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Summary

Online social networks (OSNs) have been the most successful online applications
during the past decade. Leading players in the business, including Facebook, Twit-
ter and Instagram, attract a huge number of users. Nowadays, OSNs have become
a primary way for people to connect, communicate and share life moments. Al-
though OSNs have brought a lot of convenience to our life, users’ privacy, on the
other hand, has become a major concern due to the large amount of personal data
shared online. In this thesis, we study users’ privacy in social networks from two
aspects, namely access control and information inference.
Access control is a mechanism, provided by OSNs, for users themselves to regulate
who can view their resources. Access control schemes in OSNs are relationship-
based, i.e., a user can define access control policies to allow others who are in a
certain relationship with him to access his resources. Current OSNs have deployed
multiple access control schemes, however most of these schemes do not satisfy
users’ expectations, due to expressiveness and usability.
There are mainly two types of information that users share in OSNs, namely their
activities and social relations. The information has provided an unprecedented
chance for academia to understand human society and for industry to build ap-
pealing applications, such as personalized recommendation. However, the large
quantity of data can also be used to infer a user’s personal information, even
though not shared by the user in OSNs.
This thesis concentrates on users’ privacy in online social networks from two as-
pects, i.e., access control and information inference, it is organized into two parts.
The first part of this thesis addresses access control in social networks from three
perspectives. First, we propose a formal framework based on a hybrid logic to
model users’ access control policies. This framework incorporates the notion of
public information and provides users with a fine-grained way to control who can
view their resources. Second, we design cryptographic protocols to enforce access
control policies in OSNs. Under these protocols, a user can allow others to view
his resources without leaking private information. Third, major OSN companies
have deployed blacklist for users to enforce extra access control besides the normal
access control policies. We formally model blacklist with the help of a hybrid logic
and propose efficient algorithms to implement it in OSNs.
The second part of this thesis concentrates on the inference of users’ information
in OSNs, using machine learning techniques. The targets of our inference are
users’ activities, represented by mobility, and social relations. First, we propose a
method which uses a user’s social relations to predict his locations. This method
adopts a user’s social community information to construct the location predictor,
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and perform the inference with machine learning techniques. Second, we focus on
inferring the friendship between two users based on the common locations they
have been to. We propose a notion namely location sociality that characterizes
to which extent a location is suitable for conducting social activities, and use this
notion for friendship prediction. Experiments on real life social network datasets
have demonstrated the effectiveness of our two inferences.
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1

Introduction

With its historical root in ancient Greek philosophy, where Aristotle categorized
life into two spheres including the public sphere of political activities and the
private sphere of family and domestic life, privacy has been a fundamental element
of human society. It serves as the basis for many human rights, including freedom
of speech and right to sexuality. According to Wikipedia, privacy is defined as
the ability of an individual or group to seclude themselves, or information about
themselves, and thereby express themselves selectively.
In history, how privacy is violated was always evolved with the advancement of
technology. For instance, the development of publishing technologies in the late
19th century increased the number of newspapers and photographs, both of which
have contributed to the invasion of people’s privacy during that time. In response,
Samuel Warrent and Louis Brandeis [WB90] wrote a law article The Right to Pri-
vacy, in which they argued for the “right to be let alone”. The article is recognized
as one of the most influential law papers in history, and thereby starts the devel-
opment of privacy protection in American Law since then. A more recent example
is related to Internet services, such as email, search engines and online forums,
which bring people a lot of conveniences while breaching their privacy at the same
time. In August 2006, AOL released a large set of users’ detailed search logs for
research purposes. However, due to a mistake of AOL, the released search logs are
full of personally identifiable information, which could be potentially applied for
linking users in the dataset to them in the real life. For instance, Thelma Arnold,
a 62-year-old lady living in Georgia back then, was successfully identified. Many
visionaries have foreseen the privacy threats brought by the Internet. For instance,
Andy Grove, the co-founder and former CEO of Intel, in an interview in 2000 [Gro]
states that

Privacy is one of the biggest problems in this new electronic age. At
the heart of the Internet culture is a force that wants to find out every-
thing about you. And once it has found out everything about you and
two hundred million others, that’s a very valuable asset, and people
will be tempted to trade and do commerce with that asset. This wasn’t
the information that people were thinking of when they called this the
information age.

The past decade has been the age of online social networks (OSNs). Companies
including Facebook, Twitter and Instagram are leading actors in the business, and
they attract a huge number of users. Nowadays, OSNs have become an indispens-
able part of people’s life. To present some statistics, Facebook reaches 1.65 billion
(1.65B) monthly active users in 2016, 200B tweets are shared on Twitter every

1



2 Chapter 1 Introduction

year, and Instagram users publish more than 95M photos and videos on a daily
base. In addition, according a report from AC Nielsen [N12], Americans spend
more than 6 hours per day in their social network services.
Similar to other advanced technologies at the time, OSNs raise privacy issues for
their users. For example, a report [SHR] has shown that 43% of the recruiters
are using social networks to check their potential candidates, and more than one
third of companies admit that they have rejected job candidates due to the infor-
mation that these candidates shared in OSNs. Besides potential employees, some
companies are also monitoring their current ones. In 2008, Virgin Atlantic laid off
13 cabin crew due to their possibly harmful posts to the airline in Facebook [VA].
Besides online monitoring, OSNs’ privacy issues are also raised by the large scale
user data. For instance, researchers in 2009 [AG09] have shown that users’ social
network data together with information from some public databases can be used
to effectively predict these users’ social security numbers.
The above examples illustrate two aspects of privacy issues in online social net-
works. The first one concentrates on users: when a user publishes a photo or status
in OSNs, he himself should be able to control who can and cannot (e.g., recruiters
and employers) view it. To achieve this, major OSNs have deployed access control
schemes for their users. The second aspect of privacy is related to user shared data
in OSNs. Nowadays, large scale user data from OSNs is easily accessible, and it
posses huge potential privacy risks, i.e., the data can be directly applied to infer
a user’s undisclosed information with advanced machine learning techniques, such
as [AG09]. In this thesis, we concentrate on users’ privacy in OSNs from these two
perspectives which we summarize as access control and information inference.

1.1 Access Control in OSNs

Access control, being an important aspect of information security, has been exten-
sively studied during the past 30 years. Numerous schemes, including mandatory
access control (MAC), discretionary access control (DAC), and role-based access
control (RBAC) [SCFY96], have been proposed. Access control schemes have been
adopted in many fields, ranging from managing a large organization to protecting
users’ private data on smartphones.
To mitigate users’ privacy concerns, OSN companies have deployed access control
schemes to delegate the power to users themselves to control who can view their in-
formation. Different from previous schemes, access control in OSNs is relationship-
based [Gat07]: whether a user can view another user’s resource depends on their
relation in the social network. The most common access control policy under
relationship-based access control is “friends”, i.e., only a user’s friends can view his
certain resource. Figure 1.1 depicts an interface with which a Facebook user can
set up his access control policy for a video he intends to share.
We recognize four parties in relationship-based access control: owner, requester, re-
source and access control policy. Concretely, a requester can only access a resource
of an owner if the requester satisfies the policy of the resource defined by the owner.
Depending on different scenarios, sometimes we have more parties for access con-
trol. For instance, in a collaborative access control setting [SSP09, SZP+12], a
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Figure 1.1: Access control
interface in Facebook.

Figure 1.2: An Insta-
gram user’s map.

resource can be co-owned by multiple users and co-owner is a new party.
Sometimes, a user can be bothered by others in OSNs due to, for example, ha-
rassment or different political views. In response, major OSN companies, such as
Facebook, Twitter and Instagram, introduce a function, namely blacklist, for users
to enforce extra privacy protection besides normal access control. Blacklist can be
treated orthogonal to normal access control policies: if a requester is on an owner’s
blacklist, then the requester cannot access any resource of the owner even if his
access is allowed by the owner’s original policy.

1.2 Information Inference in OSNs

The information that a user shares in OSNs can be categorized into two types
including what he has done, i.e., activities, and who he knows, i.e., social relations.
Both of these information are easily obtainable: we can get them either through
OSNs’ direct publishing, mainly for contest purposes such as Netflix and Airbnb, or
through querying OSNs’ public application programming interfaces (API) whose
aim is to attract third party applications to use their services, in order to build
strong ecosystems, e.g., 250M people use “Facebook login” to connect third party
applications in 2010 [M10].
A user can perform multiple activities in OSNs, such as publishing statuses after
a football game or sharing a photo on what he had for lunch, among which we are
particularly interested in one type of activities, i.e., mobility, one of the most com-
mon human activities. The development of portable devices, such as smartphones
and tablets, has extended OSNs to geographical space. Nowadays, it is quite com-
mon for social network users to share their geographical locations in statuses or
photos, namely check-ins, which results in large quantity of data concerning human
mobility becoming available. For instance, Figure 1.2 presents a user’s map which
visualizes all the locations the user has shared in Instagram.
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Inferring or predicting users’ data in OSNs has attracted academia a considerable
amount of attention, such as [AG09, BSM10, CML11]. Being capable of doing so
can potentially help OSNs to improve their services. For instance, based on the
hashtags a user has shared, Twitter can automatically suggest some accounts that
the user might be interested in to follow. Meanwhile, inferring users’ undisclosed
data could severely violate their privacy. In particular, mobility, the user activity
we concentrate on in this thesis, is among the most sensitive information being
collected [dMHVB13], knowing whereabouts of each user could be used to recon-
struct the user’s mobility trace which raises serious privacy issues, such as a user
being at a hospital or a motel. A more recent example is related to Pokemon Go,
a popular online game that drives users to move in geographical space to catch
the virtual bonuses, i.e., pokemon. On July 10, 2016, armed robbers in Missouri
used Pokemon Go to lure 11 victims with the age between 16 to 18 to a place and
robbed them [Pok]. Besides activity, social relations also contain sensitive infor-
mation, such as spouse or family member. Therefore, more and more users start to
hide who they know in OSNs, in [DJR12], the authors report that the percentage
of Facebook users in New York who hide their friends lists increases by 40% within
one year, from 2010 to 2011.

1.3 Research Questions

The current relationship-based access control only allows users to define policies
based on social relations. However, in many cases, relations between users and
other types of entities are also needed to express users’ access control requirements.
For instance, a user may only allow his colleagues who went to the same bar with
him to see photos he took in that bar. Here, the bar belongs to another type
of entities and cannot be specified in the current access control policies. Due to
their own nature, OSNs admit quick and dynamic evolutions, companies, such
as Facebook, import knowledge, namely public information, of external sources,
such as Wikipedia, into its systems to facilitate users’ communications. We notice
that public information can also help to express access control requirements. The
above mentioned scenario “colleagues in the same bar can view the photo” is one
example, where the bar belongs to public information. Access control requirements
with public information are meaningful and in line with the recent development
of OSNs. However, the previous relationship-based access control schemes do not
take public information into account. This leads to our first research question:

Research question 1. Can we integrate public information into relationship-
based access control to increase their expressiveness?

When enforcing access control policies, especially those fine-grained ones, many
computing resources are needed which are usually the bottleneck even for big
companies like Facebook. In academia, decentralized social networks have been
proposed as an ideal solution to address the problem [SSN+10, CMÖ11]. Users
in decentralized social networks can manage their own data and operate OSN
services with their personal devices instead of putting the burden on OSNs’ shoul-
ders [YLL+09]. In this way, enforcing fine-grained relationship-based access con-
trol polices will only involve social network users. Moreover, privacy is largely
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protected since the data of each user is managed by himself, not OSNs. To enforce
fine-grained access control polices in decentralized social networks, cryptographic
techniques are needed. We are interested in two fine-grained access control poli-
cies including k-common friends and k-depth, both of which are among the most
common and useful policies [FAZ09] but not implemented in decentralized social
networks, this leads to our second research question:

Research question 2. How can we design cryptographic protocols to enforce
fine-grained access control policies in decentralized social networks?

To mitigate online harassment, OSNs introduce blacklist for their users to enforce
extra access control besides normal ones. However, the use of blacklists in OSNs
has not been well-understood and formally studied, many questions are worth
investigation. To give an example, suppose that Alice and Bob are friends, and
Charlie is Bob’s friend but on his blacklist. If Alice only allows her friends or friends
of friends to view one of her photos, should she also consider Bob’s blacklist and
thus deny Charlie’s access? Even if blacklist restrictions are well formalized with
for instance a hybrid logic, enforcing these blacklist restrictions with normal access
control policies is still challenging: how can we make sure that users are capable
of expressing the blacklist restrictions they have in mind. To address these issues,
we have to answer our third research question:

Research question 3. How can we formalize blacklist and its utilization in access
control policies?

Since the large scale OSN users’ mobility data becoming available, predicting users’
mobility has attracted academia a considerable amount of attention, it not only
causes privacy breaches, but also helps to address some challenging problems we
are facing at the moment, such as smart city and epidemiology. In the literature,
a user’s social network information has been demonstrated to be an effective pre-
dictor for his future mobility[BSM10, CS11, CML11, SKB12]. However, most of
these works share one common shortcoming: they all treat friends of a user equally.
Similar to other social behaviors, a user’s mobility in many cases is influenced by
specific social communities but not all his friends, e.g., where a user goes for lunch
is probably influenced by his colleagues while where he goes for dinner depends
on his family members. To demonstrate that social community is an effective
predictor for inferring mobility, we have to answer our fourth research question:

Research question 4. Can we effectively predict a user’s mobility information
based on his social communities’ information?

Online social relations could also potentially raise privacy issues. Therefore, many
users choose not to disclose their relation with certain people in OSNs. However,
research has shown that whether two users are friends can be effectively inferred
with multiple types of information ranging from network structure to user activi-
ties [LNK07]. Especially, within the past five years, users’ mobility information are
demonstrated to be effective for inferring friendship [CTH+10, CBC+10, SNM11,
PSL13, WLL14]. To predict whether two users are friends or not, we concentrate
on the common locations they have been to. Locations have their own proper-
ties, some of which, intuitively, are more related to friendship prediction. Erving
Goffman [Gof59] in his seminal work states that some locations are suitable for
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conducting social activities while others are not. Following this, we hypothesize
that two users visiting similar social places are more likely to be friends than others,
which leads to our fifth research question:

Research question 5. Can we find a way to quantify whether a location is
suitable for conducting social activities and use this quantification to effectively
predict two users’ friendship?

1.4 Thesis Overview

This thesis is organized into two parts. Part I concentrates on access control in
social networks with Chapter 3, 4 and 5 in this part addressing Research ques-
tion 1, 2 and 3, respectively. Part II of the thesis studies information inference in
OSNs, Chapter 6 focuses on location inference (Research question 4), while Chap-
ter 7 studies friendship prediction (Research question 5). Table 1.1 presents the
structure of the thesis.

Part I Part II
Research question 1 Research question 2 Research question 3 Research question 4 Research question 5

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Table 1.1: Thesis structure.

The contributions of each chapter are detailed as the following.

• Chapter 2: Preliminaries

We introduce the social network model used throughout the thesis and present
the necessary knowledge including a hybrid logic and some cryptographic
primitives to comprehend Part I.

• Chapter 3: A New Access Control Scheme for Online Social Net-
works

In this chapter, we focus on public information in OSNs and treat it as a new
dimension which users can use to regulate access to their resources. A model
containing both social network and public information network is introduced,
based on which we propose a variant of hybrid logic for formulating access
control policies. With a number of real-life scenarios, we demonstrate the
expressiveness of our scheme. Two special semantic relations including cat-
egory information and relationship hierarchy are further adopted to extend
our logic for its usage in practice. In the end, a few solutions to address the
problem of information reliability in OSNs are discussed, and we formally
define collaborative access control within our scheme.
This chapter is based on joint work with Jun Pang [PZ14, PZ15c].

• Chapter 4: Cryptographic Protocols for Enforcing Relationship-
based Access Control
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In this chapter, we propose cryptographic protocols, in the context of decen-
tralized social networks, to enforce two fine-grained relationship-based access
control polices: k-common friends and k-depth. Our protocols are mainly
built on pairing-based cryptosystems, and their security is proved under the
honest but curious adversary model. We analyze our protocols’ computa-
tion and communication complexities, and further evaluate their efficiency
through simulations on a social network dataset, experimental results show
that our protocols are practical in daily usage.
This chapter is based on joint work with Jun Pang [PZ15a].

• Chapter 5: A Logical Approach to Restricting Access in Online
Social Networks

We concentrate on blacklist in OSNs, and identify three independent binary
decisions to utilize users’ blacklists in access control policies, resulting into
eight access restrictions. We formally define these restrictions in a hybrid
logic with the help of a path semantics proposed. A syntactical transforma-
tion algorithm to rewrite a hybrid logic access control formula when fixing
a blacklist restriction is provided in order to free users from the burden of
defining access control policies precisely and correctly. Algorithms are further
developed for evaluating a subset of access control policies with restrictions.
The effectiveness of the blacklist restrictions and the efficiency of our algo-
rithms are evaluated on a social network dataset.
This chapter is based on joint work with with Marcos Cramer and Jun
Pang [CPZ15].

• Chapter 6: Location Inference with Social Communities

We first investigate the social influence of a user’s communities on his mobil-
ity, data analysis results show that community is indeed an effective predictor
for users’ mobility, and it is more effective than friends in general. In addition,
we observe that a person’s mobility is influenced only by a small fraction of
his communities and the influence depends on the social contexts of the com-
munities. Building on our findings, we apply machine learning techniques to
infer users’ future mobility, with their communities’ information as features.
Extensive experiments demonstrate our prediction’s effectiveness.
This chapter is based on joint work with Jun Pang [PZ15b].

• Chapter 7: Friendship Inference with Location Sociality

In this chapter, we propose a notion namely location sociality to characterize
the extent to which a location is suitable for conducting social activities, and
use this notion to infer users’ friendships in social networks. To quantify a
location’s sociality, we propose a mixture model of HITS and PageRank with
the intuition “location sociality and user influence are mutually reinforced”
in mind. By exploiting millions of check-in data, we investigate the relation
between location sociality and several location properties, such as location
category, rating and popularity. To infer two users’ friendship, we use their
common locations’ sociality as features for machine learning classifiers. Ex-
perimental results show that with very simple features, we are able to achieve
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a strong friendship inference. A case study on location recommendation is
performed to further demonstrate the usefulness of location sociality.
This chapter is based on joint work with Jun Pang [PZ16].
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Access Control in Online Social Networks
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2

Preliminaries

To fully comprehend Part I of this thesis, some preliminary knowledge is required.
In this chapter, we give a brief introduction of it. We first describe the hybrid
logic[Fon11b, BFSH12] for access control in social networks. Then, we present the
cryptographic building blocks for enforcing access control.

2.1 A Hybrid Logic

In this section we present the hybrid logic introduced in [Fon11b, BFSH12] for
specifying relationship-based access control policies in OSNs.
An online social network (OSN) is modeled as a directed graph, and is denoted
by GU = (U , EU), where the set U of nodes consists of the users in the OSN, and
the set EU of labeled edges represents the relationships between the users. We use
RU = {α1, . . . , αm} to denote a (finite) set of relationship types supported in the
OSN. The semantics of each relationship type can be defined as αi ⊆ U × U . For
two users u, u′ ∈ U , if they are in a relationship of αi ∈ RU , we say (u, u′) ∈ αi.
Moreover, each user is affiliated with some basic information which are treated as
attributes of the user.
For every resource, the owner of the resource can specify an access control policy
for determining which users have access to the resource. In the logic, we have two
distinguished variables own and req for referring to the owner of the resource in
question and the user requesting access.

Syntax. The syntax of the hybrid logic is given below.

s ::= m | x
φ ::= t | p | ¬φ | (φ1 ∧ φ2) | (φ1 ∨ φ2) | 〈αi〉φ |#tφ | Oxφ

In order to explain the meaning of the symbols and operators informally, we first
need to point out that a formula is always evaluated at some user in the graph.
The logic supports three kinds of atoms, namely nominals (m) that represent a
user’s name in the social graph, variables (x) and proposition symbols (p) that are
used for representing attributes of the user at which they are evaluated. Terms
can function as formulas; they express that the user at which the formula is being
evaluated is identical to the user referred to by the term. Negation (¬), conjunction
(∧) and disjunction (∨) have their usual meanings. The intended meaning of the
modal operator 〈αi〉φ is that 〈αi〉φ is true at a user u if and only if (iff) φ is true
at some user u′ such that u and u′ stand in relationship αi. The hybrid logic
operator #s specifies that the formula following it should be evaluated at the user

11
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that the term s refers to. Ox assigns the user at which the formula is evaluated to
the variable x. The set of formulas of the hybrid logic is denoted by L. We write
(φa → φ2) as an abbreviation for (¬φ1 ∨ φ2), and follow the usual conventions for
dropping brackets in formulas.

Semantics. A model for evaluating access control policies contains three parts
including Γ , u and τ . Γ is a tuple (GU , VU), where VU is a map between atoms
(either m or p) and users in GU . VU(m) is a set that contains only one user in GU
whose name is m and VU(p) is a set of users that have the attribute as specified
by p. For example, VU(Alice) refers to a singleton containing the node of Alice in
GU . A valuation is a map from variables to U . When there is a new map from x
to u added to τ , we write τ [x 7→ u].
We use satisfaction relation Γ, u, τ � φ to evaluate formulas.

Γ, u, τ � x iff u = τ(x)
Γ, u, τ � m iff VU(m) = {u}
Γ, u, τ � p iff u ∈ VU(p)
Γ, u, τ � ¬φ iff Γ, u, τ 2 φ
Γ, u, τ � φ1 ∧ φ2 iff Γ, u, τ � φ1 ∧ Γ, u, τ � φ2
Γ, u, τ � φ1 ∨ φ2 iff Γ, u, τ � φ1 ∨ Γ, u, τ � φ2
Γ, u, τ � 〈αi〉φ iff ∃ u′ ∈ U s.t. (u, u′) ∈ αi ∧ Γ, u′, τ � φ
Γ, u, τ � #mφ iff Γ, u′, τ � φ, where VU(m) = {u′}
Γ, u, τ � #xφ iff Γ, τ(x), τ � φ
Γ, u, τ � Oxφ iff Γ, u, τ [x 7→ u] � φ

The first three relations express the meaning of atoms. When φ is a variable x,
it holds if and only if when τ contains a map from x to u. If φ is a nominal
or propositional symbol, it is true if and only if when u is in the set defined by
VU . When several modal logic operators (〈αi〉) are aligned sequentially, they can
represent a relationship path, e.g., user can define a policy to regulate that only
‘friends of friends’ can access his resource. The hybrid logic operator #sφ jumps
to the node that s refers to in GU , and Oxφ adds a map from x to u into τ .

Access control policies. The formulas in the hybrid logic are used to express an
access control policy that specifies the conditions under which the access requester
gets access to a resource depending on his relation to the owner of the resource. We
define a subset of formulas of the hybrid logic which can be meaningfully applied
for this purpose:

Definition 2.1.1. Let L(own, req) be the set of formulas of the hybrid logic that

• contain at most own and req as free variables, and

• are Boolean combinations of formulas of the two forms #ownφ and #reqφ.

An element of L(own, req) is called an access control policy.

A user u can specify a policy φ for every resource he owns. For determining whether
a user u′ gets access to the resource, it needs to be checked whether Γ, u, τ � φ.
We use uown to denote the owner and ureq to denote the requester.
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An example policy. To give an example, suppose that Alice only allows her
friends or friends of friends to view one of her resources. Then the policy formula
can be written as follows:

#own(〈friend〉req ∨ 〈friend〉〈friend〉req).

The hybrid logic operator #own drives the formula to start at Alice. The re-
quirement “friends of friends” is achieved by aligning 〈friend〉 twice which forms
a relationship path of length two.
To further restrict the access to the resource, except for her friends, Alice regulates
that the qualified requester should have at least three common friends with her.
The policy formula is written as

#own(〈friend〉req ∨ 〈friend〉3req).

This is the “n-common friends” – one of the topology-based access control policies
defined in [FAZ09] – 〈friend〉3 expresses “at least three different friends” in the
formula. In [BFSH12], the authors show how to implement this policy with the
logic operators Ox and #s, we omit the details here.
There are mainly two reasons for us choosing hybrid logic to specify access control
policies for social networks. First, the operators in the logic suits well with the
access control requirements in social networks, such as the previous mentioned “at
least three different friends” and the nominals which can directly refer to users in
social networks. Second, as pointed out in [BFSH12], a hybrid logic formula can be
efficiently evaluated since only the parts that are needed to make an access control
decision in the model are examined.

2.2 Cryptographic Primitives

Bilinear map. Let G1 = 〈g〉 and G2 be two multiplicative groups of the same
prime order p. An efficient computable map e : G1 ×G1 → G2 is a bilinear map if
the following properties hold:

Bilinearity: ∀a, b ∈ Z∗p, e(ga, gb) = e(g, g)ab
Non-Degeneracy: e(g, g) is a generator of G2

Computational Diffie-Hellman (CDH) problem. This problem states that
given ga, gb ∈ G1, find gab ∈ G1. CDH assumption means that there is no proba-
bilistic polynomial time algorithm to solve CDH problem in G1.
A variant of CDH problem is called Reversion Computational Diffie-Hellman prob-
lem (RCDH): given ga, gc, find gc/a. In [CZK03], the authors proved that RCDH
problem is equivalent to CDH problem.
Due to the existence of bilinear map e, Decisional Diffie-Hellman (DDH) problem,
i.e., given ga, gb, gc ∈ G1, decide whether gab = gc or not, can be efficiently solved in
G1 while CDH problem remains hard. G1 is also referred as a Gap Diffie-Hellman
(GDH) group.
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Bilinear Diffie-Hellman (BDH) problem. It can be considered as a CDH
problem in G2. It states that, given ga, gb, gc ∈ G1, find e(g, g)abc ∈ G2. Again,
BDH assumption indicates that there is no probabilistic polynomial time algorithm
that can solve BDH problem in G2.

BLS signature. Boneh et al. [BLS01] proposed a short signature scheme based
on GDH groups. An approximately 160-bit BLS signature can achieve a similar
security level of a 320-bit DSA signature. The BLS signature scheme contains three
algorithms, i.e., KeyGen, Sign and Verify, and hash function H : {0, 1}∗ → G1 is
a random oracle [BR93].
KeyGen. Each party chooses a random value x from Z∗p (denoted by x

r←− Z∗p) as
its private key; the corresponding public key is gx ∈ G1.
Sign. To sign a message m, the signer hashes m into G1, i.e., H(m), and computes
H(m)x.
Verify. Given gx, H(m)x and m, the verifier first computes H(m), then checks if
e(H(m)x, g) = e(H(m), gx) holds.

Private set intersection. A private set intersection (PSI) protocol allows two
parties to find the intersection of their input sets without leaking extra information
(e.g., see [FNP04, SSS12, DCW13]). A cardinality PSI protocol only allows two
parties to learn the size of the intersection of their sets.



3

A New Access Control Scheme for Online
Social Networks

3.1 Introduction

With the large amount of data maintained in OSNs, privacy concerning users’
personal information inevitably becomes an important but scientifically challeng-
ing problem. Access control schemes (e.g., see [San93, SCFY96, Aba03, AF03,
LMW05, BBL05, RCHBC09, LLWC12]) are naturally introduced to protect users’
private information or resources in OSNs. They can be used to guarantee that
resources are only accessible by the intended users, but not by other (possibly
malicious) users.
Due to their own nature and the development of information and communication
technology, OSNs admit quick and dynamic evolutions. Many new services and
methods for user interaction have emerged. For instance, users can play online
games with friends or find people who share similar interests. More recently, with
the increased popularity of GPS-enabled mobile devices, OSNs have evolved into
location-based social networks – users can tag posts and photos with their geo-
graphical locations, find nearby friends and post check-in of some places to share
their comments. OSNs are also emerging as social media – people use OSNs to
publish news, organize events or even seek for emergent help. For example, Face-
book and Twitter play an extremely important role during the rescue process for
the “April 2011 Fukushima earthquake”; and in summer 2014, the “Ice Bucket
Challenge” have achieved a huge success through social media1.
With these evolutions, more information and activities of users are made available
in OSNs. As a result, new access control schemes are needed to capture these new
developments. Let us illustrate this need by a few scenarios.

• Someone broke the window of Alice’s expensive car and took her purse when
she parked the car in the area of Montparnasse in Paris. Alice publishes a
status in the OSN to see if anyone can provide her some clue to find the
purse back. She doesn’t want everyone to know that she has an expensive
car, and people who live in other areas or cities won’t be able to give her any
useful information. Therefore, she intends to choose people who live in the
Montparnasse area as audiences of her status.

• Bob wants to organize a fundraising event for children’s rare diseases. He
doesn’t want to make this event public as certain sensitive information of the

1http://en.wikipedia.org/wiki/Ice_Bucket_Challenge
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participants can be leaked, e.g., it is possible that some participants’ family
members may suffer from the disease. Instead, Bob only wants people who are
linked with a certain number of charities (through donations, volunteering,
etc) as him to attend the party.

• Charlie has some friends who work at the rival company of his own employer.
These friends invited him to attend the party organized by their company.
Charlie publishes a photo taken at the party. Apparently, it is not a good
idea for his colleagues and boss to see this photo. Thus Charlie wants no one
but his friends who work at this rival company to see it.

In relationship-based schemes, a resource owner cannot exploit any other informa-
tion but user relationships between him and the requester when defining access
control policies. Therefore, the above requirements cannot be fully and precisely
formulated in the current schemes proposed in the literature.
In this chapter, we propose a new access control scheme for OSNs. We focus on
public information existing, e.g., in Facebook, and show that it can be used to
group users based on their attributes, common interests and activities. Public
information can thus be considered as a new dimension for users to regulate access
to their resources. As a consequence, we propose a new OSN model containing
both a social graph and a public information graph. We then extend the hybrid
logic in Chapter 2 to express this type of access control policies. The expressiveness
of our scheme is extensively discussed through a number of real-life scenarios. We
further identify two special semantic relations, i.e., category relation among public
information and relationship hierarchy, which allow us to express certain types of
policies in a concise way. To address information reliability in OSNs, we propose
to add endorsement and trust into our policy formulas. In addition, we formally
model the collaborative access control within our new scheme.

