
PhD-FSTC-2016-45
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 24/10/2016 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

WEI DOU
Born on 5 June 1987 in Xianyang (Shaanxi, China)

A MODEL-DRIVEN APPROACH TO OFFLINE
TRACE CHECKING OF TEMPORAL PROPERTIES

DISSERTATION DEFENSE COMMITTEE

PROF. DR.-ING. LIONEL BRIAND, Dissertation Supervisor
University of Luxembourg, Luxembourg

DR. RADU STATE, Chairman
University of Luxembourg, Luxembourg

DR. MEHRDAD SABETZADEH, Vice Chairman
University of Luxembourg, Luxembourg

PROF. DR.-ING. CESARE PAUTASSO

Università della Svizzera italiana, Switzerland

PROF DR.-ING. CARLO ALBERTO FURIA

Chalmers University of Technology, Sweden

DR. DOMENICO BIANCULLI, Expert in an advisory capacity (Co-supervisor)
University of Luxembourg, Luxembourg





Abstract

Offline trace checking is a procedure for evaluating requirements over a log of events produced by a
system. The goal of this thesis is to present a practical and scalable solution for the offline checking of
the temporal requirements of a system, which can be used in contexts where model-driven engineer-
ing is already a practice, where temporal specifications should be written in a domain-specific lan-
guage not requiring a strong mathematical background, and where relying on standards and industry-
strength tools for property checking is a fundamental prerequisite.

The main contributions of this thesis are: i) the TemPsy (Temporal Properties made easy) lan-
guage, a pattern-based domain-specific language for the specification of temporal properties; ii) a
model-driven trace checking procedure, which relies on an optimized mapping of temporal require-
ments written in TemPsy into Object Constraint Language (OCL) constraints on a conceptual model
of execution traces; iii) a model-driven approach to violation information collection, which relies on
the evaluation of OCL queries on an instance of the trace model; iv) three publicly-available tools:
1) TEMPSY-CHECK and 2) TEMPSY-REPORT, implementing, respectively, the trace checking and
violation information collection procedures; 3) an interactive visualization tool for navigating and an-
alyzing the violation information collected by TEMPSY-REPORT; v) an evaluation of the scalability
of TEMPSY-CHECK and TEMPSY-REPORT, when applied to the verification of real properties.

The proposed approaches have been applied to and evaluated on a case study developed in col-
laboration with a public service organization, active in the domain of business process modeling for
eGovernment. The experimental results show that TEMPSY-CHECK is able to analyze traces with one
million events in about two seconds, and TEMPSY-REPORT can collect violation information from
such large traces in less than ten seconds; both tools scale linearly with respect to the length of the
trace.

i





Acknowledgements

This thesis is the culmination of four years of my research at the Software Verification and Validation
lab. I would like to express my gratitude to these people who helped me with my work and my life
during this journey.

I would like to first thank my supervisor Prof. Dr.-Ing. Lionel Briand for his continuous support
of my research, for his vision, motivation, and immense knowledge. I would also like to thank my
co-supervisor Dr. Domenico Bianculli for his unceasing advice on my research and his assistance for
writing high-quality research papers. Without their guidance, I would not have enjoyed and finished
my research.

I would like to thank our public service partner CTIE for supporting my research and providing
time, data, and feedback for the evaluation of my research.

I would like to express my gratitude to the other committee members: Dr. Radu State, Dr.
Mehrdad Sabetzadeh, Prof. Dr.-Ing. Cesare Pautasso, and Prof Dr.-Ing. Carlo Alberto Furia, for
their valuable time and remarks on my work.

My thanks also go to my officemates: Ameni Ben Fadhel, Ines Hajri, Salma Messaoudi, Bing
Liu, Ha Thanh Le, Sadeeq Jan, and Julian Thome, who often supported me and made a pleasant work
environment. I would also like to thank Chetan Arora and Ashkan Kalantari, for their generous help,
in particular at the beginning of my life in Luxembourg.

Finally, I want to express my gratitude to my loved mother, father, and sister for their endless
support and encouragement from far away.

iii





Contents

Contents v

List of Figures ix

List of Tables xi

Acronyms xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The TemPsy Language 9
2.1 Background: Property Specification Patterns . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Definition of TemPsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Eliciting the requirements of the language . . . . . . . . . . . . . . . . . . . 11
2.2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 TemPsy at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Events and Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Temporal expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Applying TemPsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Business process models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Requirement specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Adoption of TemPsy by our partner . . . . . . . . . . . . . . . . . . . . . . . 27

3 Model-driven Offline Trace Checking of Temporal Properties 31
3.1 Conceptual Model for Execution Traces . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 OCL Functions for Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



Contents

3.3.1 Before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 After . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Between-and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 After-until . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 OCL Functions for Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Absence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.5 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 The Approach at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7.2 Properties using the globally scope . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.2.2 Trace generation strategy . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.3 Properties using the before/after scope . . . . . . . . . . . . . . . . . . . . . 60
3.7.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3.2 Trace generation strategy . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.4 Properties using the between-and scope . . . . . . . . . . . . . . . . . . . . 62
3.7.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.4.2 Trace generation strategy . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.5.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Model-driven Violation Reporting for Trace Checking 69
4.1 Characterization of TemPsy Violations . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 OCL Functions for collecting violation information . . . . . . . . . . . . . . . . . . 73

4.3.1 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Absence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.5 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Visualizing Violation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6.2 Trace Generation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



Contents

4.6.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.4.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Related Work 101
5.1 MDE Approaches for Specifying Temporal Properties . . . . . . . . . . . . . . . . 101

5.1.1 Pattern-based temporal extensions of OCL . . . . . . . . . . . . . . . . . . . 101
5.1.2 Other temporal extensions of OCL . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Trace Checking and Run-time Verification . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Violation Reporting for Trace Checking . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions and Future Work 107
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 109

A Tool Support 115

vii





List of Figures

2.1 Scopes in the catalogue of property specification patterns in [Dwyer et al., 1999] . . . . . 11
2.2 Syntax of TemPsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 An event trace on which to evaluate the properties described in Section 2.2.4; events are

above the line, timestamps below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 A sample trace for the description of scopes . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Examples of TemPsy scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Example trace for illustrating the precedence and response patterns . . . . . . . . . . . . 17
2.7 Conceptual model of the ICM business process . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Activity diagrams of three fragments of the ICM business process . . . . . . . . . . . . 24
2.9 Example of the graphical notation for TemPsy . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Conceptual model for execution traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Overview of the approach to offline trace checking of TemPsy properties . . . . . . . . . 33
3.3 OCL invariant for checking TemPsy properties on a trace . . . . . . . . . . . . . . . . . 34
3.4 An event trace on which to evaluate the property described in Section 3.5; events are

above the line, timestamps below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Comparison between the execution time of TEMPSY-CHECK and of MONPOLY for prop-

erties with the globally scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Trace loading time of TEMPSY-CHECK for traces with various lengths . . . . . . . . . . 60
3.7 Comparison of the execution time for the batch checking of ten properties with the glob-

ally scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Scope time and pattern time of TEMPSY-CHECK for checking properties with a before

scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Scope time and pattern time of TEMPSY-CHECK for checking properties with an after

scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 Scope time and pattern time of TEMPSY-CHECK for checking properties with a between-

and scope (multiple segments, fixed length) . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11 Scope time and pattern time of TEMPSY-CHECK for checking properties with a between-

and scope (fixed number of segments, various lengths) . . . . . . . . . . . . . . . . . . 64
3.12 Scope time and pattern time of TEMPSY-CHECK for checking properties with a between-

and scope (single segment of fixed length, different positions) . . . . . . . . . . . . . . 65
3.13 Scope time and pattern time of TEMPSY-CHECK for checking properties with a between-

and scope (single segment, various lengths) . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Overview of the approach to violation information collection . . . . . . . . . . . . . . . 72

ix



List of Figures

4.2 The template for OCL queries on a trace for collecting violation information with respect
to TemPsy expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Screenshot of our visualization tool for understanding TemPsy violations . . . . . . . . . 94
4.4 Execution time of TEMPSY-REPORT for collecting violation information from faulty

traces (fixed number of violations, various lengths) . . . . . . . . . . . . . . . . . . . . 98
4.5 Execution time of TEMPSY-REPORT for collecting violation information from faulty

traces (various numbers of violations, fixed length) . . . . . . . . . . . . . . . . . . . . 98

A.1 TemPsy editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Checking TemPsy expressions on an execution trace . . . . . . . . . . . . . . . . . . . . 116

(a) Selecting TemPsy expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 116
(b) Loading an execution trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Checking results of TEMPSY-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.4 Presentation of violation information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

(a) Excerpt of the textual output . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
(b) Excerpt of the graphical output . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



List of Tables

2.1 Distribution of requirements from the ICM business process in terms of the combination
of scopes and patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 TemPsy properties used for the evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Violation types of the existence pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Mapping between the requirements and the functionality of the target visualization tool . 93
4.3 TemPsy properties used for the evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Comparison between pattern-based temporal extensions of OCL and TemPsy . . . . . . . 101
5.2 The state of the art of violation reporting for offline trace checking of temporal properties 104

xi





Acronyms

BPMN Business Process Model and Notation

CSV Comma Separated Values

CTIE Centre des technologies de l’information de l’Etat; Luxembourg national center for informa-
tion technology

CTL Computation Tree Logic

DSL Domain-Specific Language

EMF Eclipse Modeling Framework

LTL Linear Temporal Logic

MDE Model-Driven Engineering

MTL Metric Temporal Logic

OCL Object Constraint Language

OMG Object Management Group

UML Unified Modeling Language

XMI XML Metadata Interchange

xiii





Chapter 1

Introduction

1.1 Motivation
Modern enterprise information systems are often designed and built using the principles and technolo-
gies of business process modeling, based on business process languages like Business Process Model
and Notation (BPMN) [OMG, 2011a]. Recently, the design and implementation of business processes
have started leveraging Model-Driven Engineering (MDE) methodologies [Brambilla et al., 2010] and
code generation techniques. For example, our public service partner CTIE (Centre des technologies
de l’information de l’Etat; Luxembourg national center for information technology1), from which we
draw the main motivation of this thesis and our case study, has developed in-house a model-driven
methodology for designing eGovernment business processes.

These business processes are usually very complex and are realized as compositions of services
provided by different administrations, and third-party suppliers. They act as the “glue” to orchestrate
different information systems, possibly by many different organizations, in an effort to foster coop-
eration of various administrations. Designing and operating effective and efficient processes to drive
e-service delivery is one of the most challenging tasks for public administrations. The correct enact-
ment of business processes is of utmost importance to guarantee reliable digital solutions to citizens
and enterprises, as well as to foster an effective cooperation of the various public administrations in a
state.

From a more general standpoint, in information systems, the correct enactment of a business
process can be ensured [Baresi et al., 2007] by:

1) precisely specifying its requirements;

2) using a verification technique to check the compliance of the business process with respect to its
requirements;

3) reporting useful and clear information when a verification procedure finds a violation of the busi-
ness process requirements.
1www.ctie.public.lu.

1

www.ctie.public.lu


Chapter 1. Introduction

Regarding the specification of requirements of business processes, the analysis of the requirements
of various applications developed as business processes by our partner revealed that the majority
of these requirements could be expressed as temporal properties, enriched with timing information.
Temporal properties are qualitative about the occurrence of an event or the order in which multiple
events should occur. For example, the requirement “If a card has been registered as lost, a new
card should be produced and issued” specifies the order in which the events should occur one after
another. In addition to temporal properties, timing information are quantitative about exact time
or time distance. For example, the requirement “A new card should be produced at least two days
before its issuance” specifies the time distance between two sequential events. Temporal and timing
properties have been widely studied in the context of concurrent, real-time critical systems [Dwyer
et al., 1999] and, more recently, also in other domains like service-based applications [Bianculli et al.,
2012, Li et al., 2005, Simmonds et al., 2009, Kallel et al., 2009] and automotive [Post et al., 2012].
There have been several proposals to formally specify these properties; many of these proposals
rely on some temporal logic, either the classic Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL), or more specialized versions like SOLOIST [Bianculli et al., 2013], MFOTL [Basin
et al., 2008], CTL-FO+ [Hallé et al., 2009]). However, these specification approaches require strong
theoretical and mathematical background, which are rarely found among practitioners.

To partially mitigate this problem, researchers have proposed catalogues of property specification
patterns [Autili et al., 2015, Bianculli et al., 2012, Gruhn and Laue, 2006, Konrad and Cheng, 2005,
Dwyer et al., 1999], which collect generalized, proven solutions for expressing recurrent, common
types of specifications. In some cases, catalogues include a restricted natural language grammar front-
end to express the patterns, and a mapping of the semantics of (restricted) natural language constructs
to temporal logic formalisms; this mapping can be automated with tools like PSPWizard [Lumpe
et al., 2011].

From the MDE side of specification languages there are Object Constraint Language (OCL) [OMG,
2012] and the Unified Modeling Language (UML) profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) [OMG, 2011b]. Although also based on mathematical founda-
tions such as first-order logic and set theory, OCL includes many helper functions—to keep the
constraints compact—and navigation expressions that reflect the structure of class diagrams (con-
ceptual models)—to help with writing expressions that look more alike to program code. These
features made OCL the de-facto constraints specification language in MDE practice and an interna-
tional standard [OMG, 2012], which is supported by mature constraint checking technology, such
as the constraint/query evaluator included in Eclipse OCL [Eclipse, 2015a]. However, OCL does
not support natively the specification of temporal constraints in an intuitive fashion. To overcome
this limitation, several temporal extensions of OCL have been proposed in the literature [Conrad
and Turowski, 2001, Lavazza et al., 2003, Ziemann and Gogolla, 2003, Bill et al., 2014, Flake and
Mueller, 2004, Soden and Eichler, 2009]; however, these extensions include temporal logic opera-
tors and thus intrinsically inherit the limitations of other specification approaches based on temporal
logic. Other temporal extensions of OCL, such as [Küster-Filipe and Anderson, 2006, Flake and
Müller, 2003, Robinson, 2008, Kanso and Taha, 2014], explicitly support property specification pat-
terns. Nevertheless, these pattern-based temporal extensions of OCL have limited expressiveness. For
example, based on our analysis of a case study in eGovernment systems, none of the current pattern-
based temporal extensions of OCL could support a property like “If the physical information of the
card requester is collected within three days after the second approval notification, the card will be

2



1.2. Research Contribution

produced and then issued to the requester”, which contains a reference to a specific occurrence of an
event (“after the second approval notification . . . ”) as well as an explicit temporal distance from an
event (“. . . within three days. . . ”). MARTE defines foundations for model-based descriptions of real-
time and embedded systems. Though MARTE provides Value Specification Language (VSL) and
clock handling facilities for specifying temporal and timing properties of a system, the specification
language does not support property specification patterns as first-class objects.

As for the second step towards the correct enactment of business processes, the compliance of
a business process with respect to its requirements can be checked with different verification tech-
niques, such as model checking [Fu et al., 2004, Bianculli et al., 2007], run-time monitoring [Sim-
monds et al., 2009, Kallel et al., 2009, Baresi et al., 2009, Raimondi et al., 2008], and offline trace
checking [Bersani et al., 2016]; in this thesis we focus on the latter. Offline trace checking, also called
trace validation [Mrad et al., 2013] or history checking [Felder and Morzenti, 1994], is a procedure
for evaluating requirements (usually specified in a temporal logic) over a log of recorded events pro-
duced by a system. Traces can be produced at run time by a proper monitoring/logging infrastructure,
and made available at the end of a business process execution to perform offline trace checking. Of-
fline trace checking complements verification activities performed before the deployment of a system,
by allowing for the post-mortem analysis of actual behaviors emerged at run time and recorded on
a log. These behaviors include the ones of the business process as well as those derived from the
interaction of the business process with the various third-parties (e.g., other administrations, suppli-
ers) involved in the execution of the process itself. Offline trace checking is thus also a way to check
whether third-party providers fulfill their guarantees and to assess how they interact with the rest of
the parties involved in the business process. The tool support in terms of trace checking of temporal
logic, however, is limited and often based on prototypes that do not scale for industrial applications.

Regarding the capability of reporting, to business analysts and engineers, useful and clear infor-
mation upon discovering a violation of the business process requirements, in this thesis we focus on
how to provide such information after performing offline trace checking. In general, a violation re-
porting procedure can be decomposed into two steps: 1) collecting information about the violations
(e.g., event(s) that triggered the violations) and 2) presentation to the users of this information (either
textually or graphically). State-of-the art tools for offline trace checking provide limited violation
information (e.g., either a simple boolean answer or the event upon which the violation was discov-
ered). However, this information might not be enough, for example because the event upon which
the violation was discovered is not necessarily the event responsible for the violation, or because a
requirement could be violated in different ways (e.g., because of the order of or the time distance
between events). Furthermore, the current tools provide only textual output, which is cumbersome to
navigate when many violations are found in a trace.

1.2 Research Contribution
The goal of this thesis is to present a practical and scalable solution for the offline checking of the
temporal requirements of a business process, which is expected to be advantageous in contexts where
the following requirements hold:

R1) when analysts do not have adequate skills to make use of temporal logic, an alternative domain-

3



Chapter 1. Introduction

specific language should be provided to facilitate the specification of business process require-
ments;

R2) to be viable in the long term, any solution shall rely on standard and stable MDE technology for
checking the compliance of a business process to the application requirements;

R3) any solution shall be scalable, such that a trace with millions of events could be processed within
seconds;

R4) if a trace is found violating some of its requirements, any solution should provide useful and
clear information to understand how the requirements are violated.

This goal is motivated by specific requirements from our partner in the context of business process
models for eGovernment systems. Nevertheless, we believe, based on experience, that these require-
ments can be generalized to other contexts in which analysts cannot handle the mathematical back-
ground required by temporal logic and solutions have to be engineered by using MDE technologies
already in place in the targeted development environment.

To achieve the above objectives, the thesis will make the following contributions:

i) the TemPsy (Temporal Properties made easy) language, a pattern-based domain-specific language
for the specification of temporal properties;

ii) a model-driven trace checking procedure, which relies on a mapping — optimized to minimize
the execution time — of temporal requirements written in TemPsy into OCL constraints on a
conceptual model of execution traces;

iii) a model-driven approach to violation information collection, which relies on the evaluation of
OCL queries on an instance of the trace model;

iv) three publicly-available tools: 1) TEMPSY-CHECK and 2) TEMPSY-REPORT, implementing,
respectively, the trace checking and violation information collection procedures; 3) an interactive
visualization tool for navigating and analyzing the violation information collected by TEMPSY-
REPORT;

v) an evaluation of the scalability of TEMPSY-CHECK and TEMPSY-REPORT, when applied to the
verification of real properties derived from a case study of our public service partner.

TemPsy is a domain-specific language for the specification of temporal properties based on the
catalogue of property specification patterns defined by Dwyer et al. [Dwyer et al., 1999] (with some
extensions). To fulfill requirement R1 above, based on the discussions with our partner business ana-
lysts, we decided that the language should have the following features: be as close to natural language
as possible, make no use of mathematical constructs, and support the commonly understood concepts
used in the specification of requirements in the domain of business process modeling. Regarding the
latter feature, we analyzed the requirements specifications of our industrial case study, to understand
the type of specifications written (in natural language) by business analysts and to characterize them
in terms of the property specification patterns in [Dwyer et al., 1999] (with some extensions). The

4



1.2. Research Contribution

relevant concepts and patterns found through this analysis drove the design of TemPsy, which resulted
in a language sporting a syntax close to natural language, with all the constructs required to express
the property specification patterns found in our case study, and a precise semantics expressed in terms
of linear temporal traces. By design, TemPsy does not aim at being as expressive as a full-fledged
temporal logic. Instead, its goal is to make as easy as possible the specification of the temporal re-
quirements of business processes, by supporting—in an intuitive way—only the constructs needed
to express temporal requirements commonly found in business process applications. TemPsy has
received positive feedback from our partner, which has deemed it as suitable communication mech-
anism to express the requirements specifications of business processes. Our partner has integrated
TemPsy into the SoftwareAG ARIS modeling tool [Software AG, 2014], and its analysts have started
using it to annotate business process models with TemPsy specifications. In this thesis, we show the
application of TemPsy for the specification of an excerpt of a business process extracted from the case
study developed with our partner.

Both the procedures for offline trace checking and violation information collection fulfill require-
ment R2 above since they follow a model-driven approach, based on industry-strength OCL tools.
More specifically, the two procedures rely on a generic conceptual model of system execution traces:
the offline trace checking procedure leverages a mapping of TemPsy properties into OCL constraints
defined over this trace model, while the violation information collection procedure uses various OCL
queries defined on the same trace model to analyze violations. The mappings are supported by two
different sets of auxiliary OCL functions and optimized based on the structure of the targeted TemPsy
property, in order to achieve better performance. In the thesis, we show how the problems of check-
ing a TemPsy property over a trace and collecting TemPsy violation information from a trace are
respectively reduced to the evaluation of semantically-equivalent OCL constraints and queries on the
corresponding instance of the trace model.

To show the fulfillment of requirement R3 above, we have conducted an extensive evaluation
of the scalability of the two model-driven procedures. For the offline trace checking procedure, we
assessed the relationship among the checking time, the structural properties of a trace (e.g., length,
distribution of events), and the type of property to check. We evaluated the scalability of our TEMPSY-
CHECK tool on 38 properties extracted from our case study, on traces with length ranging from 100K
to 1M. We have also compared the performance of TEMPSY-CHECK with a state-of-the-art alternative
technology, selected from the participants to the “offline monitoring” track of the first international
Competition on Software for Runtime Verification [Bartocci et al., 2014] (CSRV 2014). The exper-
imental results show that TEMPSY-CHECK can analyze very large traces (with one million events)
in about two seconds and that it scales linearly with respect to the length of the trace to check. The
results also show that TEMPSY-CHECK compares favorably with the state of the art. For the violation
information collection procedure, we assessed the relationship among the execution time, the num-
ber of violations, the violation type, the structural properties of a trace (e.g., length, distribution of
violations and events), and the type of property. The results show that TEMPSY-REPORT is able to
collect violation information from large traces (with one million events) in less than ten seconds. The
TEMPSY-REPORT tool scales linearly with respect to the length of the trace and keeps approximately
constant performance as the number of violations increases.

TEMPSY-CHECK and TEMPSY-REPORT have been implemented and are publicly available with
the artifacts used in the evaluation at http://weidou.github.io/TemPsy-Check and http:

5

http://weidou.github.io/TemPsy-Check
http://weidou.github.io/TemPsy-Report
http://weidou.github.io/TemPsy-Report


Chapter 1. Introduction

//weidou.github.io/TemPsy-Report respectively.

To fulfill R4, we have developed an interactive visualization tool, which is publicly available
at http://weidou.github.io/TemPsy-Violation-Visualization), to present the
violation information collected by TEMPSY-REPORT in a graphical way, for a better understanding
of the violations.

1.3 Dissemination
The research work we performed during the PhD program has lead to the following publications:

Published papers

• Dou, W., Bianculli, D., and Briand, L. (2014b). OCLR: a more expressive, pattern-based tem-
poral extension of OCL. In Proc. ECMFA 2014, volume 8569 of LNCS, pages 51–66. Springer

This paper is the basis for Chapter 2. It presents an early version of the TemPsy language.

• Dou, W., Bianculli, D., and Briand, L. (2014c). Revisiting model-driven engineering for run-
time verification of business processes. In Proc. SAM 2014, volume 8769 of LNCS, pages
190–197. Springer

This paper describes our long-term vision and presents the research roadmap for adopting MDE
techniques in the context of run-time verification of business processes. The roadmap guided
our research for the development of the TemPsy language and of the offline trace checking
procedure.

Unpublished report

• Dou, W., Bianculli, D., and Briand, L. (2014a). A model-based approach to offline trace check-
ing of temporal properties with OCL. Technical Report TR-SnT-2014-5, SnT Centre - Univer-
sity of Luxembourg

This report is the basis for Chapter 3. It presents TEMPSY-CHECK and an evaluation of its
scalability.

1.4 Organization of the Dissertation
The rest of the thesis is structured as follows. Chapter 2 describes the syntax, informal and formal
semantics of the TemPsy language. An application of TemPsy is shown in a case study in the domain
of eGovernment. In Chapter 3, we present TEMPSY-CHECK, the model-driven procedure for offline
trace checking of TemPsy properties and the evaluation of the scalability of the TEMPSY-CHECK

tool. Chapter 4 presents TEMPSY-REPORT, the model-driven procedure for collecting violation in-
formation, and the visualization tool designed for understanding the violations collected by TEMPSY-
REPORT; the chapter also reports on the evaluation of the scalability of the TEMPSY-REPORT tool.

6

http://weidou.github.io/TemPsy-Report
http://weidou.github.io/TemPsy-Report
http://weidou.github.io/TemPsy-Violation-Visualization


1.4. Organization of the Dissertation

Chapter 5 discusses related work. Chapter 6 concludes the thesis, providing directions for future
work.

7





Chapter 2

The TemPsy Language

As discussed in Chapter 1, the ultimate goal of this thesis is to present a practical and scalable solution
for the offline checking of the temporal requirements of a system with respect to a business process
model, motivated by real and specific requirements in eGovernment systems. In this section we
present the first step to achieve this goal, which is represented by the definition of the TemPsy language
for the specification of temporal requirements of business processes, which will then be checked on
an execution trace using the procedure described in Chapter 3.

2.1 Background: Property Specification Patterns
A pattern represents a reusable solution for a recurrent problem [Alexander et al., 1977]. Though ini-
tially proposed in the context of architecture [Alexander et al., 1977], this concept has been adopted
also in different sub-domains of software engineering, including software design, with design pat-
terns [Gamma et al., 1995], and formal verification, with property specification patterns [Autili et al.,
2015].

Property specification patterns have been initially proposed by Dwyer et al. [Dwyer et al., 1999]
in the late ‘90s in the context of formal verification, as a means to express recurring properties in a
generalized form, which could be formalized in different specification languages, such as temporal
logic. The goal of property specification patterns is to facilitate the writing of formal specifications,
which can then be used with formal verification tools (e.g., model checkers).

Several catalogues of property specification patterns have been proposed in the literature [Grunske,
2008, Bianculli et al., 2012, Gruhn and Laue, 2006, Konrad and Cheng, 2005, Dwyer et al., 1999].
In the rest of this section we provide a brief overview of the catalogue of property specification pat-
terns by Dwyer et al. [Dwyer et al., 1999], which have been included (with some extensions) in the
definition of the TemPsy language.

This catalogue1 contains nine parametrizable patterns, representing high-level abstractions of for-
mal specifications, and five scopes, which indicate the portions of a system execution in which a
certain pattern should hold. In the following, we use the letters W, X, Y, and Z, to denote events or
states of a system execution The five scopes, depicted in Figure 2.1, are:

1A detailed description is available at http://patterns.projects.cis.ksu.edu.

9

http://patterns.projects.cis.ksu.edu


Chapter 2. The TemPsy Language

Globally. This scope corresponds to the entire system execution (i.e., the entire trace).

Before. It identifies a portion of a trace up to a certain boundary.

After. It identifies a portion of a trace starting from a certain boundary.

Between-And. It identifies portion(s) of a trace delimited by two boundaries.

After-Until. This scope is similar to Between-and, with the difference that each identified seg-
ment extends to the right in case the event defined by the second boundary does not occur.

The nine patterns are:

Absence. It describes a portion of a system’s execution that is free of certain events or states, as
in “it is never the case that X holds”.

Universality. It describes a portion of a system’s execution that contains only states that have a
desired property, as in “it is always the case that X holds”.

Existence. It describes a portion of a system’s execution that contains an instance of certain events
or states, as in “X eventually holds”.

Bounded existence. It describes a portion of a system’s execution that contains at most a speci-
fied number of instances of a designated state transition or event, as in “it is always the case that event
X occurs at most 2 times”.

Precedence. It describes relationships between a pair of events (or states), where the occurrence
of the first is a necessary pre-condition for an occurrence of the second, as in “it is always the case
that if X holds, then Y previously held”.

Response. It describes cause-effect relationships between a pair of events (or states), where an
occurrence of the first must be followed by an occurrence of the second, as in “it is always the case
that if X holds, then Y eventually holds”.

Response chains. It is a generalization of the response pattern, as it describes relationships be-
tween sequences of individual states (or events), as in “it is always the case that if W holds, and is
succeeded by X, then Z eventually holds after Y”.

Precedence chains. It is a generalization of the precedence pattern, as it describes relationships
between sequences of individual states (or events), as in “it is always the case that if X holds, then Y
previously held and was preceded by X”.

Constrained chain patterns. It describes a variant of response and precedence chain patterns
that restricts user specified events from occurring between pairs of states (or events) in the chain
sequences. This pattern has not been included in the definition of TemPsy.

Absence, Universality, Existence and Bounded Existence belong to the Occurrence category,
while Precedence, Response, and Chains belong to the Order category.

10



2.2. Definition of TemPsy

X Y Y X X Y X
Global
Before X
After X
Between X and Y
After X until Y

Figure 2.1: Scopes in the catalogue of property specification patterns in [Dwyer et al., 1999]

2.2 Definition of TemPsy

2.2.1 Eliciting the requirements of the language
The design of TemPsy has been driven by the analysis of the requirements of various applications
developed as business processes by CTIE. We analyzed several applications and scrutinized the re-
quirements specifications associated with all use cases and business process descriptions.

This analysis revealed that the vast majority of these requirements could be expressed as temporal
properties, enriched with timing information. More specifically, we were able to recast most of spec-
ifications written in natural language using the system of property specification patterns of Dwyer
et al. [Dwyer et al., 1999]. In some cases, we extended the original definitions proposed in [Dwyer
et al., 1999] to match the specifications. For example, we extended the definitions of scopes to support
references to a specific occurrence of an event (not only the first one as in [Dwyer et al., 1999]), as
in the requirement “event A shall occur before the second occurrence of event X”. Another variant
of this type of scope boundary that we found is the one with requirements on the distance between
events, such as “event A shall occur five time units before the second occurrence of event X”. In
other cases, the requirements specifications had to be expressed in terms of some real-time specifica-
tion patterns [Konrad and Cheng, 2005, Gruhn and Laue, 2006], which quantitatively define distance
among events and durations of events.

2.2.2 Design
The analysis of the requirements specifications mentioned above made us ponder over the design of
the specification language for expressing them.

The intrinsic temporal nature of the requirements specifications we found, including also con-
straints on the distance between events, could have suggested to follow the direction of building on
some (metric) temporal logic. However, this decision would have not allowed us to fulfill requirement
R1 (see Chapter 1). One of the motivations behind this requirement is that specification languages
based on temporal logic require a certain mathematical knowledge that is not common among practi-
tioners.

Another design option would have been to consider the specification languages defined in the
MDE community, namely temporal extensions of OCL, such as [Conrad and Turowski, 2001, Lavazza
et al., 2003, Ziemann and Gogolla, 2003, Bill et al., 2014, Flake and Mueller, 2004, Küster-Filipe and
Anderson, 2006, Soden and Eichler, 2009, Flake and Müller, 2003, Robinson, 2008, Kanso and Taha,
2014]. However, these temporal extensions either include temporal logic operators—thus intrinsically
inheriting the limitations of other specification approaches based on temporal logic, and not fulfilling

11



Chapter 2. The TemPsy Language

requirement R1—or are pattern-based but have limited expressiveness. For example, none of the
pattern-based OCL temporal extensions can express a property like “If the physical information of
the card requester is collected within three days after the second approval notification, the card will
be produced and then issued to the requester”, which contains a reference to a specific occurrence of
an event in a scope boundary, as well as an explicit temporal distance from the scope boundary event.

Based on the discussions with business analysts, and keeping in mind the goal of fulfilling require-
ment R1 above, we decided that TemPsy should have the following features: be as close to natural
language as possible, make no use of mathematical constructs, and support the commonly-understood
concepts (i.e., property specification patterns) used in the specification of requirements in the domain
of business process modeling.

We designed TemPsy as a language sporting a syntax close to natural language, with all the con-
structs required to express the property specification patterns found in the business process applica-
tions developed by our partner, and a precise semantics expressed in terms of linear temporal traces.
TemPsy supports all the patterns and scopes defined in [Dwyer et al., 1999], with the following exten-
sions:

• The possibility, in the definition of a scope boundary, to refer to a specific occurrence of an
event, as in “before the second occurrence of event X . . . ”. In the original definition of the
pattern systems, boundaries of scopes refer implicitly to the first occurrence of an event.

• The possibility to indicate a time distance with respect to a scope boundary, as in “at least two
time units before the n-th occurrence of event X . . . ”.

• Support for expressing time distance between events occurrences in the precedence and re-
sponse patterns as well as in their chain versions, for expressing properties such as “event B
should occur in response to event A within 2 time units”.

• Additional variants for the bounded existence and absence patterns.

2.2.3 Syntax
The syntax of TemPsy is shown in Figure 2.2: non-terminals are enclosed in angle brackets, terminals
are enclosed in single quotes, optional elements are enclosed in brackets, the character ‘+’ indicates
one or more occurrences of an element, the character ‘*’ indicates zero or more occurrences of an
element.

A 〈TemPsyBlock〉 comprises a set of conjuncted 〈TemPsyExpression〉s. Each TemPsy expression
starts with an optional ‘temporal’ keyword plus an alphanumeric identifier, followed by a 〈Scope〉
and a 〈Pattern〉. The keywords indicating the five 〈Scope〉s identify univocally the corresponding
scopes from [Dwyer et al., 1999] (see Section 2.1). As for the 〈Pattern〉s, ‘always’ corresponds to
universality, ‘eventually’ to existence, ‘never’ to absence, ‘preceding’ to precedence and
precedence chain, ‘responding’ to response and response chain.

