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Abstract

Multi-shape analysis has the objective to recognise, classify, or quantify morphological
patterns or regularities within a set of shapes of a particular object class in order to better
understand the object class of interest. One important aspect of multi-shape analysis are
Statistical Shape Models (SSMs), where a collection of shapes is analysed and modelled
within a statistical framework. SSMs can be used as (statistical) prior that describes
which shapes are more likely and which shapes are less likely to be plausible instances of
the object class of interest. Assuming that the object class of interest is known, such a
prior can for example be used in order to reconstruct a three-dimensional surface from
only a few known surface points. One relevant application of this surface reconstruction
is 3D image segmentation in medical imaging, where the anatomical structure of interest
is known a-priori and the surface points are obtained (either automatically or manually)
from images. Frequently, Point Distribution Models (PDMs) are used to represent the
distribution of shapes, where each shape is discretised and represented as labelled point
set. With that, a shape can be interpreted as an element of a vector space, the so-called
shape space, and the shape distribution in shape space can be estimated from a collection
of given shape samples. One crucial aspect for the creation of PDMs that is tackled
in this thesis is how to establish (bijective) correspondences across the collection of
training shapes. Evaluated on brain shapes, the proposed method results in an improved
model quality compared to existing approaches whilst at the same time being superior
with respect to runtime. The second aspect considered in this work is how to learn a
low-dimensional subspace of the shape space that is close to the training shapes, where
all factors spanning this subspace have local support. Compared to previous work, the
proposed method models the local support regions implicitly, such that no initialisation
of the size and location of these regions is necessary, which is advantageous in scenarios
where this information is not available. The third topic covered in this thesis is how to
use an SSM in order to reconstruct a surface from only few surface points. By using
a Gaussian Mixture Model (GMM) with anisotropic covariance matrices, which are
oriented according to the surface normals, a more surface-oriented fitting is achieved
compared to a purely point-based fitting when using the common Iterative Closest Point
(ICP) algorithm. In comparison to ICP we find that the GMM-based approach gives
superior accuracy and robustness on sparse data. Furthermore, this work covers the
transformation synchronisation method, which is a procedure for removing noise that
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accounts for transitive inconsistency in the set of pairwise linear transformations. One
interesting application of this methodology that is relevant in the context of multi-shape
analysis is to solve the multi-alignment problem in an unbiased/reference-free manner.
Moreover, by introducing an improvement of the numerical stability, the methodology can
be used to solve the (affine) multi-image registration problem from pairwise registrations.
Compared to reference-based multi-image registration, the proposed approach leads to an
improved registration accuracy and is unbiased/reference-free, which makes it ideal for
statistical analyses.

iv



Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Statistical Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Dimensionality Reduction and Probabilistic Interpretation . . . . . 6
1.1.4 Shape Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Content and Contributions of Publications . . . . . . . . . . . . . . 12

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I Statistical Shape Models 19

2 Shape Representation 21

3 Fast Correspondences for Statistical Shape Models of Brain Structures 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Linear Shape Deformation Models with Local Support using Graph-
based Structured Matrix Factorisation 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 PCA Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Deformation Model Variants . . . . . . . . . . . . . . . . . . . . . . 35

v



Contents

4.1.3 Aims and Main Contributions . . . . . . . . . . . . . . . . . . . . . 36
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Linear Shape Deformation Models . . . . . . . . . . . . . . . . . . 37
4.2.3 Objective and Optimisation Problem . . . . . . . . . . . . . . . . . 38
4.2.4 Theoretical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.5 Block Coordinate Descent . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.6 Factor Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Quantitative Measures . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Brain Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Human Body Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 The matrix E in eq. (4.8) . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Proximal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 54
4.5.4 Factor Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.5 Convergence Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.6 Parameter Random Sampling . . . . . . . . . . . . . . . . . . . . . 55

5 Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Point Distribution Models . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.1 A Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Optimisation using EM . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6.1 Surface Reconstruction using an Isotropic GMM . . . . . . . . . . 67
5.6.2 Surface Reconstruction using an Anisotropic GMM . . . . . . . . . 68
5.6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7.2 Brain Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7.3 Knee Bones: Femur and Tibia . . . . . . . . . . . . . . . . . . . . . 81
5.7.4 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



Contents

5.7.5 Hip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II Transformation Synchronisation 93

6 A Solution for Multi-Alignment by Transformation Synchronisation 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Notation and Foundations . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Perfect Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3 Noisy Pairwise Transformations . . . . . . . . . . . . . . . . . . . . 101
6.2.4 Affine Transformations in Homogeneous Coordinates . . . . . . . . 101
6.2.5 Similarity Transformations . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.6 Euclidean Transformations . . . . . . . . . . . . . . . . . . . . . . 103
6.2.7 Rigid Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 Noisy Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Generalised Procrustes Analysis . . . . . . . . . . . . . . . . . . . . 106

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Transitively Consistent and Unbiased Multi-Image Registration Using
Numerically Stable Transformation Synchronisation 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Overview of Transformation Synchronisation . . . . . . . . . . . . 113
7.2.2 Numerical Stability for Large Translations . . . . . . . . . . . . . . 114
7.2.3 Multi-image Alignment . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

III Deep Brain Stimulation 121

8 Potentials in Deep Brain Stimulation 123
8.1 DBS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.2 Patient-specific 3D Models . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 145

vii





1 Introduction

The central idea of computer vision is to build algorithms that model visual perception
capabilities, such that computers can “understand” visual input data (e.g. images).
Understanding visual inputs is a task that the human visual system handles particularly
well, as it can almost instantaneously determine the position, size, shape, colour or texture
of objects (Purves et al., 1997). The (implicit or explicit) extraction of such properties of
physical objects from images is an important aspect in order make computers understand
images. In the era of big data, the interest in “teaching” computers how to understand
images is growing continuously, as many datasets are simply too large to be analysed
manually (e.g. in content-based image or video tagging in the web), or the manual
analysis is very time-consuming and thus expensive (e.g. the manual segmentation of
three-dimensional medical images).

Whilst shape being one of the relevant attributes for image understanding, the study of
shapes on their own plays an important role in various other fields of applied science,
including archaeology, biology and medicine (Dryden and Mardia, 1998). For example,
morphogenesis, the description of the biological development of shape, is a long-standing
area of research in biology, with Thompson’s pioneering work dating back to 1917
(Thompson, 1917). Even earlier, Galilei (1638) realised that bones of small and large
animals differ not only in scale, but also in shape (translation by Dryden and Mardia
(1998)).

From an abstract point of view, shape analysis has the objective to recognise, classify,
or quantify morphological patterns or regularities of some entities of interest. These
patterns may then help in developing theories of underlying concepts that are directly
or indirectly related to the morphology. From a computational point of view, shape
analysis is mostly tackled in the fields of computer science and applied mathematics, with
(medical) image analysis, computational geometry, computer vision, pattern recognition
and computer graphics comprising the predominant subfields that deal with the analysis
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Chapter 1. Introduction

of shapes. Using a configuration of labelled points as representation (cf. Fig. 1.1), Kendall
defines shape informally as “what is left when the differences which can be attributed
to translations, rotations, and dilatations have been quotiened out” (Kendall, 1984).
Kendall’s definition already points out a very important aspect in computational shape
analysis, namely the invariance under similarity transformations. In multi-shape analysis,
i.e. the analysis of a collection of shapes of a particular object class, this invariance is
typically obtained by an alignment (or registration) procedure. In order to achieve the
alignment, a mathematical transformation that minimises some distance measure between
corresponding points is determined.

(a)

(b)

(c)

Figure 1.1: Some examples of shapes that are studied in this thesis. All shapes have in
common that their underlying representation is based on point sets (note that the labelling
of the point sets is not visualised to keep the visualisation clean). (a) Three-dimensional
human body shape (Yang et al., 2014) visualised as surface rendering. (b) A collection of
three two-dimensional fish shapes (Chui and Rangarajan, 2003) visualised as point-clouds.
(c) Brain structure shapes visualised as wire-frame mesh.

The so-called Statistical Shape Models (SSMs) constitute a powerful tool for shape analysis.
In SSMs, multiple shapes are studied within a statistical framework, where a collection of

2



1.1. Statistical Shape Models

shape samples is used to estimate the distribution of the shapes of interest. By assuming
a certain class of adaptive models, estimating the shape distribution corresponds to
learning the model parameters from training shapes, a common task in machine learning
(Bishop, 2006). In certain scenarios, it is of interest to directly analyse the shape
distribution. For example, in a medical context it may be relevant to compare the shape
distribution of healthy organs to the distribution of pathological ones. Another important
application is the use of the shape distribution as a prior for the reconstruction of surfaces
from incomplete, noisy or ambiguous data. SSM-based image segmentation can also be
considered a reconstruction problem where the given data takes the form of images. A
third potential use-case of SSMs is recognition via classification, where the goal is to
determine the shape distribution that is most likely to generate the given data, given
multiple shape distributions (where each distribution pertains to one particular object
class).

The overall purpose of this thesis lies in the advancement of current methodologies in the
field of multi-shape analysis with respect to various aspects. In the previous paragraphs
some of these aspects, such as the correspondence problem, SSMs, or shape-based surface
reconstruction, have already been mentioned. Since SSMs can be seen as their common
denominator, the first part of this thesis is devoted to topics related to SSMs. Those
aspects of SSMs that are necessary for the specification of the focus as well as the main
contributions are introduced in the next section. The second part of this thesis deals with
the transformation synchronisation method. One potential application of this method
is to solve the multi-alignment problem, which is relevant for the creation of SSMs
(cf. Section 1.1.2). However, since the transformation synchronisation method is more
general and not restricted to SSMs only, the second part is presented from a more general
perspective.

1.1 Statistical Shape Models

A wide range of image processing and computer vision problems is tackled by the utilisation
of geometric information. For example the generalised Hough transform (Ballard, 1981)
for the detection of arbitrary shapes in images has been introduced more than 30 years
ago and is still ubiquitous. Another example of a geometry-based methodology is the
shape context descriptor (Belongie et al., 2002) that is used for shape matching.

For capturing geometric relations between multiple shapes of a particular object class,
a popular method are the so-called Point Distribution Models (PDMs) (Cootes et al.,
1992), where a shape is represented by a set of points – a point-cloud – and the analysis
is conducted based on these points. The key components of PDMs are

3



Chapter 1. Introduction

• the establishment of point-wise correspondences between the shapes,

• the alignment of the collection of shapes, and

• a dimensionality reduction in order to find a low-dimensional representation that is
sufficiently “close” to the training shapes.

Whilst the classical approach for the PDM creation considers these three components
individually, there are also approaches that tackle them in a more unified framework.
For example, for the creation of a 3D morphable model (Blanz and Vetter, 1999) from
2D images, Cashman and Fitzgibbon (2013) formulate a unified energy optimisation
problem. Whilst a unified formulation may be advantageous for certain tasks, the obtained
energy function is in general highly non-convex and thus hard to optimise. Moreover, the
unified approach is rather task-specific and less flexible compared to the classical PDM
approach that considers the components individually. Thus, in the following we turn our
attention to this classical approach of considering the components individually. Moreover,
whilst there are other means for capturing the variability of shape, such as level sets
(Cremers et al., 2006), using a medial axis description (m-reps) (Fletcher et al., 2003;
Pizer et al., 2003), or parametrised continuous surfaces studied within a Riemannian
framework (Kurtek et al., 2010), this work focuses on PDM-based representations only.

Up until this point, the term “SSM” has been used in a rather general way as one would
understand it in common language usage, i.e. an SSM is some model of shapes that makes
use of a statistical description thereof. From here on, the term “SSM” is used with the
implicit assumption of an underlying PDM-based representation (unless stated otherwise).
When it is beneficial to stress the point-based nature of an SSM, we speak of a “PDM”.

Whilst many of the elaborations in the remaining part of this section generalise to arbitrary
dimensions, in order to keep the presentation simple, for now it is assumed that the
considered shapes are three-dimensional.

1.1.1 Correspondences

A shape representation that is suitable for PDMs are (labelled) point-clouds. Here, a
shape is represented by a finite set of points, commonly (but not necessarily) representing
a discretisation of the surface of the object of interest. The labelling of the points is used
in order to encode correspondences between the points of multiple shapes. For the creation
of PDMs it is assumed that for the entire collection of shapes the number of points per
shape is the same. Moreover, it is assumed that for each pair of shapes of the collection
the labellings induce a bijection. Points across multiple shapes that share the same label
are referred to as homologous. The task of finding homologous points between two or
more shapes is an instance of the correspondence problem (van Kaick et al., 2011), which

4



1.1. Statistical Shape Models

is a widely studied problem class that appears in various contexts of computer vision.
Among them are works considering correspondences between sets of points of images
(Maciel, 2002; Maciel and Costeira, 2003), spectral techniques (Leordeanu and Hebert,
2005; Leordeanu, 2010), a Linear Programming relaxation for 3D shapes (Windheuser
et al., 2011), graph and hypergraph matching (Zhou and De la Torre, 2013a,b; Nguyen
et al., 2015), functional correspondences (Kovnatsky et al., 2015a), or shape matching
(Rodolà et al., 2014).

An overview of correspondence methods in the context of SSMs is given in the review paper
by Heimann and Meinzer (2009), where the authors distinguish between mesh-to-mesh
registration, mesh-to-volume registration, volume-to-volume registration, parametrisation-
to-parametrisation registration and population-based (or groupwise) optimisation. The
first four approaches are generally of reference-based nature, i.e. a reference object, such
as a mesh or volumetric image, is chosen and registrations between the reference and the
remaining shapes in the collection are performed. In the latter approach, comprising the
population-based methods, all shapes are considered simultaneously by formulating an
optimisation problem that is solved jointly for all shapes. The population-based methods
usually make use of some compactness assumption (Kotcheff and Taylor, 1998), based
on the idea that shapes with “correct” correspondences are “closer” in shape space than
those with “bad” correspondences. One popular compactness measure in this context
is the minimum description length (MDL) (Davies et al., 2002). With their unified
problem formulation and the property that the population-based approaches are in
general reference-free, they have attracted a lot of attention in the community (Heimann
and Meinzer, 2009). Whilst the reference-based approaches depend on the particular
choice of the reference, they however have the advantage that they are in general faster
compared to population-based methods. This is because the reference-based methods
consider smaller search spaces when solving a series of pairwise registrations.

1.1.2 Alignment

The alignment of all shapes in the collection is conducted in order to remove pose differences
such that only shape differences are captured within the PDM. The pose can be represented
by transformations comprising translations, (proper) rotations, potentially uniform scaling
and potentially reflections that are all defined with respect to some fixed coordinate
system. The exact types of transformations that are allowed depend on the context, but
most frequently these are rigid (allowing for translations and proper rotations), euclidean
(allowing for translations and orthogonal transformations, also referred to as improper
rotations), or similarity transformations (allowing for translations, scale and improper
rotations). The multi-alignment problem, i.e. finding transformations that align all poses
of shapes in a collection, is a problem that is widely studied. When the correspondences
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Chapter 1. Introduction

are not known, this alignment is frequently referred to as point-set registration and is
closely tied to the correspondence problem. Common approaches to tackle the point-set
registration problem include the Iterative Closest Point method (ICP) (Besl and McKay,
1992; Maier-Hein et al., 2012; Maron et al., 2016), the Softassign Procrustes Matching
algorithm (Rangarajan et al., 1997) and various probabilistic formulations (Chui and
Rangarajan, 2000; Myronenko et al., 2007; Myronenko and Song, 2010; Jian and Vemuri,
2011; Horaud et al., 2011; Rasoulian et al., 2012). When the correspondences are known,
aligning the pose of only two shapes is referred to as the Absolute Orientation Problem
(Horn et al., 1988) or Procrustes Analysis (Gower and Dijksterhuis, 2004), which has
various closed-form solutions, e.g. by means of Singular Value Decomposition (SVD). The
case of aligning more than two shapes is known as Generalised Procrustes Analysis, which
is frequently tackled by reducing the groupwise problem to a series of pairwise problems
by using a fixed or evolving reference shape.

