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Phenomenological nonequilibrium thermodynamics describes how fluxes of conserved quantities, such as
matter, energy, and charge, flow from outer reservoirs across a system and how they irreversibly degrade from
one form to another. Stochastic thermodynamics is formulated in terms of probability fluxes circulating in the
system’s configuration space. The consistency of the two frameworks is granted by the condition of local detailed

balance, which specifies the amount of physical quantities exchanged with the reservoirs during single transitions
between configurations. We demonstrate that the topology of the configuration space crucially determines the
number of independent thermodynamic affinities (forces) that the reservoirs generate across the system and
provides a general algorithm that produces the fundamental affinities and their conjugate currents contributing

to the total dissipation, based on the interplay between macroscopic conservations laws for the currents and

microscopic symmetries of the affinities.
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I. INTRODUCTION

Thermodynamics is the science of nonequilibrium pro-
cesses occurring in open systems that interact with an en-
vironment. Today, a dramatic evolution is reshaping it, from a
patchwork of general principles and applied laws—and ariddle
for students, from a pedagogical perspective—to a systematic
and comprehensive theory called stochastic thermodynamics
(ST), where all propositions are well founded on the mathe-
matics of Markov processes [1-4], with a span of applications
ranging from molecular motors [5] to photovoltaic cells [6] and
beyond. Still some conceptual leaps need to be filled before this
program can be deemed complete. According to classic for-
mulations [7,8], phenomenological thermodynamics is a dis-
course about physical currents of energy, matter, charge, etc.;
their conservation; and their degree of degradation, quantified
by the entropy production rate (EPR). The conceptual pathway
to nonequilibrium processes starts from an ideally isolated
universe, where Noether’s theorem states that conservation
laws follow from symmetries of the dynamics. Nonequilibrium
behavior ensues when one can separate the universe into a
system and its environment, which is eventually structured
into several competing ideal reservoirs that always remain
at equilibrium. The system’s effective dynamics becomes
dissipative, but, as we will argue, its features still bear the sig-
nature of the conservation laws across the system-environment
interface.

More specifically, let us consider a “black box” scenario
where we only know that a system is in a nonequilibrium steady
state generated by R reservoirs denoted r and described by ny
different affinities f, (intensive thermodynamic variables such
as inverse temperatures S, or chemical potentials —p8,u,),
which we list in a vector |fy). From phenomenological
thermodynamics, the EPR of this setup quantifies the entropy
changes in the reservoirs caused by the ny physical currents j,
of conserved quantity y conjugated to the affinities (currents
of extensive quantities such as energy —é, or matter —#,.). By
convention these currents enter the reservoirs and are listed
as a vector | jy ). According to the fundamental relation, each
conjugate pair f,j, is a contribution to the entropy change
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of a reservoir, meaning that their sum over all ny pairs is
the physical EPR, denoted oy = (fy|jy) = 0. At this level of
description, besides global conservation laws for like currents
(e.g.,y , & =0or)  n, =0),noother argument can be used
to further simplify the EPR. It will thus display a number of
currents and affinities equal to at most ny minus the number
of conserved quantities.

ST instead allows us to “enter the box.” It describes the
system degrees of freedom as nodes of a network and its
dynamics as a Markov process driven by transition probability
rates, associated to network edges. Pairs of nodes may be
connected by multiple edges when different mechanisms (i.e.,
sets of reservoirs) trigger the transition. At that level, the only
conservation law is that of probability and the dynamics is
characterized by the statistical EPR which additively measures
the breakage of detailed balance in each edge of the network,
and will be denoted ox = (fx|jx) = 0, where (fx| and |jx)
are, respectively, vectors of edge affinities and currents. The
crucial ingredient connecting the statistical and physical levels
of description in ST is the local detailed balance (LDB)
condition [1,9,10]. It relates rates to the physical quantities
exchanged with the reservoirs in such a way that oy will
eventually be solely expressed in terms of physical currents.
However, identifying the fundamental currents and affinities
that contribute to the EPR can only be done “by hand” in very
simple systems and no systematic procedure exists to address
this crucial question in more complex ones. An important step
forward was made by Schnakenberg [11], who showed that the
statistical EPR can be expressed as a sum over the number of
fundamental cycles n x of the network, of products of the cycle
affinities Fy and currents Jy, i.e., ox = (Fx|Jx). Alas, the
number of configuration cycles typically grows exponentially
large with the network size, and, most importantly, many of
these cycle affinities are not independent of each other. It is then
crucial to overcome this major limitation in Schnakenberg’s
analysis.

