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We present a Monte Carlo simulation study of helical Yukawa rods as a model for chiral liquid crystal
mesogens. To simulate the cholesteric phase, we introduce a new simulation method that uses soft walls
and self-determined boundary conditions. We observe that the isotropic-nematic phase transition is
shifted to lower volume fractions with decreasing salt concentration as well as with increasing internal
pitch of the rods. For particular sets of interaction parameters, the sense of the cholesteric pitch inverts,
i.e., depending on concentration, mesogens of a given handedness can produce cholesteric phases of
both chiral senses. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967718]

I. INTRODUCTION

Liquid crystals that consist of chiral mesogens show
a rich phase behaviour. In addition to the orientationally
disordered isotropic phase and the nematic and smectic
phases, in which the mesogens are aligned along a direc-
tor, they form cholesteric phases, in which the nematic
director rotates around the cholesteric axis.! The pitch of
this rotation determines the optical properties of the lig-
uid crystal, e.g., the wavelength of reflected or transmitted
light>? This property is the basis for numerous applica-
tions on the market as well as for ideas of future appli-
cations that involve chiral liquid crystals, as e.g., sensors
which change colour if the pitch reflects a change of the
chemical environment, the humidity, or the strain on a
material.*-©

Thermotropic chiral liquid crystals can be made from syn-
thesized molecules. A few out of many examples are chiral
biphenyls,” bis-(binaphtylenedioxy)silane,” ester derivatives
of hydroxypropylcellulose,® P6-M,” or copolymers consisting
of y-benzyl glutamate and y-alkyl glutamate.'” But also nat-
ural chiral mesogens can be found, e.g., DNA, fd virus, and
cellulose nanocrystals (CNC).!!='* Currently, effort is put into
research on CNC, since they are available in large amounts,
renewable, and biodegradable. The aim is to eventually use
CNC in technological applications, but first one needs to con-
trol the properties of the resulting liquid crystal structures. In
this paper, we address this issue by means of Monte Carlo sim-
ulations of a model for CNC. We show results for parameters
that are realistic for experimental studies on CNC, but we do
not restrict our work to these parameter values. In the litera-
ture, different models of chiral mesogens are described (with
varying degrees of chemical detail), which show a cholesteric
phase under certain conditions. Studies of these are based on
density functional theories'>23 or simulations.?*~>° The model
we have used is a hard spherocylinder around which a set of
discrete point charges are wrapped in a helical arrangement.
This model is similar to the one in Ref. 17 and almost the same
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as in Ref. 29, where the hard spherocylinder is made of fused
spheres with a WCA potential, to make it applicable to molec-
ular dynamics simulations. Our study is delimited from these
studies by the range of parameters that we have addressed.

Although we aim to compare results to cellulose nanocrys-
tal suspensions, the model is also relevant to other chiral
colloids, e.g., chitin nanofibrils with their electrostatic charge
coat,’13? rod-like particles from phytosterols that have chiral
distribution of surface charge originating in chiral distribution
of phytosterol and water molecules,* and fd viruses, where a
polyelectrolyte (single stranded DNA) is coated by proteins in
a helicoidal way.'?

To equilibrate a cholesteric phase in a finite simulation
volume is not straightforward, since the pitch needs to be
commensurate with the dimensions of the simulation box, if
standard periodic boundaries are used. To tackle this prob-
lem, we introduce a new method combining soft walls and
self-determined boundary conditions.

Il. MODEL AND SIMULATION

Each chiral molecule is modeled as a hard spherocylinder
of length L and diameter D (called rod from here on) that has
a helical distribution of nP° point charges on its surface. The
unit of length is the diameter D. Fig. 1 sketches this model for
different internal pitches p'™ (length of one full turn of the
charge helix).

Each pair of point charges on different rods interacts by a
Yukawa potential,

Uy(r) = kBTzzﬁB%r_”], )

where r is the distance between the point charges, Z the
strength of the charges, Ap the Bjerrum length, « the Debye
screening constant, kg Boltzmann’s constant, and 7 the
temperature. Az and « are defined as

Ap = &% /(4nepe kgT), 2)

K= \/471/13(Zp +2¢y), 3)
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FIG. 1. Sketch of the simulation model with length L, diameter D, and differ-
ent internal pitches (left p™ = L, middle p™ = 2L, right p™ = 4L), with the
number of point charges nP° = 9. Reprinted with permission from Honorato-
Rios et al., Front. Mater. 3, 21 (2016). Copyright 2016 Author(s), licensed
under a Creative Commons Attribution 4.0 License.

with the number density of rods p and the added salt concen-
tration c,. Z is either the charge strength Z or the total charge
Z* =nP°Z (note: the terms total and surface charge are used
interchangeably). Using the former, one can change nP® with-
out changing the interaction potential between the charges. In
this way one can study the direct effect of changing the number
of discrete point charges. However, the latter is more realistic,
since the screening length depends on the number of counte-
rions, which is proportional to the total charge on the rod, and
therefore changes with the number of point charges.

