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POISSON COHOMOLOGY OF HOLOMORPHIC TORIC POISSON

MANIFOLDS

WEI HONG

Abstract. A holomorphic toric Poisson manifold is a nonsingular toric variety equipped with
a holomorphic Poisson structure, which is invariant under the torus action. In this paper, we
compute the Poisson cohomology for holomorphic toric Poisson structures on CPn, with the stand
Poisson structure on CPn as a special case. Two conjectures are proposed, one for the holomorphic
multi-vector fields on nonsingular toric varieties, and the other for the Poisson cohomology of
holomorphic toric Poisson manifolds.

1. introduction

Holomorphic Poisson manifolds have attracted the interest of many mathematicians recently. The
algebraic geometry of the Poisson brackets on projective spaces was studied by Bondal [2] and Pol-
ishchuk [20]. In [?Hitchin06, ?Hitchin11], Hitchin revealed the connections of holomorphic Pois-
son structures with generalized complex geometry and mathematical physics. The deformations of
holomorphic Poisson structures appeared in the work of [?Hitchin12] and [?Kim14]. The standard
Poisson structures on affine spaces and flag varieties were studied by Brown, Goodear and Yakimov
[?B-G-Y06,?G-Y09]. Laurent-Gengoux, Stiénon and Xu [?L-S-X08] described the Poisson cohomol-
ogy of holomorphic Poisson manifolds using Lie algebroids. In various situations, the Poisson coho-
mology of holomorphic Poisson manifolds were computed [?Hong-Xu11,?Mayansky15,?C-F-P16].

This paper is devoted to the study of the Poisson geometry of toric varieties, especially, the Poisson
cohomology of holomorphic toric Poisson manifolds. A holomorphic toric Poisson manifold is a
nonsingular toric variety X , equipped with a holomorphic Poisson structure π, which is invariant
under the torus action ( Notice that real toric Poisson structures were studied in [6]). Holomorphic
toric Poisson manifold is a special case of the “T -Poisson manifold” in the sense of [?Lu-Mouquin15].

The main results of this paper are as following.

• In the case of X = CPn, we proved that Hi(X,∧jTX) = 0 for all i > 0 and 0 ≤ j ≤ n.
• The space of holomorphic vector fields and multi-vector fields on X = CPn are described

by considering X = CPn as a toric variety.
• For any holomorphic toric Poisson structure π on X = CPn, we give an algorithm for

the Poisson cohomology groups. As a special case, we compute the Poisson cohomology of
standard Poisson structures on X = CPn in some situations.

Key words and phrases. holomorphic Poisson manifolds, Poisson cohomology, toric variety, standard Poisson
structure.
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2 WEI HONG

Two conjectures are proposed at the end of this paper , one for the holomorphic multi-vector fields on
nonsingular toric varieties, and the other for the Poisson cohomology of holomorphic toric Poisson
manifolds. We expect that these conjectures could stimulate meaningful research on related topics.
And it would also be interesting to explore the relations of our results with [?B-G-Y06,?G-Y09].

Acknowledgements I would like to thank Sam Evens, Zhangju Liu, Jianghua Lu, Yannick
Voglaire and Ping Xu for their helpful discussions and comments. Special thanks go to Bing
Zhang for his important opinions to the draft of the paper. I wish to express my deep gratitude
to Martin Schlichenmaier for his support during the author’s stay in Luxembourg. Hong’s research
was partially supported by NSFC grant 11401441 and FNR grant 5650104.

2. Preliminary

2.1. Poisson cohomology of holomorphic Poisson manifolds.

Definition 2.1. A holomorphic Poisson manifold is a complex manifold X equipped with a holo-
morphic bivector field π such that [π, π] = 0, where [·, ·] is the Schouten bracket.

The Poisson cohomology of a holomorphic Poisson manifold is defined in the following way:

Definition 2.2. Let (X, π) be a holomorphic Poisson manifold of dimension n. The Poisson
cohomology H•

π(X) is the cohomology group of the complex of sheaves:

(2.1) OX
dπ−→ TX

dπ−→ .....
dπ−→ ∧i−1TX

dπ−→ ∧iTX
dπ−→ ∧i+1TX

dπ−→ ......
dπ−→ ∧nTX ,

where dπ = [π, ·].

Lemma 2.3. [?L-S-X08] The Poisson cohomology of a holomorphic Poisson manifold (X, π) is

isomorphic to the total cohomology of the double complex

...... ...... ......
dπ

x

 dπ

x

 dπ

x



Ω0,0(X, T 2,0X)
∂̄
−→ Ω0,1(X, T 2,0X)

∂̄
−→ Ω0,2(X, T 2,0X)

∂̄
−→ ......

dπ

x

 dπ

x

 dπ

x



Ω0,0(X, T 1,0X)
∂̄
−→ Ω0,1(X, T 1,0X)

∂̄
−→ Ω0,2(X, T 1,0X)

∂̄
−→ ......

dπ

x

 dπ

x

 dπ

x



Ω0,0(X, T 0,0X)
∂̄
−→ Ω0,1(X, T 0,0X)

∂̄
−→ Ω0,2(X, T 0,0X)

∂̄
−→ ......

Lemma 2.4. Let (X, π) be a holomorphic Poisson manifold. If all the higher cohomology groups

Hi(X,∧jTX) vanish for i > 0, then the Poisson cohomology H•
π(X) is isomorphic to the cohomology

of the complex

(2.2) H0(X,OX)
dπ−→ H0(X, TX)

dπ−→ H0(X,∧2TX)
dπ−→ . . .

dπ−→ H0(X,∧nTX),

where dπ = [π, ·].
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2.2. Holomorphic toric Poisson structures. Let us recall some classical knowledge of toric
varieties. One may consult [7], [9] and [19].

Definition 2.5. A toric variety is an irreducible variety X such that

(1) (C∗)n is a Zariski open set of X , and
(2) the action of (C∗)n on it extends to an action of (C∗)n on X .

Example 2.6. Let X = CPn and let [z0, z1, . . . , zn] be homogenous coordinates on it. The map

(C∗)n → CPn

defined by (t1, t2, ..., tn) 7→ [1, t1, t2, ..., tn] allows us to identify (C∗)n with the Zariski open subset
{[z0, z1, . . . , zn] ∈ CPn | zi 6= 0, 0 ≤ i ≤ n} of CPn. The (C∗)n action on CPn given by

(t1, . . . , tn).[z0, z1, . . . , zn] = [z0, t1z1, . . . , tnzn]

shows that X = CPn is a toric variety.

A toric veriety can be described by a Lattice N ∼= Zn and a fan ∆ in NR = N ⊗Z R ∼= Rn. Let
M = HomZ(N,Z), NR = N ⊗Z R and MR = M ⊗Z R. The canonical Z-bilinear pairing

〈, 〉 : M ×N → Z

extending to the field R of real numbers gives a R-bilinear pairing 〈, 〉 : MR ×NR → R.

Let TN = HomZ(M,C∗) = N ⊗Z C∗. Then TN
∼= (C∗)n. Moreover, we have M ∼= Hom(TN ,C∗)

and N ∼= Hom(C∗, TN ).

Each element m in M gives rise to a character χm ∈ Hom(TN ,C∗), given by

χm(t) = 〈t, m〉 for t ∈ TN .

And each element a in N gives rise to a one-parameter subgroup γa ∈ Hom(C∗, TN ) given by

γa(λ)(m) = λ〈a,m〉 for λ ∈ C∗ and m ∈M.

Choose a Z-basis {e1, ...en} of N and let {e∗
1, ...e∗

n} be the dual basis of M . Let ti = χ(e∗
i ). Then

we have an isomorphism

TN
∼= (C∗)n : t←→ (t1, t2, ...tn),

where t1, t2, ...tn ∈ C∗ can be seen as the coordinates on TN . For m =
∑n

i=1 mie
∗
i , we have

χm = tm1

1 tm2

2 ...tmn
n , which is a Laurent monomial on TN . For a =

∑n
i=1 aiei, the one-parameter

subgroup γa can be written as γa(λ) = (λa1 , ...λan ).

Definition 2.7. A subset σ of NR is called a rational polyhedral cone (with apex at the origin O),
if there there exist a finite number of elements e1, e2, ..., es in N such that

σ = R≥0e1 + ...R≥0es

= {a1e1 + ... + ases | ai ∈ R, ai ≥ 0 for all 0 ≤ i ≤ s},

where we denote by R≥0 the set of nonnegative real numbers.