The definitions of 〈Scope〉s and 〈Pattern〉s refer to the concept of 〈Event〉. We assume that an
〈Event〉 is represented by an alphanumeric string, to match the event strings logged in the execu-
tion trace on which the properties specified in TemPsy are meant to be checked. 〈Scope〉s contain

12



2.2. Definition of TemPsy

〈TemPsyBlock〉 ::= 〈TemPsyExpression〉+

〈TemPsyExpression〉 ::= [‘temporal’ 〈Id〉 ‘:’]
〈Scope〉 〈Pattern〉

〈Scope〉 ::= ‘globally’
| ‘before’ 〈Boundary1〉
| ‘after’ 〈Boundary1〉
| ‘between’ 〈Boundary2〉

‘and’ 〈Boundary2〉
| ‘after’ 〈Boundary2〉

‘until’ 〈Boundary2〉

〈Pattern〉 ::= ‘always’ 〈Event〉
| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈Int〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’

[〈TimeDistanceExp〉] 〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’

[〈TimeDistanceExp〉] 〈EventChainExp〉

〈Boundary1〉 ::= [〈Int〉] 〈Event〉 [〈TimeDistanceExp〉]

〈Boundary2〉 ::= [〈Int〉] 〈Event〉 [‘at least’ 〈Int〉 ‘tu’]

〈EventChainExp〉 ::= 〈Event〉
(‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*

〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈Int〉 ‘tu’

〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈Int〉] 〈Event〉

〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’

〈Event〉 ::= 〈Id〉

〈Id〉 ::= 〈IdStartChar〉 〈IdChar〉*
| 〈Id〉 (〈IdConnector〉 〈Id〉)*

〈IdStartChar〉 ::= [A-Z] | ‘_’ | [a-z]

〈IdChar〉 ::= 〈IdStartChar〉 | [0-9]

〈IdConnector〉 ::= ‘.’ | ‘::’

〈Int〉 ::= [1-9] ([0-9])*

Figure 2.2: Syntax of TemPsy

boundaries (expressed with 〈Boundary1〉 or 〈Boundary2〉) that denote a specific occurrence of an
event as a boundary, possibly with a time distance; notice that 〈Boundary2〉 represents a syntactic
restriction of 〈Boundary1〉. Chains of events, used in precedence and response patterns, are defined
as 〈EventChainExp〉, which denotes a comma-separated list of events, possibly with a time distance
(〈TimeDistanceExp〉) between each pair of events (denoted with the ‘#‘ symbol). Time distances are
expressed with an integer value, followed by the ‘tu’ keyword, which represents a generic time unit2

2The current version of TemPsy supports only one (generic) time unit. We refer the reader to [Furia et al., 2012,
Section 9.6], for an approach to combine different time units within the same set of requirements.

13



Chapter 2. The TemPsy Language

X
2

A
6

B
10

Y
16

Y
20

X
22

X
26

C
30

C
34

Y
38

X
40

Figure 2.3: An event trace on which to evaluate the properties described in Section 2.2.4; events are
above the line, timestamps below

(i.e., any denomination of time).

2.2.4 TemPsy at Work
We now present some examples of properties that can be expressed with TemPsy, in order to provide
the reader with a high-level, intuitive understanding of the language. We consider the execution trace
shown in Figure 2.3 and for each property3 indicate whether it is violated or not by the trace. First,
we define the properties in English:

p1) “Event C shall happen 8 time units after the second occurrence of event X .” (satisfied)

p2) “Event A shall happen within 30 time units after the first occurrence of event X .” (satisfied)

p3) “Event C shall eventually happen after at least 3 time units since the first occurrence of event X ;
and it shall happen before event Y if the latter happens.” (violated because event C occurs after
event Y )

p4) “After the second occurrence of event X , event C shall eventually happen exactly twice.” (satis-
fied)

p5) “Event C shall happen at least once between every first occurrence of event X and the next event
Y ; the time interval between event X and the first occurrence of event C shall be at least 5 time
units.” (violated because event C does not occur between the first segment delimited by event X
on the left and event Y on the right)

p6) “Event B shall happen at least 3 time units before the first occurrence of event Y .” (satisfied)

p7) “Before the first occurrence of event Y , once event X occurs, event A shall happen followed by
event B; the time interval between X and A shall be at least 3 time units.” (satisfied)

The corresponding TemPsy expressions are shown below:

• temporal p1: after 2 X exactly 8 tu eventually C

• temporal p2: after X at most 30 tu eventually A

• temporal p3: after 1 X at least 3 tu until Y eventually C

• temporal p4: after 2 X eventually exactly 2 C
3These properties are given as an example and should be considered individually, rather than together as a set; they

do not correspond to the specification of a real system.

14



2.3. Informal Semantics

X Y Y X X Y X

Figure 2.4: A sample trace for the description of scopes

• temporal p5: between X at least 5 tu and Y eventually at least
1 C

• temporal p6: before Y at least 3 tu eventually B

• temporal p7: before Y A, B responding at least 3 tu X

2.3 Informal Semantics
In this section we present the informal semantics of the scopes and the patterns supported in TemPsy
expressions; they correspond to non-terminals 〈Scope〉 and 〈Pattern〉, respectively. In the following,
symbols A,B,C,D,X ,Y,Z represent strings that can be derived from non-terminal 〈Event〉; ‘m’, ‘m1’,
‘m2’, ‘n’, ‘n1’, and ‘n2’ are integers derived from the non-terminal 〈Int〉; ‘tu’ stands for “time
unit(s)”. The complete definition of the formal semantics of TemPsy can be found in Section 2.4.

2.3.1 Scopes
For the description of scopes, we refer to the trace of events depicted in Figure 2.4; to avoid clutter-
ing, the figure does not show the events not used in the explanations. We use symbols X and Y as
shorthands for events that can be derived from the non-terminal 〈Event〉.

Globally. This scope corresponds to the entire trace shown in Figure 2.4.

Before. The general template for this scope in TemPsy is “before [m] X [〈ComparingOp〉 n
tu]”; it can be expanded in four forms: 1) “before X”, 2) “before X 〈ComparingOp〉 n tu”,
3) “before m X”, 4) “before m X 〈ComparingOp〉 n tu”. The first two forms are convenient
shorthands for the third and fourth ones, respectively, with m= 1. The form “before m X” selects
the portion of the trace up to the m-th occurrence of event X ; see, for example, the top row in Fig-
ure 2.5a, where the interval from the origin of the trace up to the third occurrence of X is highlighted
with a thick line. The form “before m X 〈ComparingOp〉 n tu” has three variants, depending on
the possible expansions of non-terminal 〈ComparingOp〉:

• “before m X at least n tu” identifies the scope from the origin of the trace up to n time
units before the m-th occurrence of X ;

• “before m X at most n tu” identifies the scope starting at n time units before the m-th
occurrence of X and bounded to the right by the m-th occurrence of X ;

• “before m X exactly n tu” pinpoints the time instant at n time units before the m-th
occurrence of X .

15



Chapter 2. The TemPsy Language

Examples of the first two variants of scopes are shown with thick segments in the second and third
rows of Figure 2.5a; for the last variant, see the last row of Figure 2.5a, where the time instant selected
by the scope is enclosed with a circle. In all examples, we have m=3 and n=2.

After. It has a dual semantics with respect to the before scope. We provide an intuition of its
semantics using Figure 2.5b.

Between-And. The general template for this scope in TemPsy is “between [m1] X [at least
n1 tu] and [m2] Y [at least n2 tu]”; it can be expanded in four forms:

• “between m1 X [at least n1 tu] and m2 Y [at least n2 tu]”;

• “between X [at least n1 tu] and m2 Y [at least n2 tu]”;

• “between m1 X [at least n1 tu] and Y [at least n2 tu]”;

• “between X [at least n1 tu] and Y [at least n2 tu]”.

The first form is the most general: it selects the single segment of the trace delimited by the m1-th
occurrence of event X and the m2-th occurrence of event Y happening after the m1-th occurrence of
X . The second and third forms are shorthands for the first one, with m1=1 and m2=1, respectively.
The fourth form is the closest to the original definition in [Dwyer et al., 1999], since it selects all
the segments in the trace delimited by the boundaries. In this regard, notice the difference with
respect to the expression “between 1 X and 1 Y ”, which selects the segment delimited by the
first occurrence of X and the first occurrence of Y after X . In all forms it is possible to use the
expression at least n tu when defining boundaries, with the same meaning described for the
scope before. Four examples of the Between-and scope are shown in Figure 2.5c.

After-Until. This scope is similar to Between-and, with the difference that each identified seg-
ment extends to the right in case the event defined by the second boundary does not occur; this
peculiarity can be noticed in the first two rows of Figure 2.5d (also by comparing them with the
corresponding ones in Figure 2.5c), as well as in the last row.

Note that all scopes are open on the bounds delimited by the boundary events themselves, i.e., in
general4, the before scope is closed on the left bound and open on the right bound; the after scope is
open on the left bound, and closed on the right bound; the between-and scope is open on both bounds;
the after-until scope is open on both bounds when the right boundary event occurs, or is open on the
left and closed on the right when the right boundary event does not occur.

2.3.2 Patterns
TemPsy supports eight of the nine patterns defined in [Dwyer et al., 1999]. Their semantics has been
already briefly explained in Section 2.1; below we only highlight the semantics for the patterns that
have been extended upon inclusion in TemPsy.

4The scopes that contain constraints on time distance from the boundary events (with “at least” and “exactly”)
are closed on the bounds

16



2.3. Informal Semantics

2 tu

X Y Y X X Y X
before 3 X
before 3 X at least 2 tu
before 3 X at most 2 tu
before 3 X exactly 2 tu

(a) Scope: before

2 tu

X Y Y X X Y X
after 3 X
after 3 X at least 2 tu
after 3 X at most 2 tu
after 3 X exactly 2 tu

(b) Scope: after

2 tu 2 tu

2 tu

2 tu 2 tu

X Y Y X X Y X
between X and Y

between X and Y at least 2 tu

between 1 X at least 2 tu and 2 Y

between 2 X at least 2 tu and 1 Y at least 2 tu

(c) Scope: between-and

2 tu 2 tu

2 tu

2 tu 2 tu

X Y Y X X Y X
after X until Y

after X until Y at least 2 tu

after 1 X at least 2 tu until 2 Y

after 2 X at least 2 tu until 1 Y at least 2 tu

after 2 X until 1 Z

(d) Scope: after-until

Figure 2.5: Examples of TemPsy scopes

A B C D

4 tu 6 tu 4 tu

Figure 2.6: Example trace for illustrating the precedence and response patterns

Existence. This pattern comes in four forms:

• “eventually A” indicates that event A will eventually happen at least once;

• “eventually at least m A” indicates that event A will eventually happen at least m
times;

• “eventually at most m A” indicates that event A will eventually happen at most m times;.

17



Chapter 2. The TemPsy Language

• “eventually exactly m A” indicates that event A will eventually happen exactly m times.

The last three forms are variants of the bounded existence pattern, a subclass [Autili et al., 2015] of
the existence one.

Absence. In addition to stating that a certain event never occurs in the given scope, TemPsy makes
also possible to specify that a specific number of occurrences of the same event should not happen, as
in “never exactly 2 X”, which indicates that X should never occur exactly twice.

Precedence. This pattern (also available in the variant called precedence chain) indicates the
precondition relationship between a pair of events (respectively, the two blocks of a chain) in which
the occurrence of the second event (respectively, block) depends on the occurrence of the first event
(respectively, block). Based on this original definition, we added support for timing information to
enable expressing the time distance between two adjacent events. The semantics can be explained
using the following example and the event trace in Figure 2.6; the expression “A preceding at
most 10 tu B, #at least 5 tu C” indicates that the event A is the precondition of the block
“B followed by C”, that the time distance between A and B should be at most 10 time units, and the
time distance (expressed using the # symbol) between events B and C should be at least 5 time units.
Here, A (left-hand side of ‘preceding’) represents the first block of the chain, while the expression
“B, #at least 5 tuC” represents the second block (right-hand side of ‘preceding’).

Response. This pattern (also available in the variant called response chain) specifies the cause-
effect relationship between a pair of events (respectively, the two blocks of a chain) in which the
occurrence of the first event (respectively, first block) leads to the occurrence of the second event (re-
spectively, second block). Similarly to the previous pattern, we added support for timing information
to enable expressing the time distance between two adjacent events. The semantics can be explained
using the following example and the event trace in Figure 2.6; the expression “C, D responding
at most 10 tu A, #at least 5 tu B” specifies that two successive events A and B stimulate
the sequential occurrence of C and D, the time interval between A and B should be at least 5 time
units, and the time interval between B (second element of the first block) and C (first element of the
second block) should be at most 10 time units. This property is violated by the example in Figure 2.6,
because the time distance between A and B is only 4 time units.

2.4 Formal Semantics
This section presents the formal semantics of TemPsy, using the concept of temporal linear traces.

2.4.1 Events and Trace
Event. An atomic event e is an element of the set Σ, which contains all the symbolic strings corre-
sponding to operations recorded in a trace or log.

Trace. An n-length trace λ is a finite sequence of atomic events (e0, . . . ,en−1), where e0 is its starting
event and n is the length. The universal set of all the sub-traces of λ is denoted as Λ.

18



2.4. Formal Semantics

We assume that each event in a trace is timestamped and that there is a function τ : N→N, which
returns the timestamp τ(i) at which the event in position i of the trace occurred. The timestamp is a
natural number and represents the absolute value of time with respect to the time unit defined for the
system. Given a trace λ we assume that the sequence of timestamps τ(0),τ(1), . . . ,τ(n−1) is strictly
monotonic, i.e., τ(i)< τ(i+1) for all i, with 0≤ i≤ n−2.

We now introduce some notations used in the rest of the section. Given an n-length trace λ ,

• λ (i) denotes the atomic event at position i in the trace, with 0≤ i≤ n−1;

• td(i, j) denotes the time distance between λ (i) and λ ( j) and is defined as td(i, j)≡ τ( j)−τ(i),
with 0≤ i≤ j ≤ n−1;

• λ (i : j) denotes the sub-trace (also referred to as trace segment) of λ from λ (i) to λ ( j) including
both bounds, with 0≤ i≤ j ≤ n−1.

• #(λ , i, j,e) denotes the number of occurrences of event e in the sub-trace λ (i : j) of λ .

2.4.2 Temporal expressions
In the following definitions, let e,e1,e2 be atomic events; n be the length of a trace; b,d be positive
natural numbers denoting time distances; a,c denote the specific occurrence of a scope boundary
event and range over {0, . . . ,n−1} if defined or be equal to {⊥} if undefined; α,α ′,β ′,γ,θ ,θ ′,η ,η ′

be auxiliary variables ranging over {0, . . . ,n−1}.

Scope. Let s be a scope defined by the non-terminal 〈Scope〉 in the grammar in Figure 2.2. The
semantics of s is to derive a set of sub-traces from an n-length trace λ ∈ Λ, which is defined by the
function φ[s] : Λ→ 2Λ as follows:

globally: φ[globally](λ ) = {λ}
before:

• φ[before a e](λ ) =
{

λ (0 : θ −1) | θ ≥ 1,λ (θ) = e,#(λ ,0,θ ,e) = m
}

• φ[before a e at least b tu](λ ) =
{

λ (0 : θ ′) | λ (θ) = e,θ ′ = max({γ | td(γ,θ)≥ b}),
#(λ ,0,θ ,e) = m

}
• φ[before a e at most b tu](λ ) =

{
λ (θ ′ : θ −1) | λ (θ) = e,θ ′ = max({γ | td(γ,θ)≥ b}),

#(λ ,0,θ ,e) = m
}

• φ[before a e exactly b tu](λ ) =
{

λ (θ ′ : θ ′) | λ (θ) = e,θ ′ = max({γ | td(γ,θ)≥ b}),
#(λ ,0,θ ,e) = m

}
where m =

1, if a =⊥
a, else

after:

19



Chapter 2. The TemPsy Language

• φ[after a e](λ ) =
{

λ (θ +1 : n−1) | θ ≤ n−2,λ (θ) = e,#(λ ,0,θ ,e) = m
}

• φ[after a e at least b tu](λ ) =
{

λ (θ ′ : n−1) | λ (θ) = e,θ ′ = min({γ | td(θ ,γ)≥ b}),
#(λ ,0,θ ,e) = m

}
• φ[after a e at most b tu](λ ) =

{
λ (θ +1 : θ ′) | λ (θ) = e,θ ′ = min({γ | td(θ ,γ)≥ b}),

#(λ ,0,θ ,e) = m
}

• φ[after a e exactly b tu](λ ) =
{

λ (θ ′ : θ ′) | λ (θ) = e,θ ′ = min({γ | td(θ ,γ)≥ b}),
#(λ ,0,θ ,e) = m

}
where m =

1, if a =⊥
a, else

between-and:

• φ[between e1 and e2](λ )=
{

λ (αk+1 : βk−1) | ∀k≥ 0,αk < βk <αk+1,λ (αk)= e1,λ (βk)=

e2,∀ j,αk < j < βk,λ ( j) 6= e2,∀i,βk < i < αk+1,λ (i) 6= e1
}

• φ[between e1 and e2 at least d tu](λ ) =
{

λ (αk+1 : β ′k) | ∀k≥ 0,αk < βk < αk+1,λ (αk) =

e1,λ (βk) = e2,∀ j,αk < j < βk,λ ( j) 6= e2,∀i,βk < i < αk+1,λ (i) 6= e1,β
′
k = max({γ |

td(γ,βk)≥ d})
}

• φ[between e1 at least b tu and e2](λ ) =
{

λ (α ′k : βk−1) | ∀k≥ 0,αk < βk < αk+1,λ (αk) =

e1,λ (βk) = e2,∀ j,αk < j < βk,λ ( j) 6= e2,∀i,βk < i < αk+1,λ (i) 6= e1,α
′
k = min({γ |

td(αk,γ)≥ b})
}

• φ[between e1 at least b tu and e2 at least d tu](λ )=
{

λ (α ′k : β ′k) | ∀k≥ 0,αk < βk <αk+1,

λ (αk) = e1,λ (βk) = e2,∀ j,αk < j < βk,λ ( j) 6= e2,∀i,βk < i < αk+1,λ (i) 6= e1,α
′
k =

min({γ | td(αk,γ)≥ b}),β ′k = max({γ | td(γ,βk)≥ d}
}

• φ[between a e1 and c e2](λ ) =
{

λ (α + 1 : β − 1) | λ (α) = e1,#(λ ,0,α,e1) = x,λ (β ) =

e2,#(λ ,α +1,β ,e2) = y
}

• φ[between a e1 and c e2 at least d tu](λ ) =
{

λ (α +1 : β ′) | λ (α) = e1,#(λ ,0,α,e1) = x,

λ (β ) = e2,#(λ ,α +1,β ,e2) = y,β ′ = max({γ | td(γ,β )≥ d}
}

• φ[between a e1 at least b tu and c e2](λ ) =
{

λ (α ′ : β −1) | λ (α) = e1,#(λ ,0,α,e1) = x,

λ (β ) = e2,#(λ ,α +1,β ,e2) = y,α ′ = min({γ | td(α,γ)≥ b}
}

• φ[between a e1 at least b tu and c e2 at least d tu](λ ) =
{

λ (α ′ : β ′) |
λ (α) = e1,#(λ ,0,α,e1) = x,λ (β ) = e2,#(λ ,α + 1,β ,e2) = y,α ′ = min({γ | td(α,γ) ≥
b},β ′ = max({γ | td(γ,β )≥ d}

}
where x =

1, if a =⊥
a, else

and y =

1, if c =⊥
c, else .

after-until:

20



2.4. Formal Semantics

• φ[after e1 until e2](λ ) = φ[between e1 and e2](λ )∪
{

λ (η + 1 : n− 1) | η = min({γ | γ ≤
n−2,λ (γ) = e1,∀k,γ < k ≤ n−1,λ (k) 6= e2})

}
• φ[after e1 until e2 at least d tu](λ ) = φ[between e1 and e2 at least d tu](λ )∪

{
λ (η +1 :

n−1) | η = min({γ | γ ≤ n−2,λ (γ) = e1,∀k,γ < k ≤ n−1,λ (k) 6= e2})
}

• φ[after e1 at least b tu until e2](λ )= φ[between e1 at least b tu and e2](λ )∪
{

λ (η ′ : n−
1) | η ′ = min({γ | td(η ,γ)≥ b}),η = min({γ | λ (γ) = e1,∀k,γ < k≤ n−1,λ (k) 6= e2})

}
• φ[after e1 at least b tu until e2 at least d tu](λ ) =

φ[between e1 at least b tu and e2 at least d tu](λ )∪
{

λ (η ′ : n−1) | η ′ = min({γ | td(η ,

γ)≥ b}),η = min({γ | λ (γ) = e1,∀k,γ < k ≤ n−1,λ (k) 6= e2})
}

• φ[after a e1 until c e2](λ ) = φ[between a e1 and c e2](λ )∪
{

λ (η +1 : n−1) | η ≤ n−2,

λ (η) = e1,#(λ ,0,η ,e1) = x,#(λ ,η +1,n−1,e2)< y
}

• φ[after a e1 until c e2 at least d tu](λ ) = φ[between a e1 and c e2 at least d tu](λ )∪{
λ (η +1 : n−1) | η ≤ n−2,λ (η) = e1,#(λ ,0,η ,e1) = x,#(λ ,η +1,n−1,e2)< y

}
• φ[after a e1 at least b tu until c e2](λ ) = φ[between a e1 at least b tu and c e2](λ )∪{

λ (η ′ : n−1) | η ′ = min({γ | td(η ,γ)≥ b}),λ (η) = e1,#(λ ,0,η ,e1) = x,#(λ ,η +1,

n−1,e2)< y
}

• φ[after a e1 at least b tu until c e2 at least d tu](λ ) =

φ[between a e1 at least b tu and c e2 at least d tu](λ )∪
{

λ (η ′ : n−1) | η ′ = min({γ |
td(η ,γ)≥ b}),λ (η) = e1,#(λ ,0,η ,e1) = x,#(λ ,η +1,n−1,e2)< y

}
where x =

1, if a =⊥
a, else

and y =

1, if c =⊥
c, else .

EventChain. An EventChain is a chain of Events occurring in sequence, with an optional quan-
tification of the time distance between each pair of adjacent elements. An m-length EventChain
(m ≥ 1) is denoted as e0, t1,e1, . . . , tm−1,em−1. The symbol ti (with 1 ≤ i ≤ m− 1) represents the
time distance between ei−1 and ei (if defined) and has the form ti = # ./i δi tu with δi ∈ N+ and
./i∈ {at least, at most, exactly}; when ti is undefined we use the notation ti =⊥. Func-
tion len(EC) returns the length m of an m-length EventChain EC.

Event and EventChain matching function. Let λ be an n-length trace, EC be an m-length EventChain
(1 ≤ m ≤ n). The matching function match returns true if there is an occurrence of an event (or of
an EventChain) in a certain position of the trace. For a 1-length EventChain EC = e, i.e., a sin-
gle event, we have match(λ ,EC, i) = true, with i,0 ≤ i ≤ n− 1, if λ (i) = e. For an event chain
EC = e0, t1,e1, . . . , tm−1,em−1, we have match(λ ,EC, i) = true, with i,0 ≤ i ≤ n−m, if there exist
i0, i1, . . . , im−1 ∈ {0, . . . ,n− 1}, such that i0 = i, ik = ik−1 + 1,1 ≤ k ≤ m− 1, λ (i0) = e0,λ (i1) =

21



Chapter 2. The TemPsy Language

e1, . . . ,λ (im−1) = em−1 and for all j,1≤ j ≤ m−1, such that t j 6=⊥, we have:
td(i j−1, i j)≥ δ j if ./ j= at least;
td(i j−1, i j)≤ δ j if ./ j= at most;
td(i j−1, i j) = δ j if ./ j= exactly.

For an events chain EC = e0, t1,e1, . . . , tm−1,em−1 we also define two auxiliary functions first(λ ,EC, i)
and last(λ ,EC, i), which return, respectively, the timestamp of the first and the last event of EC when
the chain is matched in position i of the trace λ .

In the following definitions, let EC1,EC2 be event chains.

Pattern. Let p be a pattern defined by the non-terminal 〈Pattern〉 in the grammar in Figure 2.2. The
semantics of p is to determine whether the pattern holds on an n-length trace λ ∈ Λ, which is defined
by the function ψ[p] : Λ→{true, false} as follows:

universality: ψ[always e](λ )⇔∀i,0≤ i≤ n−1,λ (i) = e
absence:

• ψ[never e](λ )⇔∀i,0≤ i≤ n−1,λ (i) 6= e

• ψ[never exactly m e](λ )⇔ #(λ ,0,n−1,e) 6= m

existence:

• ψ[eventually e](λ )⇔∃i,0≤ i≤ n−1,λ (i) = e

• ψ[eventually ./ m e](λ )⇔ #(λ ,0,n−1,e)4 m

where4 =


≥, if ./= at least;
≤, if ./= at most;
=, if ./= exactly.

precedence:

• ψ[EC1 preceding EC2](λ )⇔∀i,0≤ i < n−1,match(λ ,EC2, i)⇒
∃ j,0≤ j ≤ i− len(EC1),match(λ ,EC1, j)

• ψ[EC1 preceding ./ b tu EC2](λ )⇔∀i,0≤ i < n−1,match(λ ,EC2, i)⇒
∃ j,0≤ j ≤ i− len(EC1),match(λ ,EC1, j) and (first(λ ,EC2, i)− last(λ ,EC1, j))4 b

where4 =


≥, if ./= at least;
≤, if ./= at most;
=, if ./= exactly.

response:

• ψ[EC1 responding EC2](λ )⇔∀i,0≤ i < n−1,match(λ ,EC2, i)⇒∃ j, i+ len(EC2)≤ j ≤
n−1,match(λ ,EC1, j)

• ψ[EC1 responding ./ b tu EC2](λ )⇔∀i,0≤ i< n−1,match(λ ,EC2, i)⇒∃ j, i+len(EC2)≤
j ≤ n−1,match(λ ,EC1, j) and

22



2.5. Expressivity

(first(λ ,EC1, i)− last(λ ,EC2, j))4 b

where4 =


≥, if ./= at least;
≤, if ./= at most;
=, if ./= exactly.

Temporal Expression. The semantics over a trace λ of a temporal expression derived from the non-
terminal 〈TemPsyExpression〉 containing a scope s and a pattern p, represented as a pair 〈s, p〉, is
defined as: λ |= 〈s, p〉 ⇔ ∀λ ′ ∈ φ[s](λ ), ψ[p](λ

′).

2.5 Expressivity
As discussed earlier, the main goal of TemPsy is to make as easy as possible the specification of the
temporal requirements of business processes, by supporting—in an intuitive way—only the constructs
needed to express temporal requirements commonly found in business process applications. Hence,
by design, TemPsy does not aim at being as expressive as a full-fledged temporal logic.

More precisely, TemPsy can specify only the expressions resulting from the combination of one
of the five supported scopes (and their variants) with one of the eight supported patterns (and their
variants). For each of these expressions, it is possible to write a formula with the same meaning
in a full-fledged temporal logic like MTL [Koymans, 1990] (see, for example, the syntax-directed
translation of property specification patterns, targeting MTL, proposed in [Autili et al., 2015]). On the
other hand, all the MTL formulae that do not correspond to one of the 〈scope, pattern〉 combinations
cannot be expressed in TemPsy.

In our context, this limitation turns out to be more theoretical than practical, since we were able to
express in TemPsy all the requirements of the business processes of our case study. Nevertheless, as
part of future work, we plan to assess the expressivity of TemPsy by applying it for the specification
of business processes in other application domains.

2.6 Applying TemPsy
In this section we report on the application of TemPsy for the specification of a business process
extracted from the case study developed with our partner. After illustrating the conceptual and behav-
ioral models of some fragments of the business process application, we present some requirements
specifications associated with these business process fragments and show how these specifications
can be expressed in TemPsy. We also discuss the adoption and use of TemPsy by our partner.

Notice that the case study description has been sanitized, for the purpose of not disclosing con-
fidential information, and simplified, to obtain a model at the minimum level of detail required to
illustrate and express the requirement specifications.

23



Chapter 2. The TemPsy Language

request

1

card 1

card

1

holder

1

1*

requests

Card

isLost()
isFound()
isReturned()
isExpired()

ICM

approveRequest()
rejectRequest()
notifyApproval()
notifyRejection()
collectPhysicalInfo()
produceCard()
issueTempCard()
issueCard()
recallTempCard()
recallCard()
reportToPolice()
fine()
confirmCardReturned()

Request

CardHolder

tempCard

0..1

newCard

0..1

cards

* 1

Figure 2.7: Conceptual model of the ICM business process

Card Request

Notify 
Rejection

Evaluate 
card request

Notify 
approval

Collect 
physical info

Issue 
card

Approved

Rejected

Notify 
approval

No-show

Present

No-show

Present

Approve 
request

Reject
request

Produce 
card

(a) card request fragment

Card Loss

Register
card loss case

Issue 
temporary card

Produce 
card

Card found

Card found

Not found

Not found

Recall 
temporary card

Issue 
new card

Recall 
old card

Recall 
temporary card

(b) card loss fragment

Card Expiration

Recall 
expired card

Recall 
expired card

Confirm 
receipt

Card returned

Report
to police

Card returned

No reply

No reply

Fine

(c) card expiration fragment

Figure 2.8: Activity diagrams of three fragments of the ICM business process

2.6.1 Business process models
We consider the Identity Card Management (ICM) business process, which is in charge of issuing
and managing the ID cards of the diplomatic personnel of the country. Its conceptual model is shown
in Figure 2.7, while three activity diagrams corresponding to process fragments are sketched in Fig-
ure 2.8.

The conceptual model includes the ICM class, which manages Cards and Requests (for new
cards). The ICM class has methods that deal with approval/rejection of card requests, card production
and issuance, and card loss/expiration. Class Card has methods to query about the state of the card,
which can be lost, found, expired, or returned (to the administration).

The activity diagram in Figure 2.8a shows the business process fragment for processing a card
request. Once a request for a card is submitted to the ICM system, it is evaluated and then either
approved or rejected. Afterwards, a notification letter of approval or rejection is sent to the requester.
Upon approval, the requester is asked to provide her physical information (e.g., hair and eye color,
height) to the ICM system. In case this information is not provided, a second notification is sent; if
the requester does not show up after two notifications, the request is then rejected and the requester
notified about it. If the requester provides her information, the ICM system requests the production
of the physical card, which is then issued to the requester.

The business process fragment executed in case of card loss is depicted in Figure 2.8b. The ICM
system first registers the card loss case and issues a temporary card to the card holder. If the lost card
is found before the production of a new one, the ICM system recalls the temporary card. After the
production of a new card, the ICM system will recall the temporary card and issue the new one. If the

24



2.6. Applying TemPsy

lost card is found after the production of the new one but before the recall of the temporary one, the
ICM system will recall the old card before recalling the temporary one.

The activity diagram in Figure 2.8c corresponds to the business process fragment executed in case
of card expiration. When a card expires, the ICM system sends the card holder a letter to recall the
card. If the card is returned, a confirmation receipt is then sent to the card holder; otherwise, another
recall letter is sent to her. If, after two notification letters, the card holder has not returned the card
yet, the ICM system reports the case to the police and the card holder will be fined.

2.6.2 Requirement specifications
We now list some requirements specifications associated with the three fragments of the ICM business
process, and show how they can be expressed in TemPsy. These nine specifications (three for each
business process fragment) have been selected out of the 47 available for the ICM application. Notice
that these specifications have been written by the business analysts of our partner, who have domain
knowledge, and represent realistic properties being used in practice.

Card Request:

R1 Once a card request is approved, the requester is notified within three days; this notification has
to occur before the production of the card is started.

R2 The requester has to show up for the collection of her physical information within five days from
the first notification.

R3 If the physical information of the requester is collected within three days after the second approval
notification, the card will be produced and then issued to the requester.

These requirements specifications can be expressed in TemPsy as follows:

1 temporal R1:
2 before ICM.issueCard
3 ICM.notifyApproval
4 responding at most 3*24*3600 tu
5 ICM.approveRequest
6 temporal R2:
7 after 1 ICM.notifyApproval
8 at most 5*24*3600 tu
9 eventually ICM.collectPhysicalInfo

10 temporal R3:
11 after 2 ICM.notifyApproval
12 at most 3*24*3600 tu
13 ICM.collectPhysicalInfo
14 preceding
15 ICM.produceCard, ICM.issueCard

Property R1 is expressed in lines 1–5. The before scope is delimited by the event ICM.issueCard.
The response pattern is bounded (time units are expressed in seconds) and requires the notification to

25



Chapter 2. The TemPsy Language

the requester (ICM.notifyApproval) to happen in response to the action of approving the request
(ICM.approveRequest). Property R2 (lines 6–9) combines an after scope with an existence pat-
tern. In R3, the after scope (line 11) is bounded by the second occurrence of ICM.notifyApproval;
this scope is associated with a precedence chain pattern, where ICM.collectPhysicalInfo
represents the first block and the events chain ICM.produceCard, ICM.issueCard, the second
block.

Card Loss:

L1 If a card is reported as lost, a temporary card will be issued to the card holder within one day, and
will be recalled in ten days after the issuance.

L2 After a card has been registered as lost, a new card should be produced at least two days before
its issuance.

L3 If the lost card is found after the production of a new card, the old card and the temporary one
should be recalled within three days.

These requirements specifications can be expressed in TemPsy as follows:

1 temporal L1:
2 after Card.isLost
3 at most 24*3600 tu
4 ICM.recallTempCard
5 responding at most 10*24*3600 tu
6 ICM.issueTempCard
7 temporal L2:
8 after Card.isLost
9 ICM.produceCard

10 preceding at least 2*24*3600 tu
11 ICM.issueCard
12 temporal L3:
13 after Card.isLost
14 until ICM.issueCard
15 ICM.recallCard,
16 ICM.recallTempCard,
17 responding at most 3*24*3600 tu
18 ICM.produceCard,
19 Card.isFound

Property L1 contains an after scope and a response pattern, where the scope boundary contains a
time constraint, and the pattern also restricts the time distance between the issuance of a temporary
card (ICM.issueTempCard) and the corresponding card recall event (ICM.recallTempCard).
Property L3 combines an after-until scope with a precedence chain pattern, where the first block
corresponds to the events chain ICM.recallCard, ICM.recallTempCard, and the second
block corresponds to the events chain ICM.produceCard, Card.isFound.

