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Dimitrie Pompeiu (1873-1954) was a Romanian mathematician. As
one of the students of Henri Poincaré he obtained a Ph.D. degree
in mathematics in 1905 at the Université de Paris (Sorbonne).

His contributions were mainly connected to the fields of
mathematical analysis, especially the theory of complex functions.
In one of his article1 he posed a question of integral geometry.

It is
widely known as the Pompeiu problem.

1Sur certains systémes d’équations linéaires et sur une propriété intégrale
des fonctions de plusieurs variables (Comptes Rendus de l’Académie des
Sciences. Série I. Mathématique 188 (1929) pp. 1138-1139)
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The classical Pompeiu problem

Question
Let f be a continuous function defined on the plain, and let K be a
closed set of positive Lebesgue measure. Suppose that∫

σ(K)
f (x , y)dλxdλy = 0 (1)

for every rigid motion σ of the plain, where λ denotes the
Lebesque measure. Is it true that f ≡ 0?

We say that the set K has the Pompeiu’s property if the answer
of this question is affirmative (YES).
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The continuous case

1. K = square:
I Pompeiu showed that the square has the Pompeiu property.

I Brown, Schreiber, Taylor2 generalized this:
Every convex set K has the Pompieu property if it has at least
one ”corner”.

2. K = disk:
I Chakalov3 showed infinitely many linearly independent

solutions of the form sin(ax + by) for appropriately chosen
constants a, b.

I Williams4 proved that if K is simply-connected and has a
sufficiently smooth boundary ∂K then there is a function
f 6≡ 0.

2L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the
Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154.

3Chalakov, Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys.
Math., Livre 1, 40 (1944), 1-44.

4S. Williams, A partial solutions of Pompeiu problem, Math. Ann. 223
(1976), 183-190.
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Another type of problem - The discrete case

I 70th Putman Mathematical Competition problem (2009):
Let f be a real-valued function on the plain such that for every
square ABCD in the plain, f (A) + f (B) + f (C ) + f (D) = 0.
Does it follow that f (P) = 0 for all points P in the plain?

I Similar question is whether f ≡ 0 whenever
f (A) + f (B) + f (C ) + f (D) = 0 holds for every unit square
ABCD. Katz, Krebs, Shaheen5 shown a nice elementary proof.

I Groote, Duerinckx6 investigated the following version: Given a
nonempty finite set H ⊂ R2 and a function f : R2 → Rd such
that the arithmetic mean of f at the elements of any similar
copy of H is constant. Does it follow that f is constant on
R2?

5R. Katz, M. Krebs, A. Shaheen, Zero sums on unit square vertex sets and
plain colorings, Amer. Math. Monthly 121 (2014), no. 7, 610–618.

6C. de Groote, M. Duerinckx, Functions with constant mean on similar
countable subsets of R2, Amer. Math. Monthly 119 (2012), 603–605.
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More abstractly

Let G be the transformation group of C and a1, . . . , an ∈ C be
given nonzero numbers.

Definition
The finite set H = {d1, . . . , dn} ⊂ C has the discrete Pompeiu
property w.r.t. G if for every function f : C→ C the equation

n∑
i=1

f (σ(di )) = 0 (2)

holds for all σ ∈ G implies that f ≡ 0.

We focus on the similarity group (S), the translation group (T )
and the isometry group (I) of C.



More abstractly

Let G be the transformation group of C and a1, . . . , an ∈ C be
given nonzero numbers.

Definition
The finite set H = {d1, . . . , dn} ⊂ C has the discrete Pompeiu
property w.r.t. G if for every function f : C→ C the equation

n∑
i=1

f (σ(di )) = 0 (2)

holds for all σ ∈ G implies that f ≡ 0.

We focus on the similarity group (S), the translation group (T )
and the isometry group (I) of C.



Similarity case

Theorem
Every finite set H has the discrete Pompeiu property w.r.t. S.

Let d1, d2, . . . ,dn ∈ C be the points of H. Then the equation (2)
can be written in the form

f (x + d1y) + f (x + d2y) + . . .+ f (x + dny) = 0 (3)

holds for every x , y ∈ C, y 6= 0. More generally, we can see

a1f (x + d1y) + a2f (x + d2y) + . . .+ anf (x + dny) = 0 (4)

for every x , y ∈ C, y 6= 0 with constant a1, . . . ,an ∈ C.

Theorem (K.- Varga, ’14)

∃f 6≡ 0 solution of (4) ⇐⇒
⇐⇒ ∃ automorphism φ of C which is a solution of (4) ⇐⇒

⇐⇒ φ satisfies
∑

i ai = 0 and
∑

i aiφ(bi ) = 0.
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Translations

Theorem
Let G be a torsion free Abelian group. No finite set
H ⊂ G , |H| ≥ 2 has the discrete Pompeiu property w.r.t. G .

Let GH be the subgroup of G generated by H. Then GH is a
finitely generated torsion free Abelian group, and thus

GH
∼= Zn for some finite n.

Theorem (Zeilberger7)

For every finite set H ⊂ Zn there is a nonzero function f : Zn → C
such that

∑n
i=1 f (σ(di )) = 0 for any translate σ of Zn.