1.1.3 Dimensionality Reduction and Probabilistic Interpretation

The representation of a shape as labelled point-cloud allows to treat a shape as a single
point in a high-dimensional vector space, the so-called shape space. The shape space
covers all possible shapes in form of labelled point-cloud configurations. However, since
the shapes of interest belong to a particular object class, only a (small) subset of the
shape space contains shapes that are valid instances of this particular object class. The
purpose of the dimensionality reduction step is to identify the manifold (as subset of the
shape space) that contains those shapes that are valid instances of the object class of
interest.

In principal, any dimensionality reduction technique can be used for this task. Since
linear models, which represent a (low-dimensional) linear subspace of the shape space, are
advantageous from a computational perspective, they are more frequently used compared
to nonlinear approaches. A model that is linear in the high-dimensional shape space
allows to model nonlinear deformations of the shape in 3D space. Usually, a linear
model refers to a (linear) subspace of the normalised shapes in shape space. A common
normalisation is to translate the shapes in such a way that the mean of all shapes in
the collection is at the origin of the shape space. Without performing this normalisation
explicitly, the proper terminology is to speak of an affine subspace, which is graphically
illustrated in Fig. 1.2.

The most common way of finding a suitable subspace of the training shapes is by means of
Principal Components Analysis (PCA) (Cootes et al., 1992). In this case the subspace is
spanned by (a subset of) the eigenvectors of the (sample) covariance matrix of the training
shapes in shape space. Frequently, the dimensionality of the resulting subspace, i.e. the
number of eigenvectors chosen, is set in such a way that a certain proportion of the variance
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1.1. Statistical Shape Models
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Fig. 1 Global support factors of PCA lead to implausible body shapes, whereas local support factors give more realistic results.

Linear Shape Deformation Models
Given are
   • KK shape instances xk = vec(Xk) 2 R3N

xk = vec(Xk) 2 R3N, represented with

   • NN (homologous) points in 3 dimensions, written as
   • X = [x

1

, . . . , xK ] 2 R3N�K
X = [x

1

, . . . , xK ] 2 R3N�K.

The objective is to find an 
   • MM-dimensional subspace, such that 
   • 

X ⇡ ¯

x1

T
K + �AX ⇡ ¯

x1

T
K + �A

, with 
   • mean ¯x¯x, deformation factors � 2 R3N�M

� 2 R3N�M and coefficients A 2 RM�K
A 2 RM�K.

The common PCA-based solution finds the global support factors �� 
as the eigenvectors of the covariance matrix of XX.

Local Support Factors
Benefits of local support factors include
   • more realistic deformations (cf. Fig. 1),
   • better interpretability (relevant in medical applications), and the
   • possibility of interactive local mesh deformations.
The SPLOCS method [1] obtains localised deformation factors by 
  • formulating a matrix factorisation problem, where 
  • the local support regions are explicitly modelled. For that,
  • weights of an `

1

/`

2

`

1

/`

2

 regulariser are initialised and updated in each iteration, 
  • resulting in a modified optimisation problem that is solved in each iteration.

Contributions
Our main contributions can be summarised as
   • implicitly modelling the local support regions, which enables that their
   • size and location is automatically determined. This is achieved by using
   • sparsity and smoothness regularisation terms. With that,
   • no initialisation of the local support regions is necessary.

Methods
Obtaining local support factors is formulated within the Structured 
Low-Rank Matrix Factorisation framework [2], leading to 

The regularisation terms are used to
   • steer �A�A towards being low-rank, 
   • obtain sparse and smooth factors (

EE

 is a discrete (weighted) gradient
     operator s.t. kE · k2

2

kE · k2

2

 corresponds to Graph-Laplacian regularisation), and
   • group the x/y/z components using H={{i, i+N, i+2N} : 1iN}H={{i, i+N, i+2N} : 1iN}.
The resulting factor matrix �� might capture multiple support regions in a single 
factor. This is compensated by factor splitting.
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The theoretical motivation is based on [2, 3, 4], which is briefly summarised here.
   • Consider minZ kX � Zk2

F + ��

M
(Z) (�)minZ kX � Zk2

F + ��

M
(Z) (�) with                                                     .

   • �(·)= limM�� �

M
(·)�(·)= limM�� �

M
(·) is the Projective Tensor Norm. So for M! �M! �, (�)(�) is convex in ZZ. 

   • (�) , (�)(�) , (�) in the sense

   • 
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  with                                       .
   • 
Practical considerations:
   • M < �M < �, but:
   • Block coordinate descent finds a stationary point, which may not be a local minimum.

R3NR3N

xkxk

span(�)span(�)

¯

x

¯

x

References
[1] T. Neumann, K. Varanasi, S. Wenger, M. Wacker, M. Magnor, and C. Theobalt. Sparse localized 
deformation components. ACM Transactions on Graphics (TOG), 32(6):179, 2013. 
[2] B. Haeffele, E. Young, and R. Vidal. Structured low-rank matrix factorization: Optimality, algorithm, 
and applications to image processing. ICML, 2014. 
[3] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. arXiv.org, 2008. 
[4] S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite programming. 
Mathematical Programming, 103(3):427–444, 2005. 

�

M
(X)= min

{(��R3N�M ,A�RM�K
):

�A=X}

MX

m=1

k�mk
�

k(Am,:)
T kA (�)�

M
(X)= min

{(��R3N�M ,A�RM�K
):

�A=X}

MX

m=1

k�mk
�

k(Am,:)
T kA (�)

solution (�,A)(�,A) to (�)(�)

solution ZZ to (�)(�)

set 
Z := �AZ := �A

“solve” (�)(�)

Y = QQ

T
=

�
��

T
�A

A

T
�

T
A

T
A

�
, Q =

�
�

A

T

�
Y = QQ

T
=

�
��

T
�A

A

T
�

T
A

T
A

�
, Q =

�
�

A

T

�

Results
Brain Shapes 
(N = 1792, M = 96, K = 17, |E| = 19182)(N = 1792, M = 96, K = 17, |E| = 19182)

Our method is the
  • only one that obtains factors with
     local support. Also, it achieves
  • better generalisation and sparse 
     reconstruction scores than SPLOCS.

Conclusion
We present a novel approach for learning a linear deformation model with local 
support. The deformation factors obtained by the proposed method offer higher 
flexibility and better interpretability compared to existing methods, whilst at the 
same time delivering more realistic deformations.

Figure 3. The colour-coded magnitude (blue corresponds to zero, yellow to the maximum deformation in each plot) for the three deforma-
tion factors with largest �2 norm is shown in the rows. The factors obtained by SPCA and SSPCA are sparse but not spatially localised (see
red arrows). Our method is the only one that obtains local support factors.
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Figure 4. Boxplots of the quantitative measures for the brain shapes dataset. In each plot, the horizontal axis shows the individual methods
and the vertical axis the error scores described in section 3.1. Compared to SPLOCS, which is the only other method explicitly striving
for local support deformation factors, our method has a smaller generalisation error and sparse reconstruction error. The sparse but not
spatially localised factors obtained by SPCA and SSPCA (cf. Fig. 3) result in a large maximum sparse reconstruction error (bottom right).

porate the spatial relation between vertices and as such the
deformations are not spatially localised (see red arrows in
Fig. 3, where more than a single region is active). The fac-
tors obtained by SPLOCS are non-smooth and do not ex-
hibit local support, in contrast to our method, where smooth
deformation factors with local support are obtained.

The quantitative results presented in Fig. 4 reveal that
our method has a larger reconstruction error. This can be
explained by the fact that due to the sparsity and smooth-
ness of the deformation factors a very large number of basis
vectors is required in order to exactly span the subspace of
the training data. Instead, our method finds a simple (sparse
and smooth) representation that explains the data approxi-
mately, in favour of Occam’s razor. The average reconstruc-
tion error is around 1mm, which is low considering that the
brain structures span approximately 6cm from left to right.
Considering specificity, all methods are comparable. PCA,
Varimax and ICA, which have the lowest reconstruction er-
rors, have the highest generalisation errors, which under-
lines that these methods overfit the training data. The kPCA
method is able to overcome this issue due to the smooth-
ness assumption. SPCA and SSPCA have good generali-
sation scores but at the same time a very high maximum
reconstruction error. Our method and SPLOCS are the only

ones that explicitly strive for local support factors. Since
our method outperforms SPLOCS with respect to general-
isation and sparse reconstruction error, we claim that our
method outperforms the state of the art.

3.3. Human Body Shapes
Our second experiment is based on 1531 female human

body shapes [37], where each shape comprises 12500 ver-
tices that are in correspondence among the training set. Due
to the large number of training data and the high level of
details in the meshes, we directly factorise the data matrix
X. The edge set E now contains the edges of the triangle
mesh topology and the weights for edge e = (i, j) 2 E
are given by !e = exp(�(

(Deuc)ij
¯d

)

2

), where ¯

d denotes the
average vertex distance between neighbour vertices. Edges
with weights lower than ✓=0.1 are ignored.

3.3.1 Results

Quantitatively the evaluated methods have comparable per-
formance, with the exception that ICA has worse overall
performance (Fig. 5). The most noticeable difference be-
tween the methods is the specificity error, where SPCA,
SSPCA and our method perform best. Fig. 6 reveals that

Fig. 4 Quantitative results of brain shapes.
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Figure 5. Boxplots of the quantitative measures in each column for the body shapes dataset. Quantitatively all methods have comparable
performance, apart from ICA which performs worse.

Figure 6. The deformation magnitudes reveal that SPCA, SSPCA,
SPLOCS and our method obtain local support factors (in the sec-
ond factor of our method the connection is at the back). The bot-
tom row depicts randomly drawn shapes, where only the methods
with local support deformation factors result in plausible shapes.

SPCA, SSPCA, SPLOCS and our method obtain factors
with local support. Apparently, for large datasets, sparsity
alone, as used in SPCA and SSPCA, is sufficient to obtain
local support factors. However, our method is the only one
that explicitly aims for smoothness of the factors, which
leads to more realistic deformations, as shown in Fig. 7.

4. Conclusion
We presented a novel approach for learning a linear de-

formation model from training shapes, where the resulting
factors exhibit local support. By embedding sparsity and

Figure 7. Shapes x̄�1.5�m for SPCA (m=1), SSPCA (m=3),
SPLOCS (m=1) and our (m=1) method (cf. Fig. 6). Our method
delivers the most realistic per-factor deformations.

smoothness regularisers into a theoretically well-grounded
matrix factorisation framework, we model local support re-
gions implicitly, and thus get rid of the initialisation of the
size and location of local support regions, which so far has
been necessary in existing methods. On the small brain
shapes dataset that contains relatively simple shapes, our
method improves the state of the art with respect to gen-
eralisation and sparse reconstruction. For the large body
shapes dataset containing more complex shapes, quantita-
tively our method is on par with existing methods, whilst
it delivers more realistic per-factor deformations. Since ar-
ticulated motions violate our smoothness assumption, our
method cannot handle them. However, when smooth de-
formations are a reasonable assumption, our method offers
a higher flexibility and better interpretability compared to
existing methods, whilst at the same time delivering more
realistic deformations.
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Fig. 6 Quantitative results of human body shapes.

Fig. 2 Illustration of vector 
space of shapes.

Fig. 3 Magnitude of first three deformation factors for the brain shapes dataset.

Fig. 7 Magnitude of first three deformation 
factors and randomly drawn shape instances for 
the body shapes dataset.

Fig. 5 Shapes ¯x � 1.5�m¯

x � 1.5�m for SPCA 
(m = 1m = 1), SSPCA (m=3m=3), SPLOCS 
(m = 1m = 1) and our (m = 1m = 1).

Human Body Shapes 
(N = 12500, M = 48, K = 1531, |E| = 99894)(N = 12500, M = 48, K = 1531, |E| = 99894)

 • Quantitatively, all methods are comparable, 
    with ICA having worse overall performance.
 • Qualitatively, our method delivers the most 
    realistic per-factor deformations.

Lemma: For any ✏ > 0✏ > 0 there exists an 
M(✏) 2 NM(✏) 2 N  such that k�(X) � �

M(�)
(X)k < ✏k�(X) � �

M(�)
(X)k < ✏

.

Theoretical Motivation

The authors gratefully acknowledge the 
financial support by the Fonds National de la 
Recherche, Luxembourg (6538106, 8864515).

Theorem [2]: Let M!�M!� and QQ be rank-deficient. A local minimum QQ

T
QQ

T  of (�)(�) is a global minimum.

Figure 1.2: Illustration of a 3N -dimensional shape space and an affine subspace (spanned
by the columns of �, shown in green) that is “close” to the training shapes x

k

(shown by
blue circles where the solid contour indicates shapes that lie “above” the subspace and
the dashed contour indicates shapes that lie “below” the subspace). The mean shape ¯

x is
shown in red.

(commonly between 95% and 100%) of the training data is captured by the model. This
is implemented by using the M eigenvectors corresponding to the M largest eigenvalues
such that the desired amount of variance is captured by the M -dimensional subspace.
The basis vectors of the subspace determined by the PCA-based solution are orthogonal,
which is beneficial from a computational perspective since computing the (pseudo-)inverse
of the matrix of basis vectors simplifies to transposing the matrix. Nevertheless, the
description of the subspace is not restricted to eigenvectors, or orthogonal vectors. In
principal, arbitrary vectors, which we refer to as deformation factors, or factors in short,
can be used. For example, in the sparse shape composition method (Zhang et al., 2011,
2012) a sparse linear combination of the training shapes is employed.

One of the major advantages of linear models is that shapes that were not part of the
training data but lie (approximately) in the obtained subspace can (approximately) be
written as the sum of the mean shape and a linear combination of the factors.

Commonly it is assumed that all training shapes are samples that have been drawn
from some (unknown) probability distribution. Within this interpretation, a statistical
model can be obtained by assuming that the PDM coefficients follow some probability
distribution. By estimating this probability distribution from the training shapes, a
generative shape model can be defined. A common assumption is that the coefficients
follow a Gaussian distribution. An appealing property of the PCA-based approach is
that, due to the orthogonality of the eigenvectors of the covariance matrix, the covariance
matrix of the Gaussian distribution of the coefficients is diagonal, i.e. the coefficients are
(linearly) uncorrelated.

