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Summary 
 

This thesis investigates the utility of complex problem solving (CPS) in the 

prediction of university success. Previous research focused mainly on the relation 

between CPS and primary or high-school success, ignoring that the demands at 

university are actually far more complex than at lower school forms. On the other 

hand, CPS has often claimed to be redundant to intelligence, a well-established 

predictor of university success. This thesis, therefore, attempts to answer four 

complementary research questions dealing with (1) innovations in the assessment of 

CPS (2) the relation between CPS and intelligence in the prediction of university 

success (3) the relation between CPS and university success and (4) the defining 

characteristics of CPS tasks.  

By applying a vast array of different methods ranging from theoretical 

suggestions on the improvements of CPS assessment to meta-analyses, structural 

equation modeling, and item response models, this work is therefore the first 

extensive investigation of the utility of CPS in the prediction of university success and 

considerably extends the research on the validity of CPS as a construct. More 

specifically, this work introduces (1) the theoretical foundation for a multiple task 

approach to measure CPS that is in many ways superior to previous measurement 

approaches and thus allows for a reliable assessment of individual CPS skills. This is 

followed by (2) a meta-analytic investigation of the empirical relation between CPS 

and intelligence, an established predictor of university success, to rule out empirical 

redundancy between the two related constructs. Given the often reported strong but 

far from perfect relation between CPS and intelligence this work further describes (3) 

the investigation of incremental validity of CPS over and above intelligence in the 

prediction of university success. Finally, in order to be used as potential tools in 
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university selection, CPS tasks need to be easy to create and adapt. This work is 

therefore concluded by (4) an analysis of the difficulty of CPS tasks as a function of 

defining characteristics laying the ground for the efficient generation of new tasks. In 

summary, the present work addresses several important gaps in existing research both 

on CPS assessment and the prediction of university success.  

In Chapter 1, the societal need, as well as the theoretical and empirical 

foundation for this research, are introduced. This is followed by a brief description of 

the four empirical papers that are the main body of this thesis. The full papers are 

located in Chapters 2 to 5. Papers 1, 2, and 4 are already published after having 

successfully passed peer-review, Paper 3 is currently under review. Chapter 1 and 

Chapter 6 refer to additional papers including supplementary contributions of the 

author of this thesis on both CPS and the prediction of university success, which are 

listed as “additional papers” on page 9. 

The first empirical paper included in this thesis introduces the theoretical 

foundations of the Multiple Complex Systems (MCS) approach to assess CPS skills. 

Other than previous CPS assessment approaches, that used single very large and 

complex microworlds, the MCS approach relies on multiple smaller microworlds that 

are combined into one assessment instrument. This innovation leads to several 

important advantages over previous approaches including a highly increased 

reliability, variations in item difficulty, and scalability that allows for the application 

of advanced statistical models (cf. Chapter 2). 

The second paper meta-analytically investigated the relation between CPS and 

intelligence. The main finding was that the two constructs were highly related but not 

redundant to each other. Furthermore, this relation was moderated by the approach 

used to assess CPS with only small average correlations between classical measures 
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of CPS and intelligence but rather strong correlations for MCS measures of CPS (cf. 

Chapter 3). 

The third contribution investigated the validity of CPS in the prediction of 

university students’ objective and subjective academic success. Based on two 

independent samples it could be shown that CPS was substantially related to students’ 

grade point average (GPA) and subjective ratings of their success. This effect 

remained significant even after intelligence was controlled for (cf. Chapter 4). 

The fourth and final paper investigated the difficulty of MCS tasks. Based on 

six basic characteristics, it was possible to predict the tasks’ difficulty almost 

perfectly demonstrating a deep understanding of the defining aspects of MCS tasks. 

This lays the foundation for the efficient or even automatic generation of new tasks 

with known qualities (cf. Chapter 5) as is necessary for any form of high-stakes 

selection. 

Chapter 6 provides a general discussion of this research and its implications. 

Taken together, all four papers support the potential use of CPS in university 

selection. CPS can be assessed reliably, is not redundant to already established 

predictors, and incrementally explains students’ individual differences in academic 

performance. Finally, CPS tasks are well understood and can be easily created or 

adjusted making them very well suited for high-stakes assessment.  

After this summary of results, strengths of the papers are outlined and 

shortcomings combined with an outlook for future research are discussed. In 

summary, this thesis advances knowledge about CPS and emphasizes its usefulness as 

an additional predictor of university success. 
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The only person who is educated is the one 

 who has learned how to learn and change.  

Carl Rogers (1902 - 1984) 

 

1.1 Introduction 

 

Education plays a critical role in fostering social progress. Correspondingly, it 

is a sign of lasting societal change that the access to education continues to expand in 

Organization for Economic Cooperation and Development (OECD) countries (OECD, 

2014). This change in societies over only a couple of generations, from a time when 

only an elite few were highly educated to today’s situation where three-quarters of the 

population have at least an upper secondary education, is one whose consequences are 

still unfolding. Almost 40% of 25-34 year-olds nowadays have a tertiary education, a 

proportion that is 15 percentage points larger than that of 55‑64 year-olds; and in 

many countries, this difference exceeds 20 percentage points (OECD, 2014). This 

great achievement comes with new challenges. Providing higher education for such 

large proportions of a population represents a massive investment by individuals, 

organizations, and societies that need to be economically justifiable (Walker & Zhu, 

2003). Among the member countries of the OECD, an average of 6.2% of the gross 

domestic product is spent on educational activities, and the average young person in 

these countries will receive an education until the age of 22 (OECD, 2007). Education 

still remains one of the best individual and societal investments (Elias, & Purcell, 

2004) but only if the students actually complete their degree successfully.  

On the other hand, not all university programs are equally famous with 

students. While some programs such as philosophy appear less attractive, others such 
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as psychology or medicine have far more applicants than they could possibly handle 

(Statista, 2016).  

The search for fair and feasible selection procedures of adequate applicants 

and valid prediction of potential success at university, therefore, becomes increasingly 

important. Predictors of university success have been researched for over a century 

(Bingham, 1917), finding that adding information about psychological constructs to 

the information gained from previous academic achievements such as high school 

grade point average (GPA), increases the accuracy of predicting university success 

(Kuncel, Hezlett, & Ones, 2001). Most notably, individual differences in intelligence 

have consistently been found to add value in explaining the variation within 

university success (Richardson, Abraham & Bond, 2012).   

Measures of intelligence do not provide detailed information about a person’s 

skills of acquiring and applying new knowledge about a dynamic problem or system, 

tough (Wüstenberg, Greiff & Funke, 2012). Measures of complex problem solving 

(CPS) on the other hand, aim to assess these skills, which are vital for the successful 

completion of every higher degree in today’s society (Koeppen, Hartig, Klieme & 

Leutner, 2008). As opposed to intelligence, CPS requires participants to actively 

interact with and explore new and partly opaque problem situations in order to gather 

the information necessary to find solutions to the problems. For that purpose, 

participants are given simulated microworlds they can manipulate receiving feedback 

on the effects of their actions. However, even though several studies provide strong 

evidence in favor of the validity of CPS in the prediction of success in various 

environments such as school success (e.g., Schweizer, Wüstenberg & Greiff, 2013) or 

job performance (Danner et al., 2011), no extensive research on the introduction of 

tests of CPS into university applicant selection has been conducted so far.  
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This thesis will therefore comprehensively address the question on the validity 

of CPS as a construct and its utility in university selection. In that, the thesis will 

answer four complementary research questions: 

Research Question 1: Can CPS be reliably measured without the influence of 

previously acquired knowledge? 

Research Question 2: Is CPS theoretically or empirically redundant to 

intelligence?  

Research Question 3: Are measures of CPS valid in predicting indicators of 

university success? If so, do they show incremental validity over and above measures 

of intelligence? 

Research Question 4: Is it possible to predict the difficulty of CPS measures 

based on their defining characteristics? 

Each of the four papers primarily addresses one of these research questions 

and they are ordered accordingly (Chapters 2-5). Prior to that, a short description of 

the understanding of university success underlying this thesis and previous research 

on its prediction is given in section 1.2. This is followed by an introduction to the 

construct of CPS as well as to measurement approaches to assess individual 

differences in CPS competency in Section 1.3. Preceding results on the relation 

between CPS and university success are reported in Section 1.4, followed by a brief 

description of the four individual papers in section 1.5.  

1.2 University success 

1.2.1 Definition 

The overall aim of this thesis was to investigate the validity of CPS as a 

construct and to examine its utility in the prediction of university success. 
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Unfortunately, there is no generally accepted understanding on the definition of 

university success. Most attempts to define what constitutes success at university 

therefore become tautological, by defining university success based on one or more 

criteria of university success (see Anderson, 2003). In that, the definition of university 

success highly depends on the person, the peer group, or the institution in question 

(Konegen-Greiner, 2001). Especially on the institutional side (i.e., universities or 

governments) definitions tend to use very narrow or “hard” criteria such as focusing 

merely on students’ GPA (e.g., Wissenschaftsrat, 2004). Others, mostly on the 

personal side (i.e., students and lecturers), also include “soft” criteria such as personal 

satisfaction or other more subjective estimates of students’ success (Lattner, & 

Haddou, 2013). The notion of “university success” can thus have various different 

meanings for both students and institutions, such as graduating with a high GPA, 

graduating as fast as possible, learning as much as possible, completing the degree, 

prospects on future job success, or the subjective satisfaction with the degree (Kunina, 

Wilhelm, Formazin, Jonkmann, & Schroeders, 2007). A graphical representation of 

this distinction is provided in Figure 1. 

 

Figure 1. Criteria of university success (adapted from Lattner, & Haddou, 2013) 
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The “hard” criterion of students’ GPA is by far the most widely used and 

studied measure in tertiary education (Bacon & Bean, 2006; Richardson et al., 2012). 

Students’ GPA is the most salient criterion for students, is economically available, 

and correlates strongly with variables of interest to educational researchers such as 

intelligence, motivational strategies or certain personality traits (Richardson et 

al., 2012). GPA has been found to be a key criterion for postgraduate selection and 

employment and thus represents a valid predictor of socioeconomic success 

(Strenze, 2007). 

The sole use of GPA as an indicator of university success has often been 

criticized, though. Johnson (2003) for example, called grade inflation (very good or 

excellent grades becoming more and more commonplace) a crisis in university 

education. He further argues that every university uses multiple and sometimes very 

different grading approaches to evaluate students (see also Babcock, 2010). These 

grading disparities between universities, study programs, and even between different 

examiners at the very same program, as well as the aspect of grade inflation impair a 

fair and reliable assessment of students’ competencies. This has serious consequences 

on student’s future perspectives concerning the chance of finishing university with a 

higher GPA.  

Thus, GPA has, despite its considerable advantages, some noteworthy 

limitations as widespread indicator of students’ university success.  

Universities and researchers alike have responded to these limitations by 

including “soft” criteria into their definitions of university success as well. Most 

importantly, the subjective value that students attribute to specific indicators of 

university success may vary from student to student. In other words, students may, for 

example, consider a passing grade as either success or failure depending on their 
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subjective expectations. Lattner and Haddou (2013) conducted an interview study 

with students from all faculties resulting in a total of 10 subcategories of university 

success. While grades and the successful completion of the program were important 

to most students (though not all), softer aspects such as individual progress, practical 

relevance, fun, and reaching individual goals were considered equally important. In 

order to fully capture the heterogeneity of the construct of university success, “hard” 

and “soft” criteria of success should thus be considered complementary (Duckworth, 

Weir, Tsukayama, & Kwok, 2012).  

Within this thesis, students’ university success will therefore be considered a 

multidimensional construct consisting of both “hard” and “soft” criteria, which should 

be considered complementary in order to gain a holistic understanding of the 

construct. 

1.2.2 Predictors of university success 

Based on the multidimensional conception of university success underlying 

this thesis, managing a university program requires dealing with a complex system of 

academic tasks. These may include new learning and study behaviors, scientific 

thinking, social obligations, and various other demands that are either unique to 

university studies or at least more important than in high school (Parker, 

Summerfeldt, Hogan, & Majeski, 2004). It is therefore no surprise that numerous 

factors have been suggested to influence students’ university success, such as 

cognitive (e.g., intelligence or previous academic achievement; e.g., Formazin et al., 

2011), noncognitive (e.g., motivational factors, self-regulatory learning strategies, 

personality traits, students’ approaches to learning, or psychosocial contextual 

influences; for an overview see Richardson et al., 2012), and demographic (e.g., age 

or socio demographic background; e.g., Robbins et al., 2004).  
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The main focus of this thesis is placed on the cognitive predictors of university 

success. Most importantly, intelligence has been established as one of the strongest 

and most reliable predictors of academic achievement since the early 20th century 

explaining about 25% of the variance in university students’ GPA (e.g., Binet & 

Simon, 1916; Bingham, 1917; Jensen, 1998; Kuncel, Hezlett, & Ones, 2004). This 

means however, that equally intelligent students may differ largely in their university 

success. Other cognitive abilities have therefore come into the focus of researchers 

recently. Especially in tertiary education, where student selection procedures reduce 

variation in intelligence scores, the predictive value of intelligence is limited 

(Furnham, Chamorro-Premuzic & McDougall, 2003). Highly selective academic 

institutions show only very low variation in intelligence among their students (Jensen, 

1998). Other cognitive skills than intelligence may consequently add important 

incremental information to the accurate prediction of performance at university level. 

This becomes particularly evident in the differential development and 

prediction of “hard” and “soft” indicators of university success (e.g., Harackiewicz, 

Barron, Tauer, & Elliot, 2002). Whereas intelligence consistently predicts university 

students GPA, subjective or “soft” indicators of university success seem to be more 

closely linked to psychosocial and study skill factors (Robbins et al., 2006). For 

instance, Robbins and colleagues (2004) investigated the role of study skill factors as 

predictors of university outcomes in addition to other well-established cognitive 

predictors. Their meta-analysis showed that academia-related skills, defined as 

“cognitive, behavioral, and affective tools and abilities necessary to successfully 

complete task, achieve goals, and manage academic demands” (Robbins et al., 2004; 

p. 267), to be meaningful predictors of both university GPA (r = .13) and university 

retention rates (r = .30). 
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The aim of this thesis was therefore to investigate whether one such academia-

related skill, namely CPS, would be useful as an addition to intelligence in the 

prediction of university success. The following section will define the construct of 

CPS as well as introduce its assessment and the distinction between CPS and 

intelligence. 

 

1.3 Complex problem solving (CPS) 

1.3.1 Definition of CPS 

Imagine a university student who just started their first years as a freshman. In 

order to deal with the new demands of university life, the students need to generate 

knowledge about the universities inner workings such as choosing which lectures to 

attend, when to write exams, or learning how to borrow books from the library. In 

addition, they need to acquire new study habits adapted to the university requirements 

with its complex content. After having explored the university for a while, they will 

be able to apply that generated knowledge in order to succeed in their programs. This 

is a typical situation considered as a complex problem involving dynamic interaction 

with a yet unknown system. 

Complex problems contain multiple variables (complexity) that are 

interrelated (connectivity) and may change either as a result of the problem solvers 

manipulations or over time (dynamics). The problems’ structure is partially or fully 

opaque to participants (intransparency) and needs to be actively explored. This is 

summarized in Buchner’s definition of CPS as: 

“(…) the successful interaction with task environments that are dynamic (i.e., 

change as a function of the user’s interventions and/or as a function of time) and in 

which some, if not all, of the environment’s regularities can only be revealed by 
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successful exploration and integration of the information gained in that process.” 

(Buchner as cited by Frensch & Funke, 1995; p. 14) 

As described in the definition, such complex problems have no obvious 

method of solution and barriers between the initial state (e.g., having to choose the 

most appropriate lectures) and the goal state (e.g., achieving good grades) have to be 

reduced by applying non-routine cognitive activities (Funke, 2012; Mayer, 1992; 

Mayer & Wittrock, 2006). Problem solvers dealing with such complex problems face 

two main demands: generating knowledge about the systems’ structure (i.e., 

knowledge acquisition; Novick & Bassok, 2005) and the need to reach a certain goal 

by applying knowledge gathered beforehand (i.e., knowledge application; Novick & 

Bassok, 2005). While acquiring knowledge in complex problems, problem solvers 

build a problem representation and derive a problem solution, which are the two 

major components of the problem solving process accountable to all kinds of problem 

solving (Mayer, 2003; Mayer & Wittrock, 2006; Novick & Bassok, 2005). 

1.3.2 Assessment of CPS 

To allow for an active interaction between the student and the assessment 

instrument, the assessment of CPS necessarily requires a computer-based assessment 

(Frensch & Funke, 1995). With the advancement of computer technology, various 

CPS tasks have therefore evolved following different approaches. The first computer-

based CPS tasks were developed in the early 1980s. The aim was to administer task 

environments with a high resemblance to the real world and the goal of producing a 

reliable and ecological valid measure of CPS that sufficiently emulated real world 

problems. The complex problem “Lohausen” (Dörner, Kreuzig, Reither, & 

Stäudel, 1983), for instance, required a participant to govern a small city. This city 

was intricately modeled with over 1000 separate interconnected variables. Such 
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classical measures of CPS had a high level of face validity, as they seemed to mirror 

real life problem solving. Their psychometric properties however were insufficient 

(Greiff, Stadler, Sonnleitner, Wolff, & Martin, 2015). Unsatisfactory reliability and 

validity raised doubt on the measurability and validity of the construct of CPS itself 

(Kröner et al., 2005; Wüstenberg et al., 2012). Moreover, knowledge about the real 

world situation emulated by the classical measure of CPS strongly influenced 

performance in these tasks. This limited the usability of classical measures of CPS 

such as Lohhausen as assessment instruments. Funke (2001) responded to these 

problems by introducing Linear Structural Equation systems (LSE) and Finite State 

Automata (FSA) as formal frameworks that allow for the description of underlying 

task structures. Both of these frameworks enabled the creation of single complex 

systems, which are independent of any semantic embedment (Greiff et al., 2015). 

These single complex systems specify an underlying system that can be applied to 

multiple, arbitrary semantic contexts thus removing the influence of any previous 

knowledge. Especially the LSE formalism has been widely adopted by CPS research 

leading to the development of a considerable number of single complex systems [e.g., 

“Multiflux” (Kröner, 2001) or “FSYS” (Wagener, 2001)]. In a further advancement 

Leutner, Klieme, Meyer, and Wirth (2004) used a combination of two single complex 

systems for measuring CPS as an aggregated score. Greiff, Wüstenberg, and Funke 

(2012) extended this idea for the development of the multiple complex systems 

(MCS) approach. The MCS approach solves several measurement issues by using 

multiple small tasks, rather than one single large task as in classical measures of CPS 

or single complex systems (Greiff et al., 2015). The first in assessment tools 

following the MCS approach such as MicroDYN (Greiff et al., 2012) or Genetics Lab 

(Sonnleitner et al., 2012) were based on LSE. Later, the approach was extended to 
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FSA with the development of MicroFIN (Neubert, Kretzschmar, Wüstenberg, & 

Greiff, 2014). These MCS measures of CPS were developed with a clear focus on 

quality and showed significantly higher reliability than classical measures of CPS. 

Figure 2 shows an example of a typical MicroDYN (Greiff et al., 2012) task. In this 

task a problem solver needs to first figure out the effect of three generically labeled 

ingredients of a perfume (Norilan, Miral, and Carumin) on three characteristics of the 

perfume (Sweet, Flowery, and Fruity). After the relation was explored and plotted 

below the task, the problem solver needs to reach specific popularity values for all 

three products (the red lines in the graphs on the right side of the task) in no more 

than four steps. 

 

 

Figure 2. Screenshot of MicroDYN’s graphical interface during the knowledge 

application phase. Horizontal lines indicate the target values for the outcomes 



24  Introduction   

variables. The underlying relations between the variables are given in the lower 

section of the figure. 

1.3.3 CPS and intelligence 

Both on the conceptual basis (Funke & Frensch, 2007) and on an assessment 

level (e.g., Kröner et al., 2005), CPS has often been compared to intelligence. Various 

defining features of CPS such as the integration of information or the detection of 

underlying structures are part of most definitions of intelligence (Sternberg & Berg, 

1986). On the other hand, the dynamic and opaque aspects of CPS are not established 

in the current conceptions of intelligence such as the Cattell–Horn–Caroll (CHC) 

theory (McGrew, 2009). These aspects of CPS may therefore be important additions 

for the understanding of human ability (Dörner & Kreuzig, 1983; Greiff et al., 2013). 

This theoretical ambiguity is reflected in empirical findings on the relation 

between CPS and intelligence. Several early studies on the relation between CPS and 

intelligence indicated that psychological assessments of intelligence were unable to 

explain variance in CPS (Brehmer, 1992; Rigas & Brehmer, 1999). Kluwe,Misiak, 

and Haider (1991) summarized 11 of these early studies on the relation between CPS 

and intelligence and concluded that most of them failed to show a close relation 

between intelligence scores and CPS performance measures. This led several 

researchers to suggest CPS to be a cognitive construct mostly independent from 

intelligence (Putz-Osterloh, 1985). Rigas and Brehmer (1999) summarized this view 

in the different-demands hypothesis. This hypothesis suggests that CPS tasks demand 

the performance of more complex mental processes than intelligence measures do, 

such as the active interaction with the problem to acquire knowledge on the problem 

environment.  



Introduction  25 

Whereas there is some support for the different-demands hypothesis (e.g., 

Joslyn & Hunt, 1998), more recent studies challenge it. In a comprehensive study, 

Gonzalez, Thomas, and Vanyukov (2005) found correlations ranging from r=.33 to 

r=.63 between various measures of CPS and measures of general intelligence. 

Similarly, Süß, Kersting, and Oberauer (1991) reported correlations of r = .40 

between Tailorshop performance measures (Tailorshop being one of the most 

frequently used measures of CPS) and measures of general intelligence. Based on 

these moderate to strong correlations several researchers came to argue that measures 

of CPS would be almost redundant to measures of intelligence (Mayer et al., 2013; 

Wittmann & Süß, 1999).  

An explanation for these inconsistent findings regarding the relation between 

CPS and intelligence may lie in the operationalization of CPS. In line with the 

different-demands hypothesis, the operationalizations of CPS differed in their level of 

complexity with classical measures being very complex and MCS measures 

minimally complex. Correspondingly, the relation between CPS and intelligence may 

differ depending on the CPS measure used. An alternative explanation for the fuzzy 

results of studies on the relation of intelligence and CPS could lie in the semantic 

embedment of CPS tasks. The Elshout–Raaheim hypothesis (Elshout, 1987; 

Raaheim, 1988; see also Leutner, 2002) proposes an inverted U-shaped relation 

between the correlation coefficient as the dependent variable and the amount of 

available domain-specific knowledge as the independent variable. As classical 

measures of CPS emulated real-world problems, domain specific knowledge could be 

used to solve the problems, thus limiting the relevance of individual intelligence. 

More recent measures of CPS such as MCS measures are less dependent of a 

semantic context, and, thus, less domain specific knowledge can be used. This should 
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result in a stronger relation between performance in modern CPS tasks and 

intelligence.  

In summary, the relation between CPS and intelligence remains unclear. This 

is particularly important for this thesis, which investigates the incremental validity of 

CPS in predicting university success over and above intelligence.  

1.4 CPS and university success 

The ability to deal with dynamically changing and opaque systems should be 

necessary to be successful at any academic institution. Support for this notion comes 

from several articles reporting that CPS predicts high school grades beyond measures 

of intelligence (Greiff et al., 2013; Wüstenberg et al., 2012; see Kretzschmar, 

Neubert, Wüstenberg, & Greiff, 2016 for divergent findings) or working memory 

capacity (Schweizer et al., 2013). As outlined above, the demands posed by university 

programs should be more complex and cognitively challenging than those 

encountered at high school. In her model of university success, Ferrett (2000) 

describes cognitive skills such as time management, preparing for and taking 

examinations, or using information resources as the focal point of the freshman year 

experience. University students face a variety of new challenges such as learning and 

applying study habits in a more complex academic environment and generally 

discovering how to function as independent and academically successful adults, 

which requires planning and problem-solving competencies (e.g., acquiring 

knowledge about new problems or prioritizing sub goals). In other words, students 

need to solve complex problems to be successful in college. Surprisingly though, only 

one study has investigated the relation between CPS and university success to date 

(i.e., Stadler, Becker, Greiff, & Spinath, 2015). This study, which will function as a 

starting point for this thesis found a substantial relation between CPS and both GPA 
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and subjective university success of business students (β = .38) that remained 

significant even after general intelligence was controlled for.  

However, the study by Stadler and colleagues was severely limited in its 

generalizability. First, the sample size used was rather small (N = 78) and did not 

allow for advanced statistical analyses such as structural equation modeling. 

Furthermore, the sample consisted exclusively of business students and was thus 

rather homogeneous. Regarding the measures used, both the very broad measure of 

intelligence and the highly complex measure of CPS may have further influenced the 

results thus additionally limiting their generalizability. 

The aim of this thesis will therefore be an extensive investigation of the validity of 

CPS as a construct and its utility in predicting students’ university success. For this 

purpose, Paper 1 provides a comprehensive review of CPS measurement approaches 

introducing MCS measures and comparing them to other established measures. Paper 

2 investigates the relation between CPS and intelligence and provides a meta-analysis 

on its dependency on different measurement approaches. Once these first two papers 

have determined the most adequate methods to operationalize both CPS and 

intelligence, Paper 3 can investigate the validity of CPS in the prediction of university 

success as well as its incremental value over and above intelligence. Finally, Paper 4 

will further validate CPS measures as applicable in high-stakes assessments by 

demonstrating the good predictability of MCS tasks’ difficulty.  

1.5 Preview of the individual papers 

1.5.1 Preview of Paper 1 

Paper 1 introduces the MCS approach as a way to reliably measure individual 

differences in CPS. After defining the construct, the paper gives an overview over the 

formal frameworks for describing complex problems. These consist of LSE, which 
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model the relation between variables in a complex system as a set of linear structural 

equations, and FSA, which describe a complex system as a set of variables with a 

finite amount of states. Both of these frameworks were used to develop a multitude of 

CPS measures.  

However, all of these measures consisted of one single, highly complex task. 