3.2 Public Information and Access Control

In this section, we take Facebook as an example to introduce public information
in OSNs. In Facebook, each user is affiliated with a personal profile that contains
his basic information, such as age, gender and nationality, he can establish friend
relations with others. A user can organize his friends into different communities,
namely friend list. Besides, Facebook is also a platform for user interaction. A user
can directly communicate with his friends by sending messages or tagging photos.
Two friends can interact through Facebook applications such as games.
To facilitate user interaction, Facebook imports knowledge of external sources, e.g.,
Wikipedia and Bing map, into its system to formalize another type of entities. We
name them public information. A lot of entities in the real world are modeled as
public information, e.g., countries, history events or public figures. Public infor-
mation are mainly used as common reference points of users’ information, through
which a user can find other users in Facebook with similar background, hobbies,
experiences, etc. For example, a user can find his schoolmates through the public
information of the college that he has attended.
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Figure 3.1: Access control with smart list in Facebook.

Each public information is affiliated with a content that is normally extracted from
external sources. Similar to users, public information are also connected with each
other and links among them are based on their contents. For example, if Wikipedia
articles of two charities are connected, then their public information in Facebook
are connected as well. Besides, there exist many different links between users and
public information. Some of these connections are based on user profiles, e.g., if
a user specifies his employer in his profile, then he is linked with this employer’s
public information. Others are computed by Facebook through mining users’ data.
For example, if a user publishes a photo labeled with a location, then the user is
connected with the location’s public information.
In addition to facilitate user interaction, public information can also be useful to
express access control requirements. For example, in the first scenario as discussed
in Section 3.1, the requester has to be linked to the location where the car was
parked; in the second one, the requester needs to be linked with the owner through
some charity organizations; in the third one, the requester is asked to be connected
with the owner through not only a friendship but also their employers’ connection.
Here, the location, charities as well as companies can all be modeled as public
information in OSNs.
All the above access control requirements are meaningful and in line with the recent
developments of OSNs. However, the current access control schemes proposed in
the literature mainly focus on relationships among users, public information are
not taken into account. On the other hand, Facebook already allows users to define
policies with some simple public information. As shown in Figure 3.1, a user can
define a policy to allow users who lives in the same area or work at the same
university as him to view his photo through smart lists. However, this function is
still ad hoc, scenarios proposed in Section 3.1 cannot be fully captured. Therefore,
in this chapter we propose a new access control scheme, in which policies can be
expressed based on both users and public information, and their relationships.

3.3 An Extended Model of Online Social Networks

Based on the social network model presented in Chapter 2, our extended OSN
model contains there parts (1) users and their social relationships, (2) public infor-
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Figure 3.2: Social graph and public information graph.

mation and their connections, and (3) links between users and public information.
Public information and users are essentially two different concepts – public infor-
mation are imported from external databases (in most cases), and they cannot
perform actions and establish relationships with each other as users; relationships
among public information are also extracted from external sources. Therefore, we
treat public information and users separately. In Chapter 2, a social network is de-
fined as GU , here we define a public information graph as GP . Moreover, two maps,
i.e., ρ and %, are proposed to store links between users and public information.

Public information graph. As we introduced in Section 3.2, public information
is also linked as together, such as Paris is linked with France. Therefore, we model
public information as a graph. We use the set P to denote all public information
that are extracted from external databases, such as Wikipedia and some geography
databases (such as Bing). Each public information f has its own attributes. We
use RP = {β1, β2, . . . , β`} to denote a (finite) set of relationship types on public
information. Each relationship type βj can be semantically defined as βj ⊆ P×P .
If βj’s reverse relationship type exists, it is denoted by β−1

j . Public information
graph is formally denoted as GP = (P , EP), where P is the set of nodes and EP is
a subset of {(f, f ′, βj) | f, f ′ ∈ P and (f, f ′) ∈ βj}.

Links between GU and GP . There are a lot of links between users and public
information. For example, a user is linked with the language he speaks and the
city he lives in. As the OSN is modeled as GU and GP , we define two maps, i.e., ρ
and %, between them to describe their connections:

ρ : U → 2P and % : P → 2U .

For a user u ∈ U , ρ(u) is a subset of the nodes in GP that are related to u, i.e.,
public information provided by u in OSNs. For a public information f ∈ P , %(f)
gives all the users in GU who have been involved in activities or have information
related to f . How to compute ρ and % is not the focus of this chapter, we assume
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that ρ and % always give us the right results. In practice, it is desirable to have
more fine-grained links between users and public information. With respect to
this, the two maps ρ and % can be further refined to reflect how precisely a user
and a piece of public information is connected.

An example. A sample OSN model is shown in Figure 3.2, whose left side is a
GU and right side is a GP . Edges in the graph with double arrows imply that the
relationships are symmetric2. For example, Alice and Bob are friends; Company A
and Company B are rivals. The dash lines between users and public information
reflect the links between GU and GP , which are formally captured by the two maps
ρ and % (The part contained in the dashed box in the right-bottom corner will be
discussed in Section 3.6.).

3.4 A Hybrid Logic for Public Information

We adopt the hybrid logic presented in Chapter 2 to specify access control policies
for OSNs, and additionally introduce a new type of formulas ψ, namely public
information formula. With such formulas, we can define policies based on infor-
mation in GP . Moreover, two new logic operators, i.e., � and �, are introduced
to connect formulas on GU and GP , respectively. In this way, we can combine re-
sources and their relations from both GU and GP to specify new and expressive
access control policies.

Syntax. The syntax of the extended hybrid logic syntax is as the following.

s ::= m | x
t ::= n | y
φ ::= s | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈αi〉φ |#sφ | Oxφ |�ψ
ψ ::= t | q | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | 〈βj〉ψ |  tψ | Hyψ | �φ

As we can see, the syntax of public information formula resemble user formulas3.
Two new logic operators, i.e., � and �, are used to connect the two types of
formulas φ and ψ together. They allow the specification of access control policies
based on both information from the user graph and the public information graph.

Semantics. Our model for evaluating access control policy formulas contains six
parts, i.e., Γ,∆, ρ, %, cur n, τ , where Γ = (GU , VU) and ∆ = (GP , VP ). VP is a
map between atoms (either n or q) and public information in GP . For example,
VP (Paris) refers to a singleton containing the node of Paris in GP . As introduced
in Section 3.3, ρ and % connect users and public information. Node cur n refers
to either a user u in GU or a public information f in GP . Valuation τ stores all the
maps from variables in the policy formula to vertices in either GU or GP .
The meaning of the extended user formula φ is the same as in Chapter 2, except
for the newly introduced �, which is defined as the following.

Γ,∆, ρ, %, u, τ � �ψ iff ∃f ∈ ρ(u) s.t. Γ,∆, ρ, %, f, τ � ψ
2 For the sake of simplicity, we omit some edges in the figure, e.g., the edge from Danny and

Eve to represent the relationship “husbandof”.
3We refer φ introduced in Chapter 2 as user formula.
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The new operator, i.e., �ψ, links a user formula φ with a public information
formula ψ – it maps the current node u in GU to a set of public information in GP
that are related to this user. If there is one public information in ρ(u) satisfying
ψ, then the formula �ψ holds.
In the following, we give the meaning of public information formulas ψ.

Γ,∆, ρ, %, f, τ � y iff f = τ(y)
Γ,∆, ρ, %, f, τ � n iff VP (n) = {f}
Γ,∆, ρ, %, f, τ � q iff f ∈ VP (q)
Γ,∆, ρ, %, f, τ � ¬ψ iff Γ,∆, ρ, %, f, τ 2 ψ
Γ,∆, ρ, %, f, τ � ψ1 ∧ ψ2 iff Γ,∆, ρ, %, f, τ � ψ1 ∧ Γ,∆, ρ, %, f, τ � ψ2
Γ,∆, ρ, %, f, τ � ψ1 ∧ ψ2 iff Γ,∆, ρ, %, f, τ � ψ1 ∨ Γ,∆, ρ, %, f, τ � ψ2
Γ,∆, ρ, %, f, τ � 〈βj〉ψ iff ∃f ′ ∈ Ps.t.(f, f ′) ∈ βj ∧ Γ,∆, ρ, %, f ′, τ � ψ
Γ,∆, ρ, %, f, τ �  nψ iff Γ,∆, ρ, %, f ′, τ � ψ where VP (n) = {f ′}
Γ,∆, ρ, %, f, τ �  yψ iff Γ,∆, ρ, %, τ(y), τ � ψ
Γ,∆, ρ, %, f, τ � Hyψ iff Γ,∆, ρ, %, f, τ [y 7→ f ] � ψ
Γ,∆, ρ, %, f, τ � �φ iff ∃u ∈ %(f) s.t.Γ,∆, ρ, %, u, τ � φ

It is easy to find that the semantics of public information formulas resembles the
user formulas. Therefore, information in GP can be used in access control policies
in a same way as in GU . When the evaluation process encounters the operator �φ,
the public information node f is mapped to users that are related to it in GU . If φ
holds at one of these users, then the formula �φ is true.
Note that, by combing the user formula �ψ with propositions, we can link a user
to a more specific set of public information. We write �qψ for �(q ∧ ψ) and its
meaning can be reinterpreted as:

Γ,∆, ρ, %, u, τ � �qψ iff ∃f ∈ ρ(u) ∩ VP (q) s.t. Γ,∆, ρ, %, f, τ � ψ

Similarly, we can define �pφ as �(p ∧ φ) and formulate its semantics.

Model checking. Given an OSN model (GU ,GP , ρ, %) and an access control policy
expressed in our hybrid logic as a formula φ, the satisfaction of Γ,∆, ρ, %, u, τ � φ
with τ [own 7→ u, req 7→ u′], Γ = (GU , VU) and ∆ = (GP , VP ) is formulated as a local
model checking problem by Bruns et al. [BFSH12]. Except for the user graph GU ,
our OSN model captures public information and their relationships. Moreover, our
logic essentially extends the one of [BFSH12] with public information formulas ψ
defined on GP and two new operators � and � connecting user formulas and public
information formulas. In principle, we can reuse the model checking algorithm of
Bruns et al. [BFSH12]. As formulas of the form �ψ′ or �φ′ explore the links
between GU and GP , we need to treat them differently. A formula �ψ′ maps the
current node (cur n) in GU to a a set of public information in GP . As long as there
is one public information in ρ(cur n) satisfying ψ, then φ holds. The formula �φ′
is defined similarly. To check them, we can develop a sub-routine similar to MCmay
of Bruns et al. [BFSH12], which first computes the set of all public information
(users) related to a specific user (public information) and then iterate through the
set until one of them makes the connected formula ψ′ (φ′) hold on GP (GU). For
formulas �(q∧ψ′) and �(p∧φ′) as discussed in Section 3.4, we can further reduce
the size of the computed set by using propositions p and q to improve the efficiency
in model checking.
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3.5 Example Policies

In order to show the expressiveness of our new scheme, we design several real-life
scenarios and give their corresponding formulas in our logic. We use the OSN
model depicted in Figure 3.2, and assume that valuation g contains two maps
own 7→ uown and req 7→ ureq, where uown, ureq ∈ U are the owner and the requester,
respectively (Chapter 2).
We illustrate the usage of public information by defining access control policies
for four different scenarios. In the first scenario, public information are used to
describe an attribute of the qualified requester. While in the second and third
scenarios, the owner and the requester are linked through public information. In
addition, the third scenario needs the owner and the requester to be connected
through the user relationship as well. In the fourth scenario (not discussed in
Section 3.1), the owner and the requester are linked through a path composed by
both users and public information.

Scenario 1. Let us recall the first access control scenario discussed in Section 3.1,
which exploits the information in GP . Alice publishes a status to find a witness
who lives in or visited the area where her car was broken into, i.e., Montparnasse
in Figure 3.2. The policy is formulated as

#req � Montparnasse.

The operator � links GU with GP , as introduced in Section 3.4, we can use �IsLocation
to make the map more precisely. Montparnasse in the formula is a nominal,
VP (Montparnasse) is the node that represents Montparnasse in GP . Here, the re-
quester’s connection with Montparnasse can be treated as one of his attributes.
In order to get more information, Alice may enlarge the searching area to the whole
city, i.e., Paris in Figure 3.2. We assume that a user can only be linked to a place’s
public information, but not to a city’s public information. For example, a user’s
photo can be labeled with any street or square of a city, but not the city itself.
The policy can then be written as

#req �IsLocation 〈is-in〉Paris.

Here, 〈is-in〉 represents a 1-depth relationship path in GP . Depending on the policy,
the length of the path can be arbitrary. Note that the requester’s connection with
Paris can be also formalized as an attribute. However, in this way, each user will
be affiliated with a huge number of attributes in the model which may not be an
ideal solution.

Scenario 2. In this scenario (the second one in Section 3.1), Bob wants to use the
OSN to organize a fundraising party for children’s rare diseases. He intends to let
people who are affiliated with at least a certain number, such as three, of different
charities as himself to access the event page. The policy is defined as follows.

#own �IsCharity Hy1 � (req∧
#own �IsCharity Hy2(¬y1 ∧�(req∧
#own �IsCharity Hy3(¬y1 ∧ ¬y2 ∧�req))))
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Figure 3.3: Connections between Bob and qualified requesters.

The left part of Figure 3.3 depicts an example of three charities (“UNICEF”, “Red
Cross” and “SOS Children’s Villages”) in GP needed between a qualified requester
and Bob. It can be thought as a public information version of “3-common friends”
policy in GU . Three variables, i.e., y1, y2 and y3, mark three charities that Bob is
linked with; the conjunction of their negative forms, i.e., ¬y1 and ¬y1∧¬y2, in the
formula makes sure that these three charities are different.
With our logic, more complicated policies can be achieved based on the information
of GP . Suppose that Bob wants to organize another fundraising party for homeless
children in Syria during its current civil war. For security and privacy reasons, he
believes that the qualified requesters to attend this event should be people who are
linked with at least two charities as he is, such as “UNICEF” and “Red Cross”,
that are involved in the humanity aid in Syria organized by the United Nations,
i.e., “Unocha.Syria” in GP ,4. The policy is defined as

#own � Hy1〈donate〉Hy5(Unocha.Syria ∧ 〈donate−1〉Hy3 � (req ∧
#own � Hy2(¬y1 ∧ 〈donate〉(y5 ∧ 〈donate−1〉Hy4(¬y3 ∧�req )))))

The connections between the requester and Bob are shown in the right part of
Figure 3.3. Variables y1 and y2 mark two different charities; so do y3 and y4 for
the requester. We notice that the charities that Bob is related to need not to
be different from the ones of the requester. Variable y5 guarantees that all these
organizations have contributions to “Unocha.Syria”.
Since the public information and their relationships are extracted from external
sources, complicated relationship paths in GP as shown in this example give rise
to more meaningful and expressive access control policies.

Scenario 3. In the third scenario in Section 3.1, Charlie only allows his friends
who work in the rival company of his employer to view his photo. The policy is
formally defined as below:

#own(〈friend〉req ∧ (�〈rival〉� req)).

Different from policies in the previous scenarios, this one requires that the owner
and the requester are linked through information in both GU and GP . More pre-
cisely, the sub-formula �〈rival〉� regulates that the qualified requester need to
work for Company B’s rival, i.e., Company A; and the sub-formula 〈friend〉 filters
out the requester who is not a friend of Charlie. We use a conjunction symbol to
combine these two parts. In Figure 3.2, only Alice is qualified as she is a friend of
Charlie and she works for Company A.

4http://syria.unocha.org/

http://syria.unocha.org/
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Scenario 4. In the fourth scenario, suppose that Bob wants to organize another
fundraising event, and he wants to invite people who used to participate in the
same charities as him and their friends to attend the event. The policy formula is
specified as below:

#own �IsCharity �(req ∨ 〈friend〉req).
In Figure 3.2, Alice is invited to participate this event since she is linked with
Bob through a charity (UNICEF). Moreover, Frank, Gabriele and Charlie can also
receive the invitation due to their friendships with Alice. Here, the path that
links Frank (as well as Gabriele and Charlie) and Bob is composed by both public
information and users in the social network model.

3.6 Category Relation in Access Control

In this section, we explore the category relation among public information and
incorporate it in our hybrid logic for the aim of concisely specifying access control
policies based on public information.

3.6.1 Category Relation in Public Information Graph

Let us first consider another scenario. In the model depicted in Figure 3.2, Charlie
is linked with several kinds of sports including Basketball and Tennis. Alice is also
a sport fan and her favorite one is Tennis, while Danny likes Volleyball. Charlie
has a photo depicting him playing tennis. He only wants his friends who are linked
with Tennis to view it. The policy can be defined as

#own〈friend〉(req ∧ (�Tennis)).

Since Alice likes Tennis, she can view the photo. Now, Charlie decides to relax
the restriction such that the qualified requester should be his friend who likes any
kinds of sports. He modifies his policy as follows:

#own〈friend〉(req ∧�(〈is-a〉Sports)).

Relationship path 〈is-a〉 in the formula marks all the public information that are
in an is-a relation with Sports in GP , e.g., Tennis. However, this policy cannot
achieve Charlie’s goal. For example, Danny is not able to view this photo even he
is supposed to be. This is because Volleyball is not linked with Sports but Team
Sports in is-a relationship as shown in Figure 3.2. In order to grant access to
Danny, Charlie again modifies the policy as follows:

#own〈friend〉(req ∧�(〈is-a〉Sports ∨ 〈is-a〉〈is-a〉Sports)).

However, there exists many public information related to Sports in the OSN and
defining a policy by enumerating all possible lengths is not an acceptable solution.
In Wikipedia, articles are organized by means of categories and all the categories
form an acyclic graph. Figure 3.4 shows a part of the category graph of Wikipedia5.

5http://en.wikipedia.org/wiki/Help:Categories

http://en.wikipedia.org/wiki/Help:Categories
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Figure 3.4: Part of the category hierarchy of Wikipedia.

An article is under (at least) one category, some article can be the main article
of a category. For example, article basketball is under the category team sports,
it is also the main article of the category basketball. An article under a category
is linked with the category’s main article. Actually, this is the is-a relationship
among public information in GP , we call it category relation. Since all categories of
Wikipedia form an acyclic group (category graph), public information together with
is-a relationships among them compose an acyclic graph as well. For example, the
subgraph in the dashed box in Figure 3.2 is a tree. Next, we integrate the category
relation into our logic formula to express above policies in a concise way.

3.6.2 Logic with the Category Relation

In the model depicted in Figure 3.2, Charlie is linked with several kinds of sports
including Basketball and Tennis. Alice is also a sport fan and her favorite one is
Tennis, while Danny likes Volleyball. Charlie has a photo that he wants to share
with all his friends who like sports. As depicted in the dash box of Figure 3.2,
these kind of public information are organized by categories. Instead of defining a
policy to specify all the sports that are linked to users, we can directly use these
category information to define policies.
To make use of the category relations among public information, we first introduce
a function on GP and a new symbol in our logic. The function cf is defined as

cf({f}) =
{
{f} @f ′ s.t. (f ′, f) ∈ is-a⋃
cf({f ′}) ∀f ′ s.t. (f ′, f) ∈ is-a

The result of cf({f}) contains f and all its descendants in an acyclic graph based
on is-a relationships in GP .
In our hybrid logic, nominal n can represent name of any public information in
GP . In order to refer to the node named n as well as all its descendants in the
formula, we add a category nominal bnc into our logic. The syntax of formulas ψ
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Figure 3.5: Access control with close friends, acquaintances and restricted.

is extended as follows:

ψ ::= t | bnc | q | ¬ψ | ψ1 ∧ ψ2 | 〈j〉ψ |  tψ | Hyψ | �φ.

The semantics of bnc is

Γ,∆, ρ, %, f, τ � bnc iff f ∈ cf(VP (n))⋃VP (n).

With the category nominal, Charlie can easily redefine his policy in the previous
example as

#own〈friend〉(req ∧�bSportsc).

Now, all friends of Charlie who are related to any kind of sport activities, such as
Alice and Danny, can access the photo.
Similar to the ones with their contents from Wikipedia, public information from
geography databases, i.e., places, together with is-in relationships among them also
naturally compose an acyclic graph. Therefore, we are able to define policies to
qualify the requester, such as “only my friends who have ever been to Europe”, in a
concise way without listing different length of is-in relationship paths in GP . Other
types of hierarchical relationships on public information can also be investigated
for the same purpose.

3.7 Relationship Hierarchy

In this section, we extend our hybrid logic to capture the hierarchy among different
relationships, enabling policy propagation in our access control scheme.

3.7.1 Relationship Hierarchy

Our social graph model supports multi-relationships. As depicted in Figure 3.2,
Gabriele and Danny are brothers and Alice and Danny are schoolmates. In general,
different relationships have different social strength. Family-related relationships,
such as spouse and parents, are normally considered stronger than professional
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relationships such as colleagues. When an owner allows others who are in a certain
relationship with him to view one of his resources, those who are in a stronger
relationships with the owner intuitively should be able to access the resource as
well. For example, if Alice allows her colleagues to view her education background,
then her husband and parents should also be able to see it.
In our hybrid logic, to express this kinds of policy, we can define a formula for
each relationship type and connect these formulas together with the disjunction
operator ∨. The policy formula for the above example in our hybrid logic can be
specified as

#own〈colleague〉req ∨#own〈wifeof 〉req ∨#own〈childof 〉req.

However, this solution is not ideal since it requires the owner to specify the policy
for all the intended relationships one by one. It is very likely that the owner misses
some relationships, thus the policy cannot fully capture his intention. Therefore,
we need a straightforward way to let the owner only specify one relationship in the
policy and all the users who are in a stronger relationship with him can access the
resource directly. In fact, Facebook already allows a user to put his friends into
three (smart) friend lists including “close friend”, “acquaintances” and “restricted”
based on their social strength. However, as depicted in Figure 3.5, a Facebook
user still needs to specify these lists in the audience selector (see Section 3.2) to
control who can view his resource, i.e., access control based on social strength is
not implemented automatically in Facebook.
To express this kinds of policies in the hybrid logic, we first need to define a hier-
archy on all the relationships supported by the OSN. This hierarchy can be built
at a system level or a user level. At a system level, OSN operators could regulate
the order of relationship types with respect to their social strength. On the other
hand, different users may have different opinions about the strength of the rela-
tionships. For example, some users believe that college friends are more important
than colleagues from work while some have the opposite opinion. Therefore, OSNs
could delegate this right to each user and let them freely define the relationship
hierarchies themselves. Here, for the sake of simplicity, we assume that the rela-
tionship hierarchy is defined at a system level. This indicates that all users in the
OSN will share the same relationship hierarchy. The definition of the relationship
hierarchy is given as follows.

Definition 3.7.1. A relationship hierarchy is defined as (RU ,≤), where RU is the
relationship type set i.e., RU = {α1, α2, . . . , αk} and ≤ is a binary relationship on
RU which is reflexive, antisymmetric and transitive.

By its definition, a relationship hierarchy is a partially ordered set. For two re-
lationship types, α1 ≤ α2 indicates that α2 is a closer relationship than α1. Fig-
ure 3.6 gives an example of the hierarchy. In this example, spouse is considered the
strongest relationship followed by close friends and family. Note that the actual
strength of the relationships is out of the scope of this chapter, OSN operators can
follow any theory from sociology to construct the relationship hierarchy.
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Figure 3.6: A relationship hierarchy example.

3.7.2 Logic with Relationship Hierarchy

To exploit the information in relationship hierarchy for access control, we introduce
a symbol d〈αi〉eφ into our syntax. The syntax of the user formula is extended to:

s ::= m | x
φ ::= s | p | ¬φ | φ1 ∧ φ2 | 〈αi〉φ | d〈αi〉eφ | #sφ | Oxφ | �ψ.

The semantics of d〈αi〉eφ is defined below.

Γ,∆, ρ, %, u, τ � d〈αi〉eφ iff ∃ u′ ∈ U s.t. (u, u′) ∈ αj where αi ≤ αj
∧ Γ,∆, ρ, %, u′, τ � φ

Here, u′ can be in any relationship that is at least the same level of αi with
u defined in the relationship hierarchy. To evaluate the policy, the relationship
hierarchy should be included in the model Γ as well.

Example 1. Now, with the new operator, an owner could define a policy regulating
that users who are at least his colleagues can view one of his resource as

#ownd〈colleague〉ereq.

In addition, the hierarchy operator can be aligned together to express relationship
path as well. For example, the following policy means that the requester has to be
3-depth away from the owner and the relationship on each step has to be at least
colleague:

#ownd〈colleague〉ed〈colleague〉ed〈colleague〉ereq.

Example 2. To give another example on how to use the hierarchical relationships,
recall the social network depicted in Figure 3.2, suppose that Danny wants to share
his interest, such as Volleyball, with his friends. It is clear from Figure 3.2 that
only Charlie can view the information. If Danny intends to share it with users who
are also in stronger relationships with him, e.g., Eve (his wife) and Gabriele (his
brother), then the policy without using relationship hierarchy will be defined below,
where Danny has to explicitly enumerate all the relationships that he considers
stronger than friends:

#own〈friend〉req ∨#own〈husbandof 〉req ∨#own〈brotherof 〉req.

Now, given the extended logic that supports hierarchical information, Danny could
simply redefine the policy in a more concise way:

#ownd〈friend〉ereq.
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Moreover, if Danny considers schoolmate a stronger relationship than friend which
is different from the hierarchy presented in Figure 3.6, then Alice can access the
resource as well. In this case, instead of using the system level relationship hierar-
chy, Danny could define his own relationship hierarchy with friend ≤ schoolmate
specified. In general, with the extension, our logic can support any hierarchical
relationships when defining access control policies.
The main difference between relationship hierarchy and category relationship in-
troduced in Section 3.6 is the following: the former is defined on relationships, it
can only grant access to users who are at the certain distance (specified in the
policy) but in different relationships with the owner; on the other hand, cate-
gory relationship is defined on the nodes in public information graph and it can
represent paths of different length in a policy (through the recursively defined
function cf({f})). Further combination of the category relation and relationship
hierarchy can be achieved as well, which will give rise to a more powerful way to
specify complicated policies in a simple form.

3.8 Information Reliability

Owners define policies to control access to their resources. However, in some cases,
if the information in OSNs are not reliable, malicious users can still gain access to
some resources that they are not supposed to under certain policies. For example,
in Scenario 3 of Section 3.5, a colleague of Charlie, who is also his friend, can
maliciously specify that he works for the rival company in the OSN to access
Charlie’s sensitive photo. As introduced in Section 3.3, our OSN model contains
three parts, i.e., GU , GP and two maps ρ and %. We discuss about their reliability
one by one.

Reliability of GU . Information contained in GU are mainly users and their re-
lationships. Since a user can describe who he is in the OSN, we only focus on
users relationships. To increase user relationships’ reliability, we explore trust. In
contrast to the real life, trust between users in OSNs can be quantified, i.e., it has
a value. We first add trust values into GU . When u establishes an αi relationship
with u′, u will assign a trust value tαi to this relationship. The edge from u to u′
is then defined as (u, u′, αi, tαi). Similarly, the edge from u′ to u is (u′, u, α−1

i , t
α−1
i ).

Note that tαi is only known to u and tα−1
i is only known to u′, and these two values

can be different. We regulate that every trust value is in the interval [0, 1], the
bigger the value is, more trust it represents. We additionally introduce two new
operators 〈αi〉→tφ and 〈αi〉←tφ into the user formula φ and their semantics are
defined as follows.

Γ,∆, ρ, %, u, τ � 〈αi〉→tφ iff ∃ u′ ∈ U s.t. (u, u′) ∈ αi, tαi ≥ t and
Γ,∆, ρ, %, u′, τ � φ

Γ,∆, ρ, %, u, τ � 〈αi〉←tφ iff ∃ u′ ∈ U s.t. (u′, u) ∈ α−1
i , t

α−1
i ≥ t and

Γ,∆, ρ, %, u′, τ � φ

When the requester is regulated to be linked with the owner through user relation-
ships, trust can be put into the formula. Suppose that Eve only wants to share her
photo with users who have at least three common friends with her, and her trust
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on these common friends has to be above 0.8. The formula can be defined as the
following.

#own〈friend〉→0.8
3 req.

To get an illegal access with the above formula, a malicious user needs to become
friends with three users that Eve trusts (t ≥ 0.8). Note that the way we integrate
trust value into the user formula is simple. There exist other methods, such as
trust value can be evaluated on a whole relationship path. How to extend our logic
to support complicated trust requirements is part of our future work.

Reliability of GP . Different from users’ information, public information are im-
ported from external databases and they are not operated by real users. For
example, Paris’s information in Facebook is taken from Wikipedia and the fact
that it is in France can be extracted from public geography database. Therefore,
reliability of public information are guaranteed by these external sources – for in-
stance, the reliability of Wikipedia pages and their connections can be ensured by
a community effort and users’ reputation [AdA07].

Reliability of ρ and %. Some public information result in user relationships,
for example, users who went to the same school are “schoolmates” or work in
the same company are “colleagues”. If the link between the qualified requester
and this kind of public information are exploited by a policy, then the owner who
defines this policy can add the connection originated by the public information
between the qualified requester and other users into the formula as well. In this
way, these other users can be treated as endorsing the connection between the
requester and the public information. In Scenario 3 of Section 3.5, besides working
in the rival company, Charlie regulates that the qualified requester should have a
certain number, e.g., 3, of colleagues who work in this rival company. Moreover,
he can also add trust to the formula. The policy is defined as follows.

#own(〈friend〉→0.8req ∧ (�〈rival〉Hy � (req ∧ 〈colleague〉←0.7
3 � y))).

Now, in order to gain the access, the malicious user has to be trusted by Charlie
(t ≥ 0.8) and be colleagues with three other users who work in that company.
Also, these three colleagues’ trust value on the requester have to be at least 0.7.
Clearly, it is much harder for the adversary to succeed.
For policies exploiting public information that cannot result in user relationships,
endorsement (as well as trust) cannot be applied. For example, in Scenario 1
of Section 3.5, the qualified requester needs to be linked to a location, while in
Scenario 2 Bob and the requester are connected through charities. Similar to public
information, the reliability of the links between some of these public information
and users also depends on external services. For example, in Facebook, a user
is treated as having been to one location if he used to publish a status or photo
labeled with that location. This location label is provided by ISP (Internet Service
Provider) or GPS services. A user’s connection to a charity can be certified by the
charity, as the user normally gets tax benefit for his donations. Again, we do not
focus on the reliability of external services.
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(co-)owner Policy formula φ Qualified users
Alice #own〈friend〉req Frank, Charlie
Bob #own〈friend〉req Eve

Gabriele #ownd〈friend〉ereq Eve, Danny

Table 3.1: (Co-)owners with their policies and users who can access the resource.