Card Expiration:

26



2.6. Applying TemPsy

E1 Once a card expires, the holder is notified to return the card at most twice.

E2 In case the expired card has not been returned after five days from the second notification to the
holder, the latter will be fined after the case will be reported to the police.

E3 Once a card is returned, the holder will receive a confirmation within one day.

These requirements specifications can be expressed in TemPsy as follows:

1 temporal E1:
2 after Card.isExpired
3 until Card.isReturned
4 eventually at most 2 ICM.recallCard
5 temporal E2:
6 after 2 ICM.recallCard
7 at least 5*24*3600 tu
8 until Card.isReturned
9 ICM.fine

10 responding
11 ICm.reportToPolice
12 temporal E3:
13 globally
14 ICM.confirmCardReturned
15 responding at most 24*3600 tu
16 Card.isReturned

Property E1 uses an after-until scope, where the left boundary event corresponds to the expiration
of the card (Card.isExpired) and the right boundary event corresponds to the return of the card
(Card.isReturned). A bounded existence pattern is used to specify the maximum amount of no-
tifications (ICM.recallCard) that can occur. In property E2 we use an after-until scope combined
with the keyword ‘at least’ for the first boundary, to delimit the period during which the card
holder will be fined once the expiration case is reported to the police (ICM.reportToPolice).
Property E3 states an invariant of the system (using the globally scope) for the response pattern that
correlates the return of the card (Card.isReturned) to the confirmation to the holder (ICM.
confirmCardReturned).

2.6.3 Adoption of TemPsy by our partner
Our partner has adopted TemPsy as the specification language for expressing the requirements of
its business process models. TemPsy specifications have provided business analysts with a means to
reason and formalize business process requirements, and have replaced informal specifications written
in natural language. Our partner has also developed, for internal use, a graphical version of TemPsy,
which has been integrated into the SoftwareAG ARIS modeling tool [Software AG, 2014], as part of
the Prometa business process modeling framework5; although the illustration of the graphical notation
for TemPsy is out of the scope of this thesis, we provide an example of it in Figure 2.9.

5https://joinup.ec.europa.eu/community/nifo/case/prometa-organisational-
interoperability-framework-eservice-design-luxemburg.

27

https://joinup.ec.europa.eu/community/nifo/case/prometa-organisational-interoperability-framework-eservice-design-luxemburg
https://joinup.ec.europa.eu/community/nifo/case/prometa-organisational-interoperability-framework-eservice-design-luxemburg


Chapter 2. The TemPsy Language

Activity 
A1

Event 
start

Activity 
A4

Event 
end

at least 1000 tu
Response 
Example C

event E1

Activity 
A2

Figure 2.9: Example of the graphical notation for TemPsy

Table 2.1: Distribution of requirements from the ICM business process in terms of the combination
of scopes and patterns

scope+pattern # of requirements

globally+universality 1
globally+absence 1
globally+existence 2
globally+precedence 4
globally+response 4
before+absence 1
before+existence 2
before+precedence 3
before+response 2
after+universality 1
after+absence 1
after+existence 4
after+precedence 3
after+response 2
between-and+universality 2
between-and+absence 2
between-and+existence 1
between-and+precedence 1
between-and+response 1
after-until+universality 1
after-until+absence 1
after-until+existence 4
after-until+precedence 1
after-until+response 2

28



2.6. Applying TemPsy

In terms of expressiveness, we recall that TemPsy has been designed based on the analysis of the
structure of the requirements specifications written by our partner. Hence, all the requirements of
the case study presented in the previous section could be expressed with TemPsy. Table 2.1 shows
the distribution of the 47 requirements of the ICM business process, in terms of the combination of
scopes and patterns.

29





Chapter 3

Model-driven Offline Trace Checking of
Temporal Properties

The idea at the basis of our model-driven trace checking approach (TEMPSY-CHECK) is to reduce
the problem of checking a TemPsy property ρ over a trace λ , to the problem of evaluating an OCL
constraint (semantically equivalent to ρ) on an instance of a conceptual model for execution traces
(equivalent to λ ).

This reduction allows us to rely on standard and stable MDE technology to perform offline trace
checking. Indeed, standard OCL checkers, such as Eclipse OCL [Eclipse, 2015a], can be used to
evaluate OCL constraints on model instances. The use of a model-driven approach and of standard
technologies fulfills requirement R2 stated in Chapter 1, and enables us to provide a practical and
scalable solution for trace checking of temporal properties, which is also viable in the long term.

The rest of this chapter is organized as follows. In Section 3.1, we introduce the conceptual
model we have defined to represent execution traces. In Section 3.2, we provide an overview of our
approach and show how TemPsy properties (decomposed in scopes and patterns) can be expressed as
OCL constraints on the conceptual model in Sections 3.3 and 3.4. In Section 3.5, we demonstrate
with an example the application of the trace checking procedure of and in Section 3.6 we provide
some notes about the implementation of the approach our TEMPSY-CHECK tool. We conclude the
chapter with the evaluation of the scalability of the tool.

3.1 Conceptual Model for Execution Traces
The definition of a conceptual model for execution traces is a key element of our approach, since
the transformation of TemPsy properties into efficiently checkable OCL constraints defined on such
model is a key strategy for us to achieve scalability.

We propose a simple and yet generic model of system execution traces; it can be extended (by en-
riching the type of event) depending on the actual type of system (e.g., business process, access con-
trol framework) and the type of properties to check. The model, depicted in Figure 3.1 with a UML
class diagram, contains a Trace, which is composed of a sequence of TraceElements, accessed
through the association traceElements. Each TraceElement contains an attribute event of

31



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

traceElements*

Trace

properties : EList<TemPsyExpression>

applyScopeGlobally(Scope):Elist<EList<TraceElement>>
applyScopeBefore(Scope):Elist<EList<TraceElement>>
applyScopeAfter(Scope):Elist<EList<TraceElement>>
applyScopeBetweenAnd(Scope):Elist<EList<TraceElement>>
applyScopeAfterUntil(Scope):Elist<EList<TraceElement>>
checkPatternUniversality(EList<TraceElement>, Pattern):Boolean
checkPatternExistence(EList<TraceElement>, Pattern):Boolean
checkPatternAbsence(EList<TraceElement>, Pattern):Boolean
checkPatternPrecedence(EList<TraceElement>, Pattern):Boolean
checkPatternResponse(EList<TraceElement>, Pattern):Boolean

TraceElement

event : EString
timestamp : EInt

Figure 3.1: Conceptual model for execution traces

type string, which represents the actual event recorded in the trace, and an attribute timestamp of
type integer, which indicates the time at which the event occurred. Class Trace contains also an at-
tribute properties, which is a collection of TemPsyExpressions1, representing the properties
to be checked on the trace.

We have defined some side-effect-free operations in OCL for the Trace class; these operations
consist of two types of functions. The first type, of the form applyScope*S*, are named after
the different types of scope (e.g., applyScopeBefore, applyScopeBetweenAnd) and return
segment(s) of a trace (i.e., sub-traces) as determined by the parameters of the scope provided in
input. The second type, of the form checkPattern*P*, are named after the different types of
pattern (e.g., checkPatternExistence, checkPatternPrecedence) and check whether
the pattern provided in input as the second parameter holds on the sub-trace(s) represented by the first
parameter.

3.2 Overview of the Approach
Our approach for model-driven trace checking is sketched in Figure 3.2: parallelogram shapes corre-
spond to input/output artifacts, while rectangles correspond to steps in the approach. The two inputs
are represented by a log, corresponding to the trace one wants to check, and by a set of TemPsy prop-
erties. The log file is read and converted (step 1a) to an instance of the class trace in the trace model
shown in Figure 3.1. The TemPsy properties are parsed and converted (step 1b) to instances of class
TemPsyExpression.

The key step (#2 in the figure) of our approach is to evaluate an OCL invariant on the trace
instance. The checking of this invariant, which can be done using standard OCL checking tools, is
semantically equivalent to performing trace checking of the TemPsy properties provided in input.

We have defined this invariant on the Trace class, as shown in Figure 3.3. For every TemPsy
property provided in input (and referenced in the trace instance as the attribute self.properties,
line 2), the invariant evaluates a boolean function, which conceptually corresponds to applying the se-

1Class TemPsyExpression belongs to the meta-model of the language (not shown here for space reasons) and
represents objects corresponding to the non-terminal 〈TemPsyExpression〉 of the grammar shown in Figure 2.2.

32



3.3. OCL Functions for Scopes

Parse 
properties

Log

Instances of
TemPsyExpression

Read Trace

Instance of 
class trace

Check OCL invariant
on trace instance True/False

1a

TemPsy 
properties 

1b

2

Figure 3.2: Overview of the approach to offline trace checking of TemPsy properties

mantics of the pattern used in the property (accessed through the expression property.pattern)
on a set of sub-traces, as defined by the scope used in the property (accessed through the expression
property.scope).

More specifically, the body of the invariant expression is a multi-way branch (defined through
a sequence of if statements), which selects a certain branch based on the specific scope type used
within the property. Within the body of a branch, first a function of the form applyScope*S*
is called. This function takes the scope used in the property as input and returns a collection of
sub-traces, as defined by the scope semantics. Afterwards, the invariant invokes a function of the
form checkPattern*P*, which checks whether the pattern used in the property holds on each
sub-trace.

For instance, let us assume that the type of the scope of the TemPsy property provided in in-
put is globally and that the type of the pattern used in the property is response. As shown in
line 5, the function applyScopeGlobally is invoked to compute the sub-trace(s) defined by
the scope parameter; the return value of this function is assigned to variable subtraces. The
branch indicated on line 15 is then taken, which results in the evaluation of the boolean function
checkPatternResponse on all the elements2 of subtraces, to check whether the input pa-
rameter pattern holds on each sub-trace.

In Sections 3.3 and 3.4, we describe the applyScope*S* and checkPattern*P* functions
respectively; to ease legibility and conciseness, all the code snippets presented in these subsections
are written using pseudocode.

3.3 OCL Functions for Scopes
In this section we illustrate the OCL functions that are used to apply a scope definition on a trace. We
show the pseudocode of functions applyScopeBefore, applyScopeAfter, applyScope

2In the case of scope globally, only the variable subtraces will contain, by definition, only one trace.

33



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

1 context Trace
2 inv: self.properties->forAll(property:TemPsy::TemPsyExpression |
3 let scope:TemPsy::Scope = property.scope, pattern:TemPsy::Pattern =

property.pattern in
4 if scope.type = TemPsy::ScopeType::GLOBALLY then
5 let subtraces:Sequence(OrderedSet(TraceElement)) =

applyScopeGlobally(scope) in
6 if pattern.type = TemPsy::PatternType::UNIVERSALITY then
7 subtraces->forAll(subtrace | checkPatternUniversality(subtrace,

pattern))
8 else if pattern.type = TemPsy::PatternType::EXISTENCE then
9 subtraces->forAll(subtrace | checkPatternExistence(subtrace,

pattern))
10 else if pattern.type = TemPsy::PatternType::ABSENCE then
11 subtraces->forAll(subtrace | checkPatternAbsence(subtrace,

pattern))
12 else if pattern.type = TemPsy::PatternType::PRECEDENCE then
13 subtraces->forAll(subtrace | checkPatternPrecedence(subtrace,

pattern))
14 else if pattern.type = TemPsy::PatternType::RESPONSE then
15 subtraces->forAll(subtrace | checkPatternResponse(subtrace,

pattern))
16 endif endif endif endif endif
17 else if scope.type = TemPsy::ScopeType::BEFORE then
18 ...
19 else if scope.type = TemPsy::ScopeType::AFTER then
20 ...
21 else if scope.type = TemPsy::ScopeType::BETWEENAND then
22 ...
23 else if scope.type = TemPsy:ScopeType::AFTERUNTIL then
24 ...
25 endif endif endif endif endif)

Figure 3.3: OCL invariant for checking TemPsy properties on a trace

BetweenAnd, and applyScopeAfterUntil corresponding to the before, after, between-and,
and after-until scopes. These functions take as input an object representing a scope in TemPsy and
yield one or more segments of the trace (i.e., sub-trace(s)), as determined by the semantics of the
scope.

3.3.1 Before
The definition of function applyScopeBefore is shown in Algorithm 1. The input parameter
scope is an instance of the before scope, and the output is a list that contains the trace segments as
determined by the structure of scope. We assume the parameter scope to have the form “before
[m] X [op n tu]” (see Section 2.3), in which op stands for the comparison operator (i.e., “at
least”, “at most”, or “exactly”) used in the constraint that defines the time distance from the
scope boundary event X.

34



3.3. OCL Functions for Scopes

Algorithm 1: applyScopeBefore
Input: scope : an instance of the before scope structured as “before [m] X [op n tu]”
Output: result : a list containing the trace segment as determined by the parameters of scope

1 X ← event name of the scope boundary
2 m← index of the specific occurrence of event X
3 op← comparison operator of the constraint on time distance
4 n← time distance from the m-th occurrence of X
5 result← [],segment← []
6 if m = null then m← 1
7 t← timestamp of the m-th occurrence of event X
8 if t 6= null then
9 switch op do

10 case “at least” do
11 segment← trace elements with timestamp t ′ satisfying t ′ ≤ t−n

12 case “at most” do
13 segment← trace elements with timestamp t ′ satisfying t−n≤ t ′ < t

14 case “exactly” do
15 segment← trace elements with timestamp equal to t−n

16 otherwise do
17 segment← trace elements with timestamp t ′ satisfying t ′ < t

18 result.append(segment)
19 return result

The function starts by reading the parameters X, m, op, and n from the instance of the before
scope (lines 1–4). In addition, we define and initialize to an empty list both variable result (to store
the output value) and the auxiliary variable segment (for collecting intermediate trace elements). If
the parameter m is omitted in the scope definition, variable m is replaced with the value 1 (line 6),
according to the default semantics of the before scope. We then assign to variable t the timestamp of
the m-th occurrence of event X in the trace (line 7). If t is defined, it means that the m-th occurrence
of the event has been found in the trace. Lines 9–17 select a segment from the trace, based on the
value of op. For example, when op is “at least”, line 11 selects all the trace elements that occur
at least n time unit(s) before the m-th occurrence of event X. If no time distance constraint is specified
in the scope (line 17), the function selects the trace segment starting at the beginning of the trace and
ending at the m-th occurrence of event X. The function ends by adding the segment selected from the
trace to the output variable result.

3.3.2 After
The definition of function applyScopeAfter is shown in Algorithm 2. The input parameter scope
is an instance of the after scope, and the output is a list that contains the trace segments as determined
by the structure of scope. We assume the parameter scope to have the form “after [m] X [op
n tu]” (see Section 2.3), in which op stands for the comparison operator (i.e., “at least”, “at
most”, or “exactly”) used in the constraint that defines the time distance from the scope boundary
event X.

35



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Algorithm 2: applyScopeAfter
Input: scope : an instance of the after scope structured as “after [m] X [op n tu]”
Output: result : a list containing the trace segment as determined by the parameters of scope

1 X ← event name of the scope boundary
2 m← index of the specific occurrence of event X
3 op← comparison operator of the constraint on time distance
4 n← time distance from the m-th occurrence of X
5 result← [],segment← []
6 if m = null then m← 1
7 t← timestamp of the m-th occurrence of event X
8 if t 6= null then
9 switch op do

10 case “at least” do
11 segment← trace elements with timestamp t ′ satisfying t ′ ≥ t +n

12 case “at most” do
13 segment← trace elements with timestamp t ′ satisfying t < t ′ ≤ t +n

14 case “exactly” do
15 segment← trace elements with timestamp equal to t +n

16 otherwise do
17 segment← trace elements with timestamp t ′ satisfying t ′ > t

18 result.append(segment)
19 return result

The function starts by reading the parameters X, m, op, and n from the instance of the after
scope (lines 1–4). In addition, we define and initialize to an empty list both variable result (to store
the output value) and the auxiliary variable segment (for collecting intermediate trace elements). If
the parameter m is omitted in the scope definition, variable m is replaced with the value 1 (line 6),
according to the default semantics of the after scope. We then assign to variable t the timestamp of
the m-th occurrence of event X in the trace (line 7). If t is defined, it means that the m-th occurrence
of the event has been found in the trace. Lines 9–17 select a segment from the trace, based on the
value of op. For example, when op is “at least”, line 11 selects all the trace elements that occur
at least n time unit(s) after the m-th occurrence of event X. If no time distance constraint is specified
in the scope (line 17), the function selects the trace elements after the m-th occurrence of event X. The
function ends by adding the segment selected from the trace to the output variable result.

3.3.3 Between-and
Algorithm 3 presents the definition of the function applyScopeBetweenAnd. This function takes
as input an object representing an instance of the between-and scope and returns a lists of trace
segments. We assume the parameter scope to have the form “between [m1] X [at least
n1 tu] and [m2] Y [at least n2 tu]”.

Function applyBetweenAnd starts by reading the parameters from the instance of the between-
and scope (lines 1–6): variables X and Y correspond to the event names of the left and right scope

36



3.3. OCL Functions for Scopes

Algorithm 3: applyScopeBetweenAnd
Input: scope : an instance of the between-and scope structured as “between [m1] X [at

least n1 tu] and [m2] Y [at least n2 tu]”
Output: result : a list of trace segments, as determined by the parameters of scope

1 X ← event name of the left boundary
2 Y ← event name of the right boundary
3 m1← index of the specific occurrence of event X
4 m2← index of the specific occurrence of event Y
5 n1← lower bound of the time distance from the m1-th occurrence of event X
6 n2← lower bound of the time distance from the m2-th occurrence of event Y
7 result← []
8 if m1 = null && m2 = null then
9 result← applyOriginalBetweenAnd(X, n1, Y , n2)

10 else
11 if m1 = null then m1← 1
12 if m2 = null then m2← 1
13 result.append(applySpecialBetweenAnd(m1, X, n1, m2, Y , n2))

boundaries; m1 and m2 represent the (optional) index of the specific occurrence of event X and event
Y referred to in the scope definition; n1 and n2 are the (optional) lower bounds on the time distances
from the two scope boundaries. Optional parameters are initialized to null if they are not defined. The
output variable result is initialized to an empty list.

If both m1 and m2 are not defined, we compute the return value by calling the auxiliary func-
tion applyOriginalBetweenAnd (line 9), which retrieves all the trace segments delimited by
the two boundary events (taking into account the distances from the boundaries, if defined). Other-
wise, if either m1 or m2 is undefined, we compute the return value by calling the auxiliary function
applySpecialBetweenAnd (line 13), which retrieves only one trace segment, as determined by
the specific occurrences of the boundary events and by the time distance from the scope boundaries
(if defined). Notice that in the latter case we consider as boundary the first occurrence of event X or Y
(see assignments at lines 11–12).

Function applyOriginalBetweenAnd is shown in Algorithm 4. It takes in input the parame-
ters X, Y, n1, n2 of a between-end scope of the form “between X [at least n1 tu] and Y
[at least n2 tu]” and returns a list of the trace segments determined by the scope semantics.
The function goes through all the elements of the list and identifies all the segments delimited by the
events X and Y, taking into account the parameters for the time distance from the scope boundaries.

Besides the output variable result, we define an integer tuple (i1, t1) to keep track of the starting
point of a trace segment. More precisely, element i1 refers to the index of the trace element that
comes after the left bound of the segment (characterized by an occurrence of event X), while element
t1 points to the instant that is n1 time units after the occurrence of the left bound of the segment. The
tuple (i2, t2) is defined in a similar way, to keep track of the end point of a trace segment (characterized
by an occurrence of event Y).

37



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Algorithm 4: applyOriginalBetweenAnd
Input: strings X ,Y and integers n1,n2 (n1 = 0, n2 = 0 by default), i.e., the parameters of a

between-and scope structured as “between X [at least n1 tu] and Y
[at least n2 tu]”

Output: result : a list of trace segments, as determined by the parameters of the scope
1 result← []
2 index← 0
3 (i1, t1)← (0,0)
4 (i2, t2)← (0,0)
5 for elem ∈ self .traceElements do
6 index← index+1
7 e← elem.event
8 t← elem.timestamp
9 if i1 = 0 then

10 if e = X then
11 (i1, t1)← (index+1, t+n1)

12 else if e = Y && index > i1 then
13 (i2, t2)← (index−1, t−n2)
14 segment← self .traceElements[i1 .. i2]
15 if n1 6= 0 ‖ n2 6= 0 then
16 segment← trace elements in segment with timestamps t ′ satisfying t1 ≤ t ′ ≤ t2
17 result.append(segment)
18 (i1, t1)← (0,0)
19 (i2, t2)← (0,0)

20 return result

At each iteration of the loop (lines 5–19), for each element of the trace, the function first in-
crements the variable index and assigns the event of the trace element to variable e as well as its
timestamp to variable t (lines 6–8). Within the loop, a value of i1 equal to 0 means that the left bound
of the segment has not been found yet. When the current event matches X (line 10), i1 is assigned
the next index of current event; t1 is assigned the value of the timestamp of current event incremented
by n1 time units (line 11). When variable i1 is different than 0, it means that the left boundary has
been found while the right boundary has not been found yet. In this case, the function keeps scanning
the remaining trace elements until it finds an occurrence of event Y. If the current event matches Y
and if the current index is more than i1 (line 12), i2 is assigned the previous index of current event;
t2 is assigned the value of the timestamp of current event decremented by n2 time units (line 13). At
this point, the function extracts a trace segment comprised between indexes i1 and i2 (line 14), whose
trace elements have a timestamp comprised between t1 and t2 (line 16). This segment is added to the
output variable result and then the tuples (i1, t1) and (i2, t2) are reset (for the next loop iteration).

Function applySpecialBetweenAnd, as shown in Algorithm 5, is defined similarly to func-
tion applyOriginalBetweenAnd, but is extended with two additional parameters m1 and m2,
referring to the specific index of the occurrence of each of the two boundary events. This function
identifies a single segment of the trace between the m1-th occurrence of event X and the m2-th oc-

38



3.3. OCL Functions for Scopes

Algorithm 5: applySpecialBetweenAnd
Input: strings X ,Y and integers m1,n1,m2,n2 (n1 = 0,n2 = 0 by default), i.e., the parameters

of a between-and scope structured as “between m1 X [at least n1 tu]
and m2 Y [at least n2 tu]”

Output: result : a trace segment, as determined by the parameters of the scope
1 result← []
2 index← 0
3 (i1, t1)← (0,0)
4 (i2, t2)← (0,0)
5 count← 0
6 for elem ∈ self .traceElements do
7 index← index+1
8 e← elem.event
9 t← elem.timestamp

10 if i1 = 0 && e = X then
11 count← count+1
12 if count = m1 then
13 (i1, t1)← (index+1, t+n1)
14 count← 0

15 else if i2 = 0 && e = Y then
16 count← count+1
17 if count = m2 then
18 (i2, t2)← (index−1, t−n2)
19 break

20 if i1 > 0 && i1 ≤ i2 then
21 result← self .traceElements[i1 .. i2]
22 if n1 6= 0 ‖ n2 6= 0 then
23 result← trace elements with timestamps t ′ satisfying t1 ≤ t ′ ≤ t2

24 return result

currence of event Y, taking into account the constraints on the time distances from the two scope
boundaries. The function body is similar to that in Algorithm 4 and is extended with a counter that
keeps track of the number of occurrences of a boundary event found while traversing the trace ele-
ments. Since only one segment has to be identified with this function, the main loop is interrupted as
soon as such a segment is found.

3.3.4 After-until
Function applyScopeAfterUntil takes as input an object representing an instance of the after-
until scope and returns a lists of trace segments. The input scope is in the form of “after [m1]
X [at least n1 tu] until [m2] Y [at least n2 tu]”. Likewise the function de-
fined for applying the between-and scope (Algorithm 3), function applyScopeAfterUntil in-
vokes the auxiliary function applyOriginalAfterUntil (Algorithm 6) if both m1 and m2 are

39



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Algorithm 6: applyOriginalAfterUntil (procedure to complement Algorithm 4)
Input: strings X ,Y and integers n1,n2 (n1 = 0, n2 = 0 by default), i.e., the parameters of a

after-until scope structured as “after X [at least n1 tu] until Y [at
least n2 tu]”

Output: result : a list of trace segments, as determined by the parameters of the scope
1 size← self .traceElements.size()
2 if i1 > 0 && i1 ≤ size then
3 segment← self .traceElements[i1 ..size]
4 if n1 6= 0 then
5 segment← trace elements in segment with timestamps t ′ satisfying t ′ ≥ t1
6 result.append(segment)

Algorithm 7: applySpecialAfterUntil (procedure to substitute lines 20–23 of Algorithm 5)
Input: strings X ,Y and integers m1,n1,m2,n2 (n1 = 1 = 0,n2 = 0 by default), i.e., the

parameters of a after-until scope structured as “after m1 X [at least n1 tu]
until m2 Y [at least n2 tu]”

Output: result : a trace segment, as determined by the parameters of the scope
1 size← self .traceElements.size()
2 if i1 > 0 then
3 if i2 = 0 && i1 ≤ size then
4 result← self .traceElements[i1 ..size]
5 if n1 6= 0 then
6 result← trace elements with timestamps t ′ satisfying t ′ ≥ t1

7 else if i1 ≤ i2 then
8 result← self .traceElements[i1 .. i2]
9 if n1 6= 0 ‖ n2 6= 0 then

10 result← trace elements with timestamps t ′ satisfying t1 ≤ t ′ ≤ t2

not defined in the input scope; otherwise, auxiliary function applySpecialAfterUntil (Algo-
rithm 7) is called to retrieve the segment that is determined by the specific occurrences of the boundary
events.

The after-until scope is defined as a hybrid of between-and and after scopes. That is, given a
trace, the scope selects all the trace segments determined by its twin between-and scope; in addition,
if the (specific) right boundary does not occur after a (specific) occurrence of the left boundary, the
portion from the (specific) occurrence of the left boundary to the end of the trace is included in the
output (see Figure 2.5d). In function applyOriginalAfterUntil (Algorithm 6), For space
reasons, we omit the duplicate implementation as shown in Algorithm 4, and present the additional
(pseudo)code to select the possible segment for the latter case, which is then added to Algorithm 4
between line 19 and the last line.

The algorithm uses an additional variable size (line 1) to store the number of trace elements of the
trace instance. As shown in the loop of function applyOriginalBetweenAnd (Algorithm 4),

40



3.4. OCL Functions for Patterns

we iterate through the trace instance and select all the segments delimited by the occurrences of the
two boundary events, in consideration of possible constraints on the distance from each boundary.
Hence if there is an odd occurrence of event X found in the loop (i.e., i1 > 0) and the position i1 is
not the last (line 2), function applyOriginalAfterUntil also selects the trace segment after
the occurrence of event X (line 3). If the constraint on the distance from the left boundary is defined
(line 4), the selected segment is pruned by fulfilling the constraint (line 5). At line 6, the trace segment
is add into the result.

Function applySpecialAfterUntil (Algorithm 7) describes the new procedure that selects
the trace segment after investigating the m1-th occurrence of event X and the m2-th occurrence of
event Y (lines 6–19 of Algorithm 5). Notice that for space reasons, the pseudocode shown in the
algorithm is only the substitute for lines 20–23 of function applySpecialBetweenAnd.

In the algorithm, if the m1-th occurrence of event X is found in the trace (line 2), there are two
possible procedures to be carried out: the one for selecting all the trace elements after the m1-th
occurrence of event X (lines 3–6); or the other for selecting the segment between the m1-th occurrence
of event X and the m2-th occurrence of event Y (lines 7–10). The former is executed when the m2-
th occurrence of event Y is not found in the loop (lines 6–19 of Algorithm 5) and variable i1 is no
greater than the trace size (line 3). In the algorithm, we select the trace segment from the position
i1 to the end of the trace (line 4) and prune it (line 6) by fulfilling the constraint on the distance
from the left boundary (if defined). The latter is executed when the m2-th occurrence of event Y is
found and variable i1 is no greater than i2. The implementation is identical to lines 21–23 of function
applySpecialBetweenAnd (Algorithm 5).

3.4 OCL Functions for Patterns
In this section we present the OCL functions that are used to check if a pattern holds on a sub-
trace. We show the pseudocode of functions checkPatternUniversality, checkPattern
Existence, checkPatternAbsence, checkPatternPrecedence, and checkPattern
Response for the five patterns. These functions take as input a sub-trace and an object representing
a pattern in TemPsy, and return whether the pattern holds on the input sub-trace.

3.4.1 Universality

Algorithm 8: checkPatternUniversality
Input: a trace segment subtrace and an instance of the universality pattern pattern, in the form

“always E”
Output: true if pattern holds on subtrace; false otherwise

1 E← event name in pattern
2 for elem ∈ subtrace do
3 if elem.event 6= E then return false
4 return true

Function checkPatternUniversality (see Algorithm 8) takes in input a trace segment
(denoted by the variable subtrace) and an instance of the universality pattern (denoted by the variable

41



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

pattern). At the first line, the function obtains the event name E from the input subtrace. A loop is
used (lines 2–3) to check if every element of the trace segment is an occurrence of event E, and the
function returns false if any violation is found. If there is no violation reported in the loop, the
function returns true (line 4).

3.4.2 Existence

Algorithm 9: checkPatternExistence
Input: a trace segment subtrace and an instance of the existence pattern pattern, in the form

“eventually [op n] E”
Output: true if pattern holds on subtrace; false otherwise

1 E← event name in pattern
2 op← comparison operator of the bound on the number of occurrences of event E
3 n← threshold of the occurrence number of event E
4 count← the number of occurrences of event E in subtrace
5 return compare(count, op, n)

Function checkPatternExistence (see Algorithm 9) defines the algorithm for checking
whether an existence pattern holds on a certain trace segment. The function first retrieves the pa-
rameters from input pattern: the event name E, the comparison operator op, and the threshold of the
number of event occurrences n (lines 1–3). The algorithm uses variable count to store the number of
occurrences of event E in the input subtrace (line 4). The function returns the result of the invocation
of the auxiliary function compare, which compares the value of count against the value of param-
eter n using the comparison operation defined by op (which can be “at least”, “at most”, or
“exactly”). The auxiliary function compare, not shown here for space reasons, takes into account
also the case in which op is null, meaning that the function returns true if the value of count is greater
than 0.

3.4.3 Absence
The definition of function checkPatternAbsence (see Algorithm 10) checks whether an ab-
sence pattern holds on a given trace segment. Likewise function checkPatternExistence, the
function first retrieves parameters from the input subtrace: the event name E, the comparison operator
op, and the threshold of the number of event occurrences n (lines 1–3).

The major part of the function is an if-then-else statement which checks the two forms of absence
pattern respectively. In the case of the traditional absence pattern (i.e., “never E”), the function
iterates through the input subtrace to check whether there is any occurrence of event E (lines 5–6).
The function returns false if an occurrence of event E is found in the loop (line 6); otherwise it
returns true (line 7). If the pattern contains an comparison operator, variable count is set to the
number of occurrences of event E in the input subtrace (line 9). The function returns the comparison
result of inequality between count and n (line 10).

42



3.4. OCL Functions for Patterns

Algorithm 10: checkPatternAbsence
Input: a trace segment subtrace and an instance of the absence pattern pattern, in the form

“never [op n] E”
Output: true if pattern holds on subtrace; false otherwise

1 E← event name in pattern
2 op← comparison operator of the bound on the number of occurrences of event E
3 n← threshold of the occurrence number of event E
4 if op = null then
5 for elem ∈ subtrace do
6 if elem.event = E then return false
7 return true
8 else
9 count← the number of occurrences of event E in subtrace

10 return count 6= n

3.4.4 Precedence
The definition of function checkPatternPrecedence comes in four variants, to consider the
case whether no time distance is specified between the two blocks of the patterns, and the three cases
with the different comparison operators (i.e., “at least”, “at most”, and “exactly”). In the
rest of this section, we describe the functions defined for checking the four variants of precedence pat-
tern, i.e., checkPatternPrecedenceGeneral (Algorithm 11), checkPatternPreceden
ceAtLeast (Algorithm 13), checkPatternPrecedenceAtMost (Algorithm 14), and check
PatternPrecedenceExactly (Algorithm 15).

Algorithm 11: checkPatternPrecedenceGeneral
Input: a trace segment subtrace and the two events (chains) block1 and block2 of an instance

of precedence pattern of the form “block1 preceding block2”
Output: true if pattern holds on subtrace; false otherwise

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event
3 firstOfBlock2← block2.first().event
4 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
5 for elem ∈ subtrace do
6 e← elem.event
7 t← elem.timestamp
8 if e = firstOfBlock1 then (i1,pt1)← (2, t)
9 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)

10 if i1 = size1 +1 then return true
11 if e = firstOfBlock2 then (i2,pt2)← (2, t)
12 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
13 if i2 = size2 +1 then return false
14 return true

43



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Function checkPatternPrecedenceGeneral takes in input a trace segment and the pa-
rameters of an instance of the precedence pattern: block1, block2. Notice that block1 and block2
can be either an atomic event or a chain of events with optional constraints on the time distances in
between.

This precedence pattern prescribes that each occurrence of block2 must be preceded by an occur-
rence of block1. In practice, we need to check whether there is an occurrence of block1 before the first
occurrence of block2, since this implies that any other possible occurrence of block2 occurring after
the first one is preceded by an occurrence of block1. We report a violation if the algorithm cannot find
an occurrence of block1 before the first occurrence of block2.

The algorithm uses some auxiliary variables: size1 and size2 keep track of the number of events to
match in each block; firstOfBlock1 and firstOfBlock2 contain the event of each block’s first element.
Moreover, the integer tuple (i1,pt1) (respectively (i2,pt2)) is used to determine whether the trace
element being checked is a match of the next event in block1 (respectively, block2). More specifically,
element i1 (respectively, i2) stores the position within block1 (respectively, block2) of the next event
to be matched; element pt1 (respectively, pt2) stores the timestamp of the previous trace element
matched at block1[i1−1] (respectively, block2[i2−1]).