This leads to several measurement issues that occur when a test is composed of single 

tasks only. Specifically, test with only one single item have fixed item difficulty that 

cannot be adjusted to the assessment situation. Furthermore, these measures show low 

reliability that can hardly be determined as every action within the system strongly 

depends on the previous action. Along that line of thought, random errors in the early 

phases of the measurement can have a large impact on the final result as they 

influence every succeeding action. 

MCS measures avoid these issues by combining multiple small CPS tasks into 

one measure. That way, it is possible to vary the difficulty of the measure by the 

combination of differently difficult tasks. The reliability of such measures can be 

determined by the internal consistency across the individual tasks. Correspondingly, 

errors in the first tasks do not necessarily influence the behavior in the following tasks 

and thus do not overly skew the final assessment result. MCS tasks can be based on 

both the LSE and the FSA frameworks. 

MCS measures thus represent an important advancement in the measurement 

of CPS. On the other hand, MCS measures need to consist of tasks that are 

considerably smaller and less complex than those of CPS measures using only a 

single task. Thus MCS measures trade qualities such as reliability and scalability 

against the possibility to simulate extremely complex systems. 
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1.5.2 Preview of Paper 2 

Paper 2 meta-analytically examines the nature and magnitude of the relation 

between CPS and intelligence. Theoretically, researchers have hypothesized the two 

constructs to be everything from completely separate (e,g,, Quelle) to identical (e,g,, 

Quelle). Over the course of almost four decades, empirical studies yielded results 

supporting both arguments with correlation coefficients from r = -.3 to r = .8. To 

summarize these results and search for moderating factors, the data of 47 studies 

containing 60 independent samples and a total sample size of 13,740 participants was 

collected. Across all samples, the analysis revealed a medium correlation between 

CPS and intelligence with an average effect size of M(g) = .433.  

Additional moderator analyses investigated whether the operationalization of 

CPS and intelligence could explain the inconsistencies among the various studies. 

Whereas there were no significant differences in the correlation considering the 

operationalization of intelligence, the approach used to measure CPS moderated the 

correlation of CPS and intelligence. The MCS measures of CPS yielded the strongest 

associations between the two constructs. Classical measures of CPS on the other hand 

led to a substantially smaller correlation between CPS and intelligence.  

The results thus clearly show a medium to strong relation between CPS and 

intelligence. On the other hand it could also show that the two constructs are far from 

redundant to each other. 

1.5.3 Preview of Paper 3 

The aim of Paper 3 was to investigate the role of CPS in undergraduate 

students’ university success in two independent studies. In that CPS should not only 

predict different indicators of university success but also show incremental validity 

over and above intelligence. Following the findings of the Papers 1 and 2, CPS was 
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operationalized using an MCS measure and intelligence was assessed using a short 

reasoning measure. This allows for a reliable measurement of CPS (cf. Paper 1) while 

not underestimating the relation between CPS and intelligence. To reach a high 

generalizability of the findings, the research question is investigated with two 

independent samples. 

In Study 1, university GPAs and subjective evaluation of academic success 

were collected for 165 university students who predominantly studied psychology. 

CPS made a significant contribution to the explanation of GPAs and the subjective 

success evaluations when controlling for intelligence.  

To further investigate this effect, Study 2 relied on an independent and more 

heterogeneous sample of 216 university students. The findings of Study 1 were 

replicated in this study. Thus, the results of both studies suggest a link between 

individual differences in CPS and the abilities necessary to be academically 

successful university education. 

1.5.4 Preview of Paper 4 

Paper 4 further investigates the utility of CPS tasks in high-stakes assessment 

situations such as university applicant selection. Fairness and security aspects are of 

outmost importance in any applicant selection. One of the major concerns of high-

stakes testing is therefore the integrity of items, which can be severely compromised 

by repeated use. Automatic item generation, as a means of minimizing the effort 

necessary to create new items, can present a cost efficient and suitable way to tackle 

this problem. To generate items automatically, test items must be converted into an 

item model that is a prototypical representation of the test items to be generated. Such 

prototype items model could determine the difficulty of any theoretically describable 

item a priori. However, no such item model exists for CPS tasks.  
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To fill this gap, we analyze data of 3056 Finnish students using a linear 

logistic test model (LLTM). The LLTM models the likelihood of solving an item 

correctly (i.e., the item’s difficulty) as a function of individual ability and a linear 

combination of specific item characteristics and their relative contribution to item 

difficulty. Our results suggest that the difficulty of MCS tasks is almost perfectly 

predictable by six basic characteristics; namely, the use and number of (1) 

eigendynamics, the number of (2) input and (3) output variables, the number of (4) 

input and (5) output variables not related to any other variables, and (6) the total 

number of relations between all variables. In addition, we provide evidence for the 

necessity of differentiating between difficulty of controlling a CPS task (knowledge 

application) and understanding it’s underlying system (knowledge acquisition).  

 

  



32  Assessing complex problem solving skills with multiple complex systems
   

 
 
2 
 
 

Assessing complex problem solving skills with multiple complex systems 
 
 
 
 
 
 
This article is available as: 
 
Greiff, S., Fischer, A., Stadler, M., & Wüstenberg, S. (2014). Assessing complex 
problem-solving skills with multiple complex systems. Thinking & Reasoning, 21, 
356-382. 
 
  



Assessing complex problem solving skills with multiple complex systems  33 

 



This article was downloaded by: [84.153.1.178]
On: 23 December 2014, At: 12:42
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Click for updates

Thinking & Reasoning
Publication details, including instructions for authors
and subscription information:
http://www.tandfonline.com/loi/ptar20

Assessing complex problem-

solving skills with multiple

complex systems

Samuel Greiffa, Andreas Fischerb, Matthias Stadlera &
Sascha Wüstenberga

a University of Luxembourg, Institute of Cognitive
Science and Assessment, Luxembourg, Luxembourg
b Department of Psychology, University of Heidelberg,
Heidelberg, Germany
Published online: 20 Dec 2014.

To cite this article: Samuel Greiff, Andreas Fischer, Matthias Stadler & Sascha
Wüstenberg (2014): Assessing complex problem-solving skills with multiple complex
systems, Thinking & Reasoning, DOI: 10.1080/13546783.2014.989263

To link to this article:  http://dx.doi.org/10.1080/13546783.2014.989263

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the
information (the “Content”) contained in the publications on our platform.
However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or
suitability for any purpose of the Content. Any opinions and views expressed
in this publication are the opinions and views of the authors, and are not the
views of or endorsed by Taylor & Francis. The accuracy of the Content should
not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions,
claims, proceedings, demands, costs, expenses, damages, and other liabilities
whatsoever or howsoever caused arising directly or indirectly in connection
with, in relation to or arising out of the use of the Content.

http://crossmark.crossref.org/dialog/?doi=10.1080/13546783.2014.989263&domain=pdf&date_stamp=2014-12-20
http://www.tandfonline.com/loi/ptar20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13546783.2014.989263
http://dx.doi.org/10.1080/13546783.2014.989263


This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan, sub-
licensing, systematic supply, or distribution in any form to anyone is expressly
forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

D
ow

nl
oa

de
d 

by
 [8

4.
15

3.
1.

17
8]

 a
t 1

2:
42

 2
3 

D
ec

em
be

r 2
01

4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Assessing complex problem-solving skills with multiple

complex systems

Samuel Greiff1, Andreas Fischer2, Matthias Stadler1, and
Sascha W€ustenberg1

1University of Luxembourg, Institute of Cognitive Science and Assessment,
Luxembourg, Luxembourg
2Department of Psychology, University of Heidelberg, Heidelberg, Germany

In this paper we propose the multiple complex systems (MCS) approach for
assessing domain-general complex problem-solving (CPS) skills and its processes
knowledge acquisition and knowledge application. After defining the construct
and the formal frameworks for describing complex problems, we emphasise
some of the measurement issues inherent in assessing CPS skills with single tasks
(i.e., fixed item difficulty, low or unknown reliability, and a large impact of
random errors). With examples of the MicroDYN test and the MicroFIN test
(two instances of the MCS approach), we show how to adequately score
problem-solving skills by using multiple tasks. We discuss implications for
problem-solving research and the assessment of CPS skills in general.

Keywords: Complex problem solving; Knowledge acquisition; Knowledge
application; MicroDYN; MicroFIN; Multiple complex systems

When cognitive scientists want to know how a person copes with certain
problems, they cannot just read the person’s mind, but rather, they usually
have to present the person with a set of valid tasks and assess the problem-
solving strategies that he or she applies. In the pioneer era of research on
human problem solving, there was a lot of research on rather simple and
academic problems such as the Tower of Hanoi (Simon, 1975), Duncker’s
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(1945) Candle Problem, or the problem of Missionaries and Cannibals (Jef-
fries, Polson, Razran, & Atwood, 1977). The simulation of both realistic
and complex problems provided a great step forward in research on human
problem solving: With the advent of computers in psychological laboratories
during the 1970s, computer simulations of complex scenarios such as Loh-
hausen (D€orner, Kreuzig, Reither, & St€audel, 1983), Milk Truck (Schunn &
Klahr, 2000), or the Sugar Factory (Berry & Broadbent, 1984) became
increasingly popular in the scientific community as methods for examining
human problem solving and decision making in realistic tasks (i.e., micro-
worlds; Papert, 1980, p. 204) while still having the advantage of standardised
laboratory conditions. For instance, D€orner (1989) elaborated on systematic
human failures in coping with complexity, whereas Berry and Broadbent
(1984) did research on the influence of implicit knowledge on complex sys-
tem control, and Klahr and Dunbar (1988) focused on scientific discoveries
and hypothesis testing in complex environments.

Complex problems (or microworlds; Kluge, 2008) seem to have greater
ecological validity than other cognitive tasks such as tasks used in classical
tests of intelligence (Beckmann, 1994). In complex microworlds, problem solv-
ers can manipulate certain input variables and observe the resulting changes in
a set of outcome variables. While doing so, problem solvers have to acquire
and apply knowledge about the complex scenario’s structure in order to reach
their goals (i.e., build a representation of the problem and search for a solution;
Novick & Bassok, 2005), and this involves processes such as information
reduction (Klauer, 1993), causal learning via interaction (B€uhner & Cheng,
2005), hypothesis testing (Klahr & Dunbar, 1988), dynamic decision making
(Edwards, 1962), and self- and task-monitoring (Osman, 2010).

But even if these processes of knowledge acquisition and knowledge
application seem to be highly relevant for problem solving in various
domains of daily life such as academic (e.g., W€ustenberg, Greiff, & Funke,
2012) or occupational success (Danner, Hagemann, Schenkin, Hager, &
Funke, 2011), research on complex microworlds has faced some major issues
that could not be sufficiently solved until now: There was (1) a lack of com-
parability between different microworlds: In early research on complex prob-
lem solving (CPS), different opinions about how to define “complexity”
(Quesada, Kintsch, & Gomez, 2005) as well as a variety of different scenarios
such as Lohhausen, Milk Truck, and the Sugar Factory emerged, and it
became difficult to determine the common attributes of those complex prob-
lems and to compare them with each other directly (Funke, 2001). Adding to
this, (2) scalability remained unclear as single time-consuming simulations
(e.g., the time-on-task for Lohhausen was about 16 hr; see D€orner et al.,
1983, p. 120) were used to measure CPS skills, and different measures of per-
formance in different microworlds did not necessarily correlate with each
other or with traditional measures of general mental ability (D€orner, 1986;
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Wenke, Frensch, & Funke, 2005) even if there was considerable conceptual
overlap between performance on CPS tasks1 and intelligence tests. So it has
previously been unclear whether performance scores across a number of com-
plex problems can be summed to form consistent and homogenous scales.

One decade ago, Funke (2001) proposed using formal frameworks to
compare different scenarios with respect to the formal features of their causal
structures. This solved the first problem (i.e., lack of comparability) but not
the issue of scalability. In this paper, we will extend this approach. First, we
will briefly provide background information on (1) the concept of domain-
general skills, which are relevant for CPS (Fischer, Greiff, & Funke, 2012),
and (2) how to design tasks that address these problem-solving skills in such
a way that they are comparable with regard to their underlying formal struc-
ture (Funke, 2001). We will then (3) outline the most important measurement
issues that have resulted from unclear scalability and that have yet to be
resolved, and (4) introduce the multiple complex systems (MCS) approach,
which is based on formal frameworks, as a viable way to both overcome these
measurement issues and enable solid research on problem-solving skills.

THE PROCESS OF COMPLEX PROBLEM SOLVING
According to Mayer and Wittrock (2006), problem solving takes place when
a given state has to be transformed into a goal state and no obvious or rou-
tine method of solution is available. A problem is complex if a sizable num-
ber of interrelated factors have to be considered in order to derive a solution
(Weaver, 1948). As prior knowledge about complex problems is often false
or at least incomplete (D€orner, 1989), the complex problem solver usually
attempts (1) knowledge acquisition and (2) knowledge application (cf.
Fischer et al., 2012; Funke, 2001; Novick & Bassok, 2005) in order to ade-
quately represent and solve the complex problem in a viable way.

Knowledge acquisition

When confronted with a complex problem, a problem solver has to build a
parsimonious and viable representation of the most relevant aspects of the
problem structure. That is, he or she first has to acquire viable knowledge
about the problem. On the basis of knowledge about (1) possible states of
the specific problem at hand, (2) analogous problem structures, or (3)
abstract solution schemas (e.g., “vary one thing at a time”; Tschirgi, 1980),
an initial assumption about the relevant aspects of the problem and

1Throughout this paper, the term “simulation” describes the whole measure of CPS. Different
complex systems within a simulation are called “tasks”, each of which may contain different
“items” to measure different processes such as knowledge acquisition or knowledge application.
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hypotheses about how these aspects are interrelated need to be mentally rep-
resented (each kind of data representation highlights certain features and
distinctions and downplays irrelevant features and distinctions; cf. Newell &
Simon, 1972; Schunn & Klahr, 1995). As these initial assumptions are often
false or at least incomplete in complex situations (D€orner, 1989), their viabil-
ity has to be tested by directly interacting with the problem (cf. Klahr &
Dunbar, 1988). Each interaction with the system can be seen as an experi-
ment (varying the state of the problem), which generates information that in
turn may allow the problem solver to accept, reconsider, or reject the current
assumptions (Klahr & Dunbar, 1988). B€uhner and Cheng (2005) emphasised
the special importance of active interventions for causal learning (in contrast
to the mere observation of covariation). The result of effective interactions
and learning is a viable mental representation of the most important aspects
of the problem’s causal structure (i.e., subject-matter knowledge; cf. Even,
1993). Schunn and Klahr (1995) described this process of acquiring subject-
matter knowledge as a search through possible experiments, hypotheses,
data representations, and experimental paradigms.

Knowledge application

After a sufficient amount of subject-matter knowledge (Even, 1993) has been
acquired, a feasible solution has to be derived. Systematically searching for a
solution usually implies applying knowledge about (1) prior encounters with
similar situations that were successfully solved (cf. instance-based learning
theory; Broadbent, Fitzgerald, & Broadbent, 1986; Gonzalez, Lerch, & Leb-
iere, 2003), (2) the current schematic representation of the problem (Sweller,
1988), or (3) general solution heuristics applicable in the current situation
(Gigerenzer & Brighton, 2009; Kahneman, 2011). The specific knowledge,
applied in a certain way to structure or constrain the search process, depends
on a variety of personal and situational features such as expertise and meta-
strategic knowledge (Kuhn, 2000) or the salience of important features
(Novick & Bassok, 2005). When a decision to implement an intervention (or
a series of interventions) has been made, the solution has to be implemented.
At the same time, the consequences of each intervention and the system’s
autonomous developments have to be monitored as they may have implica-
tions for the representation of the system and for future decisions (cf.
dynamic decision making; Edwards, 1962).

If the problem solver is unable to find a solution, he or she may switch
back to knowledge acquisition: For instance, when the rate of progress is per-
ceived to be too slow to solve the problem in time (MacGregor, Ormerod, &
Chronicle, 2001), or when the problem solver gets stuck in an impasse (Ohls-
son, 1992), there are often changes in the representation of the problem (e.g.,
relaxation of constraints) or in the use of strategy (Fischer et al., 2012).

4 GREIFF ET AL.

D
ow

nl
oa

de
d 

by
 [8

4.
15

3.
1.

17
8]

 a
t 1

2:
42

 2
3 

D
ec

em
be

r 2
01

4 



CPS and related constructs

The theoretical distinction between CPS and related constructs such as rea-
soning, working memory capacity (WMC), or domain-specific problem solv-
ing has been investigated frequently (Wittmann & S€uß, 1999). Whereas some
researchers have highlighted commonalities between the constructs, others
have focused on differences. Both reasoning and working memory overlap
theoretically with CPS (B€uhner, Kr€oner, & Ziegler, 2008; Kr€oner, Plass, &
Leutner, 2005), but there are also substantial and important conceptual differ-
ences (e.g., Schweizer, W€ustenberg, & Greiff, 2013; W€ustenberg et al., 2012).

Reasoning can be broadly defined as the process of drawing conclu-
sions in order to achieve goals, thus informing problem-solving and deci-
sion-making behaviour (Leighton & Sternberg, 2004). It has been linked
to executive control processes that allow a person to analyse simple prob-
lems, create solution strategies, monitor performance, and adapt behav-
iour accordingly. Interestingly, the skills necessary for CPS are often
identified with the same labels as those for reasoning. As outlined above,
CPS also requires the acquisition and application of knowledge and the
monitoring of behaviour (Funke, 2001), and problem solving is part of
almost every definition of reasoning (Sternberg & Berg, 1992). Nonetheless,
Raven (2000) separates CPS from reasoning, focusing on the dynamic interac-
tions necessary in CPS for revealing and incorporating previously unknown
information as well as for achieving a goal using subsequent steps that depend
on previous steps. The major difference between reasoning and CPS is there-
fore whether or not there is a need for “experimental interaction with the
environment” (Raven, 2000). On this basis, CPS and reasoning can be viewed
as related but distinguishable constructs. Empirically, this assumption is sup-
ported by studies that have reported moderately high correlations between
CPS and reasoning (e.g., Danner et al., 2011; Greiff, W€ustenberg et al., 2013;
W€ustenberg et al., 2012).

WMC, on the other hand, is defined as the capacity of the cognitive sys-
tem to simultaneously store and process information (Baddeley, 1989). It is
very closely related to reasoning (e.g., B€uhner, Krumm, & Pick, 2005; Kyllo-
nen & Christal, 1990) and is a well-established predictor of different higher
order cognitive tasks such as language comprehension (Daneman & Meri-
kle, 1996). Concurrently, WMC may limit CPS performance (B€uhner et al.,
2008; S€uß, 1999). To this end, Wirth and Klieme (2003) argue that “in most
dynamic problem situations, [. . .] more than one goal has to be pursued. The
underlying structure of the problem is complex, and the amount of relevant
information exceeds the capacity of working memory” (p. 332). According
to this theoretical view, WMC should predict CPS as it limits the amount of
information that can be searched, acquired, and applied when solving a
complex problem. However, there are clear theoretical differences between
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WMC and CPS. Funke (2010) emphasises that CPS cannot be reduced to
simple cognitive operations such as a mere sequence of memory processes.
Rather, it is to be understood as an organised interplay of simple cognition
and different complex cognitive processes, including the self-guided plan-
ning, execution, and evaluation of actions and the application of strategies
that are implemented to reach one or more overarching goals (Funke, 2010).
Accordingly, WMC may be relevant for CPS, but it does not represent a
genuine aspect of it. Empirically, the distinction between WMC and CPS is
supported by the incremental validity of CPS scores over WMC in predict-
ing school grades (Schweizer et al., 2013) and moderately high correlations
between WMC and CPS (B€uhner et al., 2008).

Finally, a large amount of research has been conducted on human prob-
lem solving and expertise in specific domains, usually referred to as domain-
specific problem solving (Sugrue, 1995), including mathematical (e.g., Dan-
iel & Embretson, 2010), scientific (e.g., Dunbar & Fugelsang, 2005), or tech-
nical (e.g., Baumert, Evans, & Geiser, 1998) problems. Domain-specific
problems, as encountered outside the laboratory, are always embedded
semantically, and the success of a problem solver depends on his or her expe-
rience and subject-matter knowledge in this specific area (cf. Sugrue, 1995).
But of course, there are domain-general mental processes involved in solving
problems regardless of the domain. Knowledge acquisition (i.e., building a
mental representation) and knowledge application (i.e., finding a solution)
are defining components of problem-solving theories in any domain (cf.
Mayer & Wittrock, 2006; Novick & Bassok, 2005; Mayer, Larkin, &
Kadane., 1984). Funke (2010) argues that complex and general mental pro-
cesses are highly relevant when solving new problems and, according to him,
the use of general mental representation formats such as causal networks
are relevant for knowledge acquisition but not bound to specific domains.
To this end, Novick, Hurley, and Francis (1999) state that domain-general
processes in problem solving are crucial for problem representation because
abstract schemas are more useful than specifically relevant example prob-
lems for understanding the structure of novel problems. These general repre-
sentations are not contaminated by specific content and can thus be
generalised more easily (Holyoak, 1985). This line of research does not ques-
tion that domain-specific processes exhibit high relevance in real-life prob-
lem solving (e.g., Wason & Shapiro, 1971), but there is still a substantial
degree of domain-generality in CPS (Buchner, 1995; Sternberg, 1995).
Empirically, Scherer and Tiemann (2012) were able to distinguish domain-
specific and domain-general problem solving as related but separate factors.

In summary, basic cognitive abilities such as reasoning and WMC can-
not completely account for performance in CPS, and domain-specific knowl-
edge is not sufficient for (but may result from) solving unknown complex
problems in any domain. This is in line with the theory of cognitive cascades

6 GREIFF ET AL.

D
ow

nl
oa

de
d 

by
 [8

4.
15

3.
1.

17
8]

 a
t 1

2:
42

 2
3 

D
ec

em
be

r 2
01

4 



(Bornstein, Hahn, & Heynes, 2010; Fry & Hale, 1996), which posits that
basic cognitive abilities predict more complex ones. After this initial theoret-
ical classification, the following section will provide an overview of existing
measures of domain-general CPS skills.

FORMAL FRAMEWORKS FOR DESCRIBING GENERAL
ASPECTS OF COMPLEX PROBLEMS

Over the last 30 years, experimental research has produced a variety of find-
ings on CPS largely by using measures composed of a large number of
elements, time-delayed effects, nonlinear relations, and complex structures
(e.g., D€orner, 1989). These tasks were often constructed unsystematically
and ad hoc. From a psychometric perspective, these measures were prohibi-
tive (Funke, 2001) as they varied considerably with regard to the systems
underlying them and their cognitive demands, thus rendering it impossible
to compare empirical results across different studies.

In response to these issues in the measurement of domain-general prob-
lem-solving skills such as systematic knowledge acquisition and knowledge
application, Funke (2001) introduced the formal frameworks of linear struc-
tural equations (LSEs) and finite state automata (FSA), which allowed com-
plex problems to be described systematically on a formal level. A coherent
formal description of different complex problems ensures a minimal set of
commonalities between these problems (instead of mixing apples and
oranges) and allows for the systematic comparison of different complex
problems with regard to their underlying structure (instead of or in addition
to their surface features or semantic context). As these frameworks are an
important prerequisite for the CPS measurement approach based on MCS
proposed in this paper, we will elaborate further on both frameworks.

Linear structural equations

LSEs describe a framework for modelling linear relations between quantita-
tive variables, such as the influence of coffee consumption on thirst and
alertness (within certain boundaries). On a formal level, LSE systems con-
tain a set of input variables (which can be set by the problem solver) and a
set of output variables (whose values may linearly depend on other output
or input variables) as well as linear relations between these variables. In
dynamic systems, an output variable may also influence itself, called eigen-
dynamic (Funke, 2001). In order to solve this kind of problem (e.g., to
obtain a certain level of alertness by drinking coffee), a problem solver has
to (1) explore the linear relations between input and output variables in a
first phase (knowledge acquisition) and (2) reach certain goal values for the
output variables in a second phase (knowledge application).

MULTIPLE COMPLEX SYSTEMS 7
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Figure 1 illustrates the following system of interrelated variables:

YtC 1 D 2£At;

ZtC 1 D 0:9£Zt C 0:5£Yt C 3£At ¡ 2£Bt;

In this example, varying the exogenous variable A at any discrete point in
time t has multiple direct effects on Y and Z and an additional delayed and
indirect effect on Z (A influences Y, and Y in turn influences Z). The endoge-
nous variable Z is directly dependent on both itself (eigendynamic) and on
three other variables (A, B, and Y).

Of course, less abstract problems can be formulated as LSE systems as
well: For example, the complex problem of managing a sugar factory was
described as an LSE containing one output variable (sugar production) that
was negatively related to itself and positively related to one input variable
(number of workers) by Berry and Broadbent (1984). In this system, the
problem solver had to acquire knowledge about the causal interrelations of
variables and to apply this knowledge in order to successfully control the
amount of sugar produced by manipulating the number of workers.

Finite state automata

In contrast to LSE systems, FSA systems are useful for describing relations
between qualitative variables, for example, the discrete state changes trig-
gered by the buttons of a mobile phone or a ticket vending machine (Buch-
ner & Funke, 1993). An FSA contains a limited number of states S (e.g.,

Figure 1. Structure of a linear system (Funke, 2001) with two input variables (A and B), two
output variables (Y and Z), and the relations between them (arrows).
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“on” and “off”) and a limited number of interventions X (e.g., buttons) as
well as a function that specifies the state following each possible other state
and/or intervention (see Table 1). Whereas the distinction between the two
frameworks is pragmatic to a large degree as the two representations can be
translated into each other (e.g., Cohen, 1968), it is important to note that an
FSA system differs from an LSE system where the states change quantita-
tively and discretely and are therefore not limited to certain qualitative cate-
gories. LSEs can therefore be considered a special form of FSA with a very
large number of ordinal categories, which would be highly impractical to
represent in FSA (Neubert, Kretzschmar, W€ustenberg, & Greiff, 2014). The
problem solver is not shown the states of an automaton directly, but there is
a visual output (e.g., on the screen of a mobile phone) based on the current
state or the current state transition of the automaton (Funke, 2001). In order
to control an unknown FSA, the problem solver has to (1) acquire knowl-
edge about the consequences of interventions as well as their conditions and
(2) apply this knowledge in a goal-oriented way to reach a certain state.

