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Summary 5

Summary

This thesis investigates the utility of complex problem solving (CPS) in the
prediction of university success. Previous research focused mainly on the relation
between CPS and primary or high-school success, ignoring that the demands at
university are actually far more complex than at lower school forms. On the other
hand, CPS has often claimed to be redundant to intelligence, a well-established
predictor of university success. This thesis, therefore, attempts to answer four
complementary research questions dealing with (1) innovations in the assessment of
CPS (2) the relation between CPS and intelligence in the prediction of university
success (3) the relation between CPS and university success and (4) the defining
characteristics of CPS tasks.

By applying a vast array of different methods ranging from theoretical
suggestions on the improvements of CPS assessment to meta-analyses, structural
equation modeling, and item response models, this work is therefore the first
extensive investigation of the utility of CPS in the prediction of university success and
considerably extends the research on the validity of CPS as a construct. More
specifically, this work introduces (1) the theoretical foundation for a multiple task
approach to measure CPS that is in many ways superior to previous measurement
approaches and thus allows for a reliable assessment of individual CPS skills. This is
followed by (2) a meta-analytic investigation of the empirical relation between CPS
and intelligence, an established predictor of university success, to rule out empirical
redundancy between the two related constructs. Given the often reported strong but
far from perfect relation between CPS and intelligence this work further describes (3)
the investigation of incremental validity of CPS over and above intelligence in the

prediction of university success. Finally, in order to be used as potential tools in
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university selection, CPS tasks need to be easy to create and adapt. This work is
therefore concluded by (4) an analysis of the difficulty of CPS tasks as a function of
defining characteristics laying the ground for the efficient generation of new tasks. In
summary, the present work addresses several important gaps in existing research both
on CPS assessment and the prediction of university success.

In Chapter 1, the societal need, as well as the theoretical and empirical
foundation for this research, are introduced. This is followed by a brief description of
the four empirical papers that are the main body of this thesis. The full papers are
located in Chapters 2 to 5. Papers 1, 2, and 4 are already published after having
successfully passed peer-review, Paper 3 is currently under review. Chapter 1 and
Chapter 6 refer to additional papers including supplementary contributions of the
author of this thesis on both CPS and the prediction of university success, which are
listed as “additional papers” on page 9.

The first empirical paper included in this thesis introduces the theoretical
foundations of the Multiple Complex Systems (MCS) approach to assess CPS skills.
Other than previous CPS assessment approaches, that used single very large and
complex microworlds, the MCS approach relies on multiple smaller microworlds that
are combined into one assessment instrument. This innovation leads to several
important advantages over previous approaches including a highly increased
reliability, variations in item difficulty, and scalability that allows for the application
of advanced statistical models (cf. Chapter 2).

The second paper meta-analytically investigated the relation between CPS and
intelligence. The main finding was that the two constructs were highly related but not
redundant to each other. Furthermore, this relation was moderated by the approach

used to assess CPS with only small average correlations between classical measures
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of CPS and intelligence but rather strong correlations for MCS measures of CPS (cf.
Chapter 3).

The third contribution investigated the validity of CPS in the prediction of
university students’ objective and subjective academic success. Based on two
independent samples it could be shown that CPS was substantially related to students’
grade point average (GPA) and subjective ratings of their success. This effect
remained significant even after intelligence was controlled for (cf. Chapter 4).

The fourth and final paper investigated the difficulty of MCS tasks. Based on
six basic characteristics, it was possible to predict the tasks’ difficulty almost
perfectly demonstrating a deep understanding of the defining aspects of MCS tasks.
This lays the foundation for the efficient or even automatic generation of new tasks
with known qualities (cf. Chapter 5) as is necessary for any form of high-stakes
selection.

Chapter 6 provides a general discussion of this research and its implications.
Taken together, all four papers support the potential use of CPS in university
selection. CPS can be assessed reliably, is not redundant to already established
predictors, and incrementally explains students’ individual differences in academic
performance. Finally, CPS tasks are well understood and can be easily created or
adjusted making them very well suited for high-stakes assessment.

After this summary of results, strengths of the papers are outlined and
shortcomings combined with an outlook for future research are discussed. In
summary, this thesis advances knowledge about CPS and emphasizes its usefulness as

an additional predictor of university success.
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The only person who is educated is the one
who has learned how to learn and change.

Carl Rogers (1902 - 1984)

1.1 Introduction

Education plays a critical role in fostering social progress. Correspondingly, it
is a sign of lasting societal change that the access to education continues to expand in
Organization for Economic Cooperation and Development (OECD) countries (OECD,
2014). This change in societies over only a couple of generations, from a time when
only an elite few were highly educated to today’s situation where three-quarters of the
population have at least an upper secondary education, is one whose consequences are
still unfolding. Almost 40% of 25-34 year-olds nowadays have a tertiary education, a
proportion that is 15 percentage points larger than that of 55-64 year-olds; and in
many countries, this difference exceeds 20 percentage points (OECD, 2014). This
great achievement comes with new challenges. Providing higher education for such
large proportions of a population represents a massive investment by individuals,
organizations, and societies that need to be economically justifiable (Walker & Zhu,
2003). Among the member countries of the OECD, an average of 6.2% of the gross
domestic product is spent on educational activities, and the average young person in
these countries will receive an education until the age of 22 (OECD, 2007). Education
still remains one of the best individual and societal investments (Elias, & Purcell,
2004) but only if the students actually complete their degree successfully.

On the other hand, not all university programs are equally famous with

students. While some programs such as philosophy appear less attractive, others such
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as psychology or medicine have far more applicants than they could possibly handle
(Statista, 2016).

The search for fair and feasible selection procedures of adequate applicants
and valid prediction of potential success at university, therefore, becomes increasingly
important. Predictors of university success have been researched for over a century
(Bingham, 1917), finding that adding information about psychological constructs to
the information gained from previous academic achievements such as high school
grade point average (GPA), increases the accuracy of predicting university success
(Kuncel, Hezlett, & Ones, 2001). Most notably, individual differences in intelligence
have consistently been found to add value in explaining the variation within
university success (Richardson, Abraham & Bond, 2012).

Measures of intelligence do not provide detailed information about a person’s
skills of acquiring and applying new knowledge about a dynamic problem or system,
tough (Wiistenberg, Greiff & Funke, 2012). Measures of complex problem solving
(CPS) on the other hand, aim to assess these skills, which are vital for the successful
completion of every higher degree in today’s society (Koeppen, Hartig, Klieme &
Leutner, 2008). As opposed to intelligence, CPS requires participants to actively
interact with and explore new and partly opaque problem situations in order to gather
the information necessary to find solutions to the problems. For that purpose,
participants are given simulated microworlds they can manipulate receiving feedback
on the effects of their actions. However, even though several studies provide strong
evidence in favor of the validity of CPS in the prediction of success in various
environments such as school success (e.g., Schweizer, Wiistenberg & Greiff, 2013) or
job performance (Danner et al., 2011), no extensive research on the introduction of

tests of CPS into university applicant selection has been conducted so far.
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This thesis will therefore comprehensively address the question on the validity
of CPS as a construct and its utility in university selection. In that, the thesis will
answer four complementary research questions:

Research Question 1: Can CPS be reliably measured without the influence of
previously acquired knowledge?

Research Question 2: Is CPS theoretically or empirically redundant to
intelligence?

Research Question 3: Are measures of CPS valid in predicting indicators of
university success? If so, do they show incremental validity over and above measures
of intelligence?

Research Question 4: Is it possible to predict the difficulty of CPS measures

based on their defining characteristics?

Each of the four papers primarily addresses one of these research questions
and they are ordered accordingly (Chapters 2-5). Prior to that, a short description of
the understanding of university success underlying this thesis and previous research
on its prediction is given in section 1.2. This is followed by an introduction to the
construct of CPS as well as to measurement approaches to assess individual
differences in CPS competency in Section 1.3. Preceding results on the relation
between CPS and university success are reported in Section 1.4, followed by a brief

description of the four individual papers in section 1.5.
1.2 University success
1.2.1 Definition

The overall aim of this thesis was to investigate the validity of CPS as a

construct and to examine its utility in the prediction of university success.
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Unfortunately, there is no generally accepted understanding on the definition of
university success. Most attempts to define what constitutes success at university
therefore become tautological, by defining university success based on one or more
criteria of university success (see Anderson, 2003). In that, the definition of university
success highly depends on the person, the peer group, or the institution in question
(Konegen-Greiner, 2001). Especially on the institutional side (i.e., universities or
governments) definitions tend to use very narrow or “hard” criteria such as focusing
merely on students’ GPA (e.g., Wissenschaftsrat, 2004). Others, mostly on the
personal side (i.e., students and lecturers), also include “soft” criteria such as personal
satisfaction or other more subjective estimates of students’ success (Lattner, &
Haddou, 2013). The notion of “university success” can thus have various different
meanings for both students and institutions, such as graduating with a high GPA,
graduating as fast as possible, learning as much as possible, completing the degree,
prospects on future job success, or the subjective satisfaction with the degree (Kunina,
Wilhelm, Formazin, Jonkmann, & Schroeders, 2007). A graphical representation of

this distinction is provided in Figure 1.

Soft criteria Hard criteria
\ 4 v
Satisfaction Study duration
Personal development University success GPA
Acqui .
qwred‘ Successful completion
competencies
Job success

Figure 1. Criteria of university success (adapted from Lattner, & Haddou, 2013)



Introduction 17

The “hard” criterion of students’ GPA is by far the most widely used and
studied measure in tertiary education (Bacon & Bean, 2006; Richardson et al., 2012).
Students’ GPA is the most salient criterion for students, is economically available,
and correlates strongly with variables of interest to educational researchers such as
intelligence, motivational strategies or certain personality traits (Richardson et
al., 2012). GPA has been found to be a key criterion for postgraduate selection and
employment and thus represents a valid predictor of socioeconomic success
(Strenze, 2007).

The sole use of GPA as an indicator of university success has often been
criticized, though. Johnson (2003) for example, called grade inflation (very good or
excellent grades becoming more and more commonplace) a crisis in university
education. He further argues that every university uses multiple and sometimes very
different grading approaches to evaluate students (see also Babcock, 2010). These
grading disparities between universities, study programs, and even between different
examiners at the very same program, as well as the aspect of grade inflation impair a
fair and reliable assessment of students’ competencies. This has serious consequences
on student’s future perspectives concerning the chance of finishing university with a
higher GPA.

Thus, GPA has, despite its considerable advantages, some noteworthy
limitations as widespread indicator of students’ university success.

Universities and researchers alike have responded to these limitations by
including “soft” criteria into their definitions of university success as well. Most
importantly, the subjective value that students attribute to specific indicators of
university success may vary from student to student. In other words, students may, for

example, consider a passing grade as either success or failure depending on their
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subjective expectations. Lattner and Haddou (2013) conducted an interview study
with students from all faculties resulting in a total of 10 subcategories of university
success. While grades and the successful completion of the program were important
to most students (though not all), softer aspects such as individual progress, practical
relevance, fun, and reaching individual goals were considered equally important. In
order to fully capture the heterogeneity of the construct of university success, “hard”
and “soft” criteria of success should thus be considered complementary (Duckworth,
Weir, Tsukayama, & Kwok, 2012).

Within this thesis, students’ university success will therefore be considered a
multidimensional construct consisting of both “hard” and “soft” criteria, which should
be considered complementary in order to gain a holistic understanding of the

construct.
1.2.2 Predictors of university success

Based on the multidimensional conception of university success underlying
this thesis, managing a university program requires dealing with a complex system of
academic tasks. These may include new learning and study behaviors, scientific
thinking, social obligations, and various other demands that are either unique to
university studies or at least more important than in high school (Parker,
Summerfeldt, Hogan, & Majeski, 2004). It is therefore no surprise that numerous
factors have been suggested to influence students’ university success, such as
cognitive (e.g., intelligence or previous academic achievement; e.g., Formazin et al.,
2011), noncognitive (e.g., motivational factors, self-regulatory learning strategies,
personality traits, students’ approaches to learning, or psychosocial contextual
influences; for an overview see Richardson et al., 2012), and demographic (e.g., age

or socio demographic background; e.g., Robbins et al., 2004).
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The main focus of this thesis is placed on the cognitive predictors of university
success. Most importantly, intelligence has been established as one of the strongest
and most reliable predictors of academic achievement since the early 20th century
explaining about 25% of the variance in university students” GPA (e.g., Binet &
Simon, 1916; Bingham, 1917; Jensen, 1998; Kuncel, Hezlett, & Ones, 2004). This
means however, that equally intelligent students may differ largely in their university
success. Other cognitive abilities have therefore come into the focus of researchers
recently. Especially in tertiary education, where student selection procedures reduce
variation in intelligence scores, the predictive value of intelligence is limited
(Furnham, Chamorro-Premuzic & McDougall, 2003). Highly selective academic
institutions show only very low variation in intelligence among their students (Jensen,
1998). Other cognitive skills than intelligence may consequently add important
incremental information to the accurate prediction of performance at university level.

This becomes particularly evident in the differential development and
prediction of “hard” and “soft” indicators of university success (e.g., Harackiewicz,
Barron, Tauer, & Elliot, 2002). Whereas intelligence consistently predicts university
students GPA, subjective or “soft” indicators of university success seem to be more
closely linked to psychosocial and study skill factors (Robbins et al., 2006). For
instance, Robbins and colleagues (2004) investigated the role of study skill factors as
predictors of university outcomes in addition to other well-established cognitive
predictors. Their meta-analysis showed that academia-related skills, defined as
“cognitive, behavioral, and affective tools and abilities necessary to successfully
complete task, achieve goals, and manage academic demands” (Robbins et al., 2004;
p. 267), to be meaningful predictors of both university GPA (r =.13) and university

retention rates (r = .30).
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The aim of this thesis was therefore to investigate whether one such academia-
related skill, namely CPS, would be useful as an addition to intelligence in the
prediction of university success. The following section will define the construct of
CPS as well as introduce its assessment and the distinction between CPS and

intelligence.

1.3 Complex problem solving (CPS)

1.3.1 Definition of CPS

Imagine a university student who just started their first years as a freshman. In
order to deal with the new demands of university life, the students need to generate
knowledge about the universities inner workings such as choosing which lectures to
attend, when to write exams, or learning how to borrow books from the library. In
addition, they need to acquire new study habits adapted to the university requirements
with its complex content. After having explored the university for a while, they will
be able to apply that generated knowledge in order to succeed in their programs. This
is a typical situation considered as a complex problem involving dynamic interaction
with a yet unknown system.

Complex problems contain multiple variables (complexity) that are
interrelated (connectivity) and may change either as a result of the problem solvers
manipulations or over time (dynamics). The problems’ structure is partially or fully
opaque to participants (intransparency) and needs to be actively explored. This is
summarized in Buchner’s definition of CPS as:

“(...) the successful interaction with task environments that are dynamic (i.e.,
change as a function of the user’s interventions and/or as a function of time) and in

which some, if not all, of the environment’s regularities can only be revealed by
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’

successful exploration and integration of the information gained in that process.’
(Buchner as cited by Frensch & Funke, 1995; p. 14)

As described in the definition, such complex problems have no obvious
method of solution and barriers between the initial state (e.g., having to choose the
most appropriate lectures) and the goal state (e.g., achieving good grades) have to be
reduced by applying non-routine cognitive activities (Funke, 2012; Mayer, 1992;
Mayer & Wittrock, 2006). Problem solvers dealing with such complex problems face
two main demands: generating knowledge about the systems’ structure (i.e.,
knowledge acquisition; Novick & Bassok, 2005) and the need to reach a certain goal
by applying knowledge gathered beforehand (i.e., knowledge application; Novick &
Bassok, 2005). While acquiring knowledge in complex problems, problem solvers
build a problem representation and derive a problem solution, which are the two
major components of the problem solving process accountable to all kinds of problem

solving (Mayer, 2003; Mayer & Wittrock, 2006; Novick & Bassok, 2005).

1.3.2 Assessment of CPS

To allow for an active interaction between the student and the assessment
instrument, the assessment of CPS necessarily requires a computer-based assessment
(Frensch & Funke, 1995). With the advancement of computer technology, various
CPS tasks have therefore evolved following different approaches. The first computer-
based CPS tasks were developed in the early 1980s. The aim was to administer task
environments with a high resemblance to the real world and the goal of producing a
reliable and ecological valid measure of CPS that sufficiently emulated real world
problems. The complex problem “Lohausen” (Dorner, Kreuzig, Reither, &

Stiudel, 1983), for instance, required a participant to govern a small city. This city

was intricately modeled with over 1000 separate interconnected variables. Such
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classical measures of CPS had a high level of face validity, as they seemed to mirror
real life problem solving. Their psychometric properties however were insufficient
(Greiff, Stadler, Sonnleitner, Wolff, & Martin, 2015). Unsatisfactory reliability and
validity raised doubt on the measurability and validity of the construct of CPS itself
(Kroner et al., 2005; Wiistenberg et al., 2012). Moreover, knowledge about the real
world situation emulated by the classical measure of CPS strongly influenced
performance in these tasks. This limited the usability of classical measures of CPS
such as Lohhausen as assessment instruments. Funke (2001) responded to these
problems by introducing Linear Structural Equation systems (LSE) and Finite State
Automata (FSA) as formal frameworks that allow for the description of underlying
task structures. Both of these frameworks enabled the creation of single complex
systems, which are independent of any semantic embedment (Greiff et al., 2015).
These single complex systems specify an underlying system that can be applied to
multiple, arbitrary semantic contexts thus removing the influence of any previous
knowledge. Especially the LSE formalism has been widely adopted by CPS research
leading to the development of a considerable number of single complex systems [e.g.,
“Multiflux” (Kroner, 2001) or “FSYS” (Wagener, 2001)]. In a further advancement
Leutner, Klieme, Meyer, and Wirth (2004) used a combination of two single complex
systems for measuring CPS as an aggregated score. Greiff, Wiistenberg, and Funke
(2012) extended this idea for the development of the multiple complex systems
(MCS) approach. The MCS approach solves several measurement issues by using
multiple small tasks, rather than one single large task as in classical measures of CPS
or single complex systems (Greiff et al., 2015). The first in assessment tools
following the MCS approach such as MicroDYN (Greiff et al., 2012) or Genetics Lab

(Sonnleitner et al., 2012) were based on LSE. Later, the approach was extended to
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FSA with the development of MicroFIN (Neubert, Kretzschmar, Wiistenberg, &
Greiff, 2014). These MCS measures of CPS were developed with a clear focus on
quality and showed significantly higher reliability than classical measures of CPS.
Figure 2 shows an example of a typical MicroDYN (Greiff et al., 2012) task. In this
task a problem solver needs to first figure out the effect of three generically labeled
ingredients of a perfume (Norilan, Miral, and Carumin) on three characteristics of the
perfume (Sweet, Flowery, and Fruity). After the relation was explored and plotted
below the task, the problem solver needs to reach specific popularity values for all
three products (the red lines in the graphs on the right side of the task) in no more

than four steps.

Reach the given target values in no more than four steps! ‘ Rm:;nd ‘ _ | “

—_— | [18-20]

Input Output
Norilan I I Sweet
- -A + ++ L Target area
— Pl "B
Miral Flowery
= =A + ++ 15 Target area
—_ — [ 18-20]
Carumin Fruity
- =A + ++ L I 17 Target area

\Pply

Model

( Norilan )
( Flowery )
[ Carumin ) ( Fruity )

Figure 2. Screenshot of MicroDYN’s graphical interface during the knowledge

application phase. Horizontal lines indicate the target values for the outcomes
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variables. The underlying relations between the variables are given in the lower

section of the figure.
1.3.3 CPS and intelligence

Both on the conceptual basis (Funke & Frensch, 2007) and on an assessment
level (e.g., Kroner et al., 2005), CPS has often been compared to intelligence. Various
defining features of CPS such as the integration of information or the detection of
underlying structures are part of most definitions of intelligence (Sternberg & Berg,
1986). On the other hand, the dynamic and opaque aspects of CPS are not established
in the current conceptions of intelligence such as the Cattell-Horn—Caroll (CHC)
theory (McGrew, 2009). These aspects of CPS may therefore be important additions
for the understanding of human ability (Dorner & Kreuzig, 1983; Greiff et al., 2013).

This theoretical ambiguity is reflected in empirical findings on the relation
between CPS and intelligence. Several early studies on the relation between CPS and
intelligence indicated that psychological assessments of intelligence were unable to
explain variance in CPS (Brehmer, 1992; Rigas & Brehmer, 1999). Kluwe,Misiak,
and Haider (1991) summarized 11 of these early studies on the relation between CPS
and intelligence and concluded that most of them failed to show a close relation
between intelligence scores and CPS performance measures. This led several
researchers to suggest CPS to be a cognitive construct mostly independent from
intelligence (Putz-Osterloh, 1985). Rigas and Brehmer (1999) summarized this view
in the different-demands hypothesis. This hypothesis suggests that CPS tasks demand
the performance of more complex mental processes than intelligence measures do,
such as the active interaction with the problem to acquire knowledge on the problem

environment.
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Whereas there is some support for the different-demands hypothesis (e.g.,
Joslyn & Hunt, 1998), more recent studies challenge it. In a comprehensive study,
Gonzalez, Thomas, and Vanyukov (2005) found correlations ranging from r=.33 to
r=.63 between various measures of CPS and measures of general intelligence.
Similarly, Sii3, Kersting, and Oberauer (1991) reported correlations of r = .40
between Tailorshop performance measures (Tailorshop being one of the most
frequently used measures of CPS) and measures of general intelligence. Based on
these moderate to strong correlations several researchers came to argue that measures
of CPS would be almost redundant to measures of intelligence (Mayer et al., 2013;
Wittmann & Siif3, 1999).

An explanation for these inconsistent findings regarding the relation between
CPS and intelligence may lie in the operationalization of CPS. In line with the
different-demands hypothesis, the operationalizations of CPS differed in their level of
complexity with classical measures being very complex and MCS measures
minimally complex. Correspondingly, the relation between CPS and intelligence may
differ depending on the CPS measure used. An alternative explanation for the fuzzy
results of studies on the relation of intelligence and CPS could lie in the semantic
embedment of CPS tasks. The Elshout—Raaheim hypothesis (Elshout, 1987;
Raaheim, 1988; see also Leutner, 2002) proposes an inverted U-shaped relation
between the correlation coefficient as the dependent variable and the amount of
available domain-specific knowledge as the independent variable. As classical
measures of CPS emulated real-world problems, domain specific knowledge could be
used to solve the problems, thus limiting the relevance of individual intelligence.
More recent measures of CPS such as MCS measures are less dependent of a

semantic context, and, thus, less domain specific knowledge can be used. This should
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result in a stronger relation between performance in modern CPS tasks and
intelligence.

In summary, the relation between CPS and intelligence remains unclear. This
is particularly important for this thesis, which investigates the incremental validity of

CPS in predicting university success over and above intelligence.
1.4 CPS and university success

The ability to deal with dynamically changing and opaque systems should be
necessary to be successful at any academic institution. Support for this notion comes
from several articles reporting that CPS predicts high school grades beyond measures
of intelligence (Greiff et al., 2013; Wiistenberg et al., 2012; see Kretzschmar,
Neubert, Wiistenberg, & Greiff, 2016 for divergent findings) or working memory
capacity (Schweizer et al., 2013). As outlined above, the demands posed by university
programs should be more complex and cognitively challenging than those
encountered at high school. In her model of university success, Ferrett (2000)
describes cognitive skills such as time management, preparing for and taking
examinations, or using information resources as the focal point of the freshman year
experience. University students face a variety of new challenges such as learning and
applying study habits in a more complex academic environment and generally
discovering how to function as independent and academically successful adults,
which requires planning and problem-solving competencies (e.g., acquiring
knowledge about new problems or prioritizing sub goals). In other words, students
need to solve complex problems to be successful in college. Surprisingly though, only
one study has investigated the relation between CPS and university success to date
(i.e., Stadler, Becker, Greiff, & Spinath, 2015). This study, which will function as a

starting point for this thesis found a substantial relation between CPS and both GPA
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and subjective university success of business students ( = .38) that remained
significant even after general intelligence was controlled for.

However, the study by Stadler and colleagues was severely limited in its
generalizability. First, the sample size used was rather small (N = 78) and did not
allow for advanced statistical analyses such as structural equation modeling.
Furthermore, the sample consisted exclusively of business students and was thus
rather homogeneous. Regarding the measures used, both the very broad measure of
intelligence and the highly complex measure of CPS may have further influenced the
results thus additionally limiting their generalizability.

The aim of this thesis will therefore be an extensive investigation of the validity of
CPS as a construct and its utility in predicting students’ university success. For this
purpose, Paper 1 provides a comprehensive review of CPS measurement approaches
introducing MCS measures and comparing them to other established measures. Paper
2 investigates the relation between CPS and intelligence and provides a meta-analysis
on its dependency on different measurement approaches. Once these first two papers
have determined the most adequate methods to operationalize both CPS and
intelligence, Paper 3 can investigate the validity of CPS in the prediction of university
success as well as its incremental value over and above intelligence. Finally, Paper 4
will further validate CPS measures as applicable in high-stakes assessments by

demonstrating the good predictability of MCS tasks’ difficulty.