In this paper, by adapting the formalism of closed and
open chemical networks proposed in Ref. [12], we provide
a general and systematic procedure for doing so. Beside its
conceptual aspects, bringing light on the trade-off between
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symmetries and conservation laws—a mechanism that is
somewhat reminiscent of the Noether theorem—our procedure
paves the way to applications of ST to systems with arbitrarily
large and complex networks. In the next section we present our
main results with the aid of a simple example; in the following
we introduce another example to illustrate the potential of the
theory to be scaled up to networks of arbitrary complexity.
Finally, before drawing conclusions, we demonstrate how
the fluctuation theorem for fundamental physical currents
arises.

II. MAIN RESULT

We start by illustrating our argument using a simple
setup. The system consists of two single-level quantum dots,
coupled among themselves by an effective capacitance C,
and exchanging energy and particles with three electronic
reservoirs r = 1,2,3, each at different inverse temperatures
B, and chemical potentials u,, according to Fig. 1(a), for
a total of ny = 6 affinities. The system’s dynamics can be
described as a continuous-time Markov jump process with
rates describing transitions between states x in the system
space of configurations X = {00,01,10,11} which correspond
to the absorption or emission of energy and particles from the
reservoirs, as depicted in Fig. 1(b) [13—15]. Each possible tran-
sition mechanism belongs to the space of the oriented edges of
a network (or graph) that has X as its vertices [see Fig. 1(c)].
The rates satisfy local detailed balance and a simple stochastic
thermodynamics ensues. When regarding the system as a
“black box” that only serves to process energy fluxes €, and
particle fluxes 7, between the reservoirs, physical EPR reads
oy = —32_ Bér — pyiy) = (fyljy), where the current
and affinity vectors are, respectively, |jy) = (—¢,, — n,) and
(fyl = (Br, — urB,). One can now make use of conservation
of energy €; + €, + é; = 0 and of particles ny + n, +n3 =0
to simplify the EPR as oy = Zle [(Bs — B )é + (Britr —
B3u3)n, ] and thus reduce the number of affinities fromny = 6
to 4. The “black box” perspective does not allow us to go
further. However, when considering the internal structure of the
system, one notices that electrons cannot cross the condensator.
Hence there is one additional conservation law 7; = 0 which
allows us to further simplify the EPR by reducing one more
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affinity,

2
oy = ) (Bs — Bér + (Bata — B3pa)ia

r=1
= (FylJy). e

We thus learned that of the ny = 6 affinities describing the
reservoirs, only three fundamental affinities (Fy| and their
conjugated currents (Jy| ultimately control the physical EPR,
due to two global conservation laws and one system-specific
conservation law. While identifying the latter was easy in this
simple setup, doing so in more complex systems is not and
requires a systematic procedure.

We now proceed with the general theory. We consider a
system dynamics described by the master equation 0, p, =
Zv’x, (wY,. px — wY, px), where v distinguishes between dif-
ferent transitions that connect two states. The network EPR
oy is defined as [11]

e X
xx'v xx/ v

| e e r—‘j_
w , ’
ox =3 Z(w;x,pxr — wy, px) In == Px

v
w’, Py
x,x',v wx P

=20, (2

where the overbraces, respectively, define the probabilistic
currents and their conjugate affinities. Letting e = (xx',v), <y
label the edges of the graph, the incidence matrix AX of the
network has entries

+1 if S x
Af.=1-1 if <« 3)
0 otherwise

The master equation can then be cast in the form of a continuity
equation 9,|p) = A¥|jx). We will focus on steady states,
where Kirchhoff’s current law holds AX|jx) = 0, implying
that | jx) lives in the null space of the incidence matrix, which
is known to be spanned by ny independent cycles of the graph.
Schnakenberg [11] described a procedure (that we call routine
1, see Refs. [11,16,17] for details) to find a basis of cycle
vectors. The steady network currents can be expressed as
ljx) = AC|Jx), where A€ is a full-rank matrix of independent
null vectors of AX, viz. AXA¢ =0, and |Jx) is a vector of
coefficients with the meaning of independent cycle currents.
Notice that there is a certain degree of freedom in the choice

(c)
11 00
5
1
01 10
01
10
4
2
00 h

FIG. 1. (a) Physical representation of two quantum dots capacitively coupled and in contact with three reservoirs, y, = (¢,,1,); (b)
many-body energy levels and their single-level occupation numbers; (c) network representation of the configuration space where the Markov

process occurs, with an arbitrary orientation assigned to each edge.
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TABLE I. Recap of pairs of conjugate observables.

