Lunch seminar
 The discrete Pompeiu problem on the plain 2016.12.07.

joint work with M. Laczkovich and Cs. Vincze

Dimitrie Pompeiu (1873-1954) was a Romanian mathematician. As one of the students of Henri Poincaré he obtained a Ph.D. degree in mathematics in 1905 at the Université de Paris (Sorbonne).

His contributions were mainly connected to the fields of mathematical analysis, especially the theory of complex functions. In one of his article ${ }^{1}$ he posed a question of integral geometry.
${ }^{1}$ Sur certains systémes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables (Comptes Rendus de l'Académie des Sciences. Série I. Mathématique 188 (1929) pp. 1138-1139)

Dimitrie Pompeiu (1873-1954) was a Romanian mathematician. As one of the students of Henri Poincaré he obtained a Ph.D. degree in mathematics in 1905 at the Université de Paris (Sorbonne).

His contributions were mainly connected to the fields of mathematical analysis, especially the theory of complex functions. In one of his article ${ }^{1}$ he posed a question of integral geometry. It is widely known as the Pompeiu problem.

[^0]
The classical Pompeiu problem

Question

Let f be a continuous function defined on the plain, and let K be a closed set of positive Lebesgue measure. Suppose that

$$
\begin{equation*}
\int_{\sigma(K)} f(x, y) d \lambda_{x} d \lambda_{y}=0 \tag{1}
\end{equation*}
$$

for every rigid motion σ of the plain, where λ denotes the Lebesque measure. Is it true that $f \equiv 0$?

The classical Pompeiu problem

Question

Let f be a continuous function defined on the plain, and let K be a closed set of positive Lebesgue measure. Suppose that

$$
\begin{equation*}
\int_{\sigma(K)} f(x, y) d \lambda_{x} d \lambda_{y}=0 \tag{1}
\end{equation*}
$$

for every rigid motion σ of the plain, where λ denotes the Lebesque measure. Is it true that $f \equiv 0$?
We say that the set K has the Pompeiu's property if the answer of this question is affirmative (YES).

The continuous case

1. $K=$ square:

- Pompeiu showed that the square has the Pompeiu property.

[^1]
The continuous case

1. $K=$ square:

- Pompeiu showed that the square has the Pompeiu property.
- Brown, Schreiber, Taylor ${ }^{2}$ generalized this: Every convex set K has the Pompieu property if it has at least one "corner".

[^2]
The continuous case

1. $K=$ square:

- Pompeiu showed that the square has the Pompeiu property.
- Brown, Schreiber, Taylor ${ }^{2}$ generalized this: Every convex set K has the Pompieu property if it has at least one "corner".

2. $K=$ disk:

- Chakalov ${ }^{3}$ showed infinitely many linearly independent solutions of the form $\sin (a x+b y)$ for appropriately chosen constants a, b.

[^3]
The continuous case

1. $K=$ square:

- Pompeiu showed that the square has the Pompeiu property.
- Brown, Schreiber, Taylor ${ }^{2}$ generalized this: Every convex set K has the Pompieu property if it has at least one "corner".

2. $K=$ disk:

- Chakalov ${ }^{3}$ showed infinitely many linearly independent solutions of the form $\sin (a x+b y)$ for appropriately chosen constants a, b.
- Williams ${ }^{4}$ proved that if K is simply-connected and has a sufficiently smooth boundary ∂K then there is a function $f \not \equiv 0$.

[^4] (1976), 183-190.

Another type of problem - The discrete case

[^5]
Another type of problem - The discrete case

- 70th Putman Mathematical Competition problem (2009): Let f be a real-valued function on the plain such that for every square $A B C D$ in the plain, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plain?

[^6]
Another type of problem - The discrete case

- 70th Putman Mathematical Competition problem (2009): Let f be a real-valued function on the plain such that for every square $A B C D$ in the plain, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plain?
- Similar question is whether $f \equiv 0$ whenever $f(A)+f(B)+f(C)+f(D)=0$ holds for every unit square $A B C D$. Katz, Krebs, Shaheen ${ }^{5}$ shown a nice elementary proof.