1.5 Preview of the individual papers

1.5.1 Preview of Paper 1

Paper 1 introduces the MCS approach as a way to reliably measure individual
differences in CPS. After defining the construct, the paper gives an overview over the

formal frameworks for describing complex problems. These consist of LSE, which
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model the relation between variables in a complex system as a set of linear structural
equations, and FSA, which describe a complex system as a set of variables with a
finite amount of states. Both of these frameworks were used to develop a multitude of
CPS measures.

However, all of these measures consisted of one single, highly complex task.
This leads to several measurement issues that occur when a test is composed of single
tasks only. Specifically, test with only one single item have fixed item difficulty that
cannot be adjusted to the assessment situation. Furthermore, these measures show low
reliability that can hardly be determined as every action within the system strongly
depends on the previous action. Along that line of thought, random errors in the early
phases of the measurement can have a large impact on the final result as they
influence every succeeding action.

MCS measures avoid these issues by combining multiple small CPS tasks into
one measure. That way, it is possible to vary the difficulty of the measure by the
combination of differently difficult tasks. The reliability of such measures can be
determined by the internal consistency across the individual tasks. Correspondingly,
errors in the first tasks do not necessarily influence the behavior in the following tasks
and thus do not overly skew the final assessment result. MCS tasks can be based on
both the LSE and the FSA frameworks.

MCS measures thus represent an important advancement in the measurement
of CPS. On the other hand, MCS measures need to consist of tasks that are
considerably smaller and less complex than those of CPS measures using only a
single task. Thus MCS measures trade qualities such as reliability and scalability

against the possibility to simulate extremely complex systems.
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1.5.2 Preview of Paper 2

Paper 2 meta-analytically examines the nature and magnitude of the relation
between CPS and intelligence. Theoretically, researchers have hypothesized the two
constructs to be everything from completely separate (e,g,, Quelle) to identical (e,g,,
Quelle). Over the course of almost four decades, empirical studies yielded results
supporting both arguments with correlation coefficients from » = -.3 to » = .8. To
summarize these results and search for moderating factors, the data of 47 studies
containing 60 independent samples and a total sample size of 13,740 participants was
collected. Across all samples, the analysis revealed a medium correlation between
CPS and intelligence with an average effect size of M(g) = .433.

Additional moderator analyses investigated whether the operationalization of
CPS and intelligence could explain the inconsistencies among the various studies.
Whereas there were no significant differences in the correlation considering the
operationalization of intelligence, the approach used to measure CPS moderated the
correlation of CPS and intelligence. The MCS measures of CPS yielded the strongest
associations between the two constructs. Classical measures of CPS on the other hand
led to a substantially smaller correlation between CPS and intelligence.

The results thus clearly show a medium to strong relation between CPS and
intelligence. On the other hand it could also show that the two constructs are far from

redundant to each other.
1.5.3 Preview of Paper 3

The aim of Paper 3 was to investigate the role of CPS in undergraduate
students’ university success in two independent studies. In that CPS should not only
predict different indicators of university success but also show incremental validity

over and above intelligence. Following the findings of the Papers 1 and 2, CPS was
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operationalized using an MCS measure and intelligence was assessed using a short
reasoning measure. This allows for a reliable measurement of CPS (cf. Paper 1) while
not underestimating the relation between CPS and intelligence. To reach a high
generalizability of the findings, the research question is investigated with two
independent samples.

In Study 1, university GPAs and subjective evaluation of academic success
were collected for 165 university students who predominantly studied psychology.
CPS made a significant contribution to the explanation of GPAs and the subjective
success evaluations when controlling for intelligence.

To further investigate this effect, Study 2 relied on an independent and more
heterogeneous sample of 216 university students. The findings of Study 1 were
replicated in this study. Thus, the results of both studies suggest a link between
individual differences in CPS and the abilities necessary to be academically

successful university education.
1.5.4 Preview of Paper 4

Paper 4 further investigates the utility of CPS tasks in high-stakes assessment
situations such as university applicant selection. Fairness and security aspects are of
outmost importance in any applicant selection. One of the major concerns of high-
stakes testing is therefore the integrity of items, which can be severely compromised
by repeated use. Automatic item generation, as a means of minimizing the effort
necessary to create new items, can present a cost efficient and suitable way to tackle
this problem. To generate items automatically, test items must be converted into an
item model that is a prototypical representation of the test items to be generated. Such
prototype items model could determine the difficulty of any theoretically describable

item a priori. However, no such item model exists for CPS tasks.
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To fill this gap, we analyze data of 3056 Finnish students using a linear
logistic test model (LLTM). The LLTM models the likelihood of solving an item
correctly (i.e., the item’s difficulty) as a function of individual ability and a linear
combination of specific item characteristics and their relative contribution to item
difficulty. Our results suggest that the difficulty of MCS tasks is almost perfectly
predictable by six basic characteristics; namely, the use and number of (1)
eigendynamics, the number of (2) input and (3) output variables, the number of (4)
input and (5) output variables not related to any other variables, and (6) the total
number of relations between all variables. In addition, we provide evidence for the
necessity of differentiating between difficulty of controlling a CPS task (knowledge

application) and understanding it’s underlying system (knowledge acquisition).
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When cognitive scientists want to know how a person copes with certain
problems, they cannot just read the person’s mind, but rather, they usually
have to present the person with a set of valid tasks and assess the problem-
solving strategies that he or she applies. In the pioneer era of research on
human problem solving, there was a lot of research on rather simple and
academic problems such as the Tower of Hanoi (Simon, 1975), Duncker’s
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(1945) Candle Problem, or the problem of Missionaries and Cannibals (Jef-
fries, Polson, Razran, & Atwood, 1977). The simulation of both realistic
and complex problems provided a great step forward in research on human
problem solving: With the advent of computers in psychological laboratories
during the 1970s, computer simulations of complex scenarios such as Loh-
hausen (Dorner, Kreuzig, Reither, & Staudel, 1983), Milk Truck (Schunn &
Klahr, 2000), or the Sugar Factory (Berry & Broadbent, 1984) became
increasingly popular in the scientific community as methods for examining
human problem solving and decision making in realistic tasks (i.e., micro-
worlds; Papert, 1980, p. 204) while still having the advantage of standardised
laboratory conditions. For instance, Dorner (1989) elaborated on systematic
human failures in coping with complexity, whereas Berry and Broadbent
(1984) did research on the influence of implicit knowledge on complex sys-
tem control, and Klahr and Dunbar (1988) focused on scientific discoveries
and hypothesis testing in complex environments.

Complex problems (or microworlds; Kluge, 2008) seem to have greater
ecological validity than other cognitive tasks such as tasks used in classical
tests of intelligence (Beckmann, 1994). In complex microworlds, problem solv-
ers can manipulate certain input variables and observe the resulting changes in
a set of outcome variables. While doing so, problem solvers have to acquire
and apply knowledge about the complex scenario’s structure in order to reach
their goals (i.e., build a representation of the problem and search for a solution;
Novick & Bassok, 2005), and this involves processes such as information
reduction (Klauer, 1993), causal learning via interaction (Bithner & Cheng,
2005), hypothesis testing (Klahr & Dunbar, 1988), dynamic decision making
(Edwards, 1962), and self- and task-monitoring (Osman, 2010).

But even if these processes of knowledge acquisition and knowledge
application seem to be highly relevant for problem solving in various
domains of daily life such as academic (e.g., Wistenberg, Greiff, & Funke,
2012) or occupational success (Danner, Hagemann, Schenkin, Hager, &
Funke, 2011), research on complex microworlds has faced some major issues
that could not be sufficiently solved until now: There was (1) a lack of com-
parability between different microworlds: In early research on complex prob-
lem solving (CPS), different opinions about how to define “complexity”
(Quesada, Kintsch, & Gomez, 2005) as well as a variety of different scenarios
such as Lohhausen, Milk Truck, and the Sugar Factory emerged, and it
became difficult to determine the common attributes of those complex prob-
lems and to compare them with each other directly (Funke, 2001). Adding to
this, (2) scalability remained unclear as single time-consuming simulations
(e.g., the time-on-task for Lohhausen was about 16 hr; see Dorner et al.,
1983, p. 120) were used to measure CPS skills, and different measures of per-
formance in different microworlds did not necessarily correlate with each
other or with traditional measures of general mental ability (Dorner, 1986;
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Wenke, Frensch, & Funke, 2005) even if there was considerable conceptual
overlap between performance on CPS tasks' and intelligence tests. So it has
previously been unclear whether performance scores across a number of com-
plex problems can be summed to form consistent and homogenous scales.
One decade ago, Funke (2001) proposed using formal frameworks to
compare different scenarios with respect to the formal features of their causal
structures. This solved the first problem (i.e., lack of comparability) but not
the issue of scalability. In this paper, we will extend this approach. First, we
will briefly provide background information on (1) the concept of domain-
general skills, which are relevant for CPS (Fischer, Greiff, & Funke, 2012),
and (2) how to design tasks that address these problem-solving skills in such
a way that they are comparable with regard to their underlying formal struc-
ture (Funke, 2001). We will then (3) outline the most important measurement
issues that have resulted from unclear scalability and that have yet to be
resolved, and (4) introduce the multiple complex systems (MCS) approach,
which is based on formal frameworks, as a viable way to both overcome these
measurement issues and enable solid research on problem-solving skills.

THE PROCESS OF COMPLEX PROBLEM SOLVING

According to Mayer and Wittrock (2006), problem solving takes place when
a given state has to be transformed into a goal state and no obvious or rou-
tine method of solution is available. A problem is complex if a sizable num-
ber of interrelated factors have to be considered in order to derive a solution
(Weaver, 1948). As prior knowledge about complex problems is often false
or at least incomplete (Dorner, 1989), the complex problem solver usually
attempts (1) knowledge acquisition and (2) knowledge application (cf.
Fischer et al., 2012; Funke, 2001; Novick & Bassok, 2005) in order to ade-
quately represent and solve the complex problem in a viable way.

Knowledge acquisition

When confronted with a complex problem, a problem solver has to build a
parsimonious and viable representation of the most relevant aspects of the
problem structure. That is, he or she first has to acquire viable knowledge
about the problem. On the basis of knowledge about (1) possible states of
the specific problem at hand, (2) analogous problem structures, or (3)
abstract solution schemas (e.g., “vary one thing at a time”; Tschirgi, 1980),
an initial assumption about the relevant aspects of the problem and

""Throughout this paper, the term “simulation” describes the whole measure of CPS. Different
complex systems within a simulation are called “tasks”, each of which may contain different
“items” to measure different processes such as knowledge acquisition or knowledge application.
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hypotheses about how these aspects are interrelated need to be mentally rep-
resented (each kind of data representation highlights certain features and
distinctions and downplays irrelevant features and distinctions; cf. Newell &
Simon, 1972; Schunn & Klahr, 1995). As these initial assumptions are often
false or at least incomplete in complex situations (Dorner, 1989), their viabil-
ity has to be tested by directly interacting with the problem (cf. Klahr &
Dunbar, 1988). Each interaction with the system can be seen as an experi-
ment (varying the state of the problem), which generates information that in
turn may allow the problem solver to accept, reconsider, or reject the current
assumptions (Klahr & Dunbar, 1988). Blihner and Cheng (2005) emphasised
the special importance of active interventions for causal learning (in contrast
to the mere observation of covariation). The result of effective interactions
and learning is a viable mental representation of the most important aspects
of the problem’s causal structure (i.e., subject-matter knowledge; cf. Even,
1993). Schunn and Klahr (1995) described this process of acquiring subject-
matter knowledge as a search through possible experiments, hypotheses,
data representations, and experimental paradigms.

Knowledge application

After a sufficient amount of subject-matter knowledge (Even, 1993) has been
acquired, a feasible solution has to be derived. Systematically searching for a
solution usually implies applying knowledge about (1) prior encounters with
similar situations that were successfully solved (cf. instance-based learning
theory; Broadbent, Fitzgerald, & Broadbent, 1986; Gonzalez, Lerch, & Leb-
iere, 2003), (2) the current schematic representation of the problem (Sweller,
1988), or (3) general solution heuristics applicable in the current situation
(Gigerenzer & Brighton, 2009; Kahneman, 2011). The specific knowledge,
applied in a certain way to structure or constrain the search process, depends
on a variety of personal and situational features such as expertise and meta-
strategic knowledge (Kuhn, 2000) or the salience of important features
(Novick & Bassok, 2005). When a decision to implement an intervention (or
a series of interventions) has been made, the solution has to be implemented.
At the same time, the consequences of each intervention and the system’s
autonomous developments have to be monitored as they may have implica-
tions for the representation of the system and for future decisions (cf.
dynamic decision making; Edwards, 1962).

If the problem solver is unable to find a solution, he or she may switch
back to knowledge acquisition: For instance, when the rate of progress is per-
ceived to be too slow to solve the problem in time (MacGregor, Ormerod, &
Chronicle, 2001), or when the problem solver gets stuck in an impasse (Ohls-
son, 1992), there are often changes in the representation of the problem (e.g.,
relaxation of constraints) or in the use of strategy (Fischer et al., 2012).
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CPS and related constructs

The theoretical distinction between CPS and related constructs such as rea-
soning, working memory capacity (WMC), or domain-specific problem solv-
ing has been investigated frequently (Wittmann & Si3, 1999). Whereas some
researchers have highlighted commonalities between the constructs, others
have focused on differences. Both reasoning and working memory overlap
theoretically with CPS (Biihner, Kroner, & Ziegler, 2008; Kroner, Plass, &
Leutner, 2005), but there are also substantial and important conceptual differ-
ences (e.g., Schweizer, Wiistenberg, & Greiff, 2013; Wiistenberg et al., 2012).

Reasoning can be broadly defined as the process of drawing conclu-
sions in order to achieve goals, thus informing problem-solving and deci-
sion-making behaviour (Leighton & Sternberg, 2004). It has been linked
to executive control processes that allow a person to analyse simple prob-
lems, create solution strategies, monitor performance, and adapt behav-
iour accordingly. Interestingly, the skills necessary for CPS are often
identified with the same labels as those for reasoning. As outlined above,
CPS also requires the acquisition and application of knowledge and the
monitoring of behaviour (Funke, 2001), and problem solving is part of
almost every definition of reasoning (Sternberg & Berg, 1992). Nonetheless,
Raven (2000) separates CPS from reasoning, focusing on the dynamic interac-
tions necessary in CPS for revealing and incorporating previously unknown
information as well as for achieving a goal using subsequent steps that depend
on previous steps. The major difference between reasoning and CPS is there-
fore whether or not there is a need for “experimental interaction with the
environment” (Raven, 2000). On this basis, CPS and reasoning can be viewed
as related but distinguishable constructs. Empirically, this assumption is sup-
ported by studies that have reported moderately high correlations between
CPS and reasoning (e.g., Danner et al., 2011; Greiff, Wiistenberg et al., 2013;
Wiistenberg et al., 2012).

WMC, on the other hand, is defined as the capacity of the cognitive sys-
tem to simultaneously store and process information (Baddeley, 1989). It is
very closely related to reasoning (e.g., Bithner, Krumm, & Pick, 2005; Kyllo-
nen & Christal, 1990) and is a well-established predictor of different higher
order cognitive tasks such as language comprehension (Daneman & Meri-
kle, 1996). Concurrently, WMC may limit CPS performance (Biihner et al.,
2008; Sii, 1999). To this end, Wirth and Klieme (2003) argue that “in most
dynamic problem situations, [. ..] more than one goal has to be pursued. The
underlying structure of the problem is complex, and the amount of relevant
information exceeds the capacity of working memory” (p. 332). According
to this theoretical view, WMC should predict CPS as it limits the amount of
information that can be searched, acquired, and applied when solving a
complex problem. However, there are clear theoretical differences between
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WMC and CPS. Funke (2010) emphasises that CPS cannot be reduced to
simple cognitive operations such as a mere sequence of memory processes.
Rather, it is to be understood as an organised interplay of simple cognition
and different complex cognitive processes, including the self-guided plan-
ning, execution, and evaluation of actions and the application of strategies
that are implemented to reach one or more overarching goals (Funke, 2010).
Accordingly, WMC may be relevant for CPS, but it does not represent a
genuine aspect of it. Empirically, the distinction between WMC and CPS is
supported by the incremental validity of CPS scores over WMC in predict-
ing school grades (Schweizer et al., 2013) and moderately high correlations
between WMC and CPS (Biihner et al., 2008).

Finally, a large amount of research has been conducted on human prob-
lem solving and expertise in specific domains, usually referred to as domain-
specific problem solving (Sugrue, 1995), including mathematical (e.g., Dan-
iel & Embretson, 2010), scientific (e.g., Dunbar & Fugelsang, 2005), or tech-
nical (e.g., Baumert, Evans, & Geiser, 1998) problems. Domain-specific
problems, as encountered outside the laboratory, are always embedded
semantically, and the success of a problem solver depends on his or her expe-
rience and subject-matter knowledge in this specific area (cf. Sugrue, 1995).
But of course, there are domain-general mental processes involved in solving
problems regardless of the domain. Knowledge acquisition (i.e., building a
mental representation) and knowledge application (i.c., finding a solution)
are defining components of problem-solving theories in any domain (cf.
Mayer & Wittrock, 2006; Novick & Bassok, 2005; Mayer, Larkin, &
Kadane., 1984). Funke (2010) argues that complex and general mental pro-
cesses are highly relevant when solving new problems and, according to him,
the use of general mental representation formats such as causal networks
are relevant for knowledge acquisition but not bound to specific domains.
To this end, Novick, Hurley, and Francis (1999) state that domain-general
processes in problem solving are crucial for problem representation because
abstract schemas are more useful than specifically relevant example prob-
lems for understanding the structure of novel problems. These general repre-
sentations are not contaminated by specific content and can thus be
generalised more easily (Holyoak, 1985). This line of research does not ques-
tion that domain-specific processes exhibit high relevance in real-life prob-
lem solving (e.g., Wason & Shapiro, 1971), but there is still a substantial
degree of domain-generality in CPS (Buchner, 1995; Sternberg, 1995).
Empirically, Scherer and Tiemann (2012) were able to distinguish domain-
specific and domain-general problem solving as related but separate factors.

In summary, basic cognitive abilities such as reasoning and WMC can-
not completely account for performance in CPS, and domain-specific knowl-
edge is not sufficient for (but may result from) solving unknown complex
problems in any domain. This is in line with the theory of cognitive cascades
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(Bornstein, Hahn, & Heynes, 2010; Fry & Hale, 1996), which posits that
basic cognitive abilities predict more complex ones. After this initial theoret-
ical classification, the following section will provide an overview of existing
measures of domain-general CPS skills.

FORMAL FRAMEWORKS FOR DESCRIBING GENERAL
ASPECTS OF COMPLEX PROBLEMS

Over the last 30 years, experimental research has produced a variety of find-
ings on CPS largely by using measures composed of a large number of
elements, time-delayed effects, nonlinear relations, and complex structures
(e.g., Dorner, 1989). These tasks were often constructed unsystematically
and ad hoc. From a psychometric perspective, these measures were prohibi-
tive (Funke, 2001) as they varied considerably with regard to the systems
underlying them and their cognitive demands, thus rendering it impossible
to compare empirical results across different studies.

In response to these issues in the measurement of domain-general prob-
lem-solving skills such as systematic knowledge acquisition and knowledge
application, Funke (2001) introduced the formal frameworks of linear struc-
tural equations (LSEs) and finite state automata (FSA), which allowed com-
plex problems to be described systematically on a formal level. A coherent
formal description of different complex problems ensures a minimal set of
commonalities between these problems (instead of mixing apples and
oranges) and allows for the systematic comparison of different complex
problems with regard to their underlying structure (instead of or in addition
to their surface features or semantic context). As these frameworks are an
important prerequisite for the CPS measurement approach based on MCS
proposed in this paper, we will elaborate further on both frameworks.

Linear structural equations

LSEs describe a framework for modelling linear relations between quantita-
tive variables, such as the influence of coffee consumption on thirst and
alertness (within certain boundaries). On a formal level, LSE systems con-
tain a set of input variables (which can be set by the problem solver) and a
set of output variables (whose values may linearly depend on other output
or input variables) as well as linear relations between these variables. In
dynamic systems, an output variable may also influence itself, called eigen-
dynamic (Funke, 2001). In order to solve this kind of problem (e.g., to
obtain a certain level of alertness by drinking coffee), a problem solver has
to (1) explore the linear relations between input and output variables in a
first phase (knowledge acquisition) and (2) reach certain goal values for the
output variables in a second phase (knowledge application).
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Figure 1. Structure of a linear system (Funke, 2001) with two input variables (4 and B), two
output variables (Y and Z), and the relations between them (arrows).

Figure 1 illustrates the following system of interrelated variables:

Y1 =2xA;;
Zt+l =O.9XZI+05XY} +3XAt — ZXBf;

In this example, varying the exogenous variable 4 at any discrete point in
time ¢ has multiple direct effects on Y and Z and an additional delayed and
indirect effect on Z (A4 influences Y, and Y in turn influences Z). The endoge-
nous variable Z is directly dependent on both itself (eigendynamic) and on
three other variables (4, B, and Y).

Of course, less abstract problems can be formulated as LSE systems as
well: For example, the complex problem of managing a sugar factory was
described as an LSE containing one output variable (sugar production) that
was negatively related to itself and positively related to one input variable
(number of workers) by Berry and Broadbent (1984). In this system, the
problem solver had to acquire knowledge about the causal interrelations of
variables and to apply this knowledge in order to successfully control the
amount of sugar produced by manipulating the number of workers.

Finite state automata

In contrast to LSE systems, FSA systems are useful for describing relations
between qualitative variables, for example, the discrete state changes trig-
gered by the buttons of a mobile phone or a ticket vending machine (Buch-
ner & Funke, 1993). An FSA contains a limited number of states S (e.g.,
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TABLE1
State transition matrix of the system shown in Figure 2 (Funke, 2001)

Input X to current state S

Resulting state S X1 X2
SO S1 SO
S1 S2 S2
S2 SO S2

“on” and “off”) and a limited number of interventions X (e.g., buttons) as
well as a function that specifies the state following each possible other state
and/or intervention (see Table 1). Whereas the distinction between the two
frameworks is pragmatic to a large degree as the two representations can be
translated into each other (e.g., Cohen, 1968), it is important to note that an
FSA system differs from an LSE system where the states change quantita-
tively and discretely and are therefore not limited to certain qualitative cate-
gories. LSEs can therefore be considered a special form of FSA with a very
large number of ordinal categories, which would be highly impractical to
represent in FSA (Neubert, Kretzschmar, Wiistenberg, & Greiff, 2014). The
problem solver is not shown the states of an automaton directly, but there is
a visual output (e.g., on the screen of a mobile phone) based on the current
state or the current state transition of the automaton (Funke, 2001). In order
to control an unknown FSA, the problem solver has to (1) acquire knowl-
edge about the consequences of interventions as well as their conditions and
(2) apply this knowledge in a goal-oriented way to reach a certain state.

For instance, Table 1 illustrates a simple finite automaton with two but-
tons (X1, X2) that cause a state transition to one of three different states
(S0, S1, S2) depending on the current state of the automaton (this represen-
tation is called the state transition matrix; Funke, 2001). In Figure 2, the
same automaton is visualised as a network diagram containing three nodes

x1
: @% <

x1

Figure 2. Graphical representation of a finite state automaton (Funke, 2001) with three states
(Z1, 722, Z3) and two possible inputs (X1, X2) that lead to state transitions (arrows).
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(S0, S1, S2) with two arrows (X1, X2) pointing from each node to the next
node.

Nearly every problem can be approximated by a set of possible states
and state transitions. Thus, the FSA framework may be especially suited for
problem-solving research (for more detail on this concept, see the FSA
Space Shuttle, which was used in the Programme for International Student
Assessment; Wirth & Klieme, 2003).

In general, the two formal frameworks introduced by Funke (2001), LSE
and FSA systems, solved the lack of comparability in CPS research by speci-
fying commonalities and discrepancies between all complex problems that
can be formulated within a common framework. Existing microworlds could
now be compared, and new microworlds could be designed with regard to
the underlying causal structure of a problem. Therefore, the formal frame-
works are widely used in problem-solving research (e.g., Funke, 2001;
Kluge, 2008; Kroner et al., 2005; Wiistenberg, et al., 2012) and provide an
important prerequisite for the MCS approach, which addresses the issue of
the unclear scalability of complex problems and which we will present in this

paper.

MEASUREMENT ISSUES IN CPS

The formal frameworks introduced by Funke (2001) allowed different com-
plex scenarios to be compared on the basis of their underlying structure
(e.g., Greiff & Funke, 2010) and not just on the basis of surface features and
fuzzy descriptions of problems. But even though Funke’s (2001) approach
solved the lack of comparability, the scalability of CPS skills remained
unknown because all complex problems available at the time shared a single
major shortcoming: They consisted of only a single task or problem (e.g.,
Tailorshop; Funke, 2003). More specifically, single-task testing causes cer-
tain characteristic problems:

(1) There is no variation in difficulty across tasks as only a single task is
used (in fact, difficulty is often not even reported; Greiff,
Wiistenberg, & Funke, 2012). That is, system structure and other
task characteristics remain constant, which results in different dis-
crimination between groups of low, average, and high performers.
For instance, an item with average difficulty in a sample of low per-
formers may be too easy for a sample of high performers and unable
to discriminate different levels of ability.