For instance, Table 1 illustrates a simple finite automaton with two but-
tons (X1, X2) that cause a state transition to one of three different states
(S0, S1, S2) depending on the current state of the automaton (this represen-
tation is called the state transition matrix; Funke, 2001). In Figure 2, the
same automaton is visualised as a network diagram containing three nodes

TABLE 1

State transition matrix of the system shown in Figure 2 (Funke, 2001)

Input X to current state S

Resulting state S X1 X2

S0 S1 S0

S1 S2 S2

S2 S0 S2

Figure 2. Graphical representation of a finite state automaton (Funke, 2001) with three states
(Z1, Z2, Z3) and two possible inputs (X1, X2) that lead to state transitions (arrows).

MULTIPLE COMPLEX SYSTEMS 9
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(S0, S1, S2) with two arrows (X1, X2) pointing from each node to the next
node.

Nearly every problem can be approximated by a set of possible states
and state transitions. Thus, the FSA framework may be especially suited for
problem-solving research (for more detail on this concept, see the FSA
Space Shuttle, which was used in the Programme for International Student
Assessment; Wirth & Klieme, 2003).

In general, the two formal frameworks introduced by Funke (2001), LSE
and FSA systems, solved the lack of comparability in CPS research by speci-
fying commonalities and discrepancies between all complex problems that
can be formulated within a common framework. Existing microworlds could
now be compared, and new microworlds could be designed with regard to
the underlying causal structure of a problem. Therefore, the formal frame-
works are widely used in problem-solving research (e.g., Funke, 2001;
Kluge, 2008; Kr€oner et al., 2005; W€ustenberg, et al., 2012) and provide an
important prerequisite for the MCS approach, which addresses the issue of
the unclear scalability of complex problems and which we will present in this
paper.

MEASUREMENT ISSUES IN CPS
The formal frameworks introduced by Funke (2001) allowed different com-
plex scenarios to be compared on the basis of their underlying structure
(e.g., Greiff & Funke, 2010) and not just on the basis of surface features and
fuzzy descriptions of problems. But even though Funke’s (2001) approach
solved the lack of comparability, the scalability of CPS skills remained
unknown because all complex problems available at the time shared a single
major shortcoming: They consisted of only a single task or problem (e.g.,
Tailorshop; Funke, 2003). More specifically, single-task testing causes cer-
tain characteristic problems:

(1) There is no variation in difficulty across tasks as only a single task is
used (in fact, difficulty is often not even reported; Greiff,
W€ustenberg, & Funke, 2012). That is, system structure and other
task characteristics remain constant, which results in different dis-
crimination between groups of low, average, and high performers.
For instance, an item with average difficulty in a sample of low per-
formers may be too easy for a sample of high performers and unable
to discriminate different levels of ability.

(2) Single-task testing results in low and even unknown estimates of reli-
ability. Reliability can be estimated adequately only when there are
multiple tasks that can be assumed to measure the same construct
(or the same task multiple times). The few studies that have
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conducted reliability estimates for single CPS tasks using retests have
reported considerably low estimates with rtt values ranging from .56
to .69 (S€uß, 1996). As the square root of reliability marks the upper
bound of validity, and reliability increases with the number of tasks
(Carmines & Zeller, 1991), single-task testing may underestimate the
validity of a test due to small or unknown reliabilities.

(3) One single random error—in particular, at the beginning of a CPS
task—can heavily compound performance and lead to low test scores
even when ability on the underlying construct is high. For instance,
in the CPS task Tailorshop (Funke, 2003), one substantial mistake in
the beginning (e.g., a random typing error) irreversibly affects all
subsequent steps as well as the final outcome. The same mistake at
the end of the test may impact performance less or differently.

As these measurement issues preclude a meaningful interpretation of
many empirical findings on the topic, S€uß (2001) concluded that the impor-
tance of the theoretical construct CPS has been difficult to evaluate until
now. The construct validity of many operationalisations of CPS is difficult
to estimate, especially due to unknown and low reliabilities. In this paper,
we want to contribute a solution to these problems: We will present multi-
ple-task testing, which is based on the two formal frameworks proposed by
Funke (2001) as a means for overcoming (1) unvaried difficulty, (2) low and
unknown reliability, and (3) the overweighting of random errors—the three
major issues resulting from single-task testing. We will now introduce and
discuss the MCS approach within formal frameworks as an approach for
building multiple-item scales that can be used to overcome the measurement
issues mentioned above.

THE ADVENT OFMULTIPLE COMPLEX SYSTEMS
MCS are based on formal frameworks but extend both LSEs and FSA by
including measurement considerations that have the potential to solve the
characteristic problems of single-task testing mentioned above.

Important first steps toward tackling the problems of single-task testing
were already made with the introduction of microworlds such as the finite
state automaton Space Shuttle (Wirth & Klieme, 2003) or Multiflux (Kr€oner
et al., 2005). Unlike classical measures of CPS in which trial-and-error
behaviour at the beginning of the task influenced the final problem-solving
score, these more recent CPS tasks included an evaluation-free exploration
phase. This solved the problem of initial random behaviour influencing the
final problem-solving scores by separating the processes of knowledge acqui-
sition and knowledge application. As real-world problem solving allows for
repeated alternation between the two processes, this separation between
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knowledge acquisition and knowledge application is a compromise between
the psychometric assessment of CPS and ecological validity (Kr€oner et al.,
2005). Separating the two processes allows for their independent assessment
even though it may be at odds with real-life problem solving.

In addition, providing feedback about the correct solution after the
knowledge acquisition phase solved the problem of the knowledge applica-
tion scores being confounded with individual differences in knowledge
acquisition. This allowed for the distinct measurement of knowledge acquisi-
tion and knowledge application. Multiple items were used to ask partici-
pants about their knowledge of the underlying structure of the system as
well as their ability to control it. For example, after exploring the Space
Shuttle for 20 min, problem solvers had to answer approximately 20 items
about the underlying logic as an assessment of their knowledge acquisition.
Similarly, multiple items requiring participants to direct the system toward
producing certain values were used to assess knowledge application. The
Multiflux simulation is very similar in that, after an initial exploration phase,
several items are presented to assess knowledge acquisition and knowledge
application. This simulation also provides participants with the correct
structural diagram underlying the simulation after the knowledge acquisi-
tion phase. In summary, these innovations in CPS measurement solved the
problem of initial random behaviour influencing the final problem-solving
scores and allowed for the distinct measurement of knowledge acquisition
and knowledge application.

Whereas this was certainly an improvement over microworlds that did
not include an evaluation-free exploration phase and that did not make a
clear distinction between knowledge acquisition and knowledge application
(Kr€oner et al., 2005), it is also important to note that all items in these
microworlds were based on the very same underlying task structure. Obvi-
ously, dependencies between these items could arise as a problem solver
might understand the system as a whole and would then be more likely to
answer all items correctly (Greiff et al., 2012).

The number of tasks within these measures of CPS, however, is limited
by the assumption that microworlds need substantial time spent on a task to
sufficiently model reality (ranging from at least 30 min up to several days;
e.g., Frensch & Funke, 1995). Consequently, microworlds such as ColorSim
(Kluge, 2008), Space Shuttle (Wirth & Klieme, 2003), or Multiflux (Kr€oner
et al., 2005) require a minimum of 30 min of processing time, which, from a
practical perspective, limits the number of employable tasks to one (Greiff
et al., 2012). In MCS processing, the required time is reduced, and thus a suf-
ficient number of less time-consuming and independent tasks can be pre-
sented. That is, in line with simulations such as Multiflux, the MCS
approach improves upon classical measures by including an evaluation-free
exploration phase and feedback on the correct solution after the knowledge
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acquisition phase. Furthermore, the MCS approach improves upon other
recent measures of CPS by employing an entire set of several independent
tasks and allowing the researcher to (1) vary the difficulty of both knowledge
acquisition and knowledge application, (2) estimate and increase reliability,
and (3) lessen the impact of single random errors.

On the basis of the formal frameworks proposed by Funke (2001), we
designed MCS, each solvable within a short amount of time. The underlying
task structures in MCS can be described by either LSEs or FSA. The first
MCS approach based on LSEs is known as MicroDYN and the second
MCS approach based on FSA is called MicroFIN. “Micro” in both cases
refers to the shorter time on task and the limited number of elements in a
task’s structure, whereas DYN alludes to DYNAMIS, the name given to the
first LSE approach by Funke (2001), and FIN alludes to finite state autom-
ata as the underlying formalism (Greiff, Fischer, et al., 2013).

Multiple complex systems in LSEs:MicroDYN

As MCS formulated as LSEs are comparable by definition, we created a
measure composed of multiple CPS tasks that reflected the defining theoreti-
cal aspects of CPS: (1) The acquisition of knowledge about how to ade-
quately represent the problem and (2) the application of this knowledge to
solve the problem. Consequently, within MicroDYN, problem solvers are
instructed to perform two subtasks (items), each of which is addressed in a
separate phase with 5 min of time-on-task overall: In Phase 1, knowledge
acquisition (3 min), respondents explore the task and represent their
acquired knowledge by manipulating inputs and deriving conclusions from
their individual manipulations. In Phase 2, knowledge application (2 min),
respondents have to achieve predefined target values in the output variables
by correctly manipulating the input variables within a limited number of
active interventions. Usually, in about 1 hr of testing time, a set of approxi-
mately 10 MicroDYN scenarios is administered, yielding 10 independent
measurement points (in comparison with only one in single-task testing). As
an illustration, a screenshot of a typical MicroDYN task, handball team,
with three input and three output variables is depicted in Figure 3. There,
different kinds of training labelled Training A, B, and C serve as input varia-
bles, whereas different team characteristics labelled Motivation, Power of
the Throw, and Exhaustion serve as output variables.

As research on CPS is particularly focused on domain-general cognitive
processes (see section above; cf. Kr€oner et al., 2005; Raven, 2000), semantic
cover stories in MicroDYN activate as little subject-matter knowledge as
possible and are varied between items (Greiff et al., 2012). Highly different
semantic covers are used in each MicroDYN task; for example, coaching a
sports team (see the handball training task in Figure 3), feeding an alien
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creature, or driving a moped. To prevent uncontrolled influences of subject-
matter knowledge, input and output variables are labelled either without
deep semantic meaning (e.g., Training A) or fictitiously (e.g., Wildvine as
the name of a flower or Natromic for a fertiliser). Cover stories are realistic
and semantically rich, but they do not provide information about how to
solve the specific problem at hand nor do they activate helpful subject-mat-
ter knowledge.

An additional asset in MicroDYN is the ability to scale the difficulty,
which is related to variations in task characteristics: Whenever a new task
out of the set of independentMicroDYN tasks is administered, difficulty can
be decreased or increased by varying the underlying system structure. Greiff
and Funke (2010), Greiff, Krkovic, and Nagy (2014), as well as Kluge
(2008) provided the first empirical insights into which task characteristics
(e.g., degree of connectivity, direct and indirect effects) need to be varied to
systematically and predictably change the task difficulty.

In the second problem-solving phase, knowledge application, system
interventions are targeted toward reaching a specific goal state in the LSE

Figure 3. Screenshot of the knowledge application phase within a MicroDYN task. The left side
of the screen depicts sliders for manipulating input variables (Training A, Training B, Training
C), and the right side depicts current and goal values for output variables (Motivation, Power
of the Throw, Exhaustion). The correct causal model is at the bottom of the screen (cf.
W€ustenberg et al., 2012).
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(e.g., a high level of Motivation or a low level of Exhaustion in Figure 3).
This allows for a direct evaluation of whether respondents have reached the
goal or not, whereas a number of options exist for how to check for the cor-
rect representation of a problem in the first phase of knowledge acquisition.
To this end, Funke (2001) introduced causal models in which participants
are instructed to draw lines between variables indicating the amount of
knowledge that the participants generated. These models can then be com-
pared with the correct causal models of the underlying task structure (see
Figure 3). However, the scientific community has proposed other forms of
assessment including multiple-choice questions about the structure of the
problem (e.g., Kluge, 2008; Kr€oner et al., 2005) or constructed responses
(Frensch & Funke, 1995). The issue of how problem solvers’ performance is
reflected in overt behaviour is closely related to the question of how to trans-
form data generated by problem solvers (e.g., the causal model drawn, the
distance between given and achieved goals) into specific indicators and
scores. Options include, for instance, continuous indicators of problem
representation in the first phase in which different types of mistakes are com-
pared and weighted differently (Funke, 2001); indicators rooted in signal
detection theory, combining misses, false alarms, hits, and correct rejections
into sensitivity and bias scores (Beckmann, 1994); logarithmic deviation
scores between given and achieved goal states (Kluge, 2008); or categorical
scoring schemes (W€ustenberg et al., 2012) for solution patterns in the second
phase. The notable difference between classical single-task testing and MCS
in MicroDYN, however, is that only one (independent) performance indica-
tor for each of the two phases is available in single-task testing, and this can
easily be impaired by external disturbances; whereas in MicroDYN, each
task yields two indicators, summing to approximately 10 knowledge acquisi-
tion scores and 10 knowledge application scores, depending on the specific
number of tasks employed in a set ofMicroDYN tasks.

Multiple complex systems in FSA:MicroFIN

In MicroFIN (Greiff, Fischer, et al. 2013; Neubert et al., 2014), the MCS
principle of administering an entire set of tasks with a short processing time
and a reduced number of elements is applied to the formal framework of
FSA. Comparable to MicroDYN, a first phase in which respondents are
instructed to freely explore the complex system and to provide data on the
knowledge they acquire during this process, is followed by a second phase,
in which respondents apply their knowledge to reach predefined goal states.
Testing time (approximately 1 hr) and number of tasks in a MicroFIN set
(approximately 10) are comparable to MicroDYN, extending the approach
of MCS not only to LSEs, but also to FSA.
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Figure 4 illustrates the principle of MicroFIN. There, the task “washing
machine” is displayed during the second phase of knowledge application. In
this automaton, the test taker must find out about an unknown technical
device that is rather complex because the desired goal state (clean laundry)
depends on the interaction of different settings. Whereas in MicroDYN
(Figure 3), elements are related to each other in a quantitative way, relations
between states in MicroFIN are of a qualitative nature, and this constitutes
the main difference between the LSE and FSA frameworks (Neubert et al.,
2014). In a set of MicroFIN tasks, semantic covers can be varied and
designed to activate as little subject-matter knowledge as possible (i.e.,
inputs are not labelled in a meaningful manner; their effects have to be
explored in the knowledge acquisition phase) while simultaneously simulat-
ing a motivating and realistic problem. The underlying states and transitions
are changed in order to vary the difficulty levels even though little is known
about how specific task characteristics impact difficulty. However, the com-
plete formal description of MicroFIN tasks within the FSA framework pro-
vides the background necessary for systematically varying task difficulty
(Buchner, 1995; Funke, 2001; Neubert et al., 2014).

As in MicroDYN, MicroFIN enables a range of possibilities for record-
ing problem solvers’ performance and for transforming performance data
into specific indicators. Whereas the second theoretical process, the search
for a solution, is measured in a straightforward way in MicroFIN by setting
a specific goal state and instructing respondents to move toward it, a variety

Figure 4. Screenshot of the knowledge acquisition phase within a MicroFIN task. Possible
inputs are one of three settings for different types of laundry (A, B, C), the position of three dif-
ferent slides (red, yellow, blue), or a click of the “start” button.
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of options have been suggested for measuring the first process, knowledge
acquisition, in FSA. For instance, in a manner that is equivalent to causal
models in LSEs, Buchner (1995) suggested that individual transition matri-
ces be assessed as a way to reflect knowledge about a problem’s representa-
tion and that such matrices then be compared with the actual transition
matrices. That is, the smaller the difference between an individual and actual
matrix, the better and the more complete the knowledge a respondent has
gathered. Further, either as constructed responses or multiple-choice ques-
tions, different types of judgement tasks (predictive, interpolative, and ret-
rognostic; Buchner, 1995) or verification tasks (Buchner & Funke, 1993) can
be used to measure knowledge acquisition. The application of optimal solu-
tion sequences and the distance to a specific goal state in terms of the num-
ber of missing steps until the goal would have been reached are well-
established indicators of knowledge application (Buchner, 1999). In line
with the MCS approach, each of the approximately 10 MicroFIN tasks in a
complete set yields two indicators, one on knowledge acquisition and one on
knowledge application.

Both MicroDYN and MicroFIN are aimed at advancing LSEs and FSA
as well-established formal frameworks in problem-solving research (Funke,
2001) designed to measure knowledge acquisition and knowledge applica-
tion in CPS even though the two formalisms differ substantially. For
instance, the representation of knowledge in MicroFIN is essentially differ-
ent from MicroDYN as effects of inputs in MicroFIN always depend on
inner states of the task while they are assumed to be the main effects in
MicroDYN. Despite these differences, substantial empirical correlations
between LSEs and FSA show that the two formalisms tap into the same
underlying construct (Greiff et al., 2012; Greiff, Fischer et al., 2013). We will
now describe what specific advantages are to be expected when extending
LSEs and FSA towardMicroDYN andMicroFIN within the MCS approach
versus single-task testing.

Advantages of multiple complex systems

Using MCS avoids single-task testing per definition, and therebyMicroDYN
and MicroFIN finally provide solutions for the characteristic weaknesses of
single-task tests mentioned above (i.e., the lack of variation in difficulty, low
or unknown reliability, and a large influence of random errors; cf. section
measurement issues in CPS):

(1) In MCS, there can be variation in item difficulty: As every complex
system can have a different difficulty, the problem-solving perfor-
mance of low, average, and high performers can be examined with
adequate discrimination within the MCS approach. Whereas prior
research that was based on single-task testing often applied single
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very difficult tasks and thereby focused on general human problems
in coping with a single difficult problem (e.g., D€orner, 1989), the
MCS approach provides a broader picture. For instance, Greiff et
al. (2012) reported that MicroDYN-task item difficulties varied
between p D .04 and p D .69 for knowledge acquisition and knowl-
edge application, which implies that a person with average skills will
probably fail to solve some but not all of the problems and will be
able to solve the other ones (which is much more informative than
knowing that he or she was unable to solve a single difficult item).
By implementing multiple items with varying difficulties (see Figure 5
for a set of MicroDYN MCS that varied with regard to both the
number and interconnectedness of elements), we can assess problem-
solving skills on different levels of performance. It is also possible to
systematically examine (and control for) effects of item difficulty on
the relations of CPS to other constructs (e.g., Kluge, 2008) or effects
of problem features on item difficulty (e.g., Greiff & Funke, 2010).

(2) In MCS, reliability can be determined and enhanced: As there are mul-
tiple independent items, we can calculate adequate estimates of reli-
ability (e.g., split-half reliability and internal consistencies). By

Figure 5. Multiple complex systems with varying numbers of elements (rows) and varying com-
plexity (interconnectedness and direct/indirect effects; columns) (taken from a presentation by
Greiff, W€ustenberg, & Funke, 2011).
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contrast, estimates of reliability reported for single-task testing have
often been inflated because the items depended on the prior solution
to a single problem (i.e., correlations between items can depend on
this prior solution and not only on a latent ability). Adding to this,
reliability can be increased in the MCS approach by adding tasks to
a test (Carmines & Zeller, 1991): For a MicroDYN set of 11 tasks,
Greiff et al. (2012) reported reliability estimates between a D .85 and
a D .95 (similar results were reported by W€ustenberg et al., 2012, for
8 tasks with a D .73 to a D .86; and Sonnleitner et al., 2012, for 16
tasks with a D .73 to a D .86). As the square root of reliability marks
the upper bound of validity, estimates of validity (e.g., correlations
between MicroDYN indicators and other constructs such as intelli-
gence) may be adequately corrected for attenuation in the MCS
approach when considering relations between CPS and other con-
structs on a latent level. This addresses a major shortcoming of prior
single-task testing, as tests with low and unknown reliability may
have resulted in severe underestimations of validity (S€uß, 1996).
Recent findings on the construct validity of CPS measured by MCS
will be reported below.

(3) In MCS, measurement error is less likely to compound a person’s per-
formance. A severe erroneous decision in a single task does not imply
a poor solution in other tasks. However, in single-task testing, such
a single decision may automatically result in a low estimate of a per-
son’s ability. In the MCS approach, items are independent from
each other, and performance on each item does not depend on per-
formance on previous items. Whereas a single random mispercep-
tion, which is not related to a person’s ability per definition, can
heavily compound performance in controlling a single finite automa-
ton, this is less likely to occur when controlling multiple automatons
in MicroFIN. This avoids the overweighting of specific person-item
interactions and accommodates the stochastic relation between a
person’s ability and his or her item response (Rasch, 1980).

(4) Because different tasks impose different strategy requirements dur-
ing exploration (Wirth, 2004), the use of multiple small tasks in
MCS allows for the creation of CPS measures that require specific
strategies (e.g., W€ustenberg, Stadler, Hautam€aki, & Greiff, 2014).
For instance, variables affecting themselves (eigendynamics;
Figure 1) can be detected only by not manipulating any variables to
explore the system’s impetus. Thus, the decision to include or
exclude eigendynamics in the CPS measure determines whether or
not the use of this specific strategy can be assessed. Other tasks may
require different specific strategies without which they cannot be
solved; an example here is the “vary-one-thing-at-a-time” strategy
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(Tschirgi, 1980). As a consequence, MCS tasks can be selected to
assure a content-valid strategy assessment to potentially increase
their content validity or to obtain information about specific defi-
ciencies in CPS skills; such information may be used for training or
developmental purposes.

DISCUSSION: WHERE IS COMPLEX PROBLEM SOLVING
HEADED?

In the current paper, we demonstrate how an assessment of domain-general
CPS skills is based on computer-based simulations of complex problems.
We propose that an adequate assessment of skills (e.g., knowledge acquisi-
tion and knowledge application; Funke, 2001) requires a set of multiple
problems that are comparable on a formal level (Funke, 2001). For this pur-
pose, we outlined the formal frameworks of LSE systems and FSA (pro-
posed by Buchner & Funke, 1993, and by Funke, 2001). We introduced
MicroDYN (based on LSEs) andMicroFIN (based on FSA) in order to dem-
onstrate how MCS can be applied and scored to overcome some important
measurement issues in CPS research. Specifically, the MCS approach pro-
vides the following: (1) Different skill levels can be measured with adequate
discrimination due to a wide range of task difficulties, (2) reliability and
validity can be estimated by including an adequate number of conceptually
independent tasks, (3) multiple independent indicators of CPS skills can be
included, lessening the impact of single errors during testing, and (4) the spe-
cific strategies tailored to specific needs in training or developmental con-
texts can be implemented and assessed.

Both knowledge acquisition and knowledge application skills seem para-
mount for solving complex problems and can be reliably addressed within
the MCS approach. General mental abilities can be considered an important
prerequisite for CPS, but the skills involved in knowledge acquisition (e.g.,
knowing a systematic strategy of hypothesis testing, deductively generating
hypotheses, representing information in a causal network diagram, etc.) and
knowledge application (e.g., considering the consequences of one’s actions
and eigendynamics, adapting plans to recent developments, etc.) provide
added value for coping with complex problems (e.g., Wittmann & Hattrup,
2004) and represent a defining part of problem-solving competency (Greiff
& Fischer, 2013; Snow, 1989). It seems that, after the construct validity of
different indicators of CPS skills has been questioned for a long time (S€uß,
2001), we are now able to address the question with adequate methodology.

Still, several urgent questions regarding CPS remain. One line of current
CPS research is addressing developmental issues by examining the plasticity
of the construct and the influence of lifelong learning and training (e.g., the
European Life Long Learning project; www.lllightineurope.com). In
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addition, it is necessary to improve our understanding of the specific nature
of CPS and its relations to other facets of cognitive performance. Whereas
we have some understanding of how CPS is related to general conceptions
of reasoning or fluid intelligence (Horn & Cattell, 1966; McGrew, 2009), the
role of crystallised intelligence (i.e., specific acquired knowledge; McGrew,
2009) in CPS is still not clear. System-specific knowledge was found to be
highly relevant for some classical measures of CPS (Wittmann & S€uß, 1999).
However, more recent measures of CPS (including MCS) use arbitrary con-
texts so that the impact of previous knowledge about the system’s frame-
work should be substantially reduced (e.g., Greiff, W€ustenberg et al., 2013;
Kr€oner et al., 2005; Wagener, 2001). Abstract knowledge of strategies, such
as systematic control of variables (e.g., W€ustenberg et al., 2014) or dynamic
systems (e.g., “the robust beauty of linear systems”; Dawes, 1979), on the
other hand, might substantially influence problem-solving behaviour. The
simple application of known strategies would facilitate the problem-solving
process. Thus, further theoretical and empirical work is necessary in order
to fully integrate CPS into more thorough frameworks of cognitive abilities
such as the Cattell—Horn-Caroll theory (McGrew, 2009).

Other influences might derive from individual differences among partici-
pants. For instance, Wittmann and Hattrup (2004) reported performance
differences between men and women on the knowledge acquisition dimen-
sion of CPS in multiple measures of CPS. The authors thereby speculated
that higher risk-aversiveness could cause female participants with the same
level of fluid intelligence to implement more cautious interventions (Witt-
mann & Hattrup, 2004), which may lead to less informative reactions of the
system and fewer opportunities to learn about the causal structure of the sys-
tem (W€ustenberg et al., 2012). As this finding illustrates, the role of interindi-
vidual differences (e.g., personality or motivation) is not yet sufficiently
understood, and further research on this topic is required (Marshalek, Loh-
man, & Snow, 1983).

Finally, the mostly numerical (MicroDYN) or figural (MicroFIN) feed-
back participants receive may limit the domain-generality of the CPS meas-
ures. In line with the construction of the Berlin model of intelligence
structure test (J€ager, 1973), in which complex reasoning tasks for the verbal,
numerical, and figural content or domain are aggregated to diminish the
domain-specific variance in the content and boost the variance of more oper-
ation-like abilities, it would be interesting to aggregate the performance
scores that are based on different tasks with numerical, figural, or verbal
feedback. For instance, it would be possible to present the current states of
the outcome variables in MicroFIN as a vector of numbers rather than with
a graphical representation. Similarly, feedback in MicroFIN could be verbal
rather than numerical. This would provide important additional support for
the notion of the domain-general measurement of CPS.

