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We analyze the structure diagram for binary clusters of Lennard-Jones particles by means of a global
optimization approach for a large range of cluster sizes, compositions, and interaction energies and
present a publicly accessible database of 180 000 minimal energy structures (http://softmattertheory.
lu/clusters.html). We identify a variety of structures such as core-shell clusters, Janus clusters, and
clusters in which the minority species is located at the vertices of icosahedra. Such clusters can be
synthesized from nanoparticles in agglomeration experiments and used as building blocks in colloidal
molecules or crystals. We discuss the factors that determine the formation of clusters with specific
structures. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954938]

I. INTRODUCTION

Structured particles are small, regular arrangements of
two or more dissimilar components. Such particles have been
created, for example, by condensing the vapors of two metals
into binary clusters,1 which had diameters in the nanometer
range and uniform structures that minimized their energy.2

Colloidal particles can also be assembled into structured
clusters, so-called “supraparticles” that have diameters
between nanometers and micrometers. Recently developed
self-assembly protocols yield macroscopic quantities of
structured supraparticles that are interesting building blocks
for nano-structured materials.3,4 Core-shell or Janus particles
with anisotropic interactions and valences spontaneously
arrange into materials with defined microstructures5 or act
as surfactants.6,7 It is conceivable that such combinations lead
to interesting plasmonic and catalytic behavior, too.

In the case of colloids, the minimal energy configuration
is not necessarily always reached. Some assemblies are
kinetically trapped and their structures depend on the history
of supraparticle formation (this effect can be exploited to
tailor certain supraparticle structures8–11). However, there
are experimental protocols of colloidal assembly that are
dominated by energy minimization. For instance, gold
nanoparticles in suitably stabilized hexane droplets have
been shown to assemble into clusters with structures that
are strikingly similar to the global minima of Lennard-Jones
clusters.12 Similarly, iron oxide and silica colloids inside
droplets form large, regular nanoparticle clusters that optimize
free energy.13

So far, no structure diagram has been available to predict
which arrangement different particles will assume to mini-
mize their energy. Nanoparticles come with a large range
of different sizes and interactions, but existing diagrams are
limited to very small subsets. The aim of our work is to present
a large data base of minimal energy structures for clusters
composed of two particle species and to scan this structure
diagram in order to predict parameters for which the ground

state has symmetries that are interesting in the context of
colloidal molecules and crystals. It is known that the structure
of minimal energy clusters depends sensitively on the form of
the interaction potential.14,15 Colloidal agglomeration exper-
iments have been shown to produce clusters with minimal
energy Lennard-Jones structures.12 Thus a model where the
interactions between the nanoparticles are described by the
effective Lennard-Jones potential provides a useful reference
system for comparison with this type of experimental systems.
As the ground state is formed at room temperature we assume
that the interactions are strong in comparison to the thermal
energy and that the energy landscape is not too rough such
that the ground state can be reached (and the system does not
become glassy).

II. GLOBAL OPTIMIZATION

To find the global energetic minimum of a many-particle
system is a difficult mathematical problem. As the energy is
a function of a large number of continuous variables which
displays many local minima, optimization requires the use
of advanced numerical methods. To minimize energies of
heteroparticle systems is even more complicated due to the
large number of combinatorial arrangements. In addition, the
less similar the particles are, the more difficult is it to find
the global minimum as there are increasingly high energy
barriers in the potential energy landscape.16,17 However, the
total number of particles in the system remains the most
important factor determining the computational effort.

For systems made of just one component the problem has
been solved for up to hundreds of particles using unbiased
optimization algorithms. In contrast, for multicomponent
systems specificities of each system (e.g., the functional
form of the interaction potential and the number of
components) need to be taken into account when choosing the
optimization strategy. For the binary Lennard-Jones (BLJ)
system, compositional minima for clusters of up to 100
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particles with diameter ratios up to 1.3 and one fixed
choice of interaction parameters have been computed15,18

(“compositional” means that not only the particle positions
but also the identities of the particles were varied in order
to obtain minimal energies). Here, we present a scan of the
entire composition diagram, i.e., a minimal energy structure
for each possible choice of composition, for up to 200 particles
for multiple sets of interaction parameters. In total, we have
computed the global minima for 180 000 different energy
landscapes.