(2) Single-task testing results in low and even unknown estimates of reli-
ability. Reliability can be estimated adequately only when there are
multiple tasks that can be assumed to measure the same construct
(or the same task multiple times). The few studies that have
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conducted reliability estimates for single CPS tasks using retests have
reported considerably low estimates with r; values ranging from .56
to .69 (SuB, 1996). As the square root of reliability marks the upper
bound of validity, and reliability increases with the number of tasks
(Carmines & Zeller, 1991), single-task testing may underestimate the
validity of a test due to small or unknown reliabilities.

(3) One single random error—in particular, at the beginning of a CPS
task—can heavily compound performance and lead to low test scores
even when ability on the underlying construct is high. For instance,
in the CPS task Tailorshop (Funke, 2003), one substantial mistake in
the beginning (e.g., a random typing error) irreversibly affects all
subsequent steps as well as the final outcome. The same mistake at
the end of the test may impact performance less or differently.

As these measurement issues preclude a meaningful interpretation of
many empirical findings on the topic, Sii} (2001) concluded that the impor-
tance of the theoretical construct CPS has been difficult to evaluate until
now. The construct validity of many operationalisations of CPS is difficult
to estimate, especially due to unknown and low reliabilities. In this paper,
we want to contribute a solution to these problems: We will present multi-
ple-task testing, which is based on the two formal frameworks proposed by
Funke (2001) as a means for overcoming (1) unvaried difficulty, (2) low and
unknown reliability, and (3) the overweighting of random errors—the three
major issues resulting from single-task testing. We will now introduce and
discuss the MCS approach within formal frameworks as an approach for
building multiple-item scales that can be used to overcome the measurement
issues mentioned above.

THE ADVENT OF MULTIPLE COMPLEX SYSTEMS

MCS are based on formal frameworks but extend both LSEs and FSA by
including measurement considerations that have the potential to solve the
characteristic problems of single-task testing mentioned above.

Important first steps toward tackling the problems of single-task testing
were already made with the introduction of microworlds such as the finite
state automaton Space Shuttle (Wirth & Klieme, 2003) or Multiflux (Kroner
et al., 2005). Unlike classical measures of CPS in which trial-and-error
behaviour at the beginning of the task influenced the final problem-solving
score, these more recent CPS tasks included an evaluation-free exploration
phase. This solved the problem of initial random behaviour influencing the
final problem-solving scores by separating the processes of knowledge acqui-
sition and knowledge application. As real-world problem solving allows for
repeated alternation between the two processes, this separation between
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knowledge acquisition and knowledge application is a compromise between
the psychometric assessment of CPS and ecological validity (Kroner et al.,
2005). Separating the two processes allows for their independent assessment
even though it may be at odds with real-life problem solving.

In addition, providing feedback about the correct solution after the
knowledge acquisition phase solved the problem of the knowledge applica-
tion scores being confounded with individual differences in knowledge
acquisition. This allowed for the distinct measurement of knowledge acquisi-
tion and knowledge application. Multiple items were used to ask partici-
pants about their knowledge of the underlying structure of the system as
well as their ability to control it. For example, after exploring the Space
Shuttle for 20 min, problem solvers had to answer approximately 20 items
about the underlying logic as an assessment of their knowledge acquisition.
Similarly, multiple items requiring participants to direct the system toward
producing certain values were used to assess knowledge application. The
Multiflux simulation is very similar in that, after an initial exploration phase,
several items are presented to assess knowledge acquisition and knowledge
application. This simulation also provides participants with the correct
structural diagram underlying the simulation after the knowledge acquisi-
tion phase. In summary, these innovations in CPS measurement solved the
problem of initial random behaviour influencing the final problem-solving
scores and allowed for the distinct measurement of knowledge acquisition
and knowledge application.

Whereas this was certainly an improvement over microworlds that did
not include an evaluation-free exploration phase and that did not make a
clear distinction between knowledge acquisition and knowledge application
(Kroner et al., 2005), it is also important to note that all items in these
microworlds were based on the very same underlying task structure. Obvi-
ously, dependencies between these items could arise as a problem solver
might understand the system as a whole and would then be more likely to
answer all items correctly (Greiff et al., 2012).

The number of tasks within these measures of CPS, however, is limited
by the assumption that microworlds need substantial time spent on a task to
sufficiently model reality (ranging from at least 30 min up to several days;
e.g., Frensch & Funke, 1995). Consequently, microworlds such as ColorSim
(Kluge, 2008), Space Shuttle (Wirth & Klieme, 2003), or Multiflux (Kroner
et al., 2005) require a minimum of 30 min of processing time, which, from a
practical perspective, limits the number of employable tasks to one (Greiff
et al., 2012). In MCS processing, the required time is reduced, and thus a suf-
ficient number of less time-consuming and independent tasks can be pre-
sented. That is, in line with simulations such as Multiflux, the MCS
approach improves upon classical measures by including an evaluation-free
exploration phase and feedback on the correct solution after the knowledge
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acquisition phase. Furthermore, the MCS approach improves upon other
recent measures of CPS by employing an entire set of several independent
tasks and allowing the researcher to (1) vary the difficulty of both knowledge
acquisition and knowledge application, (2) estimate and increase reliability,
and (3) lessen the impact of single random errors.

On the basis of the formal frameworks proposed by Funke (2001), we
designed MCS, each solvable within a short amount of time. The underlying
task structures in MCS can be described by either LSEs or FSA. The first
MCS approach based on LSEs is known as MicroDYN and the second
MCS approach based on FSA is called MicroFIN. “Micro” in both cases
refers to the shorter time on task and the limited number of elements in a
task’s structure, whereas DYN alludes to D YNAMIS, the name given to the
first LSE approach by Funke (2001), and FIN alludes to finite state autom-
ata as the underlying formalism (Greiff, Fischer, et al., 2013).

Multiple complex systems in LSEs: MicroDYN

As MCS formulated as LSEs are comparable by definition, we created a
measure composed of multiple CPS tasks that reflected the defining theoreti-
cal aspects of CPS: (1) The acquisition of knowledge about how to ade-
quately represent the problem and (2) the application of this knowledge to
solve the problem. Consequently, within MicroD YN, problem solvers are
instructed to perform two subtasks (items), each of which is addressed in a
separate phase with 5 min of time-on-task overall: In Phase 1, knowledge
acquisition (3 min), respondents explore the task and represent their
acquired knowledge by manipulating inputs and deriving conclusions from
their individual manipulations. In Phase 2, knowledge application (2 min),
respondents have to achieve predefined target values in the output variables
by correctly manipulating the input variables within a limited number of
active interventions. Usually, in about 1 hr of testing time, a set of approxi-
mately 10 MicroDYN scenarios is administered, yielding 10 independent
measurement points (in comparison with only one in single-task testing). As
an illustration, a screenshot of a typical MicroDYN task, handball team,
with three input and three output variables is depicted in Figure 3. There,
different kinds of training labelled Training A, B, and C serve as input varia-
bles, whereas different team characteristics labelled Motivation, Power of
the Throw, and Exhaustion serve as output variables.

As research on CPS is particularly focused on domain-general cognitive
processes (see section above; cf. Kroner et al., 2005; Raven, 2000), semantic
cover stories in MicroDYN activate as little subject-matter knowledge as
possible and are varied between items (Greiff et al., 2012). Highly different
semantic covers are used in each MicroDYN task; for example, coaching a
sports team (see the handball training task in Figure 3), feeding an alien
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Figure 3. Screenshot of the knowledge application phase within a MicroD YN task. The left side
of the screen depicts sliders for manipulating input variables (Training A, Training B, Training
C), and the right side depicts current and goal values for output variables (Motivation, Power
of the Throw, Exhaustion). The correct causal model is at the bottom of the screen (cf.
Wiistenberg et al., 2012).

creature, or driving a moped. To prevent uncontrolled influences of subject-
matter knowledge, input and output variables are labelled either without
deep semantic meaning (e.g., Training A) or fictitiously (e.g., Wildvine as
the name of a flower or Natromic for a fertiliser). Cover stories are realistic
and semantically rich, but they do not provide information about how to
solve the specific problem at hand nor do they activate helpful subject-mat-
ter knowledge.

An additional asset in MicroDYN is the ability to scale the difficulty,
which is related to variations in task characteristics: Whenever a new task
out of the set of independent MicroD YN tasks is administered, difficulty can
be decreased or increased by varying the underlying system structure. Greiff
and Funke (2010), Greiff, Krkovic, and Nagy (2014), as well as Kluge
(2008) provided the first empirical insights into which task characteristics
(e.g., degree of connectivity, direct and indirect effects) need to be varied to
systematically and predictably change the task difficulty.

In the second problem-solving phase, knowledge application, system
interventions are targeted toward reaching a specific goal state in the LSE
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(e.g., a high level of Motivation or a low level of Exhaustion in Figure 3).
This allows for a direct evaluation of whether respondents have reached the
goal or not, whereas a number of options exist for how to check for the cor-
rect representation of a problem in the first phase of knowledge acquisition.
To this end, Funke (2001) introduced causal models in which participants
are instructed to draw lines between variables indicating the amount of
knowledge that the participants generated. These models can then be com-
pared with the correct causal models of the underlying task structure (see
Figure 3). However, the scientific community has proposed other forms of
assessment including multiple-choice questions about the structure of the
problem (e.g., Kluge, 2008; Kroner et al., 2005) or constructed responses
(Frensch & Funke, 1995). The issue of how problem solvers’ performance is
reflected in overt behaviour is closely related to the question of how to trans-
form data generated by problem solvers (e.g., the causal model drawn, the
distance between given and achieved goals) into specific indicators and
scores. Options include, for instance, continuous indicators of problem
representation in the first phase in which different types of mistakes are com-
pared and weighted differently (Funke, 2001); indicators rooted in signal
detection theory, combining misses, false alarms, hits, and correct rejections
into sensitivity and bias scores (Beckmann, 1994); logarithmic deviation
scores between given and achieved goal states (Kluge, 2008); or categorical
scoring schemes (Wiistenberg et al., 2012) for solution patterns in the second
phase. The notable difference between classical single-task testing and MCS
in MicroD YN, however, is that only one (independent) performance indica-
tor for each of the two phases is available in single-task testing, and this can
easily be impaired by external disturbances; whereas in MicroDYN, each
task yields two indicators, summing to approximately 10 knowledge acquisi-
tion scores and 10 knowledge application scores, depending on the specific
number of tasks employed in a set of MicroD YN tasks.

Multiple complex systems in FSA: MicroFIN

In MicroFIN (Greiff, Fischer, et al. 2013; Neubert et al., 2014), the MCS
principle of administering an entire set of tasks with a short processing time
and a reduced number of elements is applied to the formal framework of
FSA. Comparable to MicroDYN, a first phase in which respondents are
instructed to freely explore the complex system and to provide data on the
knowledge they acquire during this process, is followed by a second phase,
in which respondents apply their knowledge to reach predefined goal states.
Testing time (approximately 1 hr) and number of tasks in a MicroFIN set
(approximately 10) are comparable to MicroDYN, extending the approach
of MCS not only to LSEs, but also to FSA.
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Figure 4. Screenshot of the knowledge acquisition phase within a MicroFIN task. Possible
inputs are one of three settings for different types of laundry (A, B, C), the position of three dif-
ferent slides (red, yellow, blue), or a click of the “start” button.

Figure 4 illustrates the principle of MicroFIN. There, the task “washing
machine” is displayed during the second phase of knowledge application. In
this automaton, the test taker must find out about an unknown technical
device that is rather complex because the desired goal state (clean laundry)
depends on the interaction of different settings. Whereas in MicroDYN
(Figure 3), elements are related to each other in a quantitative way, relations
between states in MicroFIN are of a qualitative nature, and this constitutes
the main difference between the LSE and FSA frameworks (Neubert et al.,
2014). In a set of MicroFIN tasks, semantic covers can be varied and
designed to activate as little subject-matter knowledge as possible (i.e.,
inputs are not labelled in a meaningful manner; their effects have to be
explored in the knowledge acquisition phase) while simultaneously simulat-
ing a motivating and realistic problem. The underlying states and transitions
are changed in order to vary the difficulty levels even though little is known
about how specific task characteristics impact difficulty. However, the com-
plete formal description of MicroFIN tasks within the FSA framework pro-
vides the background necessary for systematically varying task difficulty
(Buchner, 1995; Funke, 2001; Neubert et al., 2014).

As in MicroDYN, MicroFIN enables a range of possibilities for record-
ing problem solvers’ performance and for transforming performance data
into specific indicators. Whereas the second theoretical process, the search
for a solution, is measured in a straightforward way in MicroFIN by setting
a specific goal state and instructing respondents to move toward it, a variety
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of options have been suggested for measuring the first process, knowledge
acquisition, in FSA. For instance, in a manner that is equivalent to causal
models in LSEs, Buchner (1995) suggested that individual transition matri-
ces be assessed as a way to reflect knowledge about a problem’s representa-
tion and that such matrices then be compared with the actual transition
matrices. That is, the smaller the difference between an individual and actual
matrix, the better and the more complete the knowledge a respondent has
gathered. Further, either as constructed responses or multiple-choice ques-
tions, different types of judgement tasks (predictive, interpolative, and ret-
rognostic; Buchner, 1995) or verification tasks (Buchner & Funke, 1993) can
be used to measure knowledge acquisition. The application of optimal solu-
tion sequences and the distance to a specific goal state in terms of the num-
ber of missing steps until the goal would have been reached are well-
established indicators of knowledge application (Buchner, 1999). In line
with the MCS approach, each of the approximately 10 MicroFIN tasks in a
complete set yields two indicators, one on knowledge acquisition and one on
knowledge application.

Both MicroDYN and MicroFIN are aimed at advancing LSEs and FSA
as well-established formal frameworks in problem-solving research (Funke,
2001) designed to measure knowledge acquisition and knowledge applica-
tion in CPS even though the two formalisms differ substantially. For
instance, the representation of knowledge in MicroFIN is essentially differ-
ent from MicroDYN as effects of inputs in MicroFIN always depend on
inner states of the task while they are assumed to be the main effects in
MicroDYN. Despite these differences, substantial empirical correlations
between LSEs and FSA show that the two formalisms tap into the same
underlying construct (Greiff et al., 2012; Greiff, Fischer et al., 2013). We will
now describe what specific advantages are to be expected when extending
LSEs and FSA toward MicroDYN and MicroFIN within the MCS approach
versus single-task testing.

Advantages of multiple complex systems

Using MCS avoids single-task testing per definition, and thereby MicroDYN
and MicroFIN finally provide solutions for the characteristic weaknesses of
single-task tests mentioned above (i.e., the lack of variation in difficulty, low
or unknown reliability, and a large influence of random errors; cf. section
measurement issues in CPS):

(1) In MCS, there can be variation in item difficulty: As every complex
system can have a different difficulty, the problem-solving perfor-
mance of low, average, and high performers can be examined with
adequate discrimination within the MCS approach. Whereas prior
research that was based on single-task testing often applied single
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very difficult tasks and thereby focused on general human problems
in coping with a single difficult problem (e.g., Dorner, 1989), the
MCS approach provides a broader picture. For instance, Greiff et
al. (2012) reported that MicroD YN-task item difficulties varied
between p = .04 and p = .69 for knowledge acquisition and knowl-
edge application, which implies that a person with average skills will
probably fail to solve some but not all of the problems and will be
able to solve the other ones (which is much more informative than
knowing that he or she was unable to solve a single difficult item).
By implementing multiple items with varying difficulties (see Figure 5
for a set of MicroDYN MCS that varied with regard to both the
number and interconnectedness of elements), we can assess problem-
solving skills on different levels of performance. It is also possible to
systematically examine (and control for) effects of item difficulty on
the relations of CPS to other constructs (e.g., Kluge, 2008) or effects
of problem features on item difficulty (e.g., Greiff & Funke, 2010).

In MCS, reliability can be determined and enhanced: As there are mul-
tiple independent items, we can calculate adequate estimates of reli-
ability (e.g., split-half reliability and internal consistencies). By

2x2-systems

3x3-systems

4x4-systems

Low complexity Medium complexity High complexity

Figure 5. Multiple complex systems with varying numbers of elements (rows) and varying com-
plexity (interconnectedness and direct/indirect effects; columns) (taken from a presentation by
Greiff, Wiistenberg, & Funke, 2011).
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contrast, estimates of reliability reported for single-task testing have
often been inflated because the items depended on the prior solution
to a single problem (i.e., correlations between items can depend on
this prior solution and not only on a latent ability). Adding to this,
reliability can be increased in the MCS approach by adding tasks to
a test (Carmines & Zeller, 1991): For a MicroDYN set of 11 tasks,
Greiff et al. (2012) reported reliability estimates between o = .85 and
o = .95 (similar results were reported by Wiistenberg et al., 2012, for
8 tasks with a = .73 to o = .86; and Sonnleitner et al., 2012, for 16
tasks with a = .73 to a = .86). As the square root of reliability marks
the upper bound of validity, estimates of validity (e.g., correlations
between MicroDYN indicators and other constructs such as intelli-
gence) may be adequately corrected for attenuation in the MCS
approach when considering relations between CPS and other con-
structs on a latent level. This addresses a major shortcoming of prior
single-task testing, as tests with low and unknown reliability may
have resulted in severe underestimations of validity (Sul3, 1996).
Recent findings on the construct validity of CPS measured by MCS
will be reported below.

In MCS, measurement error is less likely to compound a person’s per-
Jformance. A severe erroneous decision in a single task does not imply
a poor solution in other tasks. However, in single-task testing, such
a single decision may automatically result in a low estimate of a per-
son’s ability. In the MCS approach, items are independent from
each other, and performance on each item does not depend on per-
formance on previous items. Whereas a single random mispercep-
tion, which is not related to a person’s ability per definition, can
heavily compound performance in controlling a single finite automa-
ton, this is less likely to occur when controlling multiple automatons
in MicroFIN. This avoids the overweighting of specific person-item
interactions and accommodates the stochastic relation between a
person’s ability and his or her item response (Rasch, 1980).

Because different tasks impose different strategy requirements dur-
ing exploration (Wirth, 2004), the use of multiple small tasks in
MCS allows for the creation of CPS measures that require specific
strategies (e.g., Wiistenberg, Stadler, Hautamaki, & Greiff, 2014).
For instance, variables affecting themselves (eigendynamics;
Figure 1) can be detected only by not manipulating any variables to
explore the system’s impetus. Thus, the decision to include or
exclude eigendynamics in the CPS measure determines whether or
not the use of this specific strategy can be assessed. Other tasks may
require different specific strategies without which they cannot be
solved; an example here is the “vary-one-thing-at-a-time” strategy
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(Tschirgi, 1980). As a consequence, MCS tasks can be selected to
assure a content-valid strategy assessment to potentially increase
their content validity or to obtain information about specific defi-
ciencies in CPS skills; such information may be used for training or
developmental purposes.

DISCUSSION: WHERE IS COMPLEX PROBLEM SOLVING
HEADED?

In the current paper, we demonstrate how an assessment of domain-general
CPS skills is based on computer-based simulations of complex problems.
We propose that an adequate assessment of skills (e.g., knowledge acquisi-
tion and knowledge application; Funke, 2001) requires a set of multiple
problems that are comparable on a formal level (Funke, 2001). For this pur-
pose, we outlined the formal frameworks of LSE systems and FSA (pro-
posed by Buchner & Funke, 1993, and by Funke, 2001). We introduced
MicroDYN (based on LSEs) and MicroFIN (based on FSA) in order to dem-
onstrate how MCS can be applied and scored to overcome some important
measurement issues in CPS research. Specifically, the MCS approach pro-
vides the following: (1) Different skill levels can be measured with adequate
discrimination due to a wide range of task difficulties, (2) reliability and
validity can be estimated by including an adequate number of conceptually
independent tasks, (3) multiple independent indicators of CPS skills can be
included, lessening the impact of single errors during testing, and (4) the spe-
cific strategies tailored to specific needs in training or developmental con-
texts can be implemented and assessed.

Both knowledge acquisition and knowledge application skills seem para-
mount for solving complex problems and can be reliably addressed within
the MCS approach. General mental abilities can be considered an important
prerequisite for CPS, but the skills involved in knowledge acquisition (e.g.,
knowing a systematic strategy of hypothesis testing, deductively generating
hypotheses, representing information in a causal network diagram, etc.) and
knowledge application (e.g., considering the consequences of one’s actions
and eigendynamics, adapting plans to recent developments, etc.) provide
added value for coping with complex problems (e.g., Wittmann & Hattrup,
2004) and represent a defining part of problem-solving competency (Greiff
& Fischer, 2013; Snow, 1989). It seems that, after the construct validity of
different indicators of CPS skills has been questioned for a long time (Siif3,
2001), we are now able to address the question with adequate methodology.

Still, several urgent questions regarding CPS remain. One line of current
CPS research is addressing developmental issues by examining the plasticity
of the construct and the influence of lifelong learning and training (e.g., the
European Life Long Learning project; www.lllightineurope.com). In
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addition, it is necessary to improve our understanding of the specific nature
of CPS and its relations to other facets of cognitive performance. Whereas
we have some understanding of how CPS is related to general conceptions
of reasoning or fluid intelligence (Horn & Cattell, 1966; McGrew, 2009), the
role of crystallised intelligence (i.e., specific acquired knowledge; McGrew,
2009) in CPS is still not clear. System-specific knowledge was found to be
highly relevant for some classical measures of CPS (Wittmann & Sii3, 1999).
However, more recent measures of CPS (including MCS) use arbitrary con-
texts so that the impact of previous knowledge about the system’s frame-
work should be substantially reduced (e.g., Greiff, Wiistenberg et al., 2013;
Kroner et al., 2005; Wagener, 2001). Abstract knowledge of strategies, such
as systematic control of variables (e.g., Wiistenberg et al., 2014) or dynamic
systems (e.g., “the robust beauty of linear systems”; Dawes, 1979), on the
other hand, might substantially influence problem-solving behaviour. The
simple application of known strategies would facilitate the problem-solving
process. Thus, further theoretical and empirical work is necessary in order
to fully integrate CPS into more thorough frameworks of cognitive abilities
such as the Cattell—Horn-Caroll theory (McGrew, 2009).

Other influences might derive from individual differences among partici-
pants. For instance, Wittmann and Hattrup (2004) reported performance
differences between men and women on the knowledge acquisition dimen-
sion of CPS in multiple measures of CPS. The authors thereby speculated
that higher risk-aversiveness could cause female participants with the same
level of fluid intelligence to implement more cautious interventions (Witt-
mann & Hattrup, 2004), which may lead to less informative reactions of the
system and fewer opportunities to learn about the causal structure of the sys-
tem (Wiistenberg et al., 2012). As this finding illustrates, the role of interindi-
vidual differences (e.g., personality or motivation) is not yet sufficiently
understood, and further research on this topic is required (Marshalek, Loh-
man, & Snow, 1983).

Finally, the mostly numerical (MicroDYN) or figural (MicroFIN) feed-
back participants receive may limit the domain-generality of the CPS meas-
ures. In line with the construction of the Berlin model of intelligence
structure test (Jager, 1973), in which complex reasoning tasks for the verbal,
numerical, and figural content or domain are aggregated to diminish the
domain-specific variance in the content and boost the variance of more oper-
ation-like abilities, it would be interesting to aggregate the performance
scores that are based on different tasks with numerical, figural, or verbal
feedback. For instance, it would be possible to present the current states of
the outcome variables in MicroFIN as a vector of numbers rather than with
a graphical representation. Similarly, feedback in MicroFIN could be verbal
rather than numerical. This would provide important additional support for
the notion of the domain-general measurement of CPS.
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CONCLUSION

By providing reliable measures of problem-solving skills, the MCS approach
is an important step forward in problem-solving research: Since research on
problem solving had its zenith in the seventh decade of the last century (e.g.,
Newell & Simon, 1972), it seems to have faced a major decline in interest in
the research community, partly due to methodological issues (Ohlsson, 2012)
and a lack of ecological validity (Dorner, 1986). But as the phenomenon of
problem solving itself has remained an interesting one to explore (in fact,
CPS as a nonroutine behaviour may be increasingly important for today’s
workplaces; Autor, Levy, & Murnane, 2003), the research community is in
need of new forms of tests that can capture the complex processes that occur
during problem solving (Rigas & Brehmer, 1999). In recent years, a second
wave of interest in problem solving seems to have begun: As is indicated by
both the research endeavours reported above and the assessment of problem-
solving skills in international large-scale assessments such as the initiative for
the assessment of twenty-first-century skills (Griffin, McGaw, & Care, 2011),
PISA (2003, 2012, 2015), or the Programme for the International Assessment
of Adult Competencies (PIAAC), the assessment of problem-solving skills is
increasingly recognised as an important issue in daily life today, even outside
of educational research. While the formal frameworks proposed by Funke
(2001) have been applied in large-scale assessments since PISA 2003 (see
above), the current assessment of CPS skills in PISA 2012 were measured by
MicroDYN and MicroFIN (Organisation for Economic Co-operation and
Development [OECD], 2010), that is, within the MCS approach. Based on
the formal frameworks proposed by Funke (2001) and the MCS approach
outlined in this paper, the assessment of problem-solving skills may be facing
its second youth, and only time will tell if it lasts.
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ABSTRACT

The purpose of this meta-analysis is to examine the nature and magnitude of the relation between complex prob-
lem-solving skills (CPS) and intelligence, a topic that has been widely discussed and that has instigated a vast
array of partially contradicting findings in the past. Theoretically, researchers have hypothesized the two con-
structs to be everything from completely separate to identical. Over the course of almost four decades, empirical
studies yielded results in support of both arguments. Our meta-analysis of 47 studies containing 60 independent
samples and a total sample size of 13,740 participants revealed a substantial correlation of CPS and intelligence
with an average effect size of M(g) = .433. In addition, we investigated whether the operationalization of CPS
and intelligence moderated this correlation. Whereas there were no significant correlation differences consider-
ing the operationalization of intelligence, the approach used to measure CPS moderated the correlation of CPS
and intelligence. Especially the most recent approach towards the assessment of CPS yielded the strongest asso-
ciations between the two constructs. Implications for existing theories and future research are discussed.