(1) σ is strongly convex if σ ∩ (−σ) = O.
(2) The dimension of σ is the dimension of the smallest subspace of NR containing σ.
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In this paper, a cone is always a rational polyhedral cone.

For a cone σ ∈ NR, its dual cone in MR is defined to be

σ∨ = {x ∈MR | 〈x, y〉 ≥ 0 for all y ∈ σ}.

A face of σ is a subset of σ, with the form m⊥ ∩ σ = {x ∈ σ | 〈x, m〉 = 0} for an element m ∈ σ∨.

Definition 2.8. A fan in N is a nonempty collection ∆ of strongly convex rational polyhedral
cones in NR satisfying the following conditions:

(1) Every face of any σ ∈ ∆ is contained in ∆.
(2) For any σ, σ′ ∈ ∆, the intersection σ ∩ σ′ is a face of both σ and σ′.

The union |∆| = ∪σ∈∆σ is called the support of ∆.

For a fan ∆, the set of one dimensional cones in ∆ is denoted by ∆(1). The primitive element of
α ∈ ∆(1) is the unique generator of α ∩N , denoted by n(α).

Let Sσ = σ∨ ∩M . For a strongly convex rational polyhedral cone σ in NR, the semigroup algebra

C[Sσ] = ⊕m∈Sσ
χm

is a finitely generated commutative C-algebra. The corresponding affine variety Uσ = Spec(C[Sσ])
is a n-dimensional toric variety. If τ is a face of σ, then Uτ can be regarded as a Zariski open set
of Uσ. Especially, UO = Spec(C[M ]) = TN

∼= (C∗)n is a Zariski open set of Uσ. This leads to the
following definition.

Theorem 2.9. Given a lattice N ∼= Zn and a fan ∆ in NR
∼= Rn, there exists a toric variety X∆,

obtained from the affine variety Uσ, σ ∈ ∆, by gluing together Uσ and Uτ along their common open

subset Uσ∩τ for all σ, τ ∈ ∆.

For the toric variety X∆, UO = TN is the algebraic torus embedding in it. There is a TN -action on
X∆, which extends the TN action on itself.

A cone σ is called nonsingular if σ can be written as

σ = R≥0e1 + ...R≥0es,

where {e1, e2, ..., es} is a subset of a Z-basis of N .

Theorem 2.10. Let X∆ be the toric variety associated with a fan ∆ in NR. Then

(1) X∆ is compact ⇐⇒ |∆| = NR.

(2) X∆ is nonsingular ⇐⇒ each σ ∈ ∆ is nonsingular.

For a nonsingular toric variety X∆, the action map TN × X∆ → X∆ is a holomorphic map. Let
NC = N⊗ZC. Then Lie(TN) ∼= NC. The infinitesimal action of Lie algebra Lie(TN) on X∆ induces
a map

(2.3) ρ : NC = N ⊗Z C→ X(X∆)

by identifying Lie(TN) with NC. The image of ρ are holomorphic vector fields on X∆. For any
a ∈ NC and m ∈M , we have

(2.4) ρ(a)(χm) = 〈a, m〉χm,
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where χm is considered as a rational function on X∆, 〈a, m〉 is defined by the C-linear extension
of the pair 〈, 〉 : M ×N → Z. By abuse of notation, we denote the induced map ∧kNC → Xk(X∆)
also by ρ.

Example 2.11. As we have shown in Example 2.6, X = CPn is a toric variety. We will associate
the toric variety X = CPn with a fan ∆ in NR, where N = Zn. Let e0 = (−1,−1, ...,−1), e1 =
(1, 0, , .., 0), ..., en = (0, ..., 0, 1) be vectors in N ⊂ NR = Rn. Choose the Z-basis {e1, e2, ..., en} of
N and let {e∗

1, e∗
2, ..., e∗

n} be the dual basis of M . Let ti = χ(e∗
i ). Then there is an isomorphism

TN
∼= (C∗)n : t ←→ (t1, t2, ...tn). For m =

∑n
i=1 mie

∗
i , we have χm = tm1

1 tm2

2 ...tmn
n . which is a

Laurent monomial on TN .

Let the fan ∆ be the collection of the cones of the following form:

σ =

k
∑

s=1

R≥0eis
, {i1, i2, ..., ik} ( {0, 1, ..., n}.

By gluing together Uσ and Uτ along their common open subset Uσ∩τ for all σ, τ ∈ ∆, we get that
X∆ = CPn as a toric variety.

Let

σi =

n
∑

s=1

R≥0eis
, {i1, i2, ..., in} = {0, 1, ..., n}\{i}.

Then we may identify Uσi
with the affine open set Ui = {[z0, z1, ..., zn] ∈ CPn | zi 6= 0}. And

(t1, t2, ..., tn) can be identified with the affine coordinates on U0 = {[z0, z1, ..., zn] ∈ CPn | z0 6= 0},
i.e., ti = zi

z0
. For m =

∑n
i=1 mie

∗
i , the rational function χm on X∆ = CPn can be written as

(2.5) χm = tm1

1 tm2

2 ...tmn

n = zm0

0 zm1

1 ...zmn

n ,

where m0 = −
∑n

i=1 mi.

Definition 2.12. Let X be a nonsingular toric variety. If a holomorphic Poisson structure π on
X is invariant under the torus action, then π is called a holomorphic toric Poisson structure on X ,
and X is called a holomorphic toric Poisson manifold.

Proposition 2.13. Let X∆ be a nonsingular toric variety associated with a fan ∆ in NR. Then

the set of holomorphic toric Poisson structures on X coincide with ρ(∧2NC).

Suppose e1, e2, . . . , en is a basis of N ⊂ NC. Then vi = ρ(ei) (i = 1, 2, . . . , n) are holomorphic
vector fields on X∆. The Proposition 2.13 can be state in an equivalent way:

Proposition 2.14. Let X∆ be a nonsingular toric variety associated with a fan ∆ in NR. Suppose

e1, e2, . . . , en is a basis of N ⊂ NC, vi = ρ(ei) (i = 1, 2, . . . , n). Then π is a holomorphic toric

Poisson structure on X∆ if and only if π can be written as

π =
∑

1≤i<j≤n

aijvi ∧ vj ,

where aij (1 ≤ i < j ≤ n) are complex constants.

Proof. ⇐: Suppose π =
∑

1≤i<j≤n aijvi ∧ vj with aij (1 ≤ i < j ≤ n) being complex constants.

Since TN is abelian, we have that [vi, vj ] = 0 for all 1 ≤ i < j ≤ n, which imply [π, π] = 0.
Obviously, π is holomorphic and TN -invariant. Hence π =

∑

1≤i<j≤n aijvi ∧ vj is a holomorphic
toric Poisson structure on X∆.
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⇒: Suppose π is a holomorphic toric Poisson structure on X∆. Then the restriction of π on
TN ⊂ X∆ is a holomorphic toric Poisson structure on TN , which is denoted by π̃. Any TN -invariant
holomorphic bi-vector field on TN ⊂ X∆ can be written as

∑

1≤i<j≤n

aij ṽi ∧ ṽj ,

where aij (1 ≤ i < j ≤ n) are complex constants, and ṽi (1 ≤ i ≤ n) are the restriction of the
vector fields vi (1 ≤ i ≤ n) on TN . Thus π̃ can be written as

π̃ =
∑

1≤i<j≤n

aij ṽi ∧ ṽj .

Since TN is a dense open set of X∆, we have

π =
∑

1≤i<j≤n

aijvi ∧ vj .

�

Example 2.15. Let X = CPn and let [z0, z1, . . . , zn] be homogenous coordinates on it. As we
have shown in Example 2.6 and in Example 2.11, X = CPn is a toric variety. Let P = Cn+1\{0} =
{(z0, z1, . . . , zn) | z0, z1, . . . , zn are not all zeros}, and let p : P = Cn+1\{0} → CPn be the canon-
ical projection. Then vi = p∗(zi

∂
∂zi

) (i = 0, 1, . . . , n) are holomorphic toric-invariant vector fields

on X , and
∑n

i=0 vi = 0. Moreover, by Equation (2.4) and Equation (2.5), we have

vi = ρ(ei) for i = 0, 1, ..., n.