MULTIPLE COMPLEX SYSTEMS 21

D
ow

nl
oa

de
d 

by
 [8

4.
15

3.
1.

17
8]

 a
t 1

2:
42

 2
3 

D
ec

em
be

r 2
01

4 



CONCLUSION

By providing reliable measures of problem-solving skills, the MCS approach
is an important step forward in problem-solving research: Since research on
problem solving had its zenith in the seventh decade of the last century (e.g.,
Newell & Simon, 1972), it seems to have faced a major decline in interest in
the research community, partly due to methodological issues (Ohlsson, 2012)
and a lack of ecological validity (D€orner, 1986). But as the phenomenon of
problem solving itself has remained an interesting one to explore (in fact,
CPS as a nonroutine behaviour may be increasingly important for today’s
workplaces; Autor, Levy, & Murnane, 2003), the research community is in
need of new forms of tests that can capture the complex processes that occur
during problem solving (Rigas & Brehmer, 1999). In recent years, a second
wave of interest in problem solving seems to have begun: As is indicated by
both the research endeavours reported above and the assessment of problem-
solving skills in international large-scale assessments such as the initiative for
the assessment of twenty-first-century skills (Griffin, McGaw, & Care, 2011),
PISA (2003, 2012, 2015), or the Programme for the International Assessment
of Adult Competencies (PIAAC), the assessment of problem-solving skills is
increasingly recognised as an important issue in daily life today, even outside
of educational research. While the formal frameworks proposed by Funke
(2001) have been applied in large-scale assessments since PISA 2003 (see
above), the current assessment of CPS skills in PISA 2012 were measured by
MicroDYN and MicroFIN (Organisation for Economic Co-operation and
Development [OECD], 2010), that is, within the MCS approach. Based on
the formal frameworks proposed by Funke (2001) and the MCS approach
outlined in this paper, the assessment of problem-solving skills may be facing
its second youth, and only time will tell if it lasts.
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The purpose of thismeta-analysis is to examine the nature andmagnitude of the relation between complex prob-
lem-solving skills (CPS) and intelligence, a topic that has been widely discussed and that has instigated a vast
array of partially contradicting findings in the past. Theoretically, researchers have hypothesized the two con-
structs to be everything from completely separate to identical. Over the course of almost four decades, empirical
studies yielded results in support of both arguments. Our meta-analysis of 47 studies containing 60 independent
samples and a total sample size of 13,740 participants revealed a substantial correlation of CPS and intelligence
with an average effect size of M(g) = .433. In addition, we investigated whether the operationalization of CPS
and intelligence moderated this correlation. Whereas there were no significant correlation differences consider-
ing the operationalization of intelligence, the approach used to measure CPS moderated the correlation of CPS
and intelligence. Especially the most recent approach towards the assessment of CPS yielded the strongest asso-
ciations between the two constructs. Implications for existing theories and future research are discussed.

© 2015 Published by Elsevier Inc.

1. Introduction

As the complexity and interconnectedness of the systems that we
interact with in our daily lives increases, so does the importance of
research on how we learn to control such complex environments.
Just dealing with everyday objects (e.g., phones, computers, auto-
mated driving systems) requires being aware of their respective con-
nections to other objects or people (e.g., other computers and people
via the internet) as well as the inner workings of the objects them-
selves. In response to this growing challenge, Dörner and Kreuzig
(1983) introduced the research area of complex problem solving
(CPS) that focused on the assessment of individuals' ability to deal
with complex and dynamically changing environments. This then
promising new approach towards human ability was primarily
brought forward by German researchers who were interested in ex-
perimentally investigating the interindividual differences among
people's ability to solve complex simulations of real-world problems.
In that, the assessment of CPS was considered a more ecologically
valid alternative to established measures of human ability such as

general intelligence. Especially initial theoretical propositions (e.g.,
Dörner & Kreuzig, 1983) and empirical findings (e.g., Putz-Osterloh,
1981) in favor of a clear distinction from general intelligence soon
resulted in a plethora of research on the relation between the two
constructs (e.g. Beckmann & Guthke, 1995; Wittmann & Süß,
1999). the results of these studies repeatedly contradicted each
other with researchers hypothesizing and finding diverse results
ranging from non-significant (e.g. Joslyn & Hunt, 1998; Putz-
Osterloh, 1981) to very strong correlations between measures of
CPS and general intelligence (e.g. Funke & Frensch, 2007, Wirth &
Klieme, 2003, Wüstenberg, Greiff, & Funke, 2012). These results
were in effect interpreted as either support for the discriminant va-
lidity of CPS as a construct or evidence that measures of CPS were ac-
tually measuring nothing else than general intelligence.

The purpose of the present work is, therefore, to answer the
question on the empirical relation between CPS and intelligence by
meta-analytically summarizing the various research findings on the
correlation of CPS and intelligence. In addition, we will try to find
moderating factors that might help explain the contradicting find-
ings. Showing that there is a substantial but far from perfect correla-
tion between various different measures of CPS and intelligence, we
provide important information on the construct validity and nomo-
logical classification of CPS. Furthermore, our study investigates the
moderating effects of different operationalizations suggesting
differences in the assessment of CPS to be a potential explanation
for the variation in results.
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2. Complex problem solving and intelligence

Following a definition by Buchner (according to Frensch & Funke,
1995, p. 14), CPS is throughout this paper understood as:

“(…) the successful interaction with task environments that are dy-
namic (i.e., change as a function of the user's interventions and/or as
a function of time) and in which some, if not all, of the environment's
regularities can only be revealed by successful exploration and integra-
tion of the information gained in that process.”1.

Considering this definition, it becomes obvious why CPS has often
been compared to intelligence on a conceptual basis (Funke &
Frensch, 2007) to establish discriminant validity or to characterize indi-
vidual abilities thatwould help explain performance in CPS tasks. On the
one hand, some characteristic features of CPS such as the integration of
information are part of almost every definition of intelligence
(Sternberg & Berg, 1986). On the other hand, the dynamic and
intransparent characteristics of complex problems are not established
aspects of the current conceptions of intelligence such as the Cattell–
Horn–Caroll (CHC) theory of human intelligence (McGrew, 2009), and
this aspect of CPS may, thus, be an important addition to the under-
standing of human ability (Dörner & Kreuzig, 1983; Greiff et al., 2013).

This theoretical ambiguity is reflected in empirical findings on the
relation between CPS and intelligence. Multiple early studies indicated
that, while performance in CPS tasks varied tremendously among indi-
viduals, psychological assessments of general intelligence were unable
to explain this variability (Brehmer, 1992; Rigas & Brehmer, 1999).
Kluwe, Misiak, and Haider (1991) summarized 11 of these early studies
on the relation between CPS and intelligence and concluded that most
of them failed to show a close relation between intelligence scores
and CPS performance measures. This led several researchers to suggest
CPS to be a cognitive construct mostly independent from intelligence
(Putz-Osterloh, 1985). Rigas and Brehmer (1999) summarized this
view in the different-demands hypothesis. To explain the weak correla-
tions that researchers observed between measures of general intelli-
gence and CPS performance, this hypothesis suggests that CPS tasks
demand the performance ofmore complexmental processes than intel-
ligence tests do, such as the active interaction with the problem to ac-
quire knowledge on the problem environment, which, in turn, results
in low empirical correlations between the constructs.

Whereas there is some support for the different-demands hypothe-
sis (e.g., Joslyn &Hunt, 1998),more recent studies challenge it. In a com-
prehensive study, Gonzalez, Thomas, and Vanyukov (2005) found
correlations ranging from r = .33 to r = .63 between various measures
of CPS andmeasures of general intelligence. Similarly, Süß, Kersting, and
Oberauer (1991) reported correlations of r = .40 between Tailorshop
performance measures (Tailorshop being one of the most frequently
used measures of CPS) and measures of general intelligence.

Based on these moderate to strong correlations and contradicting
initial assumptions of independence of the two constructs as put for-
ward in the different-demands hypothesis, several researchers even ar-
gued that measures of CPS would be almost redundant to measures of
general intelligence (Mayer et al., 2013; Wittmann & Süß, 1999).
Wirth and Klieme (2003) reported a correlation of .84 between a latent
factor of different measures of CPS and general intelligence. Similarly,
latent factor scores on MultiFlux, a more recently developed measure
of CPS (Kröner, 2001), showed a latent correlation of .75 with different
facets of the BerlinModel of Intelligence Structure (BIS) test (Jäger, Süß,

& Beauducel, 1997) an established intelligence test (Kröner, Plass, &
Leutner, 2005).

The latest studies on the relation between CPS and intelligence also
reported moderate to strong latent correlations (between r = .50 and
r = .80) of the two constructs (e.g. Greiff et al., 2013; Sonnleitner et
al., 2012; Wüstenberg, Stadler, Hautamäki, & Greiff, 2014; Wüstenberg
et al., 2012). However, these studies additionally demonstrated incre-
mental value over and above measures of intelligence in predicting
school grades (Wüstenberg et al., 2012) and job success (Danner,
2011) despite these strong correlations and in support of the different-
demands hypothesis.

An explanation for these inconsistent findings regarding the relation
between CPS and intelligencemay lie in the conceptualization of intelli-
gence. Almost all current theories of psychometric intelligence include
one or two very broad, latent factors of general intelligence that capture
a large proportion of all cognitive abilities such as abstract reasoning,
memory, or factual knowledge (McGrew, 2009). Based on this concept,
early studies on the relation between CPS and intelligence mostly in-
cluded rather broad measures of general intelligence (e.g., Putz-
Osterloh, 1985) using different tasks assessing various cognitive abilities
including factual knowledge (or general crystalized intelligence;
McGrew, 2009).More recent studies, on the other hand, focused on spe-
cific sub-facets of intelligence, and especially reasoningwas theoretical-
ly and empirically determined to be conceptually closest to CPS
(Wittmann & Süß, 1999). Reconsidering the different-demands hypothe-
sis, broad measures of intelligence may be covering several aspects that
are not relevant for the successful solution to a complex problem, such
as factual knowledge, thus limiting the empirical relation between CPS
and intelligence. However, assessments focusing on reasoning (e.g.,
Raven's Progressive Matrices; Raven, Raven, & De Lemos, 1958) as
“the use of deliberate and controlled mental operations to solve novel
problems that cannot be performed automatically” (McGrew, 2009)
are conceptually closer to CPS than very broad measures of general in-
telligence andmay thus yield much stronger correlations of CPS and in-
telligence (e.g.Greiff et al., 2013, Wittmann & Hattrup, 2004, Wittmann
& Süß, 1999). Accordingly, the conceptualization of intelligence used in
a study may influence the relation between CPS and intelligence found
with higher correlations of CPS and reasoning than of CPS and broad
measures of general intelligence.

3. Assessment of complex problem solving

In the sameway, the assessment approach used tomeasure CPS var-
ied greatly among studies and may be responsible for the variation in
findings on the relation between CPS and intelligence. The assessment
of abilities such as CPS entails by definition (Frensch & Funke, 1995)
the possibility of an active interaction between the person to be
assessed and the assessment instrument. As no such interaction is pos-
sible within paper-pencil tests, this necessarily requires a computer-
based assessment. With the advancement of computer technology, var-
ious CPS tasks have evolved following different approaches. Next to dif-
ferent conceptualizations of intelligence, this diversity in assessment
approaches for CPSmay be another cause for the inconsistent results re-
garding the relation between CPS and intelligence.

The first computer-based CPS tasks were developed in the early
1980s with the aim of administering task environments with a high re-
semblance to the real world and the goal of producing a reliable and
ecological valid measure of CPS that sufficiently simulated reality. The
microworld Lohausen (Dörner, Kreuzig, Reither, & Stäudel, 1983), for
example, required a participant to govern a small city, which was intri-
cately simulatedwithmore than 1000different and interconnected var-
iables. Whereas these classical measures of CPS enjoyed a high level of
face validity, their psychometric properties were rather problematic
(Greiff, Stadler, Sonnleitner, Wolff, & Martin, 2015). Measurement is-
sues, such as unsatisfactory reliability and validity, quickly raised
doubt on the measurability and validity of the construct of CPS itself

1 Several other constructs describing the ability of dealing with complex environments
have been suggested to extend the existing host of human abilities. Most prominent
among those are Dynamic DecisionMaking (DDM; Brehmer, 1992) and Systems Thinking
(Booth-Sweeney & Sterman, 2000). Both of these constructs overlap greatly with CPS in
their respective definitions (Frensch & Funke, 1995), and the variation in terminology is
mostly due to different research traditions. Throughout this paper, wewill focus primarily
on CPS but also refer to relevant results published under different labels.
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(Kröner et al., 2005; Wüstenberg et al., 2012). Rigas, Carling, and
Brehmer (2002) summarized these problems in suggesting the low-re-
liability hypothesis to explain why prior research failed to establish an
association between performance in CPS tasks and intelligence. In fact,
there is convincing evidence that the poor reliability of some classical
measures employed in past studies made it difficult to find any relations
to other constructs at all (for an overview see Greiff, 2012; Rigas et al.,
2002).

In reaction to these problems, Funke (2001) introduced Linear Struc-
tural Equation systems (LSE) and Finite State Automata (FSA) as formal
frameworks that allow for the description of underlying task structures.
Both of these frameworks enabled the creation of single complex sys-
tems, which are independent of any semantic embedment (Greiff,
Fischer, Stadler, &Wüstenberg, 2014) as they only specify an underlying
system that can be clad in multiple semantic contexts.

In particular, the LSE formalism has been widely adopted by CPS re-
search and has led to the development of a considerable number of sin-
gle complex systems (e.g.,Multiflux, Kröner, 2001; FSYS, Wagener, 2001).
In a further advancement, after Leutner, Klieme, Meyer, and Wirth
(2004) had used a combination of two single complex systems for mea-
suring CPS, Greiff, Wüstenberg, and Funke (2012) used the LSE frame-
work for the development of the multiple complex systems (MCS;
Greiff et al., 2014) approach, which was featured in the Program for In-
ternational Student Assessment (PISA) 2012, the arguably most impor-
tant large-scale assessment worldwide. This approach solves several
measurement issues by using multiple small rather than one single,
large microworld as in classical measures of CPS or single complex sys-
tems relying on LSE or FSA (Greiff et al., 2014). This approach was real-
ized in assessment tools such as MicroDYN (Greiff et al., 2012) or
Genetics Lab (Sonnleitner et al., 2012) and was later extended to FSA
with the development of MicroFIN (Neubert, Kretzschmar,
Wüstenberg, & Greiff, 2014). These MCS measures of CPS were devel-
opedwith a clear focus onpsychometric quality and showed significant-
ly higher reliability than classical measures of CPS. In concordance with
the different-demands hypothesis, they were also found to correlate sub-
stantially with measures of intelligence (e.g. Sonnleitner et al., 2012;
Wüstenberg et al., 2012).

An alternative explanation for the fuzzy results of studies on the re-
lation of intelligence and CPS could lie in the semantic embedment of
CPS tasks. The Elshout–Raaheim hypothesis (Elshout, 1987; Raaheim,
1988; see also Leutner, 2002) proposes an inverted U-shaped relation
between the score of the correlation coefficient as the dependent vari-
able and the amount of available domain-specific knowledge as the in-
dependent variable. As classical measures of CPS emulated real-world
problems, domain specific knowledge could be used to solve the prob-
lems, thus limiting the relevance of individual intelligence. More recent
measures of CPS based on LSE or FSA (both single complex systems and
MCS) are less dependent of a semantic context, and, thus, less domain
specific knowledge can be used. This should result in a stronger relation
between performance in modern CPS tasks and intelligence.

In summary, following both the low-reliability hypothesis (Rigas et
al., 2002) and the Elshout–Raaheim hypothesis (Leutner, 2002), the ap-
proach used to assess CPS in different studies could moderate the rela-
tion between CPS and intelligence.

4. The present research

Based on the wide range of research with partially contradicting
findings on the relation between CPS and intelligence presented
above, it seems necessary to meta-analytically summarize these find-
ings for the first time ever.

In addition, two possible explanations for the contradicting results
regarding the correlation of CPS and intelligence seem to be plausible.
One the one hand, it may be necessary to differentiate between studies
that employed very broad measures of general intelligence capturing
multiple sub-facets and those that focused on more specific sub-facets

such as reasoning (Wittmann & Süß, 1999). Whereas earlier studies
that found small correlations predominantly considered more general
measures of intelligence (for a summary see Kluwe et al., 1991;
Beckmann, 1994), more recent studies, focusing on reasoning, consis-
tently report higher correlations of CPS and reasoning (e.g.Danner,
2011, Greiff et al., 2013, Greiff et al., 2014, Sonnleitner et al., 2012).
Thus, we will investigate whether the difference in operationalization
of intelligence moderates the relation of CPS and intelligence.

On the other hand, advancements in CPSmeasurementmay have in-
creased the reliability and reduced the semantic embedment of CPS as-
sessment instruments, thus theoretically allowing for higher
correlations with other measures (Leutner, 2002; Rigas et al., 2002).
Therefore the second moderator investigated in this study will be the
operationalization of CPS.

In summary, the present research will meta-analytically summarize
the empirical findings available to answer the question on the relation
between CPS and intelligence. In a second step, we will investigate
whether the conceptualization of intelligence (measures of general in-
telligence or measures of reasoning) or the conceptualization of CPS
(classical measures of CPS, single complex systems, or MCS tests) can
be used to explain the variation among those findings.

5. Method

5.1. Literature search

5.1.1. Compilation of database
We used three strategies to identify studies for the present meta-

analysis: (1) We conducted a broad literature search using the data-
bases PsycINFO, PsycARTICLES, and PSYNDEX. Search terms for intelli-
gence were “Reasoning”, “Intelligence”, “Working Memory”, “Short-
TermMemory”, and “Reaction-Time”. Search terms for CPSwere “Com-
plex Problem Solving”, “Dynamic Problem Solving”, “Interactive Prob-
lem Solving”, “Microworlds”, “Systems Thinking”, and “Dynamic
Decision Making”. The search terms were combined in all 30 [5(Intelli-
gence) × 6(Complex Problem Solving)] possible ways. Entering these
combinations in the 3 databases resulted in 90 queries. (2)We conduct-
ed an additional unsystematic search of literature based on publications
of well-known authors within the fields of CPS and intelligence as well
as on publications referenced in those publications. The systematic and
unsystematic search resulted in 123 different studies, which seemed
relevant according to the title and abstract. (3) As research on CPS
was primarily brought forward by German researchers, we contacted
the mailing list of the “Deutsche Gesellschaft für Psychologie”, the Ger-
man Association of Psychology, to gather “gray literature” and reduce
publication bias. We asked the members to send us information about
unpublished studies yielding correlations between intelligence and
complex problem solving. This appeal resulted in 7 additional datasets
to be considered.

5.1.2. Inclusion criteria
In this meta-analysis, we considered all studies that fulfilled the fol-

lowing inclusion criteria: (1) Intelligence was measured by a standard-
ized intelligence test; (2) CPS wasmeasured by a standardized complex
scenario; (3) the study reported zero-order correlations of intelligence
and CPS or a coefficient that allowed the calculation of a zero-order cor-
relation; (4) the sample size of the study was reported.

5.1.3. Exclusion of studies
The total amount of 130 studies was checked whether they fulfilled

the inclusion criteria or not. 7 studies (5.55%) did not use a standardized
CPS measurement, and 7 studies (5.55%) were excluded because they
did not assess intelligence by a standardized intelligence test. 9 studies
(7.14%) did not report any correlations of the CPS and intelligencemea-
sures. 61 studies (48.41%)were excluded because they did not report an
empirical study or because they reported results from studies that had
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already been reported in another study. In the end, a total amount of 47
studies containing 60 independent samples were included in the meta-
analysis (Table 1).

5.1.4. Coding of measures
Themeasures used in thefinal set of studieswere coded according to

the hypothesized moderators' levels by two independent raters. Mea-
sures of CPS were coded as either classical measures of CPS, single com-
plex systems (SCS), or MCS tests. Measures of intelligence were defined
as eithermeasures of general intelligence ormeasures of reasoning. This
classification was a clear and unambiguous task resulting in a perfect

agreement between the two raters. Table 2 displays the coding for all
measures of CPS and intelligence used in the studies included into the
meta-analysis.

5.2. Meta-analytic procedure

5.2.1. Main meta-analysis
In our analysis we followed the guidelines described by Field and

Gillett (2010) and used the SPSS 20.0.0 (IBM, 2011) and R 3.2.1 (R
Core Team, 2015) syntaxes provided there. We chose to employ a ran-
dom-effects model because it can be assumed that the true effects

Table 1
Description and effect size estimates for all independent samples included in the meta-analysis.

ID Author(s) Year N CPS measure Intelligence measure r

1 Abele et al. 2012 167 MCS Reasoning .40
2 Beckman & Guthke 1995 92 Classical General intelligence .15
3 Bühner et al. 2008 144 SCS Reasoning .16
4 Burkolter et al. 2009 41 Classical General intelligence .75
5 Burkolter et al. 2010 39 Classical General intelligence .22
6 Burmeister 2009 44 Classical General intelligence .47
7 Danner 2011 173 SCS Reasoning .86
8 Dörner et al. Sample 1 1983 48 Classical Reasoning −.03
9 Dörner et al. Sample 2 1983 48 Classical Reasoning .12
10 Gediga et al. 1984 29 Classical General intelligence .09
11 Gonzales et al. Sample 1 2005 15 Classical Reasoning .71
12 Gonzales et al. Sample 2 2005 28 Classical Reasoning .63
13 Gonzales et al. Sample 3 2005 74 Classical Reasoning .33
14 Greiff & Fischer 2013 140 MCS Reasoning .50
15 Greiff et al. Sample 1 2015 339 Classical Reasoning .24
16 Greiff et al. Sample 2 2015 339 MCS Reasoning .52
17 Güss & Dörner 2011 511 Classical General intelligence .19
18 Hasselmann 1993 21 Classical General intelligence .26
19 Hesse Sample 1 1982 30 Classical Reasoning −.17
20 Hesse Sample 2 1982 30 Classical Reasoning .06
21 Hesse Sample 3 1982 30 Classical Reasoning .38
22 Hesse Sample 4 1982 30 Classical Reasoning .46
23 Hörmann & Thomas Sample 1 1989 19 Classical General intelligence .46
24 Hörmann & Thomas Sample 2 1989 21 Classical General intelligence −.03
25 Hussy Sample 1 1985 15 Classical Reasoning −.30
26 Hussy Sample 2 1985 15 Classical Reasoning .25
27 Hussy Sample 3 1985 15 Classical Reasoning .35
28 Hussy Sample 4 1985 15 Classical Reasoning .50
29 Hussy 1989 154 Classical General intelligence .38
30 Kersting 2001 99 Classical General intelligence .26
31 Klieme et al. 2001 650 Classical Reasoning .58
32 Kluge et al. 2011 38 Classical General intelligence .13
33 Kretzschmar 2010 118 SCS General intelligence .30
34 Kretzschmar et al. Unpublished 197 MCS General intelligence .34
35 Kröner 2001 28 SCS Reasoning .51
36 Kröner et al. 2005 101 SCS Reasoning .67
37 Leutner et al. 2004 535 MCS General intelligence .63
38 Leutner et al. 2005 654 Classical Reasoning .84
39 Leutner Sample 1 2002 200 Classical Reasoning .43
40 Leutner Sample 2 2002 28 Classical Reasoning .05
41 Neubert et al. 2014 576 MCS Reasoning .62
42 Putz-Osterloh 1985 50 Classical General intelligence .36
43 Rigas et al. 2002 62 Classical Reasoning .33
44 Scherer & Tiemann a 2014 805 SCS Reasoning .55
45 Scherer & Tiemann b 2014 1487 SCS Reasoning .58
46 Sonnleitner et al. 2012 61 MCS Reasoning .30
47 Stadler et al. In press 78 SCS General intelligence .20
48 Stadler et al. Sample 1 Unpublished 161 MCS Reasoning .83
49 Stadler et al. Sample 2 Unpublished 254 MCS Reasoning .74
50 Süß et al. 1991 127 Classical Reasoning .47
51 Süß et al. 1993 214 Classical Reasoning .40
52 Wagener & Wittmann 2002 35 SCS Reasoning .63
53 Wagener Sample 1 2001 63 SCS Reasoning .31
54 Wagener Sample 2 2001 71 SCS General intelligence .20
55 Wagener Sample 3 2001 136 SCS General intelligence .47
56 Wagener Sample 4 2001 51 SCS General intelligence .24
57 Wirth & Funke 2005 688 SCS Reasoning .46
58 Wittmann et al. 1996 92 Classical General intelligence .57
59 Wüstenberg et al. 2012 222 MCS Reasoning .59
60 Wüstenberg et al. 2014 3191 MCS Reasoning .66

Note. CPS = Complex problem solving; r = correlation coefficient; MCS = Multiple complex systems; SCS = Single complex systems.
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vary between the studies (e.g., due to different conceptualizations of
CPS and intelligence). Furthermore, we chose to employ the meta-ana-
lytic strategy of Hedges and Vevea (1998) rather than the strategy of
Hunter and Schmidt (2004) because the 95% confidence intervals of
the latter one tend to be too small whereas both strategies provide com-
parably accurate estimates of the population effect size (see Field,
2005). As some of the studies employed yield rather small sample
sizes, the correlations were converted to Hedges' g prior to conducting
the meta-analysis (Hedges, 1981). We computed the mean weighted
Hedges' g [M(g)] as an estimate of the population effect size, the associ-
ated 95% confidence bounds (95% CIu; 95% CIl) as an indicator of the sig-
nificance of the population effect, the estimated variance in the
population (τ2) as an indicator of the variability of the effects in the pop-
ulation, and the Q statistic as an indicator of the homogeneity of effect
sizes. Additionally, we computed I2 (Borenstein, Hedges, Higgins, &
Rothstein, 2009;Higgins, Thompson,Deeks, & Altman, 2003) as an addi-
tional heterogeneity estimate, which describes what proportion of the
observed variance reflects real differences in effect size (signal-to-
noise ratio). I2 values can range between 0% and 100%. Values on the
order of 25%, 50% and 75% are considered as low, moderate and high,
respectively.