(frls 1jx) Network observables
(Fxl, |Jx) Cycle observables
(Sfrls Liv) Physical observables
(Fyl, | Jy ) Fundamental observables

of AC. Defining the cycle affinities (Fy| = (fx|A®, we obtain
the well-known decomposition of the network EPR,

ox = (fxljx) = (Fx|Jx), “4)

where it is important to notice that the affinity of a cycle
y only depends on the rates, Fx(y) =In][,., ;. Notice
that at both the network and the physical levels we resort
to uppercase symbols J,F when we take into account the
respective conservation laws (of probability, or of physical
quantities). See Table I for a recap on the various pairs of
conjugate observables that we will employ though the paper.

The passage from statistical to physical thermodynamics
is based on the identification of physical currents as linear
combinations of network currents:

Liv) = A" |jx), Q)

where A;e =y, — Yy is the inflow of extensive quantity y
as the system performs a transition e = (xx’,v). Steady-state
thermodynamic consistency requires that the network EPR oy
coincides with the physical one oy, namely there exists a vector
of physical thermodynamic affinities ( fy| such that

oy = {frljv) = (fxljx) = (Fx|Jx). (6)

Steady-state thermodynamic consistency is granted by the
following condition of LDB,

(fx| = (fr|AY + (Ag] (7)

on the assumption that (A¢|A¢ = 0. This formula then relates
the edge affinities to the reservoir entropy changes caused by
the transition along that edge, up to an increase in a state
function ¢ that measures the system entropic changes. We
discuss specific examples below.

Introducing the ny x ny matrix

M = AV A€, (8)
we find
ljv) = M|Jx), (Fx|={(fyIM. )

This shows that M is the crucial object to understand the
mapping between physical and cycle thermodynamics, as it
mixes “black box” information and topology. Importantly, the
passage from physical to cycle EPR in Eq. (6) comes with
a balance of conservation laws and symmetries. On the one
hand, letting (w| be any of the Ay independent left-null vectors
of M, then (w|jy) = 0, which expresses the conservation of
physical currents across the system. On the other hand, for
each of the Ly right-null vectors |v) of M we have (Fx|v) =
0, which expresses symmetries of the cycle affinities. Notice
that the inverse problem of reconstructing { fy| from the cycle
affinities (Fy|, for given ¢, is not uniquely determined, and,
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as a consequence, one can further compress the expression for
the EPR. Since the rank of M is

O[Z:ny—)\.yznx—)\.x, (10)
the EPR can be expressed as
o = (Fy| Jy) (11)

in terms of a reduced number « of fundamental physical
currents |Jy) and affinities (Fy|. The latter two equations
summarize our main findings: The EPR of a system at
steady state between different reservoirs with ny affinities
only displays « = ny — Ay fundamental affinities and currents
because the internal structure of the system enforces Ay (i.e.,
the dimension of the cokernel of M) conservation laws. We
also improve the Schnakenberg construction since the number
of symmetries Ax (i.e., the dimension of the kernel of M)
determines how many of the nx cycle currents and cycle
affinities are redundant. The balance Eq. (10) shows that in
a given network, for fixed ny and ny, when varying the
reservoir affinities and thus the rates, the eventual appearance
of an additional conservation law necessarily comes with
the simultaneous appearance of one further symmetry of the
affinities in a mechanism that is reminiscent of Noether’s
theorem in classical mechanics (see Ref. [18] for a different
formulation of a Markovian Noether-type theorem for the
probability).