Thus any holomorphic toric Poisson structures on X can be written as

π =
∑

1≤i<j≤n

aijvi ∧ vj ,

where aij (1 ≤ i < j ≤ n are complex constants.

2.3. The standard Poisson structure on CPn. In [?B-G-Y06, ?G-Y09], Brown, Goodear and
Yakimov studied the geometry of the standard Poisson structures on affine spaces and flag varieties.
Let us review the definition of the standard Poisson structure on flag varieties.

Let G be a connected complex reductive algebraic group with maximal torus H . Denote the
corresponding Lie algebra by g and h. Denote ∆+ (∆−) the set of all positive (negative) roots of g
with respect to h.

The standard r-matrix of g is given by

(2.6) rg =
∑

α∈∆+

eα ∧ e−α,

where eα and e−α are root vectors of α and −α, normalized by 〈eα, fα〉 = 1. The standard Poisson
structure on G is given by

πG = L(rg)−R(rg),

where L(rg) and R(rg) refer to the left and right invariant bi-vector fields on G associated to
rg ∈ ∧

2g ∼= ∧2TeG.
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For a parabolic group P containing H , X = G/P is a flag variey. The action of G on X = G/P
induces a map µ : g → X(X). By abuse of notations, the induced maps ∧kg → Xk(X) are also
denoted by µ. The natural projection

φ : G→ X = G/P

induces the following Poisson structure on the flag variety X = G/P :

(2.7) πst = φ∗(πG) = µ(rg),

called the standard Poisson structure on the flag varieties. The standard Poisson structure πst is a
holomorphic Poisson structure on the flag variety G/P .

Next we will focus on the standard Poisson structure on CPn.

Set G = GL(n + 1,C), H consisting of the diagonal matrices in GL(n + 1,C), P consisting of

matrices of the following form

(

λ b
0 D

)

, where λ ∈ C∗, b ∈ Cn, D ∈ GL(n,C). Then X = G/P

becomes the projective space CPn.

The left action of GL(n + 1,C) on X = CPn can be written as:

A · [z0, z1, ..., zn] 7→ p((z0, z1, ..., zn)At),

where A ∈ GL(n + 1,C), [z0, z1, ..., zn] ∈ CPn, (z0, z1, ..., zn) ∈ Cn+1, and p is the canonical
projection

Cn+1\{0}
p
−→ CPn : (z0, z1, ..., zn)→ [z0, z1, ..., zn].

The standard r-matrix of g = gl(n + 1,C) can be written as

(2.8) rg =
∑

0≤i<j≤n

eij ∧ eji,

where eij denotes the matrix having 1 in the (i + 1, j + 1) position and 0 elsewhere. Now we are
ready to compute the standard Poisson structure on CPn.

Lemma 2.16. Let X = CPn = GL(n + 1,C)/P. Let vi = p∗(zi
∂

∂zi
) (i = 0, 1, ..., n). Then the

standard Poisson structure on X = CPn can be written as

(2.9) πst =
∑

1≤i<j≤n

vi ∧ vj .

Proof. By computation, we have

µ(eij) = p∗(zi
∂

∂zj
).
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Therefore the standard Poisson structure on X = CPn can be written as

πst = µ(rg) =
∑

0≤i<j≤n

µ(eij) ∧ µ(eji)

=
∑

0≤i<j≤n

p∗(zi
∂

∂zj
) ∧ p∗(zj

∂

∂zi
)

=
∑

0≤i<j≤n

p∗(zi
∂

∂zi
) ∧ p∗(zj

∂

∂zj
)

=
∑

0≤i<j≤n

vi ∧ vj

=
∑

1≤i<j≤n

vi ∧ vj .

The last step holds as
∑n

i=0 vi = 0. �

2.4. Some exact sequences related to CPn.

Theorem 2.17. [1] Let P be a principle bundle over X with group G. Then there exists an exact

sequence of vector bundles over X:

(2.10) 0→ P ×G g→ T P/G→ T X → 0,

where P ×G g is the bundle associated to P by the adjoint representation of G on g = Lie(G), and

T P/G is the bundle of invariant vector fields on P .

Recall that for a principle G-bundle P over X , and a representation of G on a vector space V , the
associated vector bundle over X is defined to be P ×G V = (P × V )/ ∼, and (x.g, v) ∼ ((x, g.v)
∀x ∈ P , g ∈ G, v ∈ V .

Let P = Cn+1\{0}, X = CPn, and p : Cn+1\{0} → CPn being the canonical projection. G = C∗

operates by right multiplication on P = Cn+1\{0}:

λ : v → vλ, v ∈ Cn+1\{0}, λ ∈ C∗.

Then P is a principle C∗-bundle over X . Let L = P ×C∗ C be the associated line bundle with the
C∗ action on C by multiplication. Then L = O(−1) is isomorphic to the tautological line bundle of
CPn, and L∗ = O(1), where O(1) denotes the line bundle corresponding to a hyperplane section.

Let us show the Atiyah’s exact sequence (2.10) in this case.

Since G = C∗ is abelian, the adjoint representation is trivial, we have P ×Gg ∼= X×C. The G = C∗

action on T P ∼= Cn+1\{0} × Cn+1 is given by:

(x× v)λ = xλ × vλ, x ∈ Cn+1\{0}, v ∈ Cn+1, λ ∈ C∗.

Hence T P/G ∼= P×C∗Cn+1, where P×C∗Cn+1 is the associated bundle of P by the C∗ representation
ρ on Cn+1 given by:

ρ(λ)v = λ−1v, v ∈ Cn+1, λ ∈ C∗.

Thus T P/G ∼= L∗ ⊗ Cn+1 ∼= O(1)⊕(n+1), where Cn+1 denotes the trivial bundle X × Cn+1. So in
this case, the Atiyah exact sequence (2.10) becomes

(2.11) 0→ C→ O(1)⊕(n+1) → TCPn → 0,
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which is exactly the Euler exact sequence for CPn.

By a similar way, we can prove the vector bundles isomorphisms

(2.12) (∧jT P )/G ∼= ∧j(T P/G) ∼= O(j)⊕(n+1

j ),

where (∧jT P )/G denotes the vector bundle of C∗-invariant j-vector fields on P , 1 6 j 6 n + 1.

Let us choose (z0, z1, . . . , zn) as the coordinates on Cn+1 ⊃ P = Cn+1\{0}. Then the canonical
map p : Cn+1\{0} → CPn becomes (z0, z1, . . . , zn) → [z0, z1, . . . , zn], where [z0, z1, . . . , zn] are the
homogenous coordinates on CPn. Under the isomorphism T P ∼= Cn+1\{0} × Cn+1, we choose

∂
∂z0

, ∂
∂z1

, . . . , ∂
∂zn

as a basis for Cn+1 (the tangent part of T P ).

Since T P/G ∼= O(1)⊕(n+1), any C∗-invariant holomorphic vector field on P can be written as

∑

06i,j6n

aj
i zj

∂

∂zi
,

where aj
i are complex constants. And since (∧jT P )/G ∼= O(j)⊕(n+1

j ), any C∗-invariant holomorphic
k-vector field on P can be written as

(2.13)
∑

06i1<i2<...<ik6n

fi1,i2,...,ik

∂

∂zi1

∧ . . . ∧
∂

∂zik

,

where fi1,i2,...,ik
are homogenous polynomials of degree k with variables z0, z1, . . . , zn.

The map p : P → CPn induces a map T P/G → TCPn, which can be identified with the
map O(1)⊕(n+1) → TCPn in the Euler exact sequence (2.11). By abuse of notation, the map
O(1)⊕(n+1) → TCPn will be denoted by p∗, with ker p∗ being a trivial line bundle generated by the
Euler vector fields −→e =

∑n
i=0 zi

∂
∂zi

. Then the Euler exact sequence (2.11) can be written as

(2.14) 0→ C →֒ O(1)⊕(n+1) p∗

−→ TCPn → 0,

where C →֒ O(1)⊕(n+1) is considered as the embedding map ker p∗ →֒ O(1)⊕(n+1).