3.9 Collaborative Access Control

So far, we have assumed that the resource’s access control policy can be only
defined by its owner. However, as introduced in Section 3.4, a resource can be
affiliated with several users, e.g., a photo tagged with several users, and each of
them should have the right to decide who can access the resource. This is the
so-called collaborative access control. In this section, we aim to extend our model
to support collaborative access control.
We first name all the users who are affiliated with a resource and are not the
owner as the co-owners of the resource. We further use the set O(r) to represent
a resource r’s owner and co-owners. If one co-owner of a resource wants to define
a policy to allow only his friends of friends to view the resource, then the policy
formula is specified as #own〈friend〉〈friend〉req. For simplicity, we still use variable
own in the formula to refer to one of the co-owners in O(r).
With multiple policies on a resource, access control conflicts can happen when
deciding whether granting the access to a certain user or not. Informally, a conflict
means a user can access the resource under one policy but is forbidden by another.
For example, in the user graph depicted in Figure 3.2, suppose that Alice publishes
a photo and tags her friends Bob and Gabriele in it. Here, Alice is the owner while
Bob and Gabriele are the co-owners of the photo. We assume that Alice and Bob
only allow their friends to view this photo and Gabriele wants users who are at
least his friends to view it (see Section 3.7). Their policy formulas as well as users
who can access the photo, namely qualified users, are listed in Table 3.1. There
are several access control conflicts. For example, Eve can access the resource under
Bob and Gabriele’s policies but she is forbidden by Alice. Note that the owner and
co-owners of resource can always access the resource, and they are not included in
the qualified users of each policy.
To formalize access control conflicts, we first define the set of qualified users of a
policy as the following.

Definition 3.9.1. Given an access control policy φ that is defined by a user
u on a resource r, i.e., u ∈ O(r), its set of qualified requesters is QU(φ) =
{u′ | Γ,∆, ρ, %, u, τ [own 7→ u, req 7→ u′] � φ ∧ u′ /∈ O(r)}.

Then, the conflict on accessing a resource is defined as

Definition 3.9.2. Given a resource with the set of access control policies defined
on it, denoted by Φ. An access control conflict happens if there exists u ∈ QU(φ)
for a policy φ ∈ Φ such that u /∈ QU(φ′) for another policy φ′ ∈ Φ.
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Several works have been proposed to resolve conflicts caused by collaborative access
control (see Section 3.12 for a short introduction), we can apply some of them
within our scheme. For instance, Hu et al. [HAJ13] proposed a few solutions for
resolving access control conflicts. In their work, the so-called naive solution is
to only allow the common users in the sets of qualified requesters to access the
resource. In the example of Table 3.1, no one except for the co-owners can view
the photo. This shows that the naive solution is too restrictive. In addition, more
sophisticated solutions based on voting schemes are proposed by Hu et al. [HAJ13]
and others [SSP09]. The voting scheme proposed in [HAJ13] contains two voting
mechanisms, namely decision voting and sensitive voting. For the decision voting,
each co-owner is assigned a weight on his vote. This weight can be equal for
everyone or other rules may apply as well, such as the owner’s vote has more weight
than other co-owners’. The final access control decision is made by accumulating all
the owner and co-owners’ votes. If the final result is above a certain threshold, then
the access is granted. For the sensitivity voting, each user assigns a sensitivity level
to the resource that he co-owns with others. This means the scheme is resource
based, i.e., a user can have a low sensitivity level on one resource but a high
sensitivity level on another resource. Similarly, the final decision for the sensitivity
voting is made by considering the total sensitivity level on the resource. We notice
that the decision voting and sensitivity voting can be combined together to further
improve the process on resolving conflicts.
So far, we have considered conflicts at the requester level, i.e., conflicts happen
when different co-owners allow different users to access the resource. In [SZP+12],
Sun et al. considered conflicts at a policy level and proposed an approach for resolv-
ing conflicts by combining trust relations in OSNs and preferential voting schemes.
Under their consideration, a conflict happens when co-owners’ policies are differ-
ent. In Figure 3.2, following the example in this section, Alice, Bob and Gabriele
co-own a photo. Since the policies listed in Table 3.1 from them are different, a
policy-level conflict happens. The solutions to resolve the requester-level conflicts
can be naturally exploited to resolve the policy-level ones. For instance, one naive
solution would be: only the owner’s policy is enforced on controlling the photo’s
access. In this case, Gabirele’s policy is ignored.
We notice that, in some cases, there are no policy-level conflicts but requester-level
ones. For example, in Table 3.1, Alice and Bob have the identical policy, thus there
is no policy-level conflict between them. On the other hand, as we discussed before,
their policies still cause requester-level conflicts. In some other cases, there may
be no requester-level conflicts but policy-level ones. For instance, suppose that
in Figure 3.2 Alice and Charlie are tagged in a same photo when they watched a
Tennis game at school several years ago. Charlie wants to share this photo with his
friends who like sports, i.e., #own〈friend〉(req ∧ �bSportsc). In Figure 3.2, except
for Alice, only Danny is qualified.trust Alice, however, only wants to share this
photo with her schoolmates, In Figure 3.2, only Danny can view the photo under
Alice’s policy. There is no conflict at the requester-level since the only qualified
requester is Danny. However, Alice and Charlie’s policies are obviously different
which results in a policy-level conflict. The relationship between these two types
of conflicts deserves further investigations, we leave it as a future work.
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[BFSH12] [CFH+09] [CPS12] This chapter
Multi-relationship type X X X X

User attributes X X X
Public information X

Trust X X
User-resource relation X

Relationship depth X X X X
Topology-based policy X X

Policy propagation X X

Table 3.2: Comparison of access control schemes for OSNs.

3.10 Comparison

In this section, we compare our scheme with relationship-based access control
schemes in the literature [BFSH12, CFH+09, CPS12] (see Table 3.2).
The model of OSNs in [BFSH12] is the same as our user graph GU , but public
information are not treated as entities. As a consequence, access control policies
only make use of users’ social representations. On the other hand, it seems possible
to express connections between users and public information through propositions
in [BFSH12]. For example, a proposition IsinParis can be used to express the
connection between a user and city Paris. However, as mentioned in Section 3.5,
each user will be affiliated with a large amount of attributes which is neither ideal or
practical. Moreover, policies that explore relationships between public information
(see examples in Section 3.5), cannot be captured by propositions.
The work proposed in [CFH+09] does not explicitly take into account public infor-
mation and their relationships. However, this work has two interesting features.
First, in the OSN model, users’ resources are treated as independent entities. Re-
lationships between users and resources are not restricted only to ownership, e.g.,
the relationship between a user and a photo that he is tagged in is modeled as
“photoOf” in their language. Thus, collaborative access control is possible in their
model. Second, due to the fact that OSNs are modeled with semantic web tech-
nologies, hierarchy information among users’ relationships are naturally supported
as well as actions and resources, which make policy propagation possible. For ex-
ample, if a user defines a policy to regulate the qualified requester to be his friends,
then users who are in a closer relationship, such as “good friend”, with him are
also qualified. In our work, we show how to perform policy propagation based on a
model of relationship hierarchy in our access control scheme (see in Section 3.7). In
addition, we used semantic relations among the public information in Section 3.6
to facilitate users to express their policies concisely.
Similarly, the scheme in [CPS12] does not take into account public information
neither. In this model, attributes of users are not represented. Moreover, their
policy language seems weaker than ours – negation symbol only works with rela-
tionship paths, but not on nodes. Hence, policies such as “all my friends but Alice
can view my photo” cannot be expressed. On the other hand, this work has some
its own features. First, the OSN model treats resources as nodes which is similar
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to the one in [CFH+09], and actions that users performed on their resources are
recognized as relationships. For example, a user can regulate that only users who
used to comment on a same photo as he did is able to poke him. To support this
in our access control model, we need to extend the social network model and treat
users’ resources as nodes as well. Second, the authors propose a simple solution
through administrative policies for collaborative access control. To achieve this in
our model, we need to add a decision module in the model checking algorithm.
We also notice that the two schemes [CFH+09, CPS12] can possibly treat public
information as users’ resources, i.e., modeled as nodes in their OSN model. How-
ever, as we explained previously in Section 3.3, public information are extracted
often from external databases, and relationships among them are different from
the ones between users. In our work, we apply the separation of concerns principle
to model public information and their relationships separately from users and their
social links.

3.11 Discussion

We have shown in this chapter that our scheme and its extensions can express
fine-grained access control policies related to users and public information. We
have also shown how to deal with the problem of information reliability in OSNs
by incorporating endorsement and trust into our policy formulas. There are still
two other issues to discuss.
The first question is about the usability of our scheme, especially for the non-
experienced users – whether a user can easily express a policy of his intention. On
one hand, relationship-based policies (e.g., friends, friends of friends) can be easily
expressed in our scheme like the current access control schemes adopted by OSNs.
On the other hand, a group of qualified requesters under a sophisticated policy can
be computed by OSNs, e.g., a Facebook user can directly get a list of his friends
who have been worked in a company through Graph Search. Besides, as shown
in Figure 3.1, Facebook already implemented smart list for users to define fine-
grained policies. Therefore, we believe that our scheme can be supported as well.
Moreover, users can use visualization tools (e.g., see [AFYH09]) to learn whether
their policies have been properly enforced.
The second is related to the availability of user information in OSNs. As privacy
raises serious concerns in OSNs, users might not be willing to share too much in-
formation. As a consequence, some eligible users can be filtered out by a policy
due to the lack of their information in the OSN. However, the main purpose of
OSNs is for people to express themselves and socialize with other users – more in-
formation a user shares, more benefits he will gain from the OSN. On the contrary,
a user keeps more privacy if he shares less information. There is always a balance
between information sharing (or utility) and privacy. What we focus in this chap-
ter is to explore the information shared by users in OSNs to express fine-grained
access control policies. Thus, we consider availability of user information in OSNs
orthogonal to our proposal.
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3.12 Related Work

Relationship-based access control, driven by OSNs, was first advocated in [Gat07]
and defined as an access control paradigm based on interpersonal relationships.
Carminati et al.[CFP09] are among the first to formally study relationship-based
access control model, where the relationships between the qualified requester and
the owner are interpreted into three aspects, i.e., relationship type, depth and
trust level. In [CFH+09], the authors used semantic web technology including
OWL and SWRL to extend the model of [CFP09]. They also proposed adminis-
trative and filtering policies which can be used for collaborative and supervising
access control, respectively. Fong et al. proposed an access control scheme for
Facebook-style social networks [FAZ09], in which they model the access control
procedure as two stages. In the first stage, the requester has to find the owner of
the target resource; then in the second stage, the owner decides whether the au-
thorization is granted or not. Their access control policies are mainly based on the
relationships between the requester and the owner. Moreover, they proposed sev-
eral meaningful access control policies based on the graph structure of OSNs, such
as n-common friends and clique. In [Fon11b], Fong introduced a modal logic to
define access control policies for OSNs. Later Fong and Siahaan [FS11] improved
the previously proposed logic to further support policies like n-common friends
and clique. In [BFSH12], the authors adopted a hybrid logic to describe policies
which eliminates an exponential penalty in expressing complex relationships such
as n-common friends. This hybrid logic is expressive and has been adopted by
several other works [TF14, TFM14, CPZ15] for specifying access control policies.
A visualization tool for evaluating the effect of access control configurations is de-
signed in [AF12], with which a user can check which other users within a certain
distance to him can view his resources. Cheng et al. proposed a rich OSN model
in [CPS12]. In their work, not only users but also resources are treated as entities
and actions performed by users are considered as relationships in OSNs. As more
information are incorporated in their model, many new access control policies can
be expressed (more details can be found in Section 3.10). Their model supports
administrative and filtering policies as proposed in [CFH+09]. Recently, Crampton
and Sellwood [CS14] generalized relationship-based access control to other systems
than social networks, they proposed path logic conditions for specifying policies
and adopt principle matching for policy evaluation.

3.13 Conclusion

In this chapter, we have first identified a new type of access control policies that
are meaningful but have never been addressed in the literature. Namely, users in
OSNs can express access control requirements not only based on their social rela-
tions but also on their connections through public information. Then we defined an
OSN model containing users and public information, based on which we proposed
a hybrid logic to define access control policies. We gave a number of policies based
on public information and formulated them formally and precisely in our proposed
logic. We further used category relations among public information and relation-
ship hierarchy to extend our logic and make it more practical. In addition, we also
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showed how to extend our model and logic to deal with unreliable information and
collaborative access control in OSNs.





4

Cryptographic Protocols for Enforcing
Relationship-based Access Control

4.1 Introduction

Access control policies presented in the previous chapter enable users to have more
precise and strict control on who can access their personal information or resources
in social networks. Meanwhile, such policies are quite flexible. For instance, a
user can define a policy allowing only his family members to view his photos.
Despite of their expressiveness and flexibility, enforcing these policies normally
requires many computing resources which are usually the bottleneck even for big
companies like Facebook. Decentralized social networks (e.g., [SSN+10, CMÖ11])
have been proposed in the literature as an ideal solution to address the problem. In
decentralized social networks, users can manage their own data and operate OSN
services with their personal devices instead of putting the burden on the central
operator’s shoulder [YLL+09]. In this way, implementing fine-grained relationship-
based access control polices will then only involve social network users. Moreover,
privacy is largely protected since the data of each user is managed by himself,
not the central operator. In recent years, developing cryptographic protocols for
enforcing fine-grained access control polices in decentralized social networks has
been an active research area (see Section 4.6).
In this chapter, we propose cryptographic protocols to implement two fine-grained
access control polices including “k-common friends” and “k-depth” as proposed
in [FAZ09], for decentralized social networks. Both of our protocols are based on
pairing-based cryptosystems and private set intersection protocols (see Chapter 2).
Security analysis shows that both protocols are secure under the honest but curious
adversary model. We further perform a detailed analysis of the protocols’ efficiency
and conduct an empirical evaluation of their performance with a real-life social
network dataset. The results show that our protocols are quite practical.

4.2 Policy Definition

Social network model. As presented in Chapter 2, a social network (graph)
is modeled as GU = (U , EU). Each edge is labeled with a relationship, such as
colleague and spouse. For simplicity, in the following up discussion, we only focus
on friend relationships, i.e., friendships, in our protocol. It is not difficult to extend
the proposed protocols for multi-relationships (Section 4.4). We use f (u) to denote
u’s friends. A path from one user to another in GU is represented by a sequence of
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users on this path, the number of edges on this path is defined as its depth. For
example, a path from u to u′ with ua as the middle node is denoted by [u, ua, u′]
and it is a 2-depth path. Here, u is also referred as the originator of the path.
Moreover, two paths are reverse for each other if they have same users but in
reverse sequences, e.g., [u′, ua, u] is a reverse path of [u, ua, u′].
Besides social information, each user is further equipped with some algebraic knowl-
edge. As introduced in Chapter 2, the two groups G1 = 〈g〉 and G2 of the same
prime order p together with a bilinear map e : G1 ×G1 → G2 and a random hash
function H : {0, 1}∗ → G1 are publicly known to everyone. A key management
authority assigns each user u a key pair (pk, sk) where the secret key is sk r←− Z∗p
and its corresponding public key is pk = gsk. When ua and ub become friends, ua
generates a signature θb,a = H(fri, ub)ska for ub as a friendship certificate. At the
same time, ub also issues ua a friendship certificate θa,b = H(fri, ua)skb . Putting
the identity of the user inside the certificate prevents users to transfer their friend-
ship certificates to others. Each user maintains all these certificates as well as the
corresponding users’ identities who have issued them.

Policy definition. Two access control policies proposed in [FAZ09] are considered
in this chapter. We formally define them as the following.
k-common friends. This policy regulates that the qualified requester should have
at least k common friends with the owner, formally |f (uown) ∩ f (ureq)| ≥ k.

k-depth. This policy specifies that uown is linked with ureq through a k-depth path.

In the following two sections, we present a protocol for each of the two policies and
prove its security under the honest but curious adversary (introduced next).

Adversary model. In this chapter, we focus on the honest but curious adversary
model and its detailed formal definitions can be found in [Gol04]. Under this
model, all users follow the specified protocol. An adversary tries to get some
additional knowledge by inspecting the protocol transcripts that he gets after the
protocol execution. To illustrate the security of our proposed protocols under this
model, we show that a party cannot get any extra information with the protocol
transcripts as well as the outputs. Note that we assume communication channels
among parties are authenticated, i.e., impersonating attacks are not possible.

4.3 k-common Friends

4.3.1 Protocol Description

Our solution for k-common friends applies the encoding scheme proposed in [SSS12]
and a cardinality PSI protocol.
In the beginning, ureq and uown exchange random values with each other, ureq sends
Rreq = grreq to uown and uown replies with Rown = grown to ureq, where rreq, rown

r←− Z∗p.
Next, both parties encode their friendship certificates following Algorithm 4.1.
To give an example, suppose ua ∈ f (uown) ∩ f (ureq), uown encodes the certificate
θown,a = H(fri, uown)ska into the following:

e(θown,a, Rreq) · e(H(fri, ureq), pka)rown . (I)
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Algorithm 4.1 ua’s friendship encoding scheme for ub
Input: ra, Rb

Output: E containing ua’s encodings related to ub
1: E ← ∅
2: for all uc ∈ f (ua) do
3: E ← E ∪ {e(θa,c, Rb) · e(H(fri, ub), pkc)ra}
4: end for

On the other hand, ureq encodes θreq,a = H(fri, ureq)ska into

e(θreq,a, Rown) · e(H(fri, uown), pka)rreq . (II)

Each encoding contains two components. The first component of (I) is equal to
the second component of (II) due to bilinearity of the map e, i.e.,

e(θown,a, Rreq) = e(H(fri, uown)ska , grreq)
= e(H(fri, uown), gska)rreq

= e(H(fri, uown), pka)rreq .

The same with the second component of (I) and the first one of (II). Therefore, en-
codings (I) and (II) are identical. Actually, the second component of one encoding
is an anticipation of the first component of the other one [SSS12]. As long as uown
and ureq have the proper friendship certificates issued by a common friend, their
encodings related to this friend are identical which means they have a common
element related to this common friend.
In the end, uown and ureq perform a cardinality PSI protocol on these encodings and
get the number of their common friends. Note that both uown and ureq can choose
not to encode their friendships that are considered sensitive for set intersection
operations.
All the encodings are based on the friendship certificates which are already part
of uown and ureq’s knowledge after they establish connections with other users.
Therefore, uown and ureq’s friends do not need to participate in the process, i.e.,
the protocol can be executed when they are offline. This is an appealing feature
for most situations, as it allows the protocol exclusively based on uown and ureq’s
local interaction and without the help of intermediate users.

4.3.2 Security Analysis

The goal of the protocol we want to achieve is that uown (ureq) cannot learn who
are friends of ureq (uown). Note that, since uown and ureq’s friends do not participate
in the protocol, they cannot cause any privacy threat.
In this protocol, except for the PSI operation, uown and ureq only perform local
computations (with their friendship certificates), i.e., they do not communicate
with each other. Therefore, neither of them will get extra information from that
stage. As the cardinality PSI protocol we exploit is secure against the honest but
curious adversary model, our protocol is secure under this model as well.
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Figure 4.1: The two stages of k-depth protocol.

4.4 k-depth

4.4.1 Protocol Description

The protocol for 2-depth policy can be implemented as a 1-common friend protocol.
When the depth is bigger than 2, since neither uown nor ureq has information about
users beyond their friends, the collaboration of intermediate users (neither the
owner nor the requester) is necessary. In the previous protocol, only uown and ureq
need to be online, common friends are discovered through friendship certificates
that uown and ureq have. We apply this idea to obtain our k-depth protocol.
Our protocol contains two stages, namely ((k−1)-depth) path certification and (k-
depth) path discovery. As we can see from the two dashed boxes in Figure 4.1, in
the path certification stage, uown and ureq ask intermediate users to certify (k−1)-
depth paths starting from them, respectively. In the path discovery stage, if a
(k−1)-depth path originated by uown shares a (k−2)-depth (reversed) path with
a (k−1)-depth path originated from ureq (see the central solid box in Figure 4.1),
then these two paths can compose a k-depth path between uown and ureq. In our
protocol, encodings of these two (k−1)-depth paths are identical. After performing
a cardinality PSI protocol, a k-depth path can be discovered (if such k-depth paths
exist for uown and ureq).
Besides a key pair, each user ua is also affiliated with a set of depth stamps, i.e.,
sa = {sja | sja

r←− Z∗p and j > 0}, and it is only known to the user himself. Here, sja
is the depth stamp for ua at depth j, called ua’s j-depth stamp. We regulate that
each user’s 0-depth stamp is equal to 1.

Path certification. In this stage, uown (ureq) first invites his friends to join the pro-
cess by sending them messages. A message m is defined as a tuple (ID , η, cnt, dep).
Here, the randomly chosen ID represents identity of the message; η is the path cer-
tificate which is equal to H(uown) for uown (H(ureq) for ureq) at the moment 1; cnt
starting from 1 represents the count value; dep = k−1 is the length of the path.
Note that everyone in the path certification stage can choose who to contact next.
Upon receiving a message with cnt 6=dep from one of his friends, if an intermediate
user agrees to join the path certification process, then he follows Algorithm 4.2.
The user first remembers the links between the identity of the received message
and identities of new messages that he is going to send out. Next, he generates a
new path certificate by raising the old one to the power of his cnt-depth stamp.

1H(uown) represents H(fri, uown) for simplicity.
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Algorithm 4.2 ua’s message generation scheme
1: receive: mx = (IDx, ηx, cnt, dep) from u
2: for all ub ∈ f (ua)− {u} do
3: choose a random identity IDy

4: store the link between (IDx, u) and IDy

5: ηy ← ηscnt
a
x

6: cnt ← cnt + 1
7: my ← (IDy, ηy, cnt, dep)
8: send: my to ub
9: end for

Algorithm 4.3 ua’s reverse message generation scheme
1: receive: rmy = (IDy, ηy, σy, cnt) from u
2: find (IDx, ub) linked with IDy

3: ηx ← ηy
4: σx ← σscnt

a
y

5: cnt ← cnt + 1
6: rmx ← (IDx, ηx, σx, cnt)
7: send: rmx to ub

As the depth stamp is only known to the user, this operation indicates that the
user agrees to certify the path. Moreover, by using his cnt-depth stamp, the user’s
position information on the path is directly stored into the certificate. For example,
if cnt is equal to 2, then using the user’s 2-depth stamp for the new path certificate
shows that he is the second one on this path. This is a crucial operation in our
protocol. Without it, the result in the path discovery stage may be incorrect, we
will show an example later.
If a user receives a message with cnt = dep, then he is aware that he is the last
one on the (k−1)-depth path. Next, he sends a reverse message back to the friend
who sent him the message. The reverse message rm is also denoted by a tuple
(ID , η, σ, cnt) where ID is the same as identity of the message he received; η is the
(k−1)-depth path’s certificate which will stay the same in the following processes;
σ represents the path stamp and it is equal to gs1

a at the moment if the user is ua;
cnt is reset to 2.
When a user gets a reverse message from his friend, he performs the operations as
specified in Algorithm 4.3. Since he has stored the connection between messages’
identities, he is able to forward the new reverse message back to the user who
sent him the corresponding message previously (step 2 in Algorithm 4.3). Identity
information guarantees that a reverse message’s forwarding path is the reverse
path of the one on which the corresponding path certificate is established. Each
intermediate user also builds the path stamp by raising the old one to the power
of the his cnt-depth stamp. Similarly, the sequence of intermediate users are
stored into the path stamp. Note that if a user uses his i-depth stamp to build a
path’s certificate, then he computes the path’s stamp with his (k−i)-depth stamp.
Essentially, establishment of a (k−1)-depth path’s stamp simulates the building
process of another (k−1)-depth path’s certificate where these two paths together
compose a k-depth path.
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Algorithm 4.4 ua’s k-depth encoding scheme for ub
Input: ra, Rb

Output: E containing ua’s encodings related to ub
1: E ← ∅
2: for all (ηx, σx) from the path certification stage do
3: E ← E ∪ {e(ηx, Rb) · e(H(ub), σx)ra}
4: end for

uo

ua

ub

uc

ur

Figure 4.2: A social network example.

In the end, several (k−1)-depth path’s certificates and stamps are sent back to
uown and ureq.

Path discovery. In this stage, uown and ureq follow a similar procedure of 1-
common friends protocol. First, they exchange two random numbers Rown = grown

and Rreq = grreq while keeping rown and rreq secret. Then, as the policy is k-depth,
they both encode all the (k−1)-depth paths’ certificates and stamps obtained from
the last stage following Algorithm 4.4.
For two (k−1)-depth paths starting from uown and ureq, respectively, if they can
compose a k-depth path, then exponent of one’s stamp is equal to the other one’s
certificate. Therefore, encodings on certificates and stamps of these two paths will
be identical. In the end, a cardinality PSI protocol is performed on these encodings
to find out the k-depth path.

An example. We present an example to show how our k-depth protocol works:
the network topology is depicted in Figure 4.2 and the policy is 3-depth.

Path certification stage. In the beginning, uown sends m1 = (ID1, H(uown), 1, 2) to
ua and m2 = (ID2, H(uown), 1, 2) to ub. Upon receiving m1, ua chooses a random
message identity ID3 and remembers the link between (ID1, uown) and ID3. Since
cnt = 1 in m1, he computes a new path certificate as H(uown)s1

a . Then, ua sends
m3 = (ID3, H(uown)s1

a , 2, 2) to ub, i.e., his only friend except uown. Meanwhile,
ub performs similar operations and sends m4 = (ID4, H(uown)s1

b , 2, 2) to ua, m5 =
(ID5, H(uown)s1

b , 2, 2) to uc and m6 =(ID6, H(uown)s1
b , 2, 2) to ureq.

When ub receives m3 and finds out cnt = dep, he knows that he is the last one on
the 2-depth path. Since cnt is equal to 2, he computes H(uown)s1

as2
b and sends a

reverse message rm3 = (ID3, H(uown)s1
as2
b , gs1

b , 2) back to ua. Note that ID3 in rm3
is identical to the identity of m3. Similarly, ub gets rm4 =(ID4, H(uown)s1

b s2
a , gs1

a , 2),
rm5 = (ID5, H(uown)s1

b s2
c , gs1

c , 2) and rm6 = (ID6, H(uown)s1
b s2

req , gs1
req , 2) from ua, uc

and ureq, respectively.
Next, when ua receives rm3, he finds out that the identity of the message linked with
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ID3 is (ID1, uown). Since cnt is 2, ua computes gs1
b s2
a as a new path stamp and sends

(ID1, H(uown)s1
as2
b , gs1

b s2
a , 3) to uown. Meanwhile, ub sends uown three reverse messages

that have the same identity but with different contents – (ID2, H(uown)s1
b s2
a , gs1

as2
b , 3),

(ID2, H(uown)s1
b s2
c , gs1

cs2
b , 3) and (ID2, H(uown)s1

b s2
req , gs1

reqs2
b , 3) to uown.

In the end, uown gets four pairs of path certificate and stamp related to four different
2-depth paths starting from him, i.e.,

(H(uown)s1
as2
b , gs1

b s2
a) for path [uown, ua, ub],

(H(uown)s1
b s2
a , gs1

as2
b ) for path [uown, ub, ua],

(H(uown)s1
b s2
c , gs1

cs2
b ) for path [uown, ub, uc],

(H(uown)s1
b s2

req , gs1
reqs2

b ) for path [uown, ub, ureq].

On the other direction, ureq gets

(H(ureq)s1
b s2
a , gs1

as2
b ) for path [ureq, ub, ua],

(H(ureq)s1
b s2
c , gs1

cs2
b ) for path [ureq, ub, uc],

(H(ureq)s1
b s2

own , gs1
owns2

b ) for path [ureq, ub, uown].

Path discovery stage. uown encodes all 2-depth paths’ certificate and stamp into

e(H(uown)s1
as2
b , Rreq) · e(H(ureq), gs1

b s2
a)rown ; (1)

e(H(uown)s1
b s2
a , Rreq) · e(H(ureq), gs1

as2
b )rown ; (2)

e(H(uown)s1
b s2
c , Rreq) · e(H(ureq), gs1

cs2
b )rown ; (3)

e(H(uown)s1
b s2

req , Rreq) · e(H(ureq), gs1
reqs2

b )rown . (4)

On the other hand, ureq encodes the information he gets into

e(H(ureq)s1
b s2
a , Rown) · e(H(uown), gs1

as2
b )rreq ; (5)

e(H(ureq)s1
b s2
c , Rown) · e(H(uown), gs1

cs2
b )rreq ; (6)

e(H(ureq)s1
b s2

own , Rown) · e(H(uown), gs1
owns2

b )rreq . (7)

It is clear that encoding (1) is equal to encoding (5). Paths [uown, ua, ub] and
[ureq, ub, ua] compose a 3-depth path between uown and ureq (see Figure 4.2). After
the PSI operation, uown and ureq are aware that there exists one 3-depth path
between them.

Discussion. We extend the main idea of k-common friends protocol to implement
k-depth protocol, the two stages of our k-depth protocol do not have to be exe-
cuted sequentially. Path certification stage can be a routine performed by users
in the OSN once in a while, e.g., once per month. Another advantage of our pro-
tocol is that we only perform a (k − 1)-path certification, which saves many more
computations (see Section 4.5). When ureq wants to access uown’s resource, both of
them directly execute the path discovery stage, i.e., only uown and ureq need to be
online in our k-depth protocol. As the path certification process is a usual routine,
uown and ureq cannot agree on some nonce, (k−1)-depth paths’ certificates should
be based on common knowledge of users. In our protocol, we use the hash value of
user’s identity, i.e., H(uown) and H(ureq). Separation of the two stages also results
in efficient communication, i.e., the first stage can be executed when the traffic in
OSNs is low, and it also provides better privacy which we explain next.
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4.4.2 Security Analysis

There are three parties involving in the protocol including uown, ureq and users in
the middle. For uown and ureq, the security goal of our protocol is that we only want
them to know whether there is a k−depth path between them. Extra knowledge
such as who are on the path should not be learned by them. For a user on the path,
the security goal of our protocol is that he should only know that he is involving in
a path certification stage, he should not know anything more than his friend who
sends him the message and the friends he will contact next.
Path certification. In this stage, what each user gets (from messages and reverse
messages) are identities, count value, depth, path certificates and stamps. We
analyze what information they may leak one by one. For each information, we
consider the case under a single as well as multiple (k−1)-depth paths’ certification
processes. To give a clear explanation, we use k users’ positions on a (k−1)-depth
path to represent them. The user on the ith position is denoted by ui (0 ≤ i ≤ k−1)
and uown is at position 0.

Identity. As identities of messages are chosen randomly, they won’t leak any in-
formation in both single and multiple paths’ certification processes.