Let us emphasize once more an important aspect of the
theory. As observed, the right- and left-null spaces of M
identify conservation laws and symmetries of the affinities.
Matrix M is the product of AY, which follows from the
definition of the physical currents, and of A, which expresses
a structural constraint on the internal state space of the system.
Since every right-null vector of AC is also a null vector
of M, one might be tempted to speculate that conservation
laws and symmetries are only manifestations, respectively,
of the physical definition and of the topology of the state
space. However, notice that A€ is full-rank. Therefore, every
symmetry arises as a consequence of the interplay between
topology and physics. Similarly, “black box” conservation
laws such as those of energy and number of particles, which
are the left-null vectors of A?, are only some of the whole set
of conservation laws that emerge from the interplay between
topology and physics, which are the left-null vectors of M.

We now provide a systematic procedure, routine 2, to
produce the fundamental physical affinities and currents. It
can be seen as the analog of routine 1 at the physical level:
Define W as the matrix of independent left-null vectors of
M. Notice that W|jy) = 0 implies that | jy) = M|Jy), where
M is a matrix of independent right-null vectors of W (e.g.,
obtained by removing Ay columns from M). To find the
fundamental currents we then just need to invert this relation
using the Moore-Penrose pseudoinverse, |Jy) = M*|jy) =
M+M|Jx) [19]. Similarly, the fundamental affinities can be
found by solving the linear equations (Fy|M*M = (Fx| on
the subspace (Fx|V = 0, where V is the matrix of right-null
vectors of M. A vector space analysis shows that this routine
has a unique solution (found, for example, by removing Ax
linear equations corresponding to nonindependent rows of
M+ M). However, like for A€, there is freedom in the choice
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of M and the choice of a preferred basis of null vectors must
be based on the specifics of the system at hand.

Let us resume our results by the following algorithm, which,
for a given model, finds conservation laws and symmetries
and provides an expression for the fundamental currents and
affinities:

(i) Input master equation with rates satisfying LDB;

(ii) Find the incidence matrix AX;

(iii) Find A€ using routine 1;

(iv) Calculate cycle affinities (Fx| and currents |Jx);

(v) Input AY compatibly with LDB;

(vi) Compute M = AV AC;

(vii) Find symmetries as right-null vectors of M

(viii) Find conservation laws as left-null vectors of M; and

(ix) Use routine 2 to find the fundamental affinities (Fy |
and currents |Jy).

Let us now discuss some examples of LDB, as can
be found, e.g., in Refs. [4,20-23]. When the system tran-
sitions are caused by exchanges of energy and parti-
cles y = (€1, ...,€g,n1,...,ng), one at the time, with R
grand-canonical reservoirs with physical affinities (fy| =
B, ....pR, —B'u', ..., — BRuR), and possibly internal en-
tropy states, e.g., due to coarse graining [4], the LDB condition
reads [10]

r

In = Br(ey — €) — BT (ny —ny) + sy — s (12)

x'x

Energy and matter currents are given respectively by

iE=) e —en)ik (13)
-]'i = Z(nx — nx/)jji,’r_ (14)

This setup can be easily shown to satisfy the above framework,
with matrix AY given by

. r /
€ —€, Ife=x<x', y=e¢
Yy __ . r
Ao =\ny —ny, ife=x<x, y=n U5
0 otherwise

and the potential ¢, accounting for the internal entropy s,
and for the self-information —log p,. It follows from the
fact that AY has a block structure (energy or particle) and
that it is defined only in terms of energy differences and of
particle number differences that the maximum value of « is
2(R — 1). However, additional symmetries following from the
network properties might further reduce this number. They can
be deduced neither from the single edge level where the LDB
is expressed, nor from a global black-box perspective.

Another example of local detailed balance is the stochastic
mass-action kinetics (MAK) in population dynamics. Any
occurrence of, say, reaction 2A — B decreases the population
of A by 2, independently of the initial population; hence the
physical current is jo =2}, jx(a —2 < a). Microscopic
affinities instead depend on the populations, as, e.g., the
rate of an encounter of two molecules is proportional to
a(a — 1). Still, MAK again satisfies Eq. (12) with potential
¢, including the self-information and a factorial term due to
particle indistinguishibility, cf. Ref. [20] for details.
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We conclude by going back to our model system in
light of the full theory. Details are presented in the Ap-
pendix. A Schnakenberg analysis reveals ny = 3 cycle affini-
ties Fy = (e +u)(B3 — B2) + Pata — Bsms, Fyp = €a(Bo —
B3) + Bsis — Pama, and Fy = (B1 — B3)u, corresponding to
the three cycles depicted in Fig. 1. The matrix M reads