[^7]
Another type of problem - The discrete case

- 70th Putman Mathematical Competition problem (2009): Let f be a real-valued function on the plain such that for every square $A B C D$ in the plain, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plain?
- Similar question is whether $f \equiv 0$ whenever $f(A)+f(B)+f(C)+f(D)=0$ holds for every unit square $A B C D$. Katz, Krebs, Shaheen ${ }^{5}$ shown a nice elementary proof.
- Groote, Duerinckx ${ }^{6}$ investigated the following version: Given a nonempty finite set $H \subset \mathbb{R}^{2}$ and a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{d}$ such that the arithmetic mean of f at the elements of any similar copy of H is constant. Does it follow that f is constant on \mathbb{R}^{2} ?

[^8]
More abstractly

Let G be the transformation group of \mathbb{C} and $a_{1}, \ldots, a_{n} \in \mathbb{C}$ be given nonzero numbers.
Definition
The finite set $H=\left\{d_{1}, \ldots, d_{n}\right\} \subset \mathbb{C}$ has the discrete Pompeiu property w.r.t. G if for every function $f: \mathbb{C} \rightarrow \mathbb{C}$ the equation

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(\sigma\left(d_{i}\right)\right)=0 \tag{2}
\end{equation*}
$$

holds for all $\sigma \in G$ implies that $f \equiv 0$.

More abstractly

Let G be the transformation group of \mathbb{C} and $a_{1}, \ldots, a_{n} \in \mathbb{C}$ be given nonzero numbers.

Definition

The finite set $H=\left\{d_{1}, \ldots, d_{n}\right\} \subset \mathbb{C}$ has the discrete Pompeiu property w.r.t. G if for every function $f: \mathbb{C} \rightarrow \mathbb{C}$ the equation

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(\sigma\left(d_{i}\right)\right)=0 \tag{2}
\end{equation*}
$$

holds for all $\sigma \in G$ implies that $f \equiv 0$.
We focus on the similarity group (\mathcal{S}), the translation group (\mathcal{T}) and the isometry group (\mathcal{I}) of \mathbb{C}.

Similarity case

Theorem
Every finite set H has the discrete Pompeiu property w.r.t. \mathcal{S}.

Similarity case

Theorem

Every finite set H has the discrete Pompeiu property w.r.t. \mathcal{S}.
Let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{C}$ be the points of H. Then the equation (2) can be written in the form

$$
\begin{equation*}
f\left(x+d_{1} y\right)+f\left(x+d_{2} y\right)+\ldots+f\left(x+d_{n} y\right)=0 \tag{3}
\end{equation*}
$$

holds for every $x, y \in \mathbb{C}, y \neq 0$.

Similarity case

Theorem

Every finite set H has the discrete Pompeiu property w.r.t. \mathcal{S}.
Let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{C}$ be the points of H. Then the equation (2) can be written in the form

$$
\begin{equation*}
f\left(x+d_{1} y\right)+f\left(x+d_{2} y\right)+\ldots+f\left(x+d_{n} y\right)=0 \tag{3}
\end{equation*}
$$

holds for every $x, y \in \mathbb{C}, y \neq 0$. More generally, we can see

$$
\begin{equation*}
a_{1} f\left(x+d_{1} y\right)+a_{2} f\left(x+d_{2} y\right)+\ldots+a_{n} f\left(x+d_{n} y\right)=0 \tag{4}
\end{equation*}
$$

for every $x, y \in \mathbb{C}, y \neq 0$ with constant $a_{1}, \ldots, a_{n} \in \mathbb{C}$.

Similarity case

Theorem

Every finite set H has the discrete Pompeiu property w.r.t. \mathcal{S}.
Let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{C}$ be the points of H. Then the equation (2) can be written in the form

$$
\begin{equation*}
f\left(x+d_{1} y\right)+f\left(x+d_{2} y\right)+\ldots+f\left(x+d_{n} y\right)=0 \tag{3}
\end{equation*}
$$

holds for every $x, y \in \mathbb{C}, y \neq 0$. More generally, we can see

$$
\begin{equation*}
a_{1} f\left(x+d_{1} y\right)+a_{2} f\left(x+d_{2} y\right)+\ldots+a_{n} f\left(x+d_{n} y\right)=0 \tag{4}
\end{equation*}
$$

for every $x, y \in \mathbb{C}, y \neq 0$ with constant $a_{1}, \ldots, a_{n} \in \mathbb{C}$.
Theorem (K.- Varga, '14)
$\exists f \not \equiv 0$ solution of $(4) \Longleftrightarrow$
$\Longleftrightarrow \exists$ automorphism ϕ of \mathbb{C} which is a solution of $(4) \Longleftrightarrow$ $\Longleftrightarrow \phi$ satisfies $\sum_{i} a_{i}=0$ and $\sum_{i} a_{i} \phi\left(b_{i}\right)=0$.