We use Metropolis Monte Carlo in the NVT ensemble
for all simulations. Periodic boundary conditions are either
used in all three dimensions or restricted to two dimensions
for the simulations of the cholesteric phase. Details of the
treatment of the third dimension are described below. Start-
ing configurations are prepared in the nematic phase and
then released to form the different phases during equilibra-
tion runs. We apply single particle translations, axis rota-
tions, and azimuthal rotations, where step sizes are adjusted
to have acceptance rates of 0.5. The minimum length of all
production runs is 10° Monte Carlo steps; usually 3 - 10°
steps are analyzed to be sure that equilibration was suffi-
cient and more steps are necessary for strongly fluctuating
systems.

lll. BOUNDARIES FOR CHOLESTERIC PHASE

In order to find equilibrium cholesteric pitches that do not
match the box dimension, we treat the rods close to the bound-
aries in z-direction (the cholesteric axis) with a new method.
The main idea of this method is to introduce soft walls that do
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not allow the rods to pass, but that do allow them to interact
with periodic images of rods at the other end of the box.

In computer simulations, one often uses a small sys-
tem with periodic boundaries to mimic a bulk system. This
approach cannot be directly extended to the cholesteric phase.
The most obvious strategy one might attempt to apply would
be (1) to cut the box into thin slices perpendicular to the
cholesteric axis (here the z-axis), (2) to rotate the slices with
respect to each other, (3) to add periodic images to each slice
in the (xy)-plane, and (4) to rotate the two outermost slices
to match up when periodic images are needed in the z direc-
tion. This straightforward strategy does not produce a simple
continuation of the box into its periodic images. Interactions
across the “corners” of the slices, where periodic images in the
(xy)-plane interact along z, are not taken into account correctly.

In the literature, several attempts to solve the boundary
problem by means of hard walls have been reported.?®** In
these studies, standard periodic images were used in two direc-
tions, while in the third direction particles could neither cross
the boundaries nor interact across them. Hard walls locally
induce positional and orientational order,’* i.e., the order
parameter in the nematic phase depends on the distance from
the walls. (The nematic order parameter S, is defined as the
largest eigenvalue of Q;; = + ¥N_ 3 (uﬁ,u’a - 6ij), where 1!,
is the i-th component of the unit vector along the axis of parti-
cle @ and N is the number of rods either in the total system or
in a given subsystem as, e.g., a layer close to the wall.’®) Since
the cholesteric pitch depends on the nematic order parameter
and on the density, one does not find the bulk equilibrium pitch
close to a hard wall. Therefore, if hard walls are used, the box
needs to be sufficiently large to allow for relaxation to the bulk
behaviour in the center.

A method to calculate the equilibrium cholesteric pitch
without using any walls is given in Ref. 25. There the whole
periodic image of the simulation box is rotated by an integer
(np, including 0) multiple of 7/2 (twisted periodic boundary
conditions??), forcing the pitch to be 4L,/ np,. Since this pitch
is, in general, not the equilibrium one, one can measure the
free energy or intermolecular torques for different values of
n, and relate their difference, via quadratic or linear forms,
respectively, to the equilibrium pitch, as described in Ref. 25.
This method is used in Ref. 29, where a model that is very
similar to ours is used.

Here we propose to use soft walls that allow a rotation of
the rods into the wall and thus reduce the difference in orienta-
tional order across the simulation box. In this way, equilibrium
pitches can be reached in much smaller boxes than in the case
of hard walls. The degree of rotation of the rods into the walls
is limited by a second, hard wall at a distance +f % from the
soft wall (see Fig. 2 left panel). The parameter f sets the degree
of softness; for f = 0 the walls are hard with respect to rod
positions and orientations, while for f = 1 the rods are allowed
to freely rotate into the wall, but not to move their centres
past it.

