k71)7 €o(m—2k), ea(mf2k+1)>
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m+1 Z a+m+1 61, By, 7€m+1_2k) o @1(€a)
= z (A e Ca Gy o Esr i (600 ), i i)
a<b<c

+Z<_1)aznk<el7”' 76:“"' ;€m+172k;_<ea7fi>7f1;"' 7]?2'7'” 7fk)
= Z<_1)a+b Z (_1)0{7716( 7€Aa7"' 7éb7"' y€c—1,€4 O €p, E¢, * + * 7)

a<b b<c<m+2—-2k
+77k( aém"' uéb7"' y €c—1,€¢y €q O €p, * - 7)}
+Z {nkl 6a—lafi7€a7"';fi"')+nk—1("'€a—17€a7fi7"';fi"'>}
= Z(- )a+1{7”k(...ea...eaoeb’... ;...)+<_1)b+m7”k(...é\a...éb...eaoeb;...)}
a<b
_an—l(fi761>"' §"'fi"')+(—1)m+lz77k—1(61'"€m+1—2kafi§"'fi"')

The sum of the equations above is
{9, m}eler, s emyiors f1,0 0+ f)
= Z(—l)“p(ea)nk(el, S €ar s Cmprooks f1, 0 fr)
+Z a+1 "'76/\(17"'760,06177.”;”')

a<b

- anfl(fia €Lt mg1—2k s fir )

= —((do+)mrler, - emp1—or f1,- 5 fr)
Thus 2) is proved. =

If (o, ): S*(Z)® L — LY is an isomorphism(i.e. the symmetric product of
S*(Z) ® L is strongly non-degenerate), any w € C%(L) is a representable cochain, so
the bracket can be defined for any 2 cochains and C$,(L) is a graded-commutative
Poisson algebra.

4.3 The derived bracket

Before stating the main theorem, we give the definition of fat Leibniz algebras:

Definition 4.6. Given a Leibniz algebra L, if the bilinear product (e, e) is non-
degenerate, or equivalently the induced map

(8) : L — Hom(L,Z) (2.3)
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is injective, we call L a fat Leibniz algebra.

The omni Lie algebra ol(V') = ¢gl(V) @ V is obviously a fat Leibniz algebra.
Actually given any Leibniz algebra L with trivial center, there is associated a fat
Leibniz algebra L:

Proposition 4.7. Suppose L is a Leibniz algebra with trivial center, then L £ L/K
is a fat Leibniz algebra, where K is the kernel of the bilinear product of L, i.e.
K ={k € L|(k,e) =0, Ve € L}.

Proof. Since the product of L is invariant:
T(e1)(k,e2) = (e1 o k,e2) + (k,ey 0e3), Vey,eo € L, Vk € K,

it follows that
(e10k,e) =0, Vey €L,

so e; o k € K. Furthermore since e; ok + koe; = (k,e;) =0,s0 koe; = —ej ok is
also in K. Thus K is an ideal of L.
The Leibniz bracket of L naturally induces a bracket on L/K:

— - A —
€1 O €9 = €1 O €9,

where € is the equivalent class of e € L in L/K. Suppose there exists k € L/K such
that (k,e) =0, Ve € L/K, i.e. (k,e) € K, Ve € L. Since (k,e) is in the left center
of L, (k,e) € K implies that (k,e) is also in the right center of L. So (k,e) =0
by the assumption that the center of L is trivial. It follows that k itself is in K,
k=0¢ L/K. As a result, the bilinear product on L/K is non-degenerate. m

Analogously to theorem 2.24, we have the following:

Theorem 4.8. Suppose L is a Leibniz algebra with left center Z, h O Z is an
isotropic ideal in L acting trivially on Z. © and {e, e} are defined as in j.1.1 and

4.2.1. Then we have
(61 o eQ)b = _{{@7 eb1}7 6%}

In particular, if L is a fat Leibniz algebra, then the Leibniz bracket can be represented
as a derived bracket:

e10ex = —{{6, 6?}, eg}ﬂv
where (o)f : Im((e)’) — L is the (partial) inverse map of (e)’, i.e.

(9)") 2 ¢, Vo € Im((s)).



4.3. THE DERIVED BRACKET 101

Proof. {©,¢€}} is a 2 cochain:

{@, 6?}0(62, 63)

(Oo(ea, €3), €4) + O1(e2) 0 €] (e3) — O1(e3) o €] (e2)
= (eg0e3,e1) — (€2, (e1,e3)) + (e3, (e1,€2))
= —(ego0eq,e3)+ (ez,e10ex+ey0€)

= (e 0eq,€3)
{0, 1(f) = (6:1(f), &4) = —(er, [)

We see that {©, €]} is a representable cochain.
{{O,€%}, €3} is a 1 cochain:

{{@lebl}aez}o(f?))
= ({©.¢}}o(es), eb) + {O©, €1 }1 0 €3 (es)

= (e1o0es,e3) — (€1, (eg,€3))

= —(61 O €9, 63)

So (e10e5)’(e3) = —{{O, €1}, €3} (e3) = (e1 0 eg, €3).
The proof is finished. m
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Chapter 5

Equivariant Cohomology

5.1 The generalized action of a Lie algebra on a
manifold

We know that an action of a Lie group G on M induces an infinitesimal action of
its Lie algebra g on M, which is a homomorphism of Lie algebras from g to the
space of sections of the tangent bundle T'M. In generalized geometry, we consider
the generalized tangent bundle TM & T*M instead of TM. TM & T*M can be
endowed with the standard Courant algebroid structure, whose Dorfman bracket
turns I'(T'M @ T*M) into a Leibniz algebra. So the following definition is naturally
motivated:

Definition 5.1. The generalized action of a Lie algebra g on a manifold M, is
defined to be a homomorphism of Leibniz algebras from g to the space of sections of
the generalized tangent bundle T'M & T M.

Example 5.2. 1). Suppose w is a symplectic 2-form on M, it induces a map
w’ 1 TM — T*M. The graph of w’, denoted by G,, is a Dirac structure in the
standard Courant algebroid TM @ T*M. Any map ¢ : g — I'(T'M) induces a map
¢ from g to T(TM @ T*M):

0(A) £ 6(A) +w(6(4)), VAeg.