III. CLUSTERS OF PARTICLES WITH DISSIMILAR
ATTRACTIONS

We model the self-assembly of a mixture of two different
types of spherical particles (A and B) whose attractions differ
by a given ratio. Spheres of identical diameter interact via a
Lennard-Jones potential,

E = 4ϵαβ


i< j



(
σαβ

ri j

)12

−
(
σαβ

ri j

)6
,

where α and β label the particle species and we sum over all
pairs of particles to obtain the potential energy of a cluster.
In the following, we use ϵ AA as unit of energy and σAA

as unit of length. The free parameters are ϵBB, σBB, ϵ AB,
σAB, while N and NB determine the composition of a cluster.
Particles in the cluster are of the same diameter but have
different interaction strengths. We choose different ratios of
the interaction constants to describe material combinations
of different dissimilarities, ϵBB/ϵ AA = 0.90,0.50, and 0.01.
These values correspond to the ratios of dispersion interactions
of gold nanoparticles with those of less strongly interacting
materials like silver, copper, and polymers, respectively, across

FIG. 1. Examples of symmetric clusters that show little or no sensitivity to
changing the relative attraction strength ϵBB of species B particles. From
left to right: ϵBB = 0.01, 0.5, 0.9. From top to bottom: N = 33, 55, 147 and
NB = 20, 28, 12.

a hexane medium.19 The remaining parameter was calculated
as a geometric mean approximation, ϵ AB = (ϵ AAϵBB)1/2,
which is also known as the Berthelot combining rule, a
standard choice for describing dispersion interactions between
two dissimilar materials. To explore the effect of the combining
rule we additionally studied three different values for the
inter-species interaction strength at a fixed ϵBB.

Although we set the parameters to model specific
combinations of materials, the results we present are rather
general. We tested the stability of several structures against
variation of the interaction parameters and found them to be
stable over a relatively large range (see Fig. 1). Thus, e.g., a
mixture of metallic and polymeric nanoparticles, as they
are commonly used in experiments on colloidal suspensions,
would yield the same structures for many different choices of
metal.

IV. METHODS

Binary Lennard-Jones clusters have been used as a
benchmarking system for global optimization algorithms due
to the mathematical complexity they pose to state of the
art computational resources.20 For multicomponent systems
global optimization is especially challenging as it requires,
besides geometrical optimization of particle positions,
a permutational optimization of particle identities. A common
approach to geometrical optimization of clusters is the basin-
hopping algorithm which is a Monte Carlo based method
that produces an unbiased walk through a transformed
potential energy surface, where in a specified number of
Monte Carlo steps one hopes to reach the lowest minimum.
A transformation into basins of attractions computed by
a deterministic local optimization method is employed to
facilitate the search on top of a complex energy landscape.21

Such an algorithm performs well for single-component
clusters while for heterogeneous systems additional combi-
natorial local minimization steps are required to relax
cluster configurations with respect to particle types. In a
binary cluster the second part of the algorithm thus aims
to find the optimal permutational isomer among possibly
N!/(NA! + NB!) different homotops which differ only by
identities assigned to particles in a specific geometrical
arrangement. To find an optimal permutation we use another
deterministic scheme based on an iterated local search where
a sequence of identity swaps is performed until a termination
criterion is met. This is similar to a graph partitioning heuristic
of Kernighan and Lin with the difference that only swaps that
produce lower energy are accepted and the next swap is
determined by a sequence of approximated flip gains while
the iteration terminates if no swap producing a lower energy
is found.22 Every swap of particle identities is followed by
a geometrical local optimization which converges to special
points in the configuration space called biminima—the local
minima in both coordinate and permutation spaces.23 This
variant of the basin hopping algorithm is therefore exploring
a sampling domain that is reduced further and consequently
outperforms the basic basin-hopping algorithm for binary
clusters. We used the implementation of these algorithms
given in the GMIN program24 (see the Appendix for details).
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V. STRUCTURE DIAGRAM

We analyzed the structure diagram as a function of the
cluster size and composition, i.e., of the number of all particles
N and the number of B particles NB. In contrast to the work
of Doye15 we are not interested in the compositional global
minima, but in the lowest minima at given compositions.
With this we determine the structural behavior that is to be
expected for mixtures of spheres with dissimilar attractions
in, e.g., confined agglomeration experiments with ligand
coated bimetallic nanoparticles where the composition in
an individual emulsion droplet is fixed.12

In Figures 2–4 we present diagrams of several measures
that characterize the structure of the clusters for two different
material dissimilarities. Data for ϵBB = 0.90 and ϵ AB = 0.95
are shown in the lower triangle and ϵBB = 0.01 and
ϵ AB = 0.10 in the upper triangle. Every speck corresponds to
one energy minimum. For all cluster sizes N and compositions
NB we find a core-shell separated structure with B particles
on the outside. This is expected as the A particles attract
each other more strongly than the B particles. Clusters with
rotational symmetries can thus only occur for large number
ratios between A and B particles, where the A particles form
a core that is covered by a suitable, smaller number of less
strongly bound B particles distributed to optimize the mutual
energetic interactions. Diagrams for additional measures and
parameter choices are presented in the supplemental material25

where we also show results for varying mixing attractions
of different particle species. A database containing more
than 180 000 minimal energy configurations of the resulting