The parameter f is adapted iteratively in response to the
difference between the average order parameter in the box Sy
and the order parameter close to the walls Sy,

F(S@), 1) = (S = Sav)/m, )
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- twist by @
around z-axis

FIG. 2. Sketch of the new method: Center of mass cannot cross the wall;
rotation into wall up to f L/2 allowed; twist of periodic image by ¥ for the
interaction across the wall.

F) = Y FS@, ), 5)
k=0

F(t) =0,

where S,y is averaged over the order parameter S(z) in
slices that are stacked in z-direction, n is the number of
times the softness is adapted, and f; is the current simu-
lation step.*®* We use a z-dependent order parameter (the
order parameter calculated for slices in z-direction) instead
of the bulk order parameter, because the bulk value in an
infinite cholesteric phase is 0.25 while it is 1 in the nematic
phase as well as in a thin, perfectly nematic slice cut from
a cholesteric phase. Thus to compare the order in the box to
the order in a slice close to the wall, S,,, needs to be aver-
aged over slices rather than over all rods in the system at
once.*

The second ingredient of the new method is the inter-
action across the soft walls. The reader might ask, why at
all one should calculate cross-boundary interactions in this
confined system? The answer lies in the necessity of hav-
ing a repulsive wall potential: If there was no (or even an
attractive) wall potential, the rods close to the wall would
behave very different from rods in bulk. They would min-
imize their energy by rotating the majority of the surface
charges away from the center of the box. Instead of choos-
ing an analytical repulsive potential, as used, e.g., in Ref.
40, we want to mimic the bulk by using the repulsive inter-
action given by the system itself. This is done by calcu-
lating cross-boundary interactions. If we used the simple
periodic image of a rod to calculate the interaction with
another rod behind the wall, we would stabilize either the
nematic phase or cholesteric phases with pitches P = 2L, /n,,
where n, is an integer (1, =0 is the nematic phase). To
be able to find pitches independent of the box length, the
rods’ periodic images are rotated by an angle ¥, giving a
pitch of 2L, /¥, and the equilibrium value of W is found via
an additional Monte Carlo move that attempts to change ¥
during the simulation. With this we stabilize the cholesteric
phase by implying a continuous rotation. This method of
rotating periodic images, known as self-determined boundary
conditions,*'*? was used before only for lattice models. In sys-
tems with a repulsive (hard or soft) contribution, sufficiently
large lattice spacing is needed, to be able to rotate all periodic
images at once without creating overlaps, and so to be able
to draw the periodic image of the whole simulation box. In
addition only nearest neighbor interactions were considered
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and the interaction only depended on the relative orientation
of the particles. In the continuum model, we only rotate one
rod at a time to avoid overlaps. (This is possible since the
potential is a pair potential.) Thus we cannot draw an image
of the whole simulation box. The system is not periodic in
the common sense—but each particle “sees” a well defined
rotated periodic image of the box, which is used to calculate
the particle’s energy. In practice, this means whenever one
needs to calculate a particle k’s energy (after every single par-
ticle move and after the additional MC move that changes V),
the interaction with particles in the original box is calculated
as usual and the interaction with periodic images is calcu-
lated with k being rotated by W (but at fixed position). For the
additional move to change ¥, which is attempted after N sin-
gle particle moves on average, with a step size J adjusted to
have an acceptance rate of 0.5, each particle’s energy needs
to be recalculated in this way with the new ¥ to find the
new system energy. The acceptance criterion is the usual
Metropolis expression using the calculated new and old system
energy.

Note that the interactions between periodic images in the
z-direction are now not symmetric under exchange of the parti-
cles anymore, which was the case in lattice models with nearest
neighbor interaction, where the positions are fixed, i.e., the
potential between the particle i and the periodic image of par-
ticle j is not the same as the potential between the particle j
and the periodic image of particle i. Thus the Hamiltonian of
a finite system with boundary conditions is not the same as of
the bulk system. Clearly, this kind of interaction is unphysical.
Howeyver, the effects on observables scale as the ratio of vol-
ume of a boundary layer to the system volume, as we show in
the Appendix.

The soft wall method is an improvement over the hard wall
method, but still the presence of walls and the finite system
size introduce boundary effects, which are discussed in the
Appendix.