0 0 u

—€4— U €4 0

_ €1+ u —€q —U
M=1 " 0 0 (16)

-1 1 0

1 -1 0

Since it is full-rank, there is no symmetry of the affinity
Ax = 0, which implies that thermodynamic consistency is
granted, and that there are @« = 3 fundamental affinities and
currents, and Ay = 3 conservation laws corresponding to
left-null vectors of M, namely

1 1.1 0 0 O
W=[0 0 0 1 0 0}, 7)
0 0 0 0 1 1

whose rows correspond respectively to total energy conser-
vation, conservation of the number of particles in the upper
quantum dot, and conservation of the number of particles
in the lower quantum dot. More interesting is the situation
when we set all 8, , identical and thus ny = 3. The physical
framework then reduces to the fluxes of energy only. Matrix M
is given by the upper half-block in Eq. (16). Then, there is one
conservation law W = (1,1,1), one symmetry of the affinities
VT = (e;4,€4 + u,0), and thus o = 2 fundamental affinities
and currents. The fact that (Fx|V = 0 again confirms that
LDB grants thermodynamic consistency.

Example: Random grid

While the above example could be worked out by hand
without the aid of the machinery outlined above, first-sight
resolutions are impossible when the network becomes large.
The potential utility of our approach is illustrated in this section
with application to a randomized grid that could in principle
be made arbitrarily large and complex.

We consider a network given by a bidimensional and
equally spaced grid with nx nodes, in contact with ny reser-
voirs, each at a given thermodynamic potential. Transitions
are only allowed between nearest neighbors, and each of these
generates a physical current.

Each network node has position coordinates x = (xy,x;)
and is connected to each of its nearest neighbors by a
reservoir with potential f, through an edge e, = (xx, )y <y,
the ordering being chosen from top to bottom and left to right
of the grid. The choice of reservoir involved along a particular
edge is random. Each reservoir generates the physical current

W= awiies (18)

x~x'

the sum being over all pairs of nearest neighbors; .,
stands for the edge probability current between x and x/,
and a,y = x; — x| + X2 — x} is here the amount of physical
quantity displaced through the grid by reservoir y when the
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FIG. 2. (a) Schematic representation of our 3x3 system con-
nected to ny = 5 reservoirs. Transitions are allowed between nearest
neighbors and the roman numbering of and the colors of edges
are associated to the reservoirs involved along the corresponding
transitions.

corresponding transition occurs. The matrix A? transforming
the probability current along edges to the physical currents
Eq. (18) is thus given by

v Ay, ife=x < x
Ay,e = ) . (19)
0, otherwise

Equation (18) can then be expressed in vector form as
|j¥) = AY|jX) in terms of the vectors of physical cur-
rents |j¥) = (j{'.j3 ... .Jj, ) and probability currents | j*) =
(. Jss - Jh), with n, denoting the number of edges on
the network. While we do not need to explicitly specify the
transition rates of our stochastic process, we assume local
detailed balance
w));x’ _

In — fylx] —x1 + x5 —x2) = frayy,

’

XX

y=12,....,ny. (20)

As discussed in the main text, the balance between the
number of symmetries of the thermodynamic affinities and
conservation laws is obtained by evaluating the rank of the
matrix M = AY A€, where A€ denotes the cycle matrix of the
network.

A randomly generated 3x3 grid with five reservoirs is
provided in Fig. 2, where each color of the edges is associated
to one reservoir. By direct inspection, it is a priori unintuitive
how many conservation laws and independent thermodynamic
affinities there are. This particular network has ny =4
independent cycles, ny = 5 physical currents. The rank of the
matrix M can be evaluated to yield « = 2, which is the number
fundamental currents and affinities. Thus there are ny — a = 3
conservation laws for the physical fluxes jVY andny —a =2
symmetries of the fundamental affinities under shifts of the
forces fy.

A posteriori, we can make sense of this result by realizing
that, because each transition displaces £1 bit of x through the
grid, then the lower-left cycle mediated by reservoirs III-III-
IV-IV has vanishing cycle affinity and that the two cycles on
the right both mediated by reservoirs II-III-1I-V have the same
affinity, which explains the symmetry. However, it is clear that
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this naked-eye analysis cannot be scaled up with increasing
network size.