Translations

Theorem
Let G be a torsion free Abelian group. No finite set $H \subset G,|H| \geq 2$ has the discrete Pompeiu property w.r.t. G.
${ }^{7}$ D. Zeilberger, Pompeiu's problem in discrete space, Proc. Nat. Acad. Sci. USA 75 (1978), no. 8, 3555-3556.

Translations

Theorem
Let G be a torsion free Abelian group. No finite set $H \subset G,|H| \geq 2$ has the discrete Pompeiu property w.r.t. G. Let G_{H} be the subgroup of G generated by H. Then G_{H} is a finitely generated torsion free Abelian group, and thus

$$
G_{H} \cong \mathbb{Z}^{n} \text { for some finite } n
$$

${ }^{7}$ D. Zeilberger, Pompeiu's problem in discrete space, Proc. Nat. Acad. Sci. USA 75 (1978), no. 8, 3555-3556.

Translations

Theorem
Let G be a torsion free Abelian group. No finite set $H \subset G,|H| \geq 2$ has the discrete Pompeiu property w.r.t. G. Let G_{H} be the subgroup of G generated by H. Then G_{H} is a finitely generated torsion free Abelian group, and thus

$$
G_{H} \cong \mathbb{Z}^{n} \text { for some finite } n .
$$

Theorem (Zeilberger ${ }^{7}$)
For every finite set $H \subset \mathbb{Z}^{n}$ there is a nonzero function $f: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ such that $\sum_{i=1}^{n} f\left(\sigma\left(d_{i}\right)\right)=0$ for any translate σ of \mathbb{Z}^{n}.
${ }^{7}$ D. Zeilberger, Pompeiu's problem in discrete space, Proc. Nat. Acad. Sci. USA 75 (1978), no. 8, 3555-3556.

Translations

Theorem
Let G be a torsion free Abelian group. No finite set $H \subset G,|H| \geq 2$ has the discrete Pompeiu property w.r.t. G. Let G_{H} be the subgroup of G generated by H. Then G_{H} is a finitely generated torsion free Abelian group, and thus

$$
G_{H} \cong \mathbb{Z}^{n} \text { for some finite } n
$$

Theorem (Zeilberger ${ }^{7}$)
For every finite set $H \subset \mathbb{Z}^{n}$ there is a nonzero function $f: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ such that $\sum_{i=1}^{n} f\left(\sigma\left(d_{i}\right)\right)=0$ for any translate σ of \mathbb{Z}^{n}.
Easily, we can find such a function on every coset $G: G_{H}$.
${ }^{7}$ D. Zeilberger, Pompeiu's problem in discrete space, Proc. Nat. Acad. Sci. USA 75 (1978), no. 8, 3555-3556.

Isometries

Proposition

Let E be a finite set in the plain. If there exists an isometry σ such that $|E \cap \sigma(E)|=|E|-1$, then E has the discrete Pompeiu property w.r.t. isometries.

Corollary

Every 2- and 3-element set has the discrete Pompeiu property w.r.t. isometries.

Recent results

Theorem
Let D be the vertex set of any parallelogram. Then D has the discrete Pompeiu property w.r.t. \mathcal{I}.

Recent results

Theorem
Let D be the vertex set of any parallelogram. Then D has the discrete Pompeiu property w.r.t. I.

Theorem
Let $D \subset \mathbb{R}^{2}$ be the set of four points with rational coordinates.
Then D has the discrete Pompeiu property w.r.t. \mathcal{I}.

Recent results

Theorem
Let D be the vertex set of any parallelogram. Then D has the discrete Pompeiu property w.r.t. \mathcal{I}.