IV. RESULTS
A. Isotropic-nematic transition

In order to obtain a rough overview over the phase
diagram, we first study the nematic order parameter S,
in dependence on the volume fraction of rods, n = Nx
(LD2 /4 + D3/6) /V, the internal pitch, the aspect ratio, the
surface charge, and the salt concentration for systems with
the usual periodic boundary conditions. As a consequence of
these boundaries, the system is restricted to form phases with-
out twist, which may not be the equilibrium phases. If we
assume the cholesteric pitch to be much larger than the box
length, the nematic phase, however, is a good approximation
of the cholesteric phase.

Fig. 3 shows the nematic order parameter at the isotropic-
nematic (IN) transition of aspect ratio L/D = 10 rods for dif-
ferent values of the internal pitch p™ between L/2 and oo;
multiple data points at the same concentration are results from
independent runs. For decreasing internal pitch, the IN tran-
sition shifts to higher volume fraction, because the stronger
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FIG. 3. Nematic order parameter vs. volume fraction for varying internal
pitches p™. (N = 1800, L = 10D, n”* =9, Z = 10, ¢5 = 1D73). Also shown
is the hard spherocylinder case (HSC).

twist of the charge helix induces a rotation of neighbour-
ing rods against each other and thus reduces the local ori-
entational order. The limiting case of infinite internal pitch
stabilizes the nematic phase (as compared to the hard sphero-
cylinder case), since the charges lie on a straight line and par-
allel alignment is favored. The screening length only depends
on the volume fraction and ranges from «~'=0.585D to
0.594D. The effective shape of the rod is therefore that of
a hard spherocylinder with an overlapping soft spherocylin-
der of diameter 1.18D whose axis lies on the surface of the
hard cylinder. The other limiting case is a vanishing inter-
nal pitch, which would result in a soft spherocylinder with
diameter 2.18D and the hard spherocylinder as its core. This
would give a decreased effective aspect ratio and therefore
shift the IN transition to higher volume fractions compared
to the hard spherocylinder case. The difference between an
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1 nP°=5; z=18; p'™=40D nP°= 9; z=10; p"™=10D
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n

FIG. 4. Nematic order parameter vs. volume fraction for varying numbers of
point charges nP® and strength Z (N = 1800, L = 10D, ¢; = 1D73).
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infinite internal pitch and an internal pitch of 4L is almost
negligible.

With increasing total charge (nP°Z) from 50 to 90, the
nematic order increases and the IN transition shifts to a lower
volume fraction (see Fig. 4, p'™ = 40D). This shift also depends
on the distribution of the total charge on the point charges:
With 5 point charges of Z =18 (k™! =0.56D), the nematic
order is less than with 9 point charges of Z = 10 (x~! =0.59D).
This difference becomes smaller with increasing number of
point charges, as can be seen in Fig. 4 ("™ = 10D) where the
total charge decreases from 170 to 90 and 85 with decreasing
nematic order, while the results for 17 point charges holding
Z =5 (k' =0.61D) and 9 point charges holding Z = 10 are
almost equal.

Fig. 5 shows the nematic order parameter in depen-
dence on the added salt concentration for rods of length
L =10D, for different internal pitches and two different sur-
face charges. With higher salt concentration, the orientational
order decreases and the isotropic-nematic (IN) transition there-
fore shifts to higher rod concentration in accordance with the
experimental results given in Ref. 43. The salt concentration
changes the screening length of the Yukawa potential; a higher
salt concentration leads to a shorter screening length, so the
rods have to get closer (higher volume fraction) before they
get aligned.

The limiting case of infinite salt concentration leads to
zero screening length and thus reduces the system back to
the hard spherocylinder case. For the particle volume fraction
of 0.245, this means that the isotropic phase is reached for
high ¢, independent of the internal pitch and surface charge.
(We chose to show the results for n =0.245, because dif-
ferent combinations of Z°, pi“‘, and c¢; allow us to change
the phase from nematic to isotropic at this density.) Increas-
ing surface charge shifts the IN transition to lower rod con-
centration in contradiction to the experimental results;* the
reason for this is discussed in Ref. 43. It is based on a non-
monotonicity in the nematic order as a function of the total
surface charge. The internal pitch dependence is the same as

081 X
a % ® =
o6 2 , % X %
a
04} % §
N
2 o2} 3
ol # & " s
0.2
Z°=300; p™=40D 7°=90; p"=40D
04} x 7°=300; p™=20D 4 7°=90; p™=20D
x 7°=300; p™=10D 4 7°=90; p™=10D
0 1 2 3 4 5
cg/ D3

FIG. 5. Nematic order parameter vs. added salt concentration (L = 10D, nP¢
=9, different internal pitches p'™, and two different surface charges Z*) at a
rod volume fraction of 24.5%.
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discussed above—increased pitch leads to increased nematic
order.