FIG. 2. Distance of the innermost particle from the center of the cluster
as a function of cluster composition and size for two different material
combinations with dark regions indicating geometric magic cluster sizes. The
vertical lines in the lower diagram show that the arrangements close to the
complete Mackay icosahedra are not sensitive to composition as opposed to
clusters of particles with less similar attractions in the upper diagram, where
the diagonal lines indicate a strong dependence on the number of more tightly
bound particles.

FIG. 3. Classification of clusters with different sizes and compositions ac-
cording to the bond order parameters q4, q6, w4, and w6 averaged over all the
particles in the cluster for two different material combinations.

clusters can be visualized and downloaded using our web
application.26

Figure 2 shows the minimal distances from the center
of the cluster, dmin = min ∥ri − rc∥. At certain numbers, there
are clusters with one particle in the center (dark spots), a
feature that is characteristic for Mackay icosahedra. We can

FIG. 4. Magnitude of the cluster dipole moment normalized to the number
of particles as a function of cluster composition and size for two different
material combinations. When computing the dipole moment we assigned
charge +1 to particles of type A and charge −1 to particles of type B.
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clearly see this feature around the geometric magic sizes
13, 55, and 147 where complete icosahedra are formed. For
large ϵBB the Mackay structure is nearly independent of
composition (vertical dark stripes), whereas for small ϵBB

it is stable for constant NA (diagonal dark stripes). Varying
the composition in clusters of particles with more similar
energetic contributions disturbs the clusters’ structures much
less significantly than changing the ratio of particles with
small energetic contributions where the number of strongly
bound particles alone determines the structure. In addition,
there are some other isolated regions in the structure diagram
with a central particle. Here, typically an ideal icosahedral
core is covered with a shell of particles of the other species.
These structures are particularly interesting as they offer
symmetric structures with specific valences where particles
with smaller energetic contributions are, e.g., in the vertices
of icosahedron where the number of nearest neighbors is
smaller (see example snapshots in Fig. 5). The particles on the
corners could be functionalized to produce building blocks of
colloidal molecules as desired in the equilibrium self-assembly
of complex structures.27

We analyze the crystalline structure in terms of Steinhardt
bond-orientational order parameters q4 and q6.28 By comparing
values averaged over all particles in the cluster to the values
obtained for several known crystals and complete icosahedra
we classify clusters according to the closest match and observe
that icosahedral features largely prevail29 (which is also
confirmed by visually inspecting the resulting clusters). An
interesting feature is the vertical stripes in the lower triangle
of Fig. 3 which imply structural features that are independent
of composition, i.e., close packing in space is more important
than the optimization of energetic bonds. Diagonal lines in the
upper triangle mark the structural independence of clusters
with the same number of A type particles whose energetic
contributions are significantly larger and therefore determine
the cluster geometry.

To quantify the polarity in the distribution of particle
species in the clusters we calculate their dipole moments by
assigning a charge +1 to particles of type A and a charge −1
to particles of type B (Figure 4) (note that this is purely a
measure to quantify the spatial separation, we do not assume
that there are electric charges). If the Berthelot rule is applied

FIG. 5. Three examples of orientationally symmetric minimal energy clus-
ters of Lennard-Jones particles with the same diameter and with attraction
ratio ϵBB = 0.50ϵAA in which contributions of energetic bonds and dense
finite size packing are optimized. Left: The ideal icosahedron of A particles in
the core is surrounded by 20 B particles at the centers of its triangular surfaces
in the minimal energy solution for N = 33 and NB = 20. Middle: The ideal
icosahedron with valency 12 is a minimal energy solution for N = 55 and
NB = 12. Right: Minimal energy solution for N = 115 and NB = 60 where B
nanoparticles are arranged in 20 triangles lying on top of triangular faces of
the central Mackay icosahedron.

to the binary Lennard-Jones interaction, it favors mixing
of different particle types more than the aggregation of the
less attractive particles, nevertheless the smaller number of
neighbors on the surface of the clusters does contribute and
thus the clusters demix into a core of tightly bound particles
and a shell with symmetric arrangements of weakly bound
particles. Due to this core-shell structure we do not observe
large values of dipole moments. However, there are also
certain regions with larger dipole moments which correspond
to Janus-like phase separation of the particles on the shell of
the clusters (see, e.g., Fig. 1 middle row right column). This is
typical for clusters based on complete icosahedra where either
a number of B type particles that is larger than the number
of vertices constitutes the outer shell of the icosahedron or
where a complete icosahedron in the core is covered with less
attractive particles that arrange on one side of the surface.
Janus clusters with much larger dipole moments that are
internally phase separated are observed for mixtures of two
dissimilar and less compatible particle types as presented
in the supplemental material.25 Such a model describes the
case of disfavored mixing, for example, when two less cross
compatible ligands are attached to different nanoparticle types.