The function contains a loop that iterates through all the elements of the input subtrace, trying to
match each element with block1[i1] (lines 8–10) and with block2[i2] (lines 11–13). As for matching
block1, if the current trace element matches the first event of block1 (line 8), the variable i1 is set to 2
and pt1 is updated with the current timestamp. Otherwise, if the next event of block1 to be matched
is not the first, an auxiliary function match is called to match the event defined at i1.

Algorithm 12: match
Input: an events chain block, a tuple (i, pt) of which i (i > 1) stores the position (within block)

of the event to be checked, pt stores the timestamp of the previous trace element if it
was a match for block[i−1], and a trace element (e, t) to be matched with block[i]

Output: (i+1, t) if the trace element is a match for block[i]; (1,0) otherwise
1 if e = block[i].event then
2 op← block[i].timeDistance.op
3 t′← pt+block[i].timeDistance.value
4 if compare(t, op, t′) then (i,pt)← (i+1, t)

5 else (i,pt)← (1,0)
6 return (i, pt)

Function match takes in input five parameters: an events chain block, two integer parameters i
and pt, of which i (i > 1) stores the position (within block) of the event to be checked and pt stores the
timestamp of the previous trace element (if it was a match for block[i− 1]), and the two parameters
of a trace element (e, t) to be matched with block[i]. The function updates the tuple (i,pt) if the input
element is a match for block[i]; or else it sets the tuple to (1,0). More specifically, if the current
element is an occurrence of the event defined at block1[i1] (with i1 being greater than 1) (line 1), and
if the constraint on the distance (if defined3) from the previous event at block1[i1−1] holds (line 4),

3The pseudocode for dealing with the case when the distance between block elements is not defined has been omitted

44



3.4. OCL Functions for Patterns

variable i1 is incremented and variable pt1 is updated with the timestamp of current trace element
(line 4). Otherwise, the tuple (i1,pt1) is reset on line 5. Note that function match will be reused in
the following functions.

At line 10 of function checkPatternPrecedenceGeneral, if the matched event is the last
event of block1, namely, an occurrence of block1 has been found preceding any possible occurrence
of block2, the algorithm then stops and returns with a positive result. Within each single iteration
of the loop, the algorithm also checks whether the current trace element is part of an occurrence of
block2 (lines 11–13). If the occurrence of the first event of block2 is detected (line 11), the variable i1
is set to 2 and pt1 is updated with the current timestamp. Otherwise the tuple (i2,pt2) is updated by
calling function match. In accordance with the semantics of the pattern, a violation is reported when
an occurrence of block2 is fully matched (line 13). The algorithm returns true (line 14) when there
is no violation found in the loop.

Algorithm 13: checkPatternPrecedenceAtLeast
Input: a trace segment subtrace and the parameters of an instance of precedence pattern of the

form “block1 preceding at least n tu block2”: two events (chains) block1
and block2, and a threshold n of the time distance between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event
3 firstOfBlock2← block2.first().event
4 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
5 flag1← true
6 for elem ∈ subtrace do
7 e← elem.event
8 t← elem.timestamp
9 if flag1 then

10 if e = firstOfBlock1 then (i1,pt1)← (2, t)
11 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
12 if i1 = size1 +1 then flag1← false

13 if e = firstOfBlock2 then
14 if flag1 ‖ t < pt1 +n then (i2,pt2)← (2, t)
15 else return true
16 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
17 if i2 = size2 +1 then return false
18 return true

Function checkPatternPrecedenceAtLeast takes in input a trace segment and the pa-
rameters of an instance of the precedence pattern: block1, block2, and n, the threshold of the time
distance between them. The strategy of this function is likewise the previous one, except that it needs
to also check whether the time distance from the first occurrence of block1 to the first occurrence of

for simplicity.

45



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

block2 is more than n. Hence, a violation is reported either when there is no occurrence of block1
before the first occurrence of block2 or if the distance between the two blocks is less than n.

Apart from the auxiliary variables used in the previous function, we introduce an additional
boolean variable flag1 (line 5), which changes from true to false when the first occurrence of
block1 is fully matched, i.e., all its individual events have been matched. In lines 9–12, while flag1 is
true, the algorithm checks whether the current element of the input subtrace is part of an occurrence
of block1. The major code is the same as the corresponding part of the previous function; however,
instead of stopping with a positive result, the loop continues by setting the variable flag1 to false
(line 12) when the matched event is the last event of block1. As for matching block2, if the occurrence
of the first event of block2 is detected (line 13), there are two cases that may lead to a violation. Either
block1 has not been fully matched yet (i.e., variable flag1 is true) or it has been fully matched but the
timestamp of current trace element (that matches the first element of block2) violates the constraint
on the distance between block1 and block2. If one of these two conditions holds, the algorithm goes
on (line 14) to match4 the rest of block2 (line 16), since the current element might actually not be part
of a whole instance of block2. If both of these conditions are not satisfied (line 15), it means that there
is no violation, i.e., the first block has been fully matched and the distance constraint between the two
blocks is satisfied; hence, there is no need to match5 the remainder of block2 and the algorithm returns
true. Otherwise the algorithm invokes function match to match the current element with block2[i2]
(line 16). The function reports a violation when block2 is fully matched (line 17); otherwise, it returns
true in the end (line 18).

The input of function checkPatternPrecedenceAtMost (Algorithm 14) is the same as
function checkPatternPrecedenceAtLeast. This function checks whether there is an oc-
currence of block1 within n time unit(s) prior to the occurrence of block2. The brute-force checking
algorithm demands tracing each occurrence of block2 and checking whether the distance from the
nearest occurrence of block1 is no more than n. In this function, our strategy is to only examine the
occurrences of block2 that may raise violation and discontinue the matches for possible occurrences
of block2 when the time distance constraint “at most n tu” is already fulfilled. Hence in the
auxiliary variables, we introduce criticalInstant to enable measuring the distance between the latest
occurrence of block1 and a matched occurrence of the first event of block2.

Each iteration of the loop consists of two portions, to check whether the current trace element
is part of an occurrence of block1 (lines 9–13) and/or an occurrence of block2 (lines 14–16). The
function uses a duplicate algorithm for function checkPatternPrecedenceGeneral to match
each element with block1 (lines 9–10). If the matched event is the last of block1 (line 11), the variable
criticalInstant is set to the sum of the timestamp of current element and n (line 12), and the tuple
(i1, pt1) is reset (line 13). As for matching block2, if the current trace element is a match for the first
event of block2, and only if the timestamp of the element is greater than the value of criticalInstant
(line 14), the tuple (i2, pt2) is set to (2, t). That is, the algorithm only tries to match the occurrences of
block2 which may be in violation of the constraint “at most n tu”. Otherwise if i2 is greater than
1, function match is called to match block2[i2]. If the matched event is the last of block2, the function
reports a violation (line 16). If there is no violation detected in the loop, the algorithm returns true

4Notice that in this case a violation is reported only if block2 is fully matched (line 17).
5This is derived from the formal semantics of the preceding operator, in which the match of the first block, at the

proper time distance, is defined as the consequent of the logical implication that formalizes the semantics of the operator.

46



3.4. OCL Functions for Patterns

Algorithm 14: checkPatternPrecedenceAtMost
Input: a trace segment subtrace and the parameters of an instance of precedence pattern of the

form “block1 preceding at most n tu block2”: two events (chains) block1
and block2, and a maximum n of the time distance between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event
3 firstOfBlock2← block2.first().event
4 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
5 criticalInstant← 0
6 for elem ∈ subtrace do
7 e← elem.event
8 t← elem.timestamp
9 if e = firstOfBlock1 then (i1,pt1)← (2, t)

10 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
11 if i1 = size1 +1 then
12 criticalInstant← t+n
13 (i1,pt1)← (1,0)

14 if e = firstOfBlock2 && t > criticalInstant then (i2,pt2)← (2, t)
15 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
16 if i2 = size2 +1 then return false
17 return true

(line 17) at the end of the function.

Function checkPatternPrecedenceExactly (Algorithm 15) checks whether each occur-
rence of block2 is preceded by an occurrence of block1, with an exact distance n. The key of this
algorithm is to keep the timestamps of all occurrences of block1 that may satisfy the distance con-
straint and fulfilling the distance constraint when the first event of block2 is detected. To enable this
evaluation, We introduce variable criticalInstants (line 5) to store the timestamps and initialize it to
an empty list.

The major body of the function is still a loop that checks whether each trace element of the input
subtrace is part of an occurrence of block1 (lines 9–13) and/or an occurrence of block2 (lines 14–
18). After trying to match the current trace element with block1 (lines 9–10), if block1 is already
fully matched (line 11), the sum of the timestamp of current element and n is appended to variable
criticalInstants. When the first event of block2 is detected (line 15), if the timestamp of current
element is included in criticalInstants, the function removes those items that are beyond the distance
n from criticalInstants; otherwise, the tuple (i2,pt2) is set to (2, t). Function match is called for
matching the current trace element with block2[i2] if i2 is greater than 1. A violation is reported when
an occurrence of block2 is detected (line 18). If there is no violation reported in the loop, the function
returns true in the end (line 19).

47



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Algorithm 15: checkPatternPrecedenceExactly
Input: a trace segment subtrace and the parameters of an instance of precedence pattern of the

form “block1 preceding exactly n tu block2”: two events (chains) block1
and block2, and the exact time distance n between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event
3 firstOfBlock2← block2.first().event
4 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
5 criticalInstants← []
6 for elem ∈ subtrace do
7 e← elem.event
8 t← elem.timestamp
9 if e = firstOfBlock1 then (i1,pt1)← (2, t)

10 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
11 if i1 = size1 +1 then
12 criticalInstants.append(t+n)
13 (i1,pt1)← (1,0)

14 if e = firstOfBlock2 then
15 if t ∈ criticalInstants then criticalInstants←{t′ | t′ ∈ criticalInstants && t′ > t}
16 else (i2,pt2)← (2, t)

17 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
18 if i2 = size2 +1 then return false
19 return true

3.4.5 Response
In the previous subsection, we have described the functions that check the four variants of the prece-
dence pattern on a given trace segment. Likewise, function checkPatternResponse invokes
one of four auxiliary functions to accomplish the check of a response pattern, which may contain
no constraint on the time distance between the two blocks, or use one of the three comparison op-
erators (i.e., “at least”, “at most”, and “exactly”) in the constraint. In the rest of this sec-
tion, we present the four auxiliary functions checkPatternResponseGeneral (Algorithm 16),
checkPatternResponseAtLeast (Algorithm 17), checkPatternResponseAtMost (Al-
gorithm 18), and checkPatternResponseExactly (Algorithm 19).

Function checkPatternResponseGeneral takes in input a trace segment and the parame-
ters of an instance of a response pattern: block1, block2, and checks whether all occurrences of block2
are followed by an occurrence of block1. Likewise function checkpatternprecedenceplain,
the algorithm uses a set of similar auxiliary variables: size1 and size2 keep track of the number of
events to match in each block; firstofblock1 and firstofblock2 contain the event of each block’s first el-
ement; the integer tuple (i1,pt1) (respectively (i2,pt2)) is used to determine whether the trace element
being checked is a match of the next event in block1 (respectively, block2). Moreover, we designate
variable result as the current result of the check (line 4), which is initialized to true, and is set to
false (respectively true) when an occurrence of block2 (respectively block1) is found.

48



3.4. OCL Functions for Patterns

Algorithm 16: checkPatternResponseGeneral
Input: a trace segment subtrace and the two events (chains) block1 and block2 of an instance

of response pattern of the form “block1 responding block2”
Output: true if pattern holds on subtrace; false otherwise

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
4 result← true
5 for elem ∈ subtrace do
6 e← elem.event
7 t← elem.timestamp
8 if e = firstOfBlock2 then (i1,pt1)← (2, t)
9 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)

10 if i2 = size2 +1 then
11 (i2,pt2)← (1,0)
12 result← false

13 if !result then
14 if e = firstOfBlock1 then (i1,pt1)← (2, t)
15 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
16 if i1 = size1 +1 then
17 (i1,pt1)← (1,0)
18 result← true

19 return result

The major body of function checkpatternresponseplain is a loop that iterates through
the input subtrace to match each element with block2 (lines 8–12) and with block1 (lines 13–18). In
the first portion of each iteration, if the current trace element matches the first event of block2, the
variable i2 is set to 2 and pt2 is updated with the current timestamp (line 8); otherwise, if i2 is greater
than 1, we invoke the auxiliary function match to match the trace element with the event defined at
block2[i2], in consideration of a possible constraint defined on the distance from the previous event at
block2[i2−1]) (line 9). If the matched event is the last event of block2 (line 10), the tuple (i2,pt2) is
reset and variable result is set to false. That is, the result of the check will remain negative unless
an occurrence of block1 is found.

Hence, within each single iteration of the loop, if variable result is false (line 13), the algorithm
also checks whether the current trace element is part of an occurrence of block1 (lines 14–18). If the
occurrence of the first event of block2 is detected, the variable i1 is set to 2 and pt1 is updated with
the current timestamp (line 14). Otherwise if i2 is greater than 1, function match is called to check
whether the current trace element is a match for block1[i1]. If block1 is fully matched (line 16), the
tuple (i1,pt1) is reset and variable result is set to true.

After checking the pattern on the input subtrace in the loop, the algorithm returns the value of
variable result (line 19).

Given a trace segment, function checkPatternResponseAtLeast (Algorithm 17) checks

49



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Algorithm 17: checkPatternResponseAtLeast
Input: a trace segment subtrace and the parameters of an instance of response pattern of the

form “block1 responding at least n tu block2”: two events (chains) block1
and block2, and a threshold n of the time distance between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
4 criticalInstant← 0
5 result← true
6 for elem ∈ subtrace do
7 e← elem.event
8 t← elem.timestamp
9 if e = firstOfBlock2 then (i2,pt2)← (2, t)

10 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
11 if i2 = size2 +1 then
12 (i2,pt2)← (1,0)
13 criticalInstant← t+n
14 result← false

15 if !result then
16 if e = firstOfBlock1 && t >= criticalInstant then (i1,pt1)← (2, t)
17 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
18 if i1 = size1 +1 then
19 (i1,pt1)← (1,0)
20 result← true

21 return result

whether there is an occurrence of block1 following all occurrences of block2, fulfilling the constraint
“at least n tu” on the distance between each pair of occurrences of the two blocks. The func-
tion takes in input a trace segment subtrace, the parameters of an instance of a response pattern:
block1, block2, and the threshold n of the time distance between the two blocks.

In addition to the previous algorithm, this function introduces variable criticalInstant (line 4) to
help check the fulfillment of the distance constraint “at least n tu” when an occurrence of
block1 is detected, while variable result is false. The strategy of this function is likewise function
checkPatternResponseGeneral, except for two differences. In each iteration, when block2
is fully matched (line 11), variable criticalInstant is set to the sum of the timestamp of current trace
element and n (line 13), apart from other changes. The variable criticalInstant is then used to assess
the constraint “at least n tu” when the first event of block1 is matched. More specifically, the
process of matching block1 proceeds only is the timestamp of the trace element is also confirmed no
smaller than criticalInstant (line 16). This additional guard ensures that the current result of the check
is set to true (line 20) only if there exists such an occurrence of block1 that fulfills the constraint on
the distance from the closest occurrence of block2. The algorithm returns the value of variable result
(line 21), if there is no violation reported in the loop.

50



3.4. OCL Functions for Patterns

Algorithm 18: checkPatternResponseAtMost
Input: a trace segment subtrace and the parameters of an instance of response pattern of the

form “block1 responding at most n tu block2”: two events (chains) block1
and block2, and a maximum n of the time distance between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
4 criticalInstant← 0
5 result← true
6 for elem ∈ subtrace do
7 e← elem.event
8 t← elem.timestamp
9 if result then

10 if e = firstOfBlock2 then (i2,pt2)← (2, t)
11 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
12 if i2 = size2 +1 then
13 (i2,pt2)← (1,0)
14 criticalInstant← t+n
15 result← false

16 else
17 if e = firstOfBlock1 then
18 if t <= criticalInstant then (i1,pt1)← (2, t)
19 else return false
20 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
21 if i1 = size1 +1 then
22 (i1,pt1)← (1,0)
23 result← true

24 return result

The definition of function checkPatternResponseAtMost (Algorithm 18) describes the
procedure of checking whether there exists an occurrence of block1 following each occurrence of
block2, while the distance between each of them is no shorter than n. The algorithm uses the same set
of variables as function checkPatternPrecedenceAtLeast, but their strategies differ due to
the different semantics of the two patterns.

In the loop of the algorithm, we try to find a new occurrence of block2 while the variable result is
true (lines 9–15); otherwise, we try to find a valid occurrence of block1 (lines 16–23) in response to
the marked occurrence of block2. The reason behind this algorithm is the fact that the distances from
all the occurrences of block2 (if exist) after a matched occurrence of block2 are as well shorter than n
with respect to a valid occurrence of block1. Hence, if the variable result is true (line 9), the algo-
rithm uses the same procedure (with respect to function checkPatternPrecedenceAtLeast)
to check if the current trace element is part of an occurrence of block2 (lines 10–15). Otherwise, if the
current trace element is a match for the first event of block1, the algorithm proceeds if the timestamp

51



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

of current element is no greater than criticalInstant (line 18); or else it returns false (line 19), to
indicate that the distance between the marked occurrence of block2 and the next possible occurrence
of block1 is in violation of the constraint on the distance between the two blocks (i.e., “at most
n tu”). If there is no violation of the distance constraint, the variable result remains false until
a valid block1 is fully matched (line 23). If there is no violation reported in the loop, the function
returns the value of variable result (line 24).

Algorithm 19: checkPatternResponseExactly
Input: a trace segment subtrace and the parameters of an instance of response pattern of the

form “block1 responding exactly n tu block2”: two events (chains) block1
and block2, and the exact time distance n between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
4 criticalInstants← []
5 for elem ∈ subtrace do
6 e← elem.event
7 t← elem.timestamp
8 if e = firstOfBlock2 then (i2,pt2)← (2, t)
9 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)

10 if i2 = size2 +1 then
11 (i2,pt2)← (1,0)
12 criticalInstants.append(t + n)

13 if criticalInstants.notEmpty() then
14 if e = firstOfBlock1 then
15 if t = criticalInstants.first() then (i1,pt1)← (2, t)
16 else return false
17 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
18 if i1 = size1 +1 then
19 criticalInstants.remove(1)
20 (i1,pt1)← (1,0)

21 return criticalInstants.isEmpty()

Function checkPatternResponseExactly (Algorithm 19) defines the algorithm that checks
whether each occurrence of block2 is followed by an occurrence of block1, with an exact time distance
n. We store the timestamps of all the occurrences of block2 in variable criticalInstants and assess the
fulfillment of the constraint “exactly n tu” whenever an occurrence of the first event of block1
is detected.

In the function, we iterate through the input subtrace to check whether its trace element is part
of an occurrence of block2 (lines 8–12) and/or an occurrence of block1 (lines 15–20). The code for
matching a trace element with block2 (lines 8–9) is identical to the corresponding part of the previous
function. If the matched event is the last of block2 (line 10), besides resetting the tuple (i2,pt2) to

52



3.5. The Approach at Work

(1,0), the algorithm also appends the sum of the timestamp of the matched event and n to the list
criticalInstants. Notice that in this function we use the emptiness of the list criticalInstants instead of
a boolean variable to indicate the current result of the check. Unless the list is empty (line 13), we try
to match the current trace element with block1 (lines 14–17). If the trace element is an occurrence of
the first event of block1 (line 14), if its timestamp is equal to the first of the variable criticalInstants,
the pointer i1 increments and pt1 is set to the timestamp of the trace element (line 15); otherwise a
violation is reported (line 16) to indicate there is no possible occurrence of block1 which can fulfill the
constraint “exactly n tu”. Otherwise if i1 is greater than 1, function match is called to check
whether the current trace element is a match for block1[i1] (line 17). If the matched event is the the
last of block1 (line 18), namely, if an occurrence of block1 has been found following the first of the
marked occurrences of block2 with the exact time distance n, the first item of variable criticalInstants
is removed (line 19) and the tuple (i1,pt1) is reset to (1,0). If there is no violation reported in the
loop, the function returns the emptiness of the list criticalInstants (line 21).

3.5 The Approach at Work
We now show how the approach works on a simple example. Consider the trace shown in Figure 3.4
and the property “Event X shall happen at least twice before the third occurrence of event Y ”, which
can be expressed in TemPsy as “before 3 Y eventually at least 2 X”, using a before
scope combined with an existence pattern.

X
2

A
6

B
10

Y
16

Y
20

X
22

X
26

C
30

C
34

Y
38

X
40

Figure 3.4: An event trace on which to evaluate the property described in Section 3.5; events are
above the line, timestamps below

Checking this property on the trace using our model-driven approach is reduced to the evaluation
of the OCL invariant shown in Figure 3.3; this evaluation goes as follows.

After extracting the scope and pattern from the property and assigning them to variables scope and
pattern (line 3 in Figure 3.3), function applyScopeBefore (detailed in Algorithm 1) is invoked
to select the sub-traces determined by the parameters of scope. In this example, parameter m is 3, the
event name X is “Y”, and parameters op and n are undefined because the scope has no constraint on
the time distance from the scope boundary.

The statement at line 7 of Algorithm 1 will determine the timestamp of the third occurrence of
event Y (38 in this case) and assign it to variable t. Since the parameter op is undefined, the case
statement at line 17 of the algorithm will be executed, selecting the sub-trace containing events with a
timestamp less than or equal to 38, i.e., the sub-trace having the event X at timestamp 2 as first event
and the event Y at timestamp 38 as last event. This sub-trace is the only element contained in the list
returned by Algorithm 1.

The evaluation of the OCL invariant shown in Figure 3.3 continues with the evaluation of the ex-
pression subtraces->forAll(subtrace | checkPatternExistence (subtrace,
pattern)); in this case, variable subtraces contains the list of sub-traces returned by function

53



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

applyScopeBefore, as discussed above. Function checkPatternExistence will be in-
voked once (because list subtraces contains only one element), taking in input the sub-trace and
variable pattern, to check the pattern over the sub-trace. In this example, for Algorithm 9, the pa-
rameter corresponding to the event name E is “X”, the comparison operator op is “at least”, and the
parameter n is 2. The execution of the statement at line 4 in Algorithm 9 will yield 3 in the variable
count, since there are three occurrences of event X in the input sub-trace. Afterwards, the value of
count is compared to the parameter n using the comparison operator op; in this case, the algorithm
will return true (since 3 > 2), indicating that the property is satisfied on this sub-trace.

Since there are no more sub-traces on which to apply function checkPatternExistence,
the evaluation of the invariant will return true, indicating that the input property is not violated by the
trace.

3.6 Tool Implementation
We have implemented TEMPSY-CHECK, our model-driven approach to offline trace checking of
TemPsy properties, following the flowchart shown in Figure 3.2. The TEMPSY-CHECK tool is pub-
licly available at http://weidou.github.io/TemPsy-Check.

TEMPSY-CHECK takes in input an instance of class Trace in the conceptual model for execution
traces (Figure 3.1) and an instance of class TemPsyExpression corresponding to the non-terminal
〈TemPsyExpression〉 of TemPsy’s grammar (Figure 2.2). Both the models for execution traces and the
TemPsy language are represented as Ecore models. More specifically, the domain-specific language
TemPsy has been defined using the Xtext framework [Eclipse, 2015b] and the Ecore model of the
DSL has been derived from its Xtext definition. We leveraged the code generation facility provided
by the Eclipse Modeling Framework (EMF) to generate the Java implementation of the Ecore models.

In the implementation, we have developed file readers for loading trace instances and TemPsy
expressions. TEMPSY-CHECK can load trace instances from log files either in CSV or XMI format;
it can be extended to support other formats thanks to its design following the Strategy Pattern. The
tool takes in input a list of TemPsy expressions (defined using the textual notation shown in Fig. 2.2)
and converts them into an XMI-based format to load at run time. Moreover, we have developed a
Java class ConstraintFactory to help build OCL constraints corresponding to the input TemPsy
expressions. In the OCL constraints, we use those auxiliary OCL functions that implement the al-
gorithms described in the previous subsections, to check the input TemPsy expressions on the trace
instance (see also Section 3.2). The evaluation of the OCL invariants is done using the OCL checker
included in Eclipse OCL [Eclipse, 2015a].

3.7 Evaluation
In this section we report on the evaluation of TEMPSY-CHECK. The evaluation focuses on the scal-
ability of the tool, to assess the relationship between the time taken to check a property on a trace
and the structural properties of the trace (e.g., length, distribution of events) and the type of property
to check. We also compare the performance of TEMPSY-CHECK with a state-of-the-art alternative
technology.

54

http://weidou.github.io/TemPsy-Check


3.7. Evaluation

3.7.1 Experiment settings
We have conducted our evaluation using a benchmark consisting of a subset of the properties extracted
from the requirements specification documents of the eGovernment application developed by our
partner, described in Section 2.6.2. Out of the 47 properties documented in the case study, we left
out of the benchmark the nine properties using the after-until pattern. Properties of this type can be
rewritten using the between-and scope, possibly in conjunction with an after scope: for this reason,
they would not have provided additional insights to our scalability analysis. The 38 properties used
for the evaluation are listed in a sanitized form in Table 3.1. The actual textual description of each
property has been omitted for confidentiality reasons; for each property we only detail its structure in
terms of scope + pattern. The events involved in the property (e.g., “a citizen requests a certificate”)
are denoted using uppercase letters.

These properties have been checked on synthesized traces. We use synthesized traces instead of
real ones because: 1) based on our experience, real traces are often inadequate to cover a large range of
trace lengths and a variety of properties; 2) we wanted to have great diversity in terms of occurrences
of patterns in the traces, while being able to control this diversity; 3) real traces are valuable to assess
fault detection capabilities, while in our case we focus on the scalability of the approach; 4) if we had
used real traces, they could not be shared for forming a public benchmark, even when sanitized. By
using synthesized traces we are able to control in a systematic way the factors (such as trace length,
sub-trace(s) length and position, frequency and distance of events) that could impact the execution
time for a specific type of property. At the same time, we are also able to randomly set other factors,
to avoid any bias.

To synthesize these traces we implemented a trace generator program. This program allows for
generating diverse (in terms of size, patterns, scopes, event positions and frequency) and realistic
traces, without introducing bias. The generator takes in input a property, the desired length of the
trace to generate and additional parameters depending on the type of property given in input and the
factors one wants to control. To determine the position in the trace of the events occurring in the
input property, the generator takes into account the temporal and timing constraints prescribed by the
semantics of the scope and the pattern used in the property. Positions in the trace that are deemed
not relevant for the evaluation of the property are filled with a dummy event. The details of the trace
generation strategy depend on the scope and pattern used in the properties and are discussed in the
next subsections. As an additional contribution of the thesis, we also make available in the TEMPSY-
CHECK GitHub repository the artifacts used in the evaluation, to contribute to the building of a public
repository of case studies for evaluating trace checking/run-time verification procedures.

The next three subsections report on the checking of properties using, respectively, the globally,
before/after, and between-and scopes. For each group of properties we first describe the trace genera-
tion strategy and then present and discuss the results. The section ends with a discussion of the results
and of the threats to validity. Notice that out of the three types of scope considered for the evaluation,
the properties using a globally scope represent the most challenging in terms of scalability, since the
semantics of this scope guarantees that the pattern (used in the property to check) will be evaluated
through the entire length of the trace.

Moreover, to assess scalability, we also need a baseline of comparison. Such baseline should be
the best available tool that can be considered an alternative to TEMPSY-CHECK. We identified such a

55



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Table 3.1: TemPsy properties used for the evaluation

P1: globally always A
P2: globally never B
P3: globally eventually at least 2 A
P4: globally eventually at most 3 A
P5: globally A responding at most 1000 tu B
P6: globally A responding exactly 1000 tu B
P7: globally A preceding at most 6000 tu B
P8: globally A preceding at least 100 tu B
P9: globally A preceding exactly 100 tu B
P10: globally A, B preceding at least 1000 tu C, D
P11: globally A responding at least 1000 tu B, C
P12: globally A responding B
P13: before A eventually B
P14: before 3 A eventually at least 2 B
P15: before 2 A never B
P16: before A B responding at most 3000 tu C
P17: before A at least 1000 tu B responding at least 1000 tu C
P18: before A B, # at most 6000 tu C preceding D
P19: before 3 A B, # at least 1000 tu C preceding D
P20: before A B preceding C
P21: after A at most 5000 tu eventually B
P22: after A always B
P23: after 2 A exactly 5000 tu eventually B
P24: after A B responding at least 1000 tu C
P25: after A B preceding at most 3000 tu C, D
P26: after 2 A at most 3000 tu B preceding C, D
P27: after 2 A never B
P28: after A at most 1000 tu B responding at most 10 tu C
P29: after A B preceding at least 2000 tu C
P30: after A eventually at most 6 B
P31: after 2 A at least 5000 tu eventually B
P32: between A and B always C
P33: between A at least 1000 tu and B at least 500 tu never C
P34: between A and B C responding at least 1000 tu D
P35: between A and B never exactly 2 C
P36: between 3 A and B always C
P37: between A at least 1000 tu and 2 B C preceding at least 1000 tu D
P38: between 2 A and 2 B eventually at most 10 C

tool among the participants to the “offline monitoring” track of the first international Competition on
Software for Runtime Verification [Bartocci et al., 2014] (CSRV 2014), held in September 2014 as a
satellite event of the 14th International conference on Runtime Verification (RV’14). Out of the four
tools (RITHM2 [Navabpour et al., 2013], MONPOLY [Basin et al., 2012], STEPR, QEA [Barringer
et al., 2012]) qualified for the final round of the competition, RITHM2 and STEPR were not publicly

56



3.7. Evaluation

available6 at the time of writing. Between the remaining two, we chose MONPOLY over QEA because
only the former supports a real specification language (MFOTL, a metric first-order temporal logic)
that is conceptually close to TemPsy. On the other hand, QEA does not support any input language
and uses an automata-based formalism: the user has to write a Java program that builds the automaton
corresponding to the property to check. To perform the comparison with MONPOLY, we manually
translated the properties into MFOTL formulae; these formulae are also available in the TEMPSY-
CHECK GitHub repository. We remark that our goal, in this comparison, is not to fare better than
existing technology, but to verify that an MDE approach to offline trace checking is viable from a
scalability standpoint.

The results reported in this section have been measured on a desktop computer with a 3 GHz Intel
Dual-Core i7 CPU and 16GB of memory, running Eclipse DSL Tools v. 4.6.0M3 (Neon Milestone
3), JavaSE-1.7 (Java SE v. 1.8.0_25-b17, Java HotSpot (TM) 64-Bit Server VM v. 25.25-b02, mixed
mode), Eclipse OCL v. 6.0.1, and MONPOLY v. 1.1.6. All measurements reported correspond to the
average value over 100 runs of the check procedure (on the same trace, for the same property).

3.7.2 Properties using the globally scope
Properties defined with the globally scope are the most important for assessing the scalability of
our approach with respect to the trace length. Indeed, the semantics of this scope requires the tool
to check the property pattern through the entire trace, while in the case of the other scopes, property
patterns are checked only on some segments of the input trace (i.e., on sub-traces). In our collection of
properties there are 12 using the scope globally, in combination with various patterns; they correspond
to properties P1–P12 listed in Table 3.1.

3.7.2.1 Research Questions

For this type of properties, given that they are the most challenging in terms of scalability, we address
the following research questions:

RQ-G1) What is the relation between the execution time of the trace checking procedure and the
length of a trace?

RQ-G2) What are the types of pattern most taxing on the execution time?

RQ-G3) How does TEMPSY-CHECK compare with MONPOLY in terms of execution time?

3.7.2.2 Trace generation strategy

In the case of the globally scope the generation of the trace is determined only by the semantics of the
pattern used in the property.

For the universality pattern, we repeat the event occurring in it through the entire trace.
6The first version of RITHM is available but it only supports run-time verification of C programs. As for STEPR, no

reference is available in the competition report [Bartocci et al., 2014] or online.

57



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

For the existence pattern, we first determine the number n of occurrences to generate, based on
the bound indicated in the property. If the bound is expressed as “at least m” or “at most
m” we randomly generate n with a uniform distribution on the range [m, trace length], respectively
[0,m]; if the bound is expressed as “exactly m”, n is set to m. Afterwards, we randomly generate
(with a uniform distribution on the range [1, trace length]) n positions in the trace where to put the
occurrences of the event specified in the property.

For the absence pattern, if the property has the form never A, the trace is generated without
any occurrence of the event A. If the property has the form never exactly m A, we randomly
generate n with a uniform distribution on the range [0, . . . ,m−1,m+1, . . . , trace length].

In the case of a property containing a precedence or response pattern, we generate a number of
occurrences of events (involved in the property) equal to 10% of the length of the trace. This value
has been selected based on the frequency of events observed in the application whose requirements
are expressed through the properties shown in Table 3.1. The simplest case is for a property like
globally B responding at most 10 tu A: assuming a trace length of 1M, we would
generate 50K occurrences of the pattern (i.e., pairs of A and B), for a total of 100K occurrences of A
and B. More complex cases have to take into account the event chains used in the property. For the
distribution of the occurrences of the pattern across the trace we have to consider the distance between
events. For example, for the property aforementioned, each occurrence of the response pattern would
span over at most 10 time units; this is the maximum distance between an occurrence of A and the
corresponding occurrence of B. The number of pattern occurrences to generate and the maximum time
span of each pattern occurrence are the parameters used to randomly allot the pattern occurrences over
the trace, according to a uniform distribution.

3.7.2.3 Evaluation

We run the trace checking procedure for properties P1–P12; each property was checked on ten dif-
ferent traces, with length (i.e., number of events) varying from 100K to 1M. The twelve plots in Fig-
ure 3.5 depict the execution time of TEMPSY-CHECK (denoted by ) and of MONPOLY (denoted by )
for each of the properties P1–P12, for different trace lengths. The execution time for both tools has
been measured using the time Unix command.