It is easily checked that ¢ is a generalized action of g on M iff ¢ is a homomorphism
of Lie algebras. Actually ¢ is a homomorphism of Lie algebras from g to G, in this
case.

2). Suppose II is a Poisson bivector on M, it induces a map II* : T*M — T M.
The graph of II*, denoted by G, is a Dirac structure in the standard Courant

103
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algebroid TM @ T*M. Any map ¢ : g — ['(T*M) induces a map ¢ from g to
L(TM e T M): B
V(A) 2 IF(W(A) +9(4), YAeg.

It is easily checked that v is a generalized action of g on M iff ¢ is a homomorphism
of Lie algebras from g to I'(T* M), where the Lie bracket [e, ]y on I'(7T*M) is given
by

[, B]n £ Loy 8 — Lz gy — du(I(ev, B)), Ve, B € T(T*M).

Actually 1 is a homomorphism of Lie algebras from g to Gp in this case.

In the following, we denote by E the standard Courant algebroid T'M & T* M,
and by £ the space of its sections. So £ is a Courant-Dorfman algebra with Dorfman
bracket

(X+8o (Y +n)=[X,Y]+ Lxn—tyduf

and symmetric bilinear form
(X +&6Y +n) =wxn+wé

Given a local chart {z'}1<;<, of M, take {& 1= 3%, &' := dya'} as a local basis of &,
then g;; = (&,&;) = Oi(n+) (we assume that & = &,44, & = ", Gionty) = 1). If we
denote by {p;}1<i<n the conjugates of {z'} with degree 2, the cubic Hamiltonian H

of E can be written in a simple form:

H = p&'.

Given an ordinary action of g on M, we know that the de Rham differential
(Q*(M),dys) can be realized as a g differential algebra. Now given a generalized
action p : g =+ &, A — fl, in the following we will define the interior product ¢4
and Lie derivative Ly (VA € g) on C%(E), so that (C%(E),ds) also becomes a g
differential algebra.

The interior product ¢4 of C%(E) by g is defined to be:

CH(E) — Oy '(E)
w = {A w} (5.1.1)

By theorem 2.25, if w is viewed as a cochain in C*(€, R), then ¢4 is simply the
contraction map:

A

(LAw)k(el,"' ,6n—1—2k;f1>“'fk) Wk(Aaela"' s en—1—2k; J1,° - ,fk)-
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From now on we will omit the denotations for isomorphism maps (e)” and (e)*
between £ and & if it causes no confusion.

And we further define the Lie derivative of g on C%(E) as Ly = dg0ta+t40dg,
i.e.

Ljw
= dst(LAw)A—i- LA(dstw)A
{H. (A}~ (A {H.u}) A
—({{H, A} w} + (“DHAAH w}}) — {A{H w}}
= —{{H, A},w}. (5.1.2)

Then we have the following:

Proposition 5.3. With the interior product 14 and Lie derivative L, defined above,
(C2%(E),dst) becomes a g differential algebra.

Proof. Since{e, o} is a graded Poisson bracket on C?%,(F), 14 and L, are both graded
derivatives on C%(E). So we only need to prove (C%(E),ds) is a g differential
complex, i.e. the following three formulas:

1). [La,Lp] = Lag,

2). [LA,LB} = L[A,B},

3). [tas ] =0,

VA, B € g, where |e, o] on the left hand side is the commutator of operators on
Co(E).

1).

[La, Lplw
= LyLpw— LgLw
= {{H,A}i{{H,B’A}?w}}—{{Hﬁ},{{ﬂlfl}’w}}A A A
= ({{{H, A}, {H, BY),w) + (<)P*{{H, BY, ({H, A} w}}) — ({H, B}, {{H, A) )}
= {{{#, A}, 1}, By + (1)} H,{{H, A}, B}},w}
= 0+{H,Ao B}, w}

—Liapw
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[La,iplw
= Laitpw —tplw
= _{{Hw’i}l{ézw}}+{§7{{H7{l}aw}} . . A
= _({{{H7 A}7 B}’w} + (_1)2.1{B7 {{H’ A}7w}}) + {B7 {{Hv A}’w}}
= {AoB,w}

L[A,B}w

[ta, tBlw
LALBW + LBLAW
= {Aa{ézw}}+{éa{ﬁacf}} A
(A, BY,w} + (~DH{B, {A w})) + (B {A,w})
= {{4,B},w}
=0

The proof is finished. m

Let (Cg(E), dg) be the Cartan model of equivariant cohomology for (C%,(E), ds).

Cy(E) is the space of invariant elements in

C™E,9) & @ CLE)® S (g).

i+2j=m

Any n € C™(E,g) can be viewed as a sequence (1,71, ,7m)), where n; is a
symmetric multilinear map:

&g — CLY(E).
According to Definition 2.39, by direct computation, we have the following:
C(E) = {neC™(E,g)|

g

A

ZLAink—l(Ala'“ ,1211‘,"' aAk) +Z{<A’L7A])ank—2( aA’h"' aAjv"'

i<j

and
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A

(dgm)i(Ax, -+ Ar) = dane(Ar, -+ Ag) + Z tAk—1(Ar, - Ay oo Ag).
1<i<k

Next, we consider the specific example when the action ¢ : g — £ is the ordinary
action sending A € g to the corresponding vector field A € ['(TM). Suppose G is a
compact Lie group, and M is a manifold on which G acts freely. It is well-known
that in this case the de Rham complex Q°(M) is a g differential algebra of type
(C), so the corresponding equivariant cohomology is isomorphic to the de Rham
cohomology of N =& M/G. The following proposition tells that C%,(E) is also a g
differential algebra of type (C).

Proposition 5.4. If G is a compact Lie group acting freely on M, then (C%(E), ds)
is a g differential algebra of type (C). Thus by Theorem 2.1, the equivariant coho-
mology of C3(E), i.e. the cohomology of the Cartan model ((C3(E) @ S*(g*))?,dy),
is isomorphic to the cohomology of the basic complex ((C%(E))pas, dst)-

Proof. Suppose {A;}1<i<; is a basis in g. Since the G action is free, the corresponding
vector fields {A;} are independent in T'(T'M). Let {6'}1<;<; be their adjoint elements
in T(T*M). By pseudo-metric of E, {#'} can be regarded as standard 1-cochains
in C%(E) (or C*(€, R)). In particular, 6%(A;) = d%. Actually such {#'}s are in 1 — 1
correspondence with maps ¢ : g* — CL(FE) satisfying

a(@(p) = (A, ), VAE€g peg (5.1.3)

The map ¢ corresponding to {6} is defined by:
o) 20, Vi,
where {u'} is the adjoint basis in g* of {A;}.