B. Cholesteric pitches

Next we apply the new method to compute equilibrium
cholesteric pitches for different parameter values. The pitches
are determined in two ways: On one hand, the MC move
that changes the angle ¥ relaxes the system into the equi-
librium value P = 2nL, /%4, and on the other hand, a linear
fit to the z-dependence of the angle of the nematic director
with respect to an arbitrary direction, ¢4, gives P = 2n/a,
where a is the slope of the fit. In Fig. 6 we plotted the values
obtained by both methods for direct comparison. The error-
bars for the pitch from cross boundary rotation are determined
from the standard deviation of ¥ during the production run.
The errorbars for the pitch from linear fits to ¢, are deter-
mined from the uncertainties of the slope a given by the fitting
routine.

Fig. 6 shows the pitch as a function of rod concentration
(for L = 20D). The pitch first fluctuates around P = — 200D,

1000

800 % g
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FIG. 6. Cholesteric pitch vs. volume fraction (top) and the nematic order
parameter (bottom). Crosses show results from linear fits of ¢»; and boxes from
cross boundary rotation Weq, as explained in the text. (L = 20D, nP¢ = 33,
Z =10, ¢y = 1D73, pint = 10D).
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but then increases for higher concentrations and even shows
sense inversion. Thus a particle of a given helical sense can pro-
duce cholesteric phases of both helical senses, depending on
the concentration. In experiments, one mostly finds decreasing
pitch in the low density regime.*? The higher density regime is
often not accessible in experiments because of kinetic arrest.
This problem does not occur in the simulations: First, our ini-
tial configurations are in the nematic phase, where the rods are
already aligned and do not cage each other. Second, our sys-
tems are not large enough to build cholesteric domains with
different orientations, which could prohibit reorientation on
a large scale. But we need to remark that for volume frac-
tions above = 0.14, boundary effects are present, so that
the cholesteric pitch is not constant throughout the box, cf. the
Appendix, which, however, does not alter the sense inversion
behaviour.

Similar results were obtained for the systems of hard
helices that showed that pitch inversion is largely driven
by entropy.”’>?*> In addition, the sense inversion has been
conjectured theoretically.** Wensink showed that the angle-
averaged chiral potential between two rods shows local
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FIG. 7. Cholesteric pitch vs. volume fraction (top) and the nematic order
parameter (bottom) (L = 10D, nP¢ = 17, Z as indicated, ¢, = 1D73,
p"t =10D).
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FIG. 8. Cholesteric pitch vs. volume fraction (top) and the nematic order
parameter (bottom) (N = 1734, L = 20D, nP¢ = 17, Z* = 690, different
Bjerrum lengths Ap and internal pitch p™ = 20D).

minima at small twist angles, which for certain values of
the internal pitch have the opposite sign of the angle at the
global minimum. These minima in energy are only local, but
can be stabilized entropically, as is shown by our simula-
tion results as well as results of a recent, similar study in
Ref. 29.

We also find the sense inversion for shorter rods with
different charge strengths, as shown in Fig. 7, where the
inversion happens at lower volume fraction for the larger
charges. After the sense inversion, the cholesteric pitch
decreases clearly with increasing volume fraction and order
parameter.

With decreasing Bjerrum length, the cholesteric pitch
at a low concentration increases, as shown in Fig. 8. For
higher concentrations the pitch fluctuates around P = —200D
independent of Ap (not shown). Since the Bjerrum length
contributes to both, the amplitude of the interaction poten-
tial and the screening length, this monotonic behaviour is
not expected to hold for all values of Az. An example for
contradicting behaviour is found in the experimental results
in Ref. 45, where a decreasing Bjerrum length models an
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increasing relative permittivity and that lowers the cholesteric
pitch.