We answer RQ-G1 by observing that the time taken by TEMPSY-CHECK ranges from about one
hundred milliseconds to a bit more than two seconds, and increases linearly with the length of the
trace, depending on the type of property. To answer RQ-G2, the results show that the properties
more taxing on the execution time are those with a response or precedence pattern (e.g., P5, P6, P7,
P9, P11). Regarding RQ-G3, we observe that the time taken by MONPOLY ranges from about one
hundred milliseconds to a bit less than eight seconds, and is also linear with respect to the length of
the trace. MONPOLY takes longer for checking properties with a (bounded) existence pattern (e.g.,
P3, P4) and with a precedence pattern that contains a distance constraint of type “at least” (e.g.,
P10). We can answer RQ-G3 stating that, except for the case of properties P3, P4, and P10, the two
tools perform almost similarly, with absolute differences between execution times that are quite small
(less than one second). In the case of properties P3, P4, and P10, TEMPSY-CHECK performs much
better than MONPOLY. A possible explanation for the slower time of MONPOLY for these properties
could be the structure of the corresponding MFOTL formulae, which contain several nested temporal
operators to express the “eventually at least/at most” pattern (P3, P4) and an event chain (P10).

58



3.7. Evaluation

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

500

1,000

1,500

Trace length (·103)

Ti
m

e
(m

s)

(a) P1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
00

500

1,000

1,500

Trace length (·103)
Ti

m
e

(m
s)

(b) P2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(c) P3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

2,000

4,000

6,000

8,000

Trace length (·103)

Ti
m

e
(m

s)

(d) P4

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

1,000

2,000

Trace length (·103)

Ti
m

e
(m

s)

(e) P5

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

1,000

2,000

Trace length (·103)

Ti
m

e
(m

s)

(f) P6
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
00

500

1,000

1,500

2,000

Trace length (·103)
Ti

m
e

(m
s)

(g) P7

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

500

1,000

Trace length (·103)

Ti
m

e
(m

s)

(h) P8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

500

1,000

1,500

2,000

Trace length (·103)

Ti
m

e
(m

s)

(i) P9

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(j) P10

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

00

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(k) P11
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
00

500

1,000

1,500

Trace length (·103)

Ti
m

e
(m

s)

(l) P12

Figure 3.5: Comparison between the execution time of TEMPSY-CHECK ( ) and of MONPOLY ( ) for
properties with the globally scope

The execution times discussed above include not only the time to perform the actual check, but
also the time to parse/load the trace to check7. As shown in Figure 3.6, the average trace loading
time for TEMPSY-CHECK, measured through instrumentation, ranges from 55 ms to 550 ms, growing
linearly for various trace lengths. Notice that for checking a single property on a trace with TEMPSY-
CHECK, the trace loading time can take, for larger traces, from one-fourth to one-third of the total
execution time. Although these values for the trace loading time can seem high, we expect the loading
time not to impact on the total execution time in the case of batch property checking, i.e., checking
multiple properties at the same time on a trace. Checking in batch mode a set of properties, rather
than individual ones, is common in enterprise scenarios in which, for example, the set of properties
to check is decided by the entity that has invoked a business process [Baresi and Guinea, 2005].

To further investigate this aspect, we compared the execution time of TEMPSY-CHECK and MON-
POLY for batch checking ten properties (P3–P12), over ten traces, with length ranging from 1M to
10M. These traces have been obtained by concatenating the traces used for the experiment described
above, and by renaming the events within each trace being concatenated, to avoid name clashes. We

7The trace loading time is not available in the output of MONPOLY.

59



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

200

400

600

Trace length (·103)

Tr
ac

e
lo

ad
in

g
tim

e
(m

s)

Figure 3.6: Trace loading time of TEMPSY-CHECK for traces with various lengths

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Trace length (·106)

E
xe

cu
tio

n
tim

e
(s

)

TEMPSY-CHECK
MONPOLY

Figure 3.7: Comparison of the execution time for the batch checking of ten properties with the glob-
ally scope

executed TEMPSY-CHECK by providing in input the list of the ten properties to check. We executed
MONPOLY by providing in input one formula corresponding to the conjunction of the ten formulae
equivalent to properties P3–P12. Figure 3.7 shows the result of the comparison: the performance of
the two tools are similar for traces of length up to six millions; over this threshold, MONPOLY gets
slower.

3.7.3 Properties using the before/after scope
Properties defined using the before/after scopes, differently from the ones using a globally scope,
have to be checked only on the portion of the trace delimited by the scope boundary. Hence, their
scalability does not relate in a direct way with the length of the trace. Nevertheless, they can help us

60



3.7. Evaluation

assess whether and how the type of property (e.g., the scope used within the property) impacts on the
total execution time. We have checked eight properties with the before scope (properties P13–P20
in Table 3.1) and eleven properties with the after scope (properties P21–P31 in Table 3.1).

3.7.3.1 Research Questions

For this type of properties, to assess how the type of scope used in them impacts on the total execution
time, we address the following research questions:

RQ-BEAF1) What is the relation between the time to compute the boundary of the scope and the
position of the boundary?

RQ-BEAF2) What are the types of scope most expensive to compute?

Notice that we do not compare with MONPOLY since the concept of “scope” is not a first-class object
in MFOTL formulae.

3.7.3.2 Trace generation strategy

As remarked above, for this type of properties the scalability of the checking procedure does not relate
in a direct way with the length of the trace. Hence, for both types of scopes, we fix the length of the
generated trace to 100K. To answer the research questions above, we vary the length of the sub-trace
as determined by the scope boundary, i.e., we vary the position of the boundary event in the trace.
In the case of properties with a before scope, the boundary event is placed in positions from 10K to
100K, with a 10K step increment; similarly, for properties with an after scope, the position of the
boundary event varies from 10K to 90K, with a 10K step increment.

For properties referring to a specific occurrence of an event in their scope part, such as before
3 B. . . or after 4 A. . . , we only control the position of the actual scope boundary (e.g., the
third occurrence of B or the fourth occurrence of A in the examples above). The other previous
occurrences of the boundary event are generated in random positions using a uniform distribution
ove the range [0,position of the boundary] (for properties with a before scope), and over the range
[position of the boundary, trace length] (for properties with an after scope).

The generation of the patterns corresponding to the actual properties follows the steps described
in Section 3.7.2.2.

3.7.3.3 Evaluation

We instrumented TEMPSY-CHECK to report the time taken to compute the boundary of a scope
(i.e., to determine the sub-trace on which to check each property pattern), hereafter referred to as
scope time, as well as the time to check the pattern on the sub-trace, hereafter referred to as pattern
time. More specifically, scope time corresponds to the time taken to evaluate expressions of type
applyScope*S* in Figure 3.3, while pattern time corresponds to the time taken to evaluate ex-
pressions of type checkPattern*P* in Figure 3.3. For each property and trace, we calculated
scope time by subtracting pattern time from the total execution time; we measured pattern time by

61



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(a) P13

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the bound (·103)
Ti

m
e

(m
s)

(b) P14

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(c) P15

10 20 30 40 50 60 70 80 90 10
00

100

200

300

Position of the bound (·103)

Ti
m

e
(m

s)

(d) P16

10 20 30 40 50 60 70 80 90 10
00

100

200

300

400

Position of the bound (·103)

Ti
m

e
(m

s)

(e) P17

10 20 30 40 50 60 70 80 90 10
00

50

100

150

200

Position of the bound (·103)

Ti
m

e
(m

s)

(f) P18

10 20 30 40 50 60 70 80 90 10
00

50

100

150

200

Position of the bound (·103)

Ti
m

e
(m

s)
(g) P19

10 20 30 40 50 60 70 80 90 10
00

50

100

150

200

Position of the bound (·103)

Ti
m

e
(m

s)

(h) P20

Figure 3.8: Scope time and pattern time of TEMPSY-CHECK for checking properties with a before
scope

first replacing the property scope with the globally scope and then checking the new property on the
sub-trace determined by the original scope.

Figure 3.8 and 3.9 show the scope time (denoted by ) and the pattern time (denoted by ) for
checking, respectively, properties P13–P20 (with a before scope) and property P21–P31 (with an after
scope), when varying the position of the scope boundary. Notice that while in the case of a before
scope a higher position of the bound corresponds to a longer length of the sub-trace, in the case of an
after scope a lower position of the bounds corresponds to a longer length.

To answer RQ-BEAF1, we observe from the plots that both in the case of the before scope and
in the case of the after scope, the scope time grows linear with respect to the position of the scope
boundary. This is due to the increase of the length of the sub-trace delimited by the scope boundary.

We answer RQ-BEAF2 by looking at the scope time for properties P17, P21, P23, P26, P28, P31.
These properties are the most taxing in terms of scope time because the scope boundary is defined
with a distance constraint. This is particularly true for the cases in which the boundary is defined
using an “at most” constraint (see P21, P26, and P28).

3.7.4 Properties using the between-and scope
Properties with a between-and scope, similarly to the ones with a before/after scope, are checked on
a portion of trace provided in input. Depending on the variant of this scope, the portion of the trace
on which properties are checked might include one or more segments. The scopes used in properties
P32–P35 can potentially select multiple segments on a trace, while the scopes in properties P36–P38
select exactly one segment on a trace, as determined by the specific event occurrence used in the scope
boundaries (e.g., as in the case of between 3 A and 2 B).

62



3.7. Evaluation

10 20 30 40 50 60 70 80 90
0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(a) P21

10 20 30 40 50 60 70 80 90

0

50

100

150

Position of the bound (·103)
Ti

m
e

(m
s)

(b) P22

10 20 30 40 50 60 70 80 90

0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(c) P23

10 20 30 40 50 60 70 80 90

0

50

100

150

Position of the bound (·103)

Ti
m

e
(m

s)

(d) P24

10 20 30 40 50 60 70 80 90

0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(e) P25

10 20 30 40 50 60 70 80 90
0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(f) P26

10 20 30 40 50 60 70 80 90

0

50

100

150

Position of the bound (·103)

Ti
m

e
(m

s)
(g) P27

10 20 30 40 50 60 70 80 90

0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(h) P28

10 20 30 40 50 60 70 80 90

0

50

100

150

Position of the bound (·103)

Ti
m

e
(m

s)

(i) P29

10 20 30 40 50 60 70 80 90

0

50

100

150

Position of the bound (·103)

Ti
m

e
(m

s)

(j) P30

10 20 30 40 50 60 70 80 90

0

100

200

Position of the bound (·103)

Ti
m

e
(m

s)

(k) P31

Figure 3.9: Scope time and pattern time of TEMPSY-CHECK for checking properties with an after
scope

3.7.4.1 Research Questions

For this type of properties, given the two variants of the between-and scope, we address the following
research questions:

RQ-BA1) For the scope variant that can select multiple segments on the trace, given a fixed length
for the segments, what is the relation between the number of segments and the time to
compute the scope?

RQ-BA2) For the scope variant that can select multiple segments on the trace, given a fixed number of
segments, what is the relation between the length of the segment and the time to compute
the scope?

RQ-BA3) For the scope variant that can select only a single segment, given a fixed length for this
segment, what is the relation between the position of the segment and the time to compute
the scope?

RQ-BA4) For the scope variant that can select only a single segment, given a fixed position of this
segment, what is the relation between the length of the segment and the time to compute
the scope?

63



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

5 10 15 20 25 30 35 40 45 50
0

100

200

300

Number of segments

Ti
m

e
(m

s)

(a) P32

5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

Number of segments
Ti

m
e

(m
s)

(b) P33

5 10 15 20 25 30 35 40 45 50

0

100

200

300

Number of segments

Ti
m

e
(m

s)

(c) P34

5 10 15 20 25 30 35 40 45 50

0

100

200

300

Number of segments

Ti
m

e
(m

s)

(d) P35

Figure 3.10: Scope time and pattern time of TEMPSY-CHECK for checking properties with a
between-and scope (multiple segments, fixed length)

2 3 4 5
0

100

200

Segment length (·103)

Ti
m

e
(m

s)

(a) P32

2 3 4 5
0

100

200

300

400

Segment length (·103)

Ti
m

e
(m

s)

(b) P33

2 3 4 5
0

100

200

300

Segment length (·103)

Ti
m

e
(m

s)

(c) P34

2 3 4 5
0

100

200

Segment length (·103)

Ti
m

e
(m

s)

(d) P35

Figure 3.11: Scope time and pattern time of TEMPSY-CHECK for checking properties with a
between-and scope (fixed number of segments, various lengths)

Notice that also in this case we do not compare with MONPOLY because the concept of “scope” is
not a first-class object in MFOTL formulae.

3.7.4.2 Trace generation strategy

For both types of between-and scope variants, we fix the length of the generated trace to 100K. To
answer RQ-BA1 and RQ-BA2 we consider properties P32–P35. For these properties, we control
two parameters for the trace generation: the length L of each segment selected by the scope and the
number of segments N. By fixing L to 2000, we can split the 100K trace into 50 segments. The
generator varies the number N of actual segments to generate from 5 to 50, with a 5-step increment.
By fixing N to 20, and assuming a minimum length of 2000 for a segment (given the time constraints
in P33), the generator produces traces with segments of length varying from 2000 to 5000, with
1K-step increment.

To answer RQ-BA3 and RQ-BA4 we consider properties P36–P38. For these properties we con-
trol two parameters: the length L′ of the segment and the position P of one of its bounds. By fixing
L′ to 10K, we vary the position of the right bound from position 10K to position 100K with 10K-step
increment, i.e., we vary the position of the segment in the trace. By fixing the position P to 10001,
we can vary L′ from 10000 to 90000, with 10K-step increments.

3.7.4.3 Evaluation

As done above for the case of properties with a before/after scope, we also distinguish between scope
time and pattern time for checking properties with a between-and scope.

64



3.7. Evaluation

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the right bound (·103)

Ti
m

e
(m

s)

(a) P36

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the right bound (·103)

Ti
m

e
(m

s)

(b) P37

10 20 30 40 50 60 70 80 90 10
00

100

200

Position of the right bound (·103)

Ti
m

e
(m

s)

(c) P38

Figure 3.12: Scope time and pattern time of TEMPSY-CHECK for checking properties with a
between-and scope (single segment of fixed length, different positions)

10 20 30 40 50 60 70 80 90

0

100

200

300

Segment length (·103)

Ti
m

e
(m

s)

(a) P36

10 20 30 40 50 60 70 80 90

0

200

400

Segment length (·103)

Ti
m

e
(m

s)

(b) P37

10 20 30 40 50 60 70 80 90

0

100

200

300

Segment length (·103)

Ti
m

e
(m

s)
(c) P38

Figure 3.13: Scope time and pattern time of TEMPSY-CHECK for checking properties with a
between-and scope (single segment, various lengths)

To answer RQ-BA1 we observe the plot in Figure 3.10. The scope time for properties P32–P35
when varying the number of segments (as determined by the scope) on which to check the property
pattern, slightly increases with the number of segments to consider; the higher scope time for property
P33 is due to the presence of a time distance constraint for the (left) scope boundary.

We answer RQ-BA2 by looking at the plot in Figure 3.11. In the case of checking properties
P32–P35 when fixing the number of segments to 20 and varying the segment length from 2000 to
5000, the scope time is almost constant (about 200 ms) for all properties but P33, because of the time
distance constraint for the (left) scope boundary.

The answer to RQ-BA3 can be found by looking at the plot in Figure 3.12. In the case of checking
properties P36–P38 when varying the position of the segment on which the property pattern is checked
and keeping the segment length constant, the scope time increases linearly with respect to the position
of the segment.

We answer RQ-BA4 by observing the plot in Figure 3.13. In the case of checking properties
P36–P38 when varying the length of the segment, the scope time increases linearly with respect to
the length of the segment.

3.7.5 Discussion
The results presented in the previous subsections have shown the feasibility of applying our model-
driven approach for offline trace checking in realistic settings.

65



Chapter 3. Model-driven Offline Trace Checking of Temporal Properties

Our TEMPSY-CHECK tool is a viable technology from a performance standpoint as it can analyze
very large traces (with one million events) in about two seconds. The tool scales linearly with respect
to the length of the input trace to check. Notice that “the input trace to check” can correspond also to
a sub-trace of an actual, larger execution trace. This can be the case for properties referring to events
occurring in time windows (see, for example, the service provisioning patterns presented in [Bianculli
et al., 2012]). In these cases, one can first isolate from the original trace the window of interest and
then feed the latter to our tool.

We have also compared the performance of our implementation to MONPOLY, a comparable,
state-of-art tool. Despite the fact that MONPOLY is a tool that implements a dedicated algorithm [Basin
et al., 2008] for trace checking of temporal logic properties, our TEMPSY-CHECK tool (which relies
on a generalist OCL checker) not only achieves similar results, but in some cases it also performs
better than MONPOLY.

We also remark that writing some of the properties in MFOTL was challenging (despite previous
knowledge of MFOTL), much more than when using TemPsy. This challenge could be overcome
by defining properties in TemPsy and then providing an automatic translation to MFOTL formulae
or, dually, by building a system of property specification patterns on top of MFOTL. In both cases,
one would have satisfied one of our requirements (R1, see Chapter 1) and could have then relied
on MONPOLY for trace checking. While this could be in principle a viable approach, it would not
fulfill another requirement (R2, see Chapter 1), which entails to rely on standard and stable MDE
technology for checking temporal properties. We remark that these requirements are not specific to
this project, but are more general because 1) analysts may not be able to handle the mathematical
background required by temporal logic; and 2) there are many contexts where solutions have to be
engineered by using standardized MDE technologies.

Overall, we can conclude that a model-driven approach to offline trace checking of realistic tem-
poral properties is viable, even on very large traces, and compares favorably with the state of the
art.

3.7.5.1 Threats to validity

The main threat to the validity of the results presented above is the intrinsic presence of errors in the
toolchain we developed. We tried to compensate for this by thoroughly testing the checker with traces
and properties for which the oracle was previously known. Another potential threat is the fact that
we have performed trace checking on synthesized traces. Real execution traces might be different,
in terms of events occurrences and time distances. However, this threat does not affect our research
question on scalability, as we want to analyze the execution time as a function of a number of pa-
rameters (e.g., trace length), while varying randomly other aspects (e.g., position of certain events).
As explained at the beginning of this section, for that purpose, synthesized traces are better than real
ones as they guarantee we have the data to perform our analysis by controlling certain factors and
varying others randomly. Nevertheless, real traces (with faults in the system) could be helpful to as-
sess the cost-benefit of the proposed trace checking procedure; this is out of the scope of this thesis.
Finally, as for the comparison with MONPOLY, we remark that its specification language (MFOTL) is
more expressive than TemPsy (see also Section 2.5), hence the performance of MONPOLY could have
been negatively affected by the more complex implementation needed to support a richer specifica-
tion language. Moreover, the MFOTL properties that we wrote to perform the comparison described

66



3.7. Evaluation

in Section 3.7.2 could be written in a different, but semantically-equivalent form that could lead to
different results. For example, properties P3 and P4 contain several nested operators, which impact
on the checking performance of MONPOLY. We tried to mitigate this aspect by having the MFOTL
formulae written by a person with ten years of experience in formal specification (and verification)
with temporal logics. Furthermore, we believe that in practice, it might be hard anyway for practi-
tioners (with limited background in temporal logic) to find out what is the optimal way to express a
property in MFOTL.

67





Chapter 4

Model-driven Violation Reporting for Trace
Checking

In the previous chapter, we presented a scalable model-driven procedure for checking execution traces
of TemPsy properties. Nevertheless, when a trace is in violation of a TemPsy property, the binary
result (i.e., false) provided by TEMPSY-CHECK does not provide any clue about the reasons for
the violation(s). To complement that procedure, in this chapter, we present TEMPSY-REPORT, a
model-driven approach to systematically collecting violation information from a trace in violation of
TemPsy properties. We also present an interactive visualization tool for navigating and analyzing the
violation information collected by TEMPSY-REPORT.

In the rest of the chapter, we first characterize TemPsy violations in Section 4.1; in Section 4.2
we give an overview of the model-driven approach for collecting violation information from a faulty
trace; we describe how the violation information is collected from the trace with OCL functions
defined on the trace model in Section 4.3; we give a brief introduction of the implementation of
TEMPSY-REPORT in Section 4.4. We conclude the chapter with the description of the visualization
tool for understanding TemPsy violations and the evaluation of the scalability of the TEMPSY-REPORT

tool.

4.1 Characterization of TemPsy Violations
In this section, we characterize the temporal violations that can occur for TemPsy properties. Ac-
cording to the definition of TemPsy patterns, we classify the violations into eight types, as defined
with examples below. We consider an execution trace composed of a list of trace elements which are
delimited by commas and enclosed in a pair of brackets; each trace element is represented as a pair
consisting of the event name and a timestamp.

UNOC UNexpected OCcurrence. This type of violations are triggered by unexpected occurrences
of the event specified in an occurrence pattern, i.e., absence or existence. The absence pattern, by
definition, can be violated by any occurrence of the event specified in the pattern. It is also the case
for the variant (with exactly as the comparison operator) of the absence pattern, when the number
of event occurrences in a trace equals the number specified in the pattern. For the existence pattern out

69



Chapter 4. Model-driven Violation Reporting for Trace Checking

of the four variants, two can be violated by an unexpected occurrence, i.e., the variants that contain
at most or exactly in the constraint on the number of occurrences. For instance, given a trace
[(a,2),(a,3),(a,5)] and a TemPsy property “globally eventually at most 2 a”, the third
trace element is unexpected and hence violates the property.

NSOC No-Show OCcurrence. This type of violations takes place at the trace elements which
should have been occurrences of the event specified in a universality or existence pattern. An NSOC
violation must be reported whenever a trace element does not match the event specified in a univer-
sality pattern. In the case of the existence pattern, when the comparison operator is exactly/at
least or is omitted, an NSOC violation has to be reported if the actual number of occurrences of
the event is less than what specified in the property. For instance, given a trace [(a,2),(b,3),(b,5)]
and a TemPsy property “globally eventually at least 2 a”, an NSOC violation should
be reported after the first trace element, since the number of occurrences of event a is less than two.

NSOR No-Show ORder. This type of violations is triggered when the first block of events does
not occur in accordance with the order defined by an order pattern, i.e., precedence or response. For
instance, if we check property “globally a preceding b” on a trace [(b,2),(a,3),(c,5)], an
NSOR violation should be reported since there is no occurrence of event a before the occurrence of
event b.

WTO Wrong Temporal Order. This type of violations is specific to an order pattern (i.e., prece-
dence or response) that contains a constraint on the time distance between the two blocks specified
in the pattern. In such a pattern, the constraint on the distance between the two blocks is specified
in the form of “[at least | at most | exactly] n tu”; we call n the critical distance.
Given the timestamp t of an occurrence of the second block of a precedence pattern (respectively,
a response pattern), we call instant t − n (respectively, t + n) its critical instant. In general, an or-
der pattern is satisfied when all the the following conditions hold for all occurrences of the second
block: C1) given an occurrence of the second block, there exists one occurrence of the first block
that complies with the order defined in the pattern; C2) given an occurrence of the second block,
there exists one corresponding occurrence of the first block that satisfies the constraint on the distance
between the two blocks (if defined); C3) given an occurrence of the second block, there exists one
corresponding occurrence of the first block that satisfies all the distance constraints within the first
block (if defined). A WTO violation is triggered when C2 fails to hold for an occurrence of the second
block. If the failure of either condition C2 or C3 for an occurrence of the second block correlates with
multiple occurrences of the first block, we only consider the closest one(s) beside the critical instant.
For instance, given a trace [(a,2),(b,6),(a,7),(b,10)(c,15)] and a property “globally a, #at
least 3 tu b preceding at most 2 tu c”, although there are two occurrences of the
first block (i.e., the events chain defined by “a, #at least 3 tu b”) precedes the second block
(i.e., event c), the distances from them to the occurrence of event c are more than 3, which violates
the constraint “at most 2 tu”; thus we report a WTO violation with the offending occurrence of
event c and the second occurrence of the events chain a, b, which is closer to the critical instant 15−2.
For space reasons, we will not use multiple occurrences of the first block in the following examples
unless necessary.

WTC Wrong Temporal Chain. This type of violations is specific to an order pattern that contains at
least one constraint on the time distance between two consecutive events specified in the first block. A

70



4.2. Overview of the Approach

WTC violation is triggered when condition C3 (as defined above) fails to hold for an occurrence of the
second block. For instance, given a trace [(a,2),(b,3),(c,5)] and a property “globally a, #at
least 3 tu b preceding c”, the chain of events a and b does occur before event c, but the
constraint “at least 3 tu” is violated by the time distance between the first two trace elements,
and therefore a WTC violation is triggered.

WTOC Wrong Temporal Order and Chain. This type of violations is specific to an order pattern
that contains not only a constraint on the distance between the two blocks but at least one constraint
on the distance between two consecutive events within the first block. A WTOC violation is triggered
when both conditions C2 and C3 (as defined above) fail to hold for an occurrence of the second
block. For instance, given a trace [(a,2),(b,3),(c,9)] and a property “globally a, #at least
3 tu b preceding at most 2 tu c”, the constraint “at least 3 tu” within the first
block and the constraint “at most 2 tu” between the two blocks are both violated. In this case,
a WTOC violation should be reported instead of WTO or WTC.

LVRI Left Valid and Right Invalid1. This type of violations is specific to an order pattern that
meets the same criteria defined for WTOC. A LVRI is triggered when C2 fails to hold with respect to an
occurrence the second block, and C3 holds for the closest occurrence of the first block on the left of the
critical instant but fails to hold for the closest occurrence of the first block on the right of the critical
instant. For instance, given a trace [(a,2),(b,5),(a,7),(b,8),(c,10)] and a property “globally a,
#at least 2 tu b preceding at most 4 tu c”, though the time distance between the
first occurrence of the pair of event a and b is valid, the constraint “at most 4 tu” between the
two blocks fails to hold with respect to the occurrence of event c; in contrast, the second occurrence
of the first block violates the distance constraint “at least 2 tu” specified in the block, though
it is within 4 time units from the occurrence of the event c; and hence, an LVRI violation should be
reported.

LIRV Left Invalid and Right Valid. This violation type is dual to LVRI, which is triggered when
C2 fails to hold for an occurrence of the second block, and C3 fails to hold for the closest occurrence
of the first block on the left of the critical instant but holds for the closest occurrence of the first block
on the right of the critical instant. For instance, given a trace [(a,2),(b,3),(a,5),(b,8),(c,10)] and
a property “globally a, #at least 2 tu b preceding exactly 4 tu c”, both the
occurrences of the first block violate the constraint “exactly 4 tu” and only the right one con-
forms to the constraint defined within the first block. Hence, an LIRV violation should be reported.

Notice that when condition C2 fails to hold for an occurrence of the second block and C3 fails to hold
for the two closest occurrences of the first block on both sides of the critical instant, we group such
violations into WTOC.

4.2 Overview of the Approach
Our procedure for collecting violation information from a trace in violation of TemPsy properties
is sketched in Figure 4.1, which follows a similar workflow as TEMPSY-CHECK (Figure 3.2). In a

1An occurrence of an events chain that satisfies all the time distance constraints in the chain is referred to as a valid
occurrence, otherwise we call it an invalid occurrence if any of the time distance constraints is violated.

71



Chapter 4. Model-driven Violation Reporting for Trace Checking

regular scenario, our procedure is indeed invoked after the trace checking procedure reports a negative
outcome. Rather than instantiating the models for the trace and TemPsy language from raw data,
TEMPSY-REPORT takes in input the same trace instance and TemPsy expressions. The key step of
the approach is to evaluate an OCL query on the trace instance. The evaluation of this query, which
can be done using standard OCL tools, is semantically equivalent to collecting violation information
from the trace instance with respect to the TemPsy properties provided in input.

Instances of
TemPsyExpression

Instance of 
class trace

Evaluate OCL query
on trace instance

Violation
Information

Figure 4.1: Overview of the approach to violation information collection

1 let property:TemPsy::TemPsyExpression = self.properties->at(P1),
2 subtraces:Sequence(Tuple(begin:Integer, end:Integer)) = P2(property

.scope)
3 in subtraces->iterate(
4 subtrace:Tuple(begin:Integer, end:Integer);
5 result:Sequence(Tuple(begin:Integer, end:Integer, violations:

OclAny)) = Sequence{} |
6 let newViolations:OclAny = P3(subtrace.begin, subtrace.end,

property.pattern) in
7 if newViolations->notempty() then
8 result->append(
9 Tuple{begin:Integer = subtrace.begin,

10 end:Integer = subtrace.end,
11 violations:OclAny = newViolations})
12 else result endif)

Figure 4.2: The template for OCL queries on a trace for collecting violation information with respect
to TemPsy expressions

As shown in Figure 4.2, we have defined a template for various OCL queries on the Trace class,
to collect the violation information from a trace instance with respect to the associated TemPsy expres-
sions, which conceptually corresponds to applying the semantics of the pattern used in the property
on a set of sub-traces, as defined by the scope used in the property. The template contains three place-
holders that are underlined in the “let...in” clauses, i.e., P1, P2, and P3. The placeholder P1 at the
first line represents a positive integer, which is used by the attribute self.properties (through
the function at) to access the the TemPsy property to be investigated. At line 2, we invoke an auxil-
iary function of the form applyScope*S* that is represented by the placeholder P2. This function

72



4.3. OCL Functions for collecting violation information

takes the scope used in the property (accessed through the expression property.scope) as input
and returns a list of sub-traces, each of which is denoted by the positions of the two boundaries, as
defined by the scope semantics. Depending on the type of the scope, there are five auxiliary functions
to substitute for the placeholder P2, namely, applyScopeGlobally, applyScopeBefore,
applyScopeAfter, applyScopeBetweenAnd, and applyScopeAfterUntil. Since the
definition of these OCL functions are identical2 to the ones presented in Chapter 3, we will not
repeat the explanation in this section. In lines 3–12, we navigate each sub-trace to collect the vio-
lation information, which is stored in a list of triples at line 5. Each triple consists of two integers
(i.e., the variable begin and end) that indicate the boundaries of each trace segment, and the infor-
mation violation of type OclAny. To collect the violation information within each sub-trace, at
line 6, we invoke another auxiliary function of the form reportPattern*P* that is represented
by the placeholder P3. This function takes as input the two boundaries of a sub-trace and the pattern
used in the property (accessed through the expression property.pattern) and returns the infor-
mation about the violations. With respect to the pattern type, there are five functions to substitute
for the placeholder P3, i.e., reportPatternUniversality, reportPatternExistence,
reportPatternAbsence, reportPatternPrecedence, and reportPatternResponse.
Notice that the super type OclAny does not imply that the five functions return the same type of vi-
olation information. As explained in the next subsection, in fact, the data type varies according to the
violation types referring to a specific pattern. In each iteration, unless there is violation found in the
sub-trace, in lines 8–11, a new triple that contains the violation information is appended to the result.

In Section 4.3, we explain the reportPattern*P* functions; for readability and space rea-
sons, all the code snippets are presented as pseudocode and only the globally scope is used in the
examples of TemPsy properties.

4.3 OCL Functions for collecting violation information
In this section, we present the pseudocode of the reportPattern*P* functions that are used to
collect violation information for the five TemPsy patterns. These OCL functions take as input a pair of
integers representing the boundaries of a sub-trace and an instance of a TemPsy pattern, and return the
violation information in the sub-trace. Note that though we use the super type OclAny to receive the
output of these functions in the template of OCL queries (Figure 4.2), the specific result type varies
according to the semantics of the given TemPsy pattern.

4.3.1 Universality
By definition, a universality pattern can lead only to NSOC violations. As shown in Algorithm 20,
we collect all the locations at which the event specified in the pattern does not occur. In reference
to the super type OclAny used in the template (Figure 4.2) for receiving the result of the func-
tions reportPattern*P*, the specific type of the function reportPatternUniversality
is Sequence(Integer).

73



Chapter 4. Model-driven Violation Reporting for Trace Checking

Algorithm 20: reportPatternUniversality
Input: begin, end: the boundaries of a sub-trace; pattern: an instance of the universality

pattern of the form “always E”
Output: result: a list of locations at which violations occur

1 E← event name in pattern
2 result← []
3 for i← begin to end do
4 if self .traceElements[i] 6= E then result.append(i)

5 return result

Table 4.1: Violation types of the existence pattern

Pattern representative Condition NSOC UNOC

eventually E |{E}|= 0 +
eventually at least n E |{E}|< n +
eventually at most n E |{E}|> n +

eventually exactly n E
|{E}|< n +
|{E}|> n +

Legend. |{E}|: the number of occurrences of event E in a given
trace segment.

4.3.2 Existence
As shown in Table 4.1, according to the number of occurrences of the event specified in an existence
pattern, the violations can be classified as either NSOC or UNOC type. The procedure for collecting
violation information for the existence pattern is shown in Algorithm 21. The procedure takes as input
the boundaries of a sub-trace and an instance of the existence pattern, and returns a pair comprised
of a list of locations at which violations occur and the type of the violations. In lines 5–7, all the
occurrence locations of event E are retrieved from the sub-trace. Depending on the threshold n of the
bound on the number of occurrences of event E, we determine the violation type and the offending
occurrences (lines 9–15). If the comparison operator is present and the number of occurrences is less
than n, we collect NSOC violations with all the occurrence locations of event E (line 11) when the
comparison operator is either “at least” or “exactly” (line 10). Otherwise if the number of the
occurrences exceeds n and the comparison operator is either “at most” or “exactly” (line 12),
we collect UNOC violations with the additional locations after the n-th occurrence of event E (line 13).
Or if the pattern has no constraint on the number of occurrences and there is no occurrence of event
E, the procedure returns an NSOC violation with an empty list.

4.3.3 Absence
The absence pattern about an event E can be specified in two forms, i.e., “never E” or “never
exactly n E”, in which n is a natural number. When a sub-trace violates one of these two forms
of absence pattern, it is because all the occurrences of event E are not allowed, and thus the violation

2The algorithms of the OCL functions are semantically identical to the ones described in Chapter 3, though the result
type of the functions are different.