With imposing a probability distribution over the coefficients, a distribution over shapes
in shape space is obtained (Albrecht et al., 2013). This probabilistic treatment enables
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Chapter 1. Introduction

the incorporation of the shape model as prior into problem formulations. With that, the
knowledge which shapes are more likely, and which ones are less likely, is integrated. The
purpose of using this prior information is to complement insufficient data, for example
due to noise, incompleteness, or ambiguities.

1.1.4 Shape Reconstruction

One interesting application of shape models is to use them for shape reconstruction. The
main idea is to reconstruct the surface of an object of a particular class from only few
3D points that lie on the object’s surface, where the PDM serves as prior in order to
augment the small amount of available data, cf. Fig. 1.3. The surface reconstruction is
achieved by solving a regularised optimisation problem in order to find the parameters
that best fit the PDM to the available 3D points. A particular difficulty is that in general
the correspondences between the available 3D points and the PDM are unknown. Thus,
the fitting procedure must solve for both the PDM parameters and the correspondences,
which is commonly done in an alternating manner similar to ICP.

Figure 1.3: Overview of shape reconstruction from sparse 3D point-clouds using an SSM
as prior.

1.1.5 Challenges

One important characteristic of SSMs is that a particular shape model is only able
to represent objects of a specific class. As such, SSMs are only applicable when such
contextual information is available, rather than “in the wild”. Examples of cases where this
contextual information is available include face recognition or anatomical segmentation
in medical imaging.

A particular problem that is highly relevant for SSMs is the correspondence problem,
which occurs at various places due to the discrete nature of the PDM. For example, it needs
to be solved in order to construct the PDM, but it also occurs during SSM-based shape
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1.2. Motivation and Contributions

reconstruction. A particular difficulty is that in general the ground truth correspondences
are unknown, and some surrogate, such as model compactness, as described in Section 1.1.1,
is used in order to quantify the quality of particular correspondence assignments. Moreover,
in some cases a correspondence might not even exist, e.g. when shapes are incomplete.
The combinatorial nature of the correspondence problem contributes further towards the
complexity from a computational perspective.

Another important aspect is that the shape model must on the one hand be able to
generalise well to unseen data, whilst on the other hand it must be specific. The
generalisation ability of a shape model can be evaluated using a leave-one-out approach,
i.e. the shape model is trained using all but one training samples, and then it is checked
how well the so-trained model can represent the left-out training sample. The specificity
can be quantified by measuring the discrepancy between shape instances drawn from
the shape distribution to the closest training shape (the probabilistic setting assumes
that a probability distribution is imposed upon the PDM coefficients, cf. Section 1.1.3).
An interesting property is that generalisation and specificity are somewhat conflictive.
In particular, a constant model that is equal to one of the training shapes has perfect
specificity, whilst having very poor generalisation. On the contrary, an extremely flexible
model that spans the entire 3N -dimensional shape space, cf. Fig. 1.2, with a uniform
distribution over the coefficients, has perfect generalisation but very poor specificity.
However, having either of these extreme cases is not meaningful in practice. Nevertheless,
the choice whether generalisation or specificity has a higher priority depends on the
particular application. For instance, when performing SSM-based segmentation, the
generalisation to unseen data plays a central role. If the SSM is used in a generative
manner for the synthesis of new shapes, e.g. for content generation in computer graphics,
specificity may have a higher priority compared to generalisation.

One point that plays a major role in practice with respect to the quality of a shape model
is that in general only a small amount of training shapes is available for learning the
PDM. If the variability in the population is large, and the available training shapes do
not cover the full range of variability, the lack of a sufficient amount of training data is
even a more severe problem.

1.2 Motivation and Contributions

In the previous section we introduced the preliminaries that are necessary to specify
the focus and the main contributions of this thesis. The problems covered in this thesis
emerged in the context of an SSM-based segmentation problem in the area of deep brain
stimulation (DBS) surgery. Thus, several of the subsequently introduced methodologies
have in common that they are applied to brain structures. Nevertheless, the relevance of
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Chapter 1. Introduction

the proposed techniques goes beyond the field of DBS and they are thus presented and
evaluated in a broader context. As such, the main strength of this work are methodologies
that are relevant in the wider fields of computer vision and pattern recognition (e.g. image
segmentation, surface reconstruction, multi-alignment, or multi-image registration).

1.2.1 Motivation and Scope

The problems tackled in this thesis originate from the idea of achieving an interactive
segmentation procedure based on SSMs for the segmentation of brain structures for deep
brain stimulation (DBS) surgery. Despite a vast amount of individual work in the field of
SSMs (Heimann and Meinzer, 2009), as well as in the field of interactive segmentation
(McGuinness and O’Connor, 2010), there is only a limited amount of work that considers
the use of SSMs in combination with interactive segmentation (cf. Section 5.2). The most
common approach is that SSM-based segmentation methods are used in an automated
manner first, followed by the subsequent manual correction of the results. However,
a disadvantage of this two-step approach is that in the case of a failed automated
segmentation, the subsequent manual correction may be very difficult and tedious. An
advantage of integrating SSMs into an interactive segmentation procedure is that expert
knowledge is incorporated from the very beginning in order to steer the algorithm towards
producing the desired result. One such approach is based on Interactive Shape Models
(van Ginneken et al., 2003), where the user manually moves points of the PDM. However,
for that the user needs to identify the corresponding position of the model point in the
image. This may be difficult, in particular if the object boundary does not exhibit distinct
features and when dealing with three-dimensional images.

An approach that appears to be more intuitive and user-friendly is to let the user decide
where to annotate the object boundaries in the image (e.g. contours can be drawn in
high-contrast regions), and then performing a surface reconstruction by fitting a shape
model to these annotations. This manual annotation/model fitting cycle can then be
repeated until the result is considered as satisfactory by the user. Thus, the first step
towards being able to fully exploit the power of SSMs in an interactive segmentation
framework is the development of fundamental tools that facilitate the combination of
SSMs and interactive segmentation, which is tackled in this thesis. Whilst interactive
segmentation can be seen as motivating factor, it is not the main focus of this work
and should only be considered as one possible perspective. Thus, the integration of the
presented methodologies into an interactive setting is out of scope. However, in order to
highlight some ideas that have shaped this thesis, a brief sketch of how the presented
methodologies can be used for interactive segmentation in the context of DBS is given in
Chapter 8. Since the applicability of the developed tools is not restricted to interactive
segmentation only, they are presented in a broader context. To be more specific, the
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1.2. Motivation and Contributions

following four aspects are considered in this work:

1. The correspondence problem for brain structure shapes,

2. learning an affine subspace of the shape space such that the deformation factors
exhibit local support,

3. the reconstruction of shapes from sparse 3D point-clouds, and

4. the transformation synchronisation method in order to achieve transitive consistency
in the set of pairwise linear transformations.

1.2.2 Publications

The core part of this thesis are the following publications containing the main contributions:

(i) F. Bernard, N. Vlassis, P. Gemmar, A. Husch, J. Thunberg, J. Goncalves, F. Hertel:
Fast Correspondences for Statistical Shape Models of Brain Structures. Proc. SPIE
9784. Medical Imaging 2016: Image Processing, 97840R, San Diego, March 2016,
doi:10.1117/12.2206024.

(ii) F. Bernard, P. Gemmar, F. Hertel, J. Goncalves, J. Thunberg: Linear Shape
Deformation Models with Local Support Using Graph-based Structured Matrix Fac-
torisation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Las Vegas, NV, June 2016.1

(iii) F. Bernard, L. Salamanca, J. Thunberg, A. Tack, D. Jentsch, H. Lamecker, S.
Zachow, F. Hertel, J. Goncalves, P. Gemmar: Shape-aware Surface Reconstruction
from Sparse 3D Point-Clouds, preprint.

(iv) F. Bernard, J. Thunberg, P. Gemmar, F. Hertel, A. Husch, J. Goncalves: A
Solution for Multi-Alignment by Transformation Synchronisation. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Boston, MA, June 2015.
doi:10.1109/CVPR.2015.7298828.2

(v) F. Bernard, J. Thunberg, A. Husch, L. Salamanca, P. Gemmar, F. Hertel, J.
Goncalves: Transitively Consistent and Unbiased Multi-Image Registration Using
Numerically Stable Transformation Synchronisation. MICCAI Workshop on Spectral
Analysis in Medical Imaging. Munich, October 2015.

1
c� 2016 IEEE. Reprinted with permission from all authors.

2
c� 2015 IEEE. Reprinted with permission from all authors.
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1.2.3 Content and Contributions of Publications

In the following, the papers (i)-(v) are brought into context, summarised and their main
contributions are highlighted.

(i) Fast Correspondences for Statistical Shape Models of Brain Structures

Background: As discussed in Section 1.1.1, for the creation of PDMs it is essential
that the available training shapes are brought into correspondence, which can be
done in a reference-based or in a population-based manner. The main disadvantage
of the reference-based methods is the necessity of choosing the reference, whereas
the main drawback of the population-based methods is that they are slower due to
the larger search space. Whilst in theory the correspondence establishment must
only be conducted once, in practice this is rather an iterative procedure (Heimann
and Meinzer, 2009). This implies that a correspondence establishment procedure
that runs for several hours constitutes a bottleneck in the model generation phase.
As such, it is desirable to have a method that establishes correspondences in a fast
way such that delays due to the correspondence establishment method are kept
small.

Challenges: One challenge is to develop a method that works well enough in prac-
tice such that no user-interaction or manual post-processing is necessary. Moreover,
the choice of reference and the processing time constitute further challenges.

Paper summary: This paper tackles the correspondence problem for the creation
of SSMs of brain structure meshes by combining point-set registration, the linear
assignment problem and a mesh fairing procedure. For each shape, a probabilistic
nonlinear point-set registration is performed in order to spatially align the shape
point-cloud to the point-cloud of a chosen reference. By solving the linear assignment
problem, the labelling of each shape point-cloud is obtained from the probabilistic
correspondences. After applying the labelling of each aligned shape to the original
shape point-cloud, the original shape point-cloud, now in correspondence with
the reference, is combined with the mesh topology of the reference. Globally, in
general this results in correspondences of good quality. Nevertheless, locally there
may be small mesh irregularities since the mesh topology of the reference may be
incompatible with that of the individual shapes. This is fixed by mesh fairing, a
parametrisation-invariant mesh regularisation procedure. Whilst the evaluation of
this method has been conducted in the context of brain structures, the proposed
methodologies also apply to other objects with a morphology that is comparable to
the considered brain structures, e.g. the objects are rather smooth and of simple
nature.

Contributions: The contributions of this paper are application-oriented and
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should rather be prescribed towards the engineering-side. They can be summarised
as follows:

• The combination of well-established existing algorithms in order to achieve
a fully automated method that solves the correspondence problem of brain
structures for the creation of SSMs.

• In comparison to two existing population-based methods the proposed method
is preferable for the brain shapes dataset with respect to model quality.

• Due to the simplified view of the correspondence problem in the form of
individual subproblems, where each of them is computationally efficient, the
proposed method is superior with respect to runtime compared to two existing
population-based approaches.

• Moreover, due to the computational efficiency, it is feasible to evaluate multiple
references in order to reduce the effect of choosing a “bad” reference.

(ii) Linear Shape Deformation Models with Local Support Using Graph-based Structured
Matrix Factorisation

Background: Dimensionality reduction, commonly performed by PCA, is a key
ingredient of SSMs, as discussed in Section 1.1.3. A downside of PCA-based factors
is that they exhibit global support, i.e. adjusting a single coefficient deforms the
entire shape. However, in certain scenarios, such as interactive shape deforma-
tions, or when interpretability is important (e.g. in a medical context), spatially
localised deformation factors are more appropriate, such that adjusting a single
coefficient results in a spatially localised shape deformation. Whilst several authors
propose to use factors with some structure, cf. Section 4.1.2, the Sparse Localised
Deformation Components method (SPLOCS) by Neumann et al. (2013) is among
the few approaches that explicitly targets to obtain deformation factors with local
support. For editing animated mesh sequences in computer graphics, the authors
explicitly model the local support regions, which requires their location and size to
be initialised. However, in a pattern recognition context the necessity of initialising
the local support regions can be a downside, since it is often desirable to let the
data determine where and how large the local support regions should be. Thus,
our objective is to find a way of learning local support deformation factors from
training data such that the local support regions do not require an initialisation of
their location and size.

Challenges: One particular challenge is to find a problem formulation that on
the one hand does not need an initialisation of the location and size of the local
support regions, whilst on the other hand is not too difficult from a computational
point of view. The latter is in particular a challenge since in the standard approach
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of using PCA, a non-convex problem is (globally) solved. However, the PCA-
based solution does not allow to incorporate arbitrary (convex) constraints or
regularisers that would enable to impose additional structure upon the factors.
Another application-oriented challenge is that the obtained factors should lead to
realistic deformations.

Paper summary: A method is introduced that obtains a subspace from the
collection of training shapes such that the resulting deformation factors have local
support. In order to obtain local support deformation factors a matrix factorisation
problem is formulated, where sparsity and graph-based smoothness regularisation
terms are used in order to achieve spatially localised support regions.

Contributions: The contributions in this paper are of methodological nature and
are summarised as follows:

• In the proposed method, the location and size of the local support regions are
determined automatically via the sparsity and smoothness regularisers.

• In contrast to the SPLOCS method, where the local support regions are
explicitly modelled, the presented approach results in an implicit clustering
that is part of the optimisation procedure and no initialisation of the local
support region is necessary.

• The optimisation problem is formulated in terms of a matrix factorisation
framework that has a well-grounded theoretical motivation.

• Due to the incorporated smoothness regularisation term, the proposed method
leads to more realistic deformations compared to other methods.

(iii) Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds

Background: One particular use-case of SSMs is shape reconstruction from sparse
3D point-clouds, where the SSM serves as prior describing plausible shapes and
the reconstruction is performed by fitting the SSM points to the given points
(cf. Section 1.1.4). Most existing approaches either assume that the correspondences
between the available 3D points and the model points are known, or they estimate
discrete correspondences in an ICP-like manner (more details on both aspects are
discussed in Section 5.2). However, there may not even exist a unique model point
that corresponds to a given point. Thus, discrete correspondences as they are
frequently used may not be the best choice. Even though in many cases a surface
mesh is associated with the SSM, the SSM fitting is mostly performed in a purely
point-based manner. However, rather than fitting the SSM in a point-by-point
fashion to the available 3D point-cloud, a surface-based fitting would be less sensitive
to surface discretisation. This drawback has been tackled in recent work by Taylor
et al. (2016), where a hand pose model fitting is performed using surface-based
correspondences. In a similar fashion to the work by Taylor et al. (2016), our
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objective is to achieve a fitting method for the surface reconstruction that goes
beyond a purely point-based fitting. In contrast to their work, we pursue a different
approach by formulating the fitting problem in a probabilistic setting.

Challenges: The main challenge for SSM-based surface reconstruction is the
problem of finding for each available 3D point the corresponding point of the SSM
(assuming such a point exists). Moreover, the reconstruction of a surface from a
sparse point-cloud is challenging due to the small amount of data that is available
and the (potentially) resulting ill-posedness of the problem.