Count value and depth. In a (k−1)-depth path’s certification process, a user gets
his position on the path from cnt and the depth of the path from dep. Moreover,
when he receives a reverse message from ui+1, he knows that ui+1 is involved in a
(k−i)-depth path. We argue that these information are not privacy sensitive, as a
user can always guess one of his friend has another friend or a friend of friend.
However, cnt and dep may result in information leakage under several paths’ cer-
tification processes originated from the same user. A user first sends a message to
one of his friends with cnt and dep, later he will know how many (dep−cnt)-depth
paths this friend originates by counting the number of reverse messages that he
gets from this friend. Especially, when cnt = dep−1, he knows how many friends
this friend has. This partial structure information can be sensitive in certain cases.
To prevent this, each user should send some dummy reverse messages back which
produces a noisy version of his social network.

Path certificates and stamps. Sensitive information in certificates and stamps in-
cludes uown’s identity, intermediate users’ depth keys and their connections. In a
single (k−1)-depth path certification, what ui gets are a partial path certificate
produced by the first ith users on the path, i.e., H(uown)

∏i−1
j=0 sjj , the (k−1)-depth

path’s certificate, i.e., H(uown)
∏k−1
j=0 sjj , and a (partial) path stamp, i.e., g

∏k−1
j=i+1 sk−jj ,

generated by his successors (from ui+1 to uk−1) on the path.

With H(uown)
∏k−1
j=0 sjj , if the user is able to get g

∏k−1
j=0 sjj from another certification

process, then by verifying

e(H(uown)
∏i−1
j=0 sjj , g) = e(H(uown), g

∏i−1
j=0 sjj ),

he knows who is the owner (through H(uown)). Similarly, H(uown)
∏i−1
j=0 sjj may also

leak uown’s identity with the relative partial path stamp. In Figure 4.2, ub gets
H(own)s1

a from path [uown, ua, ub]’s certification and gs1
a from [uown, ub, ua]’s certifi-

cation. If ub computes pairings of these information with the above equation, he
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will know that the message sent from ua is originated by uown. To prevent this
information leakage, uown can send H(uown)x instead of H(uown) to u1 in the be-
ginning where x r←− Z∗p is only known to himself and uown generates different x for
his different friends. In this way, even an intermediate user gets the correspond-
ing (partial) path stamp, as he knows nothing about x, the above equation won’t
work. Note that before the path discovery stage, uown needs to recover the path
certificate with x−1.
From g

∏k−1
j=i+1 sk−jj in the reverse message sent by ui+1, due to the hardness of dis-

crete logarithm problem in G1, ui cannot discover ∏k−1
j=i+1 sk−jj . Note that users who

happen to be the last one on (k−1)-depth paths will expose their “public” 1-depth
stamps when they start to forward the reverse messages and these public 1-depth
stamps can be treated as their identities. For example, uk−1 gets gs1

k−1 which he can
use to identify uk−1. However, as a path stamp is computed by users with stamps
of different depths, “public” 1-depth stamps will not leak their issuers’ identities.
For example, suppose that uk−3 already knows gs1

k−1 is from uk−1 through another
path certification process. When he gets gs1

k−1s2
k−2 from uk−2, as he doesn’t have

gs2
k−2 , he cannot know that uk−1 is the last one on the (k−1)-depth path (through

pairing), i.e., uk−1 and uk−2 are friends. Moreover, suppose that uk−2 even knows
that gs1

k−1s2
k−2 is built by uk−2 and uk−1, he cannot get uk−2’s 2-depth stamp s2

k−2
from gs1

k−1s2
k−2 and gs1

k−1 due to the RCDH assumption in G1.
Now, suppose that ui and ui+x (i+x ≤ k−1) are friends, i.e., a circle appears
in the path. When ui joins the process and sends a message to ui+1, ui+1 then
contacts ui+2, so on and so forth. Later, ui+x sends a message to ui. Since ui has
no information about his successors’ depth keys, he doesn’t know that the message
he receives from ui+x is based on the message he sends to ui+1 before. Therefore,
ui doesn’t know that ui+1 and ui+x are linked through a (x−1)-depth path.
However, with several paths’ certification processes, sensitive information can be
disclosed through certificates and stamps. Suppose uown’s two friends are linked
by a (k−2)-depth path, i.e., uown is in a k-depth circle. Later, when he gets path
certificates and stamps on two (k−1)-depth paths which can compose the circle
from these two friends, as the circle is also a k-depth path, by performing bilinear
map, he can get whether these two friends are connected by a (k−2)-depth path.
In the example above, uown is linked with [uown, ua, ub] and [uown, ub, ua], by pairing
path certificates and stamps on these two paths, he has e(H(uown)s1

as2
b , gs1

b s2
a) =

e(H(uown)s1
b s2
a , gs1

as2
b ) which indicates that ua and ub are friends. We propose a

simple solution for this leakage. Now, the protocol regulates that when a user
receives a message with dep = 2 and cnt = 1, he only sends new messages to
his friends who haven’t sent him a message with dep = 2 and cnt = 2 yet. In
Figure 4.2, after ua and ub receive messages from uown, suppose that ua first sends
m3 =(ID3, H(own)s1

a , 2, 2) to ub. Later, when ub wants to send new messages to his
friends, as he finds out that ua already sent him m3 with dep = 2 and cnt = 2, he
only sends new messages to uc and ureq. In the end, uown won’t know that ua and
ub are connected. However, since there is no information in a message about the
originator of the path, our solution reduces chances for finding paths. For example,
the message sent from ua to ub may come from another user than uown. Also, our
solution only supports 2-depth path certification for 3-depth policy. Although the
information that a user knows his two friends are linked with a 5-depth path is not
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that valuable, protecting two users’ private links under 3 depths is still necessary.
We leave the general protection scheme as a future work.

Path discovery. In this stage, only uown and ureq participate the protocol. First,
as the two stages are independent, no intermediate users knows who is the owner
or requester. Moreover, intermediate users do not know if there will be a run of
the path discovery stage. Second, as the cardinality PSI protocol is secure against
honest but curious adversaries, uown and ureq only get whether a qualified path
exists or not, nothing more. Especially, uown also doesn’t know which friend of his
is on the k-depth path. The same holds for ureq.

4.4.3 Multi-relationship k-depth Protocol

Our k-depth protocol can be extended to support multi-relationships. We first
introduce the multi-relationship social network model. Let the set RU contain all
the relationship types. Only symmetric relationships, such as friend and colleague,
are considered. The social network is defined as a graph GU = (U , EU), where EU
now is denoted as a subset of U×RU×U , i.e., each edge is labeled with a relationship
type. A k-depth access control policy regulates that uown is linked with ureq through
a k-depth path where each edge has a certain relationship type. All k relationship
types (from uown to ureq) can be represented as a k-tuple (α1, α2, . . . , αk) where
αi ∈ RU (1 ≤ i ≤ k). Note that these k relationships do not have to be distinct
from each other.
Our multi-relationship k-depth protocol also contains two stages. The path dis-
covery stage remain the same while there are two differences related to the path
certification stages. First, a relationship chain is added in each message and its
function is to inform intermediate users which social links to contact next. A re-
lationship chain generated by uown is defined as 〈α1, . . . , αk-1〉 which contains the
first (k-1)-th relationship types specified in the policy with the same sequence.
Moreover, the first relationship in a chain is defined as the tail of the chain. On
the other direction, the relationship chain generated by ureq is in a reverse order,
i.e., 〈αk, . . . , α2〉. When a user receives a message, he will delete the tail from the
chain and send new messages to his social links who are in the new tail of the
chain with him. The second difference is that we have to integrate the relation-
ship type into paths’ certificates and stamps. Instead of one set, each user should
have different sets of depth stamps for different relationship types. When a user
receives a message, he uses his cnt-depth stamp from the stamp set related to
the tail of the chain to compute the new certificate. The same procedure applies
for computing the path stamp. Note that the relationship type a user integrates
into a path’s certificate (stamp) is always the one that he is in with the user who
sent him the message (reverse message). This guarantees that encodings related
to two (k−1)-depth paths that can compose a k-depth path in discovery stage are
identical.

4.4.4 Comparison with Existing Schemes

We compare our k-depth protocol with the schemes proposed in [MPGP09, XCF11]
(see Table 4.1). The solution in [MPGP09] and our protocol contain two indepen-
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[MPGP09] [XCF11] Our work
Intermediate user offline X X

Multi-relationships X
Computation cost Hash Hash Paring

Communication steps k k k − 1
Honest but curious model Partially Partially X

Table 4.1: Comparison of k-depth protocols.

dent stages, only uown and ureq need to be online when finding the path. On the
other hand, the protocol proposed in [XCF11] requires all the intermediate users
to be online. Different from ours, the two protocols [MPGP09, XCF11] do not
support multi-relationships.
Messages passing among users in their schemes are based on hash functions, this
is more efficient than the bilinear map. On the other hand, our protocol con-
sumes one step of communications less when finding the paths (each user certifies
(k−1)-depth paths, instead of k-depth) than theirs which save a large number of
operations. More precisely, suppose that each user has in average n friends, to
find a (k−1)-depth path, totally 2(k−1)nk−1 times user-to-user communications
are consumed (see Sect. 4.5), while the number is knk in both works. Moreover,
as each communication step needs computations, a large number of computations
(mainly exponentiations) are saved in our protocol as well.
Since their tokens are built through a publicly known hash function, sensitive
information can be leaked. For example, as mentioned in [MPGP09], a user can
know whether a token he receives is based on another token sent by him previously.
This indicates his corresponding two friends are linked. The same threat happens
to the scheme in [XCF11]. However, this information leakage can be prevented in
our protocol as we explained in the security analysis.

4.5 Performance Analysis

In this section, we first give a formal efficiency analysis of our protocols, then
present empirical results on the protocols through a Facebook dataset [VMCG09].

4.5.1 Theoretical Efficiency Analysis

For each of our protocols, we analyze its computation and communication com-
plexities (see Table 4.2). We assume that each user’s average number of friends is
n. As friendship establishments are normal routines, we do not consider them as
part of our protocols. Moreover, for k-common friends and k-depth protocols, we
exploit the PSI scheme proposed in [HN10] to give a general complexity for our
protocols.

Computation cost.
k-common friends. Computations are performed in both encoding stage and PSI
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protocol. To encode a friendship certificate, uown (ureq) needs to perform two pair-
ing computations (each encoding contains two components), one hash function
operation in G1, one exponentiation and one multiplication in G2. Since there
are totally 2n friends for uown and ureq, 4n times of pairings, 2n hashes in G1, 2n
exponentiations and 2n multiplications in G2 are needed. Inputs for PSI opera-
tions are 2n encodings, computation related to set intersection can be finished in
O(n log log n) time [HN10].
k-depth. Since the two stages of our protocol are independent, for the path certi-
fication stage, we only consider computation and communication consumption of
a single user. In this stage, computations are mainly exponentiations in G1 for
path certificates and stamps. For a (k−1)-depth path staring from uown, as k−1
users compute the path certificate and stamp by exponentiation, totally 2(k−1)
exponentiations are needed, i.e., k−1 for path certificate and k−1 for path stamp.
For the whole stage, uown can get maximal nk−1 pairs of path certificate and stamp.
Therefore, the computation cost for a single user is 2(k−1)nk−1 exponentiations.
For the path discovery stage, there are maximal 2nk−1 path certificates need to be
encoded for both uown and ureq, still each encoding needs two pairings, one hash in
G1, one exponentiation and one multiplication in G2. Therefore, totally 4nk−1 pair-
ing operations, 2nk−1 hashes in G1, 2nk−1 exponentiations and 2nk−1 multiplications
in G2 are needed. Again, with 2nk−1 path certificates as inputs, by adopting the
PSI protocol in [HN10], computation complexity for finding common encodings is
O(nk−1 log log nk−1).

Communication cost.
k-common friends. Communications are needed in two operations. The first one
is exchanging two random values in the beginning, where two user-to-user commu-
nications are needed. The second communication consuming operation is related
to the PSI protocol. As the PSI protocol has constant rounds and its inputs are
2n encodings, it needs O(n) user-to-user communications.

k-depth. As mentioned before, a user can get maximal nk−1 pairs of path certificate
and stamp in path certification stage. Each pair requires 2(k−1) user-to-user
communications. Totally 2(k−1)nk−1 communications are needed. Path discovery
stage is similar to k-common friends protocol, its communication complexity is
O(nk−1).

4.5.2 Empirical Efficiency Analysis

Dataset. We use the Facebook dataset collected by the authors of [VMCG09] to
perform our experiments, the dataset is summarized in Table 4.3. In Figure 4.4,
we plot the number of users as a function of users’ number of friends, as we can see,
users’ friends number, i.e., degree in social graph, follows a power-law distribution.
Most of users have a small number of friends (around half of users have less than 10
friends) while only a few users have a large number of connections. This indicates
that most of users won’t need to perform a huge amount of computations when
running our protocols.

Experiment setup. Our experiments were conducted on a 64-bit Linux system



4.5 Performance Analysis 49

Computation k-common friends k-depth
Paring 4n 4nk−1

Hash G1:2n G1:2nk−1

Multiplication G2:2n G2:2nk−1

Exponentiation G2:2n G1:2(k−1)nk−1 G2:2nk−1

PSI O(n log log n) O(nk−1 log log nk−1)
Communication k-common friends k-depth

User-to-user 2 2(k−1)nk−1

PSI O(n) O(nk−1)

Table 4.2: Theoretical performance analysis.

#. users 63,731
#. edges 1,634,180

Average degree 25.6
Average clustering coefficient 0.253

#. connected components 144
#. triangles 3,501,542

Figure 4.3: Dataset summary.
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Figure 4.4: Degree distribution.

with an Intel Core i7 1.80GHz×4 and 8GB RAM. We implement our protocols
using the MIRACL Cryptographic SDK2. We choose Barreto-Naehrig Curve (se-
curity level AES-128) as the pairing curve. Since there are many existing PSI pro-
tocols and implementations, we can adopt any of them. For example, the scheme
in [DCW13] can perform set intersection operations on two million-element sets
within 41 seconds. Therefore, we only focus on the performance of our protocol
before the execution of PSI, where pairing operations dominate the computation
cost. In our experiments, performing a pairing takes around 6 ms.
We randomly sampled 2,000 users from the dataset for k-common friends, 3-depth
protocol and 4-depth, respectively. As the average path length between any two
users (from more than 1 billion users of Facebook) is 4.7 [UKBM11], 5-depth pro-
tocol is neither necessary nor likely to be performed. Therefore, we only evaluated
k-depth protocol with k = 3, 4. Moreover, in reality the 3-depth protocol is ex-
ploited more often than the 4-depth protocol. The number of friends as well as
the number of 2-depth and 3-depth paths for the sampled users are summarized
in Table 4.3. Note that we only chose 100 users to perform 4-depth protocol for
the purpose of illustration. These 100 users features are summarized in the last
column of Table 4.3: its mean and standard deviation value are not that different
from the sample of 2,000 users for 4-depth protocol. We notice that all the sample
data have large std. value, this is due to the power law distribution of users’ friends
number, see Figure 4.4.

2https://www.miracl.com/index

https://www.miracl.com/index
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k-common 3-depth 4-depth 4-depth (100)
total 49,665 4,398,980 511,424,020 27,163,893

average 24.8 2,199.5 255,710.0 271,640.9
std 40.7 5,067.2 613,000.1 733,250.8
max 570 92,748 7,213,810 4,514,853

Table 4.3: Sample users’ feature summary.

Evaluation results. The experiment results are presented in Table 4.4. For k-
common friends, the average time for encoding all friendship certificates is 0.135
second while the worst case (the user who has 570 friends, see Table 4.3) takes only
3 seconds. Due to the power law distribution of friends number, almost half of users
(48.1%) can finish their protocol in less than 0.05 second, more than 94% users can
finish in 0.5 second. For 3-depth protocols, the average running time is around 16
seconds. More than half of the 3-depth protocols (1,121/2,000) can finish within 5
seconds. The average running time of the 4-depth protocols is about 33.6 minutes.
In fact, 34 users (out of 100) can finish their protocol in 60 seconds; nearly half
of them (47/100) can finish in less than 3 minutes; and about 70% of the users
can finish in less than 10 minutes. As described in Section 4.4, path certification
can be treated as a normal routine, thus it doesn’t have to be counted as part
of k-depth protocol. Moreover, a user can choose not to join a k-depth protocol,
or not to send messages to all his friends, meaning that the computations needed
in practice can be further reduced. Another way to improve the performance of
the k-depth protocols is to use more efficient pairing implementation, such as the
inline assembly code of MIRACL.

Discussion on k-depth protocols. As discussed in Section 4.4, although we
use expensive pairing operations, our k-depth protocol’s performance is still com-
parable with the protocol proposed in [MPGP09] which mainly uses hash func-
tions. First, our k-depth protocol uses one less step for communications, thus a
big amount of computation overhead can be saved. As presented in Table 4.3, the
total number of 3-depth paths (for the 4-depth protocol) for the sample users is
100 times larger than the number for 2-depth paths (for the 3-depth protocol).
Therefore, the scheme in [MPGP09] needs to perform at least 100 times more op-
erations, i.e., hash functions as well as communications than ours. Second, in the
path certification stage, intermediate users can choose not to join in our protocol.
Hence, the user will get a subset of all the 3-depth paths in the end.
In details, users in the first protocol of [MPGP09] need to build an “imaginary”
hash tree, and the number of descendants of each node is the number of maximal
degree of a user in the social network. This will be a huge tree with a lot of
redundant nodes. In the dataset that we use, the maximal node degree is 1,098,
meaning that the tree a user needs to build for a 3-depth protocol will have |u.f (|)×
1098×1098 nodes, while in our experiments each user only needs to perform around
2,200 times pairing products on average. For example, for a user with only 25
friends, to perform 25×1098×1098 times SHA-256 function in MIRACL, it needs
around 29 seconds while in our scheme the computation only needs 16 seconds. In
the extended scheme of [MPGP09], the user can build a more accurate hash tree.



4.6 Related Work 51

k-common friends
average 0.135 std 0.222 worst case 3.078

time ≤ 0.01 (0.01, 0.05] (0.05, 0.1] (0.1, 0.5] > 0.5
% users 13.65 34.45 14.90 31.65 5.35

3-depth
average 16.263 std 37.447 worst case 684.401

time ≤ 1 (1, 5] (5, 10] (10, 20] > 20
% users 30.95 25.10 11.95 11.50 20.50

4-depth
average 2,015.185 std 5,372.101 worst case 32,833.750

time ≤ 60 (60, 180] (180, 600] (600, 1200] > 1200
% users 34.00 13.00 23.00 7.00 23.00

Table 4.4: Time consumption summary (sec).

However, this extended scheme is only designed for discovering 3-depth paths.

4.6 Related Work

Designing security protocols for enforcing access control polices in OSNs have been
a popular topic during the past 5 years. Carminati et al. introduce several solu-
tions [CF08, CF09, XCF11]. For instance, in [XCF11], a homomorphic encryption
scheme is used to compute aggregated information of the path (trust level and re-
lationship type), which minimizes the loss of sensitive information. In [MPGP09],
Mezzour et al. propose an interesting solution for path discovery where the pro-
tocol contains two stages – in the first stage, each user floods tokens in the social
network, while in the second stage a private set intersection protocol is executed
for finding paths. Backes et al. [BMP11] define a security API for distributed social
networks, where cryptographic techniques such as pseudonyms, digital signatures
and zero-knowledge proofs are exploited to help user to establish and prove the
existence of friendships with others. In [FS09], a key management scheme is pro-
posed under which only users who are within a certain distance to the owner are
able to derive keys to decrypt the encrypted resources. A comparison between our
protocols and two existing protocols is presented in Section 4.5.

4.7 Conclusion

In this chapter, we addressed the challenge on how to enforce relationship-based
access control policies on decentralized social networks. To this end, we have
provided privacy-preserving protocols for two types of access control policies, i.e.,
k-common friends and k-depth. While the protocol for k-common friends is new,
our k-depth protocol has better communication complexity and security than the
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existing solutions. Through experiments on a Facebook dataset, we illustrate that
our protocols are efficient in practice.



5

A Logical Approach to Restricting Access
in Online Social Networks

5.1 Introduction

Sometimes a user can be bothered by others in OSNs, e.g., due to harassment or
different political views. To deal with this, major OSN companies have provided
functionalities to allow a user to put someone on his blacklist1. Those who are
on a user’s blacklist are still his friends but they are forbidden automatically to
access his resources. For example, in Facebook, if a user only allows his friends
to view his profile, then friends on his blacklist are disallowed to access his profile
directly2. In this way, blacklists can be treated as orthogonal to access control
policies. Figure 5.1 shows that a Facebook user can define a policy to share his
post with his friends of friends but not with those on his blacklist.

Figure 5.1: Blacklist in Facebook.

However, to the best of our knowl-
edge, the use of blacklists for restrict-
ing access in OSNs has not been well-
understood and formally studied, many
questions are worth being investigated.
For instance, suppose Alice and Bob are
friends and Charlie is on Bob’s black-
list. If Alice wants to share her photo
with her friends of friends, should she
also consider Bob’s blacklist to deny
Charlie’s access? To address such re-
search problems, we propose a logical
approach to formalizing blacklist and
its utilization in access control policies.
Our contributions of this chapter are as
follows. We first propose a new path semantics for the logic to better describe black-
list and prove that the path semantics is equivalent to the original semantics of the
logic. Depending on different requirements, we classify three dimensions on how
blacklists can be considered, namely globality, generality and strength. Each dimen-
sion is a binary decision, giving rise to eight flexible restrictions for users to use
blacklists in their policies. A syntactical transformation algorithm is proposed to

1It is called Restricted list in Facebook and list of muted accounts in Twitter.
2Note that adding someone into a blacklist is different from blocking him. This later is

referred as unfriending in Facebook and unfollowing in Twitter, while blacklists do not change
any relationship.
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Figure 5.2: A social graph example.

rewrite an access control formula into its corresponding formula under a blacklist-
restriction, in this way, a user only needs to define a policy and a restriction, our
transformation will then generate the corresponding formula for enforcement au-
tomatically. Since most access control policies in OSNs mainly concentrate on the
length of the path between the owner and the requester. Therefore, to improve the
evaluation efficiency of this type of policies, we develop new algorithms for finding
paths between the owner and the requester under blacklist-restrictions. Experi-
ments on a real-life social network dataset demonstrate their efficiency. We further
perform experiments to study the effect of blacklist-restrictions on access control
policies and find that the restriction from the strength dimension is more powerful
than from the other two dimensions. In order for a requester to access the owner’s
information, we also find that he should have different social closeness to the owner
for different blacklist-restrictions.

5.2 Path semantics

In this section, we introduce a new definition of the semantics of the hybrid logic
presented in Chapter 2, which we call path semantics. It is equivalent to the
standard semantics (see Theorem 5.2.1 below), but it allows us to refer to the set
of paths in the social graph that makes a formula true. Being able to refer to this
set of paths is important for defining the different ways in which blacklists can be
used for restricting access.
When a formula is satisfied, there is a set of paths in the social graph that witnesses
the truth of the formula. In Figure 5.2, taking A as the owner and M as the re-
quester, the formula #own(〈friend〉〈friend〉req∧〈friend〉〈friend〉〈friend〉req) (which
expresses that the requester is both a friend of a friend of the owner and a friend of
a friend of a friend of the owner) is satisfied, and this satisfaction is witnessed by
the set {(A, I,M), (A,D, I,M)} (path (A, I,M) witnesses#own〈friend〉〈friend〉req,
path (A,D, I,M) witnesses #own〈friend〉〈friend〉〈friend〉req). This notion of a set
of paths witnessing a formula can be formalized by defining the semantics of hybrid
logic with reference to sets of paths.
For formalizing this new path semantics, we first define a path π to be a sequence
of edges 〈e0, e1, . . . , en〉, where ei ∈ EU for 0 ≤ i ≤ n3. For such a path π, π[k]

3Normally the paths have the property that the end node of an edge ei is the start node of
the next edge ei+1 in the path. But the hybrid logic is very expressive, and for some special
formulas, which in practice would hardly be used as access control policies, the satisfaction of
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denotes ek, π[1 :] denotes 〈e1, . . . , en〉 and e ◦ π denotes 〈e, e0, e1, . . . , en〉. For a set
Π of paths, Π[1 :] denotes {π[1 :]|π ∈ Π}.
The path semantics for the hybrid logic is given as follows:

Γ, u,Π, τ � x iff Π = {〈〉} ∧ u = τ(x)
Γ, u,Π, τ � n iff Π = {〈〉} ∧ u = VU(n)
Γ, u,Π, τ � p iff Π = {〈〉} ∧ u ∈ VU(p)
Γ, u,Π, τ � ¬φ iff Π = {〈〉} ∧ @ Π′ s.t. Γ, u,Π′, τ � φ
Γ, u,Π, τ � φ1 ∧ φ2 iff ∃Π1,Π2 with Π1 ∪ Π2 = Π

s.t. Γ, u,Π1, τ � φ1 ∧ Γ, u,Π2, τ � φ2
Γ, u,Π, τ � φ1 ∨ φ2 iff Γ, u,Π, τ � φ1 ∨ Γ, u,Π, τ � φ2
Γ,∆, ρ, %, u,Π, τ � 〈αi〉φ iff ∃u′ ∈ U s.t. Γ, u′,Π[1 :], τ � φ∧

(u, u′) ∈ αi∧∀π ∈ Π, π[0] = (u, u′)
Γ, u,Π, τ � #nφ iff Γ, u′,Π, τ � φ where VU(n) = u′

Γ, u,Π, τ � #xφ iff Γ, τ(x),Π, τ � φ
Γ, u,Π, τ � Oxφ iff Γ, u,Π, τ [x 7→ u] � φ

The following theorem establishes that the path semantics is equivalent to the
standard semantics for the hybrid logic presented in Chapter 2.

Theorem 5.2.1. For every u ∈ U , Γ, u, τ � φ iff there is a set of paths Π such
that Γ, u,Π, τ � φ.

Proof. We proof the theorem by induction over the length of φ.

• φ = x:
Left-to-right: Suppose Γ, u, τ � x, i.e., u = τ(x). Set Π := {〈〉}. Then
Γ, u,Π, τ � x.
Right-to-left: Trivial.

• φ = n:
Left-to-right: Suppose Γ, u, τ � n, i.e., u = VU(n). Set Π := {〈〉}. Then
Γ, u,Π, τ � n.
Right-to-left: Trivial

• φ = p:
Left-to-right: Suppose Γ, u, τ � p, i.e., u ∈ VU(p). Set Π := {〈〉}. Then
Γ, u,Π, τ � p.
Right-to-left: Trivial.

• φ = ¬ψ:
Left-to-right: Suppose Γ, u, τ � ¬ψ, i.e., Γ, u, τ 2 ψ. By the inductive hy-
pothesis, there is no set of paths Π′ s.t. Γ, u,Π′, τ � φ. Set Π := {〈〉}. It now
follows that Γ, u,Π, τ � ¬ψ.
Right-to-left: Suppose Γ, u,Π, τ � ¬ψ, i.e., Π = {〈〉} and there is no set of
paths Π′ s.t. Γ, u,Π′, τ � φ. By the inductive hypothesis, Γ, u, τ � ¬ψ.

the formula can be witnessed by a disconnected path, i.e., a path where some edge does not start
where the previous edge ended.
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• φ = ψ1 ∧ ψ2:
Left-to-right: Suppose Γ, u, τ � ψ1∧ψ2, i.e., Γ, u, τ � ψ1 and Γ, u, τ � ψ2. By
the inductive hypothesis, Γ, u, τ � ψ1 implies that there is a set Π1 of paths
s.t. Γ, u,Π1, τ � ψ1, and Γ, u, τ � ψ2 implies that there is a set Π2 of paths
s.t. Γ, u,Π2, τ � ψ2. Set Π := Π1 ∪ Π2. Then Γ, u,Π, τ � ψ1 ∧ ψ2.
Right-to-left: Suppose Γ, u,Π, τ � ψ1 ∧ψ2, i.e., there are sets Π1,Π2 of paths
with Π1 ∪Π2 = Π s.t. Γ, u,Π1, τ � ψ1 and Γ, u,Π2, τ � ψ2. By the inductive
hypothesis Γ, u, τ � ψ1 and Γ, u, τ � ψ2.

• φ = ψ1 ∨ ψ2:
Left-to-right: Suppose Γ, u, τ � ψ1 ∨ ψ2, i.e., Γ, u, τ � ψ1 or Γ, u, τ � ψ2. By
the inductive hypothesis either there is a set Π of paths s.t. Γ, u,Π, τ � ψ1,
or there is a set Π of paths s.t. Γ, u,Π, τ � ψ2. In either case, we have
Γ, u,Π, τ � ψ1 ∨ ψ2.
Right-to-left: Suppose Γ, u,Π, τ � ψ1 ∨ ψ2, i.e., Γ, u,Π, τ � ψ1 or Γ, u,Π, τ �
ψ2. By the inductive hypothesis, we have Γ, u, τ � ψ1 or Γ, u, τ � ψ2 respec-
tively, i.e., Γ, u, τ � ψ1 ∨ ψ2.

• φ = 〈αi〉ψ:
Left-to-right: Suppose Γ, u, τ � 〈αi〉ψ, i.e., there is a u′ ∈ U s.t. (u, u′) ∈ αi
and Γ, u′, τ � ψ. By the inductive hypothesis, there is a set Π′ of paths
s.t. Γ, u′,Π′, τ � ψ. Set Π := {(u, u′) ◦ π|π ∈ Π′}. Then Π′ = Π[1 :] and
∀π ∈ Ππ[0] = (u, u′). So Γ, u,Π, τ � 〈αi〉ψ.
Right-to-left: Suppose Γ, u,Π, τ � 〈αi〉ψ, i.e., there is a u′ ∈ U s.t. Γ, u′,Π[1 :
], τ � ψ, (u, u′) ∈ αi. By the inductive hypothesis Γ, u, τ � 〈αi〉ψ.

• φ = #nψ:
Left-to-right: Suppose Γ, u, τ � #nψ, i.e., Γ, u′, τ � ψ, where VU(n) = u′. By
the inductive hypothesis, there is a set Π of paths s.t. Γ, u′,Π, τ � ψ. Then
Γ, u,Π, τ � #nψ.
Right-to-left: Suppose Γ, u,Π, τ � #nψ, i.e., Γ, u′,Π, τ � ψ, where VU(n) =
u′. By the inductive hypothesis Γ, u′, τ � ψ, and therefore Γ, u, τ � #nψ.

• φ = #xψ:
Left-to-right: Suppose Γ, u, τ � #xψ, i.e., Γ, τ(x), τ � ψ. By the induc-
tive hypothesis, there is a set Π of paths s.t. Γ, τ(x),Π, τ � ψ. Then
Γ, u,Π, τ � #xψ.
Right-to-left: Suppose Γ, u,Π, τ � #xψ, i.e., Γ, τ(x),Π, τ � ψ. By the induc-
tive hypothesis Γ, τ(x), τ � ψ, and therefore Γ, u, τ � #xψ.