Lemma 2.18. Let us denote L = C−→e as the trivial line bundle C in Euler exact sequence (2.14)
and let E = O(1)⊕(n+1). Then we have exact sequences

(2.15) 0→ L ∧ (∧j−1E) →֒ ∧jE
−→e ∧·
−−−→ L ∧ (∧jE)→ 0

and

(2.16) 0→ L ∧ (∧j−1E) →֒ ∧jE
p∗

−→ ∧jT X → 0

for all j ≥ 1, where

(a) L ∧ (∧jE) = C−→e ∧ (∧jE) is a subbundle of ∧j+1E,

(b) L ∧ (∧j−1E) →֒ ∧jE is the embedding of L ∧ (∧j−1E) as a subbundle of ∧jE,

(c) ∧jE
−→e ∧·
−−−→ L ∧ (∧jE) is defined by the wedge of −→e with elements in ∧jE,

(d) ∧jE
p∗

−→ ∧jT X is induced by the map E
p∗

−→ TCPn in (2.14).

Proof. At each point x ∈ X = CPn, for any αx ∈ ∧
jE |x, we have that

−→e x ∧ αx = 0
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if and only if there exist βx ∈ ∧
j−1E |x, such that

αx = −→e x ∧ βx.

It implies that (2.15) is an exact sequence for all j ≥ 1.

By (2.14), the kernel of E
p∗

−→ TCPn is the trivial bundle L = C−→e . At each point x ∈ X , the
kernel of the map

E |x
p∗

−→ T X |x

is C−→e x. As a consequence, the kernel of

∧jE |x
p∗

−→ ∧jT X |x

is
−→e x ∧ (∧j−1E |x).

Thus (2.15) is an exact sequence for all j ≥ 1. �

3. The cohomology group Hi(CPn,∧jTCPn)

3.1. The vanishing of the cohomology group Hi(CPn,∧jTCPn) for i > 0 and 0 6 j 6 n.

Lemma 3.1. Let us denote L as the trivial line bundle C in Euler exact sequence (2.14) and let

E = O(1)⊕(n+1). Then we have

(3.1) Hi(X,∧jT X) ∼= Hi(X, L ∧ (∧jE)) ∼= Hi+1(X, L ∧ (∧j−1E))

for all i > 0 and j ≥ 1.

Proof. The exact sequence (2.15) in Lemma 2.18 induces a long exact sequence

(3.2) . . .→ Hi(X,∧jE)→ Hi(X, L ∧ (∧jE))→ Hi+1(X, L ∧ (∧j−1E))→ Hi+1(X,∧jE)→ . . . .

As
∧jE = ∧j(O(1)⊕(n+1)) = O(j)⊕(n+1

j ),

we have that

Hi(X,∧jE) = Hi(X, O(j)⊕(n+1

j )

= Hi(X, O(j))⊕(n+1

j )

= Hi(X, KX ⊗O(n + 1 + j))⊕(n+1

j ),

where KX
∼= O(−n − 1) is the canonical bundle of X = CPn. By Kodaira vanishing theorem, we

have
Hi(X, KX ⊗O(n + 1 + j)) = 0

for i > 0. Thus
Hi(X,∧jE) = 0 (i > 0).

As a consequence, by the exact sequence (3.2), we have

(3.3) Hi(X, L ∧ (∧jE)) ∼= Hi+1(X, L ∧ (∧j−1E))

for all i > 0 and j ≥ 1.

Similarly, by the exact sequence (2.16) in Lemma 2.18, we can prove that

(3.4) Hi(X,∧jT X) ∼= Hi+1(X, L ∧ (∧j−1E))
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for all i > 0 and j ≥ 1.

Combine (3.3) and (3.4), we proved the lemma. �

Theorem 3.2. For X = CPn, we have

(3.5) Hi(X,∧jTX) = 0

for all i > 0 and 0 6 j 6 n.

Proof. (1) In the case of j = 0, Hi(X,OX) = 0 (i > 0) is a well known result. It comes
directly from Hi(X,OX) = Hi(X,KX ⊗O(n + 1)) and Kodaira vanishing theorem, where
KX
∼= O(−n− 1) is the sheaf of canonical bundle.

(2) In the case of j ≥ 1, by Lemma 3.1, we have

Hi(X,∧jT X) ∼= Hi(X, L ∧ (∧jE)) ∼= Hi+1(X, L ∧ (∧j−1E)) ∼= · · · ∼= Hi+j(X, L)

As L is a trivial line bundle, we have Hi+j(X, L) = Hi+j(X, OX) = 0 for i > 0 and
j ≥ 1.

Hence

Hi(X,∧jTX) = 0

for all i > 0 and j ≥ 1.

�

Remark 3.3. For X = CPn, in the case of j = 1, the conclusion Hi(X, TX) = 0 (i > 0) is a special
case of Theorem VII in [3].

3.2. Holomorphic vector fields and multi-vector fields on CPn. In this section, we will give
a description of the holomorphic vector fields and multi-vector fields on CPn.

Lemma 3.4. Let us denote L = C−→e as the trivial line bundle C in Euler exact sequence (2.14)
and let E = O(1)⊕(n+1). Then we have exact sequences

(3.6) 0→ H0(X, L ∧ (∧j−1E))→ H0(X,∧jE)
p∗

−→ H0(X,∧jT X)→ 0

for all j ≥ 1.

Proof. By the exact sequence (2.16), we have

0→ H0(X, L ∧ (∧j−1E))→ H0(X,∧jE)
p∗

−→ H0(X,∧jT X)→ H1(X, L ∧ (∧j−1E))→ · · ·

for all j ≥ 1. By Lemma 3.1, we have

H1(X, L ∧ (∧j−1E)) ∼= H2(X, L ∧ (∧j−2E)) ∼= · · · ∼= Hj(X, L) = Hj(X, OX) = 0

for all j ≥ 1. Thus we have

0→ H0(X, L ∧ (∧j−1E))→ H0(X,∧jE)
p∗

−→ H0(X,∧jT X)→ 0

for all j ≥ 1. �

Remark 3.5. In the case j = 1, the exact sequence (3.6) becomes

(3.7) 0→ C→ H0(X,O(1))⊕(n+1) → H0(X, TX)→ 0.
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Notice that ∧jE = O(j)⊕(n+1

j ). Next we will give a description of the space H0(X,∧jE) =

H0(X, O(j))⊕(n+1

j ).

Let Vk (1 6 k 6 n + 1) be the complex vector space of the k-vector fields

∑

06i1<i2<...<ik6n

fi1,i2,...,ik

∂

∂zi1

∧ . . . ∧
∂

∂zik

on Cn+1, where fi1,i2,...,ik
are homogenous polynomials of z0, z1, . . . , zn with degree k. The restric-

tion of the k-vector fields in Vk on P = Cn+1\{0} forms a vector space, which will be denoted by Ṽk.
As we have shown in Equation (2.13), Ṽk coincide with the space of the C∗-invariant holomorphic
k-vector fields on P .

Lemma 3.6. For 1 6 j 6 n + 1, the complex vector spaces below are isomorphic:

(a) Vj,

(b) H0(X, O(j))⊕(n+1

j ),

(c) the space of C∗-invariant holomorphic j-vector fields on P .

Proof. (a) ∼= (b): The vector space Vj and H0(X, O(j))⊕(n+1

j ) are isomorphic by identifying the
(

n+1
j

)

polynomials fi1,i2,...,ik
with the different components of H0(X, O(j))⊕(n+1

j ).

(a) ∼= (c): Since Ṽj coincide with the space of C∗-invariant holomorphic j-vector fields on P , we
have that Vj and the space of C∗-invariant holomorphic j-vector fields on P are isomorphic.

(b) ∼= (c): As (∧jT P )/G ∼= O(j)⊕(n+1

j ), H0(X, O(j))⊕(n+1

j ) and the space of C∗-invariant holomor-
phic j-vector fields on P are isomorphic. �

By Lemma 3.4 and Lemma 3.6, we have

Lemma 3.7. [2] Let p : P = Cn+1\{0} → CPn : (z0, z1, . . . , zn) → [z0, z1, . . . , zn] being the

canonical projection. Then we have

(1) The holomorphic k-vector fields on CPn can be written as

p∗(
∑

06i1<i2<...<ik6n

gi1,i2,...,ik

∂

∂zi1

∧ . . . ∧
∂

∂zik

),

where gi1,i2,...,ik
are homogenous polynomials with variables z0, z1, ..., zn of degree k. Or in

other words,

H0(X,∧kTX) = p∗(Ṽk).