Paper summary: In this work a surface reconstruction method from sparse data
is presented. Given (few) points that lie on the surface of the object that is to
be reconstructed, the surface reconstruction is performed with an SSM as prior.
The reconstruction is achieved by assuming that the given 3D surface points are
samples drawn from a Gaussian Mixture Model (GMM) (Bishop, 2006). The
number of mixture components corresponds to the number of points of the PDM,
and the mean of each mixture component corresponds to the 3D location of a
PDM point, parametrised by the coefficients of the PDM. As such, the surface
reconstruction problem can be formulated as a fitting problem of the shape model
to the given points, where both correspondences and PDM parameters are the
unknowns. Several different approaches to solve this problem are presented by
variants and generalisations of the Expectation Maximisation (EM) algorithm
(Dempster et al., 1977), where, for each given surface point, the correspondences are
modelled in form of a generating component, which are treated as latent variable.

Contributions: The main contribution of this work is the introduction of a surface-
based SSM fitting methodology that has superior accuracy and robustness compared
to ICP on a broad range of datasets. The surface-based fitting procedure is achieved
by the following methodological contributions:

• Due to the probabilistic formulation borrowed from probabilistic point-set
registration methods, a shape-aware surface reconstruction method is achieved
that does not require explicit correspondences.

• In order to achieve a surface-based fitting method, in contrast to a point-
based fitting, a GMM with anisotropic covariance matrices is used, where the
covariance matrices are oriented according to the surface normals.

• A rigorous and self-contained derivation of the anisotropic GMM formulation
is presented that leads to the Expected Conditional Maximisation (ECM)
algorithm, which shares the same convergence properties as the EM algorithm,
whilst at the same time being more general.

• A fast approximation of the anisotropic GMM that has the same computational
complexity as the isotropic GMM-based approach is introduced.
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(iv) A Solution for Multi-Alignment by Transformation Synchronisation

Background: Obtaining transitive consistency in the set of pairwise transforma-
tions, i.e. transforming from coordinate systems A to B, and then from B to C
must be identical as transforming A directly to C, has a wide range of applications
in vision and machine learning. In the literature, various methods have tackled
this synchronisation problem for orthogonal transformations, proper rotations, or
permutations (Govindu, 2004; Singer, 2011; Singer and Shkolnisky, 2011; Hadani
and Singer, 2011b; Pachauri et al., 2013; Bandeira et al., 2013; Chaudhury et al.,
2013; Wang and Singer, 2013; Chatterjee and Govindu, 2013; Boumal, 2015), some
of them considering translations in addition. Our objective is to generalise these
approaches such that not only orthogonal but general linear/affine transformations
can be synchronised in arbitrary dimensions, in order to solve the multi-alignment
problem (cf. Section 1.1.2) in a reference-free and direct manner.

Challenges: A particular challenge is to solve the multi-alignment problem in
arbitrary dimensions in a direct way. Previous approaches are iterative (Gower,
1975; Bartoli et al., 2013), where the latter involves a nonlinear refinement, or focus
on the 2D/3D cases only (Pizarro and Bartoli, 2011).

Paper summary: The transformation synchronisation method is a procedure to
remove noise that accounts for transitive inconsistency in the set of pairwise linear
transformations. The proposed method is of general nature, i.e. it is applicable
whenever the set of all pairwise (invertible) linear transformations is not transitively
consistent and the objective is to obtain transitive consistency. By first computing
all pairwise transformations and then synchronising them, the method can be used to
solve the multi-alignment problem that occurs during PDM creation (Section 1.1.2).
Since affine transformations can be represented by a homogeneous transformation
matrix, they are essentially linear transformations (with certain properties) and
can also be handled by the method. Moreover, when considering subsets of linear
transformations, such as orthogonal, rigid, similarity or euclidean transformations,
the transformation synchronisation method can also retrieve these transformations
by means of projections onto the set of interest.

Contributions: The main contributions of this paper are rather on the theoreti-
cal/mathematical side and can be summarised as follows:

• A linear algebraic property is provided that must hold whenever the set of
pairwise linear transformations is transitively consistent.

• From this algebraic relation, a least-squares problem with an orthogonality
constraint is introduced in order to obtain transitively consistent pairwise trans-
formations from noisy pairwise transformations. The least-squares problem
can be solved in a direct way via means of SVD.
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One particular improvement of this work considering the numerical stability is
described in (v). In addition, various enhancements of this work have been developed
that are not part of this thesis. Among them are a formulation that considers
weights for the pairwise transformations, including the case of missing data where
only a subset of the pairwise transformations is available, the direct formulation of
an optimisation problem rather than stating a linear algebraic property, as well as
distributed methods (Thunberg et al., 2015).

(v) Transitively Consistent and Unbiased Multi-Image Registration Using Numerically
Stable Transformation Synchronisation

Background: Multi-image registration, i.e. finding spatial transformations that
align a collection of images, has various applications in image processing and vision,
including image stitching or the normalisation of medical images to a common
coordinate system. Multi-image registration is usually performed in a reference-
based manner, where the reference may be fixed or evolving (Joshi et al., 2004;
Reuter et al., 2012), or by simultaneous optimisation over all transformations
(Learned-Miller, 2006; Wachinger and Navab, 2013). However, choosing a reference
induces a bias, and the simultaneous optimisation approaches are local methods
that rely on a good initialisation. Whilst the type of admissible transformations
(e.g. affine or nonlinear) generally depends on the context, we focus on the affine
multi-image registration problem, which is for example relevant for the affine
average template construction, but also as initialisation for nonlinear multi-image
registration. Our objective is to solve the (affine) multi-image registration problem
in an unbiased/reference-free manner that does not require an initialisation. For
that, we assume that the set of pairwise transformations is given such that the
problem reduces to a synchronisation problem.

Challenges: A particular challenge when applying the transformation synchroni-
sation method to multi-image registration is that in principal the coordinate origin
for each image can be arbitrary. Thus, the translation components in the pairwise
transformations may be very large, which impairs the numerical stability of the
original SVD-based solution of the transformation synchronisation method.

Paper summary: In this paper, the transformation synchronisation is extended
with respect to numerical stability such that it can be applied to (affine) multi-image
registration. Using this method, the groupwise affine registration of images can
be tackled via computing the set of pairwise transformations using any pairwise
(affine) image registration procedure and then synchronising them.

Contributions: The main contribution of this work is the introduction of a
numerically stable implementation of the transformation synchronisation method
that enables the practical use of the transformation synchronisation method for
multi-image registration. From a practical point of view this has mainly two
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implications:

• Since the approach is reference-free, the method is unbiased and thus well-suited
for statistical analyses.

• Experiments suggest that the reference-based multi-image registration method
performs significantly worse for certain choices of reference images. In this
case the particular choice of the reference is essential. Since this is not the
case when using the proposed transformation synchronisation, the method is
more robust with respect to outliers and achieves higher registration accuracy
on average compared to reference-based registration.

1.3 Outline

Part I of this thesis is devoted to topics that are related to SSMs, starting with a
brief introduction of the shape representation in Chapter 2, followed by presenting the
papers (i)-(iii) in Chapters 3-5. Whilst the chosen order of presentation corresponds to the
chronological order of first establishing correspondences, creating the PDM and eventually
using the PDM, there is no direct dependency between Chapters 3-5, so they can be
read independently. Whilst, each of the Chapters 3-5 is self-contained, in order to better
grasp their inter-relations it is recommended that Chapter 2 is read first. Part II contains
the papers (iv) and (v) in Chapters 6 and 7, respectively, concerning the transformation
synchronisation method, where Chapter 6 should be read before Chapter 7. In Part III,
a brief sketch of applying the methodologies introduced in Parts I and II to deep brain
stimulation (DBS) surgery is presented.

Parts I and II do not directly depend on each other, so it is left to the reader with which
one to start. However, Parts I and II should be read before Part III.
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2 Shape Representation

This chapter has the purpose of briefly introducing the representation of shapes as they
are used throughout Chapters 3-5. As mentioned in Section 1.1.1, a suitable shape
representation for PDMs are labelled point-clouds. We assume that the points of such a
point-cloud represent vertices of a triangular surface mesh. In the following, this shape
representation is formalised and particular characteristics appearing in Chapters 3-5 are
clarified.

Surface meshes: Let {M
k

}K
k=1

be a collection of K shape surfaces, each of them defined
as a triangular surface mesh M

k

= (X

k

, F
k

). The matrix X

k

2 RN⇥3 contains N point
positions (also referred to as vertex or landmark positions) in 3 dimensions and can be
interpreted as labelled point-cloud. The row index of the matrix X

k

can be seen as the
label for each point, which is used to encode correspondences across multiple shapes.
Thus, the i-th row, 1  i  N , in each X

k

for k = 1, . . . , K is a corresponding (or
homologous) point. The set F

k

✓ {(p, q, s) : p, q, s 2 {1, . . . , N}, |{p, q, s}| = 3} contains
oriented triangular faces and represents the mesh topology.

PDMs: For defining the PDM it is common to vectorise the matrix X

k

2 RN⇥3 by
stacking its columns, i.e. x

k

= vec(X

k

) 2 R3N , and to arrange the entire shape collection
in the matrix X = [x

1

, . . . ,x

K

] 2 R3N⇥K . For example, a PCA-based PDM is given by
computing the deformation factors as the eigenvectors of the sample covariance matrix
C =

1

K�1(X� ¯

x1

T

K

)(X� ¯

x1

T

K

)

T , where ¯

x =

1

K

P
K

k=1

x

k

denotes the mean of all shapes
in 3N -dimensional shape space and 1

K

is the constant column vector of size K containing
ones. Let � 2 R3N⇥M be a matrix containing the first M eigenvectors of C with largest
eigenvalues. For ↵ being a variable in RM , the PDM y(↵) : RM ! R3N is a vector-valued
function defined as

y(↵) =

¯

x + �↵ , (2.1)
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where ↵ 2 RM is the shape deformation parameter. The deformation of vertex i through
↵ is denoted by

y

i

(↵) = x̄

i

+ �

i

↵ , (2.2)

where the three rows of vertex i are selected appropriately from y(↵),

¯

x and � to obtain
y

i

(↵) 2 R3

, x̄

i

2 R3 and �

i

2 R3⇥M . Due to vectorisation, the rows with indices
{1, . . . , N}, {N+1, . . . , 2N} and {2N+1, . . . , 3N} of X, x

k

,

¯

x, � or y(↵), correspond
to the x, y and z components of the N vertices, respectively.

Shared topology: The purpose of the methodology described in Chapter 3 is to establish
correspondences between the vertex matrices X

k

of the meshes M
k

= (X

k

, F
k

) for all
k = 1, . . . , K. However, since correspondences are encoded by the order of the rows of
the X

k

matrices, when performing a modification of the order of the rows of a particular
matrix X

k

, the triangular faces F
k

need to be updated as well. Instead of having an
individual mesh topology for each mesh, we perform the correspondence establishment in
such a way that, after all meshes have been processed, all meshes share the same triangular
face structure F , such that the mesh collection can be written as {M

k

= (X

k

, F)}K
k=1

.
In order to simplify the notation, in the subsequent Chapters 4 and 5 we usually refer
only to the shape collection {X

k

}K
k=1

that have a common mesh topology.

Graph-based vertex connectivity: In Chapter 4, the shared triangular face structure
F only plays a role for visualisation and is thus not introduced explicitly. However, an
additional layer of connectivity between the vertices is encoded by a weighted undirected
graph G = (V, E , !) that is shared by all shapes. The purpose of this graph is to model
how much the deformation of a certain vertex should affect the deformation of another
vertex. In this graph, the node set V = {1, . . . , N} enumerates all N vertices, the edge
set E ✓ {1, . . . , N}2 represents the connectivity of the vertices, and ! 2 R|E|

+

is the
weight vector which defines the weight for each edge. The (scalar) weight !

e

of edge
e = (i, j) 2 E denotes the affinity between vertex i and j, where “close” vertices have high
value !

e

. The graph can either encode pairwise spatial connectivity, in which case it can
be derived from the triangular face structure F , or affinities that are not of spatial nature
(e.g. symmetries, or prior anatomical knowledge in medical applications).

Surface normals: In Chapter 5, the mesh structure of the shapes is used in order
to compute surface normals. Thus, for each vertex with index i, the “left” and “right”
neighbour vertices are denoted to have index i

2

and i

3

, respectively. With that, the
surface normal at vertex i depending on the shape deformation parameter ↵, is given by
n

i

(↵) =

(yi2 (↵)�yi(↵))⇥(yi3 (↵)�yi(↵))

k(yi2 (↵)�yi(↵))⇥(yi3 (↵)�yi(↵))k , cf. (5.19).
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3 Fast Correspondences for Statistical

Shape Models of Brain Structures

Abstract

Statistical Shape Models based on Point Distribution Models are powerful tools for
image segmentation or shape analysis. The most challenging part in the generation of
Point Distribution Models is the identification of corresponding landmarks among all
training shapes. Since in general the true correspondences are unknown, correspondences
are frequently established under the hypothesis that correct correspondences lead to
a compact model, which is mostly tackled by continuous optimisation methods. In
favour of the prospect of an efficient optimisation, we present a simplified view of
the correspondence problem for statistical shape models that is based on point-set
registration, the linear assignment problem and mesh fairing. At first, regularised
deformable point-set registration is performed and combined with solving the linear
assignment problem to obtain correspondences between shapes on a global scale. With
that, rough correspondences are established that may not yet be accurate on a local scale.
Then, by using a mesh fairing procedure, consensus of the correspondences on a global
and local scale among the entire set of shapes is achieved. We demonstrate that for the
generation of Statistical Shape Models of deep brain structures, the proposed approach is
preferable over existing population-based methods both in terms of a significantly shorter
runtime and in terms of an improved quality of the resulting shape model.

3.1 Introduction

Statistical Shape Models (SSMs) play a crucial role in medical image segmentation. The
general idea of SSMs is to learn the statistical distribution of shapes from training data.
A common choice for modelling shape variability is the Point Distribution Model (PDM)
based on principal components analysis (PCA) (Heimann and Meinzer, 2009). The most
challenging part of the PDM generation is the identification of homologous points, i.e.
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points that correspond to each other, in the training shapes. Several approaches for
finding these correspondences have been proposed (Heimann and Meinzer, 2009), among
them are registration-based (Durrleman et al., 2009, 2014; Lüthi et al., 2013; Rasoulian
et al., 2012) and population-based methods, where correspondences are established such
that the resulting SSM is compact (Cates et al., 2006; Davies et al., 2010, 2002; Heimann
et al., 2005; Thodberg, 2003).

The population-based methods have in common that the landmark positions are optimised
by moving landmarks on the shape surface. One has to take particular care that the
landmarks do not leave the shape surface. This can be accomplished by reparametrisation,
i.e. a mapping of the shapes to a manifold that does not allow that landmarks leave the
shape surface (e.g. planes), or manifolds where an efficient reprojection back onto the shape
surface is possible (e.g. spheres (Heimann et al., 2005)). One way of recasting landmarks
onto the shape surface that is frequently used in conjunction with reparametrisation, is
the iterative reprojection of the landmarks onto the shape surface after (free) landmark
translation (Dalal et al., 2007; Heimann et al., 2005; Munsell et al., 2012). A drawback
of iterative reprojection is that it is performed repeatedly during optimisation, which
hampers an efficient optimisation.