• φ = Oxψ:
Left-to-right: Suppose Γ, u, τ � Oxψ, i.e., Γ, u, τ [x 7→ u] � ψ. By the induc-
tive hypothesis, Γ, u,Π, τ [x 7→ u] � ψ, i.e., Γ, u,Π, τ � Oxψ.
Right-to-left: Suppose Γ, u,Π, τ � Oxψ, i.e., Γ, u,Π, τ [x 7→ u] � ψ. By the
inductive hypothesis, Γ, u, τ [x 7→ u] � ψ, i.e., Γ, u, τ � Oxψ.
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5.3 Restricting Access in OSNs

As stated in Section 5.1, adding a friend into a user’s blacklist is a very useful way
in OSNs for restricting the friend to access some resources of the user. Blacklists
can be treated orthogonal to access control policies. In this section, we give a
straightforward model of blacklists in OSNs and formally study their usage in
relationship-based access control.

5.3.1 Blacklist in OSNs

We use a relationship type, called blacklist, to model blacklists in GU . If (u, u′) ∈
blacklist, then u′ is on u’s blacklist. For example, in Figure 5.2, user C and user A
are friends, but C is on A’s blacklist4.
Suppose that uown has an access control policy without considering blacklist, we call
this policy non-restricted. that If he wants to restrict the policy by systematically
adding the blacklist relationship to it, we say that uown blacklist-restricts the access
control policy, and the policy is a restricted policy.
In the examples used to motivate and illustrate our approach, we assume that
the only relationships in place are friend and blacklist. However, all our formal
definitions are phrased in such a way that they apply equally when the OSN
supports more relationships than these two.

5.3.2 Three Dimensions

Having defined the blacklist relationship in our social network model, next we focus
on how to blacklist-restrict access control policies. The basic requirement is that
ureq should never be on uown’s blacklist. Beyond this requirement, there exist other
decisions to make when blacklist-restricting access control policies. For instance,
suppose that Alice and David share two friends Bob and Charlie, and David is
on Bob’s blacklist. If Alice wants to share her photo with her friends of friends
and meantime forbids the access of users on her friends’ blacklists, then David on
one hand cannot view the photo due to his relationship with Bob, while on the
other hand David can still access the photo via Charlie as he is not on Charlie’s
blacklist. This example shows that it is necessary to identify and precisely define
how blacklists are used to restrict access in OSNs. Thanks to the path semantics
of the hybrid logic in Section 5.2, we can classify blacklist-restrictions into three
dimensions by considering the following questions: (1) whose blacklist should be
used, (2) where blacklists should be applied, and (3) how many paths need to be
considered. Each dimension leads to a binary decision and is defined with the
reference to the paths witnessing the truth of the access control logic formula.

Whose blacklists should be used? It is clear that the blacklist of uown should always
be considered for blacklist-restricting policies, i.e., the user following uown on a
path from uown to ureq cannot be on uown’s blacklist. Besides, other users’ blacklists
can be considered as well. In the social graph depicted in Figure 5.2, suppose that
user A wants to share his photo with his friends of friends. If A only considers his

4We use f and b to represent friends and blacklist in Figure 5.2
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blacklist, then N cannot access the photo as J is on A’s blacklist. If A considers
the blacklists of everyone on the path, then K’s access is also denied as he is on
F ’s blacklist.
If uown wants the blacklists of everyone on the path to be considered for blacklist-
restricting an access control policy, uown should globally blacklist-restrict the policy
(Gl). If on the other hand uown only wants his own blacklist to be considered,
he should locally blacklist-restrict the access control policy (Lo). We name this
restriction dimension globality.

Where blacklists should be applied? It is natural to require that ureq should never
be on uown’s blacklist. Besides, uown may want no one on a path from him to ureq
to be on his blacklist, i.e., he may want to consider his blacklist on the whole path.
Suppose that user A defines a 3-depth policy, i.e., #own〈friend〉〈friend〉〈friend〉req
(Figure 5.2). If A does not consider his blacklist on the whole path, N can access
the resource due to the path (A,E, J,N). However, if A considers his blacklist on
the whole path, then N ’s access is denied as J is on A’s blacklist.
If uown wants no one on a path in the set of paths witnessing the access control
policy to be on his blacklist, he should perform a general blacklist-restriction to the
policy (Ge). If on the other hand uown only wants ureq not to be on his blacklist,
he should perform a limited blacklist-restriction to the policy (Li). We name this
restriction dimension generality.

How many paths need to be considered? Having fixed the decisions for the previ-
ous two dimensions, uown has determined which set of paths are free of blacklist
problems. There can still be several paths from uown to ureq, some of which are free
of blacklist problems while others are not. In Figure 5.2, there are two 3-depth
paths from A to L ((A,C,H,L) and (A,B,G,L)). Under the 3-depth policy, if A
requires only one path that is free of blacklist problems, L can access the resource
because of (A,B,G,L); if A requires all the paths from him to ureq to be free of
blacklist problems, L’s access is denied as (A,C,H,L) does not satisfy the local
restriction.
If uown just wants there to be some set of paths free of blacklist problems witnessing
the access control policy, he should weakly blacklist-restrict the access control policy
(W). If on the other hand he wants that every set of paths witnessing the policy
should be free of blacklist problems, he should strongly blacklist-restrict the access
control policy (S). We name this restriction dimension strength.

We now formally define the three dimensions in terms of the path semantics (Sec-
tion 5.2). For every triple (X, Y, Z) with X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and
Z ∈ {W,S} and every access control policy φ, we define the intended semantics
of the blacklist-restricted access control policy φ(X,Y,Z) by defining the conditions
under which access is granted to ureq according to this blacklist-restricted access
control policy. For defining these conditions, we first need to define the predicate
Valid(X,Y )(Π), whose intended semantics is that the set Π of paths is free of blacklist
problems according to the choice (X, Y ) of values for the first two dimensions.

Definition 5.3.1. Let Γ = (GU , VU) be a model and τ be a valuation. For X ∈
{Lo,Gl}, Y ∈ {Li,Ge} and a set Π of paths, we define Valid(X,Y )(Γ,Π, τ) to hold
iff the following four properties are satisfied:
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• If X = Lo, then for every u ∈ U such that (τ(own), u) is an element of some
π ∈ Π, (τ(own), u) /∈ blacklist.

• If X = Gl, then for all u, u′ ∈ U such that (u, u′) is an element of some
π ∈ Π, (u, u′) /∈ blacklist.

• If Y = Li, then (τ(own), τ(req)) /∈ blacklist.

• If Y = Ge, then (τ(own), τ(req)) /∈ blacklist, and for all u, u′ ∈ U such that
(u, u′) is an element of some π ∈ Π, (τ(own), u) /∈ blacklist and (τ(own), u′) /∈
blacklist.

The set of formulas not involving 〈blacklist〉 is denoted by L′.

Definition 5.3.2. L′(own, req) is defined to be L′ ∩ L(own, req), i.e., the set of
access control policies not containing the modality 〈blacklist〉.

The following definition formally defines the intended semantics of the restricted
access control policy φ(X,Y,Z):

Definition 5.3.3. Let Γ = (GU , VU) be a model, u ∈ U and τ a valuation. Suppose
X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and Z ∈ {W,S}, and suppose φ ∈ L′(own, req).

• If Z = W, then Γ, u, τ � φ(X,Y,Z) iff there is a set Π of paths such that
Γ, u,Π, τ � φ and Valid(X,Y )(Π).

• If Z = S, then Γ, u, τ � φ(X,Y,Z) iff there is a set Π of paths such that
Γ, u,Π, τ � φ, and for every set Π of paths such that Γ, u,Π, τ � φ and
Valid(X,Y )(Π).

The eight ways of forming blacklist-restricted policies establish a lattice as shown
in Figure 5.3. In the figure, we use, for instance, GlGeS to present a restriction
when the decisions in each of the three dimensions are fixed as X = Gl, Y = Ge,
and Z = S. If a user’s access is denied by one of the blacklist-restricted policies,
then the same user’s access is denied by any restricted policy above this policy in
the lattice. The following theorem expresses this statement formally:

Theorem 5.3.1. Let Γ = (GU , VU) be a model, u ∈ U , τ a valuation and φ ∈
L′(own, req). Let (X1, Y1, Z1) and (X2, Y2, Z2) be two triples with X1, X2 ∈ {Lo,Gl},
Y1, Y2 ∈ {Li,Ge} and Z1, Z2 ∈ {W,S}. If (X1, Y1, Z1) ≤ (X2, Y2, Z2) in the
blacklist-restriction lattice, then we have that Γ, u, τ � φ(X2,Y2,Z2) implies Γ, u, τ �
φ(X1,Y1,Z1).

Proof. First, we need to prove the following lemma:

Lemma 5.3.1. Let Γ = (GU , VU) be a model, τ a valuation and Π a set of paths
in U . Let X1, X2 ∈ {Lo,Gl} and Y1, Y2 ∈ {Li,Ge} be s.t. (X1, Y1,W) ≤
(X2, Y2,W) in the blacklist-restriction lattice. Then Valid(X2,Y2)(Γ,Π, τ) implies
Valid(X1,Y1)(Γ,Π, τ).
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Figure 5.3: Black-restriction lattice.

Suppose Valid(X2,Y2)(Γ,Π, τ). We want to show that Valid(X1,Y1)(Γ,Π, τ). For this
we have to show that the four conditions from Definition 5.3.1 are satisfied for
X1, Y1. We call the first two conditions the globality conditions and the other two
the generality conditions.
Since (X1, Y1,W) ≤ (X2, Y2,W), we know that it is not the case that X1 = Gl and
X2 = Lo. If X1 = X2, the globality conditions are satisfied for X1 since they are
satisfied for X2. So all we have to show is that the globality conditions are satisfied
for X1 if X1 = Lo and X2 = Gl. Of course, since X1 6= Gl, the second globality
condition is trivially satisfied. Since X2 = Gl, we have that for all u, u′ ∈ U
s.t. (u, u′) is an element of some π ∈ Π, (u, u′) /∈ blacklist. So in particular, for
every u ∈ U s.t. (τ(own), u) is an element of some π ∈ Π, (τ(own), u) /∈ blacklist.
Therefore, the first globality condition is satisfied for X1.
Similarly, it is enough to show that the first generality condition is satisfied for Y1 =
Li and Y2 = Ge. But since Y2 = Ge, we know by the second generality condition
for Y2 that (τ(own), τ(req)) /∈ blacklist, so that the first generality condition for Y1
is satisfied.

We now proceed to proving Theorem 5.3.1. Let X1, X2 ∈ {Lo,Gl}, Y1, Y2 ∈
{Li,Ge} and Z1, Z2 ∈ {W,S} be s.t. (X1, Y1, Z1) ≤ (X2, Y2, Z2) in the blacklist-
restriction lattice. Suppose Γ, u, τ � φ(X2,Y2,Z2). We need to show that Γ, u, τ �
φ(X1,Y1,Z1). Since (X1, Y1, Z1) ≤ (X2, Y2, Z2), we know that it is not the case that
Z1 = S and Z2 = W. We consider the other three possible values for Z1, Z2
separately:

• Z1 = Z2 = W:
Since we have Z2 = W, Γ, u, τ � φ(X2,Y2,Z2) implies that there is a set
Π of paths s.t. Γ, u,Π, τ � φ and Valid(X2,Y2)(Π). Since (X1, Y1,W) ≤
(X2, Y2,W), Lemma 5.3.1 implies that Valid(X1,Y1)(Π). Hence, Γ, u, τ �
φ(X1,Y1,Z1).

• Z1 = Z2 = S:
In this case, Γ, u, τ � φ(X2,Y2,Z2) implies that (i) there is a set Π of paths
s.t. Γ, u,Π, τ � φ, and (ii) for every set Π of paths s.t. Γ, u,Π, τ � φ,
Valid(X2,Y2)(Π). For showing that Γ, u, τ � φ(X1,Y1,Z1), it is enough to show
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Restriction Denied users Restriction Denied users
LoLiW H LoLiS H,L,M

LoGeW H,M,N LoGeS H,L,M,N
GlLiW H,O GlLiS H,L,M,O

GlGeW H,M,N,O GlGeS H,L,M,N,O

Table 5.1: Denied users under different blacklist-restrictions.

that for every set Π of paths s.t. Γ, u,Π, τ � φ, Valid(X1,Y1)(Π). So let Π be a
set of paths s.t. Γ, u,Π, τ � φ. It is now enough to show that Γ, u,Π, τ � φ,
Valid(X1,Y1)(Π). By (ii), Valid(X2,Y2)(Π). (X1, Y1,S) ≤ (X2, Y2,S) implies
that (X1, Y1,W) ≤ (X2, Y2,W). This together with Lemma 5.3.1 implies
that Valid(X1,Y1)(Π), as required.

• Z1 = W and Z2 = S:
Since Z2 = S, Γ, u, τ � φ(X2,Y2,Z2) implies that (i) there is a set Π of paths
s.t. Γ, u,Π, τ � φ, and (ii) for every set Π of paths s.t. Γ, u,Π, τ � φ,
Valid(X2,Y2)(Π). (i) and (ii) together imply that there is a set Π of paths
s.t. Γ, u,Π, τ � φ and Valid(X2,Y2)(Π). (X1, Y1,W) ≤ (X2, Y2,S) implies that
(X1, Y1,W) ≤ (X2, Y2,W). This together with Lemma 5.3.1 implies that
Valid(X1,Y1)(Π). Hence, Γ, u, τ � φ(X1,Y1,Z1).

To illustrate the eight different blacklist-restrictions, we use the social graph in
Figure 5.2 to present an example. We assume that the owner is A and the policy is
a 3-depth policy. Under the non-restricted policy, five users including L, H, M , N
and O can access the resource. Under different restrictions, different users’ access
are denied (see Table 5.1). In the following, for each restriction we explain why
some users are granted and others are denied access. The complete information in
Table 5.1 follows from these explanations by Theorem 5.3.1.

1. LoLiW. Under this blacklist-restriction, H’s access is denied. The only path
of length 3 from A to H is (A, I,M,H), but I is on A’s blacklist, so this path
violates the restriction for Lo.

2. LoGeW. M ’s access is denied. There are two paths from A to M . On the
path (A,C,H,M), C is on A’s blacklist which violates the restriction for Lo;
on (A,D, I,M), I is on A’s blacklist which violates the restriction for Ge.
N ’s access is also denied. The only path from A to N is (A,E, J,N). On
this path, J is on A’s blacklist which violates the restriction for Ge.

3. GlLiW. O’s access is denied. On the only path from A to O, namely
(A,F,K,O), there exists a blacklist relation, namely (F,K) ∈ blacklist, thus
this path does not satisfy the restriction for Gl. M can access the resource.
There is one path from A to M , namely (A,D, I,M), that does not violate
the restrictions for Gl and Li.
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4. GlGeW. L can access the resource. There is one path from A to L, namely
(A,B,G,L), that does not violate the restrictions for Gl and Ge.

5. LoLiS. M ’s access is denied. There are two paths from A to M . On the
path (A,C,H,M), C is on A’s blacklist which violates the restriction for
Lo. Since the restriction is S, M cannot access the resource. L’s access is
also denied. There are two paths from A to L; the path (A,C,H,L) violates
the restriction for Lo, as C is on A’s blacklist. Since the restriction is S, L
cannot access the resource.

6. LoGeS. O can access the resource. The only path from A to O, namely
(A,F,K,O), does not violate the restrictions for Lo and Ge.

7. GlLiS. N can access the resource. The only path from A to N , namely
(A,E, J,N), does not violate the restrictions for Gl and Li.

8. GlGeS. No one can access the resource.

5.4 Syntactical Transformation

In Section 5.3, we give a semantic characterization of the three dimensions for
blacklist-restricting an access control policy φ by defining the conditions under
which φ(X,Y,Z) is satisfied in a given context. In this section, we define an al-
gorithm which – given an access control policy φ ∈ L′(own, req) and a choice
X, Y, Z of values for the three dimensions – syntactically transforms φ to a pol-
icy φ[X, Y, Z] ∈ L(own, req) such that φ[X, Y, Z] is satisfied in precisely the same
contexts as φ(X,Y,Z). The model-checking algorithm from [BFSH12] can then be
applied for evaluating the blacklist-restricted access control policy φ[X, Y, Z].

5.4.1 The Transformation Algorithm

Before presenting the algorithm that syntactically transforms φ to φ[X, Y, Z], we
need to define the notion of a strictly positive subformula:

Definition 5.4.1. A subformula ψ of φ is strictly positive iff it is not in the scope
of a negation symbol in φ.

Next we give Algorithm 5.1 for transforming a formula into disjunctive form, which
means pulling out all strictly positive occurrences of ∨ in φ. The algorithm takes
a hybrid logic formula as input and returns a list of disjuncts.
In both Algorithm 5.1 and Algorithm 5.2 for syntactically transforming φ, we have
for-loops referring to subformulas of φ. The only requirement on the order of the
iterations of these for-loops is that the iteration for a subformula χ of φ must come
after the iterations of all strict subformulas of χ. Namely, we proceed from deeper
to higher subformulas.
Algorithm 5.2 takes a formula φ as its input and syntactically transforms it to
φ[X, Y, Z] ∈ L(own, req). The transformation is defined separately for weak re-
strictions (lines 2-12) and strong blacklist-restrictions (lines 13-27). In both cases,
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Algorithm 5.1 Disjunctive Form
Input: φ ∈ L
Output: a list DF (φ) of formulas in L

1: for χ a strictly positive subformula of φ do
2: if χ is of the form ψ1 ∧ (ψ2 ∨ ψ3) then
3: replace χ in φ by (ψ1 ∧ ψ2) ∨ (ψ1 ∨ ψ3)
4: else if χ is of the form (ψ1 ∨ ψ2) ∧ ψ3 then
5: replace χ in φ by (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)
6: else if χ is of the form #n(ψ ∨ χ) then
7: replace χ in φ by #nψ ∨#nχ
8: else if χ is of the form #x(ψ ∨ χ) then
9: replace χ in φ by #xψ ∨#xχ

10: else if χ is of the form 〈αi〉(ψ ∨ χ) then
11: replace χ in φ by 〈αi〉ψ ∨ 〈αi〉χ
12: else if χ is of the form Ox(ψ ∨ χ) then
13: replace χ in φ by Oxψ ∨ Oxχ
14: end if
15: end for
16: DF (φ)← {ψ|ψ is a disjunct of φ}

we insert Oxk ’s and Oyk ’s into the formula (lines 3 and 15) in order to be able to
refer to the nodes of the paths satisfying the formula. We then use the bound
variables xk, yk to formulate the conditions of Definition 5.3.1 to ensure that the
specified blacklist-restriction in [X, Y, Z] is satisfied.
The following theorem establishes the equivalence between the syntactical transfor-
mation φ[X, Y, Z] and the semantically defined satisfaction conditions for φ(X,Y,Z):

Theorem 5.4.1. Let Γ = (GU , VU) be a model, u ∈ U , τ a valuation and φ ∈
L′(own, req). Let X ∈ {Lo,Gl}, Y ∈ {Li,Ge} and Z ∈ {W,S}. Then Γ, u, τ �
φ[X, Y, Z] iff Γ, u, τ � φ(X,Y,Z).

Proof. First note by inspection of the definition of the path semantics that a path
in a set of paths satisfying a formula φ corresponds to a branch in the syntax tree
of φ starting at the root (which is labeled by φ) and ending in a node labeled by
a strictly positive subformula of φ of the form x,m, p or ¬ψ. The edges in this
branch that connect a node labeled 〈αi〉ψ to ψ correspond to the edges of the path.
Note that in Definition 5.3.1, where we defined which sets of paths are free of
blacklist problems, the first, second and fourth condition actually refer to the
set Π of paths, whereas the third condition does not refer to this set and hence
is independent of the choice of Π. For this reason, Algorithm 5.2 handles the
restrictions imposed by this condition somewhat differently from the restrictions
imposed by the other three conditions. To refer to the restrictions imposed by the
other three conditions, we define v(X,Y )(Γ,Π, τ) as follows:

Definition 5.4.2. Let Γ = (GU , VU) be a model and τ be a valuation. For X ∈
{Lo,Gl}, Y ∈ {Li,Ge} and a set Π of paths, we define v(X,Y )(Γ,Π, τ) to hold iff
the following four properties are satisfied:
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Algorithm 5.2 Syntactical Transformation
Input: φ ∈ L′(own, req), X ∈ {Lo,Gl}, Y ∈ {Li,Ge}, Z ∈ {W,S}

1: let x1, y1, x2, y2, . . . be variables not occurring in φ
2: if Z = W then
3: replace every strictly positive subformula of φ of the form 〈αi〉ψ by
Oxk〈αi〉Oykψ.

4: for χ a strictly positive subformula of φ of the form x, n, p or ¬ψ do
5: Kχ ← {k| some subformula Oxkψ of φ contains χ}
6: end for
7: if X = Lo then
8: replace every strictly positive subformula χ of φ of the form x, n, p or ¬ψ

by χ ∧ ∧k∈Kχ(#ownxk → ¬#xk〈blacklist〉yk)
9: end if

10: if X = Gl then
11: replace every strictly positive subformula χ of φ of the form x, n, p or ¬ψ

by χ ∧ ∧k∈Kχ ¬#xk〈blacklist〉yk
12: end if
13: if Y = Ge then
14: replace every strictly positive subformula χ of φ of the form x, n, p or ¬ψ

by χ ∧ ∧k∈Kχ(¬#own〈blacklist〉xk ∧ ¬#own〈blacklist〉yk)
15: end if
16: ψ ← φ ∧ ¬#own〈blacklist〉req
17: end if
18: if Z = S then
19: for φi ∈ (DF (φ)) do
20: replace every strictly positive subformula of φi of the form 〈αi〉ψ by
Oxk〈αi〉Oykψ.

21: for χi,j a strictly positive subformula of φi of the form x, n, p or ¬ψ do
22: Kχi,j ←{k| some subformula Oxkψ of φ contains χ}
23: if X = Lo then
24: ψi,j ←

∨
k∈Kχi,j (#ownxk ∧#xk〈blacklist〉yk)

25: end if
26: if X = Gl then
27: ψi,j ←

∨
k∈Kχi,j #xk〈blacklist〉yk

28: end if
29: if Y = Ge then
30: ψi,j ← ψi,j ∨

∨
k∈Kχi,j (#own〈blacklist〉xk ∨#own〈blacklist〉yk)

31: end if
32: φi,j ← result of replacing χi,j in φi by χi,j ∧ ψi,j
33: end for
34: φi ←

∧
j ¬φi,j

35: end for
36: φ← φ ∧ ∧i φi
37: ψ ← φ ∧ ¬#own〈blacklist〉req
38: end if
39: φ[X, Y, Z]← ψ
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• If X = Lo, then for every u ∈ U s.t. (τ(own), u) is an element of some
π ∈ Π, (τ(own), u) /∈ blacklist.

• If X = Gl, then for all u, u′ ∈ U s.t. (u, u′) is an element of some π ∈ Π,
(u, u′) /∈ blacklist.

• If Y = Ge, then (τ(own), τ(req)) /∈ blacklist, and for all u, u′ ∈ U s.t. (u, u′)
is an element of some π ∈ Π, (τ(own), u) /∈ blacklist and (τ(own), u′) /∈
blacklist.

We first sketch how to prove the theorem for Z = W: The insertion of Oxk ’s and
Oyk ’s into φ in line 3 of algorithm does not affect which sets of paths satisfy φ, but
makes it possible to refer to the nodes of these paths. The new subformulas, which
in lines 6-11 of Algorithm 5.2 get conjuncted to strictly positive subformulas χ of
φ of the form x,m, p or ¬ψ, make use of this possibility to refer to the nodes of the
paths in order to express the conditions for v(X,Y )(Γ,Π, τ) within φ. In line 12 we
ensure that if Y = Li, then (τ(own), τ(req)) /∈ blacklist. Hence the modifications
performed on φ in case Z = W ensure that φ[X, Y, Z] is satisfied precisely by those
sets of paths Π that satisfy φ and Valid(X,Y )(Γ,Π, τ), i.e., precisely by those sets
of paths that satisfy φ(X,Y,Z).
Now we sketch how to prove the theorem for Z = S: Note that for a set Π of
paths to satisfy a formula φ of the form ψ1 ∨ψ2, it is enough that it satisfies ψ1 or
ψ2. Hence, concerning the correspondence mentioned in the first paragraph of this
proof sketch, only the branches of the syntax tree of one of ψ1 and ψ2 correspond
to paths in Π, while the branches in the syntax tree of the other are not reflected
in the structure of Π at all. In general, we can say that the correspondence is only
a one-to-one correspondence, if φ is a formula that does not have a strictly positive
subformula of the form ψ1 ∨ ψ2. This is why for the case Z = S, Algorithm 5.2
makes use of the Disjunctive Form DF (φ) of φ: The modifications made to the
disjuncts φi depend on the correspondence between paths and branches of the
syntax tree being one-to-one.
Furthermore, note that one can easily prove by an induction over the length of φ
that every hybrid logic formula φ is equivalent to its Disjunctive Form.
In lines 18-23 of Algorithm 5.2, we define – for each strictly positive subformula χi,j
of φi of the form x,m, p of ¬ψ – a formula ψi,j that expresses that the conditions for
v(X,Y )(Γ, {π}, τ) are not satisfied, where π is the path corresponding to the syntax
tree branch ending at χi,j. Hence, φi,j as defined in line 24 has the following
property: Γ, u, τ � φi,j iff there is a set Π of paths s.t. Γ, u,Π, τ � φi and it is
not the case that v(X,Y )(Γ, {π}, τ) (where π ∈ Π is the path corresponding to the
syntax tree branch ending at χi,j). This implies that Γ, u, τ � ¬φi,j iff for every
set Π of paths s.t. Γ, u,Π, τ � φi, we have v(X,Y )(Γ, {π}, τ). Hence, φi as defined
in line 25 has the following property: Γ, u, τ � φi iff for every set Π of paths with
Γ, u,Π, τ � φi, v(X,Y )(Γ, {π}, τ) holds for every path in π ∈ Π, i.e., v(X,Y )(Γ,Π, τ).
Now the equivalence between φ and DF (φ) together with the property of φi that
we just established implies the following property for the φ defined in line 26:
Γ, u, τ � φ iff Γ, u, τ � φ and for every set Π of paths with Γ, u,Π, τ � φ,
we have v(X,Y )(Γ,Π, τ). Concerning the ψ defined in line 27, this implies that
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Γ, u, τ � ψ iff Γ, u, τ � φ and for every set Π of paths with Γ, u,Π, τ � φ, we have
Valid(X,Y )(Γ,Π, τ), i.e., Γ, u, τ � ψ iff Γ, u, τ � φ(X,Z,Y ), as required.