Easily, we can find such a function on every coset G : GH .

7D. Zeilberger, Pompeiu’s problem in discrete space, Proc. Nat. Acad. Sci.
USA 75 (1978), no. 8, 3555-3556.
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Isometries

Proposition

Let E be a finite set in the plain. If there exists an isometry σ such
that |E ∩ σ(E )| = |E | − 1, then E has the discrete Pompeiu
property w.r.t. isometries.

Corollary

Every 2- and 3-element set has the discrete Pompeiu property
w.r.t. isometries.



Recent results

Theorem
Let D be the vertex set of any parallelogram. Then D has the
discrete Pompeiu property w.r.t. I.

Theorem
Let D ⊂ R2 be the set of four points with rational coordinates.
Then D has the discrete Pompeiu property w.r.t. I.

Theorem
Let D be an n-tuple of collinear points in the plain with pairwise
commensurable distances. Then D has the discrete Pompeiu
property w.r.t. I.
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Open Questions

Question
Do the following sets have the discrete Pompeiu property

1. Symmetric trapezoid,

2. 4 points in a line,

3. Pentagon, regular n-gon?



Spectral analysis on discrete Abelian groups

In the continuous case the proofs based on harmonic analysis.

Analogously, let G be an Abelian group and we introduce:

1. CG = {f : G → C} the linear space of all complex valued
functions defined on G equipped with the product topology.

2. Exponential function g : G → C:
g 6= 0 and g(x + y) = g(x) · g(y) for every x , y ∈ G .

3. Variety V on G :

3.1 translation invariant
3.2 closed
3.3 linear

subspace of CG .

4. Spectral analysis holds in G : every V 6= {0} on G contains an
exponential function.
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The torsion free rank r0(G ) of G is the cardinality of a maximal
independent system of elements of infinite order.

Theorem (Laczkovich, Székelyhidi8)

Spectral analysis holds on every Abelian group G iff

r0(G ) < c.

Every function f satisfying

n∑
i=1

f (x + diy) = 0,

where x , y ∈ C, |y | = 1 and H = {0 = d1, d2, . . . , dn}, constructs
a variety V on the additive group of C.

8M. Laczkovich and G. Székelyhidi, Harmonic analysis on discrete Abelian
groups, Proc. Am. Math. Soc. 133 (2004), no. 6, 1581-1586.
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Method of the proof

Theorem
Let D be the vertex set of any parallelogram.
Then D has the discrete Pompeiu property w.r.t. I.

Proof.

Let G be a finitely generated additive subgroup of G . The
statement can be written in the following form:

f (x) + f (x + s1y) + f (x + s2y) + f (x + (s1 + s2)y) = 0 (5)

holds for every x , y ∈ G and |y | = 1. Assume that f (0) 6= 0.
There exists an exponential function g 6≡ 0 in V which satisfies

g(x + y) = g(x)g(y). (6)

Thus, we get
(1 + g(s1y))(1 + g(s2y)) = 0. (7)

i.e g(s1y) = −1 or g(s2y) = −1 (∀y ∈ G , |y | = 1).
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a = x , b = x + s1y ,

d = x + s2y , c = x + (s1 + s2)y ,

Then g at the points a, b, c , d are

either g(a),−g(a),−g(d), g(d)

or g(a), g(b),−g(b),−g(a),

respectively.
Let A and B be such that C \ ∅ = C∗ = A ∪∗ B and A = −B
We define h : C→ {−1, 1} as follows:

h(x) =

{
1, if g(x) ∈ A

−1, if g(x) ∈ B.
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Euclidean Ramsey theory

Color the points of the plain R2 with 2 colors.

Then we have a 2-coloring h of any finitely generated subgroup
(G ,+) of the plain such that two-two sides of every parallelogram
have the same color.

Theorem (Shader9)

For every 2-coloring of the plain and every parallelogram H, there
is a congruent copy σ(H) such that at least three of its vertices
has the same color.

For any given parallelogram H, there is a finite witness10 set R.
Thus, if the generator set of G contains R, we get a
contradiction.

9L. E. Shader, All right triangles are Ramsey in E 2!, Journ. Comb. Theory
(A) 20 (1976), 385-389.

10W. H. Gottschalk, Choice functions and Tychonoff’s theorem, Proc. Amer.
Math. Soc. 2 (1951), 172.
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Coloring of the plain

Question (Hadwiger-Nelson’s problem11)

What is the chromatic number χ of the plain?

Theorem

4 ≤ χ(R2) ≤ 7.

χ(R2) ≤ 7 χ(R2) ≥ 4

11https://en.wikipedia.org/wiki/Hadwiger-Nelson problem
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Application

We denote the set of forbidden distance by FD. Previously,
FD = {1} and 4 ≥ χFD(R2) ≥ 7.

Proposition

If

1. (a.) FD1 = {1,
√
5+1
2 }

2. (b.) FD2 = {1,
√

2}
3. (c.) FD3 = {1,

√
3}

then χFDi
(R2) > 4.
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Thank you for your kind attention.
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