74



4.3. OCL Functions for collecting violation information

Algorithm 21: reportPatternExistence
Input: begin, end: the boundaries of a sub-trace; pattern: an instance of the existence pattern

of the form “eventually [op n] E”
Output: result: a pair which contains a violation type and a list of locations upon which

violations occur
1 E← event name in pattern
2 op← comparison operator of the bound on the number of occurrences of event E
3 n← threshold of the occurrence number of event E
4 result← null, locations← []
5 for i← begin to end do
6 if self .traceElements[i] = E then
7 locations.append(i)

8 count← locations.size()
9 if op 6= null then

10 if count < n && op 6= “at most” then
11 result← (NSOC, locations)

12 else if count > n && op 6= “at least” then
13 result← (UNOC, locations[n+1,count])

14 else if count = 0 then result← (NSOC, [])
15 return result

Algorithm 22: reportPatternAbsence
Input: begin, end: the boundaries of a sub-trace; pattern: an instance of the absence pattern of

the form “never [exactly n] E”
Output: result: a list of locations at which violations occur

1 E← event name in pattern
2 result← []
3 for i← begin to end do
4 if self .traceElements[i] = E then result.append(i)

5 return result

is classified as the UNOC type. Hence, in Algorithm 22, the procedure collects all the occurrence
locations of event E (lines 3–4).

4.3.4 Precedence
In Section 4.1, we classify all the possible violations of the precedence and response patterns into six
types, i.e., NSOR, WTO, WTC, WTOC, LIRV, and LVRI. Function reportPatternPrecedence
defines the algorithm for collecting violation information of a precedence pattern from a faulty trace
segment. It is realized by four auxiliary functions reportPatternPrecedenceGeneral (Al-
gorithm 23), reportPatternPrecedenceAtLeast (Algorithm 25), reportPatternPrec
edenceAtMost (Algorithm 26), and reportPatternPrecedenceExactly (Algorithm 27),
depending on the definition of the constraint on the distance between the two blocks specified in the

75



Chapter 4. Model-driven Violation Reporting for Trace Checking

precedence pattern.

Algorithm 23: reportPatternPrecedenceGeneral
Input: begin, end: the boundaries of a sub-trace; block1, block2: the two blocks of an instance

of the precedence pattern of the form “block1 preceding block2”
Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the

locations of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 flag← true, lw← 0
5 result← []
6 for i← begin to end do
7 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
8 if e = firstOfBlock1 then (i1, t1, flag)← (2, t,true)
9 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)

10 if lw > 0 && !flag then (i1, t1)← (1,0)
11 else if i1 = size1 +1 then
12 if flag then break
13 else
14 lw← i
15 (i1, t1)← (1,0), (i2, t2)← (1,0)

16 if e = firstOfBlock2 then (i2, t2)← (2, t)
17 else if i2 > 1 then (i2, t2)← match(block1, i1, t1, e, t)
18 if i2 = size2 +1 then
19 if lw = 0 then v← (NSOR, [i], [])
20 else v← (WTC, [i], [lw])
21 result.append(v)
22 (i1, t1)← (1,0), (i2, t2)← (1,0)

23 return result

Function reportPatternPrecedenceGeneral (Algorithm 23) defines the algorithm for
the variant of precedence pattern which contains no constraint on the distance between the two blocks.
This precedence pattern indicates that each occurrence of block2 must be preceded by an occurrence
of block1). Notice that each block can be either an atomic event or a chain of events with optional
constraints on the time distances between two consecutive events. This function takes in input the
two boundaries of a sub-trace and the two blocks of an instance of the precedence pattern (denoted
by block1 and block2). Given an instance of this pattern, there are two possible types of violations
(i.e., NSOR and WTC) in a faulty trace segment; and WTC is only possible if block1 contains a distance
constraint. The function returns a list of violation information, each of which consists of a violation
type, a list of the locations of offending occurrences of block2, as well as a list of the positions of the
corresponding occurrences of block1.

76



4.3. OCL Functions for collecting violation information

In the function, we store the size of block1 (respectively, block2) in variable size1 (respectively,
size2) (line 1), and the first event defined in block1 (respectively, block2) in variable firstOfBlock1
(respectively, firstOfBlock2) (line 2). We define a tuple (i1, t1) (respectively, (i2, t2)) to determine
whether the trace element being matched is part of an occurrence of block1 (respectively, block2)
(line 3). More specifically, element i1 (respectively, i2) stores the position within block1 (respectively,
block2) of the next event to be matched; element t1 (respectively, t2) stores the timestamp of the
previous trace element matched at block1[i1− 1] (respectively, block1[i2− 1]). In addition, we use
variable flag to identify whether the ongoing match of block1 is consistent with the distance constraints
(if defined) within the block; and if an occurrence of block1 is found invalid of the constraints, the
variable lw is updated with the location (line 4). The variable result is used to accumulate the violation
information that has been found (line 5).

The major part of the function is a loop that navigates the input sub-trace, trying to match each
trace element between begin and end with block1[i1] (lines 8–15) and with block2[i2] (lines 16–22).
According to the semantics of this precedence pattern, the function terminates only if a valid occur-
rence of block1 is matched. In each iteration, we first use two local variables (e and t) to store the
event name and timestamp of the current trace element (line 7). If the trace element is a match for the
first event of block1, the function sets the position i1 to 2, assigns the timestamp of the trace element to
t1, and resets the flag to true (line 8). Otherwise if variable i1 is greater than 1, the function invokes
another auxiliary function matchSecondaryBlock (Algorithm 24) to check whether the current
trace element is part of block1 (line 9).

Algorithm 24: matchSecondaryBlock
Input: an events chain block, a 3-tuple (i, pt, flag) of which i (i > 1) stores the position (within

block) of the event to be checked, pt stores the timestamp of the previous trace element
if it was a match for the event defined at block[i−1], and flag indicates whether the
(optional) constraints on the distances within block hold on the matched elements, a
trace element (e, t) to be matched with block[i]

Output: (i+1, t, flag && true) if the trace element is a valid match for block[i]; (i+1, t, flag
&& false) if the trace element matches the event defined at block[i] but violates the
constraint on the distance between block[i−1] and block[i]; (1,0, flag) otherwise

1 if e = block[i].event then
2 op← block[i].timeDistance.op
3 t′← pt+block[i].timeDistance.value
4 flag← flag && compare(t, op, t′)
5 return (i+1, t, flag)

6 else return (1,0, flag)

Function matchSecondaryBlock takes in input six parameters: an events chain block; a 3-
tuple comprised of i (i > 1), pt, and flag, of which i stores the position (within block) of the event to be
checked, pt stores the timestamp of the previous trace element (if it was a match for block[i−1]), and
flag indicates whether the (optional) constraints on the distances within block hold on the matched
elements; and the two parameters of a trace element (e, t) to be matched with block[i]. The function
updates the 3-tuple (i,pt,flag) if the input element is a match for block[i] (lines 1–5); or else it sets the
tuple to (1,0,flag) (line 6). More specifically, if the trace element is a valid match for block[i] (line 5),

77



Chapter 4. Model-driven Violation Reporting for Trace Checking

the position i is incremented, the variable pt is set to the timestamp of the trace element, and flag is
set to the logical conjunction of itself and the satisfaction of the constraint on the distance defined
between block[i−1] and block[i] (line 4); or else the function returns (1,0,flag).

At line 9 of Algorithm 23, function reportPatternPrecedenceGeneral updates the vari-
ables i1, t1, flag1 with the result of function matchSecondaryBlock, and continues to check
whether the matched event is part of an invalid occurrence of block1. If there is already an invalid oc-
currence of block1 (i.e., lw > 0) and the matched event violates the constraint on the distance between
block1[i1− 1] and block1[i1], the algorithm resets the tuple (i1, t1) for another round of match for a
valid occurrence of block1 (line 10). If it is not the case and block1 is fully matched, if variable flag1
is true, the function ceases the collection of violation information, namely it becomes unnecessary
to continue since the pattern will always be satisfied even if block2 occurs after this valid occurrence
of block1 (line 12); otherwise, the variable lw is updated with the position i of this invalid occurrence
of block1 (line 14) and the variables i1, t1, i2, t2 are reset (line 15).

In each iteration, if the function has not yet found a valid occurrence of block1, it also checks
whether the current trace element is part of an occurrence of block2 (lines 16–22). If an occurrence of
the first event of block2 is detected, the variable i2 is set to 2 and variable t2 is set to the timestamp of
current trace element (line 16). Otherwise, if variable i2 is already greater than 1, the algorithm calls
function match (see Algorithm 12 introduced in Section 3.4.4) to match the current trace element
with block2[i2] (line 17).

The algorithm reports a violation when block2 is fully matched (lines 18–22). More specifically,
if there is no invalid occurrence of block1 found yet (i.e., lw is still 0), an NSOR violation is reported,
accompanied by a list that contains the location of current trace element (indicating this offending
occurrence of block2) and an empty list indicating there is no corresponding occurrences of block1
(line 19); otherwise a wtc violation is reported with [i] and a list that contains the location [lw] of
the corresponding invalid occurrence of block1 (line 20). The recognized violation is then added to
the result (line 21) and the tuples (i1, t1) and (i2, t2) are reset (line 22). The function returns variable
result after investigating the entire trace segment (line 23).

Function reportPatternPrecedenceAtLeast defines the algorithm for collecting viola-
tions from a faulty trace segment which violates a precedence pattern that contains a constraint using
the comparison operator “at least” on the distance between its two blocks. The function takes in
input the two boundaries of a sub-trace and the parameters of an instance of the precedence pattern:
block1, block2, and the threshold n of the time distance between them, and returns a list of violations
with the same type as of function reportPatternPrecedenceGeneral.

This variant of the precedence pattern prescribes that each occurrence of block2 must be preceded
by an occurrence of block1, with at least a distance equal to n. Given a faulty trace segment, we
recognize an offending occurrence of block2 when any of the following conditions holds: 1) there is no
valid occurrence of block1 before the occurrence of block2; 2) the distance between the farthest valid
occurrence of block1 and the occurrence of block2 is less than n; According to the characterization of
violations, there are five possible violation types: NSOR, WTO, WTC, WTOC, and LIRV.

For instance, given a precedence pattern “a, #at most 10 tu b preceding at least
5 tu c” and a trace segment [(a,8),(c,10),(a,15),(b,30),(c,32),(c,40)], the function navigates

78



4.3. OCL Functions for collecting violation information

Algorithm 25: reportPatternPrecedenceAtLeast
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the precedence pattern of the form “block1 preceding at least n
tu block2”

Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the
location of offending occurrences of block2, a list of the locations of corresponding
occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 (lc, tc)← (0,0), (lw, tw)← (0,0)
5 flag1← true, flag2← false

6 result← []
7 for i← begin to end do
8 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
9 if lc = 0 then

10 if e = firstOfBlock1 then (i1, t1, flag1)← (2, t,true)
11 else if i1 > 1 then
12 (i1, t1, flag1)← matchSecondaryBlock(block1, i1, t1, flag1, e, t)

13 if lw > 0 && !flag1 then (i1, t1)← (1,0)
14 else if i1 = size1 +1 then
15 if flag1 then (lc, tc)← (i, t)
16 else (lw, tw)← (i, t)
17 (i1, t1)← (1,0), (i2, t2)← (1,0)

18 else if t− tc ≥ n then break
19 if e = firstOfBlock2 then
20 (i2, t2)← (2, t)
21 flag2← (tw > 0) && (t− tw < n)

22 else if i2 > 1 then (i2, t2)← match(block1, i1, t1, e, t)
23 if i2 = size2 +1 then
24 if lc = lw = 0 then v← (NSOR, [i], [])
25 else if lw = 0 then v← (WTO, [i], [lc])
26 else if flag2 then v← (WTOC, [i], [lw])
27 else if lc = 0 then v← (WTC, [i], [lw])
28 else v← (LIRV, [i], [lc, lw])
29 result.append(v)
30 (i1, t1)← (1,0), (i2, t2)← (1,0)

31 return result

the trace segment and collects three violations. First, an NSOR violation is collected at the first oc-
currence of the second block (i.e., event c), since no occurrence of the first block (i.e., the events
chain defined by “a, #at most 10 tu b”) is detected before that occurrence. At the second
occurrence of event c, a WTOC violation is collected since the occurrence of the first block violates

79



Chapter 4. Model-driven Violation Reporting for Trace Checking

the distance constraint “at most 10 tu” as well as the threshold of the distance between the two
blocks (i.e., “at least 5 tu”). The latter constraint is then satisfied at the third occurrence of
event c, and hence a WTC violation is collected.

In the function, besides the variables size1, size2, firstOfBlock1, firstOfBlock2, (i1, t1), (i2, t2),
which have the same usage as the ones in Algorithm 23, we use a tuple (lc, tc) (respectively, (lw, tw))
to record the latest valid (respectively, invalid) occurrence of block1. More specifically, element lc
(respectively, lw) keeps track of the location of the latest valid (respectively, invalid) occurrence of
block1; element tc (respectively, tw) stores the timestamp of the latest valid (respectively, invalid)
occurrence of block1. In addition, we use variable flag1 to identify whether the ongoing match of
block1 is consistent with the distance constraints (if defined) within the block; and use variable flag2
to identify whether the closest occurrence of block1 breaks not only the distance constraints within
block1 but the constraint on the distance between the two blocks with respect to an occurrence of
block2 (line 5).

The function uses a loop to navigate the input sub-trace, trying to match each trace element with
block1[i1] (lines 10–17) and with block2[i2] (lines 19–30). In accordance with the semantics of this
precedence pattern, the function ceases searching for block1 once a valid occurrence of block1 has
been found. Hence if variable lc is still 0 (line 9), if the trace element is a match for the first event of
block1, the function sets the position i1 to 2, assigns the timestamp of the trace element to t1, and resets
the flag to true (line 10); otherwise if variable i1 is already greater than 1, the function invokes the
auxiliary function matchSecondaryBlock to check whether the current trace element is a match
for block1[i1] (line 12). The function resets the variables i1 and t1 if variable lw is already set to a
positive position and the matched event violates the constraint on the distance from block1[i1−1] and
block1[i1] (line 13). Otherwise if the matched event is the last event of block1, the function assigns the
position and timestamp of current trace element to (lc, tc) if variable is true (line 15), or otherwise to
(lw, tw) (line 16) and resets the variables i1, t1, i2, t2 (line 17). If a valid occurrence of block1 has been
found (i.e., lc > 0) and the distance between that occurrence to current element is more than or equal
to n (line 18), namely the pattern is not able to be violated anymore, the function ceases the loop.

In the loop, the function continues to check whether the current trace element matches a valid
occurrence of block2 (lines 19–30). If the first event of block2 is found (line 19), the function moves
on to matching the second event of block2 (line 20) and sets variable f lag2 to the true if variable
tw is positive and the distance between the invalid occurrence of block1 and the current trace element
is less than n (line 21). Otherwise if the pointer i2 is greater than 1, we invoke function match
(Algorithm 12) to match the current trace element with block2[i2] (line 22). The function collects a
violation if the matched event is the last of block2 (line 23). More specifically, an NSOR violation is
reported with a list containing the location of current trace element and an empty list if there is no
occurrence of block1 before this occurrence of block2 (line 24); otherwise, a WTO violation is reported
with [i] and a list containing the location of the corresponding valid occurrence of block1 (i.e., [lc]), if
there is no invalid occurrence of block1 (line 25); otherwise, a WTOC violation is reported with [i] and
the location of the invalid occurrence of block1 (i.e., [lw]) if the variable flag2 is true, meaning thats
the constraint “at least n tu” is violated by the first (invalid) occurrence of block1 (line 26);
otherwise, a WTC violation is reported with [i] and [lw], if there is no valid occurrence of block1
(line 27); or else, an LIRV violation is reported with [i] and a list containing both the invalid and
valid occurrences of block1 [lw, lc] (line 28). The recognized violation is then appended to the result

80



4.3. OCL Functions for collecting violation information

(line 29) and the tuples (i1, t1) and (i2, t2) are reset (line 30). The function returns the violations stored
in result after the loop (line 31).

Algorithm 26: reportPatternPrecedenceAtMost
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the precedence pattern of the form “block1 preceding at most n
tu block2”

Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the
locations of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 (lc, tc)← (0,0), (lw, tw)← (0,0)
5 flag1← true, flag2← false

6 result← []
7 for i← begin to end do
8 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
9 if e = firstOfBlock1 then (i1, t1, flag1)← (2, t,true)

10 else if i1 > 1 then (i1, t1, flag1)← matchSecondaryBlock(block1, i1, t1, flag1, e, t)
11 if i1 = size1 +1 then
12 if flag1 then (lc, tc)← (i, t)
13 else (lw, tw)← (i, t)
14 (i1, t1)← (1,0), (i2, t2)← (1,0)

15 if e = firstOfBlock2 && (tc = 0 || t− tc > n) then
16 (i2, t2)← (2, t)
17 flag2← (tw > 0) && (t− tw > n)

18 else if i2 > 1 then (i2, t2)← match(block1, i1, t1, e, t)
19 if i2 = size2 +1 then
20 if lc = lw = 0 then v← (NSOR, [i], [])
21 else if lw < lc then v← (WTO, [i], [lc])
22 else if flag2 then v← (WTOC, [i], [lw])
23 else if lc = 0 then v← (WTC, [i], [lw])
24 else v← (LVRI, [i], [lc, lw])
25 result.append(v)
26 (i1, t1)← (1,0), (i2, t2)← (1,0)

27 return result

Function reportPatternPrecedenceAtMost defines the algorithm for collecting viola-
tion information from a faulty trace segment which violates a precedence pattern that contains a
constraint using the comparison operator “at most” on the distance between the two blocks. The
function takes as input the two boundaries of a sub-trace and the parameters of an instance of the
precedence pattern: block1, block2, and the maximum n of the time distance between the two blocks.
The function returns a list of violation information, each of which consists of a violation type, a

81



Chapter 4. Model-driven Violation Reporting for Trace Checking

list that contains the locations of occurrences of block2 where violations occur, and the locations of
corresponding occurrences of block1.

This precedence pattern specifies that each occurrence of block2 must be preceded, within n time
units, by an occurrence of block1. Hence, an instance of this pattern can be violated when one of the
following conditions holds: 1) there is no occurrence of block1 before an occurrence of block2; 2) the
occurrences of block1 are all beyond n time units prior to an occurrence of block2. According to the
characterization of violations, given a faulty trace segment, there are five possible violation types:
NSOR, WTO, WTC, WTOC, and LVRI.

The main part of the function is the loop that navigates the input sub-trace, trying to match each
trace element with block1[i1] (lines 9–14) and with block2[i2] (lines 15–26). According to the se-
mantics of this precedence pattern, we try to find a new occurrence of block1, that conforms to the
constraint “at most n tu” . The function uses the same code to update the variables i1, t1, and
f lag1 for matching block1[i1] lines 9–10. When the matched event is the last event of block1, the func-
tion assigns the current location and timestamp to the variables (lc, tc) if flag1 is true, or otherwise
to (lw, tw) (lines 11–14) and resets variables i1, t1, i2, t2 (line 14).

In the loop, the algorithm also checks whether the current trace element is part of an occurrence
of block2. If an occurrence of the first event of block2 is detected and there is no valid occurrence of
block1 or the distance from the previous valid occurrence block1 violates the constraint “at most
n tu” (i.e., t − tc > n) (line 15), then the function moves on to match the second event of block2
(line 16). In addition, the variable flag2 is also updated with the conjunction “tw > 0 && t− tw > n”,
which indicates whether the time distance from the previous invalid occurrence of block1 (if present)
is in violation of the constraint on the distance between the two blocks. Otherwise, if variable i2 is
greater than 1, the algorithm calls function match to match the current trace element with block2[i2]
(line 18).

The algorithm reports a violation when block2 is fully matched (lines 19–26). There are five pos-
sible types of violation to be reported, depending on the value of variables lc, lw: an NSOR violation is
reported with a list that contains the location of current trace element and an empty list of occurrences
of block1, if there is no occurrence of block1 before the occurrence of block2 (line 20); otherwise, a
WTO violation is reported with [i] and a list of the location of the valid occurrence of block1 (i.e., [lc]),
when the valid occurrence of block1 is closer to the occurrence of block2 than the invalid one (line 21);
otherwise, a WTOC violation is reported with [i] and a list of the location of the invalid occurrence of
block1 if variable flag2 is true, meaning that the constraint “at most n tu” is violated by the
closest invalid occurrence of block1 (line 22); otherwise, a WTC violation is reported with [i] and [lw],
if the distance between the invalid occurrence block1 and the current occurrence of block2 is less than
or equal to n (line 23); otherwise, an LVRI violation is reported with [i] and [lc, lw] (line 24), according
to the definition of LVRI. The recognized violation is then added to the result (line 25) and the tuples
(i1, t1) and (i2, t2) are reset (line 26). After the loop, the function returns variable result (line 27).

Function reportPatternPrecedenceExactly defines the algorithm for collecting viola-
tion information from a faulty trace segment that violates a precedence pattern that contains a con-
straint using the comparison operator “exactly” on the distance between the two blocks. The
precedence pattern prescribes that each occurrence of block2 must be preceded by an occurrence of
block1 with an exact distance n. Hence, an instance of this pattern can be violated if there is either no

82



4.3. OCL Functions for collecting violation information

Algorithm 27: reportPatternPrecedenceExactly
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the precedence pattern “block1 preceding exactly n tu block2”
Output: result: a list of 3-tuples, each of which consists of a violation type, a list of an

occurrence location of block2, and a list of corresponding occurrence locations of
block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 flag← true, ct← 0, candidates← [], result← []
5 for i← begin to end do
6 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
7 if e = firstOfBlock1 then (i1, t1, flag)← (2, t,true)
8 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)
9 if i1 = size1 +1 then candidates.append(i1, t1, flag), (i1, t1)← (1,0), (i2, t2)← (1,0)

10 if e = firstOfBlock2 then
11 if ∃l′,(l′, t−n,true) ∈ candidates then (i2, t2)← (1,0)
12 else (i2, t2,ct)← (2, t, t)

13 else if i2 > 1 then (i2, t2)← match(block1, i1, t1, e, t)
14 if i2 = size2 +1 then
15 if candidates.isEmpty() then result.append((NSOR, [i], []))
16 else
17 L←{l′ | (l′, t ′, flag′) ∈ candidates && ct− t ′ = n}
18 if L.notEmpty() then result.append((WTC, [i],L))
19 else
20 (l′1, flag′1)← last({(l′, flag′) | (l′, t ′, flag′) ∈ candidates && ct− t ′ > n})
21 (l′2, flag′2)← first({(l′, flag′) | (l′, t ′, flag′) ∈ candidates && ct− t ′ < n})
22 if flag′1 then
23 if flag′2 then result.append((WTO, [i], [l′1, l

′
2]))

24 else if l′2! = null then result.append((LVRI, [i], [l′1, l
′
2]))

25 else result.append((WTO, [i], [l′1]))

26 else if l′1! = null then
27 if flag′2 then result.append((LIRV, [i], [l′1, l

′
2]))

28 else if l′2! = null then result.append((WTOC, [i], [l′1, l
′
2]))

29 else result.append((WTOC, [i], [l′1]))

30 else if flag′2 then result.append((WTO, [i], [l′2]))
31 else result.append((WTOC, [i], [l′2]))

32 candidates←{(l′, t ′, flag′) | (l′, t ′, flag′) ∈ candidates && ct− t ′ < n}
33 (i1, t1)← (1,0), (i2, t2)← (1,0)

34 return result

occurrence of block1 before an occurrence of block2 or all the valid occurrences of block1 cannot meet
the constraint about the distance from an occurrence of block2. According to the characterization of

83



Chapter 4. Model-driven Violation Reporting for Trace Checking

violations, given a faulty trace segment, there are five possible violation types: NSOR, WTO, WTC,
WTOC, LVRI, and LIRV.

This function uses a set of auxiliary variables similar to those in the previous functions. In addi-
tion, we use variable ct to store the timestamp of a trace element that is a match with the first event of
block2, and use variable candidates to store all the occurrences of block1 regardless of the compliance
of the distance constraints defined within the block.

The main part of the function is the loop that navigates the input sub-trace, trying to match each
trace element with block1[i1] (lines 7–9) and with block2[i2] (lines 10–33). According to the semantics
of this precedence pattern, we have to store all the possible occurrences of block1 which may lead to
violations. In the loop, if block1 is fully matched, besides resetting variables i1, t1, i2, t2, the function
adds the value of i1, t1, flag to the list candidates (line 9). If an occurrence of the first event of block2
is detected (line 10), if there exists a valid occurrence of block1 satisfying the distance constraint
“exactly n tu”, the function resets the variables i2, t2 (line 11), since there will be no violation
even if there is a match for block2 beginning at the current trace element; otherwise, the function
moves on to match the second event of block2 (line 12). If variable i2 is already greater than 1, the
algorithm calls function match to match the current trace element with block2[i2] (line 13).

The algorithm reports a violation when block2 is fully matched (lines 14–33). There are six
possible types of violations. If there is no occurrence of block1 (i.e., candidates is empty), an NSOR
violation is reported with a list that contains the location of the current trace element and an empty list
of occurrences of block1 (line 15). Otherwise, we check whether there exists an occurrence of block1,
and the distance between it and the head of this matched occurrence of block2 is exactly n (line 17). If
it does exist, then it must be invalid with respect to the distance constraints within block1, and hence
we report a WTC violation with the occurrence locations of the two blocks. If the violation is neither
of the aforementioned types, we use temporary variables l′1 and flag′1 (respectively, l′2 and flag′2) to
store the last (respectively, the first) element of the portion of candidates, in which all the occurrences
of block1 are more than n (respectively, less than n) time units prior to this matched occurrence of
block2; and we report a violation depending on their value. More specifically, a WTO violation is
reported if both variables flag′1 and flag′2 are true (lines 23, 25, 30), that is, if the occurrences of
block1 close to the expected instant conform to the distance constraints defined within the block. If
flag′1 is true but flag′2 is false, an LVRI violation is reported (line 24); otherwise, if it is the
opposite, an LIRV violation is reported (line 27). Otherwise, a WTOC violation is reported if both
flag′1 and flag′2 is false (lines 28, 29, 31). After collecting the violation, the function prunes the
list candidates by removing all the occurrences of block1 that are impossible to satisfy the pattern
(line 32) and resets the tuples (i1, t1) and (i2, t2) (line 33). The function returns variable result after
the loop finishes (line 34).

4.3.5 Response
Function reportPatternResponse is the dual of function reportPatternPrecedence. It
invokes one of four auxiliary functions to collect the information violation with respect to a response
pattern, which may contain no constraint on the time distance between the two blocks, or use one of
the three comparison operators (i.e., “at least”, “at most”, and “exactly”) in the constraint.
In the rest of this section, we explain the four functions reportPatternResponseGeneral

84



4.3. OCL Functions for collecting violation information

(Algorithm 28), reportPatternResponseAtLeast (Algorithm 29), reportPatternRes
ponseAtMost (Algorithm 30), and reportPatternResponseExactly (Algorithm 31).

Algorithm 28: reportPatternResponseGeneral
Input: begin, end: the boundaries of a sub-trace; block1, block2: the two blocks of an instance

of the response pattern of the form “block1 responding block2”
Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the

locations of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 flag← true, lw← 0, candidates← [], result← []
5 for i← begin to end do
6 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
7 if e = firstOfBlock2 then (i2, t2)← (2, t)
8 else if i2 > 1 then (i2, t2)← match(block2, i2, t2,e, t)
9 if i2 = size2 +1 then

10 candidates.append((i2, t2))
11 (i1, t1)← (1,0), (i2, t2)← (1,0)

12 if candidates.notEmpty() && e = firstOfBlock1 then (i1, t1, flag)← (2, t,true)
13 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)
14 if i1 = size1 +1 then
15 if flag then candidates← []
16 else lw← i
17 (i1, t1)← (1,0), (i2, t2)← (1,0)

18 if candidates.notEmpty() then
19 L1←{l′ | (l′, t ′) ∈ candidates && l′ < lw}
20 if L1.notEmpty() then result.append((WTC,L1, [lw]))
21 L2←{l′ | (l′, t ′) ∈ candidates && l′ > lw}
22 if L2.notEmpty() then result.append((NSOR,L2, []))

23 return result

We define function reportPatternResponseGeneral (Algorithm 28) to collect violations
from a faulty trace segment that is in violation of a response pattern which contains no constraint
on the distance between the two blocks. The function has the same input and output type as its
dual function reportPatternPrecedenceGeneral. The response pattern prescribes that each
occurrence of block2 must be followed by an occurrence of block1), so there are two possible types
of violations (i.e., NSOR and WTC); WTC is only possible if block1 contains a distance constraint. In
addition to the variables used in its dual function, the function introduces the variable candidates to
store the occurrences of block2 that may be violated.

First, the function uses a loop to navigate the input sub-trace from begin to end, trying to match
each trace element with block2[i2] (lines 7–11) and with block1[i1] (lines 12–17). More specifically, in

85



Chapter 4. Model-driven Violation Reporting for Trace Checking

each iteration, the function checks whether the current trace element is part of an occurrence of block2
(lines 7–8). If an occurrence of block2 is fully matched, the function adds the value of variables i2 t2 to
candidates (line 10) and resets variables i1, t1, i2, t2 (line 11). On the other hand, if the list candidates
is not empty, the function checks whether the current trace element is part of block1 (lines 12–13).
Until an occurrence of block1 is fully matched (line 14), if it conforms to the distance constraints
within the block (i.e., flag is true), that is, all the occurrences of block2 stored in candidates are
followed by a valid occurrence of block1, the function empties candidates (line 15); otherwise the
function updates variable lw with the current position (line 16). Besides, variables i1, t1, i2, t2 are reset
(line 17).

After the loop, the function checks if the list candidates still contains occurrences of block2
(line 18). As discussed before, there are two possible types of violations, WTC and NSOR. For the
occurrences of block2 that happen prior to the position lw (line 19), the function reports a group of
WTC violations with [lw] that indicates the corresponding invalid occurrence of block1 (line 20). For
the occurrences of block2 that happen after the position lw, since they are not followed by any occur-
rence of block1, the function reports a group of NSOR violations (line 22).

Function reportPatternResponseAtLeast defines the violation information collection
algorithm for the variant of response pattern that uses “at least” as the comparison operator in
the distance constraint between the two blocks. The function has the same input and output types as
function reportPatternResponseGeneral. This type of response pattern stipulates that an
occurrence of block2 must be followed by an occurrence of block1 with a minimum distance n; it can
lead to five types of violation: NSOR, WTO, WTC, WTOC, and LVRI.

In addition to the variables used in function reportPatternResponseGeneral, this func-
tion uses variables lc and tc (respectively, lw and tw) to store the latest occurrence of block1 which is
valid (respectively, invalid) with respect to the the distance constraints within the block and introduces
variable ct to save the timestamp of the first event of a potential match for block1. In each iteration for
searching for occurrences of block2 and with block1, there is a slight difference from the correspond-
ing portion described in Algorithm 28 when an occurrence of block1 is fully matched (lines 14–19).
More specifically, if the matched occurrence of block1 has no violation of the distance constraints
defined within the block, the function removes the occurrences of block2 that have been satisfied from
the list candidates (line 16) and updates variable lc with the current position (i.e., i) and variable tc
with the timestamp of the head of the matched occurrence (i.e., ct) (line 17). Otherwise, the function
assigns i, ct to variables lw, tw (line 17).

After the loop, the function collects violations if the list candidates contains unsatisfied occur-
rences of block2 (lines 20–28). The function extracts all the offending positions from candidates and
stores in variable L (line 21); it also extracts the positions that are smaller than lw and stores them in
variable LI , and finally it also extracts the positions that are smaller than lc and stores them in variable
LV (line 21). In addition, the function extracts the positions of those occurrences of block2 that meet
the distance constraint “at least n tu” with respect to the last invalid occurrence of block1, and
stores them in variable L′I . If there exist occurrences of block2 which are neither followed by a valid
nor by an invalid occurrence of block1, the function reports a set of NSOR violations accompanied by
a list of offending occurrences of block2 stored in L−LV −LI (line 24). If the last valid occurrence
of block1 is found after the invalid one and variable LV is not empty, the function reports a set of WTO

86



4.3. OCL Functions for collecting violation information

Algorithm 29: reportPatternResponseAtLeast
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the response pattern of the form “block1 responding at least n
tu block2”

Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the
locations of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0), (lc, tc)← (0,0), (lw, tw)← (0,0)
4 flag← true, ct← 0, candidates← [], result← []
5 for i← begin to end do
6 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
7 if e = firstOfBlock2 then (i2, t2)← (2, t)
8 else if i2 > 1 then (i2, t2)← match(block2, i2, t2,e, t)
9 if i2 = size2 +1 then

10 candidates.append((i2, t2))
11 (i1, t1)← (1,0), (i2, t2)← (1,0)

12 if candidates.notEmpty() && e = firstOfBlock1 then (i1, t1,ct)← (2, t, t)
13 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)
14 if i1 = size1 +1 then
15 if flag then
16 candidates←{(l′, t ′) | (l′, t ′) ∈ candidates && ct− t ′ < n}
17 (lc, tc)← (i,ct)

18 else (lw, tw)← (i,ct)
19 (i1, t1)← (1,0), (i2, t2)← (1,0)

20 if candidates.notEmpty() then
21 L←{l′ | (l′, t ′) ∈ candidates}
22 LI ←{l′ | (l′, t ′) ∈ candidates && l′ < lw}, LV ←{l′ | (l′, t ′) ∈ candidates && l′ < lc}
23 L′I ←{l′ | (l′, t ′) ∈ candidates && tw− t ′ ≥ n}
24 if L−LV −LI 6= /0 then result.append((NSOR,L−LV −LI, []))
25 if lw < lc && LV 6= /0 then result.append((WTO,LV , [lc]))
26 else if lc < lw then
27 if LI−L′I 6= /0 then result.append((WTOC,LI−L′I, [lw]))
28 if LV ∩L′I 6= /0 then result.append((LVRI,L′I ∩LV , [lc, lw]))

29 return result

violations accompanied by LV and [lc] (line 25). Otherwise if the lw is greater than lc, if there exist oc-
currences of block2 before the position lw and the distance constraint “at least n tu” is violated
by the invalid occurrence of block1 at lw (i.e., LI−L′I 6= /0), the function reports a set WTOC violations;
if there exist occurrences of block2 followed both by a valid occurrence of block1 which violates the
distance constraint and by an invalid occurrence of block1 which meets the distance constraint (i.e.,
LV ∩L′I 6= /0), the function reports a set LVRI violations.