We illustrate the syntactical transformation by showing its results for some typical
policies and blacklist-restrictions:

#own〈friend〉〈friend〉req[Gl,Li,W] =
#ownOx1〈friend〉Oy1Ox2〈friend〉Oy2(req ∧ ¬#x1〈blacklist〉y1 ∧
¬#x2〈blacklist〉y2) ∧ ¬#own〈blacklist〉req

#own〈friend〉〈friend〉req[Lo,Ge,S] =
#own〈friend〉〈friend〉req ∧ ¬#ownOx1〈friend〉Oy1Ox2〈friend〉Oy2(req ∧
((#ownx1 ∧#x1〈blacklist〉y1) ∨ (#ownx2 ∧#x2〈blacklist〉y2) ∨#own〈blacklist〉x1 ∨
#own〈blacklist〉y1 ∨#own〈blacklist〉x2 ∨#own〈blacklist〉y2)) ∧ ¬#own〈blacklist〉req

5.4.2 Blacklist-restriction in Practice

Allowing the users to write access control policies in a hybrid logic gives them a lot
of flexibility in the specification of the policies. But in practice, if one has in mind
an OSN whose users are not all computer scientists, logicians or mathematicians,
one cannot expect users to be or become competent in writing formulas in hybrid
logic. Instead, we envisage an OSN to provide a tool to the users that allows them
to specify an access control policy in an easy-to-understand and hence user-friendly
way. This tool would produce a hybrid logic formula to be used internally. Such a
tool would give the user various options for considering various information in the
access control policy and for making the policy more stringent or more lax. One of
the decisions that a user has to make is whether and how to use the information
from his and other users’ blacklists. The three dimensions discussed in the previous
section constitute three binary choices of how to use blacklist information in the
policy. We believe that these three binary choices are simple enough to make them
comprehensible to non-expert users.
As we have seen in first part of this section, for every access control policy φ not
involving the modality 〈blacklist〉 and any choice of X, Y, Z for the three dimen-
sions, there is an access control policy φ[X, Y, Z] ∈ L(own, req) such that φ[X, Y, Z]
is satisfied in precisely the same contexts as φ(X,Y,Z). In other words, the three di-
mensions for blacklist-restriction do not allow us to express any policy that is not
already expressible in the hybrid logic with the help of the modality 〈blacklist〉.
But even if we assume the users to have some competence in writing hybrid logic
formulas, it would be cumbersome for the users to write φ[X, Y, Z] themselves, for
often φ[X, Y, Z] is much more complex than φ. Possibly in combination with some
tool for producing the basic formula φ, our approach can be used for allowing users
to flexibly use the information from the blacklists for restricting their access control
policies without the need to write complex hybrid logic formulas. This makes our
approach a user-friendly framework for restricting access in social networks.
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Algorithm 5.3 Path Policy Evaluation
Input: uown, ureq, GU , φ ∈ L′(own, req), X ∈ {Lo,Gl}, Y ∈ {Li,Ge}, Z ∈
{W,S}

Output: access permission
1: if (uown, ureq) ∈ blacklist then
2: access denied
3: else
4: if Z = W then
5: for each path policy φ′ of φ do
6: extract rp and n from φ′

7: satisfiedφ′ ← Weak(uown, ureq,GU , rp, n,X, Y )
8: if satisfiedφ′ = 1 then
9: access granted, return

10: end if
11: end for
12: if access permission is not set then
13: access denied
14: end if
15: else if Z = S then
16: for each path policy φ′ of φ do
17: extract rp and n from φ′

18: (nopathφ′ , satisfiedφ′)← Strong(uown, ureq,GU , rp, n,X, Y )
19: if satisfiedφ′ = 0 then
20: access denied, return
21: end if
22: end for
23: if ∧(φ′ of φ) nopathφ′ = 1 then
24: access denied
25: else
26: access granted
27: end if
28: end if
29: end if

5.5 Path Evaluation Algorithms

In practice, especially in the most popular OSNs such as Facebook, a user normally
focuses on the length of the path between him and the potential requesters when
defining his access control policies. In Facebook one could define a policy to allow
his friends or friends of friends to view his profile. In the hybrid logic, the policy
can be represented as #own〈friend〉req ∨#own〈friend〉〈friend〉req.
To evaluate this formula under a blacklist-restriction, we can follow the procedure
as described in Section 5.4 to transform the policy into a blacklist-restricted policy.
Then we apply the local model-checking algorithm of Bruns et al. [BFSH12] to
evaluate the resulting policy on a social network model. However, as we have seen
with the two examples in Section 5.4, after the transformation the size of the new
formula is usually getting larger, which in turn will make the evaluation using
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model-checking inefficient: The model checking algorithm needs to go through the
structure of the formula (see details in [BFSH12]).
In fact, to evaluate a policy that only focuses on the path length from uown to
ureq, we can first decompose it into several sub-policies, e.g., #own〈friend〉req and
#own〈friend〉〈friend〉req for the above policy, and evaluate each sub-policy by find-
ing the qualified path(s) from uown to ureq. During the path-finding process, we
can perform optimizations such as filtering out the users who are on uown’s black-
list on-the-fly. In the end, access permission is made by the result of the boolean
function connecting the results of each sub-policy. In this way, for policies of such
simple form, we can avoid syntactical transformation as well as model-checking,
and design more efficient algorithms for policy evaluation.
The policies we consider can be written as the disjunctions of several path policies,
and each path policy has the form of #own〈α1〉 . . . 〈αn〉req, representing a certain
depth path from uown to ureq. Among the three dimensions, both globality and
generality concentrate on how blacklists are used on a single path while strength
takes into account all the paths from uown to ureq. When the policy’s blacklist-
restriction is weak, ureq can access uown’s resource as long as there exists a path
that satisfies the restrictions from the other two dimensions. Therefore, during the
process of finding paths, we can directly skip the unqualified edges. On the other
hand, when the restriction is strong, we need to make sure that all the possible
paths from uown to ureq are free of blacklist problems. Since the processes for
evaluating weak and strong restrictions are different, we treat them separately.
Our evaluation algorithm is listed in Algorithm 5.3. Its input consists of uown,
ureq, a policy φ and a blacklist-restriction X, Y, Z. Due to the restriction of the
generality dimension, we first check whether ureq is on uown’s blacklist. If he is,
then we directly deny his access (lines 1-2). Otherwise, we check path policies
one by one. Depending on the strength restriction of each path policy, we use the
corresponding algorithm (lines 4-17). Each path policy represents a relation path
denoted by rp. Here, rp = (α1, . . . αn) is tuple with each item as the corresponding
relationship type specified in the path policy and it is indexed by rp(i). Moreover,
n is the length of the path (lines 6 and 12). Under the weak restriction, once a
path policy’s evaluation result is positive (satisfiedφ′ = 1), ureq’s access is granted
(lines 8-9). Under the strong restriction, if there exists no path (specified in all the
path policies) from uown to ureq, ureq’s access is denied (lines 18-19). Otherwise, all
the existing paths from uown to ureq have to satisfy the restrictions from the other
two dimensions. If one path policy is not satisfied, then the access is denied and
the algorithm is finished (lines 16-17).
Algorithm 5.4 evaluates path policies under weak restrictions. Here, we perform
breadth first search (BFS) to find paths from uown to ureq in GU . We first add uown’s
rp(1) relations who are not on his blacklist into a list ulist, thus the local restriction
is implemented. Then, depending on the chosen restriction, different processes are
conducted. For example, when the restriction is LoGeW, for each user, to traverse
his friends, we only consider the ones that are not on uown’s blacklist (line 13). Note
that in the last step, once there is a qualified path from a user in ulist to ureq, the
access is directly granted (satisfied←1) (e.g., lines 15-17).
Algorithm 5.5 presents the process for evaluating the policies under strong restric-
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Algorithm 5.4 Weak
Input: uown, ureq, GU , rp, n, X ∈ {Lo,Gl}, Y ∈ {Li,Ge}
Output: satisfied

1: ulist ← {u | (uown, u) ∈ rp(1) ∧ (uown, u) /∈ blacklist}
2: if [X, Y ] = LoLi then
3: for i = 2 : n−1 do
4: for u ∈ ulist do
5: add {u′|(u, u′)∈rp(i)} into ulist
6: delete u from ulist
7: end for
8: end for
9: for u ∈ ulist do

10: if (u, ureq) ∈ rp(n) then
11: satisfied ← 1, break
12: end if
13: end for
14: else if [X, Y ] = LoGe then
15: for i = 2 : n−1 do
16: for u ∈ ulist do
17: add {u′|(u, u′)∈rp(i) ∧ (uown, u

′) /∈blacklist} into ulist
18: delete u from ulist
19: end for
20: end for
21: for u ∈ ulist do
22: if (u, ureq) ∈ rp(n) ∧ (uown, ureq) /∈ blacklist then
23: satisfied ← 1, break
24: end if
25: end for
26: else if [X, Y ] = GlLi then
27: for i = 2 : n−1 do
28: for u ∈ ulist do
29: add {u′|(u, u′)∈rp(i) ∧ (u, u′) /∈blacklist} into ulist
30: delete u from ulist
31: end for
32: end for
33: for u ∈ ulist do
34: if (u, ureq) ∈ rp(n) ∧ (u, ureq) /∈ blacklist then
35: satisfied ← 1, break
36: end if
37: end for
38: else if [X, Y ] = GlGe then
39: for i = 2 : n−1 do
40: for u ∈ ulist do
41: add {u′|(u, u′)∈rp(i)∧ (u, u′) /∈blacklist ∧ (uown, u

′) /∈blacklist} into ulist
42: delete u from ulist
43: end for
44: end for
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45: for u ∈ ulist do
46: if (u, ureq)∈rp(n) ∧ (u, ureq) /∈blacklist ∧ (uown, ureq) /∈blacklist then
47: satisfied ← 1, break
48: end if
49: end for
50: end if
51: if satisfied is not set then
52: satisfied ← 0
53: end if
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Figure 5.4: Average time ratio under eight blacklist-restrictions.

tions. In the beginning, we exploit BFS to find all the paths from uown to ureq. If
there is no path from uown to ureq, then nopath is set to 1 (line 3). Otherwise, we
begin to evaluate the paths. Under strong restrictions, once we find an unqualified
path, we can directly deny ureq’s access without considering other paths anymore
(satisfied ← 0). For example, under restriction LoLiS, as long as there exists one
path whose first user is on uown’s blacklist, the access is denied (lines 8-9).

5.6 Evaluation

As introduced in Section 5.5, our path evaluation algorithms only consider access
control policies that are composed by one or several path policies and each path
policy represents a relation path from uown to ureq. For empirical evaluation, we
focus on the 2-depth policy and the 3-depth policy.

5.6.1 Algorithm Efficiency

Experiment setup. To evaluate the performance of our proposed algorithms
in Section 5.5, we check the time difference between evaluating restricted and
non-restricted policies. The metric we adopt is defined as time ratio[X, Y, Z] =
t[X, Y, Z]/t, where t is the time for checking a non-restricted policy and t[X, Y, Z]
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Algorithm 5.5 Strong
Input: uown, ureq, GU , rp, n, X∈{Lo,Gl}, Y ∈ {Li,Ge}
Output: nopath, satisfied

1: path← BFS(uown, ureq,GU , rp, n)
2: if path is empty then
3: nopath ← 1, satisfied ← 1
4: else
5: nopath ← 0
6: if [X, Y ] = LoLi then
7: for p ∈ path do
8: if (uown, the first user on p) ∈ blacklist then
9: satisfied ← 0, break

10: end if
11: end for
12: else if [X, Y ] = LoGe then
13: for p ∈ path do
14: if ∃ a user u on p s.t. (uown, u) ∈ blacklist then
15: satisfied ← 0, break
16: end if
17: end for
18: else if [X, Y ] = GlLi then
19: for p ∈ path do
20: if ∃(u, u′) is part of p s.t. (u, u′) ∈ blacklist then
21: satisfied ← 0, break
22: end if
23: end for
24: else if [X, Y ] = GlGe then
25: for p ∈ path do
26: if ∃u on p s.t. (uown, u) ∈ blacklist ∨ ∃(u, u′) is part of p s.t. (u, u′) ∈

blacklist then
27: satisfied ← 0, break
28: end if
29: end for
30: end if
31: if satisfied is not set then
32: satisfied ← 1
33: end if
34: end if

is the time for checking the corresponding restricted policy. Here, to enforce a
non-restricted policy, we perform BFS to find whether there exists a path from
uown to ureq satisfying the policy. Since major OSN companies such as Facebook
do not disclose their algorithms for enforcing access control policies, we simply
choose BFS for the purpose to evaluate the performance of our algorithms. Other
algorithms for path-finding can be used as well.
The dataset we use to conduct our experiments is collected by McAuley and
Leskovec [ML12], it is a Facebook dataset that contains 4,039 users and 88,234
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edges. For each user, we randomly sample five different ratios, i.e., 1%, 5%, 10%,
20% and 30% of his friends to be on his blacklist. The ratio is called the blacklist
ratio. The algorithms are implemented on a machine with Intel core i7 processor
and 8GB RAM.

Results. For each blacklist-restriction, we plot the metric time ratio as a function
of blacklist ratio in Figure 5.4. The performance of algorithms is quite different
for weak and strong restrictions.

Weak restrictions. As shown in Figures 5.4a, 5.4b, 5.4c and 5.4d, with the increase
of blacklist ratio, checking path policies under weak restrictions is getting faster.
This is because during the path-finding process, Algorithm 5.4 filters out all the
unqualified edges which saves a lot of operations. On the other hand, for non-
restricted policies, the algorithm cannot skip any edges until it finds a path. Due
to the same reason, evaluating weak restrictions is faster than evaluating strong
ones. We also notice that, in Figures 5.4b, 5.4c, 5.4d, the curves for 3-depth
policies (blue) are far below the curves for 2-depth ones (red). The reason is
that longer paths our algorithm traverses, more edges it filters out, thus more
operations are saved compared to running non-restricted policies. On the other
hand, the difference between the two curves in Figure 5.4a is small since running
LoLiW only filters out the users that are on uown’s blacklist in the first step.

Strong restrictions. As depicted in Figures 5.4e, 5.4f, 5.4g and 5.4h, time for
running 3-depth policies with strong restrictions is almost twice as much as running
non-restricted policies. This indicates that the most time-consuming operations are
for finding paths. On the other hand, checking 2-depth strong policies only requires
around 30% overhead.

5.6.2 Power of Blacklist-restrictions

It is interesting to learn what is the impact of different restrictions on access control.
We focus on two questions.

Which restrictions are relatively powerful? The “power” of a blacklist-restriction
is quantified by the number of users denied by it. We first define a metric, ac-
cess ratio, representing the fraction of the number of qualified requesters under an
owner’s restricted policy and the number of qualified requesters under the same
non-restricted policy. When a user’s access ratio under a blacklist-restriction is
high, it means that he cannot forbid many users with the restriction.
As we can see from Figure 5.5, the power of all the eight blacklist-restrictions is
consistent with the lattice presented in Figure 5.3. GlGeS which is the supremum
in the lattice is the most powerful blacklist-restriction. When the blacklist ratio
is 20%, the average access ratio is only 20% (40%) for the 3-depth (2-depth) case
(see Figure 5.5h). On the other hand, LoLiW is the least powerful one. When
the blacklist ratio is 20%, the average access ratio is around 85% for the 3-depth
case (see Figure 5.5a). For each edge of the lattice in Figure 5.3, the restriction
of the source node always denies less users than the one of the target node, e.g.,
LoGeW denies less users than LoGeS (Figure 5.5b vs. Figure 5.5f).
We notice that among all the three dimensions, shifting the strength dimension
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Figure 5.5: Average access ratio under eight blacklist-restrictions.
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Figure 5.6: Social strength between users and the owner.

from weak to strong denies many more users’ access than shifting the other two di-
mensions. For example, the difference between the curves in Figure 5.5f (LoGeW)
and Figure 5.5b (LoGeS) is much bigger than the difference between Figure 5.5b
(LoGeW) and Figure 5.5d (GlGeW). This is because the strong restriction re-
quires all the paths from uown to ureq to be free of blacklist problems, while the
weak restriction only needs one qualified path. On the other hand, shifting the
globality dimension from local to global denies more users than shifting the gen-
erality from limited to general. For example, by shifting the blacklist-restriction
from GlLiW to GlGeW, the access ratio barely changes (see Figure 5.5c and
Figure 5.5d), while the difference between LoLiS and GlLiS is more notable (see
Figure 5.5e and Figure 5.5g). The reason is that the global restriction considers
the blacklist of everyone on the path from uown to ureq while the general restriction
only focuses on uown’s blacklist.

Which users are relatively easily to be forbidden? To precisely answer this question,
we study the social strength between the owner and the qualified requesters under
different blacklist-restrictions. The social strength between two users is quanti-
fied by three metrics including embeddedness, Jaccard index and Adamic-Adar
score [AA03]. If two users’ embeddedness (as well as Jaccard index and Adamic-
Adar score) is high, then they are considered to have a strong relationship. We
compute the average value of the three metrics between the qualified requesters and
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the corresponding owners under different blacklist-restrictions when fixing blacklist
ratio to be 10%. As shown in Figure 5.6, the three metrics give us similar results.
Qualified requesters under weak restrictions are more socially close to the corre-
sponding owners than the qualified requesters under strong ones. This is because
higher social strength implies more paths. Therefore, there is a better chance for
the requester to be qualified under weak restrictions. However, to access the re-
source under a strong blacklist-restriction, the requester is better not to be socially
close with the owner, which seems counter-intuitive. This is because the strong
restriction considers all the paths from uown to ureq.

5.7 Related Work

Blacklists have been used in a wide range of applications, such as spam detec-
tion [CDG+07, RFV07] and sybil defense [YGKX08, Fon11a]. In this chapter, we
focus on the use of blacklists in relationship-based access control which, to the best
of our knowledge, has never been studied in the literature. Moreover, it is the first
time to formally define different blacklist-restrictions in a hybrid logic.
One close line of works is delegation in access control – one active entity in a system
delegates its authority to another entity in the systems to carry out some functions;
it has been extensively studied in the literature (e.g., see [ZAC03, JB06, AZKA11,
CM11]). Fong [Fon11b] explicitly points out that relationship-based access control
supports delegation – the use of other users’ social relations (and blacklists) to reg-
ulate access control in OSNs can be naturally considered as a delegation process.
Revocation is an important issue that has been studied with delegation [ZAC03],
which has been formally categorized and defined in [BS00, HJPPW01]. When a
user blacklist-restricts a policy, it can be treated as revoking other users’ privi-
leges that they are delegated under the corresponding non-restricted policy. For
example, under the restriction GlLiW, a user can only delegate privileges to his
friends that are not on his blacklist. Different from revocation which takes away all
the delegated users’ privileges, blacklist-restrictions can be considered a “partial”
revocation since a user can still delegate the privilege to others if the blacklist-
restrictions are not violated. The formal relation between blacklist-restriction and
revocation deserves further investigations, and we leave it for our future work.

5.8 Conclusion

In this chapter, we have focused on blacklists, which already exist in popular
OSNs such as Facebook, Twitter and Instagram, for the purpose of restricting ac-
cess. We treated blacklists as a special relationship among OSN users. This allows
us to build our work naturally on an exiting social network model and a hybrid
logic for specifying relationship-based access control policies. We have identified
three different dimensions of applying blacklists. Each dimension provides a bi-
nary choice, resulting into eight types of blacklist-restrictions. The meaning of the
choices are intuitive for the users to understand. We formally defined the blacklist-
restrictions, using a new path semantics for the hybrid logic. To release users from
the task of precisely writing policies with blacklist-restrictions and in order to make
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our approach user-friendly, we also provided a procedure to syntactically rewrite a
non-restricted policy into a policy under a user specified blacklist-restriction. To
enforce policies which require the witness of a relation path from the owner to the
requester, we designed efficient algorithms for blacklist-restrictions and evaluated
their performance on a Facebook dataset. In addition, we have made a few inter-
esting observations on the impact of the blacklist-restrictions for access control.
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6

Location Inference
with Social Communities

6.1 Introduction

Humans are social animals, everyone is a part of the society and gets influences
from it. Our daily behaviors, such as what types of music we listen to, where we
have lunch on weekdays and what activities we conduct on weekends, are largely
dependent on our social networks. Following this, OSN companies have built
personalized services for their users such as recommending new friends to a user or
suggesting him a new place to visit. On the other hand, a user being influenced by
his social relations also raises privacy issues, i.e., even a user hides his information
in the online world, it is still possible to infer them from his social network’s data
shared in OSNs. To demonstrate the privacy issues raised by social relations, in
this chapter of the thesis, we apply machine learning techniques to perform an
inference attack on users’ mobility.
Mobility is one of the most common human behaviors, and it is among the most
sensitive information about individuals [dMHVB13] being collected. It represents
whereabouts of each individual and can be used to reconstruct his mobility trace,
which could raise serious privacy issues, such as a user being at a hospital or a
motel. Studying privacy with mobility is necessary but one obstacle is gathering
data at a large scale. OSNs beging extended to the geographical space, thanks
to the emergence of portable devices, have changed the situation. Nowadays,
it is common for a user to attach his location when he publishes a photo or a
status using his OSN account. Moreover, users may just share their locations,
namely check-in, to tell their friends where they are. These large amount of lo-
cation data about each individual has provided us an unprecedented chance to
study the privacy threat of sharing mobility data in OSNs. Moreover, using these
data to understand human mobility can lead to compelling applications including
location recommendation [ZZXM09, ZZXY10, ZZM+11, GTHL13, LX13], urban
planning [ZLH13], immigration patterns [CMA05], etc.
Our goal is to infer a user’s future locations using his social relations’ informa-
tion. In daily life, we normally categorize our social relations into different groups,
i.e., social communities, using different criteria and considerations. By definition,
a community is a social unit of any size that shares common values1. Typical
communities include family, close friends, colleagues, etc. Humans are engaged in
various social environments, and they interact with different communities depend-

1http://en.wikipedia.org/wiki/community
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ing on the environments. For our specific behaviors, social influences, in most of
cases, are not from all our friends but from certain communities. For example, we
listen to similar types of music as our close friends, but not as our parents; we have
lunch together with our colleagues on weekdays, but not with our college friends
living in another city; on weekends we spend more time with family, but not with
our colleagues.
Previous works, including [BSM10, CS11, CML11, SKB12], show that human mo-
bility can be inferred by social relations’ information. However, there is one com-
mon shortcoming: they all treat friends of users equally. Similar to other social
behaviors, in most cases mobility is influenced by specific communities but not all
friends. For example, the aforementioned colleagues can influence the place a user
goes for lunch but probably have nothing to do with his weekend plans. Meanwhile,
where a user visits on weekends largely depends on his friends or family, but not
his colleagues. Therefore, inferring a user’s mobility should be considered from the
perspectives of communities instead of all friends. In a broader view, community
is arguably the most useful resolution to study social networks [YML14].
With the goal of inferring users’ mobility from social communities, we make the
following contributions in this chapter. First, we partition each users’ friends
into communities and propose a notion namely community entropy to characterize
a user’s social diversity. Second, we analyze communities’ influences on users’
mobility and our main conclusions include: (1) communities’ influences on users’
mobility are stronger than their friends’; (2) each user is only influenced by a
small number of his communities; and (3) such influence is typically constrained
by temporal and spatial contexts. Third, we perform an inference attack with
machine learning techniques on users’ locations using their community information.
Experimental results on two real-life datasets with millions of location data show
that the community-based inference attack achieves a strong performance.

6.2 Preliminaries

We first summarize the notations in Section 6.2.1, then describe the datasets that
we use in this chapter in Section 6.2.2. In the end, we present the adversary model
considered for the inference attack in Section 6.2.3.

6.2.1 Notations

Similar to the notations in Chapter 2, we denote each user by u and u’s friends by
the set f (u). A community of a user u is a subset of his friends denoted by c and
c ⊆ f (u). Meanwhile, C (u) represents all the communities of u, i.e., C (u) is a set
of sets of u’s communities. Every friend of a user is assigned into one of the user’s
communities, the union of all his communities is the set of all his friends. In this
chapter, we only consider non-overlapping communities, namely c ∩ c′ = ∅ for any
pair of c, c′ ∈ C (u). However, this assumption is not crucial to our approach and
our results can be extended for overlapping communities as well.
A check-in of u is denoted by a tuple 〈u, t, `〉, where t represents the time and ` is
the location that corresponds to a pair of latitude and longitude. We use |ci(u)| to
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represent all the check-ins of u. Without ambiguity, we use location and check-in
interchangeably in the following discussion.

6.2.2 The Datasets

Figure 6.1: Check-ins in New York.

We use two social network
datasets for our experiment.
The first one is collected by
the authors of [CML11] from
Gowalla – a popular LBSN ser-
vice back in 2011. The dataset
was collected from February
2009 to October 2010 and
it contains 6,442,892 check-
ins. Besides location informa-
tion, the dataset also includes
the corresponding social data
which contains around 1.9 mil-
lion users and 9.5 million edges.
Due to the large data sparsity, we mainly focus on the check-in data in two cities
including New York (NY (G)) and San Francisco (SF (G)). They are among the
areas with most check-ins in the dataset. In addition, when performing mobility
analysis and location prediction, we only focus on users who have conducted at
least 100 check-ins in each city who are termed as active users.

NY (G) SF (G) NY (T) SF (T)
#. users 7,786 6,617 207,805 113,383

#. check-ins 176,324 177,357 2,325,907 2,163,959
Avg. #. check-ins 21.6 26.8 11.2 19.1

#. active users 175 236 1,636 1,626
Avg. #. friends (active user) 79.4 69.7 376.9 289.0

Table 6.1: Summary of the datasets.

The second dataset is collected from Twitter from December 2014 to April 2015
by us. Again, we focus on the data in New York (NY (T)) and San Francisco
(SF (T)) and treat all the geo-tagged tweets (tweets labeled with geographical
coordinates) as users’ check-ins. We exploit Twitter’s Streaming API2 to collect
all the geo-tagged tweets. Each check-in is organized as a 4-tuple.

〈uid, time, latitude, longitude〉
Figure 6.1 depicts a sample of check-ins in New York. To collect the social relation-
ships among users, we adopt Twitter’s REST API3 to query each user’s followers
and followees. Two users are considered friends if they follow each other mutually.
Similar to the Gowalla dataset, we only focus on active users (users with more than
100 check-ins) in the Twitter dataset. Table 6.1 summarizes the two datasets.

2https://dev.twitter.com/streaming/overview
3https://dev.twitter.com/rest/public

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/rest/public
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6.2.3 Adversary Model

In this chapter, we consider a passive adversary who has access to many users’
check-ins and their social networks in New York and San Francisco. This informa-
tion is publicly available through OSNs’ API (similar to our Twitter data collecting
process). For a user of interest, the adversary has his past check-ins and his so-
cial network’s information including structure and check-ins, extracted from the
adversary’s general data. The inference attack aims to predict where the user of
interest is at a given time. It is worth noticing that our goal is to demonstrate the
usefulness of a user’s community information on predicting his behaviors compared
to his friends, this provides a future guidance on how to use social relation data to
perform inference attack.

6.3 Communities

We first show how to detect communities in social networks in Section 6.3.1 and
then propose a new notion to characterize users’ social diversity in Section 6.3.2.

6.3.1 Community Detection in Social Networks

Community detection in networks (or graphs) has been extensively studied for the
past decade (e.g., see [New06, RB08, BGLL08, LF10, RB11, ML12, YML13, YL13,
MH13, YML14, ML14]). It has important applications in many fields, including
physics, biology, sociology as well as computer science. The principle behind com-
munity detection is to partition nodes of a large graph into groups following certain
metrics on the graph structure [LF10]. In the context of social networks, besides
the social graph, each user is also affiliated with attributes. These information
can also be used to detect communities (e.g., see [ML12, YML13, ML14]). For
example, people who graduate from the same university can be considered as a
community. Since the datasets we use only contain social graphs and no personal
information are provided, we apply the algorithms that are based on information
encoded in graph structure to detect communities.
According to the comparative analysis [LF10], among all the community detec-
tion algorithms, Infomap [RB08] has the best performance on undirected and un-
weighted graphs and has been widely used in many systems [NKA14, QSAM15].
Therefore, we apply it in this chapter. Next we give a brief overview of Infomap
and describe how we use it to detect communities.
The main idea of Infomap can be summarized as follows: information flow in a
network can characterize the behavior of the whole network, which consequently
reflects the structure of the network. A group of nodes among which information
flows relatively fast can be considered as one community. Therefore, Infomap in-
tends to use information flow to detect communities. In the beginning, Infomap
simulates information flow in a network with random walks. Then the algorithm
partitions the network into communities and exploits Huffman coding to encode the
network at two levels. At the community level, the algorithm assigns a unique code
for each community based on the information flow among different communities; at
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Figure 6.2: Communities of two users.

the node level, the algorithm assigns a code for each node based on the information
flow within the community. Infomap allows the Huffman codes in different com-
munities (node level) being duplicated which results in a more efficient encoding
(less description length). In the end, finding a Huffman code to concisely describe
the information flow while minimizing the description length is thus equivalent to
discovering the network’s community structure. In other words, the objective of
Infomap is to find a partition such that the code length for representing informa-
tion flow among communities and within each community is minimized. Since it
is infeasible to search all possible community partitions, Infomap further exploits
a deterministic greedy search algorithm [CNM04, WT07] to find partitions.
To detect communities of a user, we first find his friends and the links among them.
Then, we delete the user and all edges linked to him and apply Infomap to the
remaining part of the graph. Figure 6.2 presents the detected communities of two
users in the Gowalla dataset. Each community is marked with a different color.

Gowalla Twitter
Avg.#. communities 4.5 5.3
Avg. community size 13.2 20.8

Table 6.2: Community summary of active users.

Table 6.2 lists the summary of community information of all active users in the
two datasets. Each active user in Gowalla has on average 4.5 communities while
the value is 5.3 for the Twitter users. In addition, the average community size of
Twitter users is bigger than Gowalla users (20.8 vs. 13.2). This is because active
users in the Twitter dataset have more friends than those in the Gowalla dataset
(see Table 6.1), which indicates general social network services, such as Twitter,
contain more users’ social relationships than LBSN services, such as Gowalla. In
spite of the differences on the average value in Table 6.2, community number and



84
Chapter 6 Location Inference

with Social Communities

# of Communities
10

0
10

1
10

2
10

3
10

4

P
ro

b
a
b
ili

ty

10
-4

10
-3

10
-2

10
-1

10
0

Gowalla
Twitter

Community Size
10

0
10

1
10

2

P
ro

b
a
b
ili

ty

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Gowalla
Twitter

Figure 6.3: Distribution of users’ number of communities and community size.

community size in the two datasets follow a similar distribution. As we can see
from Figure 6.3, both community number and size follow the power law: most of
the users have small number of communities and most of the detected communities
are small as well.

6.3.2 Community Entropy

After detecting communities, we are given a new domain of attributes on users,
among which we are particularly interested in how diverse a user’s communities
are. We motivate this social diversity through an example. Suppose that a user is
engaged in many communities, such as colleagues at work, family members, college
friends, chess club, basketball team, etc, then he is considered an active society
member. Users of this kind are always involving in different social scenarios or
environments, and his daily behaviors are largely dependent on his social relations.
Although we do not have the semantics of each of our detected communities, such as
the aforementioned colleagues at work or chess club, we can still use the information
encoded in the graph to define a user’s social diversity. For instance, for a user
with several communities whose sizes are more or less the same, his social diversity
is for sure higher than those with only one community.
To quantify the social diversity of a user, we introduce community entropy.

Definition 6.3.1. For a user u, his community entropy is defined as

coment(u) = 1
1− α ln

∑
c∈C(u)

( |c|
|f (u)|)

α.

Our community entropy follows the definition of Rényi entropy [Rén60]. Here, α
is called the order of diversity, it can control the impact of community size on the
value which gives more flexibility to distinguish users when focusing on the sizes
of their communities. In simple terms, our community entropy,

• when α>1, values more on larger communities;

• when α<1, values more on smaller communities.
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Figure 6.4: Distribution of community entropies of active users.

The limit of coment(u) with α→ 1 is the Shannon entropy4. In general, if a user
has many communities with sizes equally distributed, then his community entropy
is high and this indicates that his social relations are highly diverse.
We set α > 1 in the following discussion to limit the impact of small communities
since a user may randomly add strangers as his friends in online social networks and
these strangers normally form small communities (such as a one-user community5),
which have less impact on the user’s mobility. For example, if a user u has three
communities with sizes equal to 1, 1 and 10, then his communities are not that
diverse following the above intuition. When we set α less than 1, such as 0.5,
we have coment(u) = 0.79 which is a high value indicating u’s social circles are
diverse. On the other hand, if we set α bigger than 1, such as 10, coment(u) drops
to 0.20 which captures our intuition. In the following experiments, we set α = 10
when calculating users’ community entropies. Note that we have also set α to
other numbers bigger than one and observed similar results. Figure 6.4 shows the
histogram of community entropies of all active users in two datasets.

6.4 Communities and Mobility

It has been proved that social factors play an important role on users’ mobility,
e.g., see [CML11]. For instance, one may go to lunch with his friends or go to a
bar to hangout with his friends. Meanwhile, for a user, friends of his social net-
works (as well as in real life) are not all equal. Instead friends normally belong
to certain communities. When considering a user’s mobility, intuitively different
communities can impose different influence within certain contexts or social envi-
ronments. Continuing with the above example, the people the user has lunch with
are normally his colleagues while the people he meets at night are his close friends.
Therefore, in order to infer a user’s future locations from his social relations, it is
reasonable to focus on the community level.
Before performing inference attacks (Section 6.5), in this section, we first study the

4https://en.wikipedia.org/wiki/Renyi_entropy
5In our community detection algorithm, if u′ himself forms a community of u, then it indicates

that u′ does not know any other friends of u.

https://en.wikipedia.org/wiki/Renyi_entropy
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relation between community and mobility. We start with communities’ influence on
users’ mobility, then study the characteristics of the influential communities with
the following two intuitions in mind: (1) a user’s daily activities are constrained,
and the number of communities he interacts with is limited; (2) communities in-
fluence a user’s social behavior under different contexts.