© 2015 Published by Elsevier Inc.

1. Introduction

As the complexity and interconnectedness of the systems that we
interact with in our daily lives increases, so does the importance of
research on how we learn to control such complex environments.
Just dealing with everyday objects (e.g., phones, computers, auto-
mated driving systems) requires being aware of their respective con-
nections to other objects or people (e.g., other computers and people
via the internet) as well as the inner workings of the objects them-
selves. In response to this growing challenge, Dérner and Kreuzig
(1983) introduced the research area of complex problem solving
(CPS) that focused on the assessment of individuals' ability to deal
with complex and dynamically changing environments. This then
promising new approach towards human ability was primarily
brought forward by German researchers who were interested in ex-
perimentally investigating the interindividual differences among
people's ability to solve complex simulations of real-world problems.
In that, the assessment of CPS was considered a more ecologically
valid alternative to established measures of human ability such as

¥ This research was funded by grants of the Fonds National de la Recherche Luxembourg
(ATTRACT, “ASKI21"; AFR “CoPUS").
* Corresponding author at: University of Luxembourg, Maison des Sciences Humaines,
11 Porte des Sciences a Esch-Belval L-4366, Luxembourg.
E-mail address: matthias.stadler@uni.lu (M. Stadler).
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general intelligence. Especially initial theoretical propositions (e.g.,
Doérner & Kreuzig, 1983) and empirical findings (e.g., Putz-Osterloh,
1981) in favor of a clear distinction from general intelligence soon
resulted in a plethora of research on the relation between the two
constructs (e.g. Beckmann & Guthke, 1995; Wittmann & SifR,
1999). the results of these studies repeatedly contradicted each
other with researchers hypothesizing and finding diverse results
ranging from non-significant (e.g. Joslyn & Hunt, 1998; Putz-
Osterloh, 1981) to very strong correlations between measures of
CPS and general intelligence (e.g. Funke & Frensch, 2007, Wirth &
Klieme, 2003, Wiistenberg, Greiff, & Funke, 2012). These results
were in effect interpreted as either support for the discriminant va-
lidity of CPS as a construct or evidence that measures of CPS were ac-
tually measuring nothing else than general intelligence.

The purpose of the present work is, therefore, to answer the
question on the empirical relation between CPS and intelligence by
meta-analytically summarizing the various research findings on the
correlation of CPS and intelligence. In addition, we will try to find
moderating factors that might help explain the contradicting find-
ings. Showing that there is a substantial but far from perfect correla-
tion between various different measures of CPS and intelligence, we
provide important information on the construct validity and nomo-
logical classification of CPS. Furthermore, our study investigates the
moderating effects of different operationalizations suggesting
differences in the assessment of CPS to be a potential explanation
for the variation in results.
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2. Complex problem solving and intelligence

Following a definition by Buchner (according to Frensch & Funke,
1995, p. 14), CPS is throughout this paper understood as:

“(...) the successful interaction with task environments that are dy-
namic (i.e., change as a function of the user's interventions and/or as
a function of time) and in which some, if not all, of the environment's
regularities can only be revealed by successful exploration and integra-

tion of the information gained in that process.”.

Considering this definition, it becomes obvious why CPS has often
been compared to intelligence on a conceptual basis (Funke &
Frensch, 2007) to establish discriminant validity or to characterize indi-
vidual abilities that would help explain performance in CPS tasks. On the
one hand, some characteristic features of CPS such as the integration of
information are part of almost every definition of intelligence
(Sternberg & Berg, 1986). On the other hand, the dynamic and
intransparent characteristics of complex problems are not established
aspects of the current conceptions of intelligence such as the Cattell-
Horn-Caroll (CHC) theory of human intelligence (McGrew, 2009), and
this aspect of CPS may, thus, be an important addition to the under-
standing of human ability (Dorner & Kreuzig, 1983; Greiff et al., 2013).

This theoretical ambiguity is reflected in empirical findings on the
relation between CPS and intelligence. Multiple early studies indicated
that, while performance in CPS tasks varied tremendously among indi-
viduals, psychological assessments of general intelligence were unable
to explain this variability (Brehmer, 1992; Rigas & Brehmer, 1999).
Kluwe, Misiak, and Haider (1991) summarized 11 of these early studies
on the relation between CPS and intelligence and concluded that most
of them failed to show a close relation between intelligence scores
and CPS performance measures. This led several researchers to suggest
CPS to be a cognitive construct mostly independent from intelligence
(Putz-Osterloh, 1985). Rigas and Brehmer (1999) summarized this
view in the different-demands hypothesis. To explain the weak correla-
tions that researchers observed between measures of general intelli-
gence and CPS performance, this hypothesis suggests that CPS tasks
demand the performance of more complex mental processes than intel-
ligence tests do, such as the active interaction with the problem to ac-
quire knowledge on the problem environment, which, in turn, results
in low empirical correlations between the constructs.

Whereas there is some support for the different-demands hypothe-
sis (e.g., Joslyn & Hunt, 1998), more recent studies challenge it. In a com-
prehensive study, Gonzalez, Thomas, and Vanyukov (2005) found
correlations ranging from r = .33 to r = .63 between various measures
of CPS and measures of general intelligence. Similarly, StiR, Kersting, and
Oberauer (1991) reported correlations of r = .40 between Tailorshop
performance measures (Tailorshop being one of the most frequently
used measures of CPS) and measures of general intelligence.

Based on these moderate to strong correlations and contradicting
initial assumptions of independence of the two constructs as put for-
ward in the different-demands hypothesis, several researchers even ar-
gued that measures of CPS would be almost redundant to measures of
general intelligence (Mayer et al., 2013; Wittmann & Sii, 1999).
Wirth and Klieme (2003) reported a correlation of .84 between a latent
factor of different measures of CPS and general intelligence. Similarly,
latent factor scores on MultiFlux, a more recently developed measure
of CPS (Krdner, 2001), showed a latent correlation of .75 with different
facets of the Berlin Model of Intelligence Structure (BIS) test (Jager, Siif3,

! Several other constructs describing the ability of dealing with complex environments
have been suggested to extend the existing host of human abilities. Most prominent
among those are Dynamic Decision Making (DDM; Brehmer, 1992) and Systems Thinking
(Booth-Sweeney & Sterman, 2000). Both of these constructs overlap greatly with CPS in
their respective definitions (Frensch & Funke, 1995), and the variation in terminology is
mostly due to different research traditions. Throughout this paper, we will focus primarily
on CPS but also refer to relevant results published under different labels.

& Beauducel, 1997) an established intelligence test (Kroner, Plass, &
Leutner, 2005).

The latest studies on the relation between CPS and intelligence also
reported moderate to strong latent correlations (between r = .50 and
r = .80) of the two constructs (e.g. Greiff et al., 2013; Sonnleitner et
al., 2012; Wiistenberg, Stadler, Hautamaki, & Greiff, 2014; Wiistenberg
et al.,, 2012). However, these studies additionally demonstrated incre-
mental value over and above measures of intelligence in predicting
school grades (Wiistenberg et al., 2012) and job success (Danner,
2011) despite these strong correlations and in support of the different-
demands hypothesis.

An explanation for these inconsistent findings regarding the relation
between CPS and intelligence may lie in the conceptualization of intelli-
gence. Almost all current theories of psychometric intelligence include
one or two very broad, latent factors of general intelligence that capture
a large proportion of all cognitive abilities such as abstract reasoning,
memory, or factual knowledge (McGrew, 2009). Based on this concept,
early studies on the relation between CPS and intelligence mostly in-
cluded rather broad measures of general intelligence (e.g., Putz-
Osterloh, 1985) using different tasks assessing various cognitive abilities
including factual knowledge (or general crystalized intelligence;
McGrew, 2009). More recent studies, on the other hand, focused on spe-
cific sub-facets of intelligence, and especially reasoning was theoretical-
ly and empirically determined to be conceptually closest to CPS
(Wittmann & Siif3, 1999). Reconsidering the different-demands hypothe-
sis, broad measures of intelligence may be covering several aspects that
are not relevant for the successful solution to a complex problem, such
as factual knowledge, thus limiting the empirical relation between CPS
and intelligence. However, assessments focusing on reasoning (e.g.,
Raven's Progressive Matrices; Raven, Raven, & De Lemos, 1958) as
“the use of deliberate and controlled mental operations to solve novel
problems that cannot be performed automatically” (McGrew, 2009)
are conceptually closer to CPS than very broad measures of general in-
telligence and may thus yield much stronger correlations of CPS and in-
telligence (e.g.Greiff et al., 2013, Wittmann & Hattrup, 2004, Wittmann
& S, 1999). Accordingly, the conceptualization of intelligence used in
a study may influence the relation between CPS and intelligence found
with higher correlations of CPS and reasoning than of CPS and broad
measures of general intelligence.

3. Assessment of complex problem solving

In the same way, the assessment approach used to measure CPS var-
ied greatly among studies and may be responsible for the variation in
findings on the relation between CPS and intelligence. The assessment
of abilities such as CPS entails by definition (Frensch & Funke, 1995)
the possibility of an active interaction between the person to be
assessed and the assessment instrument. As no such interaction is pos-
sible within paper-pencil tests, this necessarily requires a computer-
based assessment. With the advancement of computer technology, var-
ious CPS tasks have evolved following different approaches. Next to dif-
ferent conceptualizations of intelligence, this diversity in assessment
approaches for CPS may be another cause for the inconsistent results re-
garding the relation between CPS and intelligence.

The first computer-based CPS tasks were developed in the early
1980s with the aim of administering task environments with a high re-
semblance to the real world and the goal of producing a reliable and
ecological valid measure of CPS that sufficiently simulated reality. The
microworld Lohausen (Dorner, Kreuzig, Reither, & Staudel, 1983), for
example, required a participant to govern a small city, which was intri-
cately simulated with more than 1000 different and interconnected var-
iables. Whereas these classical measures of CPS enjoyed a high level of
face validity, their psychometric properties were rather problematic
(Greiff, Stadler, Sonnleitner, Wolff, & Martin, 2015). Measurement is-
sues, such as unsatisfactory reliability and validity, quickly raised
doubt on the measurability and validity of the construct of CPS itself
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(Kréner et al., 2005; Wiistenberg et al., 2012). Rigas, Carling, and
Brehmer (2002) summarized these problems in suggesting the low-re-
liability hypothesis to explain why prior research failed to establish an
association between performance in CPS tasks and intelligence. In fact,
there is convincing evidence that the poor reliability of some classical
measures employed in past studies made it difficult to find any relations
to other constructs at all (for an overview see Greiff, 2012; Rigas et al.,
2002).

In reaction to these problems, Funke (2001) introduced Linear Struc-
tural Equation systems (LSE) and Finite State Automata (FSA) as formal
frameworks that allow for the description of underlying task structures.
Both of these frameworks enabled the creation of single complex sys-
tems, which are independent of any semantic embedment (Greiff,
Fischer, Stadler, & Wiistenberg, 2014) as they only specify an underlying
system that can be clad in multiple semantic contexts.

In particular, the LSE formalism has been widely adopted by CPS re-
search and has led to the development of a considerable number of sin-
gle complex systems (e.g., Multiflux, Kréner, 2001; FSYS, Wagener, 2001).
In a further advancement, after Leutner, Klieme, Meyer, and Wirth
(2004) had used a combination of two single complex systems for mea-
suring CPS, Greiff, Wiistenberg, and Funke (2012) used the LSE frame-
work for the development of the multiple complex systems (MCS;
Greiff et al,, 2014) approach, which was featured in the Program for In-
ternational Student Assessment (PISA) 2012, the arguably most impor-
tant large-scale assessment worldwide. This approach solves several
measurement issues by using multiple small rather than one single,
large microworld as in classical measures of CPS or single complex sys-
tems relying on LSE or FSA (Greiff et al., 2014). This approach was real-
ized in assessment tools such as MicroDYN (Greiff et al., 2012) or
Genetics Lab (Sonnleitner et al., 2012) and was later extended to FSA
with the development of MicroFIN (Neubert, Kretzschmar,
Wiistenberg, & Greiff, 2014). These MCS measures of CPS were devel-
oped with a clear focus on psychometric quality and showed significant-
ly higher reliability than classical measures of CPS. In concordance with
the different-demands hypothesis, they were also found to correlate sub-
stantially with measures of intelligence (e.g. Sonnleitner et al., 2012;
Wiistenberg et al., 2012).

An alternative explanation for the fuzzy results of studies on the re-
lation of intelligence and CPS could lie in the semantic embedment of
CPS tasks. The Elshout-Raaheim hypothesis (Elshout, 1987; Raaheim,
1988; see also Leutner, 2002) proposes an inverted U-shaped relation
between the score of the correlation coefficient as the dependent vari-
able and the amount of available domain-specific knowledge as the in-
dependent variable. As classical measures of CPS emulated real-world
problems, domain specific knowledge could be used to solve the prob-
lems, thus limiting the relevance of individual intelligence. More recent
measures of CPS based on LSE or FSA (both single complex systems and
MCS) are less dependent of a semantic context, and, thus, less domain
specific knowledge can be used. This should result in a stronger relation
between performance in modern CPS tasks and intelligence.

In summary, following both the low-reliability hypothesis (Rigas et
al., 2002) and the Elshout-Raaheim hypothesis (Leutner, 2002), the ap-
proach used to assess CPS in different studies could moderate the rela-
tion between CPS and intelligence.

4. The present research

Based on the wide range of research with partially contradicting
findings on the relation between CPS and intelligence presented
above, it seems necessary to meta-analytically summarize these find-
ings for the first time ever.

In addition, two possible explanations for the contradicting results
regarding the correlation of CPS and intelligence seem to be plausible.
One the one hand, it may be necessary to differentiate between studies
that employed very broad measures of general intelligence capturing
multiple sub-facets and those that focused on more specific sub-facets

such as reasoning (Wittmann & Siif3, 1999). Whereas earlier studies
that found small correlations predominantly considered more general
measures of intelligence (for a summary see Kluwe et al., 1991;
Beckmann, 1994), more recent studies, focusing on reasoning, consis-
tently report higher correlations of CPS and reasoning (e.g.Danner,
2011, Greiff et al., 2013, Greiff et al., 2014, Sonnleitner et al., 2012).
Thus, we will investigate whether the difference in operationalization
of intelligence moderates the relation of CPS and intelligence.

On the other hand, advancements in CPS measurement may have in-
creased the reliability and reduced the semantic embedment of CPS as-
sessment instruments, thus theoretically allowing for higher
correlations with other measures (Leutner, 2002; Rigas et al., 2002).
Therefore the second moderator investigated in this study will be the
operationalization of CPS.

In summary, the present research will meta-analytically summarize
the empirical findings available to answer the question on the relation
between CPS and intelligence. In a second step, we will investigate
whether the conceptualization of intelligence (measures of general in-
telligence or measures of reasoning) or the conceptualization of CPS
(classical measures of CPS, single complex systems, or MCS tests) can
be used to explain the variation among those findings.

5. Method
5.1. Literature search

5.1.1. Compilation of database

We used three strategies to identify studies for the present meta-
analysis: (1) We conducted a broad literature search using the data-
bases PsycINFO, PsycARTICLES, and PSYNDEX. Search terms for intelli-
gence were “Reasoning”, “Intelligence”, “Working Memory”, “Short-
Term Memory”, and “Reaction-Time”. Search terms for CPS were “Com-
plex Problem Solving”, “Dynamic Problem Solving”, “Interactive Prob-
lem Solving”, “Microworlds”, “Systems Thinking”, and “Dynamic
Decision Making”. The search terms were combined in all 30 [5(Intelli-
gence) x 6(Complex Problem Solving)| possible ways. Entering these
combinations in the 3 databases resulted in 90 queries. (2) We conduct-
ed an additional unsystematic search of literature based on publications
of well-known authors within the fields of CPS and intelligence as well
as on publications referenced in those publications. The systematic and
unsystematic search resulted in 123 different studies, which seemed
relevant according to the title and abstract. (3) As research on CPS
was primarily brought forward by German researchers, we contacted
the mailing list of the “Deutsche Gesellschaft fiir Psychologie”, the Ger-
man Association of Psychology, to gather “gray literature” and reduce
publication bias. We asked the members to send us information about
unpublished studies yielding correlations between intelligence and
complex problem solving. This appeal resulted in 7 additional datasets
to be considered.

5.1.2. Inclusion criteria

In this meta-analysis, we considered all studies that fulfilled the fol-
lowing inclusion criteria: (1) Intelligence was measured by a standard-
ized intelligence test; (2) CPS was measured by a standardized complex
scenario; (3) the study reported zero-order correlations of intelligence
and CPS or a coefficient that allowed the calculation of a zero-order cor-
relation; (4) the sample size of the study was reported.

5.1.3. Exclusion of studies

The total amount of 130 studies was checked whether they fulfilled
the inclusion criteria or not. 7 studies (5.55%) did not use a standardized
CPS measurement, and 7 studies (5.55%) were excluded because they
did not assess intelligence by a standardized intelligence test. 9 studies
(7.14%) did not report any correlations of the CPS and intelligence mea-
sures. 61 studies (48.41%) were excluded because they did not report an
empirical study or because they reported results from studies that had
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Table 1
Description and effect size estimates for all independent samples included in the meta-analysis.

ID Author(s) Year N CPS measure Intelligence measure r

1 Abele et al. 2012 167 MCS Reasoning 40
2 Beckman & Guthke 1995 92 Classical General intelligence 15
3 Biihner et al. 2008 144 SCS Reasoning 16
4 Burkolter et al. 2009 41 Classical General intelligence .75
5 Burkolter et al. 2010 39 Classical General intelligence 22
6 Burmeister 2009 44 Classical General intelligence 47
7 Danner 2011 173 SCS Reasoning .86
8 Dorner et al. Sample 1 1983 48 Classical Reasoning —.03
9 Dorner et al. Sample 2 1983 48 Classical Reasoning 12
10 Gediga et al. 1984 29 Classical General intelligence .09
11 Gonzales et al. Sample 1 2005 15 Classical Reasoning 71
12 Gonzales et al. Sample 2 2005 28 Classical Reasoning .63
13 Gonzales et al. Sample 3 2005 74 Classical Reasoning 33
14 Greiff & Fischer 2013 140 MCS Reasoning .50
15 Greiff et al. Sample 1 2015 339 Classical Reasoning 24
16 Greiff et al. Sample 2 2015 339 MCS Reasoning .52
17 Giiss & Dorner 2011 511 Classical General intelligence 19
18 Hasselmann 1993 21 Classical General intelligence .26
19 Hesse Sample 1 1982 30 Classical Reasoning —.17
20 Hesse Sample 2 1982 30 Classical Reasoning .06
21 Hesse Sample 3 1982 30 Classical Reasoning .38
22 Hesse Sample 4 1982 30 Classical Reasoning 46
23 Hormann & Thomas Sample 1 1989 19 Classical General intelligence 46
24 Hormann & Thomas Sample 2 1989 21 Classical General intelligence —.03
25 Hussy Sample 1 1985 15 Classical Reasoning —.30
26 Hussy Sample 2 1985 15 Classical Reasoning 25
27 Hussy Sample 3 1985 15 Classical Reasoning 35
28 Hussy Sample 4 1985 15 Classical Reasoning .50
29 Hussy 1989 154 Classical General intelligence 38
30 Kersting 2001 99 Classical General intelligence .26
31 Klieme et al. 2001 650 Classical Reasoning .58
32 Kluge et al. 2011 38 Classical General intelligence 13
33 Kretzschmar 2010 118 SCS General intelligence .30
34 Kretzschmar et al. Unpublished 197 MCS General intelligence 34
35 Kroner 2001 28 SCS Reasoning 51
36 Kroner et al. 2005 101 SCS Reasoning .67
37 Leutner et al. 2004 535 MCS General intelligence .63
38 Leutner et al. 2005 654 Classical Reasoning .84
39 Leutner Sample 1 2002 200 Classical Reasoning 43
40 Leutner Sample 2 2002 28 Classical Reasoning .05
41 Neubert et al. 2014 576 MCS Reasoning .62
42 Putz-Osterloh 1985 50 Classical General intelligence .36
43 Rigas et al. 2002 62 Classical Reasoning 33
44 Scherer & Tiemann a 2014 805 SCS Reasoning .55
45 Scherer & Tiemann b 2014 1487 SCS Reasoning .58
46 Sonnleitner et al. 2012 61 MCS Reasoning 30
47 Stadler et al. In press 78 SCS General intelligence .20
48 Stadler et al. Sample 1 Unpublished 161 MCS Reasoning .83
49 Stadler et al. Sample 2 Unpublished 254 MCS Reasoning 74
50 SR et al. 1991 127 Classical Reasoning 47
51 SR et al. 1993 214 Classical Reasoning 40
52 Wagener & Wittmann 2002 35 SCS Reasoning .63
53 Wagener Sample 1 2001 63 SCS Reasoning 31
54 Wagener Sample 2 2001 71 SCS General intelligence .20
55 Wagener Sample 3 2001 136 SCS General intelligence 47
56 Wagener Sample 4 2001 51 SCS General intelligence 24
57 Wirth & Funke 2005 688 SCS Reasoning 46
58 Wittmann et al. 1996 92 Classical General intelligence .57
59 Wiistenberg et al. 2012 222 MCS Reasoning .59
60 Wiistenberg et al. 2014 3191 MCS Reasoning .66

Note. CPS = Complex problem solving; r = correlation coefficient; MCS = Multiple complex systems; SCS = Single complex systems.

already been reported in another study. In the end, a total amount of 47
studies containing 60 independent samples were included in the meta-
analysis (Table 1).

5.1.4. Coding of measures

The measures used in the final set of studies were coded according to
the hypothesized moderators' levels by two independent raters. Mea-
sures of CPS were coded as either classical measures of CPS, single com-
plex systems (SCS), or MCS tests. Measures of intelligence were defined
as either measures of general intelligence or measures of reasoning. This
classification was a clear and unambiguous task resulting in a perfect

agreement between the two raters. Table 2 displays the coding for all
measures of CPS and intelligence used in the studies included into the
meta-analysis.

5.2. Meta-analytic procedure

5.2.1. Main meta-analysis

In our analysis we followed the guidelines described by Field and
Gillett (2010) and used the SPSS 20.0.0 (IBM, 2011) and R 3.2.1 (R
Core Team, 2015) syntaxes provided there. We chose to employ a ran-
dom-effects model because it can be assumed that the true effects
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Table 2
Coding for the measures of CPS and intelligence.

CPS measures

Classical SCS MCS
AGRIMAN

Chemie Labor

[Chemistry Lab]

Heidelberg Finite
Management State Automaton
System [Space Shuttle]

Cherry-Tree FSYS

Coldstore K4

DISKO MultiFlux

Dori (Sahel) M3

Firechief

Hamurabi

Hunger in the
Sahel

Learn

Lohhausen

Moro

Powerplant

Tailorshop

Textilfabrik

Water Purification
Plant

WIinFIRE

Genetics Lab

Cabin Air Schmetterlings —/Parabelproblem

[Butterfly/Parabola Problem]

MicroDYN
MicroFIN

Intelligence measures

General intelligence Reasoning

Intelligenz Struktur Analyze (ISA) Culture Fair Test (CFT) 20-R

Leistungspriifsystem (LPS) Cognitive ability test (CogAT)

Berliner Intelligenz Strukturtest ~ Standard Progressive Matrices (SPM)
(BIS)

Intelligenz Struktur Test (IST)

Wonderlic Personnel Test

Advanced Progressive Matrices (APM)

IST — Subtests (Figures, Dices, Matrices,
Analogies)

Leistungspriifsystem (LPS) BIS-K

Kognitiver Fahigkeitstest (KFT) — figural scale

Note. CPS = Complex problem solving; MCS = Multiple complex systems; SCS = Single
complex systems; only measures for which names were provided in the manuscripts
are listed.

vary between the studies (e.g., due to different conceptualizations of
CPS and intelligence). Furthermore, we chose to employ the meta-ana-
lytic strategy of Hedges and Vevea (1998) rather than the strategy of
Hunter and Schmidt (2004) because the 95% confidence intervals of
the latter one tend to be too small whereas both strategies provide com-
parably accurate estimates of the population effect size (see Field,
2005). As some of the studies employed yield rather small sample
sizes, the correlations were converted to Hedges' g prior to conducting
the meta-analysis (Hedges, 1981). We computed the mean weighted
Hedges' g [M(g)] as an estimate of the population effect size, the associ-
ated 95% confidence bounds (95% Cl,; 95% CI;) as an indicator of the sig-
nificance of the population effect, the estimated variance in the
population (72) as an indicator of the variability of the effects in the pop-
ulation, and the Q statistic as an indicator of the homogeneity of effect
sizes. Additionally, we computed 1> (Borenstein, Hedges, Higgins, &
Rothstein, 2009; Higgins, Thompson, Deeks, & Altman, 2003) as an addi-
tional heterogeneity estimate, which describes what proportion of the
observed variance reflects real differences in effect size (signal-to-
noise ratio). I? values can range between 0% and 100%. Values on the
order of 25%, 50% and 75% are considered as low, moderate and high,
respectively.