For the cluster made of 55 particles in Fig. 1 we also
observe the transition from an isotropic to anisotropic core-
shell structure with increasing ϵBB. At low ϵBB negligible
energetic contributions from weakly bound B type particles
do not manage to disturb the structure of the strongly bound
particles in the core and thus they get isotropically distributed
on the shell to maximize the number of energetically more
favorable A-B contacts. At high ϵBB both particle types form
a complete icosahedron together and due to the number of
B type particles being larger than the number of vertices on the

FIG. 6. Distance of the innermost particle from the center of the cluster
as a function of cluster composition and size for two different material
combinations with ϵ = 0.10 and ϵ = 0.50.
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surface of the icosahedra they get anisotropically distributed
allowing for more A-A contacts on the surface of the cluster.

The structures of most symmetric clusters are not affected
by the relative attraction strength over a large range of values of
ϵBB (see, e.g., Fig. 1). This indicates a very high stability of the
icosahedral structural motifs for binary mixtures of particles
with almost arbitrarily dissimilar dispersion attractions. We
can further explore this in Fig. 6 where the innermost particle
distances are shown for two material combinations with more
moderate values of attraction parameters. In comparison to
the previously analyzed parameters (Fig. 2) we see that the
general features are only slightly distorted. In the lower
diagram for ϵ = 0.50 we also see that new regions with magic
compositions2 appeared. They contain the structures presented
in Fig. 5 where a complete Mackay icosahedron in the core is
covered by a symmetric shell of less attractive particles.

VI. CONCLUSIONS

In summary, we have computed the minimal energy
configurations of binary Lennard-Jones clusters of up to 200
particles. The simple and generic pair interaction model of
binary mixtures combines the repulsion of monodisperse cores
with short range attractions of three different magnitudes. The
interaction parameters were set to mimic a combination of
gold, silver, and polymeric nanoparticles in hexane, but the
main results hold more generally for mixtures of particles with
different van der Waals interactions and even metal vapors.

We analyzed several quantities that characterize the struc-
ture of the clusters and discussed the factors that determine
the interplay between the packing of the spherical particles
and the optimization of the number of energetically favorable
neighbors in the clusters. By global optimization we predict
structures that could be observed in experiments, in particular,
we predict which compositions lead to core-shell clusters,
Janus clusters, and clusters with specific valences. The latter
are based on icosahedral symmetry where the minority species
is located at the vertices or on the planes. If functionalized
suitably, these clusters could be promising building blocks for
colloidal molecules and crystals. All clusters can be visualized
at http://softmattertheory.lu/clusters.html.
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APPENDIX: MINIMIZATION ALGORITHM

To minimize the energy of clusters we use a basin
hopping global minimization algorithm with positional and
combinatorial local optimization implemented in GMIN
program.21–24 We use basin-hopping Monte Carlo runs of
3 · 105 steps while the temperature is kept fixed at T = 0.1.
In the Monte Carlo moves we limited the maximum change

of any Cartesian coordinate and imposed a tolerance on the
binding energy of individual atoms below which an angular
step is taken for that atom. We reseed runs if the energy
does not decrease within a certain number of steps. The
local optimizations or quenches in the coordinate space are
done with the limited-memory BFGS algorithm where the
maximum number of iterations allowed is 2 · 103 for the sloppy
quenches of the basin-hopping run and 2 · 106 to the final
quenches that are used to produce the output. The convergence
criterion for the RMS force in the basin-hopping quenches
was set to 5 · 10−4. Quench minima are only considered to be
different if their energies differ by at least 10−5. The tolerance
for the RMS force in the final set of quenches that are used
to produce the output for file lowest is 10−7. We calculate the
energy of the binary Lennard-Jones clusters without using a
distance cutoff. The system is translated so that the centre-
of-mass lies at the origin after every quench. We use the
container that prevents particles evaporating during quenches.
Algorithm also performs homotop refinement for a binary
system using an iterated local search (ILS). The refinement
happens every basin-hopping step, after the coordinates have
been perturbed and quenched. It involves exchanging the
coordinates of two unlike atoms until a termination condition
is met.
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