Theorem
Let $D \subset \mathbb{R}^{2}$ be the set of four points with rational coordinates.
Then D has the discrete Pompeiu property w.r.t. \mathcal{I}.
Theorem
Let D be an n-tuple of collinear points in the plain with pairwise commensurable distances. Then D has the discrete Pompeiu property w.r.t. \mathcal{I}.

Open Questions

Question

Do the following sets have the discrete Pompeiu property

1. Symmetric trapezoid,
2. 4 points in a line,
3. Pentagon, regular n-gon?

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis. Analogously, let G be an Abelian group and we introduce:

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.
Analogously, let G be an Abelian group and we introduce:

1. $\mathbb{C}^{G}=\{f: G \rightarrow \mathbb{C}\}$ the linear space of all complex valued functions defined on G equipped with the product topology.

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.
Analogously, let G be an Abelian group and we introduce:

1. $\mathbb{C}^{G}=\{f: G \rightarrow \mathbb{C}\}$ the linear space of all complex valued functions defined on G equipped with the product topology.
2. Exponential function $g: G \rightarrow \mathbb{C}$:
$g \neq 0$ and $g(x+y)=g(x) \cdot g(y)$ for every $x, y \in G$.

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.
Analogously, let G be an Abelian group and we introduce:

1. $\mathbb{C}^{G}=\{f: G \rightarrow \mathbb{C}\}$ the linear space of all complex valued functions defined on G equipped with the product topology.
2. Exponential function $g: G \rightarrow \mathbb{C}$:
$g \neq 0$ and $g(x+y)=g(x) \cdot g(y)$ for every $x, y \in G$.
3. Variety V on G :
3.1 translation invariant
3.2 closed
3.3 linear
subspace of \mathbb{C}^{G}.

Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.
Analogously, let G be an Abelian group and we introduce:

1. $\mathbb{C}^{G}=\{f: G \rightarrow \mathbb{C}\}$ the linear space of all complex valued functions defined on G equipped with the product topology.
2. Exponential function $g: G \rightarrow \mathbb{C}$: $g \neq 0$ and $g(x+y)=g(x) \cdot g(y)$ for every $x, y \in G$.
3. Variety V on G :
3.1 translation invariant
3.2 closed
3.3 linear
subspace of \mathbb{C}^{G}.
4. Spectral analysis holds in G : every $V \neq\{0\}$ on G contains an exponential function.

The torsion free rank $r_{0}(G)$ of G is the cardinality of a maximal independent system of elements of infinite order.
${ }^{8}$ M. Laczkovich and G. Székelyhidi, Harmonic analysis on discrete Abelian groups, Proc. Am. Math. Soc. 133 (2004), no. 6, 1581-1586.

The torsion free rank $r_{0}(G)$ of G is the cardinality of a maximal independent system of elements of infinite order.

Theorem (Laczkovich, Székelyhidi)
Spectral analysis holds on every Abelian group G iff

$$
r_{0}(G)<\mathfrak{c} .
$$

${ }^{8}$ M. Laczkovich and G. Székelyhidi, Harmonic analysis on discrete Abelian groups, Proc. Am. Math. Soc. 133 (2004), no. 6, 1581-1586.

The torsion free rank $r_{0}(G)$ of G is the cardinality of a maximal independent system of elements of infinite order.

Theorem (Laczkovich, Székelyhidi)

Spectral analysis holds on every Abelian group G iff

$$
r_{0}(G)<\mathfrak{c} .
$$

Every function f satisfying

$$
\sum_{i=1}^{n} f\left(x+d_{i} y\right)=0
$$

where $x, y \in \mathbb{C},|y|=1$ and $H=\left\{0=d_{1}, d_{2}, \ldots, d_{n}\right\}$, constructs a variety V on the additive group of \mathbb{C}.

[^9]
Method of the proof

Theorem
Let D be the vertex set of any parallelogram. Then D has the discrete Pompeiu property w.r.t. I.
Proof.

Method of the proof

Theorem
Let D be the vertex set of any parallelogram. Then D has the discrete Pompeiu property w.r.t. I.
Proof.
Let G be a finitely generated additive subgroup of G.