5.2.2. Outlier and influence analyses

Outliers and influential cases were identified using the package
metafor (Viechtbauer, 2010) in R 3.2.1 (R Core Team, 2015) following
the guidelines of Viechtbauer and Cheung (2010). Outliers were identi-
fied by computing standardized deleted residuals (SDRs) for each study,
which represent the deviation of the correlation of a single study from

the mean correlation of all other studies expressed in standard devia-
tions. Studies with SDRs above 1.96 or below — 1.96 were regarded as
substantial outliers. To analyze the influence of outliers on the mean
correlation of the meta-analysis, we computed Cook's distance (CD)
and COVRATIO values for each study. CD can be interpreted as the
Mahalanobis distance between the predicted average correlation for
the study once with and once without the study included in the
model fitting. Following Cook and Weisberg (1982) we regarded studies
with CD values greater than .45 as having a substantial influence on the
main effect. The COVRATIO of a study describes the change of the vari-
ance-covariance matrix of the parameter estimates when the study is
excluded. Viechtbauer and Cheung (2010) view COVRATIOs smaller
than 1 as an indicator, that the exclusion of the concerned study im-
proves the precision of the model parameters. Furthermore, we com-
puted the meta-analysis with and without the outliers to provide a
direct comparison of the results with and without outliers.

5.2.3. Moderator analyses

For testing moderator effects we applied random-effects regression
analysis as recommended by Field and Gillett (2010). In this analysis a
general linear model is assumed in which the effect sizes are predicted
as a function of the moderator variable. The significance of the modera-
tor effect can be assessed using a y>-statistic (for further information see
Field, 2003; Overton, 1998). Furthermore we computed Q-tests for sub-
group heterogeneity as recommended by Borenstein et al. (2009) and
regarded significant Q-values between groups (Qpe¢) as an indicator of
a moderating effect.

5.2.4. Identification of publication bias

As our analyses rely predominantly on published studies the possi-
bility of publication bias had to be considered. Publication bias refers
to the fact that significant results are more likely to be published than
insignificant ones, what might lead to an overestimation of the effects
found in meta-analyses. In order to identify possible publication bias
in the present study, we analyzed the association between Hedges' g
and standard errors using Kendall's 7. As recommended by Begg and
Mazumdar (1994), a significant Kendall's T value can be interpreted as
indicator of publication bias. The results of these analyses showed a
slight publication bias (see results section). We therefore corrected
the results for publication bias using the strategy of Vevea and Woods
(2005) who suggest modeling the likelihood of a study being published
according to their weights. The mean Hedges' g corrected for moderate
publication bias [M(g)cor;] and population variance (T2.,;) was com-
pared with the mean correlation of the initial meta-analysis in order
to assess the effect of publication bias on the results of this study.

Table 3
Stem and leaf display of effect sizes (r) from 59 samples.
Stem Leaf
.8 3,4,6
7 1,4,5
.6 2,3,3,3,6,7
5 0,0,1,2,5738,38,9
4 0,0,3,6,6,6,7,7,7
3 0,0,1,3,3,4,56,8,8
2 0,0,2,4,4,56,6
1 2,3,5,6,9
.0 56,9
-0 3,3
-1 7
-2
-3 0

Note. If a sample had more than one effect size, the mean effect
size was calculated and is reported in the table.
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6. Results
6.1. Meta-analysis of all studies

Table 3 displays the effect sizes found for all studies in a stem-and-
leaf plot. As can be seen, there was a wide range of correlation coeffi-
cients ranging fromr = —.30 tor = .86.

The results of the meta-analysis of all studies are presented in Table
4. The mean weighted Hedges' g was M(g) = .433 and the population
variance was 72 = .071. As the 95% confidence interval ranged from
.370 to .492 the mean Hedges' g of complex problem solving and intel-
ligence could be regarded as significantly greater than zero. The homo-
geneity of the distribution of Hedges' g values could be assumed since
the Q-statistic was not significant (p = .228). An I*-value of 93.7% indi-
cated that the observed variance almost exclusively reflects real differ-
ences in effect size.

To investigate how robust this finding was, considering different
levels of reliability for our measures of CPS and intelligence, we con-
ducted a sensitivity analysis correcting for unreliability under a range
of reliability assumptions. The results of this analysis are displayed
in Table 5. As can be seen, the mean effect size did not exceed a
Hedge's g of M(g) = .607 even when poor reliabilities (ryx = .60)
were assumed for both measures of CPS and intelligence. This con-
firms the interpretation of CPS and intelligence as highly related
but separable constructs.

Because it is possible to find moderating effects although the distri-
bution of effect sizes is homogeneous (Hall & Rosenthal, 1991), we de-
cided to additionally conduct meta-analyses on moderator levels.

6.2. Outlier and influence analyses

Fig. 1 presents the results of the outlier and influence analyses. It can
be recognized, that except for three studies (5, 28, 57) the SDRs did not
exceed the cut-off value for substantial outliers. Thus, the Hedges' g
values of the studies employed in the meta-analysis can be regarded
as rather homogeneous. The CD values were below the cut-off for all
studies. The COVRATIO values were substantially below the cut-off
only for the studies, which were identified as outliers. The results of
the meta-analysis without outliers can be found in Table 4. It can be rec-
ognized that the mean weighted Hedges' g values [M(g) = .433 vs.
M(g) = .399] as well as population variances (72 = .071 vs. 72 =
.046) did not differ substantially from another. Furthermore there was
substantial overlap between the 95% confidence intervals of the two
analyses [.370 < M(g) <.492 vs. .343 < M(g) < .453]. Therefore we con-
cluded, that the results of the main meta-analysis are rather robust
against outliers.

6.3. Moderator analyses

The results of the moderator analyses are presented in Table 4. For
studies operationalizing intelligence by reasoning tests, the mean
weighted Hedges' g was M(g) = .472 with a population variance of
72 = 064 and a 95% confidence interval ranging from .400 to .538. For
studies operationalizing intelligence by measures of general intelli-
gence, the mean weighted Hedges' g was M(g) = .360 with a popula-
tion variance of 72 = .052 and a 95% confidence interval ranging from
257 to .454. The results of the random effects regression analysis
[¥%(1) = 3.206; p = .073] indicated that the moderating effect of the
operationalization of intelligence cannot be regarded as significant.
This was supported by the result of a Q-test for subgroup heterogeneity
which proved as insignificant [Qper(1) = 3.406; p = .182].

For studies operationalizing CPS by classical measures of CPS, the
mean weighted Hedges' g was M(g) = .339 with a population variance
of 72 = .142 and a 95% confidence interval ranging from .213 to .454.
Studies in which CPS was operationalized by single systems based on
LSE (SCS), showed a mean weighted Hedges' g of M(g) = .471 with a
population variance of 7> = .051 and a 95% confidence interval ranging
from .363 to .566. For studies operationalizing CPS by MCS tests, the
mean weighted Hedges' g was M(g) = .585 with a population variance
of 72 = .029 and a 95% confidence interval ranging from .510 to .652.
The results of the random effects regression analysis [x*(2) = 9.620;
p = .008] indicated that the moderating effect of the operationalization
of CPS can be regarded as significant. This result was supported by the
result of a Q-test for subgroup heterogeneity, which proved as signifi-
cant [Qper(2) = 12.984; p = .002].

Moreover, the corrected variance (72) within the studies using clas-
sical measures of CPS was larger than the corrected variance within all
studies. To further investigate this unexpected result, we conducted
an additional interaction analysis separating the studies using classical
measures of CPS and measures of general intelligence from those
using classical measures of CPS and measures of reasoning. The result
of this interaction analysis can be found in Table 4. The average effect
sizes did not differ significantly between both subgroups [Quet(1) =
.075; p = .963] but the corrected variance for studies using classical
measures of CPS and measures of general intelligence fell below the
corrected variance within all studies (72 = .031) whereas the corrected
variance for studies using classical measures of CPS and measures of rea-
soning remained higher (72 = .166).

Finally, we repeated our moderation analysis assuming plausible
values as average reliability coefficients for each type of CPS measure
to investigate whether the moderating effect of different
operationalizations of CPS on the correlation of CPS and intelligence is
due to different levels of reliability. We assumed poor reliability
(rxx = .60) for classical measures of CPS, very good reliability for SCS

Table 4
Meta-analytic results and moderator analyses.
Analysis k M(g) i 95% CL; 95% CL, Q df p P
All Studies 60 433 .071 370 492 66.763 59 228 93.700%
Without outliers 57 399 .046 343 453 58.399 56 387 90.306%
Measure of intelligence
Reasoning 39 A72 .064 400 538 56.247 38 .029 94.299%
General intelligence 21 .360 .052 257 454 15.587 20 742 84.214%
Measure of CPS
MCS 11 585 .029 510 .652 18.870 10 .042 91.782%
SCS 14 471 .051 363 566 20.439 13 .085 92.294%
Classical 35 339 142 213 454 18.673 34 985 93.320%
Interaction
Classical x Reasoning 21 351 .166 174 505 12.012 20 961 94.804%
Classical x General Intelligence 14 323 .031 212 426 14.513 13 339 69.117%

Note. k = number of studies; M(g) = mean Hedges' g; T2 = estimated variance in population; CL; = lower bound of 95% confidence interval; CL, = upper bound of 95% confidence in-
terval; Q = Q statistic; df = degrees of freedom of Q statistic; p = significance of Q; CPS = Complex problem solving; MCS = Multiple complex systems; SCS = Single complex systems.
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Table 5
Sensitivity analysis for reliability.
Ting;ime = .60 Tingine = .70 Tingine = -80 Ting;me = 90
M(g) = .607 M(g) = .551 M(g) = .595 M(g) = .550
Icps:cps = .60 Q =42.151 Q = 56.963 Q = 46.459 Q=52.979
p=.952 p =.551 p = .882 p = .696
M(g) = .585 M(g) = .576 M(g) = .528
Icps:cps = .70 Q = 47.697 Q= 71.900 Q =69.207
p=.854 p=.121 p=.171
M(g) = .523 M(g) = .521
Icps:cps = 80 Q=69.182 Q =48.707
p=.171 p=.828
M(g) = 491
Icps;cps = .90 Q=65.247
p = .267

Note. rineine = Reliability Intelligence; rcps.cps = Reliability Complex Problem Solving;
M(g) = Mean weighted Hedges' g; Q = Q-value for heterogeneity; p = Significance.

measures (I, = .85) as well as MCS measures (rxx = .80). These values
are plausible based on the existing body of literature (Greiff et al., 2014)
and are being discussed more thoroughly below. The results of this anal-
ysis are displayed in Table 6. The general pattern of effect sizes remains
the same with an average of M(g) = .447 for classical measures,
M(g) = .577 for SCS, and M(g) = .720 for MCS tests. This difference
remained significant Qpe¢(2) = 13.208 (p <.001).

6.4. Analysis of publication bias

Regarding publication bias, we found a significant Kendall's
T = —.274 (p = .003) between the Hedges' g values and the respec-
tive standard errors. This indicated a slight publication bias in both ways.
That is, the variance of the Hedges' g values was higher than what would
be expected by chance. We therefore chose to additionally correct the
mean weighted Hedges' g for moderate two-tailed selection following
the guidelines of Vevea and Woods (2005). The mean corrected correla-
tion showed a value of M(r)cor = 412 with a corrected population vari-
ance of T%.orr = .087. As these values did not differ substantially from
values of the main meta-analysis [M(r) = .428; T2 = .084] we regarded
our results as relatively unaffected from publication bias.

7. Discussion

This meta-analysis investigated the relation between intelligence
and complex problem solving (CPS). The findings show a substantial
mean effect size of M(g) = .433 for the correlation of the two constructs
that is highly significant with only little evidence for publication bias.
This finding contradicts earlier reviews suggesting a non-significant re-
lation between CPS and intelligence (Kluwe, 1991) and suggests that in-
telligent people also tend to be more successful in dealing with complex
problem-solving tasks. On the other hand, the results do not support the
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Table 6
Moderator analysis for measure of CPS corrected for reliability.
Analysis kMg T 95%CL 95%CL, Q df p P
Measure of CPS
MCS 11 .720 .106 .612 .802 22598 10 .012 96.633%
SCS 14 577 175 .406 .708 20.395 13 .086 97.628%
Classical 35 .447 112 342 .540 36963 34 .334 91.661%

Note. k = number of studies; M(g) = mean Hedges' g; 7> = estimated variance in popu-
lation; CL; = lower bound of 95% confidence interval; CL, = upper bound of 95% confi-
dence interval; Q = Q statistic; df = degrees of freedom of Q statistic; p = significance
of Q; Ngs = Fail Safe N; CPS = Complex problem solving; MCS = Multiple complex sys-
tems; SCS = Single complex systems.

proposition of near to unity correlation of the two constructs either, as
was discussed by several authors on the basis of single empirical studies
(Kroner et al,, 2005; Sonnleitner et al., 2012; Wittmann & Siif3, 1999). In
line with the different-demands hypothesis (Rigas & Brehmer, 1999), CPS
performance could, thus, demand the enactment of more complex men-
tal processes than do intelligence tests such as the active interaction
with the problem to acquire knowledge on it.

The comprehensive answer to the question on the relation between
CPS and intelligence however, appears to depend on the
operationalization of CPS. Whereas the moderator analyses did not indi-
cate significant differences between measures of general intelligence
and measures of reasoning in respect to their relation to measures of
CPS, there are substantial differences in mean effect sizes found for stud-
ies using different operationalizations of CPS. The smallest average ef-
fect size for the relation of CPS and intelligence was found for classical
measures of CPS, M(g) = .339, followed by single systems based on
LSE, M(g) = .471. CPS scores gained from MCS tests are related most
strongly to intelligence, M(g) = .585.

Unexpectedly, the corrected variance (72) within the studies using
classical measures of CPS was larger than the corrected variance within
all studies. This unexplained variance may be due to the effects of mea-
sures of intelligence within the classical distribution. There was no sig-
nificant interaction effect between operationalization of intelligence
and classical measures of CPS but only the corrected variance for studies
using classical measures of CPS and measures of reasoning showed was
found to be higher than the corrected variance of all studies. This sug-
gests that there my be additional factors, such as the modality of reason-
ing tasks (e.g., figural vs. verbal) separating studies using classical
measures of CPS and measures of reasoning from each other that were
not included in this meta-analysis.

The significant moderator effect for operationalizations of CPS can be
interpreted in three different ways. First, it appears to support the low-
reliability hypothesis (Rigas et al., 2002) suggesting that unsatisfactory
psychometric properties found for classical measures of CPS limit the
correlation of CPS and intelligence. Reliability estimates for classical
measures of CPS are rare (for an overview see Siif3, 1996) and associated
with several problems. Correlations between repeated measurements
using the same classical measure of CPS are problematic as CPS is a pro-
cess of active learning by interaction with the problem (Funke, 2001),
resulting necessarily in knowledge about the task thus confounding
any following assessment using the same measure (Wagener, 2001).
On the other hand, the lack of a theoretical framework prohibits the
creation of adequately parallel versions of a classical measure of CPS.
The few estimates provided in the literature generally point towards a
poor reliability (ryx <.70) of classical measures of CPS (e.g. Rigas et al.,
2002; Schoppek, 1991). For SCS on the other hand, reliability estimates
tend to overestimate the true reliability of the measures (Wagener,
2001) as all indicators of performance in SCS are based on the same
underlying item structure (see Greiff et al., 2014, for an overview).
Correspondingly, the reliability estimates reported for SCS are generally
very high (ry > .90; e.g., Kroner et al., 2005; Wagener, 2001). Only MCS
tests include multiple, independent items and thus allow for a valid
estimation of reliability. These estimates are usually good to very good

(rxx > .80; Greiff et al., 2013). Repeating our moderation analysis
correcting the effect sizes of each type of CPS measure for plausible
average reliability coefficients challenged the low-reliability hypothesis
though. The general pattern of effect sizes remains the same, suggesting
that different levels of reliability of the CPS measure used are not
causing the divergent findings on the relation between CPS and
intelligence.

However, unlike classical measures of CPS or SCS, current MCS tests
do not feature some highly complex elements of problem solving such
as the recognition and handling of time-delayed effects. Thus, the cogni-
tive demands posed by MCS tests are likely to be relatively closer to
those posed by intelligence measures. Following the different-demands
hypothesis (Rigas & Brehmer, 1999), this might be causing the high cor-
relations of intelligence and CPS scores obtained from MCS tests. In
order to test this hypothesis, it would be necessary to develop MCS
tests that feature highly complex elements while simultaneously main-
taining high levels of reliability.

Finally, our results seem to contradict the Elshout-Raaheim hypothe-
sis (Leutner, 2002) that assumes an inverted U-shaped relation between
the availability of domain specific knowledge in a CPS task and its corre-
lation with measures of intelligence. Both single complex systems based
on LSE and MCS tests are unrelated to any real-world problems and
should be equally unaffected by domain specific knowledge. Thus, the
Elshout-Raaheim hypothesis would predict equally strong effect sizes
for the relation between measures based on these two approaches
and measures of intelligence. Our finding that MCS tests relate more
strongly to intelligence than SCS seems to challenge this hypothesis. In
order to test the Elshout-Raaheim hypothesis, CPS measures with com-
parable psychometric properties but different levels of domain-specific
elements would be needed.

8. Implications

Considering the substantial overlap of CPS and intelligence, future
research on CPS should focus on theoretically and empirically relating
the research conducted on CPS to the vast existing body of research on
human abilities.

Next to a more comprehensive theoretical understanding of human
abilities, a conflation of research on CPS and more traditional constructs
such as intelligence could proof beneficial regarding the advancement
of assessment instruments. As the assessment of CPS has predominantly
relied on computer-based approaches, CPS researchers went to great ef-
fort to maximize the gains from computer-based assessments. Analyz-
ing the behavioral patterns that individuals engage in when dealing
with CPS tasks provides insights that go beyond mere final outcome
scores and provides access to aspects of the cognitive process underly-
ing specific problem solving behavior. Such in-depth log-file analyses
have become technically feasible for CPS research (Scherer, Greiff, &
Hautamdki, 2015) and could be extended to intelligence testing
(Krdner, 2001) in which the possibilities of computer-based assessment
such as log-file data are not fully used yet (Becker, Preckel, Karbach,
Raffel, & Spinath, 2015). Getting access to the behaviors displayed and
strategies employed by participants in assessments of intelligence
could lead to a more thorough understanding of not only the assess-
ment instruments themselves but more importantly of the whole con-
struct of intelligence.

9. Conclusion

In sum, results of the present meta-analysis demonstrate a signifi-
cant and substantial correlation of CPS and intelligence. Successfully
dealing with complex problems requires actively gathering information
about a problem in order to later integrate that information to be used
to reach a certain goal. The results suggest that a large part of that pro-
cess involves the cognitive abilities comprising general intelligence.
Those with higher intelligence may be better at integrating information
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or employ more appropriate strategies in the acquisition of information
(Wiistenberg et al., 2014). Thus, we conclude that research on both CPS
and intelligence should not only be continued but be symbiotically com-
bined in order to reach a more comprehensive view on human cognitive
abilities.
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Abstract

The successful completion of a university degree program is accompanied by multiple
complex opportunities and challenges, which require students to react accordingly
with the skills necessary to meet them. Therefore, the aim of this study was to
investigate the role of complex-problem solving (CPS) skills in undergraduate
students’ university success in two independent samples. In Study 1, 165 university
students completed a measure of reasoning as well as a measure of CPS. In addition,
students’ university GPAs and their subjective evaluation of academic success were
collected. CPS made a significant contribution to the explanation of GPAs and the
subjective success evaluations even when controlling for reasoning. To further
investigate this effect, Study 2 relied on an independent and more heterogeneous
sample of 216 university students. The findings of Study 1 were replicated in Study 2.
Thus, the results of both studies suggest a link between individual differences in CPS
and the abilities necessary to be academically successful in university education.
Keywords: university success; GPA; complex problem solving; intelligence; cognitive

ability; structural equation modeling
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“The logic of success: The relation between complex problem solving skills and

university achievement”

Attending a university is becoming more and more commonplace in modern
societies (Pittman & Richmond, 2008), with an increasing number of students
enrolling in university programs and societies investing large amounts of money in
their educational systems (OECD, 2014). For the individual students, the transition
from high school to university life constitutes a critical life event (e.g., Terenzini et
al., 1994) with its unique opportunities as well as challenges (Arnett, 2000):
opportunities, because the scope of independent exploration of life’s possibilities is
greater than it will be at any other period of the life course; challenges, because
independence and autonomy can also imply disorientation and uncertainty (Arnett,

2000).

Researchers are thus increasingly interested in identifying and examining
factors which are related to how students navigate successfully through their
university years (Tavernier & Willoughby, 2014). This has resulted in a vast array of
cognitive (e.g., intelligence or previous academic achievement; Formazin, Schroeders,
Koeller, Wilhelm, & Westmeyer, 2011), noncognitive (e.g., personality traits,
motivational factors, self-regulatory learning strategies, students’ approaches to
learning, or psychosocial contextual influences; for an overview see Richardson,
Abraham, & Bond, 2012), and demographic (e.g., age or sociodemographic
background; Robbins et al., 2004) factors known to influence students’ university
success. Within this study we will focus primarily on individual differences in
cognitive variables related to students’ university performance. Most prominently,
previous academic achievement and intelligence have been established as valid

predictors of students’ grade point average (GPA; Formazin et al., 2011). As an
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addition to these established cognitive predictors, academic- related skills such as
problem solving were found to be important antecedents of students’ success at
university (Robbins et al., 2004). In that, individual differences in complex problem-
solving skills (CPS), that is, the skills necessary to deal with new and dynamically
changing situations (Frensch & Funke, 1995), might provide valuable information in
explaining why students succeed differently well at university. Recent research has
provided first evidence that CPS is significantly related to academic performance in
school (Wiistenberg, Greiff, & Funke, 2012; Greiff et al., 2013) and at university
(Stadler, Becker, Greiff, & Spinath, 2015a) with incremental validity over and above
intelligence. The present two-study report therefore aims at expanding upon this
initial evidence by investigating the relation between university students’ skills at
dealing with complex problems and their success at university in two studies with

independent samples.

Measuring University Success

Understanding university success depends on being able to conceptually
define as well as assess it in a reliable and valid way (Richardson et al., 2012).
Students’ academic performance is usually expressed in terms of GPA representing
the mean of the grades received in courses contributing to the final degree
(Richardson et al., 2012). GPA is the most widely used and studied measure in
tertiary education (Bacon & Bean, 2006; Richardson et al., 2012), is economically
available, shows good internal reliability and temporal stability (e.g., Bacon & Bean,
20006), and correlates strongly with variables of interest to educational researchers
such as intelligence, motivational strategies, or certain personality traits (Richardson
et al., 2012). GPA represents a key criterion for postgraduate selection and

employment and has been found to be a valid predictor of socioeconomic success
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(Strenze, 2007). Moreover, GPA shows very strong correlations to other indicators of
university success such as retention (Robbins et al., 2004). As such, it is an index that
is directly meaningful to students, universities, and employers alike and relevant to

future training and employment opportunities (Plant, Ericsson, Hill, & Asberg, 2005).

Nonetheless, the use of GPA as an indicator of university success has often
been criticized. For example, Johnson (2003) called grade inflation (very good or
excellent grades becoming increasingly commonplace) a crisis in university education
and argued that every university uses multiple and sometimes very different grading
approaches to evaluate students (see also Babcock, 2010). These grading disparities
between universities, study programs, and even between different university
examiners, as well as the aspect of grade inflation, impair a fair and reliable
assessment of students’ competencies. This has serious consequences on their future
perspectives with respect to completing their university education with a higher GPA
and, thus, better career prospects. Thus GPA has, despite its considerable advantages,

some noteworthy limitations as a widespread indicator of students’ university success.

Beyond a narrow focus on GPA, university success can furthermore be
defined as a multidimensional construct with substantial subjective components
(Gattiker & Larwood, 1988) such as individual perceptions of accomplishment or
future prospects (Aryee, Chay, & Tan, 1994). GPA does not encompass this intrinsic
and subjective aspect of success. Furthermore, the notion “university success”
respectively “studying successfully” can have many different meanings, such as
graduating with a high GPA, graduating as fast as possible, finishing studies and not
dropping out earlier on, or the mere subjective satisfaction with the degree (Kunina,
Wilhelm, Formazin, Jonkmann, & Schroeders, 2007). In other words, students may,

for example, consider a passing grade as either success or failure depending on their
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subjective expectations. Correspondingly, researchers have argued that objective and
subjective aspects of success should be considered complementary (Duckworth, Weir,

Tsukayama, & Kwok, 2012).