In order to enable an efficient optimisation, we present a simplified view of the correspon-
dence problem for SSMs that is based on a multi-stage processing pipeline. At first, a
regularised deformable point-set registration is performed and combined with solving the
linear assignment problem for obtaining correspondences between shapes on a global scale.
Then, by using a mesh fairing procedure (Desbrun et al., 1999) that is invariant to mesh
parametrisations, consensus of the correspondences on a global and local scale among the
entire set of shapes is achieved. Since all involved methods can be implemented in an
efficient way, the evaluation of multiple putative groupwise correspondences comes into
reach, which again adds a hint of population-basedness.

We demonstrate that for the generation of SSMs of deep brain structures the proposed
approach is preferable over existing population-based methods due to the significantly
shorter runtime and an improved quality of the resulting shape model.

3.2 Methods

Let {M
k

}K
k=1

be the set of K shape surfaces, each of them represented as a triangle
mesh M

k

= (X

k

, F
k

), with X

k

2 RN⇥3 being a matrix that contains the 3D vertex (or
landmark) positions in each row and F

k

✓ {(p, q, s) : p, q, s 2 {1, . . . , N}, |{p, q, s}| = 3}
being the set of oriented triangular faces that represents the mesh topology.

We assume that within each triangular mesh M
k

the distance between all pairs of
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neighbour vertices is approximately equal (uniform surface sampling) and that the
number of landmarks N is equal across all K shapes. As such, it is guaranteed that
there exists a bijection between each pair of landmark matrices X

k

and X

k

0 for k, k

0
=

1, . . . , K. Generating meshes with these properties from binary voxel-based segmentations
is performed using the iso2mesh tool (Fang and Boas, 2009). It is assumed that all shape
surfaces are rigidly aligned, which in our case is achieved by (rigid) image registration of
the images that are used to create the binary voxel-based segmentations (Bernard et al.,
2014).

An overview of the processing pipeline is shown in Fig. 3.1, where the interaction between
the following subproblems (SP) is visualised.

(SP1) For all vertex matrices X

1

, . . . ,X

K

, find a deformable transformation that
spatially aligns them with a reference vertex matrix X

r

. The choice of
reference mesh M

r

= (X

r

, F
r

) will be described at the end of this section.

(SP2) Find a bijective mapping between the transformed vertex matrices and the
reference vertex matrix.

(SP3) Construct meshes from the topology F
r

of the reference mesh and the original
vertex matrices after they have been brought into correspondence with X

r

using the bijective mapping from SP2.

(SP4) Apply mesh fairing as parametrisation-invariant regularisation.

(SP5) Project the smoothed meshes back onto the original surfaces.

(SP1) Using deformable point-cloud registration, for each mesh M
k

the vertices X

k

are transformed such that they are in agreement with the vertices X

r

of the reference
mesh. For that, the Coherent Point Drift (CPD) algorithm (Myronenko and Song, 2010)
for point-cloud registration is used. CPD considers the registration of two point-sets
as probability density estimation problem, where an optimisation procedure based on
Expectation Maximisation (EM) is used to estimate the parameters of a Gaussian Mixture
Model. Using Tikhonov regularisation, the method ensures that during registration all
points move coherently, i.e. points that are close move in a similar direction. Assuming
that all objects represent the same class of (anatomical) structures (e.g. the thalamus),
and due to the uniform surface sampling of the vertices in the original meshes, the vertex
matrices ˜

X

k

after the deformation also exhibit an approximately uniform surface sampling
on the surface of the reference mesh. However, even with both point-clouds having the
same number of points, CPD-based registration does not directly produce a bijective
mapping between both point-sets, i.e. for a vertex there may be multiple valid assignments
due to the probabilistic nature of CPD.
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SP1: 
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Figure 3.1: Processing pipeline for finding correspondences between meshes M
1

, . . . , M
k

by using reference mesh M
r

. Rectangles represent methods, rounded rectangles represent
data and rounded rectangles drawn with a dashed line visualise additional information
of the connected data node. The reference is shown in red and the objects 1, . . . , K are
shown in white/grey.

(SP2) To deal with this, next a bijective mapping between each transformed landmark
matrix ˜

X

k

and the reference X

r

is established. Since each mapping can be represented
by the ordering of the rows of the matrices ˜

X

k

, the objective is to find the permutation
matrices P

1r

, . . . ,P

Kr

that rearrange the rows of ˜

X

k

by P

kr

˜

X

k

such that they best
fit X

r

. This is a common problem that is known as linear assignment problem (LAP),
which can be solved using the Auction algorithm (Bertsekas, 1998) with quasi-quadratic
average-case time complexity1.

(SP3) Whilst the bijective mappings P

1r

, . . . ,P

Kr

have been established using the
transformed point-clouds ˜

X

1

, . . . ,

˜

X

K

, these mappings are now applied to the original
vertex matrices X

1

, . . . ,X

K

. This results in the set of meshes {(P

kr

X

k

, F
r

)}K
k=1

, where

1
code available on http://www.mathworks.com/matlabcentral/fileexchange/48448
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the faces F
r

of the reference mesh are joined with the reordered vertex matrices P

kr

X

k

.
Here, the original vertex positions are used for mesh construction in order to retain
the original shape (in contrast to the deformed shape after CPD-based deformation),
whilst at the same time being in correspondence with X

r

(due to the coherency of the
deformation from X

k

to ˜

X

k

for all k). Combining the mesh topology F
r

with the vertices
P

1r

X

1

, . . . ,P

Kr

X

K

may lead to irregular meshes on a local scale, i.e. there may be small
self-intersections and non-smoothness (see the box titled “Irregular meshes” in Fig. 3.1
top right). However, globally the correspondences are in general of good quality due to
the well-known robustness of CPD (see the box titled “Established correspondences” in
Fig. 3.1). Local irregularities are present because the graphs of the meshes {M

k

}K
k=1

are
not isomorphic, and whilst there exists a bijection between their vertices, this bijection
does in general not induce a diffeomorphism between the surfaces.

(SP4) In order to mend mesh irregularities, a volume-preserving mesh fairing procedure
based on curvature flow is applied (Desbrun et al., 1999). This can be seen as a
parametrisation-invariant noise removal procedure that relies merely on intrinsic properties
of the surface. It has the effect that vertices are moved mostly along their normals and
as such the triangular faces do not drift excessively over the mesh surface. With that,
the previously established correspondences are globally kept intact whilst at the same
time achieving consensus of all K meshes on a local scale. The latter is because the
translations of the vertices X

1

, . . . ,X

K

that are required to obtain smooth meshes depend
on the mesh topology F

r

, which is the same for all meshes. Under the hypothesis that
the intrinsic surface properties of all meshes are similar, this leads to globally and locally
consistent correspondences (see the box titled “Final correspondences” in Fig. 3.1).

(SP5) In the previous step not only the desirable global and local consistency of groupwise
correspondences is established, but additionally the mesh fairing may have the unwanted
effect of altering the objects’ shapes. As compensation, the smoothed meshes are
(orthogonally) projected on a per-vertex basis onto the original surface. This projection
keeps the correspondences and the mesh regularity intact whilst at the same time recovering
the original shape. Let { ¯M

k

= (

¯

X

k

, F
r

)}K
k=1

be the set of meshes after the projection
onto the original shape surfaces.

The outcome of the described procedure is dependent on the chosen reference mesh
M

r

. However, since the individual subproblems can be solved efficiently, several possible
choices for the reference mesh can be evaluated.

Comparable to population-based methods, where compactness of the resulting shapes
in 3N -dimensional shape space is optimised, we pursue a similar objective. Rewriting
¯

X

k

2 RN⇥3 as column vector x

k

2 R3N by stacking all columns, a simple way of
measuring compactness in shape space is to use the sum of the distances between each
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pair of shape vectors, i.e. c

r

=

P
k 6=k

0 kx
k

� x

k

0k
2

. Once multiple compactness scores
have been evaluated, the reference mesh with index r is selected that leads to the lowest
value c

r

. Whilst for smaller problems it is feasible to perform this procedure for all K

choices as reference, for larger problems only a subset of all reference mesh candidates
can be evaluated.

3.3 Results

The performance of the presented approach is compared with the particle-based entropy
optimisation (PBEO) method by Cates et al. (2006) and the approach by Heimann et al.
(2005) based on minimum description length (MDL). The objective is to create a PDM of
eight deep brain structures from K = 17 manually created segmentations in multi-modal
magnetic resonance images (Bernard et al., 2014). The considered brain structures are
Substantia Nigra & Subthalamic Nucleus as compound object (256 landmarks); Nucleus
Ruber (128 landmarks); Putamen & Globus pallidus as compound object (256 landmarks);
and Thalamus (256 landmarks), where all of them are modelled for both the left and
right brain hemisphere. For capturing shape variability and inter-relations between the
individual brain structures at the same time, a single multi-object PDM with a total
number of N = 1792 landmarks is created.

The average distance (AD) and the Hausdorff distance (HD) are used as surface-based
distance measures. Evaluated are the following scores: (i) Object reconstruction quality,
measuring how accurate the generated object representation approximates the ground
truth shape. (ii) Model specificity, measuring the difference between sample shapes
drawn from the PDM to the closest training shape (Styner et al., 2003). (iii) Model
generalisation, measuring to what extent the PDM can represent unseen instances using
leave-one-out cross validation (Styner et al., 2003). (iv) Runtime of the optimisation
procedure. In Table 3.1 the results of the evaluation are presented.

Object Reconstruction Specificity Generalisation Time

AD HD AD HD AD HD
Proposed 0.93±0.04 2.97±0.27 1.53±0.15 4.89±0.67 1.41±0.13 4.77±0.59 6.07 min
PBEO 0.98±0.04 2.33±0.18 1.54±0.14 5.03±0.71 1.44±0.13 4.74±0.82 182.74 min
MDL 1.30±0.10 8.27±1.34 1.77±0.15 6.76±0.57 1.75±0.14 8.41±1.20 545.74 min

Table 3.1: Various measures for the three evaluated methods. Scores of object recon-
struction and generalisation are averaged over K = 17 shapes/runs. Specificity scores are
averaged over 1000 draws of shapes from the PDM.

The quantitative evaluation shows that both our method and the PBEO outperform
the MDL-based approach. Our method is comparable to PBEO with respect to object
reconstruction, specificity and generalisation. However, our method improves significantly
upon runtime compared to both other methods. Qualitative results are shown in Figs. 3.2
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and 3.3, which both show the brain structures with the camera pointing from inferior to
superior.
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Figure 3.2: First mode of variation of the PDM for the three evaluated methods (rows).
The centre column shows the mean shape and the left (right) column shows the deformation
at �2 (2) times the standard deviation along the first eigenvector. For the particle-based
method the colour-coding of the first eigenvector is used to enable a better visualisation
(cf. Fig. 3.3). (Best viewed on screen when zoomed in).

In Fig. 3.2, the mean shapes and the first modes of variation with respect to two standard
deviations of PCA-based PDMs are depicted. In Fig. 3.3, the deformations for the first
three modes are shown by means of colour-coding.

The MDL-based approach has a comparably large mesh reconstruction error (HD), which
can be explained by the fact that the surface sampling is not uniform, as can be seen
in Figs. 3.2 and 3.3, in the bottom row, respectively. A redistribution of the landmarks
on the surface can be used to tackle this problem (Heimann et al., 2006). A flaw of
the PBEO method is that the deformations of the resulting PDMs are not (spatially)
smooth everywhere. In Fig. 3.3 (middle row), this can be seen by the different colours
of the vertices annotated by the red circles, which indicates that the displacement of
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Figure 3.3: Deformations of the PDM for the first 3 eigenvectors (columns) for the three
evaluated methods (rows). The displacement for each landmark is colour-coded, where
the x, y and z components of the displacement are linearly mapped to the interval [0, 1]

and then used as R, G and B values, i.e. colour depicts direction and brightness depicts
the amount of the displacement. (Best viewed on screen when zoomed in).

spatially close landmarks during deformation along the first and third eigenvectors is
not coherent, i.e. neighbour points move in different directions. Clearly, when speaking
of anatomical correspondences, this is not desirable. In contrast, both, the MDL-based
method and our proposed method have smooth deformations, which is necessary for not
having self-intersections of the meshes during deformation.

3.4 Conclusion

We have presented a powerful and efficient method for solving the correspondence problem
for the creation of SSMs of brain structures. Our method relies on the well-established
algorithms CPD, LAP and mesh fairing, each of them being proven methods on their
own. Combining these approaches in the described manner leads to a powerful tool for
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the establishment of correspondences.

Whilst being reference-based, an appealing characteristic is that our method is computa-
tionally inexpensive and thus the evaluation of multiple reference meshes becomes feasible.
The deformable point-cloud registration in combination with the LAP can be seen as
initial establishment of globally reliable but locally non-smooth vertex correspondences.
The subsequent regularisation using mesh fairing refines the vertex positions such that
the correspondences are on the one hand locally smooth and on the other hand consistent
among the entire set of shapes. Allowing multiple evaluations of different reference meshes,
as well as the mesh fairing procedure being run with the same topology for each mesh,
both add a hint of population-basedness to our approach.

In our case of eight (comparatively simple) shapes of deep brain structures from 17

subjects we have experimentally demonstrated that our method is preferable with respect
to model quality. We claim to have a better model quality compared to MDL since
quantitatively our method outperforms MDL as can be seen in Table 3.1. Whilst our
method is comparable to the PBEO method with respect to the quantitative scores,
qualitatively our method leads to more realistic results due to the smooth deformations.
Furthermore, the runtime is reduced significantly, which is crucial since model-building
takes in practice multiple runs due to testing, evaluation and optimisation of the model,
as pointed out by Heimann and Meinzer (2009).
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4 Linear Shape Deformation Models

with Local Support using Graph-

based Structured Matrix Factorisa-

tion
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Figure 4.1: Global support factors of PCA lead to implausible body shapes, whereas the
local support factors of our method give more realistic results.

Abstract

Representing 3D shape deformations by high-dimensional linear models has many appli-
cations in computer vision and medical imaging. Commonly, using Principal Components
Analysis a low-dimensional subspace of the high-dimensional shape space is determined.
However, the resulting factors (the most dominant eigenvectors of the covariance matrix)
have global support, i.e. changing the coefficient of a single factor deforms the entire
shape. Based on matrix factorisation with sparsity and graph-based regularisation terms,
we present a method to obtain deformation factors with local support. The benefits
include better flexibility and interpretability as well as the possibility of interactively
deforming shapes locally. We demonstrate that for brain shapes our method outperforms
the state of the art in local support models with respect to generalisation and sparse
reconstruction, whereas for body shapes our method gives more realistic deformations.
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4.1 Introduction

Due to their simplicity, linear models in high-dimensional space are frequently used for
modelling nonlinear deformations of shapes in 2D or 3D space. For example, Active
Shape Models (ASM) (Cootes and Taylor, 1992), based on a Statistical Shape Model,
are popular for image segmentation. Usually, surface meshes, comprising faces and
vertices, are employed for representing the surfaces of shapes in 3D. Dimensionality
reduction techniques are used to learn a low-dimensional representation of the vertex
coordinates from training data. Frequently, an affine subspace close to the training shapes
is used. To be more specific, mesh deformations are modelled by expressing the vertex
coordinates as the sum of a mean shape ¯

x and a linear combination of M modes of
variation � = [�

1

, . . . ,�

M

], i.e. the vertices deformed by the weight or coefficient vector
↵ are given by y(↵) =

¯

x + �↵, see Fig. 4.1. Commonly, by using Principal Components
Analysis (PCA), the modes of variation are set to the most dominant eigenvectors of the
sample covariance matrix. PCA-based models are computationally convenient due to the
orthogonality of the eigenvectors of the (real and symmetric) covariance matrix. Due to
the diagonalisation of the covariance matrix, an axis-aligned Gaussian distribution of
the weight vectors of the training data is obtained. A problem of PCA-based models is
that eigenvectors have global support, i.e. adjusting the weight of a single factor affects all
vertices of the shape (Fig. 4.1).