In order for C%(E) to be of type (C), we only need to verify the existence
of {#'} which span an invariant space in CL(FE), or equivalently the existence
of a map ¢ : g* — CL(FE) satisfying Equation 5.1.3 which is equivariant, i.e.
ao¢oAd;_, = ¢, Va € G, where Ad}_, is the coadjoint representation of G
on g*.

Given any ¢ satisfying Equation 5.1.3, since G is compact, by averaging aogoAd’ _,
over (&, i.e. taking the integral

/ (aopoAd;—1)da
G

with respect to Haar measure, we can obtain a new map qg which is equivariant and
still satisfies Equation 5.1.3 (because any a o ¢ o Ad’_, satisfies Equation 5.1.3 too).
Thus the proof is finished. m



108 CHAPTER 5. EQUIVARIANT COHOMOLOGY

Next we consider a more special case when M is a principal G bundle, and discuss
what the basic complex of C'%,(E) is.

Proposition 5.5. If M — N is a principal G bundle, and C%(E) is viewed as a g
differential algebra as in Proposition 5.3, then the standard complex of the standard

Courant algebroid TN & T*N is a subcomplezx of (C3(E))pas-

Proof. Since M — N is a principal bundle, we can take local trivialization chart
{2} 1<icn of M so that ;- - ! are fiber coordinates and z!*!, -+ 2™ are horizontal
coordinates (i.e. {x'};s; is a local chart of N). {& := 8‘;,5” := dx'};s; is a local
basis of sections of TN @ T*N. Denote by {p;}:: the conjugates of {z'};~;, then
{2, &, &%, pi }iy is a Darboux chart on TN@T*N. By local trivialization, {&;, &%, p; }isi
can all be lifted to corresponding coordinates on M, for which we still use the same
denotations, and they further extend to a Darboux chart {z’, &, & p;i}1<icn On
TM @& T*M. Thus the standard complex of TN & T*N is embedded in C%,(E) as a
subcomplex (the cubic Hamiltonian of TN @ T*N is Hy = 3,5, pi&?, the difference
Si<icipi€’ of Hy and H acts trivially on C3(TN @ T*N)). Vw € C3,(TN & T*N),
w doesn’t contain any &(1 < j < 1), so ta,w = 0 since 4; is a C®(z, -, 2l)-
linear combination of {;}1<j<;, moreover Ly,w = t4,(dgw) = 0 since dgw is still
in C3(T'N & T*N). Thus any cochain in C%,(T'N @ T*N) is basic in C%(FE), the
proposition is proved. m

However, a basic cochain in C?,(F) is not necessarily a cochain in C$ (TN G T*N).
For example, when G is Abelian, we can take {&; }1<i<; (with notations in the proof
above)to be the corresponding vector fields of a basis of g, then any p; € C%,(E) (1 <
i <) is a basic cochain, but not in C%(TN @ T*N). Note that p;, = {H,§;} is a
coboundary. Actually we observe that for lower degrees 0, 1,2, any basic cocycle is
cohomologous to some cocycle in C%(T'N @ T*N). So this leads to the following
conjecture:

Conjecture 5.6. If M — N is a principal G bundle, the basic complezx of C2(E) is
quasi-isomorphic to the standard complex C3(TN @ T*N).

If this conjecture is true, the equivariant cohomology of C?,(E) would be isomor-
phic to the de Rham cohomology of N, hence recovering the classical isomorphism
when we view Q°*(M) as a g differential algebra.

5.2 Equivariant cohomology of Leibniz algebras

Throughout this section, let L be a Leibniz algebra with left center Z, let h be
an isotropic Leibniz subalgebra in L (so h is actually a Lie algebra), and let (R, p)
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be a left representation of L. R becomes an L-module by taking the symmetric
extension, i.e. (R, p, —p) is a representation of L. As in the former chapters, we
denote by dy the coboundary differential of the corresponding Leibniz cohomology.
Let A®* = @,, A" be a graded subspace of the corresponding Leibniz complex with
A" defined as follows:

A" = {a € Hom(L*", R)|

aler, - eg,pp1, - -en) Faler, - epr1, € - -e,) =0, Yk, Vey, - ,exr1 € h}
The following proposition implies that (A®, dp) is a subcomplex.

Proposition 5.7. (A* = @, A", dy) is a cochain complex. Furthermore, if R is a
commutative algebra on which L acts as derivations, then A becomes an h-differential
algebra with interior product defined by

Lfa(elv' o 7en71) é a(fa €1, aenfl)

(when o € A°, vy is defined to be 0).

Proof. Vk, Vey,--- ,ers1 € h, we have the following:
(doa)(ela T 5 Chy g1, 76n+1) + (doa)(eb 3 €e41,€6, 0 ,€n+1)
— Z (_1)a+1p(ea)<a(”'76/\(17“';6k76k+17"')+a(“'aé\a7”'ek‘+17€k§7”'))
a#k,k+1

H=DM 4 (D) pler)al+ b ene, )
H((=D" + (D)"Y plers)al - s en e, -)
+ Y (_1)a<a(... st €00 €y ek Chit, ) e ,6k+1,6k,---))

a<b#k,k+1

+Z(_1)a(a( 76/\(1;”'661Oek‘aek—f—ly“')—}_a(”' ’é;“... 7ek7€aoek‘+17”'>)
a<k

+Z(_1)a(a( 76Aa7"'€a06k’+176k‘7”')+a<..' 76Aa7'.. ,€k+1,€aoek,"‘))
a<k

+(_1)ka( * , €L O €Lkt + €41 O €k, - )

+ Z ((_1)k+ (_1)k+1)a("' >ék7€k?+la"' ) €k oeb?"')
b>k+1

£ 3 (DM 4+ (—DPal - ep e e 0 en-)
b>k+1

=0

So A* is closed under dj.
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If R is a commutative algebra, Vo € A", 3 € A™, define « - [ as:

(a-B)ers s enim)
= Z <_1)Ja<€a(1)7 o 760'(71))/8(60'(TL+1)7 U 760(n+m))

o€sh(n,m)

where sh(n, m) means the shuffle permutation.