87



Chapter 4. Model-driven Violation Reporting for Trace Checking

Algorithm 30: reportPatternResponseAtMost
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the response pattern of the form “block1 responding at most n tu
block2”

Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the
location of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 flag← true, ct← 0, lw← 0, candidates← [], result← []
5 for i← begin to end do
6 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
7 if e = firstOfBlock2 then (i2, t2)← (2, t)
8 else if i2 > 1 then (i2, t2)← match(block2, i2, t2,e, t)
9 if i2 = size2 +1 then

10 candidates.append((i2, t2))
11 (i1, t1)← (1,0), (i2, t2)← (1,0)

12 if candidates.notEmpty() && e = firstOfBlock1 then (i1, t1,ct)← (2, t, t)
13 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)
14 if i1 = size1 +1 then
15 L1←{l′ | (l′, t ′) ∈ candidates && l′ < lw && ct− t ′ > n}
16 L2←{l′ | (l′, t ′) ∈ candidates && l′ > lw && ct− t ′ > n}
17 if flag then
18 if L1.notEmpty() then result.append((LIRV,L1, [lw, i]))
19 if L2.notEmpty() then result.append((WTO,L2, [i]))
20 candidates← []

21 else
22 if L1.notEmpty() then result.append((WTC,L1, [lw]))
23 if L2.notEmpty() then result.append((WTOC,L2, [i]))
24 candidates←{(l′, t ′) | (l′, t ′) ∈ candidates && ct− t ′ ≤ n}
25 lw← i
26 (i1, t1)← (1,0), (i2, t2)← (1,0)

27 if candidates.notEmpty() then
28 L1←{l′ | (l′, t ′) ∈ candidates && l′ < lw}
29 if L1.notEmpty() then result.append((WTC,L1, [lw]))
30 L2←{l′ | (l′, t ′) ∈ candidates && l′ > lw}
31 if L2.notEmpty() then result.append((NSOR,L2, []))

32 return result

Function reportPatternResponseAtMost defines the algorithm for collecting violations
from a faulty trace segment which is in violation of a response pattern using “at most” in the
distance constraint between the two blocks. The pattern can be violated either when an occurrence of

88



4.3. OCL Functions for collecting violation information

block2 is not followed by an occurrence of block1 or the distances between an occurrence of block2
and all valid occurrences of block1 are more than n. So there are five possible violation types for this
pattern: NSOR, WTO, WTC, WTOC, and LIRV. The function has the same input and output types as the
the previous homologous functions.

The function contains a loop that inspects trace elements from the position begin to end of the
trace instance and tries to find occurrences of the pair of block2 (lines 7–11) and block1 (lines 12–26).
The pseudocode (lines 7–13) for matching the two blocks is the same as the previous functions until
block1 is fully matched (line 14).

In lines 15–26, the algorithm examines the response pattern and update result if any violation
emerges. More specifically, from the list candidates, the algorithm extracts the occurrence locations
of block2 that fails fulfilling the maximum limit on the distance to the matched occurrence of block1,
and assigns the ones before (respectively, after) the previous (invalid) occurrence of block1 (i.e., lw)
to variable L1 and (respectively, variable L2) (lines 15–16). According to the definition of the pattern,
violations should be reported if one of the variables is not empty. If the current matched occurrence
of block1 complies with the distance constraints (if defined) within the block, (line 17), if variable L1
is not empty, a group of LIRV violations, the locations of offending occurrences of block2 stored in
variable L1, and a list with the two locations of the corresponding occurrence of block1, is appended
to result (line 18); if variable L2 is not empty, a group of violations that contains the violation type
WTO, variable L2, and a list with the current location, is collected (line 19). The function then empties
variable candidates (line 20). Otherwise if the current matched occurrence of block1 is in violation
of the distance constraints defined within the block, if variable L1 is not empty, a group of violations
consisting of the violation type WTC, variable L1, and a list containing lw, is collected (line 22); if
variable L2 is not empty, a group of violations consisting of the violation type WTOC, variable L2, and
a list with the current location, is collected (line 23). The variable candidates is updated by retaining
the occurrences of block2 which comply with the constraint “at most n tu” with respect to the
current matched occurrence of block1 (line 24). Moreover, the variable lw is updated with the current
location that indicates a new invalid occurrence of block1 (line 25).

The violation information is accumulated in variable result through the iteration. After the loop
(line 27) the algorithm also has to check if the list candidates is not empty. More specifically, the
algorithm collects WTC violations when there exist occurrences of block2 before lw (line 29), and
collects NSOR violations when there exist occurrences of block2 after which no occurrence of block1
is found (line 31).

Function reportPatternResponseExactly defines the algorithm for collecting violation
information for the variant of response pattern that uses “exactly” in the distance constraint be-
tween the two blocks. The function has the same input and output types as the other homologous
functions. There are six possible violation types for this type of response pattern: NSOR, WTO, WTC,
WTOC, LVRI, and LIRV.

Instead of using variable lw (in function reportPatternResponseAtMost) to save the lo-
cation of the latest occurrence of block1 that is invalid with respect to the distance constraints defined
in the block, in this function we introduce a pair of variables (ll,flagl) (line 4) to store the location
and validity of the latest occurrence of block1.

89



Chapter 4. Model-driven Violation Reporting for Trace Checking

Algorithm 31: reportPatternResponseExactly
Input: begin, end: the boundaries of a sub-trace; block1, block2, n: the parameters of an

instance of the response pattern “block1 responding exactly n tu block2”
Output: result: a list of 3-tuples, each of which consists of a violation type, a list of the

locations of offending occurrences of block2, and a list of the locations of
corresponding occurrences of block1

1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event, firstOfBlock2← block2.first().event
3 (i1, t1)← (1,0), (i2, t2)← (1,0)
4 flag← true, ct← 0, (ll, flagl)← (0,true), candidates← [], result← []
5 for i← begin to end do
6 elem← self .traceElements[i], (e, t)← (elem.event,elem.timestamp)
7 if e = firstOfBlock2 then (i2, t2)← (2, t)
8 else if i2 > 1 then (i2, t2)← match(block2, i2, t2,e, t)
9 if i2 = size2 +1 then candidates.append((i2, t2)), (i1, t1)← (1,0), (i2, t2)← (1,0)

10 if candidates.notEmpty() && e = firstOfBlock1 then (i1, t1,ct)← (2, t, t)
11 else if i1 > 1 then (i1, t1, flag)← matchSecondaryBlock(block1, i1, t1, flag, e, t)
12 if i1 = size1 +1 then
13 L←{l′ | (l′, t ′) ∈ candidates && ct− t ′ = n}
14 if !flag && L.notEmpty() then result.append((WTC,L, [i]))
15 L1←{l′ | (l′, t ′) ∈ candidates && l′ < ll && ct− t ′ > n}
16 L2←{l′ | (l′, t ′) ∈ candidates && l′ > ll && ct− t ′ > n}
17 if L1.notEmpty() then
18 if flag then
19 if flagl then result.append((WTO,L1, [ll, i]))
20 else result.append((LIRV,L1, [ll, i]))

21 else
22 if flagl then result.append((LVRI,L1, [ll, i]))
23 else result.append((WTOC,L1, [ll, i]))

24 if L2.notEmpty() then
25 if flag then result.append((WTO,L1, [i]))
26 else result.append((WTOC,L1, [i]))

27 candidates←{(l′, t ′) | (l′, t ′) ∈ candidates && ct− t ′ < n}
28 (ll, flagl)← (i, flag), (i1, t1)← (1,0), (i2, t2)← (1,0)

29 if candidates.notEmpty() then
30 L1←{l′ | (l′, t ′) ∈ candidates && l′ < ll}, L2←{l′ | (l′, t ′) ∈ candidates && l′ > ll}
31 if L1.notEmpty() then
32 if flagl then result.append((WTO,L1, [ll]))
33 else result.append((WTOC,L1, [ll]))

34 if L2.notEmpty() then result.append((NSOR,L2, []))

35 return result

90



4.4. Tool Implementation

In the loop (lines 5–28) that searches for occurrences of block2 and block1, the function differs
from the previous functions when an occurrence of block1 is fully matched (lines 12–28). More
specifically, we first retrieve the occurrence of block2 that meets the distance constraint with respect
to this match with block1 (line 13). If the result is not empty and the match for block1 is valid with
respect to the distance constraints within the block, we collect a WTO violation with the offending
occurrence of block2 and the current location. In addition, we extract the locations of the occurrences
of block2 that happen before the previous occurrence of block1 (i.e., ll) and farther than n to the
current occurrence of block1, and store them in variable L1 (line 15); we also store the locations of the
occurrences of block2 after ll and also farther than n to the current match for block1 in L2 (line 16). If
variable L1 is not empty (line 17), we collect a set of violations with L1 and a list comprised of both
the locations of the previous and current occurrences of block1: if the current match of block1 is valid
(i.e., flag is true), depending on the validity of the previous match for block1, we collect either a set
of WTO (line 19) or LIRV (line 20) violations; otherwise if the current match is invalid, we collect
either a set of LVRI (line 22) or WTOC (line 23) violations depending on the validity of the previous
occurrence of block1. If variable L2 is not empty (line 24), we collect a set of violations with L2 and
a list containing the current location i: if the current match for block1 is valid, we collect a set of
WTO violations (line 25) or else collect a set of WTOC violations (line 26). In addition to violation
information collection, we prune variable candidates by removing the matches for block2 that have
been examined (line 27) and also update the variables ll,flag1, i1, t1, i2, t2.

After the analysis of the entire input trace, if variable candidates still contains some matches for
block2 that have not been examined (line 29), we use the position of the last occurrence of block1 (ll)
to split the locations stored in candidates into two parts (i.e., L1 and L2) (line 30) and collect violation
information: if variable L1 is not empty, if the last occurrence of block1 is valid, we collect a set of
WTO violations (line 32) or else a set of WTOC violations (line 33); if variable L2 is not empty, we
report a set of NSOR violations (line 34).

4.4 Tool Implementation
We have implemented the model-driven procedure for collecting violation information from a trace
in the tool TEMPSY-REPORT. The TEMPSY-REPORT tool extends the implementation of TEMPSY-
CHECK (Section 3.6) and is also based on Eclipse OCL [Eclipse, 2015a]; it is publicly available at
http://weidou.github.io/TemPsy-Report.

TEMPSY-REPORT takes in input the same trace instance and TemPsy expressions (checked by
TEMPSY-CHECK) and hence shares the definitions of the conceptual model for execution traces and
the TemPsy language with TEMPSY-CHECK. The tool extends the Java class ConstraintFactory
to build OCL queries following the template shown in Figure 4.2. More specifically, given a trace in-
stance and a set of TemPsy expressions that TEMPSY-CHECK has determined as violating the trace,
TEMPSY-REPORT creates OCL queries on the trace instance with the help of ConstraintFactory,
depending on the types of the scope and pattern used by each TemPsy expression. We have imple-
mented all the OCL functions (defined on class Trace) for TemPsy scopes and patterns as described
in the previous subsection, to collect information on the violations. The evaluation of the OCL queries
is done using the evaluate function provided by Eclipse OCL.

TEMPSY-REPORT can both output structured text containing the violation information, and also

91

http://weidou.github.io/TemPsy-Report


Chapter 4. Model-driven Violation Reporting for Trace Checking

insert the latter in a MongoDB3 (using the Mongo Java Driver4). In the next subsection, we will
present how the violation information stored in MongoDB is used by our visualization tool.

4.5 Visualizing Violation Information

4.5.1 Requirements
The violation information collected by TEMPSY-REPORT can be displayed as textual output, as done
by the main state-of-the-art trace checking tools [Donzé, 2010, Basin et al., 2012, Reger et al., 2015,
Luo et al., 2014]. However, complex structured textual output is cumbersome to inspect, especially
when a violation can be the result of different causes (i.e., event occurrences) and thus navigating
both the violations list and the events trace is required.

Based on the discussions with our partner, we define the following high-level requirements for
a tool for the visualization of violation information, as an alternative to plaintext output: R1) user-
friendly navigation of a trace; R2) easy access to violations in a trace; R3) useful information for
understanding violations. In the remainder of this section, we first define the functionality of the
target tool, as prescribed by these requirements; then, we illustrate the implementation of the main
features.

4.5.2 Functionality
We defined the following seven features for visualizing the violation information in a trace:

F1 to show the details of a trace element when mousing over its data point;

F2 to zoom in/out of the trace with a self-adaptive granularity of data points;

F3 to slide the displayed time window in both directions along the x-axis;

F4 to mark out the locations of violations as well as the corresponding data points and intervals;

F5 to display the reasons and other details of violations in a navigable fashion (separately from the
display of the trace);

F6 to inspect each violation (in the trace display) by clicking on either its corresponding data point
or the link embedded in its description;

F7 to highlight the violated portion of a TemPsy property upon inspecting a violation.

As shown in Table 4.2, the seven features strongly contribute to fulfilling the three requirements.
The first feature, as the basis for inspecting traces, shows the event name and timestamp of a trace
element, and hence assists in navigating the traces. The second feature contributes to both R1 and R3,
since it provides a handy facility, which allows users not only to examine interesting trace elements

3https://www.mongodb.com
4https://mongodb.github.io/mongo-java-driver

92

https://www.mongodb.com
https://mongodb.github.io/mongo-java-driver


4.5. Visualizing Violation Information

Table 4.2: Mapping between the requirements and the functionality of the target visualization tool

Requirement Functionality

R1 F1 F2 F3
R2 F4 F5 F6
R3 F2 F4 F5 F7

in close-up but also to visualize the distribution of violations, by means of feature F4. Furthermore,
the third feature helps to refer to adjacent trace elements when navigating a portion of a trace.

While the aforementioned three features are common functionality for generic data visualization,
the remaining features are specific to the context of visualizing violations in traces. The fourth fea-
ture helps identify violations in the display of a trace, and the fifth explicitly lists the details of all
violations. Both features not only contribute to a better understanding of violations but also enable ef-
fortless access to violations across a trace, as described in the feature F6. Together, they contribute to
fulfilling the second requirement. In addition to F2, F4, and F5, the last feature highlights the portion
of a property that is violated and thus contribute to fulfilling R3 (related to understanding violations).

4.5.3 Implementation
We have developed an interactive visualization tool, implementing the features above; it is publicly
available at http://weidou.github.io/TemPsy-Violation-Visualization. The
tool is based on technologies such as amCharts5, Meter.js6, AngularJS7, MongoDB3, and Elastic-
Search8. The tool leverages the violation information collected by TEMPSY-REPORT and saved into
MongoDB. It also stores a copy of the trace in ElasticSearch, to allow for fast data retrieval from the
trace.

The trace is displayed in chronological order using a chart component. A data point in the chart
corresponds to a trace element; the timestamp of each trace element is the x-axis value of the corre-
sponding data point, while the y-axis is set to a constant.

Figure 4.3 shows a screenshot of the tool, which highlights the ninth violation on an execu-
tion trace. The TemPsy property “globally ICM.notifyCardReturned responding at
most 24 tu Card.isReturned” consists of a globally scope and a bounded response pat-
tern. On the right of the screenshot, the execution trace is visualized chronologically, within which
the occurrences of irrelevant events are in olive and the data points referring to violations are high-
lighted with red and blue colors. The red points are the occurrences of event Card.isReturned
which violate the response pattern; the blue points are the closest (in time) occurrences of event
ICM.notifyCardReturned which occur after an occurrence of event Card.isReturned but
beyond the distance of 24 time units. As a general rule, for the TemPsy patterns which contain only
one event, i.e., universality, existence, and absence, we use the red color to highlight the data points
referring to violations; for the order patterns, i.e., precedence and response, we use the red color to

5https://www.amcharts.com
6https://www.meteor.com
7https://angularjs.org
8https://www.elastic.co

93

http://weidou.github.io/TemPsy-Violation-Visualization
https://www.amcharts.com
https://www.meteor.com
https://angularjs.org
https://www.elastic.co


Chapter 4. Model-driven Violation Reporting for Trace Checking

Figure 4.3: Screenshot of our visualization tool for understanding TemPsy violations

highlight the offending occurrences of the event(s) specified in the second block, and use the blue
color to highlight the closest occurrences of the event(s) specified in the first block, which correspond
to the red data points. In addition, as shown in the screenshot, we mark the time window of 24 time
units in purple at each red point, to help identify the bound of the time distance between the two
blocks of an order pattern. This is how the tool implements feature F4. The screenshot also show-
cases the general features, i.e., F1, F2, and F3. As shown within the red-framed callout, the details of
the occurrence of the event Card.isReturned at the timestamp 4400 appears when hovering over
its data point (F1); as for F2 and F3, the current sub-trace can be reached with three actions: zooming
in for inspecting the ninth violation at timestamp 4400, zooming out to show the right region of the
violation, and sliding to the left using the horizontal sliding bar on top of the chart. Above the chart,
the text “responding at most 24 tu” is highlighted in red in the property, to indicate that the
ninth violation is about the constraint on the time distance between the two blocks; this implement
feature F7. On the left of the screenshot, the violation information is navigable through a list ( feature
F5). Moreover, the user can zoom in for inspecting each violation by clicking on the link within each
violation information block, or by clicking on the data points in red/blue (feature F6).

The visualization tool can display on-the-fly the distribution of the violations when displaying the
entire trace, by automatically adapting the granularity of data points. Furthermore, as shown at the
top of the sliding bar, the button labeled with segment (or segments) enables toggling the highlight(s)
of the sub-trace(s) delimited by the scope used in the given property. A the bottom of the chart, we
also provide toggles for inspecting the trace elements; for example, the one labeled with irrelevant
event, toggles the visualization of the events that are not specified in the pattern.

4.6 Evaluation
In this section, we evaluate the scalability of TEMPSY-REPORT, by investigating the relationship
among the execution time of TEMPSY-REPORT, the number of violations, the violation type, the
structural properties of a trace (e.g., length, distribution of violations and events), and the type of

94



4.6. Evaluation

the pattern used by a TemPsy property. For each type of TemPsy patterns, we address two research
questions:

RQ1) Given a fixed number of violations, what is the relation between the execution time of TEMPSY-
REPORT and the length of a trace?

RQ2) Given a fixed length of a trace, what is the relation between the execution time of TEMPSY-
REPORT and the number of violations?

4.6.1 Experiment settings
From the requirements specification documents of an eGovernment application developed by our
partner, we have extracted 47 temporal properties. Since the scalability of the violation information
collection procedure mainly correlates with the pattern used in a TemPsy property, we select the ones
that use the globally scope (12 out of the 47) as the benchmark. The 12 properties are listed in a
sanitized form in Table 4.3. For confidentiality reasons, we only keep the structure of each property,
in terms of scope + pattern; the events involved in the property (e.g., “a citizen requests a certificate”)
are denoted by uppercase letters.

Table 4.3: TemPsy properties used for the evaluation

P1: globally always A
P2: globally never B
P3: globally eventually at least 2 A
P4: globally eventually at most 3 A
P5: globally A responding at most 1000 tu B
P6: globally A responding exactly 1000 tu B
P7: globally A preceding at most 6000 tu B
P8: globally A preceding at least 100 tu B
P9: globally A preceding exactly 100 tu B
P10: globally A, B preceding at least 1000 tu C, D
P11: globally A responding at least 1000 tu B, C
P12: globally A responding B

We use synthesized traces to assess the scalability of the procedure for collecting violation infor-
mation. There are several reasons to do this: 1) based on our experience, real traces are often inade-
quate to cover a large range of trace lengths and a variety of properties; 2) we wanted to have great
diversity in terms of occurrences of violations in the traces, while being able to control this diversity;
3) if we had used real traces, they could not be shared for forming a public benchmark, even when
sanitized. By using synthesized traces we are able to control in a systematic way the factors (such as
trace length, frequency and types of violations) that could impact the execution time for a specific type
of pattern. At the same time, we are also able to randomly set other factors, e.g., distance between
events, to avoid any bias. To synthesize these traces we implemented a trace generator program. The
program takes in input a TemPsy pattern and generates faulty traces for the evaluation. The details of
the trace generation strategy depend on the input pattern and are discussed in the next subsections.
As an additional contribution of the thesis, we also make available in the TEMPSY-REPORT GitHub

95



Chapter 4. Model-driven Violation Reporting for Trace Checking

repository the artifacts used in the evaluation, to contribute to the building of a public repository of
case studies for evaluating the approaches to violation reporting for trace checking.

To address research question RQ1, in the trace generator program we fix the number of violations9

to 1K, and generate 10 traces with various lengths from 100K to 1M, with a 100K step increment. For
the research question RQ2, we fix the length of the trace to 1M, and vary the number of violations9

from 1K to 10K, with a 1K step increment. The key to avoiding bias is to distribute the violations (or
events) evenly and to generate their positions randomly within the slots determined by the trace length
and number of violations. The positions related to a violation are generated randomly by taking into
account the temporal and timing constraints prescribed by the semantics of the input pattern; the other
positions are filled with an irrelevant event.

In the following subsections, we first describe the specific trace generation strategies for each
TemPsy pattern and then report on the evaluation results by applying our approach to the 12 properties.

The results reported in this section have been measured on a desktop computer with a 3 GHz Intel
Dual-Core i7 CPU and 16GB of memory, running Eclipse DSL Tools v. 4.6.0M3 (Neon Milestone
3), JavaSE-1.7 (Java SE v. 1.8.0_25-b17, Java HotSpot (TM) 64-Bit Server VM v. 25.25-b02, mixed
mode), Eclipse OCL v. 6.0.1. All measurements reported correspond to the average value over 100
runs of the procedure (on the same trace, for the same property).

4.6.2 Trace Generation Strategies
Properties using the universality pattern. For the universality pattern like property P1 in Ta-

ble 4.3, there is only one possible violation type, i.e., NSOC. Hence after randomly generating the
violation positions, the trace generator fills them with a dummy event (e.g., event “B”), and fills the
others with event A.

Properties using the existence pattern. Out of the 12 properties, there are two properties using
the existence pattern, i.e., P3 and P4. The strategies for generating faulty traces for properties defined
using the existence pattern depend on the comparison operator used in the pattern.

Property P3 can only contain NSOC violations, when the number of occurrences of event A is less
than 2; and hence, we can only address RQ1 since the number of offending occurrences of event A
can hardly be varied (“at least 2”). In the trace generator, we fix the number of occurrences of
event A to 1, which is the smallest value between 2− 1 and the reserved number 1K, generate the
position randomly in a given trace, and fill the other positions with a dummy event.

For property P4, we address both the research questions. As discussed in Section 4.3.2, there is only
one type of violations for this pattern, i.e., UNOC. Following the general trace generation strategies
discusses above settings, given the number of violations n, the trace generator picks the greatest value
between 3+1 and n as the number of violations and fills the generated positions with event A and the
others with a dummy event.

Properties using the absence pattern. In the 12 properties, property P2 is the one using the ab-
9Alternatively, the number of offending occurrences of a specific event for the cases of universality, absence, and

existence.

96



4.6. Evaluation

sence pattern. It can be violated by any occurrences of event B, yielding UNOC violations. Hence,
after generating the violation positions, the trace generator fills the them with event B and fills the
other positions with a dummy event.

Properties using the precedence pattern. The trace generation strategy for the properties using
the precedence pattern differs from the previous ones, since there may be more than one possible
type of violations, depending on the structure of the pattern. So for each possible violation type, we
generate a set of traces that contains only the specific type of violations, to avoid bias.

Out of the 12 properties, there are four properties that use the precedence patterns, i.e., P7–P10. For
all the properties, given the number of violations n, the trace generator first divides the trace into n
portions with the same length, and then fills a specific violation at a random and valid position.

The precedence patterns used in the four properties can yield either NSOR or WTO violations. Hence,
given the number of violations n, we generate traces that contain n occurrences of the second block
(i.e., n NSOR violations), which for properties P7–P9 is event B and for property P10 is the events
chain “C,D” . We also generate traces that contain n pairs of the two blocks defined in the patterns,
which are in violation of the constraint on the time distance between the two blocks, i.e., n WTO
violations. The strategy for choosing the value of the distance between the two blocks depends on the
type of the comparison operator used in the distance constraint. Property P7 contains constraint “at
most 6000 tu” between event A and B, so the s distance is randomly generated from (6000,6000∗
1.1]. For property P8 which uses “at least 100 tu”, the trace generator picks a random value
from [1,100). The trace generation strategy for property P10 is similar. As for property P9, which uses
“exactly 100 tu”, the distance is randomly chosen from the two ranges [1,100) and (100,100∗
1.1]. According to the definition of the precedence pattern, an event chain that contains no distance
constraint such as A,B is arranged consecutively at a randomly generated position and the distance
between them is fixed to 1.

Properties using the response pattern. There are four properties using the response patterns,
i.e., P5, P6, P11, and P12. For property P12, NSOR is the only possible type of violations. Given
the number of violations n, the trace generator distributes event B randomly in all the n slots. For the
other three properties, there are two possible violation types: NSOR and WTO. The trace generation
strategies for them are similar to the ones used in the corresponding precedence patterns.

4.6.3 Evaluation Results
To answer the two research questions, the TEMPSY-REPORT tool has been run with properties P1–
P12 on two sets of synthesized traces. As discussed in the previous subsection, since there are two
possible types of violations (i.e., NSOR and WTO) for properties P5–P11, for each of the properties,
we have generated two traces, each containing one of the two violation types.

In the experiments for answering RQ1, we generated traces by fixing the number of violations to
1K and varying the length from 100K to 1M. The 19 plots in Figure 4.4 depict the relation between
the execution time (y-axis) of TEMPSY-REPORT and the trace length (x-axis). The execution of
TEMPSY-REPORT on a trace containing NSOR violations is denoted by adding a superscript † to the
property’s name and a superscript ‡ is used to indicate the execution on a trace with WTO violations.
Notice that we split the plots into two parts (i.e., Figures 4.4a and 4.4b), since the distance constraint

97



Chapter 4. Model-driven Violation Reporting for Trace Checking

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
2

3

4

5

Trace length (·103)

E
xe

cu
tio

n
tim

e
(s

)

P1 P2 P3
P4 P5† P5‡

P6† P6‡ P7†

P7‡ P9† P9‡

P11† P11‡ P12

(a) P1–P7, P9, P11–P12
10

0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

2

4

6

8

Trace length (·103)

E
xe

cu
tio

n
tim

e
(s

)

P8† P8‡

P10† P10‡

(b) P8, P10

Figure 4.4: Execution time of TEMPSY-REPORT for collecting violation information from faulty
traces (fixed number of violations, various lengths)

1 2 3 4 5 6 7 8 9 10

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Number of violations (·103)

E
xe

cu
tio

n
tim

e
(s

)

P1
P2
P3
P4

P5†

P5‡

P6†

P6‡

P7†

P7‡

P9†

P9‡

P11†

P11‡

P12

(a) P1–P7, P9, P11–P12

1 2 3 4 5 6 7 8 9 10

3

4

5

6

7

8

Number of violations (·103)

E
xe

cu
tio

n
tim

e
(s

)

P8† P8‡ P10† P10‡

(b) P8, P10

Figure 4.5: Execution time of TEMPSY-REPORT for collecting violation information from faulty
traces (various numbers of violations, fixed length)

“at least n tu” used by properties P8 and P10 can be naturally satisfied after several violations,
regardless of the strategy used for generating traces with WTO violations.

As shown in Figure 4.4, we answer RQ1 by observing that the TEMPSY-REPORT tool scales

98



4.6. Evaluation

linearly as the trace length increases; the execution time ranges from about 1.5 s to 8.2 s, depending
on the pattern used in the property and the violation type in the trace.

In the experiments for answering RQ2, we generated traces by fixing the length to 1M and varying
the number of violations from 1K to 10K. The 19 plots in Figure 4.5 depict the relation between the
execution time (y-axis) of TEMPSY-REPORT and the number of violations (x-axis). We separate the
plots for P8 and P10 (i.e., Figure 4.4b) from the others (i.e., Figure 4.4a) for the same reason stated
above (limited numbers of violations in the generated traces with WTO violations). Notice that the
x-axis of Figure 4.5b is the same as the one in Figure 4.5a, since it does not affect the results.

As shown in Figure 4.5, we answer RQ2 by observing that the number of violations makes no tan-
gible impact on the performance of the TEMPSY-REPORT tool, which stays approximately constant
as the number of violations increases; the execution time ranges from about 3.8 s to 8.2 s depending
on the pattern used in the property and the violation type in the trace.

Figures 4.4 and 4.5 show that TEMPSY-REPORT needs less time to collect violation information
for the properties using the universality, existence, and absence patterns than for the properties using
the precedence and response patterns. Figures 4.4b and 4.5b show that the tool spends less time
in analyzing the generated traces with WTO violations than the ones with NSOR violations, for the
precedence patterns (e.g., P8, P10) using “at least” (as the comparison operator) in the distance
constraint between the two blocks. The plots for P8 and P10 also indicate that it requires more
time to cope with the generated traces containing NSOR violations for the precedence patterns using
“at least” in the middle distance constraint than with the traces generated for the other patterns,
by given the same number of violations. This is because the worst-case execution time of function
reportPatternPrecedenceAtLeast (Algorithm 25), in particular when the violation type is
NSOR, is a bit more expensive than the other homologous functions. More specifically, our function
has one more if-else statement (lines 9–17) for checking whether the first block has already been
found before a match of the second block and also it takes time to confirm if the current match of
the first block is invalid with respect to the distance constraints defined within the block (line 13).
Moreover, the results show that our approach spends more time in collecting violation information
for an order pattern in which the blocks contains more events (e.g., P10, P11).

4.6.4 Discussion
The evaluation results presented in the previous subsection have shown the feasibility of applying our
model-driven approach to violation information collection for trace checking of temporal properties
in realistic settings.

Our TEMPSY-REPORT tool is a viable technology from a performance viewpoint, as it can analyze
very large traces (with one million events) in less than ten seconds. The tool scales linearly with
respect to the length of the input trace and keeps approximately constant performance with respect
to the number of violations. Note that “the input trace” can also correspond to a sub-trace isolated
from a larger execution trace (see also Section 3.7.5). We also remark that our TEMPSY-REPORT tool
fulfills requirement R2 (see Chapter 1) which calls for using standard MDE technologies.

At the time of writing, we can not find a tool in the literature that is comparable with our TEMPSY-
REPORT tool, in terms of collecting comprehensible information (e.g., violation positions and rea-

99



Chapter 4. Model-driven Violation Reporting for Trace Checking

sons) about temporal violations detected by trace checking. A detailed comparison between the
state-of-the-art tools for violation reporting for trace checking of temporal properties and TEMPSY-
REPORT will be drawn in the next chapter.

Overall, our model-driven approach to violation information collection for trace checking of tem-
poral properties is viable and is able to collect more comprehensible information about temporal
violations than the state of the art.

4.6.4.1 Threats to validity

The main threat to the validity of the evaluation results is the intrinsic presence of errors in TEMPSY-
REPORT. We tried to compensate for this by thoroughly testing the tool with traces and properties for
which the oracle was previously known.

Another potential threat is from the synthesized traces that were generated by our trace generator
program. As explained at the beginning of this section, synthesized traces do not affect our research
question on scalability and are better than real ones as they allows us to control certain factors and
varying others randomly.

100



Chapter 5

Related Work

The work presented in this thesis is related to MDE approaches for specifying temporal properties, to
approaches for trace checking/run-time verification, and to approach for reporting violation informa-
tion. We review these areas in the next three subsections.

5.1 MDE Approaches for Specifying Temporal Properties
There have been several proposals in the MDE community to define high-level specification languages
for expressing temporal properties; all these proposals are realized as temporal extensions of OCL. In
the rest of this section we summarize them and discuss their differences and limitations with respect
to TemPsy.

5.1.1 Pattern-based temporal extensions of OCL
The approaches that are most similar to TemPsy are those that extend OCL with support for Dwyer et
al.’s property specification patterns.

Table 5.1: Comparison between pattern-based temporal extensions of OCL and
TemPsy

Language
Features Tool

NOOP TDOP SOS TDS support

[Flake and Müller, 2003] - + - - -
[Küster-Filipe and Anderson, 2006] - - - * -
[Robinson, 2008] + * - * n/a
[Kanso and Taha, 2014] + * - * +

TemPsy + + + + +

Legend. NOOP: Number of Occurrences in occurrence Patterns; TDOP: Time
Distance in order Patterns; SOS: Specific Occurrence in Scopes; TDS: Time Dis-
tance in Scopes; +: full support; -: no support; *: partial support; n/a: tool men-
tioned in the paper but not available.

101



Chapter 5. Related Work

Flake and Mueller [Flake and Müller, 2003] define a state-oriented OCL extension for expressing
Dwyer et al.’s patterns over UML Statecharts configurations. The extension is based on the introduc-
tion of a special temporal operation, which can be applied to objects that have an associated Statechart.
The evaluation of this operation at a certain time point yields the set of state configuration sequences
in the time interval defined by the parameters of the operation. The extension, in addition to allowing
for expressing the original definition of patterns in [Dwyer et al., 1999], adds also the support for
specifying time distances in order patterns.

Küster-Filipe and Anderson [Küster-Filipe and Anderson, 2006] propose a liveness template for
OCL to define future-oriented time-bounded constraints that are expressed with a time-bounded after
scope and an existence pattern. This template is defined in terms of the real-time temporal logic of
knowledge, interpreted over timed automata, to allow for formal reasoning. The expressiveness of
this extension is very limited since it supports only one scope/pattern combination.