5.2.2. Outlier and influence analyses
Outliers and influential cases were identified using the package

metafor (Viechtbauer, 2010) in R 3.2.1 (R Core Team, 2015) following
the guidelines of Viechtbauer and Cheung (2010). Outliers were identi-
fied by computing standardized deleted residuals (SDRs) for each study,
which represent the deviation of the correlation of a single study from

the mean correlation of all other studies expressed in standard devia-
tions. Studies with SDRs above 1.96 or below −1.96 were regarded as
substantial outliers. To analyze the influence of outliers on the mean
correlation of the meta-analysis, we computed Cook's distance (CD)
and COVRATIO values for each study. CD can be interpreted as the
Mahalanobis distance between the predicted average correlation for
the study once with and once without the study included in the
modelfitting. FollowingCook andWeisberg (1982)we regarded studies
with CD values greater than .45 as having a substantial influence on the
main effect. The COVRATIO of a study describes the change of the vari-
ance-covariance matrix of the parameter estimates when the study is
excluded. Viechtbauer and Cheung (2010) view COVRATIOs smaller
than 1 as an indicator, that the exclusion of the concerned study im-
proves the precision of the model parameters. Furthermore, we com-
puted the meta-analysis with and without the outliers to provide a
direct comparison of the results with and without outliers.

5.2.3. Moderator analyses
For testing moderator effects we applied random-effects regression

analysis as recommended by Field and Gillett (2010). In this analysis a
general linear model is assumed in which the effect sizes are predicted
as a function of themoderator variable. The significance of the modera-
tor effect can be assessed using a χ2-statistic (for further information see
Field, 2003; Overton, 1998). Furthermore we computed Q-tests for sub-
group heterogeneity as recommended by Borenstein et al. (2009) and
regarded significant Q-values between groups (Qbet) as an indicator of
a moderating effect.

5.2.4. Identification of publication bias
As our analyses rely predominantly on published studies the possi-

bility of publication bias had to be considered. Publication bias refers
to the fact that significant results are more likely to be published than
insignificant ones, what might lead to an overestimation of the effects
found in meta-analyses. In order to identify possible publication bias
in the present study, we analyzed the association between Hedges' g
and standard errors using Kendall's τ. As recommended by Begg and
Mazumdar (1994), a significant Kendall's τ value can be interpreted as
indicator of publication bias. The results of these analyses showed a
slight publication bias (see results section). We therefore corrected
the results for publication bias using the strategy of Vevea and Woods
(2005) who suggest modeling the likelihood of a study being published
according to their weights. The mean Hedges' g corrected for moderate
publication bias [M(g)corr] and population variance (τ2corr) was com-
pared with the mean correlation of the initial meta-analysis in order
to assess the effect of publication bias on the results of this study.

Table 2
Coding for the measures of CPS and intelligence.

CPS measures

Classical SCS MCS

AGRIMAN Chemie Labor
[Chemistry Lab]

Genetics Lab

Cabin Air
Management
System

Heidelberg Finite
State Automaton
[Space Shuttle]

Schmetterlings−/Parabelproblem
[Butterfly/Parabola Problem]

Cherry-Tree FSYS MicroDYN
Coldstore K4 MicroFIN
DISKO MultiFlux
Dori (Sahel) M3
Firechief
Hamurabi
Hunger in the
Sahel

Learn
Lohhausen
Moro
Powerplant
Tailorshop
Textilfabrik
Water Purification
Plant

WinFIRE

Intelligence measures

General intelligence Reasoning

Intelligenz Struktur Analyze (ISA) Culture Fair Test (CFT) 20-R
Leistungsprüfsystem (LPS) Cognitive ability test (CogAT)
Berliner Intelligenz Strukturtest
(BIS)

Standard Progressive Matrices (SPM)

Intelligenz Struktur Test (IST) Advanced Progressive Matrices (APM)
Wonderlic Personnel Test IST — Subtests (Figures, Dices, Matrices,

Analogies)
Leistungsprüfsystem (LPS) BIS-K

Kognitiver Fähigkeitstest (KFT) — figural scale

Note. CPS = Complex problem solving; MCS = Multiple complex systems; SCS = Single
complex systems; only measures for which names were provided in the manuscripts
are listed.

Table 3
Stem and leaf display of effect sizes (r) from 59 samples.

Stem Leaf

.8 3, 4, 6

.7 1, 4, 5

.6 2, 3, 3, 3, 6, 7

.5 0, 0, 1, 2, 5, 7, 8, 8, 9

.4 0, 0, 3, 6, 6, 6, 7, 7, 7

.3 0, 0, 1, 3, 3, 4, 5, 6, 8, 8

.2 0, 0, 2, 4, 4, 5, 6, 6

.1 2, 3, 5, 6, 9

.0 5, 6, 9
−.0 3, 3
−.1 7
−.2
−.3 0

Note. If a sample hadmore than one effect size, themean effect
size was calculated and is reported in the table.
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6. Results

6.1. Meta-analysis of all studies

Table 3 displays the effect sizes found for all studies in a stem-and-
leaf plot. As can be seen, there was a wide range of correlation coeffi-
cients ranging from r = −.30 to r = .86.

The results of the meta-analysis of all studies are presented in Table
4. The mean weighted Hedges' g was M(g) = .433 and the population
variance was τ2 = .071. As the 95% confidence interval ranged from
.370 to .492 the mean Hedges' g of complex problem solving and intel-
ligence could be regarded as significantly greater than zero. The homo-
geneity of the distribution of Hedges' g values could be assumed since
the Q-statistic was not significant (p= .228). An I2-value of 93.7% indi-
cated that the observed variance almost exclusively reflects real differ-
ences in effect size.

To investigate how robust this finding was, considering different
levels of reliability for our measures of CPS and intelligence, we con-
ducted a sensitivity analysis correcting for unreliability under a range
of reliability assumptions. The results of this analysis are displayed
in Table 5. As can be seen, the mean effect size did not exceed a
Hedge's g of M(g) = .607 even when poor reliabilities (rxx = .60)
were assumed for both measures of CPS and intelligence. This con-
firms the interpretation of CPS and intelligence as highly related
but separable constructs.

Because it is possible to find moderating effects although the distri-
bution of effect sizes is homogeneous (Hall & Rosenthal, 1991), we de-
cided to additionally conduct meta-analyses on moderator levels.

6.2. Outlier and influence analyses

Fig. 1 presents the results of the outlier and influence analyses. It can
be recognized, that except for three studies (5, 28, 57) the SDRs did not
exceed the cut-off value for substantial outliers. Thus, the Hedges' g
values of the studies employed in the meta-analysis can be regarded
as rather homogeneous. The CD values were below the cut-off for all
studies. The COVRATIO values were substantially below the cut-off
only for the studies, which were identified as outliers. The results of
themeta-analysis without outliers can be found in Table 4. It can be rec-
ognized that the mean weighted Hedges' g values [M(g) = .433 vs.
M(g) = .399] as well as population variances (τ2 = .071 vs. τ2 =
.046) did not differ substantially from another. Furthermore there was
substantial overlap between the 95% confidence intervals of the two
analyses [.370 ≤ M(g) ≤ .492 vs. .343 ≤ M(g) ≤ .453]. Therefore we con-
cluded, that the results of the main meta-analysis are rather robust
against outliers.

6.3. Moderator analyses

The results of the moderator analyses are presented in Table 4. For
studies operationalizing intelligence by reasoning tests, the mean
weighted Hedges' g was M(g) = .472 with a population variance of
τ2 = .064 and a 95% confidence interval ranging from .400 to .538. For
studies operationalizing intelligence by measures of general intelli-
gence, the mean weighted Hedges' g was M(g) = .360 with a popula-
tion variance of τ2 = .052 and a 95% confidence interval ranging from
.257 to .454. The results of the random effects regression analysis
[χ2(1) = 3.206; p = .073] indicated that the moderating effect of the
operationalization of intelligence cannot be regarded as significant.
This was supported by the result of a Q-test for subgroup heterogeneity
which proved as insignificant [Qbet(1) = 3.406; p = .182].

For studies operationalizing CPS by classical measures of CPS, the
mean weighted Hedges' g was M(g) = .339 with a population variance
of τ2 = .142 and a 95% confidence interval ranging from .213 to .454.
Studies in which CPS was operationalized by single systems based on
LSE (SCS), showed a mean weighted Hedges' g of M(g) = .471 with a
population variance of τ2 = .051 and a 95% confidence interval ranging
from .363 to .566. For studies operationalizing CPS by MCS tests, the
mean weighted Hedges' g was M(g) = .585 with a population variance
of τ2 = .029 and a 95% confidence interval ranging from .510 to .652.
The results of the random effects regression analysis [χ2(2) = 9.620;
p= .008] indicated that themoderating effect of the operationalization
of CPS can be regarded as significant. This result was supported by the
result of a Q-test for subgroup heterogeneity, which proved as signifi-
cant [Qbet(2) = 12.984; p = .002].

Moreover, the corrected variance (τ2) within the studies using clas-
sical measures of CPS was larger than the corrected variance within all
studies. To further investigate this unexpected result, we conducted
an additional interaction analysis separating the studies using classical
measures of CPS and measures of general intelligence from those
using classical measures of CPS and measures of reasoning. The result
of this interaction analysis can be found in Table 4. The average effect
sizes did not differ significantly between both subgroups [Qbet(1) =
.075; p = .963] but the corrected variance for studies using classical
measures of CPS and measures of general intelligence fell below the
corrected variance within all studies (τ2 = .031) whereas the corrected
variance for studies using classicalmeasures of CPS andmeasures of rea-
soning remained higher (τ2 = .166).

Finally, we repeated our moderation analysis assuming plausible
values as average reliability coefficients for each type of CPS measure
to investigate whether the moderating effect of different
operationalizations of CPS on the correlation of CPS and intelligence is
due to different levels of reliability. We assumed poor reliability
(rxx = .60) for classical measures of CPS, very good reliability for SCS

Table 4
Meta-analytic results and moderator analyses.

Analysis k M(g) τ2 95% CLl 95% CLu Q df p I2

All Studies 60 .433 .071 .370 .492 66.763 59 .228 93.700%
Without outliers 57 .399 .046 .343 .453 58.399 56 .387 90.306%

Measure of intelligence
Reasoning 39 .472 .064 .400 .538 56.247 38 .029 94.299%
General intelligence 21 .360 .052 .257 .454 15.587 20 .742 84.214%

Measure of CPS
MCS 11 .585 .029 .510 .652 18.870 10 .042 91.782%
SCS 14 .471 .051 .363 .566 20.439 13 .085 92.294%
Classical 35 .339 .142 .213 .454 18.673 34 .985 93.320%

Interaction
Classical × Reasoning 21 .351 .166 .174 .505 12.012 20 .961 94.804%
Classical × General Intelligence 14 .323 .031 .212 .426 14.513 13 .339 69.117%

Note. k= number of studies; M(g) =mean Hedges' g; τ2 = estimated variance in population; CLl = lower bound of 95% confidence interval; CLu = upper bound of 95% confidence in-
terval; Q= Q statistic; df= degrees of freedom of Q statistic; p = significance of Q; CPS= Complex problem solving; MCS=Multiple complex systems; SCS= Single complex systems.
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measures (rxx = .85) aswell as MCSmeasures (rxx= .80). These values
are plausible based on the existing body of literature (Greiff et al., 2014)
and are beingdiscussedmore thoroughly below. The results of this anal-
ysis are displayed in Table 6. The general pattern of effect sizes remains
the same with an average of M(g) = .447 for classical measures,
M(g) = .577 for SCS, and M(g) = .720 for MCS tests. This difference
remained significant Qbet(2) = 13.208 (p b .001).

6.4. Analysis of publication bias

Regarding publication bias, we found a significant Kendall's
τ= −.274 (p = .003) between the Hedges' g values and the respec-
tive standard errors. This indicated a slight publication bias in bothways.
That is, the variance of the Hedges' g values was higher than what would
be expected by chance. We therefore chose to additionally correct the
mean weighted Hedges' g for moderate two-tailed selection following
the guidelines of Vevea and Woods (2005). The mean corrected correla-
tion showed a value of M(r)corr = .412 with a corrected population vari-
ance of τ2corr = .087. As these values did not differ substantially from
values of the main meta-analysis [M(r) = .428; τ2 = .084] we regarded
our results as relatively unaffected from publication bias.

7. Discussion

This meta-analysis investigated the relation between intelligence
and complex problem solving (CPS). The findings show a substantial
mean effect size ofM(g)= .433 for the correlation of the two constructs
that is highly significant with only little evidence for publication bias.
This finding contradicts earlier reviews suggesting a non-significant re-
lation between CPS and intelligence (Kluwe, 1991) and suggests that in-
telligent people also tend to bemore successful in dealingwith complex
problem-solving tasks. On the other hand, the results do not support the

Table 5
Sensitivity analysis for reliability.

rInt;Int = .60 rInt;Int = .70 rInt;Int = .80 rInt;Int = .90

rCPS;CPS = .60
M(g) = .607
Q = 42.151
p = .952

M(g) = .551
Q = 56.963
p = .551

M(g) = .595
Q = 46.459
p = .882

M(g) = .550
Q = 52.979
p = .696

rCPS;CPS = .70
M(g) = .585
Q = 47.697
p = .854

M(g) = .576
Q = 71.900
p = .121

M(g) = .528
Q = 69.207
p = .171

rCPS;CPS = .80
M(g) = .523
Q = 69.182
p = .171

M(g) = .521
Q = 48.707
p = .828

rCPS;CPS = .90
M(g) = .491
Q = 65.247
p = .267

Note. rInt;Int = Reliability Intelligence; rCPS;CPS = Reliability Complex Problem Solving;
M(g) = Mean weighted Hedges' g; Q = Q-value for heterogeneity; p = Significance.

Fig. 1. Results of the outlier and influence analyses.
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proposition of near to unity correlation of the two constructs either, as
was discussed by several authors on the basis of single empirical studies
(Kröner et al., 2005; Sonnleitner et al., 2012;Wittmann & Süß, 1999). In
linewith the different-demands hypothesis (Rigas & Brehmer, 1999), CPS
performance could, thus, demand the enactment ofmore complexmen-
tal processes than do intelligence tests such as the active interaction
with the problem to acquire knowledge on it.

The comprehensive answer to the question on the relation between
CPS and intelligence however, appears to depend on the
operationalization of CPS.Whereas themoderator analyses did not indi-
cate significant differences between measures of general intelligence
and measures of reasoning in respect to their relation to measures of
CPS, there are substantial differences inmean effect sizes found for stud-
ies using different operationalizations of CPS. The smallest average ef-
fect size for the relation of CPS and intelligence was found for classical
measures of CPS, M(g) = .339, followed by single systems based on
LSE, M(g) = .471. CPS scores gained from MCS tests are related most
strongly to intelligence, M(g) = .585.

Unexpectedly, the corrected variance (τ2) within the studies using
classical measures of CPS was larger than the corrected variance within
all studies. This unexplained variance may be due to the effects of mea-
sures of intelligence within the classical distribution. There was no sig-
nificant interaction effect between operationalization of intelligence
and classicalmeasures of CPS but only the corrected variance for studies
using classical measures of CPS and measures of reasoning showedwas
found to be higher than the corrected variance of all studies. This sug-
gests that theremy be additional factors, such as themodality of reason-
ing tasks (e.g., figural vs. verbal) separating studies using classical
measures of CPS and measures of reasoning from each other that were
not included in this meta-analysis.

The significantmoderator effect for operationalizations of CPS can be
interpreted in three different ways. First, it appears to support the low-
reliability hypothesis (Rigas et al., 2002) suggesting that unsatisfactory
psychometric properties found for classical measures of CPS limit the
correlation of CPS and intelligence. Reliability estimates for classical
measures of CPS are rare (for an overview see Süß, 1996) and associated
with several problems. Correlations between repeated measurements
using the same classical measure of CPS are problematic as CPS is a pro-
cess of active learning by interaction with the problem (Funke, 2001),
resulting necessarily in knowledge about the task thus confounding
any following assessment using the same measure (Wagener, 2001).
On the other hand, the lack of a theoretical framework prohibits the
creation of adequately parallel versions of a classical measure of CPS.
The few estimates provided in the literature generally point towards a
poor reliability (rxx b .70) of classical measures of CPS (e.g. Rigas et al.,
2002; Schoppek, 1991). For SCS on the other hand, reliability estimates
tend to overestimate the true reliability of the measures (Wagener,
2001) as all indicators of performance in SCS are based on the same
underlying item structure (see Greiff et al., 2014, for an overview).
Correspondingly, the reliability estimates reported for SCS are generally
very high (rxx N .90; e.g., Kröner et al., 2005; Wagener, 2001). Only MCS
tests include multiple, independent items and thus allow for a valid
estimation of reliability. These estimates are usually good to very good

(rxx N .80; Greiff et al., 2013). Repeating our moderation analysis
correcting the effect sizes of each type of CPS measure for plausible
average reliability coefficients challenged the low-reliability hypothesis
though. The general pattern of effect sizes remains the same, suggesting
that different levels of reliability of the CPS measure used are not
causing the divergent findings on the relation between CPS and
intelligence.

However, unlike classical measures of CPS or SCS, current MCS tests
do not feature some highly complex elements of problem solving such
as the recognition andhandling of time-delayed effects. Thus, the cogni-
tive demands posed by MCS tests are likely to be relatively closer to
those posed by intelligence measures. Following the different-demands
hypothesis (Rigas & Brehmer, 1999), this might be causing the high cor-
relations of intelligence and CPS scores obtained from MCS tests. In
order to test this hypothesis, it would be necessary to develop MCS
tests that feature highly complex elements while simultaneously main-
taining high levels of reliability.

Finally, our results seem to contradict the Elshout–Raaheim hypothe-
sis (Leutner, 2002) that assumes an inverted U-shaped relation between
the availability of domain specific knowledge in a CPS task and its corre-
lationwithmeasures of intelligence. Both single complex systems based
on LSE and MCS tests are unrelated to any real-world problems and
should be equally unaffected by domain specific knowledge. Thus, the
Elshout–Raaheim hypothesis would predict equally strong effect sizes
for the relation between measures based on these two approaches
and measures of intelligence. Our finding that MCS tests relate more
strongly to intelligence than SCS seems to challenge this hypothesis. In
order to test the Elshout-Raaheim hypothesis, CPS measures with com-
parable psychometric properties but different levels of domain-specific
elements would be needed.

8. Implications

Considering the substantial overlap of CPS and intelligence, future
research on CPS should focus on theoretically and empirically relating
the research conducted on CPS to the vast existing body of research on
human abilities.

Next to a more comprehensive theoretical understanding of human
abilities, a conflation of research on CPS andmore traditional constructs
such as intelligence could proof beneficial regarding the advancement
of assessment instruments. As the assessment of CPS has predominantly
relied on computer-based approaches, CPS researchers went to great ef-
fort to maximize the gains from computer-based assessments. Analyz-
ing the behavioral patterns that individuals engage in when dealing
with CPS tasks provides insights that go beyond mere final outcome
scores and provides access to aspects of the cognitive process underly-
ing specific problem solving behavior. Such in-depth log-file analyses
have become technically feasible for CPS research (Scherer, Greiff, &
Hautamäki, 2015) and could be extended to intelligence testing
(Kröner, 2001) inwhich the possibilities of computer-based assessment
such as log-file data are not fully used yet (Becker, Preckel, Karbach,
Raffel, & Spinath, 2015). Getting access to the behaviors displayed and
strategies employed by participants in assessments of intelligence
could lead to a more thorough understanding of not only the assess-
ment instruments themselves but more importantly of the whole con-
struct of intelligence.

9. Conclusion

In sum, results of the present meta-analysis demonstrate a signifi-
cant and substantial correlation of CPS and intelligence. Successfully
dealingwith complex problems requires actively gathering information
about a problem in order to later integrate that information to be used
to reach a certain goal. The results suggest that a large part of that pro-
cess involves the cognitive abilities comprising general intelligence.
Those with higher intelligencemay be better at integrating information

Table 6
Moderator analysis for measure of CPS corrected for reliability.

Analysis k M(g) τ2 95% CLl 95% CLu Q df p I2

Measure of CPS
MCS 11 .720 .106 .612 .802 22.598 10 .012 96.633%
SCS 14 .577 .175 .406 .708 20.395 13 .086 97.628%
Classical 35 .447 .112 .342 .540 36.963 34 .334 91.661%

Note. k=number of studies; M(g) =mean Hedges' g; τ2 = estimated variance in popu-
lation; CLl = lower bound of 95% confidence interval; CLu = upper bound of 95% confi-
dence interval; Q = Q statistic; df = degrees of freedom of Q statistic; p = significance
of Q; NFS = Fail Safe N; CPS = Complex problem solving; MCS = Multiple complex sys-
tems; SCS = Single complex systems.
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or employmore appropriate strategies in the acquisition of information
(Wüstenberg et al., 2014). Thus, we conclude that research on both CPS
and intelligence should not only be continuedbut be symbiotically com-
bined in order to reach amore comprehensive viewonhuman cognitive
abilities.
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Abstract 

The successful completion of a university degree program is accompanied by multiple 

complex opportunities and challenges, which require students to react accordingly 

with the skills necessary to meet them. Therefore, the aim of this study was to 

investigate the role of complex-problem solving (CPS) skills in undergraduate 

students’ university success in two independent samples. In Study 1, 165 university 

students completed a measure of reasoning as well as a measure of CPS. In addition, 

students’ university GPAs and their subjective evaluation of academic success were 

collected. CPS made a significant contribution to the explanation of GPAs and the 

subjective success evaluations even when controlling for reasoning. To further 

investigate this effect, Study 2 relied on an independent and more heterogeneous 

sample of 216 university students. The findings of Study 1 were replicated in Study 2. 

Thus, the results of both studies suggest a link between individual differences in CPS 

and the abilities necessary to be academically successful in university education.  

Keywords: university success; GPA; complex problem solving; intelligence; cognitive 

ability; structural equation modeling 
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“The logic of success: The relation between complex problem solving skills and 

university achievement” 

Attending a university is becoming more and more commonplace in modern 

societies (Pittman & Richmond, 2008), with an increasing number of students 

enrolling in university programs and societies investing large amounts of money in 

their educational systems (OECD, 2014). For the individual students, the transition 

from high school to university life constitutes a critical life event (e.g., Terenzini et 

al., 1994) with its unique opportunities as well as challenges (Arnett, 2000): 

opportunities, because the scope of independent exploration of life’s possibilities is 

greater than it will be at any other period of the life course; challenges, because 

independence and autonomy can also imply disorientation and uncertainty (Arnett, 

2000).  

Researchers are thus increasingly interested in identifying and examining 

factors which are related to how students navigate successfully through their 

university years (Tavernier & Willoughby, 2014). This has resulted in a vast array of 

cognitive (e.g., intelligence or previous academic achievement; Formazin, Schroeders, 

Koeller, Wilhelm, & Westmeyer, 2011), noncognitive (e.g., personality traits, 

motivational factors, self-regulatory learning strategies, students’ approaches to 

learning, or psychosocial contextual influences; for an overview see Richardson, 

Abraham, & Bond, 2012), and demographic (e.g., age or sociodemographic 

background; Robbins et al., 2004) factors known to influence students’ university 

success. Within this study we will focus primarily on individual differences in 

cognitive variables related to students’ university performance. Most prominently, 

previous academic achievement and intelligence have been established as valid 

predictors of students’ grade point average (GPA; Formazin et al., 2011). As an 
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addition to these established cognitive predictors, academic- related skills such as 

problem solving were found to be important antecedents of students’ success at 

university (Robbins et al., 2004). In that, individual differences in complex problem- 

solving skills (CPS), that is, the skills necessary to deal with new and dynamically 

changing situations (Frensch & Funke, 1995), might provide valuable information in 

explaining why students succeed differently well at university. Recent research has 

provided first evidence that CPS is significantly related to academic performance in 

school (Wüstenberg, Greiff, & Funke, 2012; Greiff et al., 2013) and at university 

(Stadler, Becker, Greiff, & Spinath, 2015a) with incremental validity over and above 

intelligence. The present two-study report therefore aims at expanding upon this 

initial evidence by investigating the relation between university students’ skills at 

dealing with complex problems and their success at university in two studies with 

independent samples. 

Measuring University Success 

Understanding university success depends on being able to conceptually 

define as well as assess it in a reliable and valid way (Richardson et al., 2012). 

Students’ academic performance is usually expressed in terms of GPA representing 

the mean of the grades received in courses contributing to the final degree 

(Richardson et al., 2012). GPA is the most widely used and studied measure in 

tertiary education (Bacon & Bean, 2006; Richardson et al., 2012), is economically 

available, shows good internal reliability and temporal stability (e.g., Bacon & Bean, 

2006), and correlates strongly with variables of interest to educational researchers 

such as intelligence, motivational strategies, or certain personality traits (Richardson 

et al., 2012). GPA represents a key criterion for postgraduate selection and 

employment and has been found to be a valid predictor of socioeconomic success 
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(Strenze, 2007). Moreover, GPA shows very strong correlations to other indicators of 

university success such as retention (Robbins et al., 2004). As such, it is an index that 

is directly meaningful to students, universities, and employers alike and relevant to 

future training and employment opportunities (Plant, Ericsson, Hill, & Asberg, 2005).  

Nonetheless, the use of GPA as an indicator of university success has often 

been criticized. For example, Johnson (2003) called grade inflation (very good or 

excellent grades becoming increasingly commonplace) a crisis in university education 

and argued that every university uses multiple and sometimes very different grading 

approaches to evaluate students (see also Babcock, 2010). These grading disparities 

between universities, study programs, and even between different university 

examiners, as well as the aspect of grade inflation, impair a fair and reliable 

assessment of students’ competencies. This has serious consequences on their future 

perspectives with respect to completing their university education with a higher GPA 

and, thus, better career prospects. Thus GPA has, despite its considerable advantages, 

some noteworthy limitations as a widespread indicator of students’ university success.  