To see that this map defines a graded commutative algebra structure on A®, we
need to check the following:

(1). Va e A", € A™, a- g € AT,

Vk, Vey, -+ ,ery1 € h,

(- B)(- ,eperpn, )+ (- B, ersr,er )
= Z (=1 (-, ep,eppt, )+l eprtser - ))BG-+)

o= 1(k),oc~1(k+1)<n+1

+ 3 (1) )(B(-++ s emersry )+ B s ensts e )

o 1(k),c~1(k+1)>n

+ 2. (1)

o~ 1(k)<n+1,0-1(k+1)>n

(@l en)BC - ersn )l e )8 en )
+ > (=1)7

o= 1(k)>n,c—1(k+1)<n+1

(a(... cerits)B( o em )l en e )B( 7€k+17...))
= 0.

(2). Associativity.

((a ’ 5) '7)(61, T 7€n+m+l)

= Z (_1>a(a ' 6) (60(1)7 e 760(n+m)>7(60(n+m+1); e yea(n+m+l))
oesh(n+m,l)

= Z (_1)07(€a(n+m+1)7 ce 760(n+m+l)) :
o€sh(n+m,l)

S (=D)Talentray), s Cotrin)BCatrine1))s s Eo(r(ntm)))

Tesh(n,m)

(let 1 be the permutation
(0-7)1), (o T)(n+m),o(n+m+1),-o(n+m+1)))
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= S (=D*aleu), - )B(Eutnr)s )V €pmemat), )
nesh(n,m,l)

= (CY ' (B : 7))(617 e 76n+m+l>
(3). Graded commutativity.

(a-B)(er, s €ntm)
= Z (—1)004(60(1), e 7ea(n))ﬁ(ea(n+l)a Ty 60'(n+m))

o€sh(n,m)

(let o' be the permutation (o(n+1),--- ,0(n+m),o(1),---,0(n)))
= Z (_1)nm(_1)0/6(60’(1)7 T aea’(m))&(eg’(m+1)> T :eo’(n—i-m))

o’€sh(m,n)

= <_1)nm(ﬁ : a)(€17 e aener)

The interior product ¢y as defined in the proposition is obviously well-defined
(o € A" = 1y € A"71). Let Lie derivative be Ly £ 1y od +d o ty. To prove that
A becomes an h-differential algebra, we have to check the following:

1). ¢y and dy are graded derivative,

2). tyotg+i,0t, =0, Vf,g€h,

3) Lfog = Lng — LgLf7 Vf,g € h.

Proof of 1):

(Lf(a ’ 6))(617 T ven-l-m—l)
= (Q'B)(f7617"' 7€n+m71)
= Z <_1)Ja(f7 €5(2)y """ 7€U(n))6<ea(n+l)7 U 760’(n+m))
o€sh(n,m),es1)=f
+ Z (_1)ga(60(1)7 T 760(71))6(.]07 Co(n+2), """ 7€a(n+m))
oesh(n,m),eq(ny1)=7
(letting T be the permutation removing f from o)

= S (D)) (Er@ys e erma1)B(€rmys  Ernam—1))

T€sh(n—1,m)

+ Z (_1)T+na(67(1)7 R e'r(n))(bfﬁ)(er(n—&-l)a T 7€T(n+m—1)>

T€sh(n,m—1)

— ((Lfa) B4 (=)o - (Lfg)))(eh e ememt)
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(do(a- B))(er, -+ s €nym1)
Z(—l)“+1p(6a)(0z By )+ Z(_l)a(a B €y eq0ey )

a a<b

Z(_1>a+1p(ea)( Z (—1)006(60(1) T 60’(71))6(60'(71-"-1) te eo’(n-‘,—m)))

cesh(n,m){-,a, -}

+> (=1)° > (=1)7

a<b o€sh(n,m){--a, },o0~1(b)<n+1

a(€s(1), " € €a © €, €o(n)) B(Eaint1), " " Eo(ntm+1))
+(=1)° > (=1)7

a<b oesh(nm){-a,},o=1(b)>n

04(60(1), Tt €o(n))5(€a(n+1), C €y €q O Ehy eo(n+m+1))

(letting oy be the permutation adding a to o in front,

o9 be the permutation adding a to o at back)

Z Z (_1)a+1(_1)01+0f1(a)—a

@ gi€sh(n+1,m)
(p<6a>a<601(1) - €a, €oi(o7 a)+1) """ 601(n+1)))6(601(n+2) "t oy (ntmet1))

)DRD DI CS VG Vil

a gg€sh(n,m+1)
a(eoz(l) T 602(n)> (p(ea)ﬁ(eaz(mrl) €y, Cos(oy (a)+1) " 602(n+m+1)))

+Z Z (_1)a<_1)0'1+0171(a)7a

a<b gy €sh(n+1,m), oy H(b)<n+2

€o1(1) * Car oy (o7 (a)41) " Eb€a © b7 ) B(Cor(nt2)  Cor(nimen))

> > (—1) (1) (e

a<b goesh(n,m+1), oy H(b)>n+1

a(eag(l) T )6(602(77,—‘,-1) T éay 60—2(0—2_1(a)+1) e éb7 €aO€p - 602(n+m+1))

)ESVAID SISV

a1 ar:=07 (a)<n+2

(P(eal(al))&(em(l) - Cor(ay) eol<n+1)))ﬁ(€ol(n+2) oy (ntmt))

+ Y1) > (-1

a1:=0j Ya)<by ::crl_1 (b)<n+2

A€oy (1) Cor(ar) *** Cor(br)s Cor(ar) © Cor(br) = )3 (Cor(n42) ** * Cor(nam1))
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+Z D7 (€0y(1)s s €os(m) © D

azzzagl(a)
<_1)a27n+1p(60'2(a2))5(602(714-1)7 e 760'2(112)7 e 760'2(n+m+1))

+ Z a2+n 60—2(1), v 7602(71)) . Z

n<ag:=o, Ya)<ba =0, L(b)