(2) For the map p∗ : Ṽk → H0(X,∧kTX),

ker p∗ = (

n
∑

i=0

zi
∂

∂zi
) ∧ Ṽk−1.

Next we will introduce some notations, which are important for the paper.
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• Let vi = p∗(zi
∂

∂zi
) (0 ≤ i ≤ n). As we have shown in Example 2.15, vi = ρ(ei) (0 ≤ i ≤ n),

and v0 = −
∑n

i=1 vi = 0. Let W 1 be the n-dimensional C-vector space generated by

v1, ..., vn. Then we have W = ρ(NC). Set W k = ∧kW (1 ≤ k ≤ n), W 0 = C. Then W k

can be considered as a subspace of H0(X,∧kTX).
• For monominals zm0

0 ...zmn
n satisfying

∑n
i=0 mi = 0, the derivatives of zm0

0 ...zmn
n satisfy

vi(z
m0

0 ...zmn

n ) = 〈ei, m〉zm0

0 ...zmn

n ,

where m = (m1, ..., mn) ∈M . Let

M̃ = {(m0, m1, ..., mn) ∈ Zn+1 |

n
∑

i=0

mi = 0}.

Then M̃ ∼= M .
• For I = (m0, m1, ..., mn) ∈ M̃ satisfying mi ≥ −1 (i = 0, 1, ...n), suppose {mi1

, ..., mil
| 0 ≤

i1 < ... < il ≤ n} are all the elements equal to −1 in the set {m0, m1, ..., mn}. Set

|I| = l, ZI = zm0

0 ...zmn

n , VI = vi1
∧ ... ∧ vil

∈ W l,

eI = ei1
∧ ... ∧ eil

∈ ∧lN, m(I) = (m1, ..., mn) ∈M.

Theorem 3.8. Let X = CPn. We have

(3.8) H0(X,∧kTX) = ⊕I∈Sk
C(ZI · VI) ∧W k−|I|

for 0 ≤ k ≤ n, where Sk is the subset of M̃ consisting of all I ∈ M̃ satisfying the conditions

(3.9) 〈m(I), ei〉 = mi ≥ −1 (0 ≤ i ≤ n)

and

(3.10) |I| ≤ k.

Proof. (1) First, we will prove that

(3.11) H0(X,∧kTX) =
∑

I∈Sk

C(ZI · VI) ∧W k−|I|. (0 ≤ k ≤ n)

By Lemma 3.7, any holomorphic k-vector field Ξ on CPn can be written as

Ξ = p∗(
∑

06i1<i2<...<ik6n

gi1,i2,...,ik

∂

∂zi1

∧ . . . ∧
∂

∂zik

)

=
∑

06i1<i2<...<ik6n

fi1,i2,...,ik
vi1
∧ . . . ∧ vik

,

where fi1,i2,...,ik
=

gi1,i2,...,ik
∏k

s=1 zis

=
∑

ci1,...,ik
m0,...,mn

zm0

0 ...zmn

n , with ci1,...,ik
m0,...,mn

being complex con-

stants, and
(a) mis

≥ −1 for 1 ≤ s ≤ k,
(b) mj ≥ 0 for j /∈ {is | 1 ≤ s ≤ k},
(c)

∑n
i=0 mi = 0.
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(3.12) Ξ =
∑

ci1,...,ik
m0,...,mn

zm0

0 ...zmn

n vi1
∧ . . . ∧ vik

,

with mi (0 ≤ i ≤ n) satisfying the above conditions.
Without loss of generality, suppose {mi1

, mi2
, ..., mil

} are all the elements equal to −1
in the set {m0, m1, ..., mn}. Then

zm0

0 ...zmn

n vi1
∧ . . . ∧ vik

= (zm0

0 ...zmn

n vi1
∧ . . . ∧ vil

) ∧ (vil+1
∧ ... ∧ vik

).

For I = (m0, m1, ..., mn), we have

zm0

0 ...zmn

n vi1
∧ . . . ∧ vil

= ZI · VI ,

and
vil+1

∧ ... ∧ vik
∈ W k−|I|.

By Equation (3.12), Ξ ∈
∑

I∈Sk
C(ZI · VI) ∧W k−|I| (0 ≤ k ≤ n).

Thus we have

H0(X,∧kTX) ⊆
∑

I∈Sk

C(ZI · VI) ∧W k−|I| (0 ≤ k ≤ n).

On the other hand, for I = (m0, m1, ..., mn) ∈ S ⊂ M̃ , suppose mi1
, mi2

, ..., mil
(0 ≤

i1 < i2 < ... < il ≤ n) are all the elements equal to −1 in the set {m0, m1, ..., mn}. Then
we have

ZI · VI = zm0

0 ...zmn

n vi1
∧ . . . ∧ vil

= zm0

0 ...zmn
n p∗(zi1

∂

∂zi1

) ∧ . . . ∧ p∗(zi1

∂

∂zi1

)

= p∗((zi1
...zil

).(zm0

0 ...zmn

n )
∂

∂zi1

∧ . . . ∧
∂

∂zil

)

= p∗((
∏

i/∈{i1,...il}

zmi

i )
∂

∂zi1

∧ . . . ∧
∂

∂zil

).

Since mi ≥ 0 for i /∈ {i1, ...il}, we know that
∏

i/∈{i1,...il}
zmi

i is a polynominal with variables

z0, z1, ...zn of degree l. By Lemma 3.7, ZI · VI is a holomorphic l-vector field on X = CPn.
As W k−|I| = W k−l is a subspace of H0(X,∧k−lTX), we have that C(ZI · VI) ∧W k−|I|

is a subspace of H0(X,∧kTX). Thus we have
∑

I∈Sk

C(ZI · VI) ∧W k−|I| ⊆ H0(X,∧kTX).

By the argument above, the Equation (3.12) holds.
(2) Next we will prove that for different I and J in S ⊂ M̃ satisfying the conditions 3.9 and

3.10,

(3.13) C(ZI · VI) ∧W k−|I| ∩ C(ZJ · VJ ) ∧W k−|J| = 0,

where C(ZI · VI) ∧ W k−|I| and C(ZJ · VJ ) ∧ W k−|J| are considered as the subspaces of
H0(X,∧kTX).

Let R : H0(X,∧kTX) → H0(X,∧kTTN
) be the restriction of the holomorphic k-vector

fields on the algebraic torus TN ⊂ X . Then we have

R(C(ZI · VI) ∧W k−|I|) ⊆ CZI ·R(W k)
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and

R(C(ZJ · VJ ) ∧W k−|J|) ⊆ CZJ ·R(W k),

where R(W k) denotes the restriction of W k on TN ⊂ X . Since ∧kT (TN) is a triival bundle,
with {R(vi1

∧ vi2
∧ ...∧ vik

) | 1 ≤ i1 < i2 < ... < ik ≤ n} as a basis, and since {ZI | I ∈M}
are C-linear independent functions on TN , it is easy to verify that for different I and J in
M̃ ,

CZI ·R(W k) ∩CZJ ·R(W k) = 0.

As a consequence, we have

R(C(ZI · VI) ∧W k−|I|) ∩R(C(ZJ · VJ ) ∧W k−|J|) = 0.

As TN is an open dense subset in X = CPn, we proved Equation (3.13).
(3) By Equation (3.11) and Equation (3.13), we have

H0(X,∧kTX) = ⊕I∈Sk
C(ZI · VI) ∧W k−|I| (0 ≤ k ≤ n).

�

In Theorem 3.8, Sk is the set of all I ∈ M̃ satisfying conditions 3.9 and 3.10. Let us denote
S(i) (0 ≤ i ≤ n) as the set of all all I ∈ M̃ satisfying the condition 3.9 and |I| = i. Then
Sk = ⊎0≤i≤kS(i). And we have

S0 ⊆ S1 ⊆ S2 . . . ⊆ Sn.

Proposition 3.9. Let X = CPn. We have

(3.14) H0(X,∧kTX) = (H0(X,∧k−1TX) ∧W )⊕ (⊕I∈S(k)CZI ·W k) (1 ≤ k ≤ n),

where S(k) is the set of all all I ∈ M̃ satisfying the condition 3.9 and |I| = k.