Method of the proof

Theorem
Let D be the vertex set of any parallelogram.
Then D has the discrete Pompeiu property w.r.t. I.
Proof.
Let G be a finitely generated additive subgroup of G. The statement can be written in the following form:

$$
\begin{equation*}
f(x)+f\left(x+s_{1} y\right)+f\left(x+s_{2} y\right)+f\left(x+\left(s_{1}+s_{2}\right) y\right)=0 \tag{5}
\end{equation*}
$$

holds for every $x, y \in G$ and $|y|=1$. Assume that $f(0) \neq 0$.

Method of the proof

Theorem

Let D be the vertex set of any parallelogram.
Then D has the discrete Pompeiu property w.r.t. I.
Proof.
Let G be a finitely generated additive subgroup of G. The statement can be written in the following form:

$$
\begin{equation*}
f(x)+f\left(x+s_{1} y\right)+f\left(x+s_{2} y\right)+f\left(x+\left(s_{1}+s_{2}\right) y\right)=0 \tag{5}
\end{equation*}
$$

holds for every $x, y \in G$ and $|y|=1$. Assume that $f(0) \neq 0$.
There exists an exponential function $g \not \equiv 0$ in V which satisfies

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{6}
\end{equation*}
$$

Method of the proof

Theorem

Let D be the vertex set of any parallelogram.
Then D has the discrete Pompeiu property w.r.t. I.
Proof.
Let G be a finitely generated additive subgroup of G. The statement can be written in the following form:

$$
\begin{equation*}
f(x)+f\left(x+s_{1} y\right)+f\left(x+s_{2} y\right)+f\left(x+\left(s_{1}+s_{2}\right) y\right)=0 \tag{5}
\end{equation*}
$$

holds for every $x, y \in G$ and $|y|=1$. Assume that $f(0) \neq 0$.
There exists an exponential function $g \not \equiv 0$ in V which satisfies

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{6}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\left(1+g\left(s_{1} y\right)\right)\left(1+g\left(s_{2} y\right)\right)=0 \tag{7}
\end{equation*}
$$

Method of the proof

Theorem

Let D be the vertex set of any parallelogram.
Then D has the discrete Pompeiu property w.r.t. I.
Proof.
Let G be a finitely generated additive subgroup of G. The statement can be written in the following form:

$$
\begin{equation*}
f(x)+f\left(x+s_{1} y\right)+f\left(x+s_{2} y\right)+f\left(x+\left(s_{1}+s_{2}\right) y\right)=0 \tag{5}
\end{equation*}
$$

holds for every $x, y \in G$ and $|y|=1$. Assume that $f(0) \neq 0$.
There exists an exponential function $g \not \equiv 0$ in V which satisfies

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{6}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\left(1+g\left(s_{1} y\right)\right)\left(1+g\left(s_{2} y\right)\right)=0 \tag{7}
\end{equation*}
$$

i.e $g\left(s_{1} y\right)=-1$ or $g\left(s_{2} y\right)=-1(\forall y \in G,|y|=1)$.

$$
\begin{aligned}
a=x, & b=x+s_{1} y \\
d=x+s_{2} y, & c=x+\left(s_{1}+s_{2}\right) y
\end{aligned}
$$

$$
\begin{aligned}
a=x, & b=x+s_{1} y \\
d=x+s_{2} y, & c=x+\left(s_{1}+s_{2}\right) y
\end{aligned}
$$

Then g at the points a, b, c, d are

$$
\begin{aligned}
& \text { either } g(a),-g(a),-g(d), g(d) \\
& \quad \text { or } g(a), g(b),-g(b),-g(a),
\end{aligned}
$$

respectively.

$$
\begin{aligned}
a=x, & b=x+s_{1} y \\
d=x+s_{2} y, & c=x+\left(s_{1}+s_{2}\right) y
\end{aligned}
$$

Then g at the points a, b, c, d are

$$
\begin{aligned}
& \text { either } g(a),-g(a),-g(d), g(d) \\
& \quad \text { or } g(a), g(b),-g(b),-g(a),
\end{aligned}
$$

respectively.
Let A and B be such that $\mathbb{C} \backslash \emptyset=\mathbb{C}^{*}=A \cup^{*} B$ and $A=-B$

$$
\begin{aligned}
a=x, & b=x+s_{1} y \\
d=x+s_{2} y, & c=x+\left(s_{1}+s_{2}\right) y
\end{aligned}
$$