Therefore, it is important to assess students’ university success based on this
multidimensional conceptualization in order to avoid a too narrow coverage of the
target construct. In this paper, students’ university success will be assessed through
their grades as well as through the students’ own and subjective evaluation of their

university success.
Predicting University Success

Regardless of the specific conception of success, managing a university
program requires dealing with a complex system of academic tasks, learning and
study behaviors, social obligations, and various other demands that are dynamically
changing and whose interrelations are not always obvious (Parker, Summerfeldt,
Hogan, & Majeski, 2004). Correspondingly, numerous cognitive (e.g., intelligence or
previous academic achievement; Formazin et al., 2011), noncognitive (e.g.,
personality traits, motivational factors, self-regulatory learning strategies, students’
approaches to learning, or psychosocial contextual influences; for an overview see
Richardson et al., 2012), and demographic (e.g., age or sociodemographic
background; Robbins et al., 2004) factors have been established to influence students’

university success.

In this paper, the main focus will be placed on the cognitive predictors of
university success. Apart from intelligence, which has been known to be one of the
strongest predictors of academic achievement since the early 20" century (e.g., Binet

& Simon, 1916; Gottfredson, 2002; Jensen, 1998; Kuncel, Hezlett, & Ones, 2004;
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Lubinski, 2004; Roth et al., 2015), other cognitive abilities have been in the focus of
researchers recently. Especially in tertiary education, student selection procedures
reduce variation in intelligence scores (Furnham, Chamorro-Premuzic, & McDougall,
2003). This is particularly important for universities as highly selective academic
institutions (Jensen, 1998). Consequently, factors others than intelligence may add
important incremental information to the accurate prediction of performance at the

university level.

In addition, substantial differences in the development and prediction of GPA
and subjective indicators of university success have been reported (e.g.,
Harackiewicz, Barron, Tauer, & Elliot, 2002). Whereas cognitive ability consistently
predicts university students’ GPA, subjective indicators of university success seem to
be more closely linked to psychosocial and study skill factors (Robbins, Allen,
Casillas, Peterson, & Le, 2006). For instance, Robbins and colleagues (2004)
investigated the role of study skill factors as predictors of university outcomes in
addition to other well-established cognitive predictors. Their meta-analysis showed
academia-related skills, defined as “cognitive, behavioral, and affective tools and
abilities necessary to successfully complete task, achieve goals, and manage academic
demands” (Robbins et al., 2004, p. 267) to be meaningful predictors of both university
GPA and university retention rates with observed mean correlations of » =.13 and r =

.30, respectively.

In addition to these cognitive variables, complex problem solving (CPS) represents a
more recently introduced academia-related concept. Recent research has provided
initial evidence for the relevance of CPS for academic success at the university (see
Stadler, Becker, Godker, Leutner, & Greiff , 2015b). In this line of research, CPS can

be defined as:
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(...) the successful interaction with task environments that are dynamic (i.e.,
change as a function of the user’s interventions and/or as a function of time) and in
which some, if not all, of the environment’s regularities can only be revealed by
successful exploration and integration of the information gained in that process.

(Buchner, cited in Frensch & Funke, 1995, p. 14)

Being able to deal with dynamically changing and partially opaque systems is
necessary to be successful at any academic institution. Support for this notion comes
from several articles reporting CPS to predict high school grades even beyond
measures of general intelligence (Greiff et al., 2013; Wiistenberg et al., 2012; see
Kretzschmar, Neubert, Wiistenberg, & Greiff, 2016 for divergent findings) or
working memory capacity (Schweizer, Wiistenberg, & Greiff, 2013). Compared to
high school, the demands posed by university programs should be even more complex
and cognitively challenging. In her model of university success, Ferrett (2000)
describes cognitive skills such as time management, preparing for and taking
examinations, or using information resources as the focal point of the freshman year
experience. In that, university students face a variety of new challenges such as
learning and applying study habits in a more complex academic environment and
generally discovering how to function as independent and academically successful
adults, which requires planning and problem-solving competencies (e.g., acquiring
knowledge about new problems or prioritizing subgoals). In other words, students
need to solve complex problems. Surprisingly though, only one study has investigated
the relation between CPS and university success to date (Stadler et al., 2015a). This
study found a substantial relation between CPS and both GPA and subjective
university success of business students (B = .38) that remained significant even after

general intelligence was controlled for.
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Assessment of CPS

The various elements of academic programs at universities (e.g., courses,
teachers, or social obligations) are interrelated in a dynamic system that continues to
evolve over time. The skills necessary to deal with such a dynamic system might not
be fully captured by static tasks (such as a math problem or an intelligence test item)
that do not progress but remain unchanged regardless of the time or the participants’
actions (Fischer et al., 2015). To incorporate the dynamic aspect of real-world
problem solving, the assessment of CPS has to allow for the problem itself to be
dynamic and require the participant to actively interact with the problem in order to

understand and manipulate it.

When working on CPS tasks, problem solvers need to manipulate certain input
variables of a simulated system (e.g., the duration and intensity of handball training)
and observe the resulting changes in a set of outcome variables (e.g., the strength of
the players’ throws or their endurance). By doing so, problem solvers acquire
knowledge (knowledge acquisition phase) about the problem’s underlying structure
(e.g., high training intensity increases strength but not endurance), which they then
apply to reach specific goals (knowledge application phase; Novick & Bassok, 2005).
Cognitively, CPS thus involves multiple processes such as causal learning via
interaction with the problem (Biihner & Cheng, 2005), hypothesis testing in order to
assess the validity of one’s own cognitive model (Klahr & Dunbar, 1988), and self-
monitoring to avoid inadequate or automatic responses to dynamic changes in the

problem (Osman, 2010).
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CPS, Intelligence, and Academic Success

When investigating the relation between CPS and university success, it is
important to consider the well-established association between measures of CPS and
measures of intelligence (e.g., Funke & Frensch, 2007; Wirth & Klieme, 2003;
Wiistenberg, et al., 2012). On the one hand, intelligence measures are among the most
consistently validated predictors of university success (Richardson et al., 2012), with
average correlations of » = .32 between intelligence and GPA (corrected for
attenuation; Hell, Trapmann, & Schuler, 2007). Intelligence thus possesses a high
validity in the prediction of university success and shows incremental validity over
high school GPA in predicting university GPA (Formazin et al., 2011). On the other
hand, the conceptual and empirical relations of intelligence and CPS need to be
considered. CPS and intelligence can theoretically be distinguished by the unique
demands complex problems pose. There is, however, considerable theoretical overlap
between CPS and intelligence as some characteristic features of CPS such as the
integration of information are part of almost every definition of intelligence
(Sternberg & Berg, 1986). The majority of studies on the relation between CPS and
intelligence correspondingly reports medium to strong correlations between the two
constructs (Beckmann & Guthke, 1995; Greiff, Fischer, Stadler, & Wiistenberg, 2015;
Greiff et al., 2013). These findings were summarized in a meta-analysis reporting an

average correlation of 7 = .43 between CPS and intelligence (Stadler et al., 2015b).

Following this line of thought, it seems necessary to control for the influence
of intelligence when investigating the relation between CPS and university success.
Otherwise, any associations that are found between CPS and university success might
be the result of shared variance of intelligence within the measure of CPS

(Wiistenberg et al., 2012).
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This Study

Only Stadler and colleagues (2015a) have investigated the relation between

CPS and university success to date. While their study provided first evidence
supporting the role of CPS in university success, it was severely limited in its
generalizability. On the one hand, the sample size used was rather small (N = 78) and
did not allow for advanced statistical analyses such as structural equation modeling;
on the other hand, the sample consisted exclusively of business students and was thus
rather homogeneous and limited in terms of generalizability. Finally, the type of CPS
measure employed (FSYS; Wagener 2001) was shown to have unsatisfactory

reliability (Greiff et al., 2015).

This paper will therefore represent a necessary extension of Stadler and
colleague’s (2015a) study in various aspects investigating the role of CPS in
university success in larger samples, using different indicators of university success
for students from various fields of study, and employing more adequate measures of
CPS. The aim of Study 1 is to expand upon the results reported by Stadler and
colleagues (2015a) using a larger sample thus allowing for latent analyses on the
construct level. Study 2 will go even further by investigating the relation between
CPS and university success in a very heterogeneous sample. Moreover, considering
exam scores as additional criteria and incorporating a longitudinal measurement

might reveal further insights regarding the generalizability of these relations.
Study 1
Hypothesis 1: CPS predicts GPA and subjective university success.

Based on the research findings presented above, Study 1 investigated the

relation between CPS and students’ university success. In line with the findings
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reported by Stadler and colleagues (2015a), we expected CPS to significantly predict

both GPA and subjective indicators of university success.

Hypothesis 2: CPS predicts GPA and subjective university success even when

intelligence is controlled for.

Despite the strong conceptual overlap between CPS and intelligence (e.g.,
Stadler et al., 2015b; Wiistenberg et al., 2012), the relation between CPS and
university success should not be solely due to a shared measurement of intelligence.
Thus, we expected to find an incremental validity of CPS in predicting university
students’ success even when intelligence is controlled for. However, there may be
considerable differences in the strength of prediction of the two different constructs.
As described above, intelligence is strongly linked to GPA but less strongly to
subjective aspects of university success (e.g., Robbins et al., 2006). Correspondingly,
CPS should be more important in the prediction of subjective success than GPA after

intelligence is controlled for.
Method

Participants. The overall sample consisted of 165 students recruited while
attending lectures in the biology (N = 46), psychology (N = 85), and sports (N = 34)
departments of a middle-sized German university. Sixty-one percent of the students
were female, and the mean age was M = 22.53 years (SD = 3.83). The majority of
students were in their 4™ semester of studying at the university (equivalent to the
second half of the sophomore year). All students attending the lectures participated in
the assessment. Students were told that participation in the study was voluntary and, if
they provided an e-mail address, they could receive an individual evaluation of their

test results. Participants did not receive any further compensation for their
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participation.

Procedure. All tests and questionnaires in Study 1 were conducted solely
computer-based. To prevent the uncontrolled influence of different materials on
students’ performance, the computers were identical in all testing sessions. The entire
assessment lasted 90 minutes that is the length of time that students would otherwise
have spent in their respective lectures. Before beginning the assessment, students
were informed that all personal data would be treated confidentially and would only
be used for research purposes. After this, they signed the informed consent sheet

approved by the university’s data protection agency.
Measures.

Grade point average (GPA). The grade point average (GPA) that had been
achieved by participants at the time of the study was employed as a relatively
objective measure of university success. GPAs were retrieved from the official
university sources (students’ had given their approval on the signed consent form).
Due to the German grading systems’ scoring of 1 representing the best performance
grades, for the present analysis, GPAs were reverse-coded so that higher values
indicate better performance (with values ranging from 1 to 4), similar to the grading

scales used at North American universities.

Subjective university success. Consisting of five items, the scale to measure
subjective university success (Stadler et al., 2015a) asked students to rate their
agreement with statements such as “I am successful in my studies,” “My grades are
adequate for my effort,” or “My classmates study more successfully than me.”
Students rated their subjective university success weighed against the amount of effort

put in and compared to peers’ achievements on a Likert scale ranging from 1 to 5. The
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value 1 indicated little and the value 5 indicated great satisfaction with one’s own

university success. The scale showed good internal consistency (o = .80).

Complex problem solving. Individual differences in CPS abilities were
assessed using 10 items based on the MicroDYN approach (Greiff, Wiistenberg, &
Funke, 2012; Greiff, et al., 2015). This set of items has been shown to provide highly
reliable and valid CPS scores (e.g., Greiff et al., 2012). Figure 1 illustrates the type of
MicroDYN tasks employed in our study. In the problem depicted here, the test taker
is asked to explore the relation between three unspecified training strategies for
handball players (labeled A, B, and C) and three outcomes (Motivation, Power of
Throw, and Exhaustion). In the course of problem solving, the test taker may
systematically vary the use of the three training strategies to determine their effects on
the three possible outcomes. It is important to note that, unlike other measures of CPS
emulating real-world problems, the underlying relations depicted here are completely
arbitrary and do not resemble any real-world setting. Thus, previous knowledge about
handball or coaching in general did not provide any advantage for solving the
problem. At the end of the knowledge acquisition phase, once knowledge about the
system was acquired, participants were asked to plot the assumed relation at the
bottom of the task. To reach certain predefined goals in the knowledge application
phase (e.g., reach a Motivation value of 20 by adequately adapting the three training

methods), the acquired knowledge needed to be applied in a second step.
--- Insert Figure 1 ---

Unlike other measures of CPS, the use of MicroDYN tasks allows for a
measurement of individual differences in CPS that is not only theoretically embedded,
but also psychometrically confirmed (e.g., Greiff et al., 2012; Greiff et al., 2013). The

scoring of students’ CPS performance was conducted fully automatized based on
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predefined analyses of the results embedded in the testing software. For knowledge
acquisition, credit (1 point) was given if the causal model was provided correctly;
otherwise, no credit (0 points) was assigned. For knowledge application, credit (1
point) was given if all goals were reached in the application phase; otherwise, no
credit was assigned (0 points). The final CPS score was modeled as a second-order

factor based on scores of both knowledge acquisition and knowledge application.

Intelligence. In order to determine participants’ general intelligence, the well-
established Intelligenz-Struktur-Test-Screening (IST-Screening; Liepmann,
Beauducel, Brocke, & Nettelnstroth, 2012) was administered. The IST Screening, as a
well-established, short (approximately 20 minutes) and economic intelligence
measure, consists of the three task groups of verbal analogies, number series, and
figural matrices (each consisting of 20 items). The test’s publishers report good
internal consistencies for all three scales (a0 = .72 - .90; Liepman et al., 2012). These

values were confirmed in our empirical data.

Statistical analysis. To test our hypotheses, we used structural equation
modeling (SEM) with weighted least square estimation adjusting means and variances
(WLSMYV) in Mplus 7.3 (Muthén & Muthén, 1998-2015). Model fit assessment was
based on fit indices recommended by Beauducel and Wittmann (2005) and the criteria
proposed by Hu and Bentler (1999). For both the Tucker—Lewis index (TLI) and the
comparative fit index (CFI), values greater than .90 and .95 were considered to reflect
acceptable and good fit to the data, respectively. For the root mean square error of
approximation (RMSEA), values of less than .05 and .08 reflect a close fit and a

minimally acceptable fit to the data, respectively.

To account for the hierarchical structure of the data due to different university

study programs, two dummy variables were created representing the three study
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programs with psychology students as the reference group. These dummy variables
were added as control variables to all structural models to account for the within-
cluster variance in a fixed effects model (Huang, 2016). With a fixed effects model,
all variability associated with the cluster level is completely accounted for thereby

reducing the problem of omitted variable bias.
Results

Descriptive statistics and measurement models. Table 1 shows the
descriptive statistics and observed intercorrelations for all variables included in Study
1. Students’ average intelligence scores (M =47.15; SD = 2.95) were slightly but not
significantly [#(164) = 0.30; p = .381; d = 0.03] higher than to be expected based on
age and education (norm score = 46.59). However, an ANOVA comparing the
different study programs displayed significant differences in average intelligence
scores [F(2;157) = 5.98; p =.003; 77p2 =.084], with psychology students (M = 48.21;
SD = 5.28) averaging significantly higher scores than students studying both biology
(M =44.57;, SD = 6.56) and sports (M = 43.97; SD = 9.03). Psychology students also
scored significantly higher than the corresponding norm sample [t(79) = 2.61;

p =.006; d = 0.31]. The correlations between CPS and both GPA and subjective

university success were significant and pointed in the expected direction.
- Insert Table 1 -

Measurement models were established for all latent variables. For subjective
university success, all items were defined to load onto one common factor (A = .45-
.92). To limit the parameters to be estimated in the structural models, we aggregated
the intelligence items to three parcels for numerical, verbal, and figural content

(Little, Cunningham, Shahar, & Widaman, 2002) and had the parcels all load onto one
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factor (A = .51-.72). In line with previous research (e.g., Greiff & Neubert, 2014),
CPS was modeled as a higher-order factor consisting of the two latent factors of
knowledge acquisition and knowledge application. Both for knowledge acquisition
(A =.50-.99) and knowledge application (A =.30-.80), all 10 items were defined to
load onto one common factor each. As can be seen in Table 2, all measurement

models fit very well to the data thus allowing for estimations of the structural models.
- Insert Table 2 -

Structural models. In order to test Hypothesis 1, CPS was specified as a
predictor of both subjective university success and GPA. This model represented the
data very well as illustrated in the lower part of Table 2. In accordance with
Hypothesis 1, CPS significantly predicted subjective university success (B = .32;
p=.004; R”=.10) and GPA (P =.34; p < .001; R’ = .12). The correlation between the

two criteria subjective university success and GPA was r= .57 (p <.001).

To estimate the incremental validity of CPS over and above intelligence and to
avoid issues of multicollinearity resulting from the high latent correlation between
CPS and intelligence (» = .81; p <.001), CPS was residualized for intelligence in
order to test Hypothesis 2. In this model, intelligence explained 66% ( = .81;

p <.001) of the variance in CPS. The remaining residual of CPS, now not sharing any
variance with intelligence, as well as intelligence itself were then defined to predict
both subjective university success and GPA. In line with Hypothesis 2, the residual of
CPS remained a significant predictor of both subjective university success (f = .24;

p <.001) and GPA (B =.14; p = .015). As expected, CPS thus predicted subjective
success significantly more strongly than GPA after intelligence was controlled for

(x* =2.77; df = 1; p = .048). Intelligence itself also predicted subjective university

success (f =.23; p <.001) and GPA (B =.32; p <.001). Intelligence thus predicted
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GPA significantly more strongly than subjective university success (x* = 8.43; df = 1;
p =.002). Together, intelligence and CPS explained 12% of the variance in GPA

(R’ =.12; p <.001) and 11% of the variance in subjective university success

(R’ =.11; p = .007). The correlation between subjective university success and GPA
was = .58 (p <.001). As indicated by the fit indices, this model represents the data

very well (Table 2) and is illustrated in Figure 2.
--- Figure 2 ---

Discussion of Study 1

The aim of Study 1 was to investigate the relation between CPS and students’
university success. In line with our hypotheses and previous research results (Stadler
et al., 2015a), CPS was significantly related to both GPA and subjectively appraised
success. This relation remained significant and substantial even after intelligence was
controlled for.

Regarding the two different indicators of university success, there were
considerable differences in the prediction by CPS and intelligence. CPS significantly
predicted both GPA and subjective university success. In line with our hypotheses,
the relation was significantly stronger between CPS and subjective university success
than between CPS and GPA. Intelligence, on the other hand, also predicted both
indicators of university success although it was more strongly related to GPA than to
subjective university success. This confirms previous findings regarding differential
prediction of GPA and subjective indicators of university success (e.g., Robbins et
al., 2006) in that GPA is more strongly linked to intelligence while alternative
indicators are related to other relevant skills.

In order to estimate the generalizability of these findings, it is necessary to

inspect the full correlation matrix. The latent correlation between CPS and
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intelligence (r = .81) was slightly higher than suggested by a recent meta-analysis on
the relation between CPS and intelligence (Stadler et al., 2015b). This meta-analysis
reported a corrected correlation of up to » = .71 (depending on the level of correction
for attenuation) for measures of CPS such as the one used in this study. The latent
correlation between GPA and intelligence (r = .32) was found to be exactly as was to
be expected based on meta-analyses (Hell et al., 2007) reporting average correlations
of r=.32.

The relatively homogeneous sample, consisting predominantly of psychology
students, suggests a potential range restriction in students’ intelligence values, which
was confirmed in our data. Psychology students scored significantly higher than
students enrolled in the other subject areas as well as the norm sample. This does not
come as a surprise considering the German system of selection for students studying
in the field of psychology compared to biology or sports. Applicants undergo a
competitive selection procedure based on their high school GPA for the limited
number of slots available to study psychology at each university. Therefore, this
dominance of highly intelligent students within the sample could limit the validity of
intelligence (Jensen, 1998). On the other hand, no range restriction (average of .50
with values ranging from 0 to 1) or mean differences [(F(2;157) = 0.16; p = .425;
npz =.002] could be found for CPS values. This finding was expected as the CPS
measure was constructed to be used with a university student sample and,
accordingly, item difficulties were rather high. A more heterogeneous sample could
thus potentially lead to a substantial improvement in the validity of intelligence in the
prediction of both subjective university success and GPA.

In summary, the results of Study 1 support the validity of CPS as a predictor

of university success, but they raise the question of whether the findings can be
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generalized to more heterogeneous samples as well or whether they only hold for
specific, highly selective university programs. To further investigate the question of
generalizability, we replicated the design of Study 1 in a second study using a more

heterogeneous sample.

Study 2

The findings of Study 1 support the hypothesized relevance of CPS as
predictor of students’ university success. Study 2 expands on Study 1 by replicating
the design of Study 1 as closely as possible with the exception of a more
heterogeneous sample consisting of students enrolled in diverse study programs.
Furthermore, students’ scores on a common exam, gathered about three months after
the main assessment were added as a longitudinal criterion that was identical for all
students. These additions allowed us to investigate the reliability and generalizability

of the findings reported in Study 1.

Hypothesis 3: CPS predicts GPA and subjective university success in a

heterogeneous sample.

Based on the results found in Study 1, we still expected to find CPS to

significantly predict both GPA and subjective indicators of university success.

Hypothesis 4: CPS predicts GPA and subjective university success in a

heterogeneous sample even when intelligence is controlled for.

We furthermore expected to find incremental validity of CPS over and above
intelligence in predicting university students’ GPA and subjective university success.
However, the larger variation in university programs should be associated with a
larger variation in intelligence. This should increase the validity of intelligence and in

turn limit the validity of CPS after controlling for intelligence. This effect should be
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particularly strong for GPA and less strong for subjective university success (Robbins

et al., 2006).
Hypothesis 5: CPS predicts students’ exam results.

Different university study programs have different average grades (Johnson, 2003).
Correspondingly, the high heterogeneity in our sample might result in substantial
differences in the students’ average GPA as well as the frame of reference for the
subjective evaluations of their university success. To have a common indicator of
university success in addition to students’ GPA, students’ scores on a course final
exam taken by all students participating in Study 2 (see methods section) were
additionally included. This additional indicator of university success was gathered
several weeks after the main assessment thus allowing for a longitudinal prediction of
the students’ performance. We expected CPS to predict these final exam scores as

well.

Hypothesis 6: CPS predicts students’ exam results even when intelligence is

controlled for.

This effect should not be solely due to intelligence either, and we expected CPS to
show incremental validity in the prediction of students’ exam scores over and above
intelligence. Similar to GPA, the validity of CPS should be reduced by controlling for

intelligence.
Method

Participants. Data from N = 216 students (71% women; age: M = 23.8 years;
SD = 5.5 years) in an obligatory introductory lecture on educational assessment for
sophomore teacher-education students at a mid-sized German university were used in

Study 2. Most students were enrolled in multiple study programs because teachers in
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Germany are supposed to teach at least two different school subjects (in addition to
the aspects of their study program that are identical for all students striving for
teaching degrees, like educational assessment). The most frequent study programs
(corresponding with those school subjects to be taught later as a teacher) were
German (30%), English (21%), and Mathematics (21%); nevertheless, many other

curricula (corresponding to other school subjects) were covered, too.

Procedure. The assessment of demographics and intelligence took place during the
first part of the first lecture of the semester. During the following week, the students
worked on the CPS tasks online. The final exam covering the entire course took place
at the end of the semester. Here, students could choose between two exam dates:
either directly at the end of the lecture period (8 weeks after the main assessment) or
two months later. The first date was chosen by 58% of the students; 42% of students
selected the second date.

Measures. The measures used in Study 1 were also administered in Study 2.
CPS was assessed with 10 MicroDYN tasks (Greiff et al., 2012). Intelligence was
assessed with the pen-and-paper version of the Intelligenz-Struktur-Test-Screening
(IST-Screening; Liepmann et al., 2012). Self-reported university GPAs at the time of
the study were reverse-coded so that the best possible passing score was 4 (very good)
and the worst score was 1 (sufficient). The 5-item subjective university success scale
(o =.79) was completed only by those students who had registered for the second
final exam, and it was filled out immediately prior to beginning the final exam.
Performance on the course final exam was used as additional indicator of students’
university success. Students could, as mentioned, choose freely between the two exam
dates. Both exams consisted of 136 multiple-choice items assessing students’

competencies and knowledge of educational and psychological assessment; of these,
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58 items were identical for both exam dates. A correct response was scored one point
and incorrect responses received zero points. Hence, the sum score of the 58 identical

items was used as an additional indicator of students’ university success.

Statistical analysis. To test our hypotheses, we used structural equation
modeling (SEM) with weighted least square estimation adjusting means and variances
(WLSMYV) in Mplus 7.3 (Muthén & Muthén, 1998-2015) as in Study 1. Again, model
fit assessment was based on fit indices recommended by Beauducel and Wittmann

(2005) and the criteria proposed by Hu and Bentler (1999) described above.