( )a2 n/B( n+1 67-2((1\2) e %7 eo’z(ag) o ea’g(bg) e eag(n—i—m—i—l))
= ((doer) - B+ (=1)"r- (dom)(el, e entmin)
Proof of 2):

((Lf Olgtig OLf)a)(eh'" 7671—2)
(LgOé)(f, €1, ,Gn_g) + (LfOé)(g7€17- o 7en—2>
= a<g7f7€1?"' 7en72)+a(f797617"' 7€n72)
= 0
Proof of 3):

((Lng - LgLf)axela T 7671—1)
= ((dog)a)(f, 61, * s en-1)

_I_Z CH‘l (l’fol’g)a)(ela"' 7€Aa7”'€n—1)
+ Z Lf © Lg)a)(eb T 76Aa7 e aéba €a O €p, - en—l)
a<b

—((Lf0d+dOLf)Oé)(g, €1, 7en—1)
= (p(f)&(gvelu'” €n,1)

+Z gf617...7é\a7...7€n_1)
+Z 97617'”7é\a)foea7"'7en—1)
Jrz 1)5+q ,"',éa,"',éb,eaoeb,"'))
a<b
+Z a+l (g7f617"'7éaa"'76n71)
+Z g7f7€1> 76Aa7"'7ébaeaoeba"'7€n71)
a<b

_(da)<f7g7€1>"' 7en71)
_< (9 )a(f €10 €n—1)
+Z f>g>€17"'7éa>"'7enfl>
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+Z fela"'7éavgoea7"'7671—1)
+Z a+1 f g,€1,- 7éaa"' 7éb76aoeb7"' 7671—1))
a<b

= p(f) (9,61, ’ Gn 1)_ () (faela"'ven—l)
+Z a+1 (f 97617”'76&7"'7671—1)

+Z 97617"'76Aa7foea7"'7671—1)
+ZO[ f?el)'” 76Aa7goea7”' 7671—1)

+Z fg’617"'76aa"'7€b7€ao€ba"'aen—1)
a<b

_(da)(fagaela"' 7€n—1)
= a(fogvela"' 7en71>

= (rog)(er, -+ s ena)

Thus the proposition is proved. m

The L-module structure of Z can be uniquely extended to S*(Z) by Leibniz
rule (the action on SY(Z) = R are defined to be 0), so that R = S°*(Z) satisfies the
condition in the proposition above.

Suppose L = h @& X as vector space, and {;} is a basis of h, denote by {u'}
the dual basis of h*. If R is a unital algebra, any u‘ can be extended to a 0 € Al:
0'(&;) = (1',&5) = 9%, 0i(x) =0, Vo € X. In particular, when h = Z and R = S*(Z),
it’s easily seen that L¢,67 = 0, so A® is of type (C) in this case. Actually we have the
following:

Proposition 5.8. Suppose R is a unital commutative algebra on which L acts as
derivations and L has a decomposition h & X of vector spaces such that ho X C X,
then A® is of type (C).

Proof. Tt is easily seen from the assumption that the action of L on the unit of R is
0.

In order for A* to be of type (C), we only need to prove Lg,67 = —C7.0*, where
7, is the structure constant of h.

The proof is done in two cases:
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\V/gl € h7

(Le,67) (&)
= ((dowg)0)(&) + ((tg, 0 )6”)(&)
= 0+ (d#) (&, &)
= p(&)0 (&) — p(E)0 (&) — 07 (& 0 &)
= 0-0—0/(Cii&)
_ _Cz‘jl
(—C0%) (&)

Ve e X,

(Le,67)(x)
= ((dowg)0)(x) + ((tg, 0 d)07)(x)
= 0+ (d#") (&, )
= p(&)t (z) — p(2)0 (&) — 07 (& o x)
= —#(&oux)
= 0
= (=C0")(x)

(07(& ox) =0 since ox € X.)
The proof is finished. m

Since A*® is an h differential algebra, we can consider the complex of Cartan
model Cp(A) = (A®* @ S*(h*))" of the equivariant cohomology of A®. Cp(A) is a
graded subspace of C*(L). Yw € CMA), 30, € A2 5D ¢ §k(p*), such that

Wy = iaff)_% ® 77,(:). Cp(A) is endowed with the equivariant coboundary differential

d:do(g)ld—LgZ@Mz

We will simply write dy ® id as dy from now on.

Yw € CP(A), suppose wy = a9 @ Ng(here we only consider monomials for
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simplicity, the result is obviously true for polynomials as well),

((te; @ p)wr)(er, -+ s en—1—2k; fi, s frs1)
= > (e, an—ar)er, - s en1—ak) () (fro -+ for)

= Zan—Qk(fiv €1, en1-2k) - Zui(fj)m(- e ,ij )
= Z Oén—2k(,ui(fj)§ia €1, 7€n—1—2k)77k(' e 7fj7 T )
= Zan72k(fj7€17"' ;6n7172k>77k<"' 7fj7'”)

J

A

J

We see that 1, ® ' is exactly the operator § as defined in the third chapter:

(dw)g(er, - enyi—an; fr,  fr)
- Z wk_l(fﬁelv'” 7€n+1—2k;f17”' 7f]7fk)
1<j<k
1
Vi, Yw € C™(L), Vk < [

2

]

So the equivariant coboundary differential d = dy — §. (dw)y = (dow)r — (dw)g =
dowk — (ka,L

Proposition 5.9.

(dQW)kZO
A Zwk—1(617"' Jé\aafioeav'” 7f17f17>:0

a,t

Proof. d2 = 0 since dy is induced by the coboundary differential of Leibniz cohomol-
ogy.
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§%2 = 0 as proved in theorem 3.1.