Then g at the points a, b, c, d are

$$
\begin{aligned}
& \text { either } g(a),-g(a),-g(d), g(d) \\
& \quad \text { or } g(a), g(b),-g(b),-g(a),
\end{aligned}
$$

respectively.
Let A and B be such that $\mathbb{C} \backslash \emptyset=\mathbb{C}^{*}=A \cup^{*} B$ and $A=-B$ We define $h: \mathbb{C} \rightarrow\{-1,1\}$ as follows:

$$
h(x)= \begin{cases}1, & \text { if } g(x) \in A \\ -1, & \text { if } g(x) \in B\end{cases}
$$

Euclidean Ramsey theory

Color the points of the plain \mathbb{R}^{2} with 2 colors.

[^10]
Euclidean Ramsey theory

Color the points of the plain \mathbb{R}^{2} with 2 colors. Then we have a 2 -coloring h of any finitely generated subgroup $(G,+)$ of the plain such that two-two sides of every parallelogram have the same color.

[^11]
Euclidean Ramsey theory

Color the points of the plain \mathbb{R}^{2} with 2 colors. Then we have a 2 -coloring h of any finitely generated subgroup $(G,+)$ of the plain such that two-two sides of every parallelogram have the same color.

Theorem (Shader ${ }^{9}$)
For every 2-coloring of the plain and every parallelogram H, there is a congruent copy $\sigma(H)$ such that at least three of its vertices has the same color.

[^12]
Euclidean Ramsey theory

Color the points of the plain \mathbb{R}^{2} with 2 colors.
Then we have a 2 -coloring h of any finitely generated subgroup $(G,+)$ of the plain such that two-two sides of every parallelogram have the same color.

Theorem (Shader ${ }^{9}$)
For every 2-coloring of the plain and every parallelogram H, there is a congruent copy $\sigma(H)$ such that at least three of its vertices has the same color.
For any given parallelogram H, there is a finite witness ${ }^{10}$ set R.
Thus, if the generator set of G contains R, we get a contradiction.
${ }^{9}$ L. E. Shader, All right triangles are Ramsey in E^{2} !, Journ. Comb. Theory (A) 20 (1976), 385-389.
${ }^{10}$ W. H. Gottschalk, Choice functions and Tychonoff's theorem, Proc. Amer. Math. Soc. 2 (1951), 172.

Coloring of the plain

Question (Hadwiger-Nelson's problem ${ }^{11}$)
What is the chromatic number χ of the plain?
${ }^{11}$ https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem

Coloring of the plain

Question (Hadwiger-Nelson's problem ${ }^{11}$)
What is the chromatic number χ of the plain?
Theorem

$$
4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7
$$

$\chi\left(\mathbb{R}^{2}\right) \geq 4$
${ }^{11}$ https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem

Application

We denote the set of forbidden distance by $\mathcal{F D}$. Previously, $\mathcal{F D}=\{1\}$ and $4 \geq \chi_{\mathcal{F D}}\left(\mathbb{R}^{2}\right) \geq 7$.

Application

We denote the set of forbidden distance by $\mathcal{F D}$. Previously, $\mathcal{F D}=\{1\}$ and $4 \geq \chi_{\mathcal{F D}}\left(\mathbb{R}^{2}\right) \geq 7$.
Proposition
If

$$
\begin{aligned}
& \text { 1. (a.) } \mathcal{F} \mathcal{D}_{1}=\left\{1, \frac{\sqrt{5}+1}{2}\right\} \\
& \text { 2. (b.) } \mathcal{F} \mathcal{D}_{2}=\{1, \sqrt{2}\} \\
& \text { 3. (c.) } \mathcal{F} \mathcal{D}_{3}=\{1, \sqrt{3}\} \\
& \text { then } \chi_{\mathcal{F} \mathcal{D}_{i}}\left(\mathbb{R}^{2}\right)>4 .
\end{aligned}
$$

Thank you for your kind attention.