In line with Study 1, the predictions of GPA and subjective university success
were calculated in the same models. The predictions of exam scores on the other hand
were calculated in separate models. This was done to consider the time difference
between the assessment of GPA and subjective university success and the exam
scores, which were gathered several weeks after the main assessment. Whereas the
regressions of CPS and intelligence on GPA only represent a statistical relation, the
regression of CPS and intelligence on the exam scores and subjective university

success represents a real prediction.

Results

Descriptive statistics and measurement models. Table 3 shows the
descriptive statistics and intercorrelations for all variables included in Study 2.
Students’ average intelligence scores (M = 48.02; SD = 5.42) were slightly higher
[#(249) = 3.79; p <.001; d = 0.26] than to be expected based on age and education
(norm score = 46.59). The observed correlations between CPS and subjective
university success were significant and in the expected direction. The observed

correlation between CPS and GPA, however, was not significant.
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- Insert Table 3 -

Measurement models were established for all latent variables in the same way
as in Study 1. For subjective university success, all items were defined to load onto
one common factor (A =.45-.90). To limit the parameters to be estimated in the
structural models, we aggregated the intelligence items to three parcels for numerical,
verbal, and figural content (Little et al., 2002) and had the parcels all load onto one
factor (A = .54-.65). CPS was modeled as a higher-order factor consisting of the two
latent factors of knowledge acquisition and knowledge application. Both for
knowledge acquisition (A = .51-.98) and knowledge application (A = .40-.90), all 10
items were defined to load onto one common factor each. All measurement models fit
very well to the data thus allowing for estimations of the structural models (see

Table 4).
- Insert Table 4 -

Structural models. In order to test Hypothesis 3, we defined the same
structural model as for Hypothesis 1. CPS was defined to predict both the latent
subjective university success factor and manifest GPA scores. This model represented
the data very well as can be seen by the values reported in the second part of Table 4.
In accordance with Hypothesis 3, CPS predicted both subjective university success
(B=.27;p=.038; R” =.07) and GPA (B =.15; p <.001; R’ = .02). The correlation

between subjective university success and GPA was r = .62 (p <.001).

To investigate the incremental validity of CPS (Hypothesis 4), CPS was again
residualized for intelligence, which explained 70% ( = .83; p <.001) of the variance
in CPS. The remaining residual of CPS, now not sharing any variance with

intelligence, as well as intelligence itself were then specified to predict both
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subjective university success and GPA. In support of Hypothesis 4, the residual of
CPS remained a significant predictor of both subjective university success (f =.17;

p <.001) and GPA (B =.08; p <.001). CPS thus predicted subjective success
significantly more strongly than GPA after intelligence was controlled for (x> = 3.51;
df=1; p=.003). In this model, intelligence itself significantly predicted both
subjective university success (f = .41; p <.001) and GPA (B =.18; p <.001).
Combined, intelligence and CPS explained 4% of the variance in GPA (R’ = .04;
p=.001) and 19% of the variance in subjective university success (R° = .19;

p = .046). The correlation between subjective university success and GPA was r = .63

(p <.001). Thus, this model represented the data very well (Table 4).

Hypothesis 5 stated that CPS predicted students’ exam scores. To test this
hypothesis, a latent CPS factor indicated by knowledge acquisition and knowledge
application was defined to predict manifest exam scores. CPS predicted exam scores
significantly (B =.13; p = .038; R’ = .02). The fit for this model was very good

(Table 4).

To control the effect of CPS in the prediction of students’ exam scores for
intelligence (Hypothesis 6), CPS was residualized for intelligence (structure identical
to Figure 2). In this model, intelligence explained 56% (B =.75; p <.01) of the
variance in CPS. Contrary to Hypothesis 5, the remaining residual of CPS no longer
significantly predicted students’ exam scores ( = .06; p =.295). Intelligence, on the
other hand, predicted students’ exam scores significantly (f =.15; p =.043).
Combined, intelligence and CPS explained significant amounts of variance in
students’ exam score (R = .03; p = .031). This model represented the data very well

(Table 4).
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Discussion of Study 2

The results of Study 2 confirm the role of CPS in the prediction of students’
university success. Nonetheless, comparing the results of Study 1 and Study 2 reveals
several differences regarding the interplay of CPS and intelligence as predictors of
grades and subjective university success. CPS significantly predicted GPA and exam
grades as well as students’ subjective university success. However, controlling for
intelligence resulted in a substantial drop in the relative importance of CPS in the
prediction of all three indicators of students’ university success. After controlling for
intelligence, CPS still predicted GPA and subjective university success but with
considerably lower beta weights than found in Study 1. CPS no longer significantly

predicted students’ exam scores after intelligence was controlled for.

The variations in effect sizes for CPS between the two studies can be
interpreted in multiple ways. On the one hand, as already noted, the relatively
homogenous sample in Study 1, together with a strong positive selection for cognitive
ability, led to a restricted variance in intelligence scores. This restriction in range was
less for the sample in Study 2, which also showed a high average intelligence score
(M = 48.02) but significantly higher variation in intelligence scores
[F(211; 132) = 1.83; p <.001] than the sample in Study 1. This is certainly partially
responsible for the relatively low validity of intelligence in the prediction of
university GPA in Study 1 and is further supported by the increase in validity of
intelligence for the more heterogeneous sample in Study 2. Since we residualized CPS
for intelligence in order to estimate the incremental validity of CPS over and above
intelligence, a reduced validity of intelligence in Study 1 may have artificially
increased the validity coefficients of CPS. It must be noted, however, that our

approach of residualizing CPS for intelligence generally benefits the relative
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importance of intelligence compared to CPS, as all shared variance is attributed to

intelligence (Johnson & LeBreton, 2004).

On the other hand, there also are considerable differences in the structuredness
of German university programs (Bargel, Multrus, Ramm, & Bargel, 2009). German
programs have a high number of mandatory courses that need to be attended at a
certain point of the program. Especially studies in the natural sciences are highly
structured leaving little to no room for the students to individualize their studies.
Social sciences and humanities programs leave a larger degree of freedom in terms of
choosing courses or selecting exam dates (Bargel et al., 2009). This differing number
of choices and options might be important, so that students with high CPS are able to
use their superior skills to their advantage (Robbins et al., 2004). Given that the
sample in Study 1 consisted predominantly of students enrolled in social science
programs and the students in Study 2 were enrolled in diverse study programs, this
could also have caused the differences in validity for CPS. In a tentative post hoc
comparison between students enrolled exclusively in the natural sciences (N = 55) and
all other students, not exclusively enrolled in natural sciences (see Kaub et al., 2012),
the data from Study 2 more strongly supported the validity of CPS in the prediction of
students” GPA for students enrolled in social sciences and humanities (B = .21) than
for those enrolled in the natural sciences ( = .06). This supports the assumption that
the validity of CPS in the prediction of university success may rely on the amount of
academic freedom students have to individualize their studies. However, due to the
post hoc nature and unequal sample sizes, these intriguing results should be

interpreted with care and call for additional research.

Taken together, Study 2 replicated most of the findings of Study 1, however, with

substantially smaller effect sizes for CPS and substantially larger effect sizes for
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intelligence. This supports our interpretation of CPS as a relevant predictor of
university success that provides additional information over and above intelligence.
The magnitude of this incremental validity may depend on the student population of

interest.
General Discussion

Complex problem-solving skills appear to be relevant for the academic
achievement of university students. Both studies presented here corroborate the role
of this 21* century skill in (tertiary) education with substantial validity. However, the
importance of CPS as an additional source of information on students’ cognitive
ability seems to increase with the selectiveness of university programs (Jensen, 1998).
This suggests that individual differences in CPS may be helpful in explaining why
highly intelligent students still differ in their academic success. Beyond being smart
enough to cope with the academic demands of university, students need to learn to
extract relevant information, test hypotheses, and control a dynamically changing
environment of interrelated variables (Funke, 2001; Raven, 2000) to succeed in their

studies at the university level. In other words, they need to solve complex problems.
Limitations

Nonetheless, some limitations need to be considered in the interpretation of
the data. The (mostly) cross-sectional design of both studies calls for caution
regarding causal interpretations of the data. Specifically, the correlation between CPS
and indicators of university success may represent an increase in CPS as an outcome
of university studies rather than individual differences in CPS causing different levels
of university success. However, this limitation holds substantially less for the exam

scores (Hypothesis 5), which were gathered a considerable amount of time after CPS
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was assessed. In line with the interpretation of CPS as a predictor rather than an
outcome of university success, CPS predicted these exam scores as well. Notably, the
validity coefficients found for intelligence in our studies correspond to those reported

in previous longitudinal studies (Hell et al., 2007).

In addition, the choice of operationalization for both CPS and intelligence may
have substantially influenced the results. In fact, recent meta-analytic findings have
shown that the correlation between CPS and intelligence depends on the
operationalizations used (Stadler et al., 2015b). In that, measures of CPS and
intelligence (such as those used in the current studies) showed the strongest
correlations. Correspondingly, the incremental validity of CPS may have been
stronger using different measures of CPS and intelligence (cf. Kretzschmar et
al., 2016). However, all measures used in this study are well established and have
shown their validity in predicting academic outcomes repeatedly (Liepmann et
al., 2012; Wiistenberg et al., 2012), which is not the case for most other measures of
CPS (Greiff et al., 2015). Future research may nonetheless investigate whether other
operationalizations of CPS lead to a stronger incremental validity of CPS over and

above intelligence in the prediction of university success.

Finally, our studies focused exclusively on cognitive predictors of university
success. As noted above, various noncognitive predictors of university success have
been established as well (for an overview, see Richardson et al., 2012). Little is
known about the relation between CPS and noncognitive constructs (Greiff &
Neubert, 2014). Wood and Bandura (1989) argue that self-efficacy influences
individual use of strategy in CPS tasks and subsequent problem solving attainment
whereas Greiff and Neubert (2014) report weak (albeit partly significant) relations

between CPS and personality traits. Thus, it stands to reason that future research on
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the role of CPS in students’ university success needs to include noncognitive factors
as well to obtain a more complete picture on the various factors influencing students’

success in their studies at the university.
Implications

The major finding of both studies presented here is that individual differences
in CPS are related to student’s university success and that this difference cannot be
reduced to individual differences in intelligence. This confirms previous findings
(Stadler et al., 2015b) and provides a solid ground for future research on the role of
CPS in university success. CPS tasks may represent a valuable addition to other
instruments used in university selection. Besides their validity in predicting relevant
outcomes, CPS tasks have been shown to be highly accepted by participants
(Sonnleitner et al., 2012), whereas intelligence measures suffer from low acceptance
in university selection (Hell & Schuler, 2005). Moreover, computer-based CPS
measures provide a vast array of process data (information about single interactions
between the problem solver and the task) that may allow may allow researchers a
glimpse into the cognitive processes involved in finding successful and unsuccessful
solutions to complex problems (Greiff, Wiistenberg, & Avvisati, 2015). Finally,
assessing student’s individual levels of CPS may help in understanding why some
students perform short of their intellectual potential. Helping them to handle the
complexity of university studies may thus increase students’ success, improve their
satisfaction with their education, and ultimately limit the likelihood of a preventable

drop-out.
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Table 1

Descriptive Statistics and Observed Correlations for Study 1

Variables Mean (SD) GPA SUS CPS CPS
Acquisition Application

GPA 2.31(0.61) -

SUS 3.29(0.59) 337 -

CPS Acquisition  0.52 (0.26) .22"° .10 -

CPS Application 0.50 (0.23) .19° 23" 70" -

Intelligence 47.15(2.95) .08 .00 247 277

Note: CPS = complex problem solving; GPA = grade point average; SUS = subjective

university success, *p < .05, **p <.01.
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Table 2

Model Fit Indices for Study 1

Model X df p CFI TLI RMSEA
Measurement Models
SUS 7.51 5 19 98 .99 .06
Intelligence 0 0 - 1.00 1.00 .00
CPS 207.81 168 .02 .97 .97 .04
Structural Models
CPS predicting GPA and SUS 339.63 296 .04 97 .96 .03
CPS predicting GPA and SUS 409.26 371 .08 97 .97 .03

controlling for Intelligence

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis
index; RMSEA = root mean square error of approximation; SUS = subjective

university success; CPS = complex problem solving; GPA = grade point average.
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Table 3

Descriptive Statistics and Correlations for Study 2

Variables Mean (SD) GPA SUS Exam CPS CPS
scores Acquisition Application

GPA 2.18 (0.47) -

SUS 3.51(0.65) .52 -

* kk

Exam scores 44.75 (6.41) .30 .23 -

CPS Acquisition  0.40 (0.27) .04 .23 .11 -

kk kk

CPS Application 0.41 (0.24) .00 .26 .09 71 -

ok ok k3k

Intelligence 48.02 (5.42) 15" .46~ .10 46 43

Note. CPS = complex problem solving; GPA = grade point average; SUS = subjective

university success, *p < .05, **p <.01.
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Table 4

Model Fit Indices for Study 2

Model X df p CFI TLI RMSEA
Measurement Models
SUS 3.05 5 .27 1.00 1.00 .00
Intelligence 0 0 - 1.00 1.00 .00
CPS 220.78 170 <.01 .99 .99 .04
Structural Models
CPS predicting GPA and SUS 375.47 298 <01 .96 .96 .04
CPS predicting GPA and SUS 480.72 375 <01 .97 .97 .03
controlling for intelligence
CPS predicting exam scores 237.71 189 <01 .99 .99 .03
CPS predicting exam scores 290.78 250 <01 99 .99 .02

controlling for intelligence

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis
index; RMSEA = root mean square error of approximation; SUS = subjective

university success; CPS = complex problem solving; GPA = grade point average
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Figure 1. Example of a CPS item based on the MicroDYN approach (Wiistenberg et

al., 2012)
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Intelligence

Figure 2. Structural model testing Hypothesis 2 with standardized coefficients.
Control variables were omitted for the sake of clarity; CPS = complex problem

solving; Res = residual; SUS = subjective university success; GPA = grade point

average; *p < .05, **p <.01.
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Running a company, organizing developmental aids for a village
in the desert, or coordinating fire fighters during a blaze are highly
complex and difficult tasks. Multiple different aspects of the situ-
ation need to be considered and the situation changes dynamically.
Although we might not face such drastic situations on a daily basis,
the world we live in today is becoming more and more complex and
dynamic. Just dealing with everyday objects (e.g., phones, com-
puters, automated driving systems) requires us to be aware of their
respective connections to other objects or people.

As the complexity of the systems that we interact with in our
daily lives grows, so does the importance of research on how we
learn to control dynamic environments. Several closely related
research areas that focus on how people deal with complex envi-
ronments have been developed. Most prominent among these
research areas are the fields of complex problem solving (CPS;
Frensch & Funke, 1995), dynamic decision making (DDM; Brehmer,
1992), systems thinking (Booth-Sweeney & Sterman, 2000), and
naturalistic decision making (NDM; Lipshitz, Klein, Orasanu, &
Salas, 2001). With the exception of NDM, which focuses primarily

* Corresponding author.
E-mail address: matthias.stadler@uni.lu (M. Stadler).

http://dx.doi.org/10.1016/j.chb.2016.08.025
0747-5632/© 2016 Elsevier Ltd. All rights reserved.

on field studies (Klein, 2008), computer simulations and how
humans interact with them play integral roles in this research. For
example, it would be impossible to have a random participant run
an entire company for a short time, but asking the same participant
to run a simulated version of the company allows researchers to
observe decision making and problem solving in this complex sit-
uation. These simulations are supposed to embody the essential
characteristics of real-world problems (Gonzalez, Vanyukov, &
Martin, 2005), thus representing a compromise between experi-
mental control and realism (Funke, 1992). Throughout this paper,
we will use the term microworlds (MWs) for reasons of consistency,
but several other terms for complex simulations, such as synthetic
task environments or high fidelity simulations have been established
as well (for a summary, see Gonzalez et al., 2005).

Despite the considerable use of MWs in both research and
practice, many of their relevant characteristics are not yet fully
understood, thus limiting their utility. Referring back to the initial
examples, it is easy to see how running a company is more difficult
than getting used to a new phone, and simulations emulating the
former should be harder to understand and control than the latter.
But which part of the situation makes one of these tasks harder? Or
stated from a psychometrician's point of view, what determines an
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MW's difficulty, independent of person ability? Whereas the sur-
face differences are obvious, the difficulty of the two MWs should
depend on structural characteristics that determine how difficult it
is to understand and successfully control an MW. Only a few studies
have tried to investigate this question, and rather than conducting
an extensive investigation, such studies have focused mostly on
individual, specific characteristics of MWs (Kluge, 2008). Therefore,
the aim of the current paper is to expand the research on charac-
teristics of MWs that determine their difficulty by systematically
analyzing multiple different characteristics. Only by fully under-
standing the difficulty of MWs can they be optimally fit to specific
research questions, samples, and practical requirements.

1. Microworlds in psychological research

The number of complex real-world situations is infinite, and
thus it is not surprising that manifold different MWs have been
used in psychological research (Funke and Frensch, 2007) ranging
from the total control over a city (Dorner, Kreuzig, Reither, &
Staudel, 1983) to working as a fire chief (Brehmer, 1992) or man-
aging a forest (Wagener, 2001). This variety of different MWs is
partly due to the initial euphoria over this new test format (Kluge,
2008). MWs were supposed to bridge the gap between field and
laboratory research by creating ecologically valid environments
that were completely known to and controlled by the researcher
(Brehmer & Dorner, 1993). In this, all MWs share some basic
characteristics. Gonzales et al., (2005) identified complexity,
opaqueness, and dynamics as essential features of MWs.
Complexity describes the fact that MWs consist of multiple vari-
ables that are related to and thus influenced by each other. These
relations between the variables can be expressed by an underlying
mathematical structure such as a linear equation and are to a
certain degree opaque, meaning that not all of them are always
obvious to the person dealing with the MW. Finally, MWs are dy-
namic, that is, the system's state at time t depends on the state of
the system at the previous time t —1 (Rouse, 1981). The term dy-
namics means that changes in the system can occur either as a
result of active manipulations of the system by a participant or
through the mere passage of time.

An example of an MW that has been referred to as the
“drosophila” of problem solving research (Funke, 2010) and has
been used in hundreds of studies is the “Tailorshop” (see Danner,
Hagemann, Schankin, Hager, & Funke, 2011). This microworld
emulates the workings of a shirt-making company. The system
consists of 24 variables that affect each other directly or indirectly
(interconnectivity). Of the total of 24 variables, only 21 are visible to
a participant who is working on this MW (opaqueness), and only 11
can be manipulated directly, whereas the others change only in
response to these manipulations (dynamics). The aim of a problem
solver is to maximize the value of the company within a predefined
number of steps (i.e., simulated months).

Despite the considerable use of MWs in both research and
practice, some defining aspects of MWs such as the Tailorshop are
not yet fully understood (Greiff, Wiistenberg, & Funke, 2012). In
this paper, we will focus on item difficulty in MWs. In psychological
measurement, difficulty is usually defined as a participant's likeli-
hood of responding correctly to an item. However, because MWs
rarely have one single correct solution (the problem solvers are
relatively free to choose how they will manipulate the system), this
definition is not easily applied here (Kluge, 2008). More often, a
goal state (e.g., maximizing the total value of the company) that can
be achieved through several different courses of action is given.
Theoretically, the test developers should be able to specify an
optimal or correct solution for achieving the goal state, but given
the complexity of many MWs, this is rarely the case (Sager, Barth,

Diedam, Engelhart, & Funke, 2011). An exception is the aforemen-
tioned Tailorshop for which Sager et al. (2011) attempted to define
an optimal solution for every possible state of the system. Even so,
various ways of approaching the MW may lead to the same solu-
tion. Studies investigating the difficulty of MWs have therefore
usually associated an increase in average performance (e.g., a
higher company value at the end of the simulation) with decreased
difficulty that could be related to differences in the system's un-
derlying structure (e.g., fewer variables that can be directly
influenced).

2. Estimating the difficulty of microworlds

In line with this approach, Funke (1983, 1992) was among the
first to provide empirical evidence that an MW's difficulty increases
with its complexity. In experimental studies, both increasing the
number of variables with a fixed number of relations and increasing
the number of relations between a fixed number of variables
increased an MW's difficulty (see also Greiff, Krkovic, & Nagy, 2014;
Kluge, 2004; 2008). A subsequent study investigated the impact of
dynamics on the difficulty of MWs (Funke, 1992). In particular, the
finding that eigendynamics (i.e., variables affecting themselves)
strongly increase the difficulty of MWs has been repeatedly re-
ported (e.g., Funke, 1992; Greiff et al., 2014). A real-world example
of eigendynamics can be found in interest rates through which
money (or debt) increases over time without additional changes.

Due to the complexity of most MWs, however, all of the previous
studies on MWs' difficulty were limited to either specific MWs or
rather limited general characteristics such as the number of vari-
ables (e.g., Kluge, 2008). Moreover, the great effort related to
changing an MW hindered a systematic investigation of the specific
characteristics of MWs that influence their difficulty.

An important development toward a more systematic use of
MWs in psychological research was suggested in the form of the
Multiple Complex Systems approach (MCS; Greiff et al., 2012),
which combines multiple small and independent MWs into one
test (Greiff, Fischer, Stadler, & Wiistenberg, 2015). The structure of
an exemplary MCS microworld is illustrated in Fig. 1. As can be seen,
the MW still shows all defining features of an MW, in that there are

0

B
{r
o

Input Variables Output Variables

Fig. 1. Abstract example of an MCS microworld based on linear structural equations
(adapted from Greiff et al., 2012, p. 192).
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different interrelated variables (complexity) only some of which
(i.e., the input variables) can be directly manipulated. The relations
between the input and output variables are not given to the
problem solver and need to be explored by actively interacting with
the system (opaqueness). The output variables may change as a
result of these interactions or over time (dynamics). In this case, the
changes in the system are based on linear structural equations that
model the state of the different variables, but there are other MWs
that are based on the MCS approach as well (for an overview, see
Greiff et al., 2014).

The process of dealing with these different MWs that are based
on the MCS approach can be separated into two phases (Novick &
Bassok, 2005). First, the problem solver explores the system in or-
der to gain knowledge about the system (knowledge acquisition).
In a second step, that knowledge is applied to reach specific target
states in the system (knowledge application). Whereas gaining
knowledge and applying it are intertwined in real life, separating
these processes in an assessment situation allows researchers to
obtain more differentiated information about skills, deficits, and
possibly the underlying cognitive processes (Greiff et al., 2014).

Tests following the MCS approach thus provide multiple inde-
pendent scores for knowledge acquisition and knowledge appli-
cation performance. Given the low complexity of the systems, it is
possible for participants to gain complete knowledge of the MW's
underlying system, thus allowing for a dichotomous scoring of
system knowledge. Similarly, the simplicity of the MWs allows
researchers to define achievable control tasks during which certain
outcome variables of the system need to reach a certain level.
Again, success or failure in this task can be scored dichotomously.
The MCS approach thus offers several advantages over the classical
approach of using only one large microworld with respect to psy-
chometric properties such as scalability and reliability (for a full
review, see Greiff et al.,, 2013; Greiff et al., 2014) and is well-suited
for studies on item difficulty. The independence of the MWs allows
for a systematic variation in characteristics, and because the MCS
approach provides multiple dichotomous scores of system knowl-
edge and successful system control, this enables the application of
complex, IRT-based models of participants' performance. Further-
more, the MCS approach allows the knowledge acquisition phase to
be separated from the knowledge application phase. This separa-
tion is important because different characteristics may influence
the difficulties of these two phases.

Greiff et al. (2014) used these advantages of the MCS approach to
apply a linear form of the Rasch Model (RM; Rasch, 1960) called the
Linear Logistic Test Model (LLTM; Fischer, 1973) to a number of
independent MWs. This model allows researchers to estimate the
relative importance of specific characteristics to the difficulty of a
set of items (for more details, see below). Greiff et al. (2014) inferred
that the number of relations between a varying number of variables
as well as the presence of eigendynamics in the MW could account
for most of the variance in the MW's difficulty. However, their study
investigated only two basic characteristics of MWs (number of re-
lations and eigendynamics) and focused exclusively on the
knowledge acquisition phase. In this paper, we extend this para-
digm by including different characteristics of MWs to investigate
their relative importance for item difficulty in MWs. In addition, we
compare the relevance of these characteristics for both knowledge
acquisition and knowledge application.

3. The current study

The aim of this paper is to investigate whether the difficulty of a
set of MWs constructed within the MCS approach can be described
by six essential item characteristics: (a) The use and number of
eigendynamics, (b) the number of input variables, (c) the number of

output variables, (d) the number of input variables not related to
any output variables (i.e., manipulating these variables has no
impact on the system and is thus irrelevant for the control of the
system), (e) the number of output variables not related to any input
variables (i.e., they cannot be controlled and are thus irrelevant for
the control of the system), and (f) the total number of relations
between all variables. Examples of these characteristics can be seen
in Fig. 1 above. In total, this MW has (a) one eigendynamic (Output
X), (b) three input variables (Inputs A-C), (¢) three output variables
(Outputs X-Z), (d) one input variable not related to other variables
(Input C), (e) zero output variables not related to other variables,
and (f) a total of four relations between all variables. If these six
item characteristics completely describe an MW, it should be
possible to predict its difficulty with them. This would allow re-
searchers to efficiently create new MWs with predetermined dif-
ficulties, thus fitting them optimally to specific populations or
research questions.