Beyond a narrow focus on GPA, university success can furthermore be 

defined as a multidimensional construct with substantial subjective components 

(Gattiker & Larwood, 1988) such as individual perceptions of accomplishment or 

future prospects (Aryee, Chay, & Tan, 1994). GPA does not encompass this intrinsic 

and subjective aspect of success. Furthermore, the notion “university success” 

respectively “studying successfully” can have many different meanings, such as 

graduating with a high GPA, graduating as fast as possible, finishing studies and not 

dropping out earlier on, or the mere subjective satisfaction with the degree (Kunina, 

Wilhelm, Formazin, Jonkmann, & Schroeders, 2007). In other words, students may, 

for example, consider a passing grade as either success or failure depending on their 
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subjective expectations. Correspondingly, researchers have argued that objective and 

subjective aspects of success should be considered complementary (Duckworth, Weir, 

Tsukayama, & Kwok, 2012).  

Therefore, it is important to assess students’ university success based on this 

multidimensional conceptualization in order to avoid a too narrow coverage of the 

target construct. In this paper, students’ university success will be assessed through 

their grades as well as through the students’ own and subjective evaluation of their 

university success. 

Predicting University Success 

Regardless of the specific conception of success, managing a university 

program requires dealing with a complex system of academic tasks, learning and 

study behaviors, social obligations, and various other demands that are dynamically 

changing and whose interrelations are not always obvious (Parker, Summerfeldt, 

Hogan, & Majeski, 2004). Correspondingly, numerous cognitive (e.g., intelligence or 

previous academic achievement; Formazin et al., 2011), noncognitive (e.g., 

personality traits, motivational factors, self-regulatory learning strategies, students’ 

approaches to learning, or psychosocial contextual influences; for an overview see 

Richardson et al., 2012), and demographic (e.g., age or sociodemographic 

background; Robbins et al., 2004) factors have been established to influence students’ 

university success.  

In this paper, the main focus will be placed on the cognitive predictors of 

university success. Apart from intelligence, which has been known to be one of the 

strongest predictors of academic achievement since the early 20th century (e.g., Binet 

& Simon, 1916; Gottfredson, 2002; Jensen, 1998; Kuncel, Hezlett, & Ones, 2004; 
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Lubinski, 2004; Roth et al., 2015), other cognitive abilities have been in the focus of 

researchers recently. Especially in tertiary education, student selection procedures 

reduce variation in intelligence scores (Furnham, Chamorro-Premuzic, & McDougall, 

2003). This is particularly important for universities as highly selective academic 

institutions (Jensen, 1998). Consequently, factors others than intelligence may add 

important incremental information to the accurate prediction of performance at the 

university level. 

In addition, substantial differences in the development and prediction of GPA 

and subjective indicators of university success have been reported (e.g., 

Harackiewicz, Barron, Tauer, & Elliot, 2002). Whereas cognitive ability consistently 

predicts university students’ GPA, subjective indicators of university success seem to 

be more closely linked to psychosocial and study skill factors (Robbins, Allen, 

Casillas, Peterson, & Le, 2006). For instance, Robbins and colleagues (2004) 

investigated the role of study skill factors as predictors of university outcomes in 

addition to other well-established cognitive predictors. Their meta-analysis showed 

academia-related skills, defined as “cognitive, behavioral, and affective tools and 

abilities necessary to successfully complete task, achieve goals, and manage academic 

demands” (Robbins et al., 2004, p. 267) to be meaningful predictors of both university 

GPA and university retention rates with observed mean correlations of r = .13 and r = 

.30, respectively.  

In addition to these cognitive variables, complex problem solving (CPS) represents a 

more recently introduced academia-related concept. Recent research has provided 

initial evidence for the relevance of CPS for academic success at the university (see 

Stadler, Becker, Gödker, Leutner, & Greiff , 2015b). In this line of research, CPS can 

be defined as: 
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(…) the successful interaction with task environments that are dynamic (i.e., 

change as a function of the user’s interventions and/or as a function of time) and in 

which some, if not all, of the environment’s regularities can only be revealed by 

successful exploration and integration of the information gained in that process. 

(Buchner, cited in Frensch & Funke, 1995, p. 14) 

Being able to deal with dynamically changing and partially opaque systems is 

necessary to be successful at any academic institution. Support for this notion comes 

from several articles reporting CPS to predict high school grades even beyond 

measures of general intelligence (Greiff et al., 2013; Wüstenberg et al., 2012; see 

Kretzschmar, Neubert, Wüstenberg, & Greiff, 2016 for divergent findings) or 

working memory capacity (Schweizer, Wüstenberg, & Greiff, 2013). Compared to 

high school, the demands posed by university programs should be even more complex 

and cognitively challenging. In her model of university success, Ferrett (2000) 

describes cognitive skills such as time management, preparing for and taking 

examinations, or using information resources as the focal point of the freshman year 

experience. In that, university students face a variety of new challenges such as 

learning and applying study habits in a more complex academic environment and 

generally discovering how to function as independent and academically successful 

adults, which requires planning and problem-solving competencies (e.g., acquiring 

knowledge about new problems or prioritizing subgoals). In other words, students 

need to solve complex problems. Surprisingly though, only one study has investigated 

the relation between CPS and university success to date (Stadler et al., 2015a). This 

study found a substantial relation between CPS and both GPA and subjective 

university success of business students (β = .38) that remained significant even after 

general intelligence was controlled for.  
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Assessment of CPS 

The various elements of academic programs at universities (e.g., courses, 

teachers, or social obligations) are interrelated in a dynamic system that continues to 

evolve over time. The skills necessary to deal with such a dynamic system might not 

be fully captured by static tasks (such as a math problem or an intelligence test item) 

that do not progress but remain unchanged regardless of the time or the participants’ 

actions (Fischer et al., 2015). To incorporate the dynamic aspect of real-world 

problem solving, the assessment of CPS has to allow for the problem itself to be 

dynamic and require the participant to actively interact with the problem in order to 

understand and manipulate it.  

When working on CPS tasks, problem solvers need to manipulate certain input 

variables of a simulated system (e.g., the duration and intensity of handball training) 

and observe the resulting changes in a set of outcome variables (e.g., the strength of 

the players’ throws or their endurance). By doing so, problem solvers acquire 

knowledge (knowledge acquisition phase) about the problem’s underlying structure 

(e.g., high training intensity increases strength but not endurance), which they then 

apply to reach specific goals (knowledge application phase; Novick & Bassok, 2005). 

Cognitively, CPS thus involves multiple processes such as causal learning via 

interaction with the problem (Bühner & Cheng, 2005), hypothesis testing in order to 

assess the validity of one’s own cognitive model (Klahr & Dunbar, 1988), and self-

monitoring to avoid inadequate or automatic responses to dynamic changes in the 

problem (Osman, 2010).  
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CPS, Intelligence, and Academic Success 

When investigating the relation between CPS and university success, it is 

important to consider the well-established association between measures of CPS and 

measures of intelligence (e.g., Funke & Frensch, 2007; Wirth & Klieme, 2003; 

Wüstenberg, et al., 2012). On the one hand, intelligence measures are among the most 

consistently validated predictors of university success (Richardson et al., 2012), with 

average correlations of r = .32 between intelligence and GPA (corrected for 

attenuation; Hell, Trapmann, & Schuler, 2007). Intelligence thus possesses a high 

validity in the prediction of university success and shows incremental validity over 

high school GPA in predicting university GPA (Formazin et al., 2011). On the other 

hand, the conceptual and empirical relations of intelligence and CPS need to be 

considered. CPS and intelligence can theoretically be distinguished by the unique 

demands complex problems pose. There is, however, considerable theoretical overlap 

between CPS and intelligence as some characteristic features of CPS such as the 

integration of information are part of almost every definition of intelligence 

(Sternberg & Berg, 1986). The majority of studies on the relation between CPS and 

intelligence correspondingly reports medium to strong correlations between the two 

constructs (Beckmann & Guthke, 1995; Greiff, Fischer, Stadler, & Wüstenberg, 2015; 

Greiff et al., 2013). These findings were summarized in a meta-analysis reporting an 

average correlation of r = .43 between CPS and intelligence (Stadler et al., 2015b). 

Following this line of thought, it seems necessary to control for the influence 

of intelligence when investigating the relation between CPS and university success. 

Otherwise, any associations that are found between CPS and university success might 

be the result of shared variance of intelligence within the measure of CPS 

(Wüstenberg et al., 2012). 
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This Study 

Only Stadler and colleagues (2015a) have investigated the relation between 

CPS and university success to date. While their study provided first evidence 

supporting the role of CPS in university success, it was severely limited in its 

generalizability. On the one hand, the sample size used was rather small (N = 78) and 

did not allow for advanced statistical analyses such as structural equation modeling; 

on the other hand, the sample consisted exclusively of business students and was thus 

rather homogeneous and limited in terms of generalizability. Finally, the type of CPS 

measure employed (FSYS; Wagener 2001) was shown to have unsatisfactory 

reliability (Greiff et al., 2015). 

This paper will therefore represent a necessary extension of Stadler and 

colleague’s (2015a) study in various aspects investigating the role of CPS in 

university success in larger samples, using different indicators of university success 

for students from various fields of study, and employing more adequate measures of 

CPS. The aim of Study 1 is to expand upon the results reported by Stadler and 

colleagues (2015a) using a larger sample thus allowing for latent analyses on the 

construct level. Study 2 will go even further by investigating the relation between 

CPS and university success in a very heterogeneous sample. Moreover, considering 

exam scores as additional criteria and incorporating a longitudinal measurement 

might reveal further insights regarding the generalizability of these relations. 

Study 1 

Hypothesis 1: CPS predicts GPA and subjective university success. 

Based on the research findings presented above, Study 1 investigated the 

relation between CPS and students’ university success. In line with the findings 
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reported by Stadler and colleagues (2015a), we expected CPS to significantly predict 

both GPA and subjective indicators of university success.  

Hypothesis 2: CPS predicts GPA and subjective university success even when 

intelligence is controlled for. 

Despite the strong conceptual overlap between CPS and intelligence (e.g., 

Stadler et al., 2015b; Wüstenberg et al., 2012), the relation between CPS and 

university success should not be solely due to a shared measurement of intelligence. 

Thus, we expected to find an incremental validity of CPS in predicting university 

students’ success even when intelligence is controlled for. However, there may be 

considerable differences in the strength of prediction of the two different constructs. 

As described above, intelligence is strongly linked to GPA but less strongly to 

subjective aspects of university success (e.g., Robbins et al., 2006). Correspondingly, 

CPS should be more important in the prediction of subjective success than GPA after 

intelligence is controlled for.  

Method 

Participants. The overall sample consisted of 165 students recruited while 

attending lectures in the biology (N = 46), psychology (N = 85), and sports (N = 34) 

departments of a middle-sized German university. Sixty-one percent of the students 

were female, and the mean age was M = 22.53 years (SD = 3.83). The majority of 

students were in their 4th semester of studying at the university (equivalent to the 

second half of the sophomore year). All students attending the lectures participated in 

the assessment. Students were told that participation in the study was voluntary and, if 

they provided an e-mail address, they could receive an individual evaluation of their 

test results. Participants did not receive any further compensation for their 
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participation.  

Procedure. All tests and questionnaires in Study 1 were conducted solely 

computer-based. To prevent the uncontrolled influence of different materials on 

students’ performance, the computers were identical in all testing sessions. The entire 

assessment lasted 90 minutes that is the length of time that students would otherwise 

have spent in their respective lectures. Before beginning the assessment, students 

were informed that all personal data would be treated confidentially and would only 

be used for research purposes. After this, they signed the informed consent sheet 

approved by the university’s data protection agency.  

Measures. 

Grade point average (GPA). The grade point average (GPA) that had been 

achieved by participants at the time of the study was employed as a relatively 

objective measure of university success. GPAs were retrieved from the official 

university sources (students’ had given their approval on the signed consent form). 

Due to the German grading systems’ scoring of 1 representing the best performance 

grades, for the present analysis, GPAs were reverse-coded so that higher values 

indicate better performance (with values ranging from 1 to 4), similar to the grading 

scales used at North American universities. 

Subjective university success. Consisting of five items, the scale to measure 

subjective university success (Stadler et al., 2015a) asked students to rate their 

agreement with statements such as “I am successful in my studies,” “My grades are 

adequate for my effort,” or “My classmates study more successfully than me.” 

Students rated their subjective university success weighed against the amount of effort 

put in and compared to peers’ achievements on a Likert scale ranging from 1 to 5. The 
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value 1 indicated little and the value 5 indicated great satisfaction with one’s own 

university success. The scale showed good internal consistency (α = .80). 

Complex problem solving. Individual differences in CPS abilities were 

assessed using 10 items based on the MicroDYN approach (Greiff, Wüstenberg, & 

Funke, 2012; Greiff, et al., 2015). This set of items has been shown to provide highly 

reliable and valid CPS scores (e.g., Greiff et al., 2012). Figure 1 illustrates the type of 

MicroDYN tasks employed in our study. In the problem depicted here, the test taker 

is asked to explore the relation between three unspecified training strategies for 

handball players (labeled A, B, and C) and three outcomes (Motivation, Power of 

Throw, and Exhaustion). In the course of problem solving, the test taker may 

systematically vary the use of the three training strategies to determine their effects on 

the three possible outcomes. It is important to note that, unlike other measures of CPS 

emulating real-world problems, the underlying relations depicted here are completely 

arbitrary and do not resemble any real-world setting. Thus, previous knowledge about 

handball or coaching in general did not provide any advantage for solving the 

problem. At the end of the knowledge acquisition phase, once knowledge about the 

system was acquired, participants were asked to plot the assumed relation at the 

bottom of the task. To reach certain predefined goals in the knowledge application 

phase (e.g., reach a Motivation value of 20 by adequately adapting the three training 

methods), the acquired knowledge needed to be applied in a second step.  

--- Insert Figure 1 --- 

Unlike other measures of CPS, the use of MicroDYN tasks allows for a 

measurement of individual differences in CPS that is not only theoretically embedded, 

but also psychometrically confirmed (e.g., Greiff et al., 2012; Greiff et al., 2013). The 

scoring of students’ CPS performance was conducted fully automatized based on 
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predefined analyses of the results embedded in the testing software. For knowledge 

acquisition, credit (1 point) was given if the causal model was provided correctly; 

otherwise, no credit (0 points) was assigned. For knowledge application, credit (1 

point) was given if all goals were reached in the application phase; otherwise, no 

credit was assigned (0 points). The final CPS score was modeled as a second-order 

factor based on scores of both knowledge acquisition and knowledge application. 

Intelligence. In order to determine participants’ general intelligence, the well-

established Intelligenz-Struktur-Test-Screening (IST-Screening; Liepmann, 

Beauducel, Brocke, & Nettelnstroth, 2012) was administered. The IST Screening, as a 

well-established, short (approximately 20 minutes) and economic intelligence 

measure, consists of the three task groups of verbal analogies, number series, and 

figural matrices (each consisting of 20 items). The test’s publishers report good 

internal consistencies for all three scales (α = .72 - .90; Liepman et al., 2012). These 

values were confirmed in our empirical data. 

Statistical analysis. To test our hypotheses, we used structural equation 

modeling (SEM) with weighted least square estimation adjusting means and variances 

(WLSMV) in Mplus 7.3 (Muthén & Muthén, 1998-2015). Model fit assessment was 

based on fit indices recommended by Beauducel and Wittmann (2005) and the criteria 

proposed by Hu and Bentler (1999). For both the Tucker–Lewis index (TLI) and the 

comparative fit index (CFI), values greater than .90 and .95 were considered to reflect 

acceptable and good fit to the data, respectively. For the root mean square error of 

approximation (RMSEA), values of less than .05 and .08 reflect a close fit and a 

minimally acceptable fit to the data, respectively. 

To account for the hierarchical structure of the data due to different university 

study programs, two dummy variables were created representing the three study 
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programs with psychology students as the reference group. These dummy variables 

were added as control variables to all structural models to account for the within-

cluster variance in a fixed effects model (Huang, 2016). With a fixed effects model, 

all variability associated with the cluster level is completely accounted for thereby 

reducing the problem of omitted variable bias. 

Results 

Descriptive statistics and measurement models. Table 1 shows the 

descriptive statistics and observed intercorrelations for all variables included in Study 

1. Students’ average intelligence scores (M = 47.15; SD = 2.95) were slightly but not 

significantly [t(164) = 0.30; p = .381; d = 0.03] higher than to be expected based on 

age and education (norm score = 46.59). However, an ANOVA comparing the 

different study programs displayed significant differences in average intelligence 

scores [F(2;157) = 5.98; p = .003; ηp
2 = .084], with psychology students (M = 48.21; 

SD = 5.28) averaging significantly higher scores than students studying both biology 

(M = 44.57; SD = 6.56) and sports (M = 43.97; SD = 9.03). Psychology students also 

scored significantly higher than the corresponding norm sample [t(79) = 2.61; 

p = .006; d = 0.31]. The correlations between CPS and both GPA and subjective 

university success were significant and pointed in the expected direction. 

- Insert Table 1 - 

Measurement models were established for all latent variables. For subjective 

university success, all items were defined to load onto one common factor (λ = .45-

.92). To limit the parameters to be estimated in the structural models, we aggregated 

the intelligence items to three parcels for numerical, verbal, and figural content 

(Little, Cunningham, Shahar, & Widaman, 2002) and had the parcels all load onto one 
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factor (λ = .51-.72). In line with previous research (e.g., Greiff & Neubert, 2014), 

CPS was modeled as a higher-order factor consisting of the two latent factors of 

knowledge acquisition and knowledge application. Both for knowledge acquisition 

(λ = .50-.99) and knowledge application (λ = .30-.80), all 10 items were defined to 

load onto one common factor each. As can be seen in Table 2, all measurement 

models fit very well to the data thus allowing for estimations of the structural models. 

- Insert Table 2 - 

Structural models. In order to test Hypothesis 1, CPS was specified as a 

predictor of both subjective university success and GPA. This model represented the 

data very well as illustrated in the lower part of Table 2. In accordance with 

Hypothesis 1, CPS significantly predicted subjective university success (β = .32; 

p = .004; R2 = .10) and GPA (β = .34; p < .001; R2 = .12). The correlation between the 

two criteria subjective university success and GPA was r = .57 (p < .001). 

To estimate the incremental validity of CPS over and above intelligence and to 

avoid issues of multicollinearity resulting from the high latent correlation between 

CPS and intelligence (r = .81; p < .001), CPS was residualized for intelligence in 

order to test Hypothesis 2. In this model, intelligence explained 66% (β = .81; 

p < .001) of the variance in CPS. The remaining residual of CPS, now not sharing any 

variance with intelligence, as well as intelligence itself were then defined to predict 

both subjective university success and GPA. In line with Hypothesis 2, the residual of 

CPS remained a significant predictor of both subjective university success (β = .24; 

p < .001) and GPA (β = .14; p = .015). As expected, CPS thus predicted subjective 

success significantly more strongly than GPA after intelligence was controlled for 

(χ2 = 2.77; df = 1; p = .048). Intelligence itself also predicted subjective university 

success (β = .23; p < .001) and GPA (β = .32; p < .001). Intelligence thus predicted 
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GPA significantly more strongly than subjective university success (χ2 = 8.43; df = 1; 

p = .002). Together, intelligence and CPS explained 12% of the variance in GPA 

(R2 = .12; p < .001) and 11% of the variance in subjective university success 

(R2 = .11; p = .007). The correlation between subjective university success and GPA 

was r = .58 (p < .001). As indicated by the fit indices, this model represents the data 

very well (Table 2) and is illustrated in Figure 2. 

--- Figure 2 --- 

Discussion of Study 1 

The aim of Study 1 was to investigate the relation between CPS and students’ 

university success. In line with our hypotheses and previous research results (Stadler 

et al., 2015a), CPS was significantly related to both GPA and subjectively appraised 

success. This relation remained significant and substantial even after intelligence was 

controlled for.  

Regarding the two different indicators of university success, there were 

considerable differences in the prediction by CPS and intelligence. CPS significantly 

predicted both GPA and subjective university success. In line with our hypotheses, 

the relation was significantly stronger between CPS and subjective university success 

than between CPS and GPA. Intelligence, on the other hand, also predicted both 

indicators of university success although it was more strongly related to GPA than to 

subjective university success. This confirms previous findings regarding differential 

prediction of GPA and subjective indicators of university success (e.g., Robbins et 

al., 2006) in that GPA is more strongly linked to intelligence while alternative 

indicators are related to other relevant skills.  

In order to estimate the generalizability of these findings, it is necessary to 

inspect the full correlation matrix. The latent correlation between CPS and 
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intelligence (r = .81) was slightly higher than suggested by a recent meta-analysis on 

the relation between CPS and intelligence (Stadler et al., 2015b). This meta-analysis 

reported a corrected correlation of up to r = .71 (depending on the level of correction 

for attenuation) for measures of CPS such as the one used in this study. The latent 

correlation between GPA and intelligence (r = .32) was found to be exactly as was to 

be expected based on meta-analyses (Hell et al., 2007) reporting average correlations 

of r = .32.  

The relatively homogeneous sample, consisting predominantly of psychology 

students, suggests a potential range restriction in students’ intelligence values, which 

was confirmed in our data. Psychology students scored significantly higher than 

students enrolled in the other subject areas as well as the norm sample. This does not 

come as a surprise considering the German system of selection for students studying 

in the field of psychology compared to biology or sports. Applicants undergo a 

competitive selection procedure based on their high school GPA for the limited 

number of slots available to study psychology at each university. Therefore, this 

dominance of highly intelligent students within the sample could limit the validity of 

intelligence (Jensen, 1998). On the other hand, no range restriction (average of .50 

with values ranging from 0 to 1) or mean differences [(F(2;157) = 0.16; p = .425; 

ηp
2 = .002] could be found for CPS values. This finding was expected as the CPS 

measure was constructed to be used with a university student sample and, 

accordingly, item difficulties were rather high. A more heterogeneous sample could 

thus potentially lead to a substantial improvement in the validity of intelligence in the 

prediction of both subjective university success and GPA. 

In summary, the results of Study 1 support the validity of CPS as a predictor 

of university success, but they raise the question of whether the findings can be 
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generalized to more heterogeneous samples as well or whether they only hold for 

specific, highly selective university programs. To further investigate the question of 

generalizability, we replicated the design of Study 1 in a second study using a more 

heterogeneous sample. 

Study 2 

The findings of Study 1 support the hypothesized relevance of CPS as 

predictor of students’ university success. Study 2 expands on Study 1 by replicating 

the design of Study 1 as closely as possible with the exception of a more 

heterogeneous sample consisting of students enrolled in diverse study programs. 

Furthermore, students’ scores on a common exam, gathered about three months after 

the main assessment were added as a longitudinal criterion that was identical for all 

students. These additions allowed us to investigate the reliability and generalizability 

of the findings reported in Study 1. 

Hypothesis 3: CPS predicts GPA and subjective university success in a 

heterogeneous sample. 

Based on the results found in Study 1, we still expected to find CPS to 

significantly predict both GPA and subjective indicators of university success.  

Hypothesis 4: CPS predicts GPA and subjective university success in a 

heterogeneous sample even when intelligence is controlled for. 

We furthermore expected to find incremental validity of CPS over and above 

intelligence in predicting university students’ GPA and subjective university success. 

However, the larger variation in university programs should be associated with a 

larger variation in intelligence. This should increase the validity of intelligence and in 

turn limit the validity of CPS after controlling for intelligence. This effect should be 
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particularly strong for GPA and less strong for subjective university success (Robbins 

et al., 2006). 

Hypothesis 5: CPS predicts students’ exam results. 

Different university study programs have different average grades (Johnson, 2003). 

Correspondingly, the high heterogeneity in our sample might result in substantial 

differences in the students’ average GPA as well as the frame of reference for the 

subjective evaluations of their university success. To have a common indicator of 

university success in addition to students’ GPA, students’ scores on a course final 

exam taken by all students participating in Study 2 (see methods section) were 

additionally included. This additional indicator of university success was gathered 

several weeks after the main assessment thus allowing for a longitudinal prediction of 

the students’ performance. We expected CPS to predict these final exam scores as 

well. 

Hypothesis 6: CPS predicts students’ exam results even when intelligence is 

controlled for. 

This effect should not be solely due to intelligence either, and we expected CPS to 

show incremental validity in the prediction of students’ exam scores over and above 

intelligence. Similar to GPA, the validity of CPS should be reduced by controlling for 

intelligence. 

Method 

Participants. Data from N = 216 students (71% women; age: M = 23.8 years; 

SD = 5.5 years) in an obligatory introductory lecture on educational assessment for 

sophomore teacher-education students at a mid-sized German university were used in 

Study 2. Most students were enrolled in multiple study programs because teachers in 
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Germany are supposed to teach at least two different school subjects (in addition to 

the aspects of their study program that are identical for all students striving for 

teaching degrees, like educational assessment). The most frequent study programs 

(corresponding with those school subjects to be taught later as a teacher) were 

German (30%), English (21%), and Mathematics (21%); nevertheless, many other 

curricula (corresponding to other school subjects) were covered, too. 

Procedure. The assessment of demographics and intelligence took place during the 

first part of the first lecture of the semester. During the following week, the students 

worked on the CPS tasks online. The final exam covering the entire course took place 

at the end of the semester. Here, students could choose between two exam dates: 

either directly at the end of the lecture period (8 weeks after the main assessment) or 

two months later. The first date was chosen by 58% of the students; 42% of students 

selected the second date. 

Measures. The measures used in Study 1 were also administered in Study 2. 

CPS was assessed with 10 MicroDYN tasks (Greiff et al., 2012). Intelligence was 

assessed with the pen-and-paper version of the Intelligenz-Struktur-Test-Screening 

(IST-Screening; Liepmann et al., 2012). Self-reported university GPAs at the time of 

the study were reverse-coded so that the best possible passing score was 4 (very good) 

and the worst score was 1 (sufficient). The 5-item subjective university success scale 

(α = .79) was completed only by those students who had registered for the second 

final exam, and it was filled out immediately prior to beginning the final exam. 

Performance on the course final exam was used as additional indicator of students’ 

university success. Students could, as mentioned, choose freely between the two exam 

dates. Both exams consisted of 136 multiple-choice items assessing students’ 

competencies and knowledge of educational and psychological assessment; of these, 
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58 items were identical for both exam dates. A correct response was scored one point 

and incorrect responses received zero points. Hence, the sum score of the 58 identical 

items was used as an additional indicator of students’ university success. 