Thus, in this work, instead of eigenvectors, we consider more general factors as modes of
variation that have local support, i.e. adjusting the weight of a single factor leads only
to a spatially localised deformation of the shape (Fig. 4.1). The set of all factors can
be seen as a dictionary for representing shapes by a linear combination of the factors.
Benefits of factors with local support include more realistic deformations (cf. Fig. 4.1),
better interpretability of the deformations (e.g. clinical interpretability in a medical
context (Sjostrand et al., 2007)), and the possibility of interactive local mesh deformations
(e.g. editing animated mesh sequences in computer graphics (Neumann et al., 2013), or
enhanced flexibility for interactive 3D segmentation based on Statistical Shape Models
(Bernard et al., 2015a, 2016b)).

4.1.1 PCA Variants

PCA is a non-convex problem that admits the efficient computation of the global op-
timum, e.g. by Singular Value Decomposition (SVD). However, the downside is that
the incorporation of arbitrary (convex) regularisation terms is not possible due to the
SVD-based solution. Therefore, incorporating regularisation terms into PCA is an active
field of research and several variants have been presented: Graph-Laplacian PCA (Jiang
et al., 2013) obtains factors with smoothly varying components according to a given

34



4.1. Introduction

graph. Robust PCA (Candès et al., 2011) formulates PCA as a convex low-rank matrix
factorisation problem, where the nuclear norm is used as convex relaxation of the matrix
rank. A combination of both Graph-Laplacian PCA and Robust PCA has been presented
by Shahid et al. (2015). The Sparse PCA (SPCA) method (Hein and Bühler, 2010; Zou
et al., 2006) obtains sparse factors. Structured Sparse PCA (SSPCA) (Jenatton et al.,
2010) additionally imposes structure on the sparsity of the factors using group sparsity
norms, such as the mixed `

1

/`

2

norm.

4.1.2 Deformation Model Variants

In the work by Last et al. (2011), the flexibility of shape models has been increased by
using PCA-based factors in combination with a per-vertex weight vector, in contrast to a
single weight vector that is used for all vertices. In the works by Cootes and Taylor (1995);
Wang and Staib (2000), it is shown that additional elasticity in the PCA-based model can
be obtained by manipulation of the sample covariance matrix. Whilst both approaches
increase the flexibility of the shape model, they result in global support factors.

In the work by Sjostrand et al. (2007), SPCA is used to model the anatomical shape
variation of the 2D outlines of the corpus callosum. In the work by Üzümcü et al. (2003),
2D images of the cardiac ventricle were used to train an Active Appearance Model based
on Independent Component Analysis (ICA) (Hyvärinen et al., 2001). Other applications
of ICA for Statistical Shape Models are presented in the works by Suinesiaputra et al.
(2004); Zewail et al. (2007). The Orthomax method, where the PCA basis is determined
first and then rotated such that it has a “simple” structure, is used in the work by
Stegmann et al. (2006). The major drawback of SPCA, ICA and Orthomax is that the
spatial relation between vertices is completely ignored.

The Key Point Subspace Acceleration method based on Varimax, where a statistical
subspace and key points are automatically identified from training data, is introduced in
the work by Meyer and Anderson (2007). For mesh animation, in the work by Tena et al.
(2011) the clusters of spatially close vertices are determined first by spectral clustering, and
then PCA is applied for each vertex cluster, resulting in one sub-PCA model per cluster.
This two-stage procedure has the problem, that, due to the independence of both stages,
it is unclear whether the clustering is optimal with respect to the deformation model.
Also, a blending procedure for the individual sub-PCA models is required. A similar
approach of first manually segmenting body regions and then learning a PCA-based
model has been presented in the work by Yang et al. (2014).

The Sparse Localised Deformation Components method (SPLOCS) obtains localised defor-
mation modes from animated mesh sequences by using a matrix factorisation formulation
with a weighted `

1

/`

2

norm regulariser (Neumann et al., 2013). Local support factors
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are obtained by explicitly modelling local support regions, which are in turn used to
update the weights of the `

1

/`

2

norm in each iteration. This makes the non-convex
optimisation problem even harder to solve and dismisses convergence guarantees. With
that, a suboptimal initialisation of the support regions, as presented in the work, affects
the quality of the found solution.

The compressed manifold modes method (Kovnatsky et al., 2015b; Neumann et al., 2014)
has the objective to obtain local support basis functions of the (discretised) Laplace-
Beltrami operator of a single input mesh. In the work by Kovnatsky et al. (2015a),
the authors obtain smooth functional correspondences between shapes that are spatially
localised by using an `

1

norm regulariser in combination with the row and column
Dirichlet energy. The method proposed in the work by Rustamov et al. (2013) is able to
localise shape differences based on functional maps between two shapes. Recently, the
Shape-from-Operator approach has been presented (Boscaini et al., 2015), where shapes
are reconstructed from more general intrinsic operators.

4.1.3 Aims and Main Contributions

The work presented in this paper has the objective of learning local support deformation
factors from training data. The main application of the resulting shape model is recogni-
tion, segmentation and shape interpolation (Bernard et al., 2015a, 2016b). Whilst our
work remedies several of the mentioned shortcomings of existing methods, it can also be
seen as complementary to SPLOCS, which is more tailored towards artistic editing and
mesh animation. The most significant difference to SPLOCS is that we aim at letting
the training shapes automatically determine the location and size of each local support
region. This is achieved by formulating a matrix factorisation problem that incorporates
regularisation terms which simultaneously account for sparsity and smoothness of the
factors, where a graph-based smoothness regulariser accounts for smoothly varying neigh-
bour vertices. In contrast to SPLOCS or sub-PCA, this results in an implicit clustering
that is part of the optimisation and does not require an initialisation of local support
regions, which in turn simplifies the optimisation procedure. Moreover, by integrating a
smoothness prior into our framework we can handle small training datasets, even if the
desired number of factors exceeds the number of training shapes. Our optimisation prob-
lem is formulated in terms of the Structured Low-Rank Matrix Factorisation framework
(Haeffele et al., 2014), which has appealing theoretical properties, cf. Section 4.2.4.

4.2 Methods

First, we introduce our notation and linear shape deformation models. Then, we state
the objective and its formulation as optimisation problem, followed by the theoretical
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motivation. Finally, the block coordinate descent algorithm and the factor splitting
method are presented.

4.2.1 Notation

I

p

denotes the p⇥ p identity matrix, 1

p

the p-dimensional vector containing ones, 0

p⇥q
the p⇥ q zero matrix, and S+

p

the set of p⇥ p symmetric positive semi-definite matrices.
Let A 2 Rp⇥q. We use the notation AA,B to denote the submatrix of A with the rows
indexed by the (ordered) index set A and columns indexed by the (ordered) index set B.
The colon denotes the full (ordered) index set, e.g. AA,:

is the matrix containing all rows
of A indexed by A. For brevity, we write A

r

to denote the p-dimensional vector formed
by the r-th column of A. The operator vec(A) creates a pq-dimensional column vector
from A by stacking its columns, and ⌦ denotes the Kronecker product.

4.2.2 Linear Shape Deformation Models

Let X

k

2 RN⇥3 be the matrix representation of a shape comprising N points (or vertices)
in 3 dimensions, and let {X

k

: 1  k  K} be the set of K training shapes. We assume
that the rows in each X

k

correspond to homologous points. Using the vectorisation
x

k

= vec(X

k

) 2 R3N , all x

k

are arranged in the matrix X = [x

1

, . . . ,x

K

] 2 R3N⇥K .
We assume that all shapes have the same pose, are centred at the mean shape ¯

X,
i.e.

P
k

X

k

= 0

N⇥3, and that the standard deviation of vec(X) is one.

Pairwise relations between vertices are modelled by a weighted undirected graph G =

(V, E , !) that is shared by all shapes. The node set V = {1, . . . , N} enumerates all N

vertices, the edge set E ✓ {1, . . . , N}2 represents the connectivity of the vertices, and
! 2 R|E|

+

is the weight vector. The (scalar) weight !
e

of edge e = (i, j) 2 E denotes the
affinity between vertex i and j, where “close” vertices have high value !

e

. We assume there
are no self-edges, i.e. (i, i) /2 E . The graph can either encode pairwise spatial connectivity,
or affinities that are not of spatial nature (e.g. symmetries, or prior anatomical knowledge
in medical applications).

For the standard PCA-based method (Cootes and Taylor, 1992), the modes of variation
in the M columns of the matrix � 2 R3N⇥M are defined as the M most dominant
eigenvectors of the sample covariance matrix C =

1

K�1XX

T . However, we consider the
generalisation where � contains general 3N -dimensional vectors, the factors, in its M

columns. In both cases, the (linear) deformation model (modulo the mean shape) is given
by

y(↵) = �↵ , (4.1)
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with weight vector ↵ 2 RM . Due to vectorisation, the rows with indices {1, . . . , N},
{N+1, . . . , 2N} and {2N+1, . . . , 3N} of y (or �), correspond to the x, y and z compo-
nents of the N vertices of the shape, respectively.

4.2.3 Objective and Optimisation Problem

The objective is to find � = [�

1

, . . . ,�

M

] and A = [↵
1

, . . . , ↵
K

] 2 RM⇥K for a given
M < 3N such that, according to eq. (4.1), we can write

X ⇡ �A , (4.2)

where the factors �

m

have local support. Local support means that �

m

is sparse and
that all active vertices, i.e. vertices that correspond to the non-zero elements of �

m

, are
connected by (sequences of) edges in the graph G.

Now we state our problem formally as an optimisation problem. The theoretical motivation
thereof is based on works by Bach et al. (2008); Burer and Monteiro (2005); Haeffele
et al. (2014) and is recapitulated in Section 4.2.4, where it will also become clear that our
chosen regularisation term is related to the Projective Tensor Norm (Bach et al., 2008;
Haeffele et al., 2014).

A general matrix factorisation problem with squared Frobenius norm loss is given by

min

�,A

kX��Ak2
F

+ ⌦(�,A) , (4.3)

where the regulariser ⌦ imposes certain properties upon � and A. The optimisation is
performed over some compact set (which we assume implicitly from here on). An obvious
property of local support factors is sparsity. Moreover, it is desirable that neighbour
vertices vary smoothly. Both properties together seem to be promising candidates to
obtain local support factors, which we reflect in our regulariser. Our optimisation problem
is given by

min

�2R3N⇥M

A2RM⇥K

kX��Ak2
F

+ �

MX

m=1

k�
m

k
�

k(A
m,:

)

T k
A

, (4.4)

where k · k
�

and k · k
A

denote vector norms. For z

0 2 RK

, z 2 R3N , we define

kz0k
A

= �

A

kz0k
2

, and (4.5)

kzk
�

= �1kzk1 + �2kzk2 + �1kzkH
1,1 + �GkEzk

2

. (4.6)

Both `

2

norm terms will be discussed in Section 4.2.4. The `
1

norm is used to obtain
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sparsity in the factors. The (mixed) `
1

/`1 norm is defined by

kzkH
1,1 =

X

g2H
kz

g

k1 , (4.7)

where z

g

denotes a subvector of z indexed by g 2 H. By using the collection H =

{{i, i + N, i + 2N} : 1  i  N}, a grouping of the x, y and z components per vertex is
achieved, i.e. within a group g only the component with largest magnitude is penalised
and no extra cost is to be paid for the other components being non-zero.

The last term in eq. (4.6), the graph-based `

2

(semi-)norm, imposes smoothness upon
each factor, such that neighbour elements according to the graph G vary smoothly. Based
on the incidence matrix of G, we choose E such that

kEzk
2

=

s X

d2{0,N,2N}

X

(i,j)=ep2E
!

ep(zd+i

� z

d+j

)

2

. (4.8)

As such, E is a discrete (weighted) gradient operator and kE · k2
2

corresponds to Graph-
Laplacian regularisation (Jiang et al., 2013). E is specified in the supplementary material.

The structure of our problem formulation in eqs. (4.4), (4.5), (4.6) allows for various
degrees-of-freedom in the form of the parameters. They allow to weigh the data term
versus the regulariser (�), control the rank of the solution (�

A

and �
2

together, cf. last
paragraph in Section 4.2.4), control the sparsity (�

1

), control the amount of grouping of
the x, y and z components (�1) and control the smoothness �G . The number of factors
M has an impact on the size of the support regions (for small M the regions tend to be
larger, whereas for large M they tend to be smaller).

4.2.4 Theoretical Motivation

For a matrix X 2 R3N⇥K and vector norms k · k
�

and k · k
A

, let us define the function

 

M

(X) = min

{(�2R3N⇥M
,

A2RM⇥K
):

�A=X}

MX

m=1

k�
m

k
�

k(A
m,:

)

T k
A

. (4.9)

The function  (·) = lim

M!1  M

(·) defines a norm known as Projective Tensor Norm or
Decomposition Norm (Bach et al., 2008; Haeffele et al., 2014).

Lemma 1. For any ✏ > 0 there exists an M(✏) 2 N such that k (X)�  M(✏)

(X)k < ✏.
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Proof.
For  (X) there are sequences {�

i

}1
i=1

and {AT

i

}1
i=1

such that  (X) =

P1
i=1

k�
i

k
�

kAT

i

k
A

.
Let l

m

=

P
m

i=1

k�
i

k
�

kAT

i

k
A

. The sequence l

m

is monotone, bounded from above and
convergent. Let l1 =  (X) denote its limit. Since the sequence is convergent, there is
M(✏) such that kl1 � l

j

k < ✏ for j �M(✏).

We now proceed by introducing the optimisation problem

min

Z

kX� Zk2
F

+ � 

M

(Z) . (4.10)

Next, we establish a connection between problem (4.10) and our problem (4.4). First, we
assume that we are given a solution pair (�,A) minimising problem (4.4). By defining
Z = �A, Z is a solution to problem (4.10). Secondly, assume we are given a solution Z

minimising problem (4.10). To find a solution solution pair (�,A) minimising problem
(4.4), one needs to compute the (�,A) that achieves the minimum of the right-hand side
of (4.9) for a given Z.