Proof. By Theorem 3.8, we have

H0(X,∧kTX) = ⊕I∈Sk
C(ZI · VI) ∧W k−|I|

= ⊕k
i=0(⊕I∈S(i)C(ZI · VI) ∧W k−|I|)

= ⊕k−1
i=0 (⊕I∈S(i)C(ZI · VI) ∧W k−|I|)⊕ (⊕I∈S(k)CZI ·W k)

= (⊕k−1
i=0 (⊕I∈S(i)C(ZI · VI) ∧W k−1−|I|) ∧W )⊕ (⊕I∈S(k)CZI ·W k)

= (H0(X,∧k−1TX) ∧W )⊕ (⊕I∈S(k)CZI ·W k),

where the last step holds since

H0(X,∧k−1TX) = ⊕k−1
i=0 (⊕I∈S(i)C(ZI · VI) ∧W k−1−|I|).

�
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4. Poisson cohomology of CPn

4.1. Poisson cohomology of toric Poisson structures on CPn. Let X = CPn. To start the
main theorem, we need some preparations.

• Let π =
∑

1≤i<j≤n aijvi ∧ vj be a holomorphic toric Poisson structure on X = CPn, where

vi = p∗(zi
∂

∂zi
) = ρ(ei) (0 ≤ i ≤ n) as we have shown in Example 2.15. Set

Π =
∑

1≤i<j≤n

aijei ∧ ej.

Then we have Π ∈ ∧2NC.
• For I = (m0, ..., mn) ∈ M̃ , m(I) = (m1, ..., mn) ∈M , we have

ım(I)Π ∈ NC,

where ım(I)Π denotes the contraction of m(I) ∈M with Π ∈ ∧2NC by the C-linear extension
of the pairing 〈, 〉 : M ×N → Z. And ρ(ım(I)Π) is a holomorphic vector field on X , where
ρ : NC → X(X) is the map we have defined in Equation (2.3).

Lemma 4.1. Let π =
∑

1≤i<j≤n aijvi ∧ vj be a holomorphic toric Poisson structure on X = CPn.

For any I ∈ M̃ , we have

(4.1) [π, ZI ] = ZI · ρ(ım(I)Π).

and

(4.2) [π, ZI · VI ] = ρ((ım(I)Π) ∧ eI).

Proof. (1) For I ∈ M̃ and 0 ≤ i ≤ n, we have

(4.3) vi(Z
I) = 〈ei, m(I)〉ZI ,

where ZI is considered as a rational function on X = CPn, vi(Z
I) denotes the derivative

of ZI along the vector field vi.
Since that TN

∼= (C∗)n is commutative, we have

(4.4) [vi, vj ] = 0

for 0 ≤ i, j ≤ n.
The Lemma can be proved by a simple computation using Equation (4.3) and Equation

(4.4).
(2) Since ρ(eI) = VI , by Equation 4.1 we have

[π, ZI · VI ] = ρ(ım(I)Π) ∧ VI

= ρ(ım(I)Π) ∧ ρ(eI)

= ρ((ım(I)Π) ∧ eI).

�
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By Lemma 2.4 and Theorem 3.2, the Poisson cohomology group H•
π(X) is isomorphic to the coho-

mology of the complex

(4.5) H0(X,OX)
dπ−→ H0(X, TX)

dπ−→ H0(X,∧2TX)
dπ−→ . . .

dπ−→ H0(X,∧nTX)

where dπ = [π, ·].

Lemma 4.2. Let π be a holomorphic toric Poisson structure on X = CPn.

(1) For any I ∈ Sk (0 ≤ k ≤ n), where Sk is the set of all I ∈ M̃ satisfying conditions 3.9 and

3.10, we have

dπ(C(ZI · VI) ∧W k−|I|) ⊆ C(ZI · VI) ∧W k−|I|+1,

where C(ZI ·VI)∧W k−|I| is considered as a subspace of H0(X,∧kTX), dπ(C(ZI ·VI)∧W k−|I|)

denotes the image of C(ZI ·VI)∧W k−|I| under the map H0(X,∧kTX)
dπ−→ H0(X,∧k+1TX),

C(ZI · VI) ∧W k−|I|+1 is considered as a subspace of H0(X,∧k+1TX).
(2) For any I ∈ Sk (0 ≤ k ≤ n) satisfying the equation

(ım(I)Π) ∧ eI = 0,

we have

dπ(C(ZI · VI) ∧W k−|I|) = 0.

Proof. (1) For any element Ψ = ZI ·VI∧w in C(ZI ·VI)∧W k−|I|, where I ∈ Sk and w ∈ W k−|I|,
by Lemma 4.1, we have

dπ(Ψ) = [π, ZI · VI ∧ w]

= ρ(ım(I)Π) ∧ (ZI · VI ∧ w)

= (−1)|I|ZI · VI ∧ (ρ(ım(I)Π) ∧w.

Since ρ(ım(I)Π) ∧ w ∈W k−|I|+1, dπ(Ψ) is an element in C(ZI · VI) ∧W k−|I|+1.
Thus we have

dπ(C(ZI · VI) ∧W k−|I|) ⊆ C(ZI · VI) ∧W k−|I|+1 for all I ∈ Sk.

(2) If I ∈ Sk satisfies the equation

(ım(I)Π) ∧ eI = 0,

then
ρ((ım(I)Π) ∧ eI) = ρ(ım(I)Π) ∧ VI = 0.

By Lemma 4.1, with the similar argument as above, we have

dπ(C(ZI · VI) ∧W k−|I|) = 0.

�

Lemma 4.3. Let π be a holomorphic toric Poisson structure on X = CPn. For any holomorphic

k-vector field Ψ in C(ZI · VI) ∧W k−|I| with I ∈ Sk−1 ⊆ Sk (1 ≤ k ≤ n), if

dπ(Ψ) = 0 and (ım(I)Π) ∧ eI 6= 0,

then there exists a holomorphic (k − 1)-vector field Φ in C(ZI · VI) ∧W k−|I|−1, such that

Ψ = dπ(Φ).
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Proof. For any holomorphic k-vector field Ψ = ZI ·VI∧w ∈ C(ZI ·VI)∧W k−|I|, where I ∈ Sk−1 ⊆ Sk

and w ∈ W k−|I|, by Lemma 4.1, we have

dπ(Ψ) = [π, Ψ] = [π, ZI · VI ∧ w]

= ρ(ım(I)Π) ∧ (ZI · VI ∧ w)

= ZI · ρ(ım(I)Π) ∧ vi1
∧ . . . ∧ vil

∧w

If (ım(I)Π)∧eI 6= 0, then ım(I)Π and ei1
, ei2

. . . eil
are C-linear independent vectors in NC, ρ(ım(I)Π)

and vi1
, vi2

. . . vil
are C-linear independent vectors in W = ρ(NC).

If dπ(Ψ) = ZI · ρ(ım(I)Π) ∧ vi1
∧ . . . ∧ vil

∧w = 0, we have

ρ(ım(I)Π) ∧ vi1
∧ . . . ∧ vil

∧w = 0.

By simple linear algebra we know that w ∈ W k−|I| can be written as

w = ρ(ım(I)Π) ∧ w0 +

l
∑

s=1

vis
∧ wi,

where w0, w1, . . . , wl are elements in W k−|I|−1. Moreover, we have

Ψ = ZI · VI ∧ w

= ZI(vi1
∧ vi2

∧ . . . ∧ vil
) ∧ (ρ(ım(I)Π) ∧ w0 +

l
∑

s=1

vis
∧ ws)

= ZI(vi1
∧ vi2

∧ . . . ∧ vil
) ∧ (ρ(ım(I)Π) ∧ w0)

= (−1)|I|ρ(ım(I)Π) ∧ (ZI · VI ∧ w0)

Let Φ = (−1)|I|ZI ·VI ∧w0. Then Φ is a holomorphic (k− 1)-vector fields in the space C(ZI ·VI)∧
W k−|I|−1.

A simple computation using Lemma 4.1 shows that

Ψ = dπ(Φ).

�

Theorem 4.1. Let π be a holomorphic toric Poisson structure on X = CPn. We have

(1) for 0 ≤ k ≤ n,

(4.6) Hk
π(X) = ⊕I∈Sk(π)C(ZI · VI) ∧W k−|I|,

where Sk(π) is the set consisting of all I ∈ M̃ satisfying

〈m(I), ei〉 =mi ≥ −1 (0 ≤ i ≤ n),(4.7)

|I| ≤ k,(4.8)

and the equation

(4.9) (ım(I)Π) ∧ eI = 0.