Therefore, this particular example shows that even for sim-
ple topologies, nontrivial conservation laws and symmetries
of the fundamental affinities might arise. This property is also
quite generic since it emerges in grids whose distribution
of currents and forces are randomly chosen. Furthermore,
this also illustrates that the fundamental affinities (2 in
number) are not trivially obtained from the cycle analysis
(4 in number). Nontrivial conservation laws, reducing the
number of independent thermodynamic forces, emerge even
for such simple topology and for a relatively small-sized
network. The usefulness of routine 2 is even more apparent
for increasing grid size as the identification of the independent
thermodynamic forces becomes in any case intractable.

III. FLUCTUATION THEOREM FOR
THE FUNDAMENTAL CURRENTS

Finally, it is useful to consider the most celebrated result
in ST, namely the fluctuation theorem (FT), in light of our
theory. Versions of the theorem abound, ranging from the
very detailed FT for all of the cycle currents to theorems
dedicated to individual physical currents. Here we refer to the
formulation found in Refs. [17,24], showing that the FT for the
fundamental physical currents hold, provided that the affinities
have the due symmetry. Let £x((Qx|) be the scaled cumulant
generating function of the cycle currents, where (Qx| is a
vector of counting fields dual to the currents [25]. At the level
of the cumulant generating function, the FT takes the form of
the Lebowitz-Spohn symmetry

Ex((Fx| = (Qx]) = §x((QxD. 2n

The cumulant generating function of the fundamental physical
currents &y can be found by the contraction principle according
to the theory of large deviations:

E(Qv]) = &x((QyIM*M). (22)

Then, the fluctuation relation clearly extends to the physical
currents provided that (Fy| = (Fy|M ™M, in which case

Ey((Fy| — (Qv D) =&y ((QyD. (23)

IV. CONCLUSIONS

We provided a systematic procedure to identify the fun-
damental set of currents and affinities governing the entropy
production of a system in contact with multiple reservoirs,
thus expanding the toolbox of stochastic thermodynamics
with potential applications to arbitrarily large and complex
systems. Our theory revealed the fundamental role of the
network topology on the thermodynamic description. Our
presentation focused on ensemble-averaged EPR, but our
results can be directly transferred to fluctuating ST and to
fluctuation theorems at the large deviation level [17,24,26].

Finally, as a perspective, let us consider the linear regime.
Schnakenberg computed the response matrix L for the cycle
observables, showing that it is symmetric and nondegenerate.
In our setup, the physical linear response relation reads | fy) =
MT LM]|jy), as can be immediately deduced from Eq. (9) and
Ref. [11, Eq. (10.18)]. Matrix M7 LM is symmetric, hence
Onsager symmetry is granted at the macroscopic level in the
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presence of LDB. We notice that the existence of conservation
laws is crucial for optimizing the efficiency of machines [27].
Interestingly, the above matrix becomes degenerate in the
presence of conservation laws; degeneracy is precisely the
condition required to reach the so-called tight-coupling condi-
tion that optimizes the efficiency of machines [28]. Therefore
our analysis might have interesting consequences in the study
of efficiency enhancement.
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APPENDIX

We apply the algorithm to our model system of coupled
quantum dots, first in the presence of both temperature and
chemical potential gradients and then in the presence of only
temperature gradients. We do not specify the symmetric part of
the rates and hence we do not explicitly calculate the currents.

1. Energy and particles currents

(i) We choose rates that satisfy local detailed balance:
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where p* is the steady state of the master equation.
(v) We consider as physical currents the energy and particle
currents

—&
—&
N
ljy) = —i, (A6)
i
i3
Then matrix A is given by
—€, 0 0 &+u 0 0
0 —€g — U 0 0 €q 0
Ay 0 0 —€q — U 0 0 €4
I 0 0 1 0o oY
0 -1 0 0 1 0
0 0 —1 0 0 1
(A7)

where the upper half-block is for energy currents to and from
the three reservoirs and the lower block is for the matter
currents.