V. CONCLUSION

In this paper, we addressed two aspects of a system
of helical Yukawa rods as a model for chiral liquid crys-
tals: First, we presented the dependence of the location of
the isotropic-nematic transition on the internal pitch and the
concentration of added salt. Nematic order is enhanced as
the pitch is increased or the salt concentration is decreased.
In the second part, we introduced a new method to simu-
late cholesteric phases using soft walls and self-determined
boundary conditions. Using this method, we found sense
inversion of the cholesteric pitch, which confirms analytical
predictions.**
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APPENDIX: ERROR ESTIMATION
1. Isotropic-nematic transition

To check for finite size effects, the system size was dou-
bled from N = 1800 to N = 3600. The result is shown in Fig. 9.
There is only one point for which the nematic order parame-
ter differs significantly (p'™ = 40D at the transition). Thus we
use the smaller system size but keep in mind that there might
be small changes for larger systems that should be studied in
detail in the future.
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FIG. 9. Nematic order parameter vs. volume fraction for varying internal

pitches p™™ and for two different system sizes, N = 1800 and 3600 (L = 10D,
nP=9,7=10,c, = 1D73).
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FIG. 10. Nematic order parameter vs. for varying internal pitches p™

(N = 1800, L = 20D, n’® = 17,Z = 10, ¢s = 1D73).

The same pitch dependence as in Fig. 9 is seen for longer
rods of length L = 20D, cf. Fig. 10.

Especially for long internal pitches, the charges are con-
centrated on one side of the rod, which is not a realistic
model for CNC. Therefore we investigated the behaviour of
a double charge helix compared to the single helix that we
use for most simulations. As can be seen in Fig. 11, the
nematic order is increased, when two helices are present,
but the IN transition itself is not changed. The surface
charge and volume fraction range are taken from experimen-
tal results in Ref. 47, and with both, single and double helix,
the IN transition is at the same volume fraction as found
there. We conclude that it is sufficient to work with a sin-
gle helix, since the calculations are much faster and there
are only small deviations from the behaviour of a double
helix.
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FIG. 11. Nematic order parameter vs. volume fraction for single and dou-
ble charge helix (N =1800, L=25D, nP° =21, Z* =750, c; =0D73, pi"t
=40D).

RIGHTS L

FIG. 12. Nematic order parameter vs. volume fraction for varying Bjerrum
lengths Ag (L = 20D, nP® = 17, Z° = 690, p'™ = 20D, ¢; = 0D73).

2. Boundary effects

The most obvious effect of the new method is to change
the volume accessible to the ends of the rods. The volume
fraction of rods can now refer either to the hard volume for
the centers of mass of the rods or to the soft volume for the
ends of the rods; the latter is calculated as Vs = V + Lf Ly Ly,
where V = L, L, L. is the hard volume. We use the soft vol-
ume for the graphs shown here; using the hard volume would
slightly shift the transition (in a non-linear way) to higher vol-
ume fractions. The small additional volume does not lead to
qualitative changes in the behaviour of the system. As one
example, Fig. 12 shows the isotropic-cholesteric (IC) transi-
tion for different Bjerrum lengths. With decreasing Bjerrum
length, the nematic order increases. This result is similar to the
experimental results in Ref. 45, where we already compared

60
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FIG. 13. Angle of the nematic director vs. position on the chiral axis for two

representative examples of Fig. 6. The lower volume fraction example shows

a perfect linear director rotation, while for the higher volume fraction, clear

boundary effects are found, where the cholesteric pitch is smaller close to the
walls.
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simulation and experimental results, but used the common
periodic boundaries.

Although the walls are soft and allow for the rotation of
rods, their influence is not completely removed. At high den-
sities or strong interactions, we still find layering close to the
walls, leading to different pitches at the center of the box than
in the vicinity of the walls. This is an obvious effect and we
can assign the relevant regions in the phase diagram. In most
other cases, we find constant rotation of the nematic director
throughout the box, see Fig. 13.

To estimate the errors produced by the unphysical inter-
action across the boundary (which is not invariant under the
exchange of particle and periodic image, as explained in the
main text), we compute the free energy difference between
the center of the box and the vicinity of the walls. We attempt
to swap a particle from the center with another particle some-
where in the box. Swapping includes exchanging the particles’
positions and rotating their orientations according to their dis-
tance along the cholesteric axis and the equilibrium pitch value
Weq found in the simulation. We observe that the acceptance
rate of the swap moves is higher for swapping a center and a
wall particle than for swapping two center particles. The result-
ing free energy difference per particle (logarithm of the ratio
of acceptance rates) is AF = 0.5 kgT'. This quantity decreases
with the distance from the wall, and for a distance of 2D, it is
already reduced to AF =~ 0.02 kgT. Thus the range of bound-
ary effects in the smallest box used for Fig. 6 is 9.3% of the
whole box length.
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