((doyod+dody)w)i(er, - enta—ar; fr, - fr)
= Z(—l)aﬂp(ea)((sw)k(@l, o €ay o Cngamoks 1,00 fr)

+ Z(_l)a((sw)k(eb T 7éa7 © 1 €q O Chyt Cnt2-2k; fla e fk)

a<b

+Z(d0w>k—1(fi7elv'"6n+2—2k;f17"' 7fzvfk)

= Z<—1>a+1p<ea>wk 1(fir o arsee i)

+Z wk 1flv"'7éa7“'6ao€b7”.;”'fAi7”.)
i,a<b

+Z eawk l(fm"'véaa"';"'»fiv"')

+Z wk 1 7fio€a7"';"';fi;"'>

+Z o a+1wk71(fi7"'7€Aa;"'€ao€b7"';"'7f2'7"')
i,a<b

= Y wialer, ,€u fioea ;fl,'“fi,'-')
i,a

So
(d®w)k(er, - enga—oni f1,- - fr)
= (46> +dyod+dodo)w)ler, - ensosi fr, - fr)
= _Zwk*1<617”' 7éa7fioea7"' >fl7fz7)

The proposition is proved. m

So the complex of Cartan model is
CH(A) = {we @ AP @ S1(h*) C C™(L)]
p+2g=n

Zwk’(eh'” 7€Aaafioea7"' aflvf/\za):o7 VGGL, feh}a

with coboundary differential dy — 9.

It is obvious that Cp(A) also becomes a cochain complex under coboundary
differential d = dy + 9.

Actually we have the following:
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Proposition 5.10. Cp(A) becomes a cochain complex under coboundary differential
d. = dy + ¢6, where ¢ is any nonzero constant. And the cohomology H*(Cr(A), d.)
doesn’t depend on c.

Proof. d?> = d3 + c*6* + c(dg o d + d o dy) =0, so (Cp(A),d,.) is a cochain complex.

We only need to prove that H*(Cr(A), d.) = H*(C}(A), dy = dy+96), Ve. In
fact there exists an isomorphism ¢ of cochain complexes as follows:

RSN
1

1
Aoy s Ay v) (EAO’”' ’E)"“'")

Since (¢(deA))e = 2 (deX) = do(Z M) + 1 (0Ae—1) = (d1(dA))k, ¢ is a cochain
map.
¢ is obviously a bijective map, thus the proposition is proved. m

In particular, the cochain complex (Cr(A),dy = dy + 0) is isomorphic to the
complex of the Cartan model (C5(A),d_; = dy — 0) for equivariant cohomology of A.
This leads to the following definition:

Definition 5.11. The cochain complex (Cj(A), d = dy+9), denoted by C¢, (L, h, R),
is called the equivariant (cochain) complex of L with respect to h and R. The resulting
cohomology, denoted by H, e'q(L, h, R), is called the equivariant cohomology of L with
respect to h and R.

We will write C¢, (L, h, R) and HZ (L, h, R) simply as Cg (L) and HZ (L) if it

causes no confusion.

When (L, h, R) satisfy the condition in Proposition 5.8, applying Theorem 2.41,
we have the following:

Proposition 5.12. Suppose R is a unital algebra on which L acts as derivations,
and L has a decomposition h & X of vector spaces such that ho X C X, then

HE (L, h, R) = H*(AG,,).

In the following ,we consider a specific example: L is the omni Lie algebra
ol(V) = gl(V) @V, his the isotropic Leibniz subalgebra of ol(V') corresponding to a
Lie bracket on V (i.e. h is the graph of o : V — gl(V), where o(v;)(v2) £ [v1, va]v,
see Theorem 2.6), and R is S*(V') with L action p extended from the action on V'
by Leibniz rule.
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Since h is the graph of o : V' — gl(V'), ol(V') can be decomposed as h @ gl(V)
as vector space. The Leibniz bracket of h and ¢l(V') is obviously in gl(V). So
(ol(V'), h,S*(V)) satisfy the condition in Proposition 5.8 and 5.12, we have the
isomorphism

H (0l(V), h, S*(V)) = H® (A,,)-

Let’s compute the cohomology in degree 0 and 1:
Degree 0:
A% = 5*(V), and

Ay = {aeS*(V)|iya=0,Lia=0, Vf € h}

= {aeS*V)lp(f)a=0, Vf € h}
— {ae 5" (V)llvalsray =0, Vo€ V],
where [o, ®]ge(y is the extended bracket of [e, o]y, on S*(V') by Leibniz rule.

The set of 0-coboundaries is null. And o € A° is a basic 0-cocycle iff p(A)a =
0, VA € gl(V), it is easily seen that the only basic O-cocycles are S°(V) = R. So

HY (ol(V), h, S*(V) = H(A},,) = R. (5.2.1)

Degree 1:
A = Hom(ol(V),S*(V)), and

A;as = {a€ Hom(ol(V),S*(V))|t;a=0,Lja=0, Vfeh

= {ae Hom(ol(V),5*(V))|a(f) = 0, p(f)ale) = a(f oe), Vf € h,e € al(V)}
= {ae Hom(ol(V),5*(V))|a(f) = 0, [v, ae(A)lse(v) = a[o(v), A]), Yo € V, A € gl(V)}.

The set of basic 1-coboundaries is

{OZ € Aba5|36 € Abas’ Q= dﬁ}
fa € Hom(ol(V), S*(V))[38 € AL, a(A+ ) = p(A)B, VA € gi(V), [ € h}.

The set of basic 1-cocycles is

{a € Ay Jda = 0}
= {a€ Hom(ol(V),S*(V))|tfa =0,da =0, Vf € h}
= {ae Hom(ol(V),5*(V))|a(f) = 0, [v; a(A)]se(v) = allo(v), A]),
p(Ar)a(Ag) — p(Ar)a(Ay) — af[Ar, Ao) + A1v) =0, Yo € V. A, Ay, Ay € gl(V) ]

And H} (ol(V)),h,S*(V)) = H'(A},,) is their quotient.
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It is easily seen that , when the Lie bracket [e o]y is 0 (i.e. h is V'), basic
1-coboundaries and basic 1-cocycles are exactly 1-coboundaries and 1-cocycles in the
Chevalley-Eilenberg complex of the Lie algebra gl(V') with respect to its representa-
tion S*(V'). We know that the cohomology of the Lie algebra gl(V') with respect to
the representation S*(V') is trivial, so
) =0.

bas

He,(ol(V), V. S*(V)) = H'(4,

Actually, we can prove that the equivariant cohomology in this case is 0 for higher
degrees also:

Proposition 5.13. When h =V, the equivariant complex Cg (ol(V),V,S*(V)) is
acyclic.

Proof. From the discussion above 5.2.1, we see that Hp, (ol(V),V,5%(V)) = R.

So we need to prove that H[ (ol(V),V,S*(V)) = 0, Vn > 1, or equivalently,
H™(Ap,,) =0, Vn > 1.