6.4.1 Influential Communities

Figure 6.5 depicts a user’s two communities’ check-ins in Manhattan of the New
York City. We can observe a quite clear separation between these two communities’
check-ins: members of community 1 mainly visit Uptown and Midtown Manhattan
while community 2 focuses more on Midtown. This indicates that different com-
munities have their social activities at different areas. In a broader view, this shows
that partitioning users’ check-ins at the social network level (through community
detection) can result in meaningful spatial clusters as well.

community 1

community 2

Figure 6.5: A user’s two communities’
check-ins in Manhattan.

A single community also has several fa-
vorite places. For example, community
1 in Figure 6.5 visits Times Square and
Broadway quite often while members of
community 2 like to stay close to Madi-
son square park. A user may socialize
with different communities at different
places, for example, he may go to watch
a basketball game with his family at the
stadium and have lunch with his col-
leagues near his office. Therefore, to
study influences on mobility from com-
munities to a user, we need to summa-
rize each community’s frequent move-
ment areas. To discover a community’s
frequent movement areas, we perform
clustering on all locations that the com-
munity members have been to. Each
cluster is then represented by its central point and a community’s frequent move-
ment areas are thus represented by the centroids of all clusters. The clustering
algorithm we use is the agglomerative hierarchical clustering. We regulate that
any two clusters can be aligned only if the distance between their corresponding
centroids is less than 500m which is a reasonable range for human mobility.
To illustrate the mobility influence from communities to users, we choose to use
“distances”. More precisely, we represent the influence by the distances between a
user’s locations and the frequent movement areas of his communities. Shorter dis-
tances imply stronger influences. For each location a user has visited, we calculate
the distances between the location and all his communities’ frequent movement
areas. Then, for each community of the user, we choose the shortest distance
between the location and the community’s frequent movement areas as the dis-
tance between the location and the community. The community which has the
smallest distance to the location is considered as the influential community of the
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user at this location. The distance between the influential community and the
user’s location is further defined as the distance between the user’s location and
his communities. Note that a user can have multiple influential communities and
an influential community can influence a user on multiple locations.
Figure 6.6 depicts the distribution of distances between users’ locations and their
communities in New York and San Francisco in the two datasets. As we can
see, most of the distances are short which indicates the communities are close to
users’ locations. To illustrate that these short distances are not due to the limits
of the city areas, for each location of a user, we pick some random users in the
city, summarize their frequent movement areas through clustering and find the
minimal distance between their frequent movement areas and the location. In
Figure 6.76, the curve of cumulative distribution function (CDF) for these random
users (purple) is much lower than the one for communities (blue). This means that
these random users are farther away from the users than communities. To show
that community is a meaningful level to study mobility, we also calculate distances
between a user and all his friends. The curve for friends (red) in Figure 6.7 is
lower than the one for communities as well, meaning that a user is closer to his
communities than to all his friends in general. As a user’s community is a subset of
his friends, to illustrate that the shorter distances for communities than friends are
not caused by frequent movement areas clustered from a small number of friends’
check-ins, for each community of a user, we randomly sample the same number of
his friends to build a “virtual” community and calculate the distances between the
user and his virtual communities. The CDF curve in Figure 6.7 (yellow) shows
that these virtual communities are even farther away from users than all friends.
From the above analysis, we conclude that (1) communities have strong influences
on users’ mobility and (2) community is a meaningful resolution to study mobility.

6.4.2 Number of Influential Communities

Research shows that a user’s mobility is constrained geographically (see [CCLS11,
CML11]), e.g., a user normally travels in or around the city where he lives. Mean-
while, social relations are not restricted by geographic constrains. For instance, a

6The results in Figure 6.7 are based on the data from two cities in both datasets.
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Figure 6.8: Distribution of number of influential communities and entropy.

user’s college friends as a community can spread all over the world. Now we focus
on how many communities actually influence a user’s mobility, i.e., how many in-
fluential communities a user has. Intuitively, this number should be small as each
user only interacts with a limited number of communities in his daily life such as
colleagues and family.
We plot the distribution of the number of user’s influential communities in Fig-
ure 6.8a. From two datasets, we can observe a similar result. Most of the users are
influenced only by a small number of communities and there are more users who
have two influential communities than others. For example, almost 30% of users
in New York have two influential communities in the Twitter dataset.
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Figure 6.9: Influence entropy vs. community entropy.

Each location corresponds to an influential community. We proceed with studying
how a user’s influential communities are distributed over his check-ins. We first
propose a notion named influence entropy, it is defined as

infent(u) = −
∑

c∈C(u)

|ci(u, c)|
|ci(u)| ln |ci(u, c)|

|ci(u)|

where |ci(u, c)| represents the number of u’s check-ins that are closest to the com-
munity c. The influence entropy is defined in the form of Shannon entropy: higher
influence entropy indicates that the user’s locations are close to his different com-
munities more uniformly. Figure 6.8b depicts the distribution of users’ influence
entropies. As we can see, in New York (NY (T)), around 20% of users’ influence
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Figure 6.10: Distribution of influential communities on check-ins (temporal).

entropies are between 0 and 0.2 which means they have one dominating influential
community that is close to most of their locations. We also notice that there is
a peak around 0.6 in all the cities. For example, if a user u’s 50% check-ins cor-
responds to one influential community and the other 50% corresponds to another
one, then infent(u) = 0.69 which falls into this range. This shows that around 20%
of users are influenced by their two major communities at a similar level.
Community entropy (Section 6.3) is a notion for capturing a user’s social diver-
sity. We further study the relationship between community entropy and influence
entropy. As shown in Figure 6.9, more diverse a user’s social relationship is, more
probably his locations are distributed uniformly over his influential communities.
From the above analysis, we conclude that only a small number of communities
have influences on users’ mobility.

6.4.3 Communities under Contexts

Influential communities are constrained by contexts. For instance, a user has lunch
with his colleagues and spends time with his family near where he lives. Here, the
lunch hour and the home location can be considered as social contexts, and the two
communities (colleague and family) have impact on the user’s behavior under each
of the context, respectively. Thus it is interesting to study whether this hypothesis
holds generally.

Temporal contexts. The pair of temporal contexts we choose are Lunch (11am–
1pm) and Dinner (7pm–9pm) hours on Wednesday. For each user, we extract his
check-ins during lunch and dinner time and find his influential communities w.r.t.
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Figure 6.11: Distribution of influential communities on check-ins (spatial).

these two contexts. We randomly choose four users and plot the distributions
of their check-ins over their influential communities under these two contexts in
Figure 6.10. As we can see, a user’s communities behave quite differently on
influencing his check-ins during lunch and dinner time. For example, the first user
in New York in the Twitter dataset is only influenced by his community 3 during
lunch time while communities 1 and 2 give him similar influences during dinner
time. This simply reflects the fact that the people who users have lunch and dinner
with are different. In addition, users’ average influence entropies drop as well under
different temporal contexts compared with the general case (see Table 6.3), this
suggests that the influential communities tend to become more unique.
For each user during lunch (dinner) time, we create a vector where the i-th com-
ponent counts the number of locations that are the closest to community i. We
then exploit the cosine similarity between a user’s lunch and dinner vectors as his
influence similarity. The results are listed in Table 6.4. Note that, we also choose
other pairs of temporal contexts for analysis, such as working hours (9am–6pm)
and nightlife (10pm–6am) and have similar observations.

Spatial contexts. Next we study the influence of spatial contexts. In each
city, we pick two disjoint regions (called Region 1 and Region 2, respectively)
including Uptown and Downtown Manhattan in New York and Golden Gate Park
and Berkeley in San Francisco. Then, we extract users’ check-ins in these areas. By
performing the same analysis as the one for temporal contexts, we observe similar
results (see Figure 6.11, Table 6.3 and Table 6.4). Note that we choose the areas
without special semantics in mind, e.g., business areas or residential areas.

From the above analysis, we can conclude that community impact is constrained
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Influence entropy NY (G) SF (G) NY (T) SF (T)
General 0.56 0.73 0.69 0.70

Temporal (Lunch) 0.35 0.39 0.22 0.25
Temporal (Dinner) 0.27 0.43 0.30 0.31
Spatial (Region 1 ) 0.45 0.20 0.52 0.23
Spatial (Region 2 ) 0.42 0.21 0.61 0.26

Table 6.3: Influence entropy under social contexts.

Influence similarity NY (G) SF (G) NY (T) SF (T)
Temporal 0.80 0.74 0.67 0.66
Spatial 0.77 0.56 0.48 0.41

Table 6.4: Influence similarity under social contexts.

under spatial and temporal contexts.

6.5 Location Inference

As discussed in Section 6.1, location inference (prediction) can seriously threats
users’ privacy. Following the analysis in Section 6.4, we continue to investigate
whether it is possible to use community information to effectively infer users’ loca-
tions, using machine learning techniques. More precisely, our inference attack is:
given a user’s community information, whether he will check in at a given place at
a given time (Section 6.2.3).

6.5.1 Community-based Location Inference Attacker

We model location inference as a binary classification problem and solve it with
machine learning classification algorithms. We train a classifier for each user and
use one of the user’s communities’ information to establish the feature vector, i.e.,
the influential community of the location (see Section 6.4).

Community related features. Having chosen the community, we extract its
following features for inference.

• Distance between the community and the location. This is the distance
between the location and the community’s nearest frequent movement area.

• Community size. Number of users in the community.

• Number of the community’s frequent movement areas.

• Community’s total number of check-ins.

• Community connectivity. This is the ratio between the number of edges in
the community and the maximal number of possible edges.
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Time. Check-ins are related to time as well. Figure 6.12a (Figure 6.12b) plots
the total number of check-ins in New York and San Francisco in a daily (weekly)
scale. Since we aim to predict whether a user will check in at a place at a certain
time, the time-related features we consider are the total number of check-ins at
the time7 and the day (i.e., Monday to Sunday) from all users.
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Figure 6.12: Check-in time.

6.5.2 Experiment Setup

Baseline models.
Sample friends. In our community-based predictor, each location corresponds to
the user’s nearest community. To illustrate the effectiveness of communities on pre-
dicting a user’s mobility, in the first baseline model, for each location, we randomly
sample the same number of friends as the community and use these friends to build
a “virtual community” (as in Section 6.4). We then replace the community related
features with this virtual community’s corresponding ones. The time-related fea-
tures of this model are the same as the ones for the community-based model.

Friends. In the second baseline model, we consider a user’s all friends instead of
his communities. The features include the shortest distance from his friends to the
location and the time-related features.

User. It has been shown in [CML11, CS11] that a user’s past mobility can predict
his future mobility effectively. Therefore, we also extract features from a user
himself to perform prediction. The features include the following.

• The shortest distance from a user’s frequent movement areas (through hier-
archical clustering with cut-off distance equal to 500m) to the location.8

• The total number of check-ins during the day.

• The total number of check-ins during the hour.

User and community. In the last baseline model, we combine the features from the
user’s model and our community-based predictor.

7We consider time at a per hour unit, thus the feature is the number of check-ins of all the
users at that hour.

8To avoid overfitting, we use half of each user’s check-ins to discover his frequent movement
areas and the other half are used for training and testing the model.
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Figure 6.13: Evaluation results.

Metrics. We partition the cities into 0.001×0.001 degree latitude and longitude
cells 9, a user is said to be in a cell if he has been to any place belonging to the
cell. Let TP, FP, FN and TN denote true positives, false positives, false negatives
and true negatives, respectively. The metrics we adopt for evaluation include (1)
Accuracy,

Accuracy = |TP|+ |TN |
|TP|+ |FP|+ |FN |+ |TN | ;

(2) F1 score,

F1 = 2 · Precision × Recall
Precision + Recall , with

Precision = |TP|
|TP|+ |FP| , Recall = |TP|

|TP|+ |FN | ;

and (3) AUC (area under the ROC curve).

Experiment setup. As we know, a classifier needs both positive and negative
examples. So far we only have the positive ones, i.e., a user visits a location.
To construct the negative examples, for each location a user visits, we randomly
sample a different location (within the city) as the place that he does not visit at
that moment. In this way, a balanced dataset for each user is naturally formed. As
in the data analysis, we only focus on active users who have at least 100 check-ins
in the city. For each user, we sort his check-ins chronologically and put his first
80% check-ins for training the model and the rest 20% for testing. The machine
learning classifier we exploit here is logistic regression. In all settings, 10-fold cross
validation is performed.

6.5.3 Results

Performance in general. As depicted in Figure 6.13, our community-based pre-
dictor’s performance is promising (AUC > 0.8) and it outperforms two baseline
models that exploit friends’ information. Especially for the sample friends model,
the community-based model is almost 20% better among all three metrics in the
Twitter dataset. By studying logistic model’s coefficients, the most important
feature is the distance between the community and the location, followed by the

9Each cell covers around 100×100 meters area.
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Figure 6.14: AUC as a function of community entropy.

community connectivity and size. On the other hand, two predictions that are
based on user’s own information perform better than our community-based pre-
dictor. Also, the inference attack combining user and community information does
not improve the performance. This indicates that a user’s past check-ins are the
most useful information for predicting where he will be in the future which also
validates the results proposed in [CML11, CS11].

Prediction vs. community entropy. In Figure 6.14, we bucket community en-
tropy by intervals of 0.2 and plot its relationship with the prediction results (AUC).
As we can see, with the increase of community entropy, the AUC grows for the
community-based model which means the attack works better for users with high
community entropies. For example, the AUC value increases more than 5% in San
Francisco in the Gowalla dataset (community entropy from [0, 0.2) to [1.2, 1.4)).
We further calculate the correlation coefficient between community entropy and
our inference results. In the Twitter dataset, the correlation coefficient for New
York and San Francisco is 0.88 and 0.97 respectively10, indicating that community
entropy and the prediction results are strongly correlated. This validates our intu-
ition that a user with high social diversity is clearly influenced by his communities.
We can conclude that community information can be explored to achieve promising
location inference, especially for those users with high community entropies.

Difference between cities. In Figure 6.13 and Figure 6.14, we observe that
the inference results are different between two cities. New York has the better
performance than San Francisco in the Gowalla dataset. On the other hand, the
prediction results are similar in the Twitter dataset. The reason for different per-
formances in different cities could be due to the density of the cities (e.g., New
York’s population density is higher than San Francisco), or the adoption of LBSN
services by users in different cities.

Other strategies to choose communities. So far, we have shown that exploring
community information can lead to effective location inference. The community we
choose is the one that has the closest frequent movement area to the target location.
We would like to know if other strategies to choose community can achieve similar
results. We consider three strategies including choosing the community with most

10The two values are slightly smaller for the Gowalla dataset (0.60 for New York and 0.75
for San Francisco), which is probably due to the fact that the Twitter dataset contains more
information on social relations than the Gowalla dataset (see discussions in Section 6.3).



6.5 Location Inference 95

users (max-size), the community with highest connectivity (max-con) and random
community (random). Table 6.5 summarizes the prediction performances in New
York in the Twitter dataset. As we can see, our original strategy outperforms
these three. Among these three strategies, max-con performs slightly better than
the other two, but it is still relatively worse than our original strategy to choose
community. This again validates our observation in Section 6.4 that influential
communities are constrained by contexts (spatially or temporally), in other words
one community cannot influence every location of the user.

AUC Accuracy F1score
Community 0.83 0.78 0.79

max-size 0.73 0.72 0.74
max-con 0.74 0.73 0.74
random 0.71 0.71 0.72

Table 6.5: Performance of community-choosing strategies.

Comparison with the PSMM model. In [CML11], the authors establish a
mobility model (PSMM) for each user based on his past check-ins. The assumption
behind this model is that a user’s mobility is mainly centered around two states
such as home and work. Each state is modeled as a bivariate Gaussian distribution
and the total mobility is then formalized into a dynamic Gaussian mixture model
with time as an independent factor. The check-ins that do not fit well with the two
states are considered as social check-ins and are modeled through another friends-
based distribution. We implement the PSMM model and compare its performance
with our community-based predictor. Each user’s first 80% check-ins are used
for training his PSMM model. For testing, besides the rest 20% check-ins, we also
construct the same number of locations that the user does not go at the moment (as
our classification setup). As the PSMM model’s output is the exact location of the
user, we consider the prediction is correct when the output location is within 1km of
the real location. Table 6.6 shows the accuracy between our model and PSMM. In
all the datasets, our community-based predictor significantly outperforms PSMM.
As suggested in [SKB12], this is probably because two states are not enough to
capture a user’s mobility in a city. Moreover, a user’s check-in data is also too
sparse to train a good PSMM model. We leave the further investigation as a
future work.

NY (G) LA (G) NY (T) SF (T)
Community 0.76 0.67 0.78 0.81

PSMM 0.55 0.60 0.67 0.65

Table 6.6: Comparison with PSMM on prediction accuracy.
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6.6 Related Work

The emergence of geographical services in OSNs have provided us a unprecedented
chance to study the connection between mobility and social relations [CCLS11,
SNLM11, GTL12]. One important direction is to use a user’s social network infor-
mation to infer his future locations, e.g., [BSM10, CS11, CML11, SKB12, MCC13]
which is what we focus on in this chapter.
Backstrom, Sun and Marlow [BSM10] study the friendship and location using
the Facebook data with user-specified home addresses. They find out that the
friendship probability as a function of home distances follows a power law, i.e.,
most of friends tend to live closely. They also build a model to infer users’ home
location based on their friends’ home. Their model outperforms the predictor
based on IP addresses. The authors of [CS11] use the Facebook place data to
study check-in behaviors and friendships. They train a logistic model to predict
users’ locations. Besides that, they also investigate how users respond to their
friends’ check-in and use the location data to predict friendships. Cho, Myers
and Leskovec [CML11] investigate the mobility patterns based on the location
data from Gowalla, Brightkite as well as data from a cellphone company. Based
on their observation, they build a dynamic Gaussian mixture model for human
mobility involving temporal, spatial and social relations features. Sadilek, Kautz
and Bigham [SKB12] propose a system for both location and friendship prediction.
For location prediction, they use dynamic Bayesian networks to model friends’
locations (unsupervised case) and predict a sequence of locations of users over a
given period of time. McGee, Caverlee and Cheng [MCC13] introduce the notion
of social strength based on their observation from the geo-tagged Twitter data
and incorporate it into the model to predict users’ home locations. Experimental
results show that their model outperforms the one of [BSM10]. Jurgens in [Jur13]
proposes a spatial label propagation algorithm to infer a user’s location based on a
small number initial friends’ locations. Techniques such as exploiting information
from multiple social network platforms are integrated into the algorithm to further
improve the prediction accuracy.
The main difference between previous works and ours is the way of treating friends.
We consider users’ friends at a community level while most of them treat them
the same (except for the paper [MCC13] which introduce ‘social strength’, which
is based on common features but not on communities). Moreover, our location
predictor doesn’t need any user’s own information but his friends’ to achieve a
promising result, especially for users’ with high community entropies. Other minor
differences include the prediction target: we want to predict users’ certain locations
in the future not their home [BSM10, MCC13, Jur13] or a dynamic sequences of
locations [SKB12].
We focus on inferring users’ mobility behavior from social network communities.
The authors of [BNS+12] tackle the inverse problem, i.e., they exploit users’ mo-
bility information to detect communities. They first attach weights to the edges
in a social network based on the check-in information, then the social network is
modified by removing all edges with small weights. In the end, a community detec-
tion algorithm (louvain method[BGLL08]) is used on the modified social graph to
discover communities. The experimental results show that their method is able to
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discover more meaningful communities, such as place-focused communities, com-
pared to the standard community detection algorithm.
More recently, Brown et al. [BLM+14] analyze mobility behaviors of pairs of friends
and groups of friends (communities). They focus on comparing the difference
between individual mobility and group mobility. For example, they discover that
a user is more likely to meet a friend at a place where they have not visited before;
while he will choose a familiar place when meeting a group of friends.

6.7 Conclusion

In this chapter, we have performed an inference attack on users’ mobility with
the help of social community information. Analysis leads us to several important
conclusions: (1) communities have a stronger impact on users’ mobility; (2) each
user is only influenced by a small number of communities; and (3) different com-
munities have influences on mobility under different spatial and temporal contexts.
Based on these, we use machine learning techniques to predict users’ future loca-
tions focusing on community information. The experimental results on two types
of real-life social network datasets are consistent with our analysis and show that
our prediction model is very effective.





7

Friendship Inference
with Location Sociality

7.1 Introduction

Users in online social networks share not only their activities such as where they
visit but also their social connections, i.e., who they know. In the previous chapter,
we have performed an inference attack on users’ mobility with the knowledge of
their social connections, in this chapter, we tackle the opposite problem that is
predicting whether two users are friends based on their mobility information.
Knowing whether two users are linked with each other can potentially harm their
privacy. For instance, suppose that a user applies for a job in a company which
happens to be his close friend’s employer. If the company has a negative attitude
towards this kinds of hiring, then the user better hides his relation with his friend
in OSNs. However, if the company is capable of inferring this link with other infor-
mation, then all the efforts are in vain. In a broader context, link prediction is one
of most extensively studied data mining tasks [LNK07] in academia, besides raising
privacy issues, it can also help to build appealing applications such as friendship
recommendation, which is essential for OSNs to increase user engagement. To
infer two users’ friendship, we focus on one specific feature of locations, namely
location sociality which characterizes the degree to which a location is suitable for
conducting social activities. Our main contribution of this chapter is to propose an
algorithm to quantify location sociality, and apply location sociality to infer two
users’ friendship.
Since the seminal work of Erving Goffman [Gof59], location has been recognized
as an important factor in social activities. In [Gof59], Goffman described social
activities as a series of performance given by social actors, and physical setting,
i.e., location, is the stage of social actors’ performance, he further stated that “A
setting tends to stay put, geographically speaking, so that those who would use a
particular setting as a part of their performance cannot begin their act until they
have brought themselves to the appropriate place”. Goffman’s theory indicates that
some locations are appropriate or suitable for people to conduct social activities,
while others are not.
A location is social (has high sociality) if friends frequently visit, especially for
the purpose of socializing or recreation, and vice versa. If two users frequently
visit similar social places, then the chance of them being friends is higher than
others, building on which we perform our inference. In addition, studying location
sociality could also advance the boundary of our understanding on the interaction
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between social relations and mobility. Moreover, location sociality may potentially
help us to solve challenging problems such as smart city and epidemiology.
Our quantification algorithm for location sociality is based on the assumption that
a location’s sociality and its visitors’ social influence are mutually reinforced. Ex-
periments on millions of check-in data collected from Instagram users in two major
metropolitan areas in the US including New York and Los Angeles, validate our
quantification, and bring us some in-depth understanding of the relation between
location sociality and several location properties including location category, rating
and popularity. Our discoveries include: certain types of locations (music venues
and nightclubs) are more social than others; location sociality shares a positive
relation with location rating given by users; location sociality is moderately corre-
lated with location popularity, but the two variables exhibit some differences. We
apply location sociality to infer two users’ friendship, where we extract two users’
common locations and define features based on these common locations’ sociality
for machine learning classification. Experimental results show that with very sim-
ple location sociality features, we are able to achieve a strong inference. Moreover,
adding location sociality into a state-of-the-art prediction model achieves a 5%
performance gain. To further demonstrate the usefulness of our quantification, we
integrate location sociality location recommendation. Evaluation shows that the
recommender based on location sociality achieves a better performance (at least
5%) than the baseline one that does not consider location sociality.

7.2 Proposed Solution

In this section, we first discuss the intuition of our solution on quantifying location
sociality, then formally describe the solution.

7.2.1 Intuition

As stated in the introduction, a location’s sociality is the degree to which users
tend to conduct social activities at the location. To quantify a location’s sociality,
we start with socially influential users. If a user is considered influential, he must
visit different social places frequently to participate in different social activities and
events. On the other hand, if a location is frequently visited by influential users,
then it must be suitable for conducting social activities, i.e., it is a social place.
Following this, we can establish a mutual reinforcement relation between user in-
fluence and location sociality, i.e., more social a location is, more influential users
visit it, and vice versa. In addition to visiting many social places, an influential
user should also have an important position in the social network, e.g., he should
have many friends who are also influential. Following the above discussion, our
intuition on quantifying location sociality can be summarized as two assumptions.

Assumption 1. Location sociality and user influence are mutually reinforced.

Assumption 2. User influence can be quantified from the social network.

This first intuition can be naturally formulated into a HITS-style framework [Kle99]
under which user influence and location sociality are mutually boosting each other.
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For the second intuition, we apply PageRank on the social graph to quantify each
user’s influence.

7.2.2 Our Framework

We start by modeling users, locations and their relationships into two types of
graphs or networks including social network and user-location network.

Social network. A social network (or user graph as in Chapter 2), denoted as
GU = (U , EU), is an unweighted graph with nodes in set U representing all users.
EU ⊆ U × U is a symmetric relation containing the edges in GU . If ui and uj
are friends, then we have both (ui, uj) ∈ EU and (uj, ui) ∈ EU . We use matrix
X to represent GU where Xi,j = 1 if (ui, uj) ∈ EU and Xi,j = 0 otherwise. We
further use X̄ to denote the column stochastic matrix of X where X̄i,j = Xi,j∑

k
Xk,j

.

`1

`2

`3

`4

u1 u2

u3u4

Figure 7.1: An example of the heterogeneous network.

User-location net-
work. A user-location
network, denoted as
GU ,L = (U ,L, EU ,L),
is a weighted bipartite
graph. EU ,L ⊆ U × L
consists of the edges
in GU ,L. Each edge
(ui, `j) ∈ EU ,L, also
written as eU ,Li,j , is as-
sociated with a weight
wU ,Li,j defined as the
number of times that
the user ui has vis-
ited (checked in) the
location `j (denoted by
|ci(ui, `j)|). We use matrix Y to represent GU ,L with Yi,j = wU ,Li,j . The transpose
of Y is further denoted by Y . In the end, we use Ȳ and Ȳ to denote the column
stochastic matrices of Y and Y , respectively.
Figure 7.1 shows an example of the heterogeneous graph. Within our framework
two sets of values, locations’ sociality and users’ social influence, can be obtained.
Each location `’s sociality is defined as κ(`) and η(u) for each user’s social influence.
Following the intuition in Section 7.2.1, our model is formulated into the following
equations:

η(ui)=
∑
j

X̄i,j ·η(uj) (7.1)

η(ui)=
∑
j

Ȳi,j ·κ(`j) (7.2)

κ(`j)=
∑
i

Ȳj,i ·η(ui) (7.3)

Equations 7.1 is the PageRank implementation 1 for quantifying users’ social influ-
1PageRank’s damping factor is set to 0.15 in our experiment, for presentation purposes, we
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ence from GU . Equations 7.2 and 7.3 are an instance of the HITS framework which
establishes the mutual reinforcement relationship between locations and users. We
then linearly combine the above equations as

η(ui) = α ·
∑
j

X̄i,j · η(uj) + (1− α) ·
∑
j

Ȳi,j · κ(`j) (7.4)

κ(`j) =
∑
i

Ȳj,i · η(ui) (7.5)

where α specifies the contributions of each component to users’ social influence. In
our experiments, α is set to 0.5 which indicates the social network structure and
user mobility are equally important on quantifying users’ social influence. Note
that α = 0.5 is a typical setting in many fields such as [WYX07] where the authors
aim to discover salient sentences for document summarization.
We further use two vectors η and κ to denote users’ social influence and locations’
sociality. Then the above equations can be written into the following matrix form.

η = α · X̄ · η + (1− α) · Ȳ · κ (7.6)

κ = Ȳ · η (7.7)
Equations 7.6 and 7.7 can be computed through an iterative updating process.
We set all locations’ (users’) initial sociality (influence) to be 1

|L| ( 1
|U|). According

to our experiments, the computation stops after around 10 iterations, when the
maximal difference between κs of two consecutive iterations is less than 0.00001.

7.3 Experiments

In this section, we first introduce the dataset used for our experiments. Then,
we present the results of our quantification: we start by discussing the top social
locations and location categories; then we focus on the relation between location
sociality and location rating; in the end, the correlation between location sociality
and popularity is discussed.

7.3.1 Dataset Description

Instagram is a photo-sharing social network with a fast growing user number.
By now, it has 400M monthly active users and with 75M photos published ev-
eryday. Similar to other social network services such as Facebook and Twitter,
Instagram allows users to share their locations when publishing photos. Moreover,
unlike Twitter where only a small amount of tweets are geo-tagged, the authors
of [MHK14] have shown that Instagram users are much more willing to share their
locations (31 times more than Twitter users), which makes Instagram a suitable
platform to study the interaction between mobility and social relations.
We collect the geo-tagged photos, i.e., check-ins, in New York and Los Angeles
from Instagram through its public API2 from August 1st, 2015 until March 15th,

do not specify it in the formulas.
2https://www.instagram.com/developer/

https://www.instagram.com/developer/
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2016. Locations’ category information is an important aspect of our analysis. The
API of Instagram is linked with the API of Foursquare, a leading location-based
social network with resourceful information about each place, thus we exploit the
following methodology to collect our data. We first resort to Foursquare to extract
all location ids within each city, meanwhile we collect each location’s category
information together with its rating (number of tips and number of likes). Then for
each Foursquare’s location id, we query Instagram’s API to get its corresponding
location id in Instagram. After this, we query each location’s recent check-ins in
Instagram several times a day. In the end, more than 6M check-ins have been
collected in New York and 4.7M in Los Angeles3. To resolve the data sparseness
issue, we focus on users with at least 20 check-ins and locations with at least 10
check-ins. Since Foursquare organizes location categories into a tree structure4, we
take its second level categories to label each location5.

New York Los Angeles
#. check-ins 6,181,169 4,705,079
#. users 12,280 8,643
#. edges 74,230 44,994
#. locations 8,683 6,908

Table 7.1: Dataset summary.

To obtain the social network, we exploit Instagram’s API to query each user’s
follower/followee list6. We consider two users as friends if they mutually follow
each other on Instagram. To further guarantee that users we have collected are
not celebrities or business accounts, we filter out the top 5% of users with most
followers. Then we only keep the relations among users with at least 20 check-ins.
In the end, the social network contains 74,230 edges for New York and 44,994 edges
for Los Angeles. Table 7.1 summarizes the dataset. For the sake of experimental
result reproducibility, our dataset is available upon request.