In the present study, we investigated this hypothesis by going
beyond previous work that had concentrated on only a few specific
characteristics (e.g., Greiff et al., 2014). Furthermore, it was unclear
whether the difficulties of knowledge acquisition and knowledge
application would be affected differently by these six item char-
acteristics. By also investigating this distinction, the present study
offers a considerably more comprehensive investigation than pre-
vious studies in an attempt to further increase our understanding of
the determinants of MWs' item difficulty.

4. Method
4.1. Sample and procedure

Our sample consisted of 3128 students attending Grade 6
(N = 1637; 48.7% male; age M = 12.02; SD = 0.41) or Grade 9
(N = 1491; 47.9% male; age M = 14.36; SD = 0.74) in a Finnish
municipality. The students were sampled to be representative of
the entire population with respect to socioeconomic status and
gender. All assessments were administered online with each stu-
dent working on an individual school computer.!

4.2. Instrument

All participants completed a set of nine well-established MWs
that followed the MCS approach (Greiff et al., 2014; see above). The
MWs consisted of up to three input variables, which were related to
up to three output variables. The underlying relations were opaque
to the students, and some of the tasks featured eigendynamics. As
described above, the students' assignment was to apply adequate
strategies to acquire knowledge about the problems' structure
(knowledge acquisition) and to apply that knowledge to achieve
certain goals (knowledge application). Both the knowledge acqui-
sition and knowledge application phases were scored dichoto-
mously with credit given only if students correctly drew the
underlying model or if all goals were reached, respectively. An
exemplary MW is illustrated in Fig. 2. In this MW, students are
asked to imagine that they are the coach of a handball team and
want to find out how different types of training (i.e., Training A,
Training B, Training C; left part of Fig. 2) are related to certain

1 Please note that the performance data employed in this study have been used
in previous publications (e.g., Krkovic, Greiff, Kupiainen, Vainikainen, & Hautamaki,
2014; Wiistenberg, Stadler, Hautamaki, & Greiff, 2014; see also Vainikainen, 2014,
for more information on the entire assessment battery). However, none of these
publications investigated the difficulty of the MWs. Both the research question and
every result reported in this study are therefore completely unique to this study.
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Fig. 2. Screenshot of an exemplary MCS microworld. See text for further details.

characteristics of the team (i.e., Motivation, Power of the throw,
Exhaustion; right part of Fig. 2). It is important to note that the
relations between the input variables and the output variables are
completely arbitrary and not related to any knowledge about
handball or coaching in general. Once the knowledge is obtained by
systematically varying the input variables (knowledge acquisition
phase), the determined relations are plotted in the graph below the
task (lower part of Fig. 2). In the second part of the MW (knowledge
application phase), predetermined values need to be reached on all
outcome variables.

The six item characteristics were distributed across all MWs
with no MW including fewer than three or more than five char-
acteristics. The resulting matrix showing the exact distribution of
characteristics for each item (design matrix or Q-matrix; Fischer,
1973) is provided in Table 1.

4.3. Data analysis

To estimate the relative importance of the six characteristics for
the MWs' difficulty, a linear logistic test model (LLTM; Fischer,
1973) was used. Beginning with the idea that item difficulty can be
conceived as a function of certain item characteristics, Fischer
developed the model as an elaboration of the more general Rasch
Model (RM; Rasch, 1960). The RM states the probability that person
Jjwill answer item i correctly on the basis of 0;, the ability parameter
for person j, and oj, the difficulty parameter for item i.

0 e&j*d,‘
P(X; = 1|0;,0;) = —— 1
X5 = 116500 =152 (1)
The LLTM constitutes a linearization of the general Rasch Model
(RM; Rasch, 1960). The core assumption is that differences between

item difficulties are attributable to item characteristics that vary
across the items. What determines an item's difficulty is the
number and the nature of the characteristics involved. In the LLTM,
the items are scored on these characteristics, and qjy is the score of
item i on characteristic k. Estimates from the LLTM include ry, the
weight of k in item difficulty, and 6;, the ability of person j. The item
difficulty oj is described as an additive linear function of basic
characteristics qjx and the weight of that characteristic n:

K
gi= > Qiknk (2)
k=

Replacing oj in Equation (1) with Equation (2) yields person j's
probability of passing item i in the LLTM:

eli—= 1 Qi

P(X;j = 110;,q,m) = (3)

14+ eli—=t_1qum

The LLTM includes no error term and therefore assumes that all
of the variance in item difficulty can be explained by the basic
parameters that have been included (Baghaei & Kubinger, 2015).

In order to estimate the validity of the LLTM, item difficulties (o)
are first determined by applying a general RM followed by an
estimation of item difficulties with the LLTM. A high correlation
between the two resulting sets of difficulty estimates indicates that
the item characteristics provide a good description of the items and
thus a good fit of the LLTM (Baghaei & Kubinger, 2015). All analyses
were conducted separately for Grades 6 and 9 as well as for
knowledge acquisition and knowledge application. All analyses
were computed with the R package eRm (Mair, Hatzinger, & Maier,
2012) in R 3.1.1.
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Table 1
Design matrix for the 9 MWs and the six characteristics.
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Irrelevant input variables

Irrelevant output variables  Total number of relations

Eigenvalues Number of input variables Number of output variables
MW1 0 2 1
MW2 0 2 2
MW3 0 2 2
MW4 0 3 2
MW5 0 3 3
MW6 1 3 2
MW7 0 3 3
MWS8 1 3 2
MW9 1 3 3

o= O NOO =00

_— 00—, 0000O0
A wWhNDWWNDNDN

Note. MW = Microworld.

5. Results

The eta (n) values estimated by the LLTM representing the
weight allocated to the specific characteristics in the estimation of
item difficulties are displayed in Table 2. Positive eta (1) values
indicate a decrease in item difficulty due to the presence of an item
characteristic; negative eta (n) values indicate an increase. For
knowledge acquisition, all characteristics significantly contributed
to the estimation of item difficulty for students in both Grades 6
and 9. The number of eigendynamics was by far the most important
characteristic for both age groups (n = —3.32/-3.98), followed by
the number of irrelevant input variables (n = —1.77/-1.51) and the
total number of relations in the model (n = —1.12/-0.80). All of
these characteristics resulted in substantial increases in item dif-
ficulty. For the knowledge application phase, on the other hand, the
number of irrelevant output variables (n = 1.72/1.94), leading to a
decrease in difficulty, and the number of input variables
(m = —1.08/-0.93), leading to an increase in difficulty, were most
influential. Again, all six item characteristics contributed signifi-
cantly to the prediction of item difficulty by the LLTM (all
ps < 0.001). The eta (1) values for students in Grades 6 and 9 were
highly correlated in both the knowledge acquisition phase (r = 0.98,
p < 0.001) and the knowledge application phase (r = 0.94,
p < 0.001). This is important as LLTMs with relatively small
numbers of items and relatively large numbers of characteristics
might overfit the eta (n) values to the data, making it difficult to
generalize the results (Fischer, 1973). Finding very similar results in
the two independent samples thus provided a cross-validation of
the eta (n) values and supported their validity and generalizability
to other samples.

Item difficulties (o) for the RM and the LLTM analyses can be
found in Table 3. For both Grades 6 and 9, the LLTM results matched
the estimates from the general RM very well. In the knowledge
acquisition phase, the correlation between the general RM and the
LLTM difficulties approached r = 1.00 (p < 0.001), suggesting that the
six item characteristics almost perfectly described the item

Table 2
Eta values for Grade 6 and Grade 9 from the LLTM.
Knowledge Knowledge
acquisition application
Grade 6 Grade 9 Grade 6 Grade 9
Eigenvalues -3.32™" -398""  -—034™ 117"
Number of input variables 0.40™" 0.36™" —147"" -1.52™"
Number of output variables ~ —0.16""  —-0.51""  -1.08""  —0.93™"
Irrelevant input variables -1.777" 151" 011" 047"
Irrelevant output variables 0.70™" 0.83™" 172" 1.94™
Total number of relations -1.12™"  -0.80""  -0.83"" 047"
TI(Grade 6, Grade 9) 0.98"" 0.94™"

*

**p < 0.001.

difficulties in the MWs. Similarly, the general RM and the LLTM
difficulties from the knowledge application phase were very strongly
correlated (r = 0.96, p < 0.001). These results can be taken as evi-
dence that virtually every aspect that was relevant for the difficulty
of the MWs was captured by the six characteristics used in this study.

The relation between the RM and LLTM difficulties is further
illustrated in Fig. 3 as the relation between the RM and LLTM sigma
(o) values. As can be seen in Fig. 3, the sigma (o) values of the RM
and the LLTM matched each other almost perfectly for the knowl-
edge acquisition phase. For the knowledge application phase,
however, the sigma (o) values that were based on the Rasch Model
indicated a lack of variance within the easier items.

6. Discussion

The aim of this study was to investigate the validity and relative
importance of six essential item characteristics for the prediction of
item difficulty in MWs. Our results show that item difficulty in the
MWs used in this study could be described almost perfectly as a
function of these six item characteristics in an LLTM, a finding that
suggests that they cover virtually every aspect relevant for item
difficulty. This result replicated previous findings (e.g., Greiff et al.,
2014) that had shown that the number of eigendynamics and the
total number of relations between all variables were the most
important predictors of item difficulty in the knowledge acquisition
phase. The current study expanded upon previous studies in
showing that various additional item characteristics contributed to
the difficulty of MWs as well. Furthermore, we were able to show
the necessity of differentiating between the knowledge acquisition
and knowledge application phases regarding difficulty because, for
knowledge application, the number of irrelevant output variables
and the number of input variables had the strongest influences on
item difficulty. Thus, different aspects of an MW might determine
how difficult it is to acquire new knowledge and to apply this
knowledge to reach certain goals. This is important for both the
theoretical conception and the empirical use of MWs as the two
phases have so far been considered rather equivalent in their psy-
chometric properties (e.g., Wiistenberg, Greiff, & Funke, 2012).

Understanding what constitutes the difficulty of MWs is
important for the further use of this item format in psychological
assessments (Kluge, 2008). The results of this study suggest that it
would be possible to systematically construct both very difficult
and rather easy MWs by appropriately combining specific item
characteristics. Adding additional input variables, for instance, in-
creases the difficulty of both the knowledge acquisition and
knowledge application phases. The addition of irrelevant output
variables, on the other hand, is a way to decrease the difficulty of
the knowledge application phase while leaving the difficulty of the
knowledge acquisition phase relatively unchanged. This is of
particular interest for the assessment of giftedness, an area in
which many measures fail to systematically reach appropriate
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Table 3
Sigma (o) values based on the general Rasch Model and the LLTM.
Knowledge acquisition Knowledge application
Rasch Model LLTM Rasch Model LLTM
Grade 6 Grade 9 Grade 6 Grade 9 Grade 6 Grade 9 Grade 6 Grade 9
MW1 2.70 3.12 3.23 2.90 3.07 2.87 2.67 2.44
MW2 2.23 1.98 3.08 2.37 1.61 1.57 1.57 1.44
MW3 0.73 0.95 1.36 0.82 1.25 1.21 1.68 1.95
MWwW4 1.59 1.68 2.38 1.92 —1.68 —1.46 -0.76 -0.71
MW5 1.71 1.72 2.22 1.39 -1.67 -1.57 -1.86 -1.71
MW6 -3.76 —3.84 —2.52 -3.60 1.84 1.85 1.70 1.65
MW7 0.33 0.46 1.13 0.57 -1.62 -1.31 -2.70 —-2.22
MWS8 —-3.44 -3.66 —-2.57 —-3.72 -1.06 —-1.42 -1.00 —1.46
MW9 —2.08 —241 —-1.42 —2.66 —-1.75 -1.74 -1.30 -1.39
T(PRasch, BLLTM) 1.00 1.00 0.96 0.96
Note. Beta values were standardized to a mean of 0. MW = Microworld; LLTM = Linear logistic test model.
Year 6 Knowledge Aquisition Knowledge Application
= 4 = 4
q =
a3 a3 ®
2 2 °
1 1
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Fig. 3. Graphical representation of the relation between the Rasch Model and the LLTM sigma (o) values.

levels of item difficulty (e.g., Preckel, 2003), as well as for the
assessment of young children, where relatively easy items are
required and items that are too difficult may severely harm the
children's motivation (e.g., Sonnleitner et al., 2012). Following this
line of thought, some of the established microworlds, which consist
of up to 2000 variables (Brehmer & Dorner, 1993), should be
extremely difficult and hardly solvable to most people. In fact, even
the Tailorshop simulation mentioned above consists of a total of 24
variables with over 40 relations between them (Funke, 2010). Ac-
cording to the results presented here, this simulation should be
extremely difficult. However, because these very large MWs
emulate real-world situations, previous knowledge about the sit-
uation may dramatically help in reducing the difficulty. An expe-
rienced manager would not need to apply trial-and-error to figure
out how an increase in advertising will influence his or her sales. In
fact, difficulties that are too high and an overly large influence of

previous knowledge were among the major criticisms expressed
toward the use of MWs in psychological assessment (e.g., Witt-
mann & Hattrup, 2004).

The small number of MWs in the LLTM represents a noteworthy
limitation of our study. Future studies should expand upon our
results by using a larger set of MWs with even more variability in
task characteristics. Due to the easily adaptable features of the MCS
approach, creating such an item pool is possible. However, our
successful cross-validation that was based on the high correlations
of eta values for students from Grade 6 and 9 supports the gener-
alizability of our findings.

7. Conclusions

The results of this study provide a way to predetermine the
expected difficulty of a microworld when knowledge cannot be
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used to gain an advantage, thus providing a good fit to the re-
quirements of the advised assessment and sample. However, future
research will need to demonstrate whether the findings presented
here can be directly applied to other MWs such as the Tailorshop
that are not based on the MCS approach.

Being able to construct new MWs with known item difficulty
would also be highly relevant for the use of MWs in high stakes
assessments. Having a validated theoretical model of the important
characteristics of any item represents an important step toward
automatic item generation. Automatic item generation as a means
of minimizing the effort necessary to create new items can present
a cost efficient and suitable way to use specific item formats, such
as MWs, in high stakes testing. Successful implementation of
automatic item generation might help reduce the repeated use of
single MWs, thus protecting their integrity in high stakes assess-
ments (Arendasy, 2005).

In summary, our findings provide comprehensive information
on determinants of MWs' item difficulty that can be used to
improve existing assessment instruments, facilitate their use, and
instigate future research on this promising item format.
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6. Discussion

The aim of this thesis was to validate CPS as a construct and to investigate its
utility of in the prediction of university success. This research question has never been
tackled extensively before and in the four papers that constitute this thesis it could be
shown that (1) CPS can be measured reliably and what measurement approach to use
best for this thesis, (2) CPS is strongly related but not redundant to intelligence, which
supports the idea of CPS as a valuable addition to measures of intelligence in
predicting university success, (3) CPS is valid in predicting different indicators of
university success and in that shows incremental validity over and above intelligence,
and (4) CPS tasks are well understood and can therefore be efficiently created, which

is vital for their use in high-stakes assessments such as university applicant selection.

6.1 Implications

CPS tasks thus represent a valuable addition to other instruments used in
university applicant selection. As presented in Paper 1, the most suitable CPS tasks
for this endeavor are based on the multiple complex systems approach (Greiff,
Stadler, Sonnleitner, Wolff, & Martin, 2015). Three different sets of tasks following
the MCS approach have been developed so far. Of these, the Genetics Lab
(Sonnleitner et al., 2012) was specifically designed for young children and may thus
not be applicable to university students. The other two sets of tasks — MicroDYN
(Greiff, Wiistenberg, & Funke, 2012) and MicroFIN (Neubert, Kretzschmar,
Wiistenberg, & Greiff, 2014) — were developed for older students and adults and are
therefore appropriate to be used in university selection. The two measures correlate
highly and correlate equally strong with intelligence (Kretzschmar, Neubert,
Wiistenberg, & Greiff, 2016). The prediction of difficulties described in Paper 4

however, is only possible for MicroDYN tasks. Taken together, this implies that
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MicroDYN tasks represent the most adequate measure of CPS to be used in the
prediction of university success to date.

The use of MicroDYN tasks (or MCS tasks in general) for the assessment of
CPS comes with the cost of high latent correlations between CPS and intelligence as
was shown in Paper 2. Latent correlations of » = .72 between CPS and intelligence
indicate that the additional cognitive demands incorporated in MCS tasks
(cf. different demands hypothesis; Rigas & Brehmer, 1999) seem to be limited. Using
MicroDYN/ a MCS test as an additional tool in university selection might thus be
most adequate when the utility of intelligence is reduced by strong positive selection
as would be expected in a highly selective university. Spearman’s Law of
Diminishing Returns (Jensen, 1998) predicts that the mean correlation among
cognitive tests declines as ability level increases. This has implications for the
predictive validity of a particular cognitive test. If the mean correlation among
cognitive tests is lower for high ability subjects, then the correlation of a particular
test with another test will generally be lower for high ability subjects (e.g., Molenaar,
Dolan, Wicherts, & van der Maas, 2010). Given that the predictive validity of a test is
a test’s correlation with a criterion (e.g., GPA), it follows that a test’s predictive
validity should generally be lower for high ability subjects. Consequently, other
factors will add incremental information to the accurate prediction of performance at
university level. In other words, the incremental validity of CPS over and above
intelligence should be particularly high when the university is very selective and
attracts only highly intelligent students.

That CPS does in fact show incremental validity over and above CPS in
predicting different indicators of university success was shown in Paper 3. As was to

be expected based on previous work (e.g., Robbins et al., 2004; Stadler, Becker,
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Greiff, & Spinath, 2015), CPS was particularly valid in predicting subjective
university success. This confirms that whereas cognitive ability consistently predicts
university students’ GPA, subjective indicators of university success seem to be more
closely linked to psychosocial and study skill factors (Robbins, Allen, Casillas,
Peterson, & Le, 2006). Correspondingly, using CPS to predict university success
should be most useful when the focus lies on the subjective aspects of success. This
may be relevant to increase university students’ satisfaction with their studies or to
prevent early drop out (Kunina, Wilhelm, Formazin, Jonkmann, & Schroeders, 2007).

Finally, the results of Paper 4 show that MicroDYN tasks are extremely well
understood regarding their defining characteristics. This implies that it is possible to
create new tasks with known properties with low effort. They are thus particularly
well suited for university applicant selection or other high stake assessment situations.
One of the major concerns of high-stakes testing is the integrity of items, which can
be severely compromised by repeated use (Way, 2005). Having a working theoretical
model of the important characteristics of any item represents an important step toward
automatic item generation. Automatic item generation as a means of minimizing the
effort necessary to create new items can present a cost efficient and suitable way to
use specific item formats in high stakes testing. Successful implementation of
automatic item generation might help reduce the repeated use of single tasks, thus
protecting their integrity in high stakes assessments (Arendasy, 2005).

In summary, the results of this thesis imply that CPS represents a useful

addition to intelligence in understanding and predicting university success.

6.2 Limitations and future research

Some noteworthy limitations calling for further research remain. First, the

clear focus on MicroDYN tasks as a measure of CPS may limit the generalizability of
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the findings reported. Most importantly, results on the validity of CPS in predicting
university success might have been different using different measures of CPS. As
outlined in Papers 1 and 2, the MCS approach, which MicroDYN tasks are based on,
represents a trade off between qualities and complexity of the tasks (see also Greiff et
al., 2015). Using other measures of CPS might therefore have led to different
conclusions regarding the predictive power of CPS.

However, despite these limitations the choice of MicroDYN tasks was well
justified based on the theoretical considerations and empirical findings reported in
Papers 1 and 2. Moreover, Greiff and colleagues (2015) could show that MCS
measures are superior to classical measures of CPS in predicting indicators of
educational success such as school grades. The results reported in Paper 3 also match
those reported by Stadler and colleagues (2015), who did not use a CPS measure
based on the MCS approach. Future research should therefore aim to replicate the
findings of this study with a broader range of CPS measures in order to achieve a
more general operationalization of CPS (see for example Greiff et al., 2013).

The second limitation of this thesis regarding the validity and corresponding
utility of CPS in the prediction of university success is the potential trainability of
CPS. If deliberate practice can increase the performance on CPS tasks without an
actual increase in general CPS competency, this might limit the reliability and thus
utility of CPS measures in university applicant selection. Despite more or less explicit
recommendations on ways to increase individual CPS competencies and the change of
school practices and educational polices in order to foster CPS competence (see
OECD, 2014) there is an astonishing lack of empirical research on the trainability of
CPS. A noteworthy exception is a study by Kretzschmar and Sii3 (2016), who report

limited transfer effects between different CPS tasks. While this study did not feature



138 General Discussion

any deliberate practice in the sense of Ericsson (Ericsson, Krampe, & Tesch-Romer,
1993), this work provides first evidences towards a potential, however limited,
trainability of general CPS ability. Future research will have to investigate this further
in order to estimate how much deliberate training of CPS could diminish the utility of
CPS in university selection. Actual increases in individual CPS competency that
reflect in improved real-world performance would not influence the validity of CPS in
the prediction of university success. Mere increases in CPS task performance without
actual increases in CPS competency on the other hand would severely reduce the
reliability of these tasks and in result limit their validity.

Related to the issue of trainability, the findings of this thesis (in particular
Paper 3) are limited regarding any claims of causality. While it seems intuitive that
(1) high CPS, that is the ability to acquire new knowledge about a complex system
and use that knowledge to reach specific goals (Frensch & Funke, 1995), will lead to
good performance at university, it might also be a result of university training. In
other words, the correlation between CPS and indicators of university success may (2)
represent an increase in CPS as an outcome of university studies rather than
individual differences in CPS causing different levels of university success. In this
case, CPS would not be useful as a predictor of university success but rather as a very
general criterion of university success indicating how well students are able to deal
with complex problems. Finally, there could be (3) a continuous feedback loop
between CPS competency and university success with higher individual levels of CPS
leading to better performance at university leading in return to even higher levels of
CPS.

Due to their cross-sectional nature, the results reported in this thesis cannot

rule out any of the three causal relations between CPS and university success. To
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approach the question of the causal relation between x and y, a longitudinal study
assessing both students’ CPS competency and university success multiple times
throughout the course of a university program.

Finally, this thesis did not investigate the additional use of CPS process data in
the prediction of university success. This could provide additional information about
an applicant’s skills. CPS testing offers an additional set of completely different
information than established predictors of university success usually do. While
working on a complex problem, participants can freely explore and interact with the
virtual world the problem is set in, allowing the expression of spontaneous and
unprompted behavior (Dorner & Wearing, 1995). It is thus possible to gather process
data about the way an applicant approaches new problems going beyond mere
performance.

To this day, research on the predictive validity of cognitive tasks has mainly
focused on measuring final performance, rather than looking at the potential
information that could be gained from the process of interacting with a problem
(Funke & Frensch, 2007). However, the behaviors displayed in the course of the
problem solving process, such as the choice for or against a risky course of action, can
be used to deduct non-intellective constructs such as learning strategies
(Anderson, 1993), motivational factors (Vollmeyer & Rheinberg, 1999), or
personality constructs (Schonbrod & Asendorpf, 2011). For example, it can have
great informational value to not actively change a complex system for some time in
order to explore its impetus (see Paper 4). Just think of an unfamiliar shower where
the water temperature does not change instantly after an adjustment. A constant water
temperature can only be reached by waiting until the most recent change has actually

become effective. However, since this behavior will not be rewarded immediately, it
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takes self-control to employ such a strategy. Deducting traits such as self-control from
CPS process data would have the tremendous advantage of them being embedded in
the general task of solving the problem at hand so people would not think much about
their self-presentation, a problem that questionnaire based research regularly has to
face (Hancock & Flowers, 2001).

Future research should therefore investigate in which ways process data of
CPS testing can provide additional information that can be used to predict indicators
of university success. This dual-purpose of CPS, both measuring intellective skills
(overall performance data) and the potential to deducting non-intellective traits
(behavioral process data) within one testing session, may make CPS testing a valuable

addition to established measures of university applicant selection.
6.3. Conclusion

Taken together, this thesis provided first comprehensive support for the utility
of CPS as an additional predictor of university success to be potentially used in
university selection. The thesis showed that CPS is related to various indicators of
university success and that this relation remains when controlled for the influence of
intelligence. Being successful at university thus does not only require being intelligent
but also requires being able to understand the complex system that is university life.
As this thesis demonstrated, this ability can be measured and differentiated from
intelligence.

While not all relevant questions could be answered, the reported results will
hopefully provide a solid basis for a large number of future research endeavors. These
will be necessary to deal with the new challenges posed by a constantly faster
changing world that require people who are able to solve new and highly complex

problems. As Albert Einstein put it: “7o raise new questions, new possibilities, to
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regard old problems from a new angle, requires creative imagination and marks real

advance in science.” (Einstein & Infeld, 1971).
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