This shows that given a solution to one of the problems, one can infer a solution to the
other problem. Next we reformulate problem (4.10). Following Haeffele et al. (2014), we
define the matrices Q 2 R(3N+K)⇥M

, Y 2 R(3N+K)⇥(3N+K) as

Q =

"
�

A

T

#
, Y = QQ

T

=

 
��

T

�A

A

T

�

T

A

T

A

!
, (4.11)

and the function F : S+

3N+K

! R as

F (Y) = F (QQ

T

) = kX��Ak2
F

+ � 

M

(�A) . (4.12)

Let

Y

⇤
= arg min

Y2S+
3N+K

F (Y) . (4.13)

For a given Y

⇤, problem (4.10) is minimised by the upper-right block matrix of Y

⇤. The
difference between (4.10) and (4.13) is that the latter is over the set of symmetric positive
semi-definite matrices, which, at first sight, does not present any gain. However, under
certain conditions, the global solution for Q, rather than the product Y = QQ

T , can
be obtained directly (Burer and Monteiro, 2005). Bach et al. (2008) show that if Q is
a rank deficient local minimum of F (QQ

T

), then it is also a global minimum. Whilst
these results only hold for twice differentiable functions F , Haeffele et al. (2014) have
presented analogous results for the case of F being a sum of a twice-differentiable term
and a non-differentiable term, such as ours above.
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As such, any (rank deficient) local optimum of problem (4.4) is also a global optimum. If
in  (·), both k · k

�

and k · k
A

are the `
2

norm,  (·) is equivalent to the nuclear norm,
commonly used as convex relaxation of the matrix rank (Haeffele et al., 2014; Recht et al.,
2010). In order to steer the solution towards being rank deficient, we include `

2

norm
terms in k · k

�

and k · k
A

(see (4.5) and (4.6)). With that, part of the regularisation term
in (4.4) is the nuclear norm that accounts for low-rank solutions.

4.2.5 Block Coordinate Descent

A solution to problem (4.4) is found by block coordinate descent (BCD) (Xu and Yin, 2013)
(algorithm 1). It employs alternating proximal steps, which can be seen as generalisation
of gradient steps for non-differentiable functions. Since computing the proximal mapping

1 repeat
// update �

2 �

0  �� ✏�r�kX��Ak2F // gradient step (loss)

3 for m = 1, . . . ,M do // proximal step � (penalty)

4 �m  prox�k·k�k(Am,:)T kA
(�

0
m)

// update A

5 A

0  A� ✏ArAkX��Ak2F // gradient step (loss)

6 for m = 1, . . . ,M do // proximal step A (penalty)

7 Am,:  prox�k�mk�k·kA
((A

0
m,:)

T
)

T

8 until convergence

Algorithm 1: Simplified view of block coordinate descent. For details see (Haeffele et al.,
2014; Xu and Yin, 2013).

is repeated in each iteration, an efficient computation is essential. The proximal mapping
of k ·k

A

in eq. (4.5) has a closed-form solution by block soft thresholding (Parikh and Boyd,
2013). The proximal mapping of k · k

�

in eq. (4.6) is solved by dual forward-backward
splitting (Combettes et al., 2010; Combettes and Pesquet, 2011) (see supplementary
material). The benefit of BCD is that it scales well to large problems (cf. complexity
analysis in the supplementary material). However, a downside is that by using the
alternating updates one has only guaranteed convergence to a Nash equilibrium point
(Haeffele et al., 2014; Xu and Yin, 2013).

4.2.6 Factor Splitting

Whilst solving problem (4.4) leads to smooth and sparse factors, there is no guarantee
that the factors have only a single local support region. In fact, as motivated in Section
4.2.4, the solution of eq. (4.4) is steered towards being low-rank. However, the price to
pay for a low-rank solution is that capturing multiple support regions in a single factor is
preferred over having each support region in an individual factor (e.g. for M = 2 and
any a 6= 0, b 6= 0, the matrix � = [�

1

�

2

] has a lower rank when �

1

= [a

T

b

T

]

T and
�

2

= 0, compared to �

1

= [a

T

0

T

]

T and �

2

= [0

T

b

T

]

T ).
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A simple yet effective way to deal with this issue is to split factors with multiple
disconnected support regions into multiple (new) factors (see supplementary material).
Since this is performed after the optimisation problem has been solved, it is preferable
over pre- or intra-processing procedures (Tena et al., 2011; Neumann et al., 2013) since
the optimisation remains unaffected and the data term in eq. (4.4) does not change due
to the splitting.

4.3 Experimental Results

We compared the proposed method with PCA (Cootes and Taylor, 1992), kernel PCA
(kPCA, cf. 4.3.2), Varimax (Harman, 1976), ICA (Hyvärinen et al., 2001), SPCA (Jenatton
et al., 2010), SSPCA (Jenatton et al., 2010), and SPLOCS (Neumann et al., 2013) on
two real datasets, brain structures and human body shapes. Only our method and
the SPLOCS method explicitly aim to obtain local support factors, whereas the SPCA
and SSPCA methods obtain sparse factors (for the latter the `

1

/`

2

norm with groups
defined by H, cf. eq. (4.7), is used). The methods kPCA, SPCA, SSPCA, SPLOCS
and ours require to set various parameters, which we address by random sampling (see
supplementary material).

For all evaluated methods a factorisation �A is obtained. W.l.o.g. we normalise the
rows of A to have standard deviation one (since �A = (

1

s

�)(sA) for s 6= 0). Then, the
factors in � are ordered descendingly according to their `

2

norms.

In our method, the number of factors may be changed due to factor splitting, thus,
in order to allow a fair comparison, we only retain the first M factors. Initially, the
columns of � are chosen to M (unique) columns selected randomly from I

3N

. This is in
accordance with the observations by Haeffele et al. (2014), where empirically good results
are obtained using trivial initialisations. Convergence plots for different initialisations
can be found in the supplementary material.

4.3.1 Quantitative Measures

For x = vec(X) and ˜

x = vec(

˜

X), the average error

eavg(x,

˜

x) =

1

N

NX

i=1

kX
i,:

� ˜

X

i,:

k
2

(4.14)

and the maximum error
e

max

(x,

˜

x) = max

i=1,...,N

kX
i,:

� ˜

X

i,:

k
2

(4.15)

measure the agreement between shape X and shape ˜

X.
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The reconstruction error for shape x

k

is measured by solving the overdetermined system
�↵

k

= x

k

for ↵
k

in the least-squares sense, and then computing eavg(x
k

,�↵
k

) and
e

max

(x

k

,�↵
k

), respectively.

To measure the specificity error, n

s

shape samples are drawn randomly (n
s

= 1000 for
the brain shapes and n

s

= 100 for the body shapes). For each drawn shape, the average
and maximum errors between the closest shape in the training set are denoted by savg

and s

max

, respectively. For simplicity, we assumed that the parameter vector ↵ follows
a zero mean Gaussian distribution, where the covariance matrix C↵ is estimated from
the parameter vectors ↵

k

of the K training shapes. With that, a random shape sample
x

r

is generated by drawing a sample of the vector ↵
r

from its distribution and setting
x

r

= �↵
r

. The specificity can be interpreted as a score for assessing how realistic
synthesized shapes are on a coarse level of detail (the contribution of errors on fine details
to the specificity score is marginal due to the dominance of the errors on coarse scales).

For evaluating the generalisation error, a collection of index sets I ⇢ 2

{1,...,K} is used,
where each set J 2 I denotes the set of indices of the test shapes for one run and |I| is the
number of runs. We used five-fold cross-validation, i.e. |I| = 5 and each set J contains
round(

K

5

) random integers from {1, . . . , K}. In each run, the deformation factors �

¯J are
computed using only the shapes with indices ¯J = {1, . . . , K} \ J . For all test shapes
x

j

, where j 2 J , the parameter vector ↵
j

is determined by solving �

¯J ↵
j

= x

j

in the
least-squares sense. Eventually, the average reconstruction error eavg(xj

,�

¯J ↵
j

) and the
maximum reconstruction error e

max

(x

j

,�

¯J ↵
j

) are computed for each test shape, which
we denote as gavg and g

max

, respectively. Moreover, the sparse reconstruction errors g

0.05

avg
and g

0.05

max

are computed in a similar manner, with the difference that ↵
j

is now determined
by using only 5% of the rows (selected randomly) of �

¯J and x

j

, denoted by ˜

�

¯J and ˜

x

j

.
For that, we minimise k ˜� ¯J ↵

j

� ˜

x

j

k2
2

+k�↵
j

k2
2

with respect to ↵
j

, which is a least-squares
problem with Tikhonov regularisation, where � is obtained by Cholesky factorisation of
C↵ = �

T

�. The purpose of this measure is to evaluate how well a deformation model
interpolates an unseen shape from a small subset of its points, which is relevant for shape
model-based surface reconstruction (Bernard et al., 2015a, 2016b).

4.3.2 Brain Structures

The first evaluated dataset comprises 8 brain structure meshes of K = 17 subjects (Bernard
et al., 2016c). All 8 meshes together have a total number of N = 1792 vertices that are
in correspondence among all subjects. Moreover, all meshes have the same topology,
i.e. seen as graphs they are isomorphic. A single deformation model is used to model
the deformation of all 8 meshes in order to capture the interrelation between the brain
structures. We fix the number of desired factors to M = 96 to account for a sufficient
amount of local details in the factors. Whilst the meshes are smooth and comparably
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simple in shape (cf. Fig. 4.3), a particular challenge is that the training dataset comprises
only K = 17 shapes.

Second-order Terms

Based on anatomical knowledge, we use the brain structure interrelation graph Gbs =

(Vbs, Ebs) shown in Fig. 4.2, where an edge between two structures denotes that a defor-
mation of one structure may have a direct effect on the deformation of the other structure.
Using Gbs, we now build a distance matrix that is then used in the SPLOCS method

SN+STN_L SN+STN_R

NR_L

Th_L

Put+GP_L Put+GP_R

NR_R

Th_R

SN+STN: substantia nigra and 
        subthalamic nucleus
NR:     nucleus ruber
Th:     thalamus
Put+GP: putamen and globus 
        pallidus

Figure 4.2: Brain structure interrelation graph.

and our method. For o 2 Vbs, let g

o

⇢ {1, . . . , N} denote the (ordered) indices of the
vertices of brain structure o. Let Deuc 2 RN⇥N be the Euclidean distance matrix, where
(Deuc)ij = k ¯

X

i,:

� ¯

X

j,:

k
2

is the Euclidean distance between vertex i and j of the mean
shape ¯

X. Moreover, let Dgeo 2 RN⇥N be the geodesic graph distance matrix of the mean
shape ¯

X using the graph induced by the (shared) mesh topology. By D

o

euc 2 R|g
o

|⇥|g
o

|

and D

o

geo 2 R|g
o

|⇥|g
o

| we denote the Euclidean distance matrix and the geodesic distance
matrix of brain structure o, which are submatrices of Deuc and Dgeo, respectively. Let
¯

d

o denote the average vertex distance between neighbour vertices of brain structure
o. We define the normalised geodesic graph distance matrix of brain structure o by
˜

D

o

geo =

1

¯

d

o

D

o

geo and the matrix ˜

Dgeo 2 RN⇥N is composed by the individual blocks ˜

D

o

geo.

The normalised distance matrix between structure o and ˜

o is given by
˜

D

o,

˜

o

bs =

2

¯

d

o

+

¯

d

˜

o

[(Deuc)g
o

,g

õ

� 1|g
o

|1
T

|g
õ

|d
o,

˜

o

min

] 2 R|g
o

|⇥|g
õ

|
, (4.16)

where d

o,

˜

o

min

is the smallest element of (Deuc)g
o

,g

õ

. The (symmetric) distance matrix
˜

Dbs 2 RN⇥N between all structures is constructed by

(

˜

Dbs)g
o

,g

õ

=

8
<

:
˜

D

o,

˜

o

bs if (o,

˜

o) 2 Ebs

0|g
o

|⇥|g
õ

| else
. (4.17)

For the SPLOCS method we used the distance matrix D = ↵

D

˜

Dgeo + (1� ↵
D

)

˜

Dbs. For
our method, we construct the graph G = (V, E , !) (cf. Section 4.2.2) by having an edge
e = (i, j) in E for each !

e

= ↵

D

exp(�(

˜

Dgeo)
2

i,j

) + (1� ↵
D

) exp(�(

˜

Dbs)
2

ij

) that is larger
than the threshold ✓ = 0.1. In both cases we set ↵

D

= 0.5.
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Dealing with the Small Training Set

For PCA, Varimax and ICA the number of factors cannot exceed the rank of X, which
is at most K � 1 for K < 3N . For the used matrix factorisation framework, setting M

to a value larger than the expected rank of the solution but smaller than full rank has
empirically led to good results (Haeffele et al., 2014). However, since our expected rank
is M = 96 and the full rank is at most K � 1 = 16, this is not possible.

We compensate the insufficient amount of training data by assuming smoothness of the
deformations. Based on concepts introduced by Cootes and Taylor (1995); Wang and
Staib (1998, 2000), instead of the data matrix X, we factorise the kernelised covariance
matrix K. The standard PCA method finds the M most dominant eigenvectors of the
covariance matrix C by the (exact) factorisation C = � diag(�

1

, . . . ,�

K�1)�T . The
kernelised covariance K allows to incorporate additional elasticity into the resulting
deformation model. For example, K = I

3N

results in independent vertex movements
(Wang and Staib, 2000). A more interesting approach is to combine the (scaled) covariance
matrix with a smooth vertex deformation. We define K =

1

k vec(XX

T
)k1XX

T

+ Keuc,
with Keuc = I

3

⌦K

0
euc 2 R3N⇥3N . Using the bandwidth �, K

0
euc is given by

(K

0
euc)ij = exp(�(

(Deuc)ij

2�k vec(Deuc)k1
)

2

) . (4.18)

Setting � to the M most dominant eigenvectors of the symmetric and positive semi-
definite matrix K gives the solution of kPCA (Bishop, 2006). In terms of our proposed
matrix factorisation problem in eq. (4.4), we find a factorisation �

˜

A of K, instead of
factorising the data X. Since the regularisation term remains unchanged, the factor
matrix � 2 R3N⇥M is still sparse and smooth (due to k · k

�

). Moreover, due to the
nuclear norm term being contained in the product k · k

�

k · k
A

(cf. Section 4.2.4), the
resulting factorisation �

˜

A is steered towards being low-rank, in favour of the elaborations
in Section 4.2.4. However, the resulting matrix ˜

A 2 RM⇥3N now contains the weights for
approximating K by a linear combination of the columns of �, rather than approximating
the data matrix X by a linear combination of the columns of �. For the known �, the
weights that best approximate the data matrix X are found by solving the linear system
�A = X in the least-squares sense for A 2 RM⇥K .

Results

The magnitude of the deformation of the first three factors are shown in Fig. 4.3, where it
can be seen that only SPCA, SSPCA, SPLOCS and our method obtain sparse deformation
factors. The SPCA and SSPCA methods do not incorporate the spatial relation between
vertices and as such the deformations are not spatially localised (see red arrows in Fig. 4.3,
where more than a single region is active). The factors obtained by SPLOCS are non-
smooth and do not exhibit local support, in contrast to our method, where smooth
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Figure 4.3: The colour-coded magnitude (blue corresponds to zero, yellow to the maximum
deformation in each plot) for the three deformation factors with largest `

2

norm is shown
in the rows. The factors obtained by SPCA and SSPCA are sparse but not spatially
localised (see red arrows). Our method is the only one that obtains local support factors.

deformation factors with local support are obtained.