Statistical analysis. To test our hypotheses, we used structural equation 

modeling (SEM) with weighted least square estimation adjusting means and variances 

(WLSMV) in Mplus 7.3 (Muthén & Muthén, 1998-2015) as in Study 1. Again, model 

fit assessment was based on fit indices recommended by Beauducel and Wittmann 

(2005) and the criteria proposed by Hu and Bentler (1999) described above.  

In line with Study 1, the predictions of GPA and subjective university success 

were calculated in the same models. The predictions of exam scores on the other hand 

were calculated in separate models. This was done to consider the time difference 

between the assessment of GPA and subjective university success and the exam 

scores, which were gathered several weeks after the main assessment. Whereas the 

regressions of CPS and intelligence on GPA only represent a statistical relation, the 

regression of CPS and intelligence on the exam scores and subjective university 

success represents a real prediction.  

Results 

Descriptive statistics and measurement models. Table 3 shows the 

descriptive statistics and intercorrelations for all variables included in Study 2. 

Students’ average intelligence scores (M = 48.02; SD = 5.42) were slightly higher 

[t(249) = 3.79; p < .001; d = 0.26] than to be expected based on age and education 

(norm score = 46.59). The observed correlations between CPS and subjective 

university success were significant and in the expected direction. The observed 

correlation between CPS and GPA, however, was not significant. 
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- Insert Table 3 - 

Measurement models were established for all latent variables in the same way 

as in Study 1. For subjective university success, all items were defined to load onto 

one common factor (λ = .45-.90). To limit the parameters to be estimated in the 

structural models, we aggregated the intelligence items to three parcels for numerical, 

verbal, and figural content (Little et al., 2002) and had the parcels all load onto one 

factor (λ = .54-.65). CPS was modeled as a higher-order factor consisting of the two 

latent factors of knowledge acquisition and knowledge application. Both for 

knowledge acquisition (λ = .51-.98) and knowledge application (λ = .40-.90), all 10 

items were defined to load onto one common factor each. All measurement models fit 

very well to the data thus allowing for estimations of the structural models (see 

Table 4). 

- Insert Table 4 - 

Structural models. In order to test Hypothesis 3, we defined the same 

structural model as for Hypothesis 1. CPS was defined to predict both the latent 

subjective university success factor and manifest GPA scores. This model represented 

the data very well as can be seen by the values reported in the second part of Table 4. 

In accordance with Hypothesis 3, CPS predicted both subjective university success 

(β = .27; p = .038; R2 = .07) and GPA (β = .15; p < .001; R2 = .02). The correlation 

between subjective university success and GPA was r = .62 (p < .001). 

To investigate the incremental validity of CPS (Hypothesis 4), CPS was again 

residualized for intelligence, which explained 70% (β = .83; p < .001) of the variance 

in CPS. The remaining residual of CPS, now not sharing any variance with 

intelligence, as well as intelligence itself were then specified to predict both 
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subjective university success and GPA. In support of Hypothesis 4, the residual of 

CPS remained a significant predictor of both subjective university success (β = .17; 

p < .001) and GPA (β = .08; p < .001). CPS thus predicted subjective success 

significantly more strongly than GPA after intelligence was controlled for (χ2 = 3.51; 

df = 1; p = .003). In this model, intelligence itself significantly predicted both 

subjective university success (β = .41; p < .001) and GPA (β = .18; p < .001). 

Combined, intelligence and CPS explained 4% of the variance in GPA (R2 = .04; 

p = .001) and 19% of the variance in subjective university success (R2 = .19; 

p = .046). The correlation between subjective university success and GPA was r = .63 

(p < .001). Thus, this model represented the data very well (Table 4). 

Hypothesis 5 stated that CPS predicted students’ exam scores. To test this 

hypothesis, a latent CPS factor indicated by knowledge acquisition and knowledge 

application was defined to predict manifest exam scores. CPS predicted exam scores 

significantly (β = .13; p = .038; R2 = .02). The fit for this model was very good 

(Table 4). 

To control the effect of CPS in the prediction of students’ exam scores for 

intelligence (Hypothesis 6), CPS was residualized for intelligence (structure identical 

to Figure 2). In this model, intelligence explained 56% (β = .75; p < .01) of the 

variance in CPS. Contrary to Hypothesis 5, the remaining residual of CPS no longer 

significantly predicted students’ exam scores (β = .06; p = .295). Intelligence, on the 

other hand, predicted students’ exam scores significantly (β = .15; p = .043). 

Combined, intelligence and CPS explained significant amounts of variance in 

students’ exam score (R2 = .03; p = .031). This model represented the data very well 

(Table 4). 
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Discussion of Study 2 

The results of Study 2 confirm the role of CPS in the prediction of students’ 

university success. Nonetheless, comparing the results of Study 1 and Study 2 reveals 

several differences regarding the interplay of CPS and intelligence as predictors of 

grades and subjective university success. CPS significantly predicted GPA and exam 

grades as well as students’ subjective university success. However, controlling for 

intelligence resulted in a substantial drop in the relative importance of CPS in the 

prediction of all three indicators of students’ university success. After controlling for 

intelligence, CPS still predicted GPA and subjective university success but with 

considerably lower beta weights than found in Study 1. CPS no longer significantly 

predicted students’ exam scores after intelligence was controlled for. 

The variations in effect sizes for CPS between the two studies can be 

interpreted in multiple ways. On the one hand, as already noted, the relatively 

homogenous sample in Study 1, together with a strong positive selection for cognitive 

ability, led to a restricted variance in intelligence scores. This restriction in range was 

less for the sample in Study 2, which also showed a high average intelligence score 

(M = 48.02) but significantly higher variation in intelligence scores 

[F(211; 132) = 1.83; p < .001] than the sample in Study 1. This is certainly partially 

responsible for the relatively low validity of intelligence in the prediction of 

university GPA in Study 1 and is further supported by the increase in validity of 

intelligence for the more heterogeneous sample in Study 2. Since we residualized CPS 

for intelligence in order to estimate the incremental validity of CPS over and above 

intelligence, a reduced validity of intelligence in Study 1 may have artificially 

increased the validity coefficients of CPS. It must be noted, however, that our 

approach of residualizing CPS for intelligence generally benefits the relative 
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importance of intelligence compared to CPS, as all shared variance is attributed to 

intelligence (Johnson & LeBreton, 2004).  

On the other hand, there also are considerable differences in the structuredness 

of German university programs (Bargel, Multrus, Ramm, & Bargel, 2009). German 

programs have a high number of mandatory courses that need to be attended at a 

certain point of the program. Especially studies in the natural sciences are highly 

structured leaving little to no room for the students to individualize their studies. 

Social sciences and humanities programs leave a larger degree of freedom in terms of 

choosing courses or selecting exam dates (Bargel et al., 2009). This differing number 

of choices and options might be important, so that students with high CPS are able to 

use their superior skills to their advantage (Robbins et al., 2004). Given that the 

sample in Study 1 consisted predominantly of students enrolled in social science 

programs and the students in Study 2 were enrolled in diverse study programs, this 

could also have caused the differences in validity for CPS. In a tentative post hoc 

comparison between students enrolled exclusively in the natural sciences (N = 55) and 

all other students, not exclusively enrolled in natural sciences (see Kaub et al., 2012), 

the data from Study 2 more strongly supported the validity of CPS in the prediction of 

students’ GPA for students enrolled in social sciences and humanities (β = .21) than 

for those enrolled in the natural sciences (β = .06). This supports the assumption that 

the validity of CPS in the prediction of university success may rely on the amount of 

academic freedom students have to individualize their studies. However, due to the 

post hoc nature and unequal sample sizes, these intriguing results should be 

interpreted with care and call for additional research. 

Taken together, Study 2 replicated most of the findings of Study 1, however, with 

substantially smaller effect sizes for CPS and substantially larger effect sizes for 
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intelligence. This supports our interpretation of CPS as a relevant predictor of 

university success that provides additional information over and above intelligence. 

The magnitude of this incremental validity may depend on the student population of 

interest. 

General Discussion 

Complex problem-solving skills appear to be relevant for the academic 

achievement of university students. Both studies presented here corroborate the role 

of this 21st century skill in (tertiary) education with substantial validity. However, the 

importance of CPS as an additional source of information on students’ cognitive 

ability seems to increase with the selectiveness of university programs (Jensen, 1998). 

This suggests that individual differences in CPS may be helpful in explaining why 

highly intelligent students still differ in their academic success. Beyond being smart 

enough to cope with the academic demands of university, students need to learn to 

extract relevant information, test hypotheses, and control a dynamically changing 

environment of interrelated variables (Funke, 2001; Raven, 2000) to succeed in their 

studies at the university level. In other words, they need to solve complex problems. 

Limitations 

Nonetheless, some limitations need to be considered in the interpretation of 

the data. The (mostly) cross-sectional design of both studies calls for caution 

regarding causal interpretations of the data. Specifically, the correlation between CPS 

and indicators of university success may represent an increase in CPS as an outcome 

of university studies rather than individual differences in CPS causing different levels 

of university success. However, this limitation holds substantially less for the exam 

scores (Hypothesis 5), which were gathered a considerable amount of time after CPS 
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was assessed. In line with the interpretation of CPS as a predictor rather than an 

outcome of university success, CPS predicted these exam scores as well. Notably, the 

validity coefficients found for intelligence in our studies correspond to those reported 

in previous longitudinal studies (Hell et al., 2007). 

In addition, the choice of operationalization for both CPS and intelligence may 

have substantially influenced the results. In fact, recent meta-analytic findings have 

shown that the correlation between CPS and intelligence depends on the 

operationalizations used (Stadler et al., 2015b). In that, measures of CPS and 

intelligence (such as those used in the current studies) showed the strongest 

correlations. Correspondingly, the incremental validity of CPS may have been 

stronger using different measures of CPS and intelligence (cf. Kretzschmar et 

al., 2016). However, all measures used in this study are well established and have 

shown their validity in predicting academic outcomes repeatedly (Liepmann et 

al., 2012; Wüstenberg et al., 2012), which is not the case for most other measures of 

CPS (Greiff et al., 2015). Future research may nonetheless investigate whether other 

operationalizations of CPS lead to a stronger incremental validity of CPS over and 

above intelligence in the prediction of university success. 

Finally, our studies focused exclusively on cognitive predictors of university 

success. As noted above, various noncognitive predictors of university success have 

been established as well (for an overview, see Richardson et al., 2012). Little is 

known about the relation between CPS and noncognitive constructs (Greiff & 

Neubert, 2014). Wood and Bandura (1989) argue that self-efficacy influences 

individual use of strategy in CPS tasks and subsequent problem solving attainment 

whereas Greiff and Neubert (2014) report weak (albeit partly significant) relations 

between CPS and personality traits. Thus, it stands to reason that future research on 
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the role of CPS in students’ university success needs to include noncognitive factors 

as well to obtain a more complete picture on the various factors influencing students’ 

success in their studies at the university. 

Implications 

The major finding of both studies presented here is that individual differences 

in CPS are related to student’s university success and that this difference cannot be 

reduced to individual differences in intelligence. This confirms previous findings 

(Stadler et al., 2015b) and provides a solid ground for future research on the role of 

CPS in university success. CPS tasks may represent a valuable addition to other 

instruments used in university selection. Besides their validity in predicting relevant 

outcomes, CPS tasks have been shown to be highly accepted by participants 

(Sonnleitner et al., 2012), whereas intelligence measures suffer from low acceptance 

in university selection (Hell & Schuler, 2005). Moreover, computer-based CPS 

measures provide a vast array of process data (information about single interactions 

between the problem solver and the task) that may allow may allow researchers a 

glimpse into the cognitive processes involved in finding successful and unsuccessful 

solutions to complex problems (Greiff, Wüstenberg, & Avvisati, 2015). Finally, 

assessing student’s individual levels of CPS may help in understanding why some 

students perform short of their intellectual potential. Helping them to handle the 

complexity of university studies may thus increase students’ success, improve their 

satisfaction with their education, and ultimately limit the likelihood of a preventable 

drop-out. 
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Table 1 

Descriptive Statistics and Observed Correlations for Study 1 

Variables Mean (SD) 
 

GPA SUS CPS  
Acquisition 

CPS  
Application 

GPA 2.31 (0.61) -    
SUS 3.29 (0.59) .33** -   
CPS Acquisition 0.52 (0.26) .22** .10 -  
CPS Application 0.50 (0.23) .19* .23** .70** - 
Intelligence 47.15 (2.95) .08 .00 .24** .27** 
Note: CPS = complex problem solving; GPA = grade point average; SUS = subjective 

university success, *p < .05, **p < .01. 
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Table 2 

Model Fit Indices for Study 1 

Model Χ2 df p CFI TLI RMSEA 
Measurement Models       

SUS 7.51 5 .19 .98 .99 .06 
Intelligence 0 0 - 1.00 1.00 .00 
CPS 207.81 168 .02 .97 .97 .04 

Structural Models       
CPS predicting GPA and SUS 339.63 296 .04 .97 .96 .03 
CPS predicting GPA and SUS 
controlling for Intelligence 

409.26 371 .08 .97 .97 .03 

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis 

index; RMSEA = root mean square error of approximation; SUS = subjective 

university success; CPS = complex problem solving; GPA = grade point average. 
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Table 3 

Descriptive Statistics and Correlations for Study 2 

Variables Mean (SD) 
 

GPA SUS Exam 
scores 

CPS  
Acquisition 

CPS  
Application 

GPA 2.18 (0.47) -     
SUS 3.51 (0.65) .52** -    
Exam scores 44.75 (6.41) .30** .23** -   
CPS Acquisition 0.40 (0.27) .04 .23** .11 -  
CPS Application 0.41 (0.24) .00 .26** .09 .71** - 
Intelligence 48.02 (5.42) .15* .46** .10 .46** .43** 
Note. CPS = complex problem solving; GPA = grade point average; SUS = subjective 

university success, *p < .05, **p < .01. 
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Table 4 

Model Fit Indices for Study 2 

Model Χ2 df p CFI TLI RMSEA 
Measurement Models       

SUS 3.05 5 .27 1.00 1.00 .00 
Intelligence 0 0 – 1.00 1.00 .00 
CPS 220.78 170 <.01 .99 .99 .04 

Structural Models       
CPS predicting GPA and SUS 375.47 298 <.01 .96 .96 .04 
CPS predicting GPA and SUS 
controlling for intelligence 

480.72 375 <.01 .97 .97 .03 

CPS predicting exam scores 237.71 189 <.01 .99 .99 .03 
CPS predicting exam scores 
controlling for intelligence 

290.78 250 <.01 .99 .99 .02 

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis 

index; RMSEA = root mean square error of approximation; SUS = subjective 

university success; CPS = complex problem solving; GPA = grade point average 
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Figure 1. Example of a CPS item based on the MicroDYN approach (Wüstenberg et 

al., 2012)  
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Figure 2. Structural model testing Hypothesis 2 with standardized coefficients. 

Control variables were omitted for the sake of clarity; CPS = complex problem 

solving; Res = residual; SUS = subjective university success; GPA = grade point 

average; *p < .05, **p < .01.  
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a b s t r a c t

Dealing with complexity and dynamics is increasingly becoming part of people's everyday lives. The
necessity of dealing with complex systems has instigated the use of computer simulations, so-called
microworlds (MWs), to assess and study human behavior in complex situations. Although these MWs
enjoy great popularity with both practitioners and researchers, their psychometric qualities have been
questioned, and studies that have investigated these qualities have been sparse. In particular, only a few
studies have investigated the factors that contribute to item difficulty in MWs. To fill this gap, we
analyzed data from 3128 Finnish students with a linear logistic test model. Our results suggest that item
difficulty in MWs can be almost perfectly predicted by six basic item characteristics, namely, (a) the use
and number of eigendynamics, the numbers of (b) input and (c) output variables, the numbers of (d)
input and (e) output variables not related to any other variables, and (f) the total number of relations
between all variables. In addition, we provide evidence for the necessity of differentiating between the
difficulty of controlling an MW (knowledge application) and understanding its underlying structure
(knowledge acquisition). Finally, we discuss further theoretical and practical implications of an increased
understanding of MWs for their use as assessment instruments.

© 2016 Elsevier Ltd. All rights reserved.

Running a company, organizing developmental aids for a village
in the desert, or coordinating fire fighters during a blaze are highly
complex and difficult tasks. Multiple different aspects of the situ-
ation need to be considered and the situation changes dynamically.
Although we might not face such drastic situations on a daily basis,
theworld we live in today is becomingmore andmore complex and
dynamic. Just dealing with everyday objects (e.g., phones, com-
puters, automated driving systems) requires us to be aware of their
respective connections to other objects or people.

As the complexity of the systems that we interact with in our
daily lives grows, so does the importance of research on how we
learn to control dynamic environments. Several closely related
research areas that focus on how people deal with complex envi-
ronments have been developed. Most prominent among these
research areas are the fields of complex problem solving (CPS;
Frensch & Funke, 1995), dynamic decision making (DDM; Brehmer,
1992), systems thinking (Booth-Sweeney & Sterman, 2000), and
naturalistic decision making (NDM; Lipshitz, Klein, Orasanu, &
Salas, 2001). With the exception of NDM, which focuses primarily

on field studies (Klein, 2008), computer simulations and how
humans interact with them play integral roles in this research. For
example, it would be impossible to have a random participant run
an entire company for a short time, but asking the same participant
to run a simulated version of the company allows researchers to
observe decision making and problem solving in this complex sit-
uation. These simulations are supposed to embody the essential
characteristics of real-world problems (Gonzalez, Vanyukov, &
Martin, 2005), thus representing a compromise between experi-
mental control and realism (Funke, 1992). Throughout this paper,
wewill use the termmicroworlds (MWs) for reasons of consistency,
but several other terms for complex simulations, such as synthetic
task environments or high fidelity simulations have been established
as well (for a summary, see Gonzalez et al., 2005).

Despite the considerable use of MWs in both research and
practice, many of their relevant characteristics are not yet fully
understood, thus limiting their utility. Referring back to the initial
examples, it is easy to see how running a company is more difficult
than getting used to a new phone, and simulations emulating the
former should be harder to understand and control than the latter.
But which part of the situation makes one of these tasks harder? Or
stated from a psychometrician's point of view, what determines an* Corresponding author.
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MW's difficulty, independent of person ability? Whereas the sur-
face differences are obvious, the difficulty of the two MWs should
depend on structural characteristics that determine how difficult it
is to understand and successfully control anMW. Only a few studies
have tried to investigate this question, and rather than conducting
an extensive investigation, such studies have focused mostly on
individual, specific characteristics of MWs (Kluge, 2008). Therefore,
the aim of the current paper is to expand the research on charac-
teristics of MWs that determine their difficulty by systematically
analyzing multiple different characteristics. Only by fully under-
standing the difficulty of MWs can they be optimally fit to specific
research questions, samples, and practical requirements.

1. Microworlds in psychological research

The number of complex real-world situations is infinite, and
thus it is not surprising that manifold different MWs have been
used in psychological research (Funke and Frensch, 2007) ranging
from the total control over a city (D€orner, Kreuzig, Reither, &
St€audel, 1983) to working as a fire chief (Brehmer, 1992) or man-
aging a forest (Wagener, 2001). This variety of different MWs is
partly due to the initial euphoria over this new test format (Kluge,
2008). MWs were supposed to bridge the gap between field and
laboratory research by creating ecologically valid environments
that were completely known to and controlled by the researcher
(Brehmer & D€orner, 1993). In this, all MWs share some basic
characteristics. Gonzales et al., (2005) identified complexity,
opaqueness, and dynamics as essential features of MWs.
Complexity describes the fact that MWs consist of multiple vari-
ables that are related to and thus influenced by each other. These
relations between the variables can be expressed by an underlying
mathematical structure such as a linear equation and are to a
certain degree opaque, meaning that not all of them are always
obvious to the person dealing with the MW. Finally, MWs are dy-
namic, that is, the system's state at time t depends on the state of
the system at the previous time t !1 (Rouse, 1981). The term dy-
namics means that changes in the system can occur either as a
result of active manipulations of the system by a participant or
through the mere passage of time.

An example of an MW that has been referred to as the
“drosophila” of problem solving research (Funke, 2010) and has
been used in hundreds of studies is the “Tailorshop” (see Danner,
Hagemann, Schankin, Hager, & Funke, 2011). This microworld
emulates the workings of a shirt-making company. The system
consists of 24 variables that affect each other directly or indirectly
(interconnectivity). Of the total of 24 variables, only 21 are visible to
a participant who is working on this MW (opaqueness), and only 11
can be manipulated directly, whereas the others change only in
response to these manipulations (dynamics). The aim of a problem
solver is to maximize the value of the company within a predefined
number of steps (i.e., simulated months).

Despite the considerable use of MWs in both research and
practice, some defining aspects of MWs such as the Tailorshop are
not yet fully understood (Greiff, Wüstenberg, & Funke, 2012). In
this paper, wewill focus on item difficulty in MWs. In psychological
measurement, difficulty is usually defined as a participant's likeli-
hood of responding correctly to an item. However, because MWs
rarely have one single correct solution (the problem solvers are
relatively free to choose how they will manipulate the system), this
definition is not easily applied here (Kluge, 2008). More often, a
goal state (e.g., maximizing the total value of the company) that can
be achieved through several different courses of action is given.
Theoretically, the test developers should be able to specify an
optimal or correct solution for achieving the goal state, but given
the complexity of many MWs, this is rarely the case (Sager, Barth,

Diedam, Engelhart, & Funke, 2011). An exception is the aforemen-
tioned Tailorshop for which Sager et al. (2011) attempted to define
an optimal solution for every possible state of the system. Even so,
various ways of approaching the MW may lead to the same solu-
tion. Studies investigating the difficulty of MWs have therefore
usually associated an increase in average performance (e.g., a
higher company value at the end of the simulation) with decreased
difficulty that could be related to differences in the system's un-
derlying structure (e.g., fewer variables that can be directly
influenced).

2. Estimating the difficulty of microworlds

In line with this approach, Funke (1983, 1992) was among the
first to provide empirical evidence that anMW's difficulty increases
with its complexity. In experimental studies, both increasing the
number of variables with a fixed number of relations and increasing
the number of relations between a fixed number of variables
increased anMW's difficulty (see also Greiff, Krkovic,& Nagy, 2014;
Kluge, 2004; 2008). A subsequent study investigated the impact of
dynamics on the difficulty of MWs (Funke, 1992). In particular, the
finding that eigendynamics (i.e., variables affecting themselves)
strongly increase the difficulty of MWs has been repeatedly re-
ported (e.g., Funke, 1992; Greiff et al., 2014). A real-world example
of eigendynamics can be found in interest rates through which
money (or debt) increases over time without additional changes.

Due to the complexity of mostMWs, however, all of the previous
studies on MWs' difficulty were limited to either specific MWs or
rather limited general characteristics such as the number of vari-
ables (e.g., Kluge, 2008). Moreover, the great effort related to
changing anMWhindered a systematic investigation of the specific
characteristics of MWs that influence their difficulty.

An important development toward a more systematic use of
MWs in psychological research was suggested in the form of the
Multiple Complex Systems approach (MCS; Greiff et al., 2012),
which combines multiple small and independent MWs into one
test (Greiff, Fischer, Stadler, & Wüstenberg, 2015). The structure of
an exemplaryMCSmicroworld is illustrated in Fig.1. As can be seen,
the MW still shows all defining features of an MW, in that there are

Fig. 1. Abstract example of an MCS microworld based on linear structural equations
(adapted from Greiff et al., 2012, p. 192).
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different interrelated variables (complexity) only some of which
(i.e., the input variables) can be directly manipulated. The relations
between the input and output variables are not given to the
problem solver and need to be explored by actively interacting with
the system (opaqueness). The output variables may change as a
result of these interactions or over time (dynamics). In this case, the
changes in the system are based on linear structural equations that
model the state of the different variables, but there are other MWs
that are based on the MCS approach as well (for an overview, see
Greiff et al., 2014).

The process of dealing with these different MWs that are based
on the MCS approach can be separated into two phases (Novick &
Bassok, 2005). First, the problem solver explores the system in or-
der to gain knowledge about the system (knowledge acquisition).
In a second step, that knowledge is applied to reach specific target
states in the system (knowledge application). Whereas gaining
knowledge and applying it are intertwined in real life, separating
these processes in an assessment situation allows researchers to
obtain more differentiated information about skills, deficits, and
possibly the underlying cognitive processes (Greiff et al., 2014).

Tests following the MCS approach thus provide multiple inde-
pendent scores for knowledge acquisition and knowledge appli-
cation performance. Given the low complexity of the systems, it is
possible for participants to gain complete knowledge of the MW's
underlying system, thus allowing for a dichotomous scoring of
system knowledge. Similarly, the simplicity of the MWs allows
researchers to define achievable control tasks during which certain
outcome variables of the system need to reach a certain level.
Again, success or failure in this task can be scored dichotomously.
The MCS approach thus offers several advantages over the classical
approach of using only one large microworld with respect to psy-
chometric properties such as scalability and reliability (for a full
review, see Greiff et al., 2013; Greiff et al., 2014) and is well-suited
for studies on item difficulty. The independence of the MWs allows
for a systematic variation in characteristics, and because the MCS
approach provides multiple dichotomous scores of system knowl-
edge and successful system control, this enables the application of
complex, IRT-based models of participants' performance. Further-
more, the MCS approach allows the knowledge acquisition phase to
be separated from the knowledge application phase. This separa-
tion is important because different characteristics may influence
the difficulties of these two phases.

Greiff et al. (2014) used these advantages of theMCS approach to
apply a linear form of the Rasch Model (RM; Rasch, 1960) called the
Linear Logistic Test Model (LLTM; Fischer, 1973) to a number of
independent MWs. This model allows researchers to estimate the
relative importance of specific characteristics to the difficulty of a
set of items (formore details, see below). Greiff et al. (2014) inferred
that the number of relations between a varying number of variables
as well as the presence of eigendynamics in the MW could account
formost of the variance in theMW's difficulty. However, their study
investigated only two basic characteristics of MWs (number of re-
lations and eigendynamics) and focused exclusively on the
knowledge acquisition phase. In this paper, we extend this para-
digm by including different characteristics of MWs to investigate
their relative importance for item difficulty in MWs. In addition, we
compare the relevance of these characteristics for both knowledge
acquisition and knowledge application.