Suppose a € A} . is a cocycle, it suffices to prove « is a coboundary.

Let I € gl(V) be the identity map, then Vey,--- , e, € ol(V),

(da)(@l, Cee e, [)
= YU plealer, e en, )

a

—i—(—l)”p([)oc(el, ce L en)

+Z 617"'76Aa>"'7éb7€aoeba"'>€nal)
a<b
+Z 617 7éa7”'7en7€ao[)
= Z( 1)(14—1)0(6&)0[(617“. 7eAa7"' 76n7[)
+Z 617 )éaf"?éb;eaoeba"'76717-[)
a<b

+(=1)"aler, -+, en).

Since « is a cocycle, it follows that:

afer, -+, en)
= (_1)n+1(Z(_1>a+1p(ea)a(el7'" 7€Aaa"' 76717])
+Z 617 '7€Aa>"'aébaeaoeba"'>en>[)>'

a<b
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Let : ®@" 'ol(V) — S*(V) be the map defined by

Bler, -+ en1) = aler, - en1,1).
Obviously 8 € A}', and we have:
a(el’ . ’en)
= <—1>"+1(Z<—1>a+1p<ea>a<el,-~- e, D)
+3(=1D)afey, -- .7€Aa’...’éb’eaoeb’...767“]))
a<b

= (_1)n+1(2( 1)a+1p<€a)5(617'“ 7€Aa7"' 7en)
+Z aﬁel7' '7Aa;"'vébaeaoeba"'7en))

a<b

= (=1)"HdB)(er, - s en).

Thus a = d((—1)""'3) is a coboundary, the proposition is proved. =
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Appendix A

Appendix

A.1 NQ manifold

In this section we list some basic knowledge concerning graded manifolds, for more
details we refer to [72, 73, 66, 62].

Definition A.1. A supermanifold of dimension p|q is a locally ringed space M =
(Mo, Opr), where My is a smooth manifold of dimension p and Q) is a sheaf of Z,
graded C>°(Mj)-algebras on M, whose stalk O, over each point x € M, is local,
together with a countable system of compatible charts covering M called atlas, where
a chart on M means an isomorphism of locally ringed spaces

¢: V= Vo,Oumly,) = UPIT = (Upy, C=(Uy) @ A*(RY)

(Vo is an open subset of My, Uy is an open subset of R?).
UPl is called a superdomain. O, is called the sheaf of super functions on M.

Given any vector bundle £ — M, IIE is a supermanifold with structure sheaf
Ong = 'y (A*E*). Locally Ong is generated by C*°(V;) (Vp is an open subset of
M) and a local frame &', -+ €™ of E* (n is the rank of ). II here means the parity
reversal functor, which converts the fiber coordinates ¢! into odd coordinates. I1FE is
called an odd vector bundle. The fundamental classification theorem of smooth real
supermanifolds asserts that any supermanifold M can be realized as an odd vector
bundle.

Vector bundles on supermanifolds can be defined analogously to vector bundles
on ordinary manifolds, using super vector spaces instead of ordinary vector spaces. In
particular, the tangent bundle of a supermanifold is the space of graded derivations
of the structure sheaf.

A graded manifold is a supermanifold with an additional grading:
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Definition A.2. Let M = (My,Oy) be a fixed supermanifold with a fixed even
vector field e.

1). A chart (Vp, ¢) of M is called Z-graded iff its coordinates are eigenfunctions
of € with integer eigenvalues.

The structure sheaf of Z-graded functions over this chart is the Z-graded algebra
generated by these coordinates, i.e. smooth functions in the coordinates of degree
(or weight) 0, the free exterior algebra in the odd coordinates, and the free algebra of
symmetric polynomials in the even coordinates not of degree 0, with the Z-grading
given by (eigenvalues of) e. We say that a function f € Oy, is homogeneous of degree
kif e- f = kf, and denote by |f| = k.

2). A Z-graded atlas of M is an open cover with Z-graded charts such that the
transition functions between them preserve the Z-grading and are constituted of
Z-graded functions. Especially the number of coordinates in each degree is the same
on all charts.

3). An (integer) graded manifold M is a supermanifold M together with a fixed
vector field e, called the Euler vector field, and a (maximal) Z-graded atlas.

A graded manifold is said to be non-negatively graded if all coordinates are of
non-negative integer degree.

Definition A.3. An N-manifold is a non-negatively graded supermanifold M, whose
integer grading is compatible with parity (the underlying Z,-grading in the structure
sheaf). In other words, even (parity) coordinates must have even weights and odd
(parity) coordinates must have odd weights.

Vector bundles on graded manifolds (and N-manifolds) can be defined obviously.
If M is a graded manifold and £ — M is a graded vector bundle, we denote by E[n]
the graded vector bundle with fiber degrees shifted by n. For the case when M and
E are N-manifolds, we need to shift the parity in the fibers as well so that E[n] is
still an N-manifold. Thus in this sense, [IF = E[1].

Given N an N-manifold, TN and T*N are both graded vector bundles, with
Euler vector field acting as Lie derivative. The fiber coordinates of T'N have the
same degrees as the corresponding coordinates of N, while the fiber coordinates of
T*N have the opposite degrees.

Suppose E — M is an ordinary vector bundle, F could be viewed as a graded
vector bundle over graded manifold M (with all coordinate weights equaling 0).
So E[1] is the shifted graded vector bundle with coordinates (x%, &%) of weights
|z'| = 0, [£*| =1, and T*E[1] is a graded vector bundle (over E[1]) with coordinates
(xi’gaapia ea) of weights |xl| = 0, |£a| = 1, |pz| =0, |0a| = —1 (pi and 0, are
conjugates of ' and £ respectively). Then shifted again, T*[2] E[1] is a graded vector
bundle with coordinates(z?, £%, p;, 0,) of weights |z?| =0, |£*| =1, |p;| =2, |6.] = 1.
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Definition A.4. An NQ-manifold is an N-manifold endowed with an integrable
(homological) vector field @ of weight +1, that is, [¢, Q] = Q and [Q, Q] = 2Q? = 0.

By definition, for an NQ-manifold N, all polynomial functions on N form a
cochain complex under Q).