(2) Hk
π(X) = 0 for k > n.
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Remark 4.4. (1) Sk(π) is a subset of Sk consisting of all I ∈ Sk satisfying Equation 4.9. By
Theorem 3.8, ⊕I∈Sk(π)C(ZI · VI) ∧W k−|I| is a subspace of H0(X,∧kTX). it is identified
with the quotient space

ker : H0(X,∧kTX)
dπ−→ H0(X,∧k+1TX)

Im : H0(X,∧k−1TX)
dπ−→ H0(X,∧kTX)

in the Theorem 4.1.
(2) For k = 0, H0

π(X) = C, consisting of the complex constants on X .
(3) For k = n, Theorem 4.1 can be state in the following equivalent way:

(4.10) Hn
π (X) = ⊕ICZI · v1 ∧ ... ∧ vn

for all I ∈ Sn ⊂ M̃ satisfying one of the following conditions
{

|I| = n,

(ım(I)Π) ∧ eI = 0.
(4.11)

(4) For each I ∈ M̃ , Equation (4.9) can be written as

(4.12)

n
∑

i=1

ai(I, π)mi,

where ai(I, π) are complex constants depending on I and π.

Proof of Theorem 4.1:

Proof. (1) For k = 0, S0 consists of only (0, ...0) ∈ M̃ , and W k−|i| = W 0 = C. Thus we have

H0
π(X) = C.

(2) For 1 ≤ k ≤ n, by Theorem 3.8, any holomorphic k-vector field Ψ ∈ H0(X,∧kTX) can be
written as

Ψ =
∑

I∈Sk

ΨI , ΨI ∈ C(ZI · VI) ∧W k−|I|.

As

dπ(Ψ) =
∑

I∈Sk

dπ(ΨI),

by Lemma 4.2, we have that

dπ(Ψ) = 0⇐⇒ dπ(ΨI) = 0 for all I ∈ Sk.

(a) For any I ∈ Sk−1 ⊆ Sk satisfying (ım(I)Π)∧ eI 6= 0, by Lemma 4.3, dπ(ΨI) = 0 imples

that there exist ΦI ∈ C(ZI · VI)∧W k−|I|−1 such that ΨI = dπ(ΦI). Thus there exists
only zero Poisson cohomology class in C(ZI ·VI)∧W k−|I| for I ∈ Sk−1 ⊆ Sk satisfying
(ım(I)Π) ∧ eI 6= 0.

(b) For any I ∈ Sk−1 ⊆ Sk satisfying (ım(I)Π) ∧ eI = 0, i.e., I ∈ Sk−1(π), by Lemma 4.2,
we have

dπ(C(ZI · VI) ∧W k−|I|−1) = 0 and dπ(C(ZI · VI) ∧W k−|I|) = 0.
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Thus for each nonzero element ΨI ∈ C(ZI ·VI)∧W k−|I| with I ∈ Sk−1(π), it represents
a nonzero cohomology class in the Poisson cohomology group. And

⊕I∈Sk−1(π)C(ZI · VI) ∧W k−|I|

can be seen as subspace of the Poisson cohomology group Hk
π(X).

(c) For any I ∈ Sk(π)\Sk−1(π), i.e, I ∈ S(k) satisfying (ım(I)Π) ∧ eI = 0, by Lemma 4.3,
we have

dπ(C(ZI · VI) ∧W k−|I|) = dπ(C(ZI · VI)) = 0.

By Theorem 3.8, we have

H0(X,∧k−1TX) = ⊕I∈Sk−1
C(ZI · VI) ∧W k−|I|−1.

And by Lemma 4.2, we get that

dπ(H0(X,∧k−1TX)) ⊆ ⊕I∈Sk−1
C(ZI · VI) ∧W k−|I|.

Thus for each nonzero element ΨI ∈ C(ZI · VI) ∧W k−|I| with I ∈ Sk(π)\Sk−1(π), it
represents a nonzero cohomology class in the Poisson cohomology group. And

⊕I∈Sk(π)\Sk−1(π)C(ZI · VI) ∧W k−|I|

can be seen as a subspace of the Poisson cohomology group Hk
π(X).

By the argument above, we have

Hk
π(X) = ⊕I∈Sk(π)C(ZI · VI) ∧W k−|I|

for 1 ≤ k ≤ n.
(3) For k > n, Hk

π(X) = 0 comes directly from Lemma 2.4 and Theorem 3.2.

�

Let us denoted S(i, π) as the set of all I ∈ M̃ satisfying |I| = i and the conditions (4.7), (4.9).
Then we have Sk(π) = ⊎0≤i≤kS(i, π). By a similar way as in Proposition 3.9, we can prove that

Proposition 4.5. Let π be a holomorphic toric Poisson structure on X = CPn. For 1 ≤ k ≤ n,

we have

(4.13) Hk
π(X) = (Hk−1

π (X) ∧W )⊕ (⊕I∈S(k,π)C(ZI · VI) ∧W k−|I|),

where S(k, π) is the set of all I ∈ M̃ satisfying |I| = k and the conditions (4.7), (4.9).

4.2. Poisson cohomology of the standard Poisson structure on CPn. As we have shown in
Lemma 2.16, the standard Poisson structure on X = CPn can be written as

πst =
∑

1≤i<j≤n

vi ∧ vj ,

where vi = p∗(zi
∂

∂zi
) = ρ(ei) (0 ≤ i ≤ n) as we shown in Example 2.15. And Πst =

∑

1≤i<j≤n ei ∧

ej ∈ ∧
2NC.

We can apply Theorem 4.1 to compute the Poisson cohomology of the standard Poisson structure
on CPn. Here we only list the Poisson cohomology groups in the case n = 2 and n = 3. For other
cases it could be done similarly, but more complicated.
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Proposition 4.6. Let X = CP2 and let [z0, z1, z2] be the homogenous coordinates on it. Let

vi = p∗(zi
∂

∂zi
) (0 ≤ i ≤ 2). The standard Poisson structure on X = CP2 can be written as

πst = v1 ∧ v2.

The Poisson cohomology group of (X, πst) can be written as

(1) H0
πst

(X) = C, and dim H0
πst

(X) = 1.

(2) H1
πst

(X) has a basis {v1, v2}, and dim H1
πst

(X) = 2.

(3) H2
πst

(X) has a basis {(zm0

0 zm1

1 zm2

2 )v1 ∧ v2} with (m0, m1, m2) in the set
{

(0, 0, 0),
(−1,−1, 2), (−1, 2,−1), (2,−1,−1)

}

.

Thence dim H2
πst

(X) = 4.

(4) Hk
πst

(X) = 0 for k > 2.

The Proposition 4.6 verified the results about Poisson cohomology of CP2 in [?Hong-Xu11].

Proposition 4.7. Let X = CP3 and let [z0, z1, z2, z3] be the homogenous coordinates on it. Let

vi = p∗(zi
∂

∂zi
) (0 ≤ i ≤ 3). The standard Poisson structure on X = CP3 can be written as

πst = v1 ∧ v2 + v1 ∧ v3 + v2 ∧ v3.

The Poisson cohomology group of (X, πst) can be written as

(1) H0
πst

(X) = C, and dim H0
πst

(X) = 1.

(2) H1
πst

(X) has a basis {v1, v2, v3}, and dim H1
πst

(X) = 3.

(3) H2
πst

(X) has a basis as the union of three parts:

(a) {v1 ∧ v2, v1 ∧ v3, v2 ∧ v3},
(b) {(zm0

0 zm1

1 zm2

2 zm3

3 )v0 ∧ v2} with (m0, m1, m2, m3) in the set
{

(−1, 1, ,−1, 1), (−1, 2,−1, 0), (−1, 0,−1, 2)
}

where v0 = −
∑3

i=1 vi,

(c) {(zm0

0 zm1

1 zm2

2 zm3

3 )v1 ∧ v3} with (m0, m1, m2, m3) in the set
{

(1,−1, , 1,−1), (2,−1, 0,−1), (0,−1, 2,−1)
}

.

Thence dim H2
πst

(X) = 9.