3. The current study

The aim of this paper is to investigate whether the difficulty of a
set of MWs constructed within the MCS approach can be described
by six essential item characteristics: (a) The use and number of
eigendynamics, (b) the number of input variables, (c) the number of

output variables, (d) the number of input variables not related to
any output variables (i.e., manipulating these variables has no
impact on the system and is thus irrelevant for the control of the
system), (e) the number of output variables not related to any input
variables (i.e., they cannot be controlled and are thus irrelevant for
the control of the system), and (f) the total number of relations
between all variables. Examples of these characteristics can be seen
in Fig. 1 above. In total, this MW has (a) one eigendynamic (Output
X), (b) three input variables (Inputs A-C), (c) three output variables
(Outputs X-Z), (d) one input variable not related to other variables
(Input C), (e) zero output variables not related to other variables,
and (f) a total of four relations between all variables. If these six
item characteristics completely describe an MW, it should be
possible to predict its difficulty with them. This would allow re-
searchers to efficiently create new MWs with predetermined dif-
ficulties, thus fitting them optimally to specific populations or
research questions.

In the present study, we investigated this hypothesis by going
beyond previous work that had concentrated on only a few specific
characteristics (e.g., Greiff et al., 2014). Furthermore, it was unclear
whether the difficulties of knowledge acquisition and knowledge
application would be affected differently by these six item char-
acteristics. By also investigating this distinction, the present study
offers a considerably more comprehensive investigation than pre-
vious studies in an attempt to further increase our understanding of
the determinants of MWs' item difficulty.

4. Method

4.1. Sample and procedure

Our sample consisted of 3128 students attending Grade 6
(N ¼ 1637; 48.7% male; age M ¼ 12.02; SD ¼ 0.41) or Grade 9
(N ¼ 1491; 47.9% male; age M ¼ 14.36; SD ¼ 0.74) in a Finnish
municipality. The students were sampled to be representative of
the entire population with respect to socioeconomic status and
gender. All assessments were administered online with each stu-
dent working on an individual school computer.1

4.2. Instrument

All participants completed a set of nine well-established MWs
that followed the MCS approach (Greiff et al., 2014; see above). The
MWs consisted of up to three input variables, which were related to
up to three output variables. The underlying relations were opaque
to the students, and some of the tasks featured eigendynamics. As
described above, the students' assignment was to apply adequate
strategies to acquire knowledge about the problems' structure
(knowledge acquisition) and to apply that knowledge to achieve
certain goals (knowledge application). Both the knowledge acqui-
sition and knowledge application phases were scored dichoto-
mously with credit given only if students correctly drew the
underlying model or if all goals were reached, respectively. An
exemplary MW is illustrated in Fig. 2. In this MW, students are
asked to imagine that they are the coach of a handball team and
want to find out how different types of training (i.e., Training A,
Training B, Training C; left part of Fig. 2) are related to certain

1 Please note that the performance data employed in this study have been used
in previous publications (e.g., Krkovic, Greiff, Kupiainen, Vainikainen, & Hautam€aki,
2014; Wüstenberg, Stadler, Hautam€aki, & Greiff, 2014; see also Vainikainen, 2014,
for more information on the entire assessment battery). However, none of these
publications investigated the difficulty of the MWs. Both the research question and
every result reported in this study are therefore completely unique to this study.
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characteristics of the team (i.e., Motivation, Power of the throw,
Exhaustion; right part of Fig. 2). It is important to note that the
relations between the input variables and the output variables are
completely arbitrary and not related to any knowledge about
handball or coaching in general. Once the knowledge is obtained by
systematically varying the input variables (knowledge acquisition
phase), the determined relations are plotted in the graph below the
task (lower part of Fig. 2). In the second part of the MW (knowledge
application phase), predetermined values need to be reached on all
outcome variables.

The six item characteristics were distributed across all MWs
with no MW including fewer than three or more than five char-
acteristics. The resulting matrix showing the exact distribution of
characteristics for each item (design matrix or Q-matrix; Fischer,
1973) is provided in Table 1.

4.3. Data analysis

To estimate the relative importance of the six characteristics for
the MWs' difficulty, a linear logistic test model (LLTM; Fischer,
1973) was used. Beginning with the idea that item difficulty can be
conceived as a function of certain item characteristics, Fischer
developed the model as an elaboration of the more general Rasch
Model (RM; Rasch, 1960). The RM states the probability that person
j will answer item i correctly on the basis of qj, the ability parameter
for person j, and si, the difficulty parameter for item i.

P
!
Xij ¼ 1jqj; si

"
¼

eqj"si

1þ eqj"si
(1)

The LLTM constitutes a linearization of the general Rasch Model
(RM; Rasch, 1960). The core assumption is that differences between

item difficulties are attributable to item characteristics that vary
across the items. What determines an item's difficulty is the
number and the nature of the characteristics involved. In the LLTM,
the items are scored on these characteristics, and qik is the score of
item i on characteristic k. Estimates from the LLTM include hk, the
weight of k in item difficulty, and qj, the ability of person j. The item
difficulty si is described as an additive linear function of basic
characteristics qik and the weight of that characteristic hk:

si ¼
XK

k¼1
qikhk (2)

Replacing si in Equation (1) with Equation (2) yields person j's
probability of passing item i in the LLTM:

P
!
Xij ¼ 1jqj; q;h

"
¼

eqj"SK
k¼1qikhk

1þ eqj"SK
k¼1qikhk

(3)

The LLTM includes no error term and therefore assumes that all
of the variance in item difficulty can be explained by the basic
parameters that have been included (Baghaei & Kubinger, 2015).

In order to estimate the validity of the LLTM, item difficulties (s)
are first determined by applying a general RM followed by an
estimation of item difficulties with the LLTM. A high correlation
between the two resulting sets of difficulty estimates indicates that
the item characteristics provide a good description of the items and
thus a good fit of the LLTM (Baghaei & Kubinger, 2015). All analyses
were conducted separately for Grades 6 and 9 as well as for
knowledge acquisition and knowledge application. All analyses
were computed with the R package eRm (Mair, Hatzinger, & Maier,
2012) in R 3.1.1.

Fig. 2. Screenshot of an exemplary MCS microworld. See text for further details.
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5. Results

The eta (h) values estimated by the LLTM representing the
weight allocated to the specific characteristics in the estimation of
item difficulties are displayed in Table 2. Positive eta (h) values
indicate a decrease in item difficulty due to the presence of an item
characteristic; negative eta (h) values indicate an increase. For
knowledge acquisition, all characteristics significantly contributed
to the estimation of item difficulty for students in both Grades 6
and 9. The number of eigendynamics was by far themost important
characteristic for both age groups (h ¼ "3.32/-3.98), followed by
the number of irrelevant input variables (h ¼ "1.77/-1.51) and the
total number of relations in the model (h ¼ "1.12/-0.80). All of
these characteristics resulted in substantial increases in item dif-
ficulty. For the knowledge application phase, on the other hand, the
number of irrelevant output variables (h ¼ 1.72/1.94), leading to a
decrease in difficulty, and the number of input variables
(h ¼ "1.08/-0.93), leading to an increase in difficulty, were most
influential. Again, all six item characteristics contributed signifi-
cantly to the prediction of item difficulty by the LLTM (all
ps < 0.001). The eta (h) values for students in Grades 6 and 9 were
highly correlated in both the knowledge acquisition phase (r¼ 0.98,
p < 0.001) and the knowledge application phase (r ¼ 0.94,
p < 0.001). This is important as LLTMs with relatively small
numbers of items and relatively large numbers of characteristics
might overfit the eta (h) values to the data, making it difficult to
generalize the results (Fischer, 1973). Finding very similar results in
the two independent samples thus provided a cross-validation of
the eta (h) values and supported their validity and generalizability
to other samples.

Item difficulties (s) for the RM and the LLTM analyses can be
found in Table 3. For both Grades 6 and 9, the LLTM results matched
the estimates from the general RM very well. In the knowledge
acquisition phase, the correlation between the general RM and the
LLTMdifficulties approached r¼ 1.00 (p< 0.001), suggesting that the
six item characteristics almost perfectly described the item

difficulties in the MWs. Similarly, the general RM and the LLTM
difficulties from the knowledge application phasewere very strongly
correlated (r ¼ 0.96, p < 0.001). These results can be taken as evi-
dence that virtually every aspect that was relevant for the difficulty
of theMWswas captured by the six characteristics used in this study.

The relation between the RM and LLTM difficulties is further
illustrated in Fig. 3 as the relation between the RM and LLTM sigma
(s) values. As can be seen in Fig. 3, the sigma (s) values of the RM
and the LLTM matched each other almost perfectly for the knowl-
edge acquisition phase. For the knowledge application phase,
however, the sigma (s) values that were based on the Rasch Model
indicated a lack of variance within the easier items.

6. Discussion

The aim of this study was to investigate the validity and relative
importance of six essential item characteristics for the prediction of
item difficulty in MWs. Our results show that item difficulty in the
MWs used in this study could be described almost perfectly as a
function of these six item characteristics in an LLTM, a finding that
suggests that they cover virtually every aspect relevant for item
difficulty. This result replicated previous findings (e.g., Greiff et al.,
2014) that had shown that the number of eigendynamics and the
total number of relations between all variables were the most
important predictors of item difficulty in the knowledge acquisition
phase. The current study expanded upon previous studies in
showing that various additional item characteristics contributed to
the difficulty of MWs as well. Furthermore, we were able to show
the necessity of differentiating between the knowledge acquisition
and knowledge application phases regarding difficulty because, for
knowledge application, the number of irrelevant output variables
and the number of input variables had the strongest influences on
item difficulty. Thus, different aspects of an MW might determine
how difficult it is to acquire new knowledge and to apply this
knowledge to reach certain goals. This is important for both the
theoretical conception and the empirical use of MWs as the two
phases have so far been considered rather equivalent in their psy-
chometric properties (e.g., Wüstenberg, Greiff, & Funke, 2012).

Understanding what constitutes the difficulty of MWs is
important for the further use of this item format in psychological
assessments (Kluge, 2008). The results of this study suggest that it
would be possible to systematically construct both very difficult
and rather easy MWs by appropriately combining specific item
characteristics. Adding additional input variables, for instance, in-
creases the difficulty of both the knowledge acquisition and
knowledge application phases. The addition of irrelevant output
variables, on the other hand, is a way to decrease the difficulty of
the knowledge application phase while leaving the difficulty of the
knowledge acquisition phase relatively unchanged. This is of
particular interest for the assessment of giftedness, an area in
which many measures fail to systematically reach appropriate

Table 1
Design matrix for the 9 MWs and the six characteristics.

Eigenvalues Number of input variables Number of output variables Irrelevant input variables Irrelevant output variables Total number of relations

MW1 0 2 1 0 0 2
MW2 0 2 2 0 0 2
MW3 0 2 2 1 0 2
MW4 0 3 2 0 0 3
MW5 0 3 3 0 0 3
MW6 1 3 2 2 1 2
MW7 0 3 3 0 0 4
MW8 1 3 2 1 0 3
MW9 1 3 3 0 1 4

Note. MW ¼ Microworld.

Table 2
Eta values for Grade 6 and Grade 9 from the LLTM.

Knowledge
acquisition

Knowledge
application

Grade 6 Grade 9 Grade 6 Grade 9

Eigenvalues "3.32*** "3.98*** "0.34*** "1.17***

Number of input variables 0.40*** 0.36*** "1.47*** "1.52***

Number of output variables "0.16*** "0.51*** "1.08*** "0.93***

Irrelevant input variables "1.77*** "1.51*** 0.11*** 0.47***

Irrelevant output variables 0.70*** 0.83*** 1.72*** 1.94***

Total number of relations "1.12*** "0.80*** "0.83*** "0.47***

r(Grade 6, Grade 9) 0.98*** 0.94***

***p < 0.001.
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levels of item difficulty (e.g., Preckel, 2003), as well as for the
assessment of young children, where relatively easy items are
required and items that are too difficult may severely harm the
children's motivation (e.g., Sonnleitner et al., 2012). Following this
line of thought, some of the establishedmicroworlds, which consist
of up to 2000 variables (Brehmer & D€orner, 1993), should be
extremely difficult and hardly solvable to most people. In fact, even
the Tailorshop simulation mentioned above consists of a total of 24
variables with over 40 relations between them (Funke, 2010). Ac-
cording to the results presented here, this simulation should be
extremely difficult. However, because these very large MWs
emulate real-world situations, previous knowledge about the sit-
uation may dramatically help in reducing the difficulty. An expe-
rienced manager would not need to apply trial-and-error to figure
out how an increase in advertising will influence his or her sales. In
fact, difficulties that are too high and an overly large influence of

previous knowledge were among the major criticisms expressed
toward the use of MWs in psychological assessment (e.g., Witt-
mann & Hattrup, 2004).

The small number of MWs in the LLTM represents a noteworthy
limitation of our study. Future studies should expand upon our
results by using a larger set of MWs with even more variability in
task characteristics. Due to the easily adaptable features of the MCS
approach, creating such an item pool is possible. However, our
successful cross-validation that was based on the high correlations
of eta values for students from Grade 6 and 9 supports the gener-
alizability of our findings.

7. Conclusions

The results of this study provide a way to predetermine the
expected difficulty of a microworld when knowledge cannot be

Table 3
Sigma (s) values based on the general Rasch Model and the LLTM.

Knowledge acquisition Knowledge application

Rasch Model LLTM Rasch Model LLTM

Grade 6 Grade 9 Grade 6 Grade 9 Grade 6 Grade 9 Grade 6 Grade 9

MW1 2.70 3.12 3.23 2.90 3.07 2.87 2.67 2.44
MW2 2.23 1.98 3.08 2.37 1.61 1.57 1.57 1.44
MW3 0.73 0.95 1.36 0.82 1.25 1.21 1.68 1.95
MW4 1.59 1.68 2.38 1.92 !1.68 !1.46 !0.76 !0.71
MW5 1.71 1.72 2.22 1.39 !1.67 !1.57 !1.86 !1.71
MW6 !3.76 !3.84 !2.52 !3.60 1.84 1.85 1.70 1.65
MW7 0.33 0.46 1.13 0.57 !1.62 !1.31 !2.70 !2.22
MW8 !3.44 !3.66 !2.57 !3.72 !1.06 !1.42 !1.00 !1.46
MW9 !2.08 !2.41 !1.42 !2.66 !1.75 !1.74 !1.30 !1.39

r(bRasch, bLLTM) 1.00 1.00 0.96 0.96

Note. Beta values were standardized to a mean of 0. MW ¼ Microworld; LLTM ¼ Linear logistic test model.
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Fig. 3. Graphical representation of the relation between the Rasch Model and the LLTM sigma (s) values.
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used to gain an advantage, thus providing a good fit to the re-
quirements of the advised assessment and sample. However, future
research will need to demonstrate whether the findings presented
here can be directly applied to other MWs such as the Tailorshop
that are not based on the MCS approach.

Being able to construct new MWs with known item difficulty
would also be highly relevant for the use of MWs in high stakes
assessments. Having a validated theoretical model of the important
characteristics of any item represents an important step toward
automatic item generation. Automatic item generation as a means
of minimizing the effort necessary to create new items can present
a cost efficient and suitable way to use specific item formats, such
as MWs, in high stakes testing. Successful implementation of
automatic item generation might help reduce the repeated use of
single MWs, thus protecting their integrity in high stakes assess-
ments (Arendasy, 2005).

In summary, our findings provide comprehensive information
on determinants of MWs' item difficulty that can be used to
improve existing assessment instruments, facilitate their use, and
instigate future research on this promising item format.
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6. Discussion 

The aim of this thesis was to validate CPS as a construct and to investigate its 

utility of in the prediction of university success. This research question has never been 

tackled extensively before and in the four papers that constitute this thesis it could be 

shown that (1) CPS can be measured reliably and what measurement approach to use 

best for this thesis, (2) CPS is strongly related but not redundant to intelligence, which 

supports the idea of CPS as a valuable addition to measures of intelligence in 

predicting university success, (3) CPS is valid in predicting different indicators of 

university success and in that shows incremental validity over and above intelligence, 

and (4) CPS tasks are well understood and can therefore be efficiently created, which 

is vital for their use in high-stakes assessments such as university applicant selection. 

6.1 Implications 

CPS tasks thus represent a valuable addition to other instruments used in 

university applicant selection. As presented in Paper 1, the most suitable CPS tasks 

for this endeavor are based on the multiple complex systems approach (Greiff, 

Stadler, Sonnleitner, Wolff, & Martin, 2015). Three different sets of tasks following 

the MCS approach have been developed so far. Of these, the Genetics Lab 

(Sonnleitner et al., 2012) was specifically designed for young children and may thus 

not be applicable to university students. The other two sets of tasks – MicroDYN 

(Greiff, Wüstenberg, & Funke, 2012) and MicroFIN (Neubert, Kretzschmar, 

Wüstenberg, & Greiff, 2014) – were developed for older students and adults and are 

therefore appropriate to be used in university selection. The two measures correlate 

highly and correlate equally strong with intelligence (Kretzschmar, Neubert, 

Wüstenberg, & Greiff, 2016). The prediction of difficulties described in Paper 4 

however, is only possible for MicroDYN tasks. Taken together, this implies that 
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MicroDYN tasks represent the most adequate measure of CPS to be used in the 

prediction of university success to date.  

The use of MicroDYN tasks (or MCS tasks in general) for the assessment of 

CPS comes with the cost of high latent correlations between CPS and intelligence as 

was shown in Paper 2. Latent correlations of r = .72 between CPS and intelligence 

indicate that the additional cognitive demands incorporated in MCS tasks 

(cf. different demands hypothesis; Rigas & Brehmer, 1999) seem to be limited. Using 

MicroDYN/ a MCS test as an additional tool in university selection might thus be 

most adequate when the utility of intelligence is reduced by strong positive selection 

as would be expected in a highly selective university. Spearman’s Law of 

Diminishing Returns (Jensen, 1998) predicts that the mean correlation among 

cognitive tests declines as ability level increases. This has implications for the 

predictive validity of a particular cognitive test. If the mean correlation among 

cognitive tests is lower for high ability subjects, then the correlation of a particular 

test with another test will generally be lower for high ability subjects (e.g., Molenaar, 

Dolan, Wicherts, & van der Maas, 2010). Given that the predictive validity of a test is 

a test’s correlation with a criterion (e.g., GPA), it follows that a test’s predictive 

validity should generally be lower for high ability subjects. Consequently, other 

factors will add incremental information to the accurate prediction of performance at 

university level. In other words, the incremental validity of CPS over and above 

intelligence should be particularly high when the university is very selective and 

attracts only highly intelligent students. 

That CPS does in fact show incremental validity over and above CPS in 

predicting different indicators of university success was shown in Paper 3. As was to 

be expected based on previous work (e.g., Robbins et al., 2004; Stadler, Becker, 
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Greiff, & Spinath, 2015), CPS was particularly valid in predicting subjective 

university success. This confirms that whereas cognitive ability consistently predicts 

university students’ GPA, subjective indicators of university success seem to be more 

closely linked to psychosocial and study skill factors (Robbins, Allen, Casillas, 

Peterson, & Le, 2006). Correspondingly, using CPS to predict university success 

should be most useful when the focus lies on the subjective aspects of success. This 

may be relevant to increase university students’ satisfaction with their studies or to 

prevent early drop out (Kunina, Wilhelm, Formazin, Jonkmann, & Schroeders, 2007). 

Finally, the results of Paper 4 show that MicroDYN tasks are extremely well 

understood regarding their defining characteristics. This implies that it is possible to 

create new tasks with known properties with low effort. They are thus particularly 

well suited for university applicant selection or other high stake assessment situations. 

One of the major concerns of high-stakes testing is the integrity of items, which can 

be severely compromised by repeated use (Way, 2005). Having a working theoretical 

model of the important characteristics of any item represents an important step toward 

automatic item generation. Automatic item generation as a means of minimizing the 

effort necessary to create new items can present a cost efficient and suitable way to 

use specific item formats in high stakes testing. Successful implementation of 

automatic item generation might help reduce the repeated use of single tasks, thus 

protecting their integrity in high stakes assessments (Arendasy, 2005). 

In summary, the results of this thesis imply that CPS represents a useful 

addition to intelligence in understanding and predicting university success. 

6.2 Limitations and future research 

Some noteworthy limitations calling for further research remain. First, the 

clear focus on MicroDYN tasks as a measure of CPS may limit the generalizability of 
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the findings reported. Most importantly, results on the validity of CPS in predicting 

university success might have been different using different measures of CPS. As 

outlined in Papers 1 and 2, the MCS approach, which MicroDYN tasks are based on, 

represents a trade off between qualities and complexity of the tasks (see also Greiff et 

al., 2015). Using other measures of CPS might therefore have led to different 

conclusions regarding the predictive power of CPS.  

However, despite these limitations the choice of MicroDYN tasks was well 

justified based on the theoretical considerations and empirical findings reported in 

Papers 1 and 2. Moreover, Greiff and colleagues (2015) could show that MCS 

measures are superior to classical measures of CPS in predicting indicators of 

educational success such as school grades. The results reported in Paper 3 also match 

those reported by Stadler and colleagues (2015), who did not use a CPS measure 

based on the MCS approach. Future research should therefore aim to replicate the 

findings of this study with a broader range of CPS measures in order to achieve a 

more general operationalization of CPS (see for example Greiff et al., 2013).  

The second limitation of this thesis regarding the validity and corresponding 

utility of CPS in the prediction of university success is the potential trainability of 

CPS. If deliberate practice can increase the performance on CPS tasks without an 

actual increase in general CPS competency, this might limit the reliability and thus 

utility of CPS measures in university applicant selection. Despite more or less explicit 

recommendations on ways to increase individual CPS competencies and the change of 

school practices and educational polices in order to foster CPS competence (see 

OECD, 2014) there is an astonishing lack of empirical research on the trainability of 

CPS. A noteworthy exception is a study by Kretzschmar and Süß (2016), who report 

limited transfer effects between different CPS tasks. While this study did not feature 
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any deliberate practice in the sense of Ericsson (Ericsson, Krampe, & Tesch-Römer, 

1993), this work provides first evidences towards a potential, however limited, 

trainability of general CPS ability. Future research will have to investigate this further 

in order to estimate how much deliberate training of CPS could diminish the utility of 

CPS in university selection. Actual increases in individual CPS competency that 

reflect in improved real-world performance would not influence the validity of CPS in 

the prediction of university success. Mere increases in CPS task performance without 

actual increases in CPS competency on the other hand would severely reduce the 

reliability of these tasks and in result limit their validity. 

Related to the issue of trainability, the findings of this thesis (in particular 

Paper 3) are limited regarding any claims of causality. While it seems intuitive that 

(1) high CPS, that is the ability to acquire new knowledge about a complex system 

and use that knowledge to reach specific goals (Frensch & Funke, 1995), will lead to 

good performance at university, it might also be a result of university training. In 

other words, the correlation between CPS and indicators of university success may (2) 

represent an increase in CPS as an outcome of university studies rather than 

individual differences in CPS causing different levels of university success. In this 

case, CPS would not be useful as a predictor of university success but rather as a very 

general criterion of university success indicating how well students are able to deal 

with complex problems. Finally, there could be (3) a continuous feedback loop 

between CPS competency and university success with higher individual levels of CPS 

leading to better performance at university leading in return to even higher levels of 

CPS. 

Due to their cross-sectional nature, the results reported in this thesis cannot 

rule out any of the three causal relations between CPS and university success. To 
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approach the question of the causal relation between x and y, a longitudinal study 

assessing both students’ CPS competency and university success multiple times 

throughout the course of a university program.  

Finally, this thesis did not investigate the additional use of CPS process data in 

the prediction of university success. This could provide additional information about 

an applicant’s skills. CPS testing offers an additional set of completely different 

information than established predictors of university success usually do. While 

working on a complex problem, participants can freely explore and interact with the 

virtual world the problem is set in, allowing the expression of spontaneous and 

unprompted behavior (Dörner & Wearing, 1995). It is thus possible to gather process 

data about the way an applicant approaches new problems going beyond mere 

performance.  

To this day, research on the predictive validity of cognitive tasks has mainly 

focused on measuring final performance, rather than looking at the potential 

information that could be gained from the process of interacting with a problem 

(Funke & Frensch, 2007). However, the behaviors displayed in the course of the 

problem solving process, such as the choice for or against a risky course of action, can 

be used to deduct non-intellective constructs such as learning strategies 

(Anderson, 1993), motivational factors (Vollmeyer & Rheinberg, 1999), or 

personality constructs (Schönbrod & Asendorpf, 2011). For example, it can have 

great informational value to not actively change a complex system for some time in 

order to explore its impetus (see Paper 4). Just think of an unfamiliar shower where 

the water temperature does not change instantly after an adjustment. A constant water 

temperature can only be reached by waiting until the most recent change has actually 

become effective. However, since this behavior will not be rewarded immediately, it 
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takes self-control to employ such a strategy. Deducting traits such as self-control from 

CPS process data would have the tremendous advantage of them being embedded in 

the general task of solving the problem at hand so people would not think much about 

their self-presentation, a problem that questionnaire based research regularly has to 

face (Hancock & Flowers, 2001).  

Future research should therefore investigate in which ways process data of 

CPS testing can provide additional information that can be used to predict indicators 

of university success. This dual-purpose of CPS, both measuring intellective skills 

(overall performance data) and the potential to deducting non-intellective traits 

(behavioral process data) within one testing session, may make CPS testing a valuable 

addition to established measures of university applicant selection. 

6.3. Conclusion 

Taken together, this thesis provided first comprehensive support for the utility 

of CPS as an additional predictor of university success to be potentially used in 

university selection. The thesis showed that CPS is related to various indicators of 

university success and that this relation remains when controlled for the influence of 

intelligence. Being successful at university thus does not only require being intelligent 

but also requires being able to understand the complex system that is university life. 

As this thesis demonstrated, this ability can be measured and differentiated from 

intelligence. 

While not all relevant questions could be answered, the reported results will 

hopefully provide a solid basis for a large number of future research endeavors. These 

will be necessary to deal with the new challenges posed by a constantly faster 

changing world that require people who are able to solve new and highly complex 

problems. As Albert Einstein put it: “To raise new questions, new possibilities, to 
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regard old problems from a new angle, requires creative imagination and marks real 

advance in science.” (Einstein & Infeld, 1971).  
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