Robinson [Robinson, 2008] presents a temporal extension of OCL called OCLTM, developed in
the context of a framework for monitoring of requirements expressed using a goal model. OCLTM
includes all the operators corresponding to standard LTL modalities, and supports Dwyer et al.’s
patterns and time distances in patterns. In this regard, it is very close to the expressiveness of TemPsy,
though it supports neither the reference to a specific occurrence of an event in scopes nor two types
of constraints (as TemPsy does with the keywords ‘at least’ and ‘exactly’) on time distances
in scopes and order patterns.

Kanso and Taha [Kanso and Taha, 2014] introduce Temporal OCL, a pattern-based temporal ex-
tension of OCL. Although the support for temporal patterns is very similar between the two languages,
Temporal OCL does not allow references to specific event occurrences in scope boundaries and does
not fully support constraints on the time distance from a scope boundary (it only supports state-change
events).

Table 5.1 provides a comparison of these four approaches with TemPsy, in terms of the follow-
ing language features, derived from the analysis of the requirements specifications of our case study
(see Section 2.2.1): 1) the possibility of referring to the number of occurrences of an event in occur-
rence patterns (NOOP); 2) the possibility of defining a time distance between events in order patterns
(TDOP); 3) the possibility of referring to a specific occurrence of an event in scopes (SOS); 4) the
possibility of defining a constraint on the time distance from scope boundaries (TDS). The table also
indicates whether the proposed language extension includes tool support.

As you can see, TemPsy is the only pattern-based language that provides support for all the specific
features needed for the specification of requirements in the context of our case study.

5.1.2 Other temporal extensions of OCL
Temporal extensions of OCL that are not pattern-based are mainly realized by extending the lan-
guage with temporal operators borrowed from standard temporal logic, such as “always”, “until”,
“eventually”, “next”. A preliminary work in this direction appeared in [Conrad and Turowski, 2001].
OCL/RT [Cengarle and Knapp, 2002] extends OCL with the notion of timestamped events (based
on the original UML abstract meta-class Event) and two temporal operators, “always” and “some-
times”. Events are associated with instances of classifiers and, by means of a special satisfaction

102



5.2. Trace Checking and Run-time Verification

operator, it is possible to evaluate an expression at the time instant when a certain event occurred. The
OCL/RT extension allows for expressing real-time deadline and timeout constraints but requires to
reason explicitly at the lowest-level of abstraction, in terms of time instants. Lavazza et al. [Lavazza
et al., 2003] define the Object Temporal Logic (OTL), which allows users to write temporal constraints
on Real-time UML (UML-RT) models. In particular, it supports the concepts of Time, Duration, and
Interval to specify the time distance between events. Nevertheless, the language is modeled after
the TRIO temporal logic [Morzenti et al., 1992], and the properties are written using a low level of
abstraction. Ziemann and Gogolla [Ziemann and Gogolla, 2003] propose TOCL, an extension of
OCL with LTL operators, to specify constraints on the temporal evolution of the system states. Be-
ing based on LTL, TOCL does not support real-time constraints. Bill et al. [Bill et al., 2014] define
cOCL, an extension of OCL with CTL temporal operators to express properties over the lifetime of
an instance model. These properties are then verified with an explicit state space model checking
framework. Being based on CTL, cOCL does not support real-time constraints. The work on Flake
and Mueller [Flake and Mueller, 2004] goes in a similar direction, proposing an extension of OCL
that allows for the specification of past- and future-oriented time-bounded constraints. They do not
support event-based specifications; moreover, the proposed mapping into Clocked LTL does not allow
to rely on standard OCL tools. Soden and Eichler [Soden and Eichler, 2009] propose Linear Tem-
poral OCL (LT-OCL) for languages defined over MOF meta-models in conjunction with operational
semantics. LT-OCL contains the standard LTL operators. The interpretation of LT-OCL formulae is
defined in the context of a MOF meta-model and its dynamic behavior specified by action semantics
using the M3Actions framework.

Since all these temporal extensions of OCL are based on some temporal logic and include temporal
logic operators, they intrinsically inherit the limitations of other specification approaches based on
temporal logic: 1) they require strong theoretical and mathematical background, which are rarely
found among practitioners; 2) they provided limited tool support, often based on prototypes that do
not scale for industrial applications.

A different type of support for temporal constraints is proposed by Cabot et al. [Cabot et al., 2003].
They extend UML to use UML/OCL as a temporal conceptual modeling language, introducing the
concepts of durability and frequency for the definition of temporal features of UML classifiers and
associations. They define temporal operations in OCL through which it is possible to refer to any past
state of the system. These operations are mapped into standard OCL by relying on the mapping of the
temporally-extended conceptual schema into a conventional UML one, which explicitly instantiates
the concepts of time interval and instant. However, the temporal operations are geared to express
temporal integrity constraints on the model, rather than temporal properties correlating events of the
system.

5.2 Trace Checking and Run-time Verification
Model-driven technologies have been used in various work on (run-time) trace and/or assertion check-
ing. The model-driven approach for assertion checking proposed in [Zhang et al., 2005] relies on the
principles of aspect-oriented programming and uses a technique called two-level aspect weaving.
First, cross-cutting assertions defined using ECL, an extension of OCL, are weaved into a model de-
fined within GME (Generic Modeling Environment [Davis, 2003]) and then the code for checking
the contracts specified in the models is generated using model-driven program transformations [Gray

103



Chapter 5. Related Work

Table 5.2: The state of the art of violation reporting for offline trace checking of temporal
properties

Tool Bool Positions Reasons Visualization

BREACH [Donzé, 2010] + + *
MONPOLY [Basin et al., 2012] + +
QEA [Reger et al., 2015] + *
SOLOIST+ZOT [Bersani et al., 2014] +
RV-MONITOR [Luo et al., 2014] + *

Legend. Bool: the boolean checking result; Positions: all offending positions in the
faulty trace; Reasons: the reasons for all violations; Visualization: a comprehensive vi-
sualization facility for inspecting violations; *: partial support.

et al., 2004]. ECL does not support the expression of temporal constraints. An approach conceptually
similar to ours is proposed in [Engels et al., 2006], in which pre- and post-conditions are expressed
with visual contracts defined using graph transformations and then transformed into a code-level rep-
resentation as JML (Java Modeling Language) assertions. The pre- and post-conditions that can be
expressed in this framework are functional and do not support temporal expressions. Reference [Sim-
monds et al., 2009] proposes a model-driven approach for monitoring Web services in which tempo-
ral properties, expressed using property specification patterns [Dwyer et al., 1999], are defined with
a subset of UML 2.0 Sequence Diagrams and checked at run time by translating sequence diagrams
into non-deterministic finite automata. However, the properties used in this thesis, differently from
those that can be expressed with TemPsy, do not support expressing timing requirements. Our model-
driven approach for trace checking can be easily applied in scenarios where other trace models are
used, as long as OCL invariants can be expressed on them; examples of these models are those pro-
posed in [Briand et al., 2006] (designed for the reverse engineering of UML sequence diagrams from
traces) and [Hamou-Lhadj and Lethbridge, 2012] (tailored for the exchange of traces corresponding
to large program call trees).

This thesis is also related to the more general area of run-time verification [Leucker and Schallhart,
2009]. The majority of the approaches proposed in this area (e.g., [Finkbeiner et al., 2005, Basin et al.,
2008, Basin et al., 2013, Barre et al., 2013, Bianculli et al., 2014, Bersani et al., 2014]) focuses on the
verification of temporal properties expressed using some temporal logic. These approaches define the
trace checking/run-time verification problem in terms of a word problem, i.e., the problem of whether
a given word is included in some languages, and rely on formal verification tools like model checkers
or SAT/SMT solvers. In our approach, we use a domain-specific specification language (TemPsy) and
rely on standard MDE technologies.

5.3 Violation Reporting for Trace Checking
To review the state of the art for violation reporting for offline trace checking of temporal properties,
we analyzed the output of the tools 1) presented as a demo and/or 2) contestants in the “offline
monitoring” track of the International Competition on Runtime Verification (CRV), both included in
the program of the 2014 and 2015 editions of the International Conference on Runtime Verification.

104



5.3. Violation Reporting for Trace Checking

Table 5.2 summarizes whether the output of each trace checking tool includes the following four
features: 1. the boolean result of the checking (i.e., false or any equivalent conclusion for a faulty
trace); 2. all offending positions in the faulty trace; 3. the reasons for all violations; 4. a compre-
hensive visualization facility for inspecting violations. Note that four of the tools mentioned in the
trace checking competitions - STEPR, AGMON [Kane et al., 2014], LOGFIRE [Havelund, 2015], OP-
TYSIM [Diaz et al., 2011] - are not publicly available; another tool RITHM-v2.0 [Navabpour et al.,
2013], is available but does not work when executed by following the instructions specified in the
README file on its GitHub page [Yogi Joshi, 2016].

One can see that besides the boolean output obtained when checking a faulty trace, state-of-
the-art tools rarely report useful violation information. Although two of them are able to indicate
the offending positions of all violations, none can systematically indicate the reason behind each
violation, or integrates a comprehensive visualization facility for inspecting those violations. As a
Matlab/C++ tool, BREACH [Donzé, 2010] is not developed for offline trace checking, though it can
check digitized traces against Signal Temporal Logic (STL) specifications. The output of BREACH

shows the boolean checking results on the plot of a trace, which is a very basic support for visualizing
violations. Furthermore, BREACH does not indicate the reason for each violation and lacks features
for inspecting violations (e.g., jumping to a specific violation). MONPOLY [Basin et al., 2012] is
an offline trace checking tool that prints out the offending log lines when violations are found in a
trace. However, MONPOLY only provides textual output and it does not explain the reason for each
violation. QEA [Reger et al., 2015] is a trace checking tool that stops checking at the first violation;
it produces the first offending line as part of output. SOLOIST+ZOT [Bersani et al., 2014] uses a
bounded satisfiability checker and returns only a boolean result. RV-MONITOR [Luo et al., 2014]
is a tool designed for runtime verification, but it is also able to check traces using a front-end log
reader called RV-LOG [He Xiao, 2016]. RV-MONITOR does not allow keeping track of the offending
positions in a faulty trace. It provides the possibility of manually writing a violation handler to
print some relative information about a violation. However, since it does not produce any additional
information to understand the reasons and the types of violations, the output of the handler is not very
informative. Moreover, RV-MONITOR does not allow visually inspecting violations.

105





Chapter 6

Conclusions and Future Work

6.1 Conclusions
The correct enactment of business processes in the context of eGovernment is of vital importance to
supply reliable digital solutions to citizens and enterprises, as well as to foster an effective cooperation
of the various public administrations in a state. To ensure the correct enactment of a business process,
offline trace checking provides a means to check the compliance of the business process with respect
to its requirements, by analyzing the trace of events produced by the system at run time. In addition, a
violation reporting procedure complements offline trace checking by collecting violation information
from a faulty trace and presenting the data to end users, and hence allowing for understanding the
violations.

In this thesis, we have presented a practical and scalable solution for the offline checking of the
temporal requirements of business processes, which can be used in contexts where model-driven engi-
neering is already a practice, where temporal specifications should be written in a domain-specific lan-
guage not requiring a strong mathematical background, and where relying on standards and industry-
strength tools for property checking is a fundamental prerequisite. We have applied this solution, as a
case study, to the particular context of eGovernment, in collaboration with our public service partner
CTIE.

This thesis has made the following contributions:

i) the TemPsy language, a pattern-based domain-specific language for the specification of temporal
properties, developed in the context of business process models;

ii) a model-driven trace checking procedure, which relies on an optimized mapping of temporal
requirements written in TemPsy into OCL constraints on a conceptual model of execution traces;

iii) a model-driven approach to violation information collection, which relies on the evaluation of
OCL queries on an instance of the trace model;

iv) three publicly-available tools: 1) TEMPSY-CHECK and 2) TEMPSY-REPORT, implementing,
respectively, the trace checking and violation information collection procedures; 3) an interactive

107



Chapter 6. Conclusions and Future Work

visualization tool for navigating and analyzing the violation information collected by TEMPSY-
REPORT;

v) an evaluation of the scalability of TEMPSY-CHECK and TEMPSY-REPORT, when applied to the
verification of real properties derived from a case study of our public service partner.

The experimental results of the evaluation of the scalability of TEMPSY-CHECK show the feasibil-
ity of applying our model-driven offline trace checking procedure in realistic settings. The TEMPSY-
CHECK tool proves favorable with respect to the state of the art. It scales linearly with respect to the
length of the input trace to check and is able to analyze traces with one million events in about two
seconds.

As a complement to the offline trace checking procedure, the TEMPSY-REPORT tool provides end
users with the possibility to navigate and understand temporal violations; such a functionality is not
common or very limited among state-of-the-art trace checking tools. The evaluation of TEMPSY-
REPORT shows that TEMPSY-REPORT is able to collect violation information from large traces (with
one million events) in less than ten seconds. The TEMPSY-REPORT tool scales linearly with respect
to the length of the trace and keeps approximately constant performance as the number of violations
increases.

6.2 Future Work
The work presented in this thesis is part of a broader project in collaboration with CTIE, on model-
driven run-time verification of business processes [Dou et al., 2014c]. The next step is to embed our
approaches for trace checking and violation reporting within the business process execution platform
of our partner, to realize an efficient run-time verification platform for temporal properties of business
process-based applications.

In the future, we also plan to extend the work along the following directions: i) conducting a
usability study of the TemPsy language, to assess the usability with respect to other specification
methods (e.g., temporal logic); ii) applying the procedures for trace checking and violation reporting
to other MDE contexts different from eGovernment business process modeling, with the possibility of
extending TemPsy with additional constructs, as required by the new application domains; iii) carrying
out a usability study of our visualization tool for violation information.

108



Bibliography

[Alexander et al., 1977] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King,
I., and Angel, S. (1977). A pattern language. Towns, buildings, construction. Oxford University
Press.

[Autili et al., 2015] Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., and Tang, A. (2015). Align-
ing qualitative, real-time, and probabilistic property specification patterns using a structured En-
glish grammar. IEEE Trans. Softw. Eng., 41(7):620–638.

[Baresi et al., 2007] Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., and Spoletini, P. (2007). Vali-
dation of web service compositions. IET Softw., 1(6):219–232.

[Baresi and Guinea, 2005] Baresi, L. and Guinea, S. (2005). Towards dynamic monitoring of WS-
BPEL processes. In Proc. ICSOC 2005, volume 3826 of LNCS, pages 269–282. Springer.

[Baresi et al., 2009] Baresi, L., Guinea, S., Pistore, M., and Trainotti, M. (2009). Dynamo + astro:
An integrated approach for BPEL monitoring. In Proc. ICWS ’09, pages 230–237. IEEE.

[Barre et al., 2013] Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.-A., and Hallé, S. (2013).
MapReduce for parallel trace validation of LTL properties. In Proc. RV 2012, volume 7687 of
LNCS, pages 184–198. Springer.

[Barringer et al., 2012] Barringer, H., Falcone, Y., Havelund, K., Reger, G., and Rydeheard, D.
(2012). Quantified event automata: Towards expressive and efficient runtime monitors. In Proc.
FM 2012, volume 7436 of LNCS, pages 68–84. Springer.

[Bartocci et al., 2014] Bartocci, E., Bonakdarpour, B., and Falcone, Y. (2014). First international
competition on software for runtime verification. In Proc. RV 2014, volume 8734 of LNCS, pages
1–9. Springer.

[Basin et al., 2012] Basin, D., Harvan, M., Klaedtke, F., and Zălinescu, E. (2012). MONPOLY:
Monitoring usage-control policies. In Proc. RV 2011, volume 7186 of LNCS, pages 360–364.

[Basin et al., 2013] Basin, D., Klaedtke, F., Marinovic, S., and Zălinescu, E. (2013). Monitoring of
temporal first-order properties with aggregations. In Proc. RV 2013, volume 8174 of LNCS, pages
40–58. Springer.

[Basin et al., 2008] Basin, D., Klaedtke, F., Müller, S., and Pfitzmann, B. (2008). Runtime moni-
toring of metric first-order temporal properties. In Proc. FSTTCS ’08, pages 49–60. IBFI Schloss
Dagstuhl.

109



Bibliography

[Bersani et al., 2016] Bersani, M., Bianculli, D., Ghezzi, C., Krstić, S., and San Pietro, P. (2016).
Efficient large-scale trace checking using MapReduce. In Proc. ICSE 2016. ACM. to be published.

[Bersani et al., 2014] Bersani, M. M., Bianculli, D., Ghezzi, C., Krstić, S., and San Pietro, P. (2014).
SMT-based checking of SOLOIST over sparse traces. In Proc. FASE 2014, volume 8411 of LNCS,
pages 276–290. Springer.

[Bianculli et al., 2014] Bianculli, D., Ghezzi, C., and Krstić, S. (2014). Trace checking of metric
temporal logic with aggregating modalities using MapReduce. In Proc. SEFM 2014, volume 8702
of LNCS, pages 144–158. Springer.

[Bianculli et al., 2012] Bianculli, D., Ghezzi, C., Pautasso, C., and Senti, P. (2012). Specification
patterns from research to industry: a case study in service-based applications. In Proc. ICSE 2012,
pages 968–976. IEEE.

[Bianculli et al., 2013] Bianculli, D., Ghezzi, C., and San Pietro, P. (2013). The tale of SOLOIST: a
specification language for service compositions interactions. In Proc. FACS’12, volume 7684 of
LNCS, pages 55–72. Springer.

[Bianculli et al., 2007] Bianculli, D., Ghezzi, C., and Spoletini, P. (2007). A model checking ap-
proach to verify BPEL4WS workflows. In Proc. SOCA ’07, pages 13–20. IEEE.

[Bill et al., 2014] Bill, R., Gabmeyer, S., Kaufmann, P., and Seidl, M. (2014). Model checking of
CTL-extended OCL specifications. In Proc. SLE 2014, volume 8706 of LNCS, pages 221–240.
Springer.

[Brambilla et al., 2010] Brambilla, M., Butti, S., and Fraternali, P. (2010). WebRatio BPM: A tool
for designing and deploying business processes on the web. In Proc. ICWE 2010, volume 6189 of
LNCS, pages 415–429. Springer.

[Briand et al., 2006] Briand, L. C., Labiche, Y., and Leduc, J. (2006). Toward the reverse engineering
of UML sequence diagrams for distributed Java software. IEEE Trans. Softw. Eng., 32(9):642–663.

[Cabot et al., 2003] Cabot, J., Olivé, A., and Teniente, E. (2003). Representing temporal information
in UML. In Proc. UML 2003, volume 2863 of LNCS, pages 44–59. Springer.

[Cengarle and Knapp, 2002] Cengarle, M. and Knapp, A. (2002). Towards OCL/RT. In Proc. FME
2002, volume 2391 of LNCS, pages 390–409. Springer.

[Conrad and Turowski, 2001] Conrad, S. and Turowski, K. (2001). Temporal OCL: Meeting speci-
fication demands for business components. In Unified Modeling Language, pages 151–165. IGI
Global.

[Davis, 2003] Davis, J. (2003). GME: The generic modeling environment. In Companion of the
Proc. of OOPSLA ’03, pages 82–83. ACM.

[Diaz et al., 2011] Diaz, A., Merino, P., and Salmeron, A. (2011). Obtaining models for realistic
mobile network simulations using real traces. IEEE Communications Letters, 15(7):782–784.

[Donzé, 2010] Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In Touili, T., Cook, B., and Jackson, P., editors, Proc. CAV 2010, pages 167–170. Springer.

110



Bibliography

[Dou et al., 2014a] Dou, W., Bianculli, D., and Briand, L. (2014a). A model-based approach to
offline trace checking of temporal properties with OCL. Technical Report TR-SnT-2014-5, SnT
Centre - University of Luxembourg.

[Dou et al., 2014b] Dou, W., Bianculli, D., and Briand, L. (2014b). OCLR: a more expressive,
pattern-based temporal extension of OCL. In Proc. ECMFA 2014, volume 8569 of LNCS, pages
51–66. Springer.

[Dou et al., 2014c] Dou, W., Bianculli, D., and Briand, L. (2014c). Revisiting model-driven en-
gineering for run-time verification of business processes. In Proc. SAM 2014, volume 8769 of
LNCS, pages 190–197. Springer.

[Dwyer et al., 1999] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in property
specifications for finite-state verification. In Proc. ICSE 1999, pages 411–420. IEEE.

[Eclipse, 2015a] Eclipse (2015a). Eclipse OCL tools. http://www.eclipse.org/
modeling/mdt/?project=ocl.

[Eclipse, 2015b] Eclipse (2015b). Xtext–Language Engineering Made Easy! http://www.
eclipse.org/Xtext/.

[Engels et al., 2006] Engels, G., Lohmann, M., Sauer, S., and Heckel, R. (2006). Model-driven moni-
toring: An application of graph transformation for design by contract. In Proc. ICGT 2006, volume
4178 of LNCS, pages 336–350. Springer.

[Felder and Morzenti, 1994] Felder, M. and Morzenti, A. (1994). Validating real-time systems by
history-checking TRIO specifications. ACM Trans. Softw. Eng. Methodol., 3(4):308–339.

[Finkbeiner et al., 2005] Finkbeiner, B., Sankaranarayanan, S., and Sipma, H. (2005). Collecting
statistics over runtime executions. Form. Method Syst. Des., 27:253–274.

[Flake and Mueller, 2004] Flake, S. and Mueller, W. (2004). Past- and future-oriented time-bounded
temporal properties with OCL. In Proc. SEFM 2004, pages 154–163. IEEE.

[Flake and Müller, 2003] Flake, S. and Müller, W. (2003). Expressing property specification patterns
with OCL. In Proc. SERP ’03, pages 595–603. CSREA Press.

[Fu et al., 2004] Fu, X., Bultan, T., and Su, J. (2004). Analysis of interacting BPEL web services. In
Proc. WWW ’04, pages 621–630. ACM.

[Furia et al., 2012] Furia, C. A., Mandrioli, D., Morzenti, A., and Rossi, M. (2012). Modeling Time
in Computing. Springer.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[Gray et al., 2004] Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H., Sudarsan, R., Gokhale, A.,
Neema, S., Shi, F., and Bapty, T. (2004). Model-driven program transformation of a large avionics
framework. In Proc. GPCE 2004, volume 3286 of LNCS, pages 361–378. Springer.

111

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/


Bibliography

[Gruhn and Laue, 2006] Gruhn, V. and Laue, R. (2006). Patterns for timed property specifications.
Electron. Notes Theor. Comput. Sci., 153(2):117–133.

[Grunske, 2008] Grunske, L. (2008). Specification patterns for probabilistic quality properties. In
Proc. ICSE 2008, pages 31–40. ACM.

[Hallé et al., 2009] Hallé, S., Villemaire, R., and Cherkaoui, O. (2009). Specifying and validating
data-aware temporal web service properties. IEEE Trans. Softw. Eng., 35(5):669–683.

[Hamou-Lhadj and Lethbridge, 2012] Hamou-Lhadj, A. and Lethbridge, T. C. (2012). A metamodel
for the compact but lossless exchange of execution traces. Softw. Syst. Model., 11(1):77–98.

[Havelund, 2015] Havelund, K. (2015). Rule-based runtime verification revisited. International
Journal on Software Tools for Technology Transfer, 17(2):143–170.

[He Xiao, 2016] He Xiao (2016). RV-Log. https://github.com/
runtimeverification/RV-Log/tree/crv15.

[Kallel et al., 2009] Kallel, S., Charfi, A., Dinkelaker, T., Mezini, M., and Jmaiel, M. (2009). Spec-
ifying and monitoring temporal properties in web services compositions. In Proc. ECOWS ’09,
pages 148–157. IEEE Computer Society.

[Kane et al., 2014] Kane, A., Fuhrman, T., and Koopman, P. (2014). Monitor based oracles for cyber-
physical system testing: practical experience report. In Proc. DSN 2014, pages 148–155. IEEE.

[Kanso and Taha, 2014] Kanso, B. and Taha, S. (2014). Specification of temporal properties with
OCL. Sci. Comput. Program., 96, Part 4:527–551.

[Konrad and Cheng, 2005] Konrad, S. and Cheng, B. H. C. (2005). Real-time specification patterns.
In Proc. ICSE ’05, pages 372–381. ACM.

[Koymans, 1990] Koymans, R. (1990). Specifying real-time properties with metric temporal logic.
Real-Time Syst., 2(4):255–299.

[Küster-Filipe and Anderson, 2006] Küster-Filipe, J. and Anderson, S. (2006). On a time enriched
OCL liveness template. STTT, 8(2):156–166.

[Lavazza et al., 2003] Lavazza, L., Morasca, S., and Morzenti, A. (2003). A dual language approach
extension to UML for the development of time-critical component-based systems. Electron. Notes
Theor. Comput. Sci., 82(6):121–132.

[Leucker and Schallhart, 2009] Leucker, M. and Schallhart, C. (2009). A brief account of runtime
verification. Journal of Logic and Algebraic Programming, 78(5):293–303.

[Li et al., 2005] Li, Z., Han, J., and Jin, Y. (2005). Pattern-based specification and validation of
web services interaction properties. In Proc. ICSOC 2005, volume 3826 of LNCS, pages 73–86.
Springer.

[Lumpe et al., 2011] Lumpe, M., Meedeniya, I., and Grunske, L. (2011). PSPWizard: machine-
assisted definition of temporal logical properties with specification patterns. In Proc. ESEC/FSE
’11, pages 468–471. ACM.

112

https://github.com/runtimeverification/RV-Log/tree/crv15
https://github.com/runtimeverification/RV-Log/tree/crv15


Bibliography

[Luo et al., 2014] Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P. O., Şerbănuţă, T. F., and Roşu,
G. (2014). RV-Monitor: Efficient parametric runtime verification with simultaneous properties. In
Bonakdarpour, B. and Smolka, S. A., editors, Proc. RV 2014, pages 285–300. Springer.

[Morzenti et al., 1992] Morzenti, A., Mandrioli, D., and Ghezzi, C. (1992). A model parametric
real-time logic. ACM Trans. Program. Lang. Syst., 14:521–573.

[Mrad et al., 2013] Mrad, A., Ahmed, S., Hallé, S., and Beaudet, E. (2013). BabelTrace: A collection
of transducers for trace validation. In Proc. RV 2012, volume 7687 of LNCS, pages 126–130.
Springer.

[Navabpour et al., 2013] Navabpour, S., Joshi, Y., Wu, W., Berkovich, S., Medhat, R., Bonakdarpour,
B., and Fischmeister, S. (2013). RiTHM: A tool for enabling time-triggered runtime verification
for C programs. In Proc. ESEC/FSE 2013, pages 603–606. ACM.

[OMG, 2011a] OMG (2011a). BPMN Specification. http://www.bpmn.org.

[OMG, 2011b] OMG (2011b). Modeling and Analysis of Real-time and Embedded systems
(MARTE), Version 1.1. http://www.omg.org/spec/MARTE/1.1/PDF.

[OMG, 2012] OMG (2012). ISO/IEC 19507 (OCL v2.3.1). http://www.omg.org/spec/
OCL/ISO/19507/PDF.

[Post et al., 2012] Post, A., Menzel, I., Hoenicke, J., and Podelski, A. (2012). Automotive behavioral
requirements expressed in a specification pattern system: A case study at BOSCH. Requir. Eng.,
17(1):19–33.

[Raimondi et al., 2008] Raimondi, F., Skene, J., and Emmerich, W. (2008). Efficient online monitor-
ing of web-service SLAs. In Proc. SIGSOFT ’08/FSE-16, pages 170–180. ACM.

[Reger et al., 2015] Reger, G., Cruz, H. C., and Rydeheard, D. (2015). MarQ: Monitoring at runtime
with QEA. In Baier, C. and Tinelli, C., editors, Proc. TACAS 2015, pages 596–610. Springer.

[Robinson, 2008] Robinson, W. N. (2008). Extended OCL for goal monitoring. ECEASST, 9.

[Simmonds et al., 2009] Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E.,
and Waterhouse, J. (2009). Runtime monitoring of web service conversations. IEEE Trans. Serv.
Comput., 2(3):223–244.

[Soden and Eichler, 2009] Soden, M. and Eichler, H. (2009). Temporal extensions of OCL revisited.
In Proc. ECMDA-FA, volume 5562 of LNCS, pages 190–205. Springer.

[Software AG, 2014] Software AG (2014). ARIS. http://www.softwareag.com/
corporate/products/aris/default.asp.

[Yogi Joshi, 2016] Yogi Joshi (2016). RiTHM-v2.0. https://github.com/yogirjoshi/
maven-repo.

[Zhang et al., 2005] Zhang, J., Gray, J., and Lin, Y. (2005). A model-driven approach to enforce
crosscutting assertion checking. In Proc. MACS ’05, pages 1–5. ACM.

113

http://www.bpmn.org
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.softwareag.com/corporate/products/aris/default.asp
http://www.softwareag.com/corporate/products/aris/default.asp
https://github.com/yogirjoshi/maven-repo
https://github.com/yogirjoshi/maven-repo


Bibliography

[Ziemann and Gogolla, 2003] Ziemann, P. and Gogolla, M. (2003). OCL extended with temporal
logic. In Proc. PSI 2003, volume 2890 of LNCS, pages 351–357. Springer.

114



Appendix A

Tool Support

As mentioned in Chapter 3 and Chapter 4, we implemented TEMPSY-CHECK, TEMPSY-REPORT,
and TEMPSY-VIOLATIONVISUALIZATION to facilitate offline trace checking of temporal properties.
A basic scenario of checking temporal properties of a system on a certain execution trace includes
three steps: 1) specifying the temporal properties as TemPsy expressions; 2) checking the TemPsy
expressions on the trace; 3) invoking the violation reporting procedure to inspect violation information
if any TemPsy expression is violated.

In the rest of this section, we illustrate how our TemPsy language, trace checking procedure, and
violation reporting procedure can be combined to facilitate offline trace checking of these tempo-
ral properties. In the example, we use three temporal properties of the business process presented
in Section 2.6 and an execution trace that consists of 10000 events.

Figure A.1: TemPsy editor

Specification of temporal properties. The three temporal properties are:

1) A card should be returned within five days after it expired.

2) If a card expires, the card holder is notified to return the card at most twice.

3) Once a card is returned, the card holder will receive a confirmation within one day.

They can be specified with the following TemPsy expressions:

115



Appendix A. Tool Support

1) globally Card.isReturned responding at most 120 tu
Card.isExpired

2) globally between Card.isExpired and Card.isReturned
eventually at most 2 ICM.notifyReturned

3) globally ICM.notifyCardReturned responding at most 24 tu
Card.isReturned

The specification of temporal properties is supported by a TemPsy editor generated by Xtext. The
Xtext definition of the TemPsy language is publicly available in the repository1 of TEMPSY-CHECK.

(a) Selecting TemPsy expressions (b) Loading an execution trace

Figure A.2: Checking TemPsy expressions on an execution trace

Trace checking procedure. There are two steps in the trace checking procedure. Given the three
TemPsy expressions and the execution trace, the user first selects the expressions of interest (as shown
in Figure A.2a) and then loads the trace to check (as shown in Figure A.2b). The checking results
of TEMPSY-CHECK are shown in Figure A.3. If a TemPsy expression is violated by the trace, we
provide a hyperlink with the text “See details” to invoke our violation reporting procedure.

Figure A.3: Checking results of TEMPSY-CHECK

1http://weidou.github.io/TemPsy-Check

116

http://weidou.github.io/TemPsy-Check


(a) Excerpt of the textual output (b) Excerpt of the graphical output

Figure A.4: Presentation of violation information

Violation reporting procedure. As presented in Chapter 4, our violation reporting procedure
consists of two steps: 1) collecting information about the violations and 2) presenting this informa-
tion (textually and graphically) to the user. For instance, as shown in the checking results (Figure A.3),
the third TemPsy expression is violated. Our TEMPSY-REPORT tool collects the violation information
from the input trace and displays the information textually (as shown in Figure A.4a). The tool stores
this information into MongoDB and calls our TEMPSY-VIOLATIONVISUALIZATION tool for visual-
ization. As shown in Figure A.4b, the violation information can be navigated using our visualization
tool.

117


	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Research Contribution
	Dissemination
	Organization of the Dissertation

	The TemPsy Language
	Background: Property Specification Patterns
	Definition of TemPsy
	Eliciting the requirements of the language
	Design
	Syntax
	TemPsy at Work

	Informal Semantics
	Scopes
	Patterns

	Formal Semantics
	Events and Trace
	Temporal expressions

	Expressivity
	Applying TemPsy
	Business process models
	Requirement specifications
	Adoption of TemPsy by our partner


	Model-driven Offline Trace Checking of Temporal Properties
	Conceptual Model for Execution Traces
	Overview of the Approach
	ocl Functions for Scopes
	Before
	After
	Between-and
	After-until

	ocl Functions for Patterns
	Universality
	Existence
	Absence
	Precedence
	Response

	The Approach at Work
	Tool Implementation
	Evaluation
	Experiment settings
	Properties using the globally scope
	Research Questions
	Trace generation strategy
	Evaluation

	Properties using the before/after scope
	Research Questions
	Trace generation strategy
	Evaluation

	Properties using the between-and scope
	Research Questions
	Trace generation strategy
	Evaluation

	Discussion
	Threats to validity



	Model-driven Violation Reporting for Trace Checking
	Characterization of TemPsy Violations
	Overview of the Approach
	ocl Functions for collecting violation information
	Universality
	Existence
	Absence
	Precedence
	Response

	Tool Implementation
	Visualizing Violation Information
	Requirements
	Functionality
	Implementation

	Evaluation
	Experiment settings
	Trace Generation Strategies
	Evaluation Results
	Discussion
	Threats to validity



	Related Work
	mde Approaches for Specifying Temporal Properties 
	Pattern-based temporal extensions of ocl
	Other temporal extensions of ocl

	Trace Checking and Run-time Verification
	Violation Reporting for Trace Checking

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Tool Support