References

[1.] G. Kiss and A. Varga, Existence of nontrivial solutions of linear functional equation, Aequationes Math. (2014), 88, no. 1, 151-162.
[2.] G. Kiss, M. Laczkovich and Cs. Vincze, The discrete Pompeiu problem on the plain, submitted to Monatshefte für Mathematik, https://arxiv.org/pdf/1612.00284v1.pdf

[^0]: ${ }^{1}$ Sur certains systémes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables (Comptes Rendus de l'Académie des Sciences. Série I. Mathématique 188 (1929) pp. 1138-1139)

[^1]: ${ }^{2}$ L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154.
 ${ }^{3}$ Chalakov, Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys. Math., Livre 1, 40 (1944), 1-44.
 ${ }^{4}$ S. Williams, A partial solutions of Pompeiu problem, Math. Ann. 223 (1976), 183-190.

[^2]: ${ }^{2}$ L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154.
 ${ }^{3}$ Chalakov, Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys. Math., Livre 1, 40 (1944), 1-44.
 ${ }^{4}$ S. Williams, A partial solutions of Pompeiu problem, Math. Ann. 223 (1976), 183-190.

[^3]: ${ }^{2}$ L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154.
 ${ }^{3}$ Chalakov, Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys. Math., Livre 1, 40 (1944), 1-44.
 ${ }^{4}$ S. Williams, A partial solutions of Pompeiu problem, Math. Ann. 223 (1976), 183-190.

[^4]: ${ }^{2}$ L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154.
 ${ }^{3}$ Chalakov, Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys. Math., Livre 1, 40 (1944), 1-44.
 ${ }^{4}$ S. Williams, A partial solutions of Pompeiu problem, Math. Ann. 223

[^5]: ${ }^{5}$ R. Katz, M. Krebs, A. Shaheen, Zero sums on unit square vertex sets and plain colorings, Amer. Math. Monthly 121 (2014), no. 7, 610-618.
 ${ }^{6}$ C. de Groote, M. Duerinckx, Functions with constant mean on similar countable subsets of \mathbb{R}^{2}, Amer. Math. Monthly 119 (2012),603-605.

[^6]: ${ }^{5}$ R. Katz, M. Krebs, A. Shaheen, Zero sums on unit square vertex sets and plain colorings, Amer. Math. Monthly 121 (2014), no. 7, 610-618.
 ${ }^{6}$ C. de Groote, M. Duerinckx, Functions with constant mean on similar countable subsets of \mathbb{R}^{2}, Amer. Math. Monthly 119 (2012),603-605.

[^7]: ${ }^{5}$ R. Katz, M. Krebs, A. Shaheen, Zero sums on unit square vertex sets and plain colorings, Amer. Math. Monthly 121 (2014), no. 7, 610-618.
 ${ }^{6}$ C. de Groote, M. Duerinckx, Functions with constant mean on similar countable subsets of \mathbb{R}^{2}, Amer. Math. Monthly 119 (2012), 603-605.

[^8]: ${ }^{5}$ R. Katz, M. Krebs, A. Shaheen, Zero sums on unit square vertex sets and plain colorings, Amer. Math. Monthly 121 (2014), no. 7, 610-618.
 ${ }^{6}$ C. de Groote, M. Duerinckx, Functions with constant mean on similar countable subsets of \mathbb{R}^{2}, Amer. Math. Monthly 119 (2012), 603-605.

[^9]: ${ }^{8}$ M. Laczkovich and G. Székelyhidi, Harmonic analysis on discrete Abelian groups, Proc. Am. Math. Soc. 133 (2004), no. 6, 1581-1586.

[^10]: ${ }^{9}$ L. E. Shader, All right triangles are Ramsey in E^{2} !, Journ. Comb. Theory (A) 20 (1976), 385-389.
 ${ }^{10}$ W. H. Gottschalk, Choice functions and Tychonoff's theorem, Proc. Amer. Math. Soc. 2 (1951), 172.

[^11]: ${ }^{9}$ L. E. Shader, All right triangles are Ramsey in E^{2} !, Journ. Comb. Theory (A) 20 (1976), 385-389.
 ${ }^{10}$ W. H. Gottschalk, Choice functions and Tychonoff's theorem, Proc. Amer. Math. Soc. 2 (1951), 172.

[^12]: ${ }^{9}$ L. E. Shader, All right triangles are Ramsey in E^{2} !, Journ. Comb. Theory (A) 20 (1976), 385-389.
 ${ }^{10}$ W. H. Gottschalk, Choice functions and Tychonoff's theorem, Proc. Amer. Math. Soc. 2 (1951), 172.