(4) H3
πst

(X) has a basis {(zm0

0 zm1

1 zm2

2 zm3

3 )v1 ∧ v2 ∧ v3} with (m0, m1, m2, m3) in the set














(0, 0, 0, 0),
(−1, 1, ,−1, 1), (−1, 2,−1, 0), (−1, 0,−1, 2),
(1,−1, 1,−1), (2,−1, 0,−1), (0,−1, 2,−1),

(−1,−1,−1, 3), (−1,−1, 3,−1), (−1, 3,−1,−1), (3,−1,−1,−1)















.

Thence dim H3
πst

(X) = 11.

(5) Hk
πst

(X) = 0 for k > 3.

For general CPn equipped with the standard Poisson structure, it is interesting to explore the
meaning of the Poisson cohomology groups. Here we will give an explicit description of the first
Poisson cohomology group of (CPn, πst).
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Theorem 4.8. For X = CPn equipped with the standard Poisson structure

πst =
∑

1≤i<j≤n

vi ∧ vj ,

we have

H1
πst

(X) = W and dim H1
πst

(X) = n.

To prove Theorem 4.8, we need the following lemma.

Lemma 4.9. For X = CPn equipped with the standard Poisson structure

πst =
∑

1≤i<j≤n

vi ∧ vj ,

we have that

S(1, πst) = ∅,

where S(1, πst) is the set of all I ∈ S(1) satisfying the Equation

(4.14) (ım(I)Πst) ∧ eI = 0,

and Πst =
∑

1≤i<j≤n ei ∧ ej.

Proof. For I ∈ S(1), Equation (4.14) is equivalent to

(4.15) ım(I)Πst = λeI , λ ∈ C.

Let us denote αi,j (0 ≤ i 6= j ≤ n) as the element in M̃ , with mi = −1, mj = 1 and 0 elsewhere.
Then

S(1) = {αi,j | 0 ≤ i 6= j ≤ n}.

For I = αi,j , we have that eI = ei. The Equation (4.15) becomes

(4.16) ım(I)Πst = λei, λ ∈ C.

Let {e∗
1, e∗

2, ..., e∗
n} ⊂M be the dual basis of {e1, e2, ..., en}. Then we have

m(I) =











e∗
j , for i = 0, j 6= 0.

−e∗
i , for i 6= 0, j = 0.

−e∗
i + e∗

j , for i 6= 0, j 6= 0.

(a) In the case i = 0 and j 6= 0, Equation (4.16) becomes

ıe∗

j
Π = λe0 = −λ(

n
∑

s=1

es),

which implies

(4.17) Π(e∗
j , e∗

s) = 〈ıe∗

j
Π, e∗

s〉 = −λ

for all 1 ≤ s ≤ n.
As

Πst =
∑

1≤i<j≤n

ei ∧ ej,

Equation (4.17) can not be true since that

Π(e∗
j , e∗

j) = 0



POISSON COHOMOLOGY OF HOLOMORPHIC TORIC POISSON MANIFOLDS 23

and

Π(e∗
j , e∗

s) = ±1

for 1 ≤ s 6= j ≤ n.
Thus in this case, Equation (4.14) has no solution.

(b) In the case i 6= 0 and j = 0, Equation (4.16) becomes

ı(−e∗

i
)Π = λei,

which implies

Π(−e∗
i , e∗

s) = 0

for all 1 ≤ s 6= i ≤ n.
As

Πst =
∑

1≤i<j≤n

ei ∧ ej,

we have

Π(−e∗
i , e∗

s) = ±1

for all 1 ≤ s 6= i ≤ n. Thus Equation (4.16) has no solution in this case.
(c) In the case i 6= 0 and j 6= 0, Equation (4.16) becomes

ı(−e∗

i
+e∗

j
)Π = λei.

It can not be true since that

Π(−e∗
i + e∗

j , e∗
j ) = ±1,

but

〈λei, e∗
j 〉 = 0.

By the argument above, we have S(1, πst) = ∅. �

Proof of Theorem 4.8:

Proof. By Theorem 4.1, we have

H1
πst

(X) = ⊕I∈S1(πst)C(ZI · VI) ∧W 1−|I|.

As S1(πst) = S(0, πst) ⊎ S(1, πst), we have

H1
πst

(X) = ⊕I∈S1(πst)C(ZI · VI) ∧W 1−|I|

= (⊕I∈S(0,πst)C(ZI · VI) ∧W 1−|I|)⊕ (⊕I∈S(1,πst)C(ZI · VI) ∧W 1−|I|).

Since S(0, πst) consists only one element I = (0, . . . , 0), we have

⊕I∈S(0,πst)C(ZI · VI) ∧W 1−|I| = W.

On the other hand, by Lemma 4.9, we have S(1, πst) = ∅. Thus we have

H1
πst

(X) = W and dim H1
πst

(X) = n.

�
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For X = CPn, there is a cyclic group Zn+1 action on X = CPn, generated by

(4.18) [z0, z1, . . . , zn−1, zn]
σ
−→ [z1, z2, . . . , zn, z0],

where σ is a generator of Zn+1. By
∑n

i=0 vi = 0, we have that

πst =
∑

1≤i<j≤n

vi ∧ vj =
∑

0≤i<j≤n

vi ∧ vj

=
∑

0≤i<j≤n−1

vi ∧ vj

=σ−1
∗ (πst).

Thus the standard Poisson structure πst on X = CPn is invariant under the Zn+1-action defined
in (4.18).

Proposition 4.10. The standard Poisson structure

πst =
∑

1≤i<j≤n

vi ∧ vj

on X = CPn is invariant under the Zn+1-action defined in Equation (4.18). As a consequence, the

Zn+1-action on X induces a Zn+1-action on the Poisson cohomology group Hk
πst

(X) for 0 ≤ k ≤ n.

In the cases of X = CP2 (Proposition 4.6) and X = CP3 (Proposition 4.7), it is easy to find the
Z3-action and the Z4-action on the Poisson cohomology group.

There should be more interesting thing about the Poisson cohomology groups of the standard
Poisson structure to be explored. However, those will be future works.

5. General Conjectures

Let X∆ be a nonsingular toric veriety associated with a fan ∆ in NR. Let αi (1 ≤ i ≤ r) be all
the one dimensional cones in ∆(1), and letn(αi) ∈ N be the corresponding primitive elements.
Set W = ρ(NC), W k = ∧kW and W 0 = C. Then W k can be considered as a subspace of
H0(X∆,∧kTX∆

).

For any I ∈M , let
mi(I) = 〈I, n(αi)〉 (1 ≤ i ≤ r).

Suppose mi1
(I), ..., mil

(I) (1 ≤ i1 < ... < il ≤ r) are all the elements equal to −1 in the set
{m1(I), ..., mr(I)}. Let us introduce some notations:

|I| = l, VI = ρ(n(αi1
)) ∧ . . . ∧ ρ(n(αil

)) ∈ W l, nI = n(αi1
) ∧ . . . ∧ n(αil

) ∈ ∧lN.

Conjecture 5.1. Let X∆ be a nonsingular toric veriety associated with a fan ∆ in NR. Then

H0(X,∧kTX) = ⊕I∈Sk
C(χI · VI) ∧W k−|I|

for 0 ≤ k ≤ n, where Sk is the subset of M consisting of all I ∈M satisfying the conditions

mi(I) ≥ −1 (1 ≤ i ≤ r)

and
|I| ≤ k.

Remark 5.1. (1) As we have shown in Theorem 3.8, Conjecture 5.1 is true for X = CPn.
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(2) For the general toric variety X∆, in the case of k = 1, by [8] (Proposition 7, p. 571) (one
may consult [19]), Conjecture 5.1 retains true.

If Conjecture 5.1 retains true, then we can prove the following conjecture by similar way as we have
done for X = CPn.

Conjecture 5.2. Let X∆ be a nonsingular toric veriety satisfying Hi(X,∧jTX∆
) = 0 for all i > 0

and 0 ≤ j ≤ n. Let π be a holomorphic toric structure on X∆, and let Π be the element in ∧2NC

determined by ρ(Π) = π. Then we have

(1) for 0 ≤ k ≤ n,

Hk
π(X) = ⊕I∈Sk(π)C(χI · VI) ∧W k−|I|,

where Sk(π) is the set consisting of all I ∈M satisfying

mi(I) ≥ −1 (1 ≤ i ≤ r),

|I| ≤ k,

and the equation

(ıIΠ) ∧ nI = 0.

(2) Hk
π(X) = 0 for k > n.
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