(vi) Then matrix M turns out to be

w
In—+ = Bi(pr — €,),
w

W42
lnw_+ = Bo(u2 — €4 — u),

-2

w w
In—2 = By(us — g —u), In—= = Bi(e, + e — 1),
w-— W_4
w w
In—2 = Boleq — pa),  In—2 = By(eq — p3). (AD
w_— w_
(i1) The incidence matrix of the graph reads
-1 0 0 1 1
x [ 1 -1 =1 0 o o0
A=10 o -1 -1 A2
0 1 -1 0 0

(iii) According to Schnakenberg’s theory, a convenient
cycle matrix of independent null vectors is given by

0 0 1
1 0 0
e
0 1 0
0 -1 1
(iv) Cycle affinities are given by
Fy = (€q +u)(B3s — B2) + Batta — B33
F3 = eq(Ba — B3) + Baps — Baita
Fy = (B1 = Bau. (A4)
Their conjugate currents are
J)l( = W41Pj — W-1P]o
J>2( = Wy2Pjy — W-2P]
Ty = wispoy — W-sPgo, (AS)

0 0 u
—€g— U +eg 0
+€4+u —e€;5 —u
M = 0 0 0 (AB)
-1 1 0
1 -1 0
(vii) Since M has rank 3, there are no symmetries.
(viii) A matrix of conservation laws is
1 1.1 0 0 O
w=1]0 0 0 1 0 O (A9)
0O 0 0 0 1 1

_ (ix) We apply routine 2. A convenient choice for the matrix
M of right-null vectors of W is

0 0 1
1 0 0
~ -1 0 -1
M = 0 0 0 (A10)
0 1 0
0 -1 0
Its Moore-Penrose pseuroinverse is
—1/3 2/3 —-1/3 0 0 0
Mt = 0 0 0 0o 1/2 -1/2
2/3 -1/3 —-1/3 0 0 0
(A11)
Therefore:
—€q — U €q 0
|Jy) = -1 1 0]|Jx). (A12)
0 0 u
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The fundamental forces can be calculated by simply inverting

—1
—€4 — U €q 0
(Fyl=(Fx|| -1 10
0 0 u

(A13)

2. Energy currents

We now consider the more interesting case where the
chemical potential differences are set to zero. We thus focus
only on energy currents.

(iv") Cycle affinities are given by

Fy = (ea +u)(Bs — B2)
Fy = ea(f2— B3)
Fy = (B1 — Ba)u. (A14)
(v') As physical currents we consider the energy currents:
—¢
liv) = | —€ (A15)
—é&5
Then matrix AY is
—€, 0 0 e, +u 0 O
AY = 0 —€4 — U 0 0 €q 0
0 0 —€4 — U 0 0 €q
(A16)
(vi’) Matrix M is
0 0 u
M=|—€—u €4 0 (A17)
€4+ u —€4 —U
(vii") There is one symmetry
€4
V= <6d + u) (A18)
0
We have
(Fx|V =0, (A19)
therefore the model is thermodynamically consistent.
(viii’) There is one conservation law,
W=@a 1 1), (A20)

PHYSICAL REVIEW E 94, 052117 (2016)

corresponding to total energy conservation. (ix’) We apply
routine 2. A choice of matrix M is

0 -1
M= 1 0 (A21)
-1 1
Its Moore-Penrose pseudoinverse is
~ -1/3 2/3 -1/3
+ _
M™ = (-2/3 13 13 ) (A22)
Then:
]l 1/¢ Y
7 = _(61. te 26?). (A23)
J;? 3\2é1—6— &
In terms of the cycle currents:
—€4—U € 0
|m=( o 0 ﬁ)h» (A24)

The fundamental affinities are found by solving the system of
linear equations

—€4 — € 0
<ﬁ( “ ﬁ)=mw

We can simply remove the second column of the matrix to
obtain the invertible system

(A25)

(Fy | (—Edo— u _OM) _ |:(€d :3:0_(5/33:3)—”}32)} (A26)
which gives
Fy = B> — B3
F} = B3 — . (A27)
Finally, we obtain for the entropy production rate:
oy = 3[(B = B3)(é1 + & — 2€9)
+ (B3 — B1)(2é; — & — &) (A28)

Notice that this expression is equivalent to Eq. (2) once
the conservation law €, + é; + €3 = 0. This also shows that
the procedure we outlined finds one possible choice of conju-
gate fundamental observables, which might not necessarily be
the preferred or more elegant choice for the system of interest.
The problem of finding “natural” basis for vector spaces of
the currents is a widespread problem, e.g., in the biochemical
modeling of metabolic networks.
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