7.3.2 Location Sociality vs. Location Category

By applying the mixture model of HITS and PageRank on our dataset, we obtain
all the locations’ sociality in New York and Los Angeles. Fig. 7.2 depicts the
log transformed distributions of location sociality, both of which indicate that
most locations have a middle value of sociality while only a few locations are very
social or unsocial. This is different from other location measurement, for instance,
the number of mobility transitions from or to each location follows a power law
distribution [NSLM15].
The top 20 locations with highest and lowest sociality are listed in Table 7.2 to-
gether with location categories. For New York, Webster Hall, a music venue, is the

3It is worth noticing that the authors of [MHNW15] has applied a similar methodology.
4https://developer.foursquare.com/categorytree
5The first level categories cover general types of locations, e.g., Food, while the second level

categories cover more detailed location categories, e.g., Restaurant.
6 Since Instagram’s API only provides one page with 50 follower/followees per query, we

perform multiple queries until all follower/followees of each user are obtained.

https://developer.foursquare.com/categorytree
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Figure 7.2: Distributions of log-transformed location sociality.

most social place followed by Madison Square Park. On the other hand, the least
social place is one Staples store (convenience store) in midtown. For Los Angeles,
The Fonda Theatre has the highest sociality. Meanwhile, one Panda Express is the
least social place. In addition, two 7-Eleven stores are among the most unsocial
places. The results show a clear distinction between social and unsocial places
w.r.t. their categories, which we will discuss in detail next.
Table 7.3 lists the top 5 location categories with the highest and lowest average
location sociality. Nightclub and music venue are ranked top 3 in both cities.
Contrarily, convenience store and fast food restaurant seem to be less social. In
addition, we also observe interesting difference between the two cities. For instance,
beach is fifth most social location category for people living in Los Angeles while
it is not New Yorkers’ choice since there are no beaches in Manhattan.
As music venue and nightclub have high rankings in both cities, we further list
the top 5 music venues and nightclubs in Table 7.4: Even though the ranking of
music venues and nightclubs could be rather subjective, we search online what is
the most recommended (or top) nightclubs and music venues in New York and Los
Angeles, and find out that all of our top-social nightclubs and music venues have
received positive reviews and each of them has been recommended by at least three
sources (either blogs or news articles).

7.3.3 Location sociality and rating, tips and likes

For each location, Foursquare provides us with not only its name and category,
but also other properties including rating, number of tips and number of likes
generated by its users. These information reflect different aspects of locations
and we are interested in whether these information can explain location sociality
statistically.
To proceed, we build a linear regression model with rating, number of tips and
number of likes as explanatory variables while location sociality as the dependent
variable. By fitting the linear model with ordinary least square method, we obtain
a coefficient of determination (R2) of 0.192 in New York and 0.280 in Los Angeles,
meaning that 19.2% (28.0%) of the variability of location sociality in New York
(Los Angeles) can be explained by these properties. By checking the parameters of
our linear model, we discover that the major predictive power is driven by location
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New York
Most Social Locations Location Category Most Unsocial Locations Location Category

Webster Hall Music Venue Staples Convenience Store
Madison Square Park Park 17 Frost Gallery Art Gallery
Rockwood Music Hall Music Venue China Institute General College & University

Washington Square Park Park Manhattan Theatre Club Performing Arts Venue
Baby’s All Right Music Venue El Rey Del Taco II Mexican Restaurant
Saint Vitus Bar Bar Housing Works Thrift Shop Vintage Store
Brooklyn Bowl Bowling Alley Bogart Taco Truck Food Truck

The Met Museum Rivington Street Guitars Music Store
Union Square Park Park Wells Fargo Bank

Lincoln Center Performing Arts Venue Fay Da Bakery Bakery
Bryant Park Park cafe57 at Hearst Tower Cafe

Stage 48 Nightclub Sweet Buttons Desserts Dessert Shop
Bowery Ballroom Music Venue AT&T Mobile Phone Shop

Music Hall of Williamsburg Music Venue Pesce Pasta Yorkville Italian Restaurant
New Museum Museum Central Park - Harlem Meer Lake

Herald Square Cafe Cafe Soon Beauty Lab East Salon / Barbershop
High Line Park Walgreens Drugstore / Pharmacy

South Street Seaport Harbor / Marina Mezcal’s Mexican Restaurant
Irving Plaza Music Venue Beach Bum Tanning Tanning Salon

Highline Ballroom Music Venue Anjappar New York Indian Restaurant
Los Angeles

Most Social Locations Location Category Most Unsocial Locations Location Category
The Fonda Theatre Concert Hall Panda Express Asian Restaurant
Avalon Hollywood Music Venue Gap Clothing Store

The Echo Music Venue Ebar Cafe
Hermosa Beach Pier Pier Palms Super Market Food & Drink Shop

Exchange LA Nightclub 7-Eleven Convenience Store
The Grove Mall MLK and Crenshaw Intersection

Grand Central Market Market Whitley Market Food & Drink Shop
LACMA Museum Kashiwa Japanese Cuisine Asian Restaurant

Dodger Stadium Stadium locali Vegan Restaurant
The Roxy Music Venue Dorothy Chandler Pavilion Performing Arts Venue

OHM Nightclub Nightclub Main Squeeze Juice Bar
STAPLES Center Stadium Victor’s Square Restaurant Deli / Bodega

Amoeba Music Music Store 7-Eleven Convenience Store
Hammer Museum Museum SUBWAY Sandwich Place

The Abbey Food & Bar Bar Comfort Cafe at Fred Segal Cafe
Hollywood Walk of Fame Government Building Patsy D’Amore’s Pizza Pizza Place

The Troubadour Music Venue Ralphs Food & Drink Shop
TCL Chinese Theatre Movie Theater Roberto Cavalli Clothing Store

El Rey Theatre Concert Hall Which Wich?Sandwiches Sandwich Place
The Hollywood Bowl Music Venue Bank of America Bank

Table 7.2: Top 20 social and unsocial locations.

New York Los Angeles
Social Categories Unsocial Categories Social Categories Unsocial Categories

Music Venue Laundry Service Concert Hall Convenience Store
Nightclub Convenience Store Nightclub Vintage Store

Harbor Post Office Music Venue Fast Food Restaurant
Museum Pharmacy Mall Pet Service

Park Fast Food Restaurant Beach Automotive Shop

Table 7.3: Top 5 social and unsocial categories.

rating. We further study the relation between location sociality and rating. In
Fig. 7.3, we observe that the two variables share a positive relation. Especially
when location rating is high (≥ 8), location sociality increases sharply for both
cities. This suggests that social places are more likely to be assigned with high
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New York Los Angeles
Social Music Venues Social Nightclubs Social Music Venues Social Nightclubs

Webster Hall Stage 48 Avalon Hollywood Exchange LA
Rockwood Music Hall Marquee The Echo OHM Nightclub

Baby’s All Right Pacha NYC The Roxy Sound Nightclub
Bowery Ballroom 1 OAK The Troubadour Club Los Globos

Music Hall of Williamsburg VIP Room NYC The Hollywood Bowl Create Nightclubs

Table 7.4: Top 5 music venues and nightclubs.
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Figure 7.3: Average location sociality as a function of location rating.

ratings by users.

7.3.4 Location sociality and popularity

A social location is normally popular in the sense that it attracts many people.
On the other hand, to conduct social activities, everyone has his own preference
on choosing locations which are not necessarily well-known at the city level, such
as bar near some residential area. The relation between a location’s sociality and
its popularity is worth investigation. We hypothesize that a location’s sociality
should be moderately correlated with its popularity, while the two measurements
should exhibit some differences.
By far, the most common notion for quantifying a location’s popularity is location
entropy [CTH+10] which is formally defined as

le(`) = −
∑ |ci(u, `)|
|ci(`)| log |ci(u, `)|

|ci(`)| ,

where |ci(u, `)| is user u’s number of check-ins at location ` and |ci(`)| is the total
number of check-ins of location `. If a location is affiliated with high entropy, then
its visits by different users are more uniformly distributed than others with lower
entropy, which indicates that the location is more popular.
Pearson’s correlation coefficient between location sociality and location entropy
is 0.37, which suggests that a location’s sociality is moderately correlated to its
popularity7. To give a clear view, we plot the choropleth maps w.r.t. location
entropy and sociality of New York in Fig. 7.4. As expected, midtown and downtown

7https://explorable.com/statistical-correlation

https://explorable.com/statistical-correlation
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(a) Location sociality (b) Location entropy

Figure 7.4: Choropleth maps in New York.

New York are “hot” areas in both maps. On the other hand, we observe that
location sociality is more uniformly distributed than location entropy. For instance,
the areas marked by green circles in the left part of Fig. 7.4 are obviously lighter
than those in the right part. After having a close look, we discover that bars and
restaurants are the “hot” locations inside these areas. Data in Los Angeles exhibits
a similar result.
The top 20 popular locations in both cities are further presented in Table 7.5. In
New York, the most popular locations are parks and museums including The MET,
MoMA and Guggenheim. On the other hand, in Los Angeles, the most popular
locations concentrate on malls followed by museums. Moreover, in both cities,
famous landmarks have high location entropy, such as Rockefeller Center in New
York and Walk of Fame in Los Angeles. This is quite different from the ranking
of location sociality in Table 7.2: social locations are mainly music venues and
nightclubs while popular locations are mainly tourist attractions. In the end, we
conclude that there exhibits some differences between social and popular locations.

7.4 Friendship Inference

Following the seminal work of Liben-Nowell and Kleinberg [LNK07], friendship
prediction or inference has been extensively studied. Being able to infer friendship
not only raises potential privacy issues as discussed in Section 7.1, but also has
resulted in appealing applications such as friendship recommendation. During
the past five years, with OSNs being extended to the geographical space, many
researchers start to exploit users’ location data as a new source of information for
friendship prediction. In this chapter, we apply the previous quantified location
sociality to perform an inference attack on two users’ friendship.

7.4.1 Adversary Model

Similar to Chapter 6, we consider a passive adversary who has the access to many
users’ mobility data and friendships in two cities. Again, these data are publicly
available through Instagram’s APIs, thus this assumption is reasonable. We also
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New York Los Angeles
Popular Locations Location Category Popular Locations Location Category

Washington Square Park Park The Grove Mall
Union Square Park Park Madison Square Park Park

Bryant Park Park LACMA Museum
Lincoln Center Performing Staples Center Stadium

Madison Square Park Park The Fonda Theatre Concert Hall
Bridge Park Park Griffith Observatory Museum

Library Shop@NYPL Bookstore The Last Bookstore Bookstore
Madison Square Garden Stadium Hollywood Walk of Fame Government Building

Herald Square Cafe Cafe The Americana at Brand Mall
The MET Museum Bottega Louie Italian Restaurant
High Line Park Amoeba Music Music Store

Rockefeller Center Plaza The Roxy Music Venue
MoMA Museum Perch French Restaurant

Baby’s All Right Music Venue LA Live General Entertainment
Guggenheim Museum Museum The Wiltern Concert Hall

Music Hall. Williamsburg Music Venue The Hollywood Bowl Music Venue
Radio City Music Hall Concert Hall The Original Farmers Market Food & Drink Shop

Museum of Natural History Museum The Troubadour Music Venue
New Museum Museum The Echo Music Venue

Brooklyn Bowl Bowling Alley Beverly Center Mall

Table 7.5: Top 20 popular locations in New York and Los Angeles.

consider all locations’ sociality publicly available, it can come from OSNs like Yelp
and Foursquare or government offices. For two users whose friendship the adversary
aims to infer, we assume that the adversary only knows these two users’ mobility
data. For other pairs of users, besides mobility, the adversary also knows their
friendships, for the purpose of supervised machine learning.

7.4.2 Inference Attack

In our setting, we consider friendship prediction as a binary classification problem.
Each pair of friends is treated positive if they are friends (mutually following each
other in Instagram) and negative otherwise. We extract the common locations that
two users both check in and construct the feature space based on these common
locations. Note that we consider a location as a common location if two users both
have checked in there, the time that they checked in is ignored. For two users ui
and uj, we find their common locations’ sociality and exploit the average, maximal,
minimal and standard deviation of theses sociality as features for classification.
Features are formally defined as

• avg{ κ(`) | ` ∈ Lui ∩ Luj}

• max{ κ(`) | ` ∈ Lui ∩ Luj}

• min{ κ(`) | ` ∈ Lui ∩ Luj}

• std{ κ(`) | ` ∈ Lui ∩ Luj}

where Lui is the set containing all the locations that ui has visited.
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Figure 7.5: Evaluation results.
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Figure 7.6: ROC curves.

7.4.3 Experiment Setup

To resolve the data sparseness issue, we filter out pairs of users who have only
one or zero common location. This leaves us 7,525 pairs of friends, i.e., positive
cases, in New York and 3,961 pairs of friends in Los Angeles. For negative case, we
randomly sample the same number of non-friend pairs and regulate that each pair
of them has at least two common places as well. It is worth noticing that this way
of sampling negative cases increases the hardness of classification since a non-friend
pair also has at least two common locations. Therefore, we can further evaluate the
effectiveness of location sociality. We have exploited four classification algorithms
in our experiments including logistic regression, gradient boosting, AdaBoost and
random forest. Accuracy, F1score and AUC (area under the ROC curve) are
exploited as our metrics. We randomly split the dataset with 70% for training and
30% for testing, 10-fold cross validation is performed.

7.4.4 Results

Figure 7.5 plots the performance of our classifications. Among all the classifiers,
random forest performs the best with AUC = 0.82 and Accuracy = 0.77 in the
two cities. Meanwhile, we have F1score = 0.82 in New York and F1score = 0.83
in Los Angeles. AdaBoost and gradient boosting have a comparable performance.
On the other hand, logistic regression performs the worst.
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New York AUC Accuracy F1score
[SNM11] 0.83 0.77 0.82

sociality+[SNM11] 0.87 0.81 0.85

Los Angeles AUC Accuracy F1score
[SNM11] 0.82 0.77 0.82

sociality+[SNM11] 0.86 0.80 0.85

Table 7.6: Evaluation results on [SNM11] and location sociality+[SNM11].

Two users’ common number of locations is further adopted as a naive baseline
model for comparison, i.e., we tune the threshold (the number of common locations)
for classification to obtain the ROC curve. Figure 7.6 plots the results. As we can
see, all our classifiers based on location sociality outperform this naive baseline.
Next, we check whether adding location sociality into a state-of-the-art model as
proposed in [SNM11] can increase prediction performance. The model in [SNM11]
(location feature setting) extracts two users’ common locations and design features
mainly with these common locations’ entropies (see Section 7.3.4 for location en-
tropy), such as the minimal location entropy. In our experiments, we combine our
four location sociality features with the features in [SNM11] and fit them into our
best performing classifier random forest. The results in Table 7.6 show that the
classification with location sociality improves [SNM11] by around 5% among all
three metrics in both New York and Los Angeles. This further demonstrates that
location sociality is useful for friendship prediction.
Indeed, there exist other solutions for friendship prediction such as considering two
users’ meeting events [PSL13, WLL14]. However, the main issue for this method
is that meeting events (reflected in OSNs) are rare, for example, with 6M check-ins
in New York, we only observe around 100 meeting events. Even though we choose
the most straightforward features for our prediction, experiments still achieve a
strong performance showing that location sociality is a good indicator for inferring
whether two users are friends.

7.5 Location Recommendation

In addition to friendship inference, we further perform a case study on location
recommendation with location sociality to further demonstrate its usefulness. Lo-
cation recommendation has a great potential to build appealing applications, it
has attracted academia a lot of attention (e.g. [ZZXY10, GTHL13, GTHL15,
BZWM15]). Our goal here is to demonstrate the usefulness of location social-
ity in recommending new locations. In order to integrate location sociality into a
location recommender, we adopt a classical approach, namely random walk with
restart [TFP06].
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7.5.1 Model

In a typical setting of random walk with restart for recommendation, in the begin-
ning we define a matrix Q as

Q =
(

0 Y
Y 0

)
where Y and Y represent user-location network (location-user network) (Section 7.2).
Meanwhile, Q̄ denotes the column stochastic version of Q [YSL+11]. Then to rec-
ommend locations to a user ui, we modify Q̄ to allow every node in the graph having
a certain probability (15% in the experiments) to jump to the node representing
ui. Formally, for every Qa,b ∈ Q, Q̄a,b is defined as

Q̄a,b =


(1− c) · Qa,b∑

j
Qj,b

+ c · 1 if the ath row represents ui
(1− c) · Qa,b∑

j
Qj,b

otherwise

where c = 0.15. By applying the same method of solving PageRank, e.g., power
method, we can obtain the steady state distribution over Q̄, which is the relevance
score of all nodes (both locations and users) to ui. Locations with high relevance
scores are recommended to ui. Noulas et al. [NSLM12] have exploited this approach
for location recommendation8, where the weight on an edge between a user ui and a
location `j is simply the user’s number of visits to that location, i.e., Yi,j = wU ,Li,j =
|ci(ui, `j)| in Section 7.2.
To integrate location sociality into the edge weight for location recommendation,
we change Y to T , i.e., Q is modified to:

Q =
(

0 T
T 0

)

where Ti,j is defined as

Ti,j = |ci(ui, `j)| ·
1

− log(κ(`j))
. (7.8)

Here, κ(`j) is the location sociality of `j, meanwhile T is the transpose of T .
Under this formulation, Equation 7.8 assigns higher weight to locations with high
sociality, which will bias the recommended locations to be more social. In the end,
by performing power method on the column stochastic version of the modified Q,
we obtain the recommended locations for each user.

7.5.2 Experiment Setup

The check-in dataset is partitioned temporally with each one covers consecutively
60 days [NSLM12]. For each partition, we use the data of the first 30 days to
train the model while the left 30 days for testing. Since our aim is to perform
new location recommendation, for each user we further filter out his locations in
the testing set that he has already been to in the training set. In the end, we

8They [NSLM12] also considers social network in Q, here we ignore it for better demonstrating
location sociality’s usefulness.
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New York
15.8-15.10 Precision@10 Recall@10 15.11-16.1 Precision@10 Recall@10

rwr 0.009 0.021 rwr 0.009 0.028
rwr-ls 0.010 0.024 rwr-ls 0.010 0.031

15.9-2015.11 Precision@10 Recall@10 15.12-16.2 Precision@10 Recall@10
rwr 0.010 0.032 rwr 0.009 0.026

rwr-ls 0.011 0.034 rwr-ls 0.010 0.028

15.10-15.12 Precision@10 Recall@10 16.1-16.3 Precision@10 Recall@10
rwr 0.009 0.028 rwr 0.008 0.027

rwr-ls 0.010 0.029 rwr-ls 0.009 0.029

Los Angeles
15.8-15.10 Precision@10 Recall@10 15.11-16.1 Precision@10 Recall@10

rwr 0.010 0.028 rwr 0.008 0.024
rwr-ls 0.011 0.030 rwr-ls 0.009 0.026

15.9-2015.11 Precision@10 Recall@10 15.12-16.2 Precision@10 Recall@10
rwr 0.013 0.038 rwr 0.012 0.047

rwr-ls 0.015 0.042 rwr-ls 0.013 0.048

15.10-15.12 Precision@10 Recall@10 16.1-16.3 Precision@10 Recall@10
rwr 0.010 0.025 rwr 0.007 0.035

rwr-ls 0.012 0.029 rwr-ls 0.009 0.044

Table 7.7: Precision@10 and recall@10 for location recommendation.

perform random walk with restart with location sociality (rwr-ls) to recommend
locations for each user, and exploit rwr without location sociality (rwr), i.e., the
one in [NSLM12], as the baseline model. Two metrics including precision@10 and
recall@10 are adopted for evaluation.

7.5.3 Results

Table 7.7 presents the results for location recommendation in both cities. As we can
see, rwr-ls outperforms rwr in all months. For precision@10, rwr-ls outperforms
rwr by 10%, while for recall@10, even in the worst case in New York, rwr-ls still
has 3.4% improvement on rwr. Even though the absolute precision and recall of
our recommendation is not high, it is worth noticing that the similar performances
of location recommendation have been obtained by [YLL12, LX13, GTHL15], thus
our results are reasonable. Similar to Gao et al. [GTHL15], we emphasize that
the focus here is to compare the relative performance, in order to demonstrate the
usefulness of our quantification.
Many state-of-the-art algorithms exploit other factors for location recommendation
such as geographical distance and users’ published contents, one of our future
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works is to integrate location sociality into these algorithms to further improve
recommendation.

7.6 Related Work

With social networks being extended into geographical space, research on analyzing
the social relationship and mobility has attracted a lot of attention. The research
can be roughly partitioned into two groups. One is to use friendship to understand
mobility including our work in Chapter 6, the other is to use mobility information
to infer friendship, which is the goal of this chapter.
The authors of [CBC+10] propose a probabilistic model to infer friendships from
location data shared on Flickr. Their model considers both temporal and spatial
information. However, they make a strong assumption that each user only has one
friend which is not the case in real world scenarios. Cranshaw et al. [CTH+10]
propose to use a machine learning classifier to infer the friendship between two
users. The features they consider include the ones related to locations as well
as the social network structure. Besides, they also propose location entropy to
characterize the popularity of a location. In [PSL13], the authors propose an
entropy-based model, namely EBM. The model first extracts a vector of meeting
events between two users, then it builds two components based on these meeting
events. The first component of EBM is named diversity which is a Rényi entropy
formalization on the meeting events vector. The second component is the weighted
frequency which exploits location entropy to penalize meeting events at popular
locations. Then diversity and weighted frequency are linearly fitted to two users’
social strength (quantified by Katz score). By tuning a threshold on the fitted
social strength, friendship prediction is achieved. Wang Li and Lee propose the
PGT model in [WLL14]. Similar to EBM, PGT first extracts users’ meeting events,
and then define personal, global and temporal factors on the meeting events in order
to infer friendship. For the personal factor, PGT proposes a density-based function
for each user. If the place of a meeting event is less visited by the user, PGT will
value more on this event. For the global factor, PGT adopts the location entropy to
adjust the meeting location popularity. In the end, PGT introduces the temporal
factor to penalize the meeting event that happens closely with the following events.
All the above friendship inferences are based on two users’ meeting events which are
rare in OSN dataset as discussed in Section 7.4. Therefore, we do not implement
them for comparison. On the other hand, the authors of [SNM11] only consider the
common locations between two users under which much more data are qualified for
classification. The model in [SNM11] achieves a very strong performance, therefore
we focus on it in our work.
Besides predicting a user’s location (Chapter 6) and two users’ friendship, re-
searchers begin to advance our understandings of locations based on the data from
social networks. In [QSA14], the authors focus on recommending pleasant paths
between two locations in a city. Unlike the traditional shortest path recommen-
dation, they assign three values to describe whether a street is quiet, beautiful
and happy, respectively. Then they adjust the path recommendation algorithm
with these factors and recommend the most pleasant path for users. In [QASD15],
the authors quantify whether a street is suitable for walk, namely walkability. To



114
Chapter 7 Friendship Inference

with Location Sociality

assess their results, they propose to use concurrent validity. Their discoveries, to
mention a few, include walkable streets tend to be tagged with walk-related words
on Flickr and can be identified by location types on those streets. The authors
of [FGM15] exploit the data from Foursquare to analyze different neighborhoods
in a city. They extract some signature features to profile each neighborhood and
propose an algorithm to match similar neighborhoods across different cities. Ex-
perimental results show that they are able to match tourists areas across Paris and
Barcelona, and expensive residential areas in Washington D.C. and New York.
Our work also falls into the field of urban informatics [ZCWY14], a newly emerging
field where researchers tend to use the ubiquitous data to understand and improve
the city where we live. Besides the research literature, several open projects have
been established. One excellent example is the goodcitylife9, where the team mem-
bers try to imitate human beings’ five senses on food to understand cities.

7.7 Conclusion

In this chapter, we have proposed a new notion namely location sociality and
use it to perform an inference attack on users’ friendships in OSNs. We first
construct a heterogenous network linking locations and users and propose a mixture
model of HITS and PageRank to quantify location sociality. Experimental results
on millions of Instagram check-in data validate location sociality with some in-
depth discoveries. By applying location sociality, we build a friendship inferencer
that achieves a strong performance. We further conduct a case study on location
recommendation to demonstrate the usefulness of our quantification.

9http://goodcitylife.org/

http://goodcitylife.org/
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Conclusion and Future Work

8.1 Conclusion

This thesis studies privacy in online social networks from two aspects including
access control and information inference. Access control concentrates on user:
each user can use access control to decide who can view his information in OSNs.
Information inference is related to using the public available OSN data to infer
users’ private information.
For access control, we address three problems including integrating public infor-
mation for restricting access control, designing protocols for fine-grained access
control policies and formalizing blacklist. For information inference, we perform
attacks on two types of information user shared in OSNs including their activities
and social relations. The user activity we concentrate on is user mobility since it
is one of the most common and sensitive information shared in OSNs. Our infer-
ence attacks are based on two features: social community information for inferring
mobility and location sociality for inferring friendship.
We restate the five research questions proposed in Chapter 1.

Research question 1. Can we integrate public information into relationship-
based access control to increase their expressiveness?

To answer this question, we first introduce a model which contains both social
graph and public information graph. A hybrid logic is then proposed to express
access control policies on the model. The expressiveness of our new scheme has
been demonstrated through a series of real world scenarios. In addition, cate-
gory relation and relation hierarchy are introduced to increase the usefulness of
our scheme. We further address the issue of information reliability and formalize
collaborative access control within our scheme.

Research question 2. How can we design cryptographic protocols to enforce
fine-grained access control policies in decentralized social networks?

Our protocols for implementing two fine-grained access control policies, i.e., k-
common friends and k-depth, in decentralized social network context are based
on cryptographic techniques, such as pairing based cryptography. The goal of our
protocols is to guarantee that both the owner and requester do not disclose extra
information about themselves, such as how many friends they each have, while
access control is enforced. We prove the security of our protocols under honest but
curious model, and further evaluate their efficiency theoretically and empirically
on a Facebook dataset.

117
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Research question 3. How can we formalize blacklist and its utilization in access
control policies?

We categorize blacklist in OSNs into three dimensions, including globality, gen-
erality and strength, with each one as a binary choice, which in total result in
eight different choices. We formally define these eight choices by using a hybrid
logic with a new path semantics proposed. To free users from writing specific
logic formulas to use blacklist, an automatic syntactical transformation algorithm
is proposed. We then design algorithms to implement blacklist restrictions on a
subset of access control policies. Evaluation on a Facebook dataset demonstrates
our algorithms’ efficiency and blacklist restrictions’ effectiveness.

Research question 4. Can we effectively predict a user’s mobility information
based on his social communities’ information?

We first recognize through data analysis that a user’s mobility, such as where
he goes for lunch or spends time on weekend, is highly influenced by his different
social communities. Building on this, we apply machine learning algorithms to infer
each user’s future location with his community information as features. Extensive
experiments on millions of Twitter user dataset demonstrate the effectiveness of our
inference, and show that community is a stronger mobility indicator than friends
in general.

Research question 5. Can we find a way to quantify whether a location is
suitable for conducting social activities and use this quantification to effectively
predict two users’ friendship?

We first propose an algorithm based on PageRank and HITS to quantify each
location’s sociality with the intuition that user influence and location sociality are
mutually reinforced. Then we infer two users’ friendship based on their common
locations’ sociality. Experiments on a large set of Instagram users’ data show that,
with a set of simple features, we are able to achieve a strong inference, which
demonstrates the effectiveness of location sociality on inferring friendships.

8.2 Future Work

There are a few related research questions that are worth investigation but have
not been addressed in this thesis. We present two of them in this section.

8.2.1 OSN Users’ Access Control Usage

In the first part of this thesis, we have concentrated on improving access control
in OSNs from three aspects including public information, protocol and blacklist.
On the other hand, understanding how and why users use access control in their
daily life is also essential, much to our surprise, this is left largely unexplored.
The direct benefit for pursuing this direction is to help us build a better access
control system for social networks, such as replacing the current popular policies
(friends and friends of friends) with user-wanted ones, or automatically assigning
access control policies to users’ resources. A more in-depth benefit for pursuing
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this direction is to gain us a better understanding on how users consider privacy
in the real life. In general, access control is the only tool a user can use to protect
his privacy in daily OSN life, understanding how and why users use access control
can help us to answer important questions including which kind of resources a user
considers privacy sensitive, or who are the friends that a user trusts more.
For understanding how users use access control, we need to collect a large dataset
on users’ access control usage in OSNs. In one of our works [NZHP15] not in-
cluded in this thesis, we have performed some preliminary analysis on Twitter and
Instagram users’ access control usage in New York, several interesting results have
been observed: users with different demographics have different access control us-
age; a certain proportion of users frequently change their access control settings;
when some international events happens, such as Paris Attack in 2015, or during
some important holidays, such as Christmas and Thanksgiving, more users disable
their access control settings. In the future, we plan to collect a larger dataset
covering a more general user group, and perform a comprehensive analysis. We
are particularly interested in users’ changing access control behaviors and plan to
use machine learning techniques to predict a user’s future access control changes
in different scenarios. For understanding why users use access control, we plan to
follow the approach of usable security study. By using tools such as questionnaires
or lab study, we aim to directly communicate with users of OSNs to understand
what causes them to change their access control settings.

8.2.2 Information Inference in OSNs

In the second part of this thesis, we have collected datasets containing users’ mo-
bility and friendship information from Twitter and Instagram, and used these two
information to infer each other. We believe that the information contained in our
dataset can be used to infer other types of information a user does not disclose in
OSNs as well. For instance, the authors of [ZYZ+15] have applied users’ mobility
information to predict their demographics which can be privacy sensitive in many
cases. In the future, we plan to expand our inference attacks to more targets with
the current information we have.
Besides mobility and friendship, users in OSNs also share other types of informa-
tion, many of which may raise privacy issues as well. One such example is the
large quantity hashtags in OSNs, especially in Instagram. Hashtags in OSNs have
provided a new way for users to interact with each other. For instance, a user can
use hashtags to find the trendy topics and popular events happened in the city he
lives in, he can also use hashtags to find others who share similar interests with
him. Meanwhile, a user’s hashtags may potentially leak sensitive information of
him. We have conducted a preliminary experiment with an Instagram dataset and
discovered that hashtags attached to an Instagram photo can be used to effectively
infer where the photo is taken, which violates users’ location privacy. In the future,
we plan to use hashtags as well as other user shared information to perform more
inference attacks.
Most existing inference attacks use one type of information to predict another type
of information, including our two attacks where we use friendship to infer mobility
and mobility to infer friendship. As we discussed above, a user shares many kinds
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of information in OSNs, such as mobility, friendship, statues, photos and hashtags,
and many of these information can leak the user’s private information. There-
fore, to fully assess to which extent a user’ private information can be inferred, we
need to first perform a general attack that takes into account all the information
a user shares in OSNs. Only when this general attack is performed, we are able
to develop comprehensive defensive mechanisms such as building a privacy advisor
which tells a user not to share a certain piece of information or the risk of sharing
that information. In addition, we can also develop some automatic data modifica-
tion techniques, such as generalizing a user’s shared data in order to guarantee his
privacy to a certain level.
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