Analogously to the case of smooth manifolds, for a graded manifold M, there
is a de Rham differential dy; (of degree 1) on Q*(M) = Ty (S*(T*[1]M)), and the
Schouten bracket [-, -] (of degree -1) can be defined on I'y(S*(T[—1]M)).

Definition A.5. A graded Poisson manifold of degree m, (M, {-,-}) is a graded
manifold M together with a bracket of degree m on its structure sheaf Oy, satisfying,
for all homogeneous functions f, g, h € Oy,

{f) = ()Whmlemsi gy
{f,9hy = {f.gth+ (=1)1Fmll{f n}
{fa {ga h}} = {{fv g}a h} + (_1)(|f|+m)(\g\+m){g7 {f7 h}}

Or equivalently, a graded Poisson manifold of degree m is a graded manifold M
with a homogeneous Poisson bivector 1T € T'5;(S?*(T[—1]M)) of weight m, satisfying
[Hv H]M -

A graded pre-symplectic manifold (M, w) of degree m is a graded manifold with
a homogeneous dj;-closed 2-form w of weight m.

A graded symplectic manifold (M,w) of degree m is a graded pre-symplectic
manifold with the additional condition that w is non-degenerate. It is in particular a
graded Poisson manifold of degree —m.

When we consider a symplectic NQ-manifold (M, w), we have the additional
requirement that Low = 0.

A.2 Standard cohomology of Courant algebroid

In this section, we define standard cohomology of Courant algebroid in the language
of NQ manifold.
In [62], Roytenberg proved the following:

Theorem A.6. Symplectic NQ-manifolds of degree 2 are in 1-1 correspondence with
Courant algebroids.

Given a Courant algebroid £ — M, the corresponding symplectic NQ-manifold
of degree 2 is constructed as follows (see [62] for more details):
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As explained previously, T*[2] E[1] is a graded vector bundle with coordinates(z*, £, p;, 6,)
of weights |z'| = 0, |£*| =1, |pi| =2, |0 = 1. Actually it becomes a graded sym-
plectic manifold of degree 2 with symplectic form

w = dp;dx’ + d€*db,,

and it is a minimal symplectic realization of (E & E*)[1] (whose graded Poisson
structure is induced by the pseudo-metric on E). Denote by ¢ the isometric embedding

L

E[l] — (E& EY)[1]
1
e) & (e, ieb).
Then the required symplectic NQ-manifold is just the minimal symplectic realization
E of E[1] obtained by the pullback of T*[2]E[1] — (E & E*)[1] along ¢, i.e.

T*[2] E[1]

[
Ell

| —= (E @ E)[1].

A choice of local chart {z'} on M and a local basis {e,} of sections of F such that
Jap = (eq, ) ({£%} is the dual basis of {e,}, thus €’ = g,,£®) are constants gives rise
to an affine Darboux chart (z%,£% p;) on E: the embedding of E into T*[2]E[1] is

locally given by equations

1
0, = =g, b,
291)5

So the symplectic form of E is
) 1 a b
Q= dpzdl‘ + §d€ gabdg .

The Q-structure on E is determined by a cubic Hamiltonian H, in an affine Darboux
chart (z%,£% p;), H is of the form:

) 1
H = AZ(x)nga + éoabc(x)€a€b§c7
where A’ (z) = p(ey) - 2° and Cype(z) = (€4 0 €, €c).

By direct computation, {H, H} = 0 due to the properties of Courant algebroid
E. Furthermore, H satisfies the following properties:
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Theorem A.7. [02] With the notations above, we have
1). (eoe') ={{H, e}, e"},
2)- ple)- f ={{H.e}, f}.

Since ()’ is an isomorphism, the first equation above implies that the Dorfman
bracket is a derived bracket.

Denote by A™ the space of homogeneous super functions of degree n on E, the
following definition is given by Roytenberg [62]:

Definition A.8. With the above notations, (A°,Q = {H,-}) becomes a cochain
complex, called the standard cochain complex of E. The corresponding cohomology

is called the standard cohomology of the Courant algebroid E, and denoted by
H3(E).

As explained by Roytenberg [02], the standard cohomology H,(E) in lower
degrees have familiar structural interpretations:

“HY(E) is the space of smooth functions on M that are constant along the leaves
of the anchor foliation; it is equal to R for transitive Courant algebroids. HX(E) is
the space of sections of E acting trivially on E, modulo those of the form df for
some function f. Further, H2(FE) is the space of linear vector fields on E preserving
the Courant algebroid structure modulo those generated by sections of E as e o -.
H3,(E) is the space of infinitesimal deformations of the Courant algebroid structure,
modulo the trivial ones generated by I'(A) (A is the gauge Lie algebroid in the
Atiyah sequence of the pseudo-Euclidean vector bundle E), while HZ (E) houses the
obstructions to extending an infinitesimal deformation to a formal one.”

Example A.9. 1). When E = TM & T*M is the standard Courant algebroid, we
can take {%, cee aimdx -+ ,dx™} as a local basis of sections of E. Then the
cubic Hamiltonian H is quite s1mple:

n

H= sza:’

=1

2). When E is an exact Courant algebroid with Severa class H, we still take

{%, e £n ,dxt, -+ dx™} as a local basis of sections of E. The cubic Hamiltonian

is of the form:

H= szx—l—z Habc )Enehes,

a,b,c= 1

where Hope(7) = H (32, 52, 5 ), and {£} is the dual of {32

identify the sections of ¥ and E*, then we can identify £* with dz“.

}in T(E%), if we
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3). When FE is a regular Courant algebroid, take a standard dissection ¥ : F*&Gd
F — E. Suppose {dz!}1<1<m, {rati<a<; and {%}1§I§m are local bases of sections
of F*; G and F respectively ({ra} is a pseudo orthonormal basis of I'(G)). Their
images under the isomorphism map W, {¢/ := W(dz!), &4 1= U(ra), & = V(32)}
is a local basis of sections of E. Identifying the sections of F and E*, the dual basis
is {&7, €4, €1}, with ¢4 = £&4 (the sign equals (£4,€4) = (r4,74)g). By lemma
2.15, the coefficient Cyp.(x) in the cubic Hamiltonian H equals 0 as long as any of £“
or £ or £¢is in {&;}. Thus H is of the form:

H = Z p[ﬂf + Z C’abc gaé-bgc

abc

where the second sum is taken over all triples in {4} U {¢7}.
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