The quantitative results presented in Fig. 4.4 reveal that our method has a larger
reconstruction error. This can be explained by the fact that due to the sparsity and
smoothness of the deformation factors a very large number of basis vectors is required
in order to exactly span the subspace of the training data. Instead, our method finds
a simple (sparse and smooth) representation that explains the data approximately, in
favour of Occam’s razor. The average reconstruction error is around 1mm, which is
low considering that the brain structures span approximately 6cm from left to right.
Considering specificity, all methods are comparable. PCA, Varimax and ICA, which have
the lowest reconstruction errors, have the highest generalisation errors, which underlines
that these methods overfit the training data. The kPCA method is able to overcome this
issue due to the smoothness assumption. SPCA and SSPCA have good generalisation
scores but at the same time a very high maximum reconstruction error. Our method
and SPLOCS are the only ones that explicitly strive for local support factors. Since our
method outperforms SPLOCS with respect to generalisation and sparse reconstruction
error, we claim that our method outperforms the state of the art.
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Figure 4.4: Boxplots of the quantitative measures for the brain shapes dataset. In
each plot, the horizontal axis shows the individual methods and the vertical axis the
error scores described in Section 4.3.1. Compared to SPLOCS, which is the only other
method explicitly striving for local support deformation factors, our method has a smaller
generalisation error and sparse reconstruction error. The sparse but not spatially localised
factors obtained by SPCA and SSPCA (cf. Fig. 4.3) result in a large maximum sparse
reconstruction error (bottom right).
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4.3.3 Human Body Shapes

Our second experiment is based on 1531 female human body shapes (Yang et al., 2014),
where each shape comprises 12500 vertices that are in correspondence among the training
set. Due to the large number of training data and the high level of details in the meshes, we
directly factorise the data matrix X. The edge set E now contains the edges of the triangle
mesh topology and the weights for edge e = (i, j) 2 E are given by !

e

= exp(�(

(Deuc)ij
¯

d

)

2

),
where ¯

d denotes the average vertex distance between neighbour vertices. Edges with
weights lower than ✓ = 0.1 are ignored.

Results

Quantitatively the evaluated methods have comparable performance, with the exception
that ICA has worse overall performance (Fig. 4.5). The most noticeable difference between
the methods is the specificity error, where SPCA, SSPCA and our method perform best.
Fig. 4.6 reveals that SPCA, SSPCA, SPLOCS and our method obtain factors with local
support. Apparently, for large datasets, sparsity alone, as used in SPCA and SSPCA,
is sufficient to obtain local support factors. However, our method is the only one that
explicitly aims for smoothness of the factors, which leads to more realistic deformations,
as shown in Fig. 4.7.
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Figure 4.5: Boxplots of the quantitative measures in each column for the body shapes
dataset. Quantitatively all methods have comparable performance, apart from ICA which
performs worse.
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Figure 4.6: The deformation magnitudes reveal that SPCA, SSPCA, SPLOCS and our
method obtain local support factors (in the second factor of our method the connection is
at the back). The bottom row depicts randomly drawn shapes, where only the methods
with local support deformation factors result in plausible shapes.

Figure 4.7: Shapes ¯

x�1.5�

m

for SPCA (m = 1), SSPCA (m = 3), SPLOCS (m = 1)
and our (m = 1) method (cf. Fig. 4.6). Our method delivers the most realistic per-factor
deformations.
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4.4 Conclusion

We presented a novel approach for learning a linear deformation model from training
shapes, where the resulting factors exhibit local support. By embedding sparsity and
smoothness regularisers into a theoretically well-grounded matrix factorisation framework,
we model local support regions implicitly, and thus get rid of the initialisation of the size
and location of local support regions, which so far has been necessary in existing methods.
On the small brain shapes dataset that contains relatively simple shapes, our method
improves the state of the art with respect to generalisation and sparse reconstruction. For
the large body shapes dataset containing more complex shapes, quantitatively our method
is on par with existing methods, whilst it delivers more realistic per-factor deformations.
Since articulated motions violate our smoothness assumption, our method cannot handle
them. However, when smooth deformations are a reasonable assumption, our method
offers a higher flexibility and better interpretability compared to existing methods, whilst
at the same time delivering more realistic deformations.
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4.5 Supplementary Material

4.5.1 The matrix E in eq. (4.8)

The matrix E 2 R3|E|⇥3N is defined as E = I

3

⌦E

0, where E

0 2 R|E|⇥N is the weighted
incidence matrix of the graph G = (V, E , !) with elements

E

0
pq

=

8
>><

>>:

p
!

ep if q = i for e

p

= (i, j)

�p!
ep if q = j for e

p

= (i, j)

0 otherwise .

(4.19)

For p = 1, . . . , |E|, e

p

2 E denotes the p-th edge.
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4.5.2 Proximal Operators

Definition 1. The proximal operator (or proximal mapping) prox

s✓

(y) : Rn ! Rn of a
lower semicontinuous function ✓ : Rn ! R scaled by s > 0 is defined by

prox

s✓

(y) = arg min

x

{ 1

2s

kx� yk2
2

+ ✓(x)} . (4.20)

Proximal Operator of k · k
A

The proximal operator proxk·kA(y) of
k · k

A

= �

A

k · k
2

,

cf. eq. (4.5), can be computed by the so-called block soft thresholding (Parikh and Boyd,
2013), i.e.

prox

�Ak·k2(y) = (1� �
A

/kyk
2

)

+

y , (4.21)
where for a vector x 2 Rp, (x)

+

replaces each negative element in x with 0. As such, a
very efficient way for computing the proximal mapping of k · k

A

is available.

Proximal Operator of k · k
�

The proximal mapping of
k · k

�

= �

1

k · k
1

+ �

2

k · k
2

+ �1k · kH
1,1 + �GkE · k

2

,

cf. eq. (4.6), is given by

proxk·k�(z) = arg min

x

{1

2

kx� zk2
2

+ �

1

kxk
1

+ �

2

kxk
2

+ �1kxkH
1,1 + �GkExk

2

} .

(4.22)

Due to the non-separability caused by the linear mapping E inside the `
2

norm, this case
is more difficult compared to proxk·kA(y). However, by introducing

f(x) = �

1

kxk
1

+ �

2

kxk
2

+ �1kxkH
1,1 (4.23)

and
g(x) = �Gkxk2 , (4.24)

eq. (4.22) can be rewritten as

arg min

x

{1

2

kx� zk2
2

+ f(x) + g(Ex)} . (4.25)

In this form, (4.25) can now be solved by a dual forward-backward splitting procedure
(Combettes et al., 2010; Combettes and Pesquet, 2011) as shown in algorithm 2, which we
will explain in the rest of this section. The efficient computability hinges on the efficient
computation of the (individual) proximal mappings of f and g.

Since g is a (weighted) `
2

norm, its proximal mapping is given by block soft thresholding
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Input: z 2 R3N

Output: x = proxk·k�
(z)

Parameters: �, �1, �1, �2, �G
Initialise: v, ✏ 1e

�4
, �  1.999,� =

1+✏
2

// Normalise E (homogeneity of norm)

1 �G  �GkEkF ; E E

kEkF

2 repeat
3 x prox�1k·k1

(z�E

T
v) // `1 prox, (4.26)

4 x prox�1k·kH
1,1

(x) // `1/`1, (Bach et al., 2011; Duchi et al., 2008)

5 x prox�2k·k2
(x) // `2 prox, (4.21)

6 v v+��(Ex� prox�G/�k·k2
(

v+�Ex

� )) //

†

7 until convergence

Algorithm 2: Dual forward-backward splitting algorithm to compute the proximal
mapping of k · k

�

.

presented in eq. (4.21).

In f , the sum of weighted `
1

and `
1

/`1 norms is a term that appears in the sparse group
lasso and can be computed by applying the soft thresholding (Parikh and Boyd, 2013)

prox

sk·k1(y) = (y � s)

+

� (�y � s)

+

(4.26)
first, followed by group soft thresholding (Bach et al., 2011). As shown by Haeffele et al.
(2014, Thm. 3), the `

2

term can be additionally incorporated by composition, i.e. by
subsequently applying block soft thresholding as presented in (4.21).

Now, to solve the group soft thresholding for the proximal mapping of the `
1

/`1 norm, one
can use the fact that for any norm ! with dual norm !

⇤, prox

s!

(y) = y � proj

!

⇤s(y).
By proj

!

⇤s(y), we denote the projection of y onto the !⇤ norm ball with radius s (Bach
et al., 2011). The dual norm of the `

1

/`1 norm, eq. (4.7), is the `1/`

1

norm
kzkH1,1

= max

g2H
kz

g

k
1

. (4.27)

The orthogonal projection projk·kH1,1s onto the `1/`

1

ball is obtained by projecting
separately each subvector z

g

onto the `
1

ball in R|g| (Bach et al., 2011). This demands
an efficient projection onto the `

1

norm ball. Due to the special structure of our groups
in H, i.e. there are exactly N non-overlapping groups, each of which consisting of three
elements, a vectorised Matlab implementation of the method by Duchi et al. (2008) can
be employed.

Definition 2. (Convex Conjugate)
Let ✓?(y) = sup

x

(y

T

x� ✓(x)) be the convex conjugate of ✓.

The update of the dual variable v in algorithm 2 (see the line marked with †) is based on
the update

v v + �(prox

�(�Gk·k2)?(v + �Ex)� v) , (4.28)
presented by Combettes and Pesquet (2011); Combettes et al. (2010), where (·)? denotes
the convex conjugate.
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Let us introduce some tools first.

Lemma 2. (Extended Moreau Decomposition) (Parikh and Boyd, 2013)
It holds that

8y : y = prox

s✓

(y) + s prox

✓

?
/s

(y/s) . (4.29)

Lemma 3. (Conjugate of conjugate) (Boyd and Vandenberghe, 2009)
For closed convex ✓, it holds that ✓?? = ✓.

Corollary 1. For convex and closed ✓, it holds that
8y : y = prox

s✓

?(y) + s prox

✓/s

(y/s) . (4.30)

Proof. Define ✓0 = ✓

? and apply Lemma 2 and Lemma 3 with ✓0 in place of ✓.

Since for our choice of ✓ = �Gk · k
2

, ✓ is a closed convex function, by Corollary 1, one can
write

prox

�(�Gk·k2)?(y) = y � � prox

(�G/�)k·k2(y/�) . (4.31)
With that, the right-hand side of eq. (4.28) can be written as

v + �(v + �Ex� � prox

�G/�k·k2(
v + �Ex

�

)� v) =

v + ��(Ex� prox

�G/�k·k2(
v + �Ex

�

)) . (4.32)

4.5.3 Computational Complexity

In practice it holds that N � max(M, K). The gradient steps for the updates of �

and A have both time complexity O(N max(M

2

, K

2

)), the proximal step for A has
complexity O(MK), and the proximal step for � has complexity O(MN |E|nit), where
nit is the number of iterations for the dual forward-backward splitting procedure (we used
a maximum of nit = 20). Thus, the total time complexity for one iteration in algorithm 1
is O(N max(M

2

, K

2

)+MN |E|nit). Since in practice the number of vertices N and the
number of edges in the graph |E| are larger than M and K, the runtime complexity is
dominated by the proximal step for �, which in our experiments takes around 60% of
the time for the brain shapes dataset (N = 1792, M = 96, K = 17 , |E| = 19182), and
uses more than 90% of the time for the human body shapes dataset (N = 12500, M =

48, K = 1531, |E| = 99894).

4.5.4 Factor Splitting

The factor splitting procedure is presented in algorithm 3.
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Input: factor � 2 RN⇥3 where vec(�) = �m, graph G = (V, E)
Output: J factors �

0 2 R3N⇥J with local support
Initialise: E 0

= ;, �0
= [ ]

// build activation graph G0
1 foreach (i, j) = e 2 E do
2 if �i,: 6= 0 _ �j,: 6= 0 then // vertex i or j is active

3 E 0
= E 0 [ {e} // add edge

4 G0
= (V, E 0

)

// find connected components (Tarjan, 1972)

5 C = connectedComponents(G0) // C ⇢ 2

V

6 foreach c 2 C do // add new factor for c ⇢ V
7 �0

= 0N⇥3

8 �0
c,: = �c,:

9 �

0
= [�

0
, vec(�0

)]

Algorithm 3: Factor splitting procedure.

4.5.5 Convergence Plots

For 100 different initialisations (cf. Section 4.3), the convergence plots are shown for both
datasets in Fig. 4.8. It can be seen that the main convergence occurs after around 10

iterations. Moreover, for all 100 initialisations the objective value are near-congruent.
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Figure 4.8: Convergence plots for the brain shapes dataset (top) and the human body
shapes dataset (bottom). The iterations are shown on the horizontal axis and the (relative)
objective value in eq. (4.4) is shown on the vertical axis. Note that in each subfigure all
100 lines are near-congruent.

4.5.6 Parameter Random Sampling

The methods kPCA, SPCA, SSPCA, SPLOCS and our method require various parameters
to be set. In order to find a good parametrisation we conducted random sampling
over the parameter space, where we determined reasonable ranges for the parameters
experimentally.

In Table 4.1 the distributions and default values of the parameters for each method are
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given. U(a, b) is the uniform distribution with the open interval (a, b) as support, 10

U(·,·)

is a distribution of the random variable y = 10

x, where x ⇠ U(·, ·), and ¯

d

max

is the largest
distance between all pairs of vertices of the mean shape ¯

X.

Table 4.1: Assumed distributions of the parameters interpreted as random variables.
Method Parameter Distribution / Default Value

kPCA � ⇠ (U(1, 10))

�1

SPCA � ⇠ 1

3N

10

U(�4,�3) (see eq. (2), Jenatton et al. (2010))
SSPCA � ⇠ 1

N

10

U(�4,�3) (see eq. (2), Jenatton et al. (2010))
SPLOCS � ⇠ (3K)·10

U(�4,�3)
; d

min

⇠ c�w; d

max

⇠ c+w

(see eq. (6) by Neumann et al. (2013)), where c ⇠ U(0.1,

¯

d

max

� 0.1)

and w ⇠ U(0, min(|c� 0.1|, | ¯d
max

� 0.1� c|))
our � ⇠ (U(1, 10))

�1
; � = 64·3NK

M

; �G =

1p
3|E|

; �

1

=

1p
3N

; �

2

=

1p
3N

;

�1 = 2· 1p
N

; �

A

= 10

�4· 1p
K

For each of the n

r

random samples (we set n

r

= 500 for the brain shapes dataset, and
n

r

= 50 for the human body shapes, due to the large size of the dataset) we compute
the 8 scores described in Section 4.3.1 and store them in the score matrix S 2 Rnr⇥8.
After (linearly) mapping the elements of each n

r

-dimensional column vector in S onto the
interval [0, 1], the best parametrisation is determined by finding the index of the smallest
value of the vector S1

8

2 Rnr .

For the lambda parameters of the proposed method we identified default values that we
used for the evaluation of both datasets. Moreover, a normalisation of the parameters
is conducted for all methods. For kPCA, SPCA, SSPCA and our method the random
sampling was conducted only for a single parameter, whereas for the SPLOCS method
three parameters had to be set, two of them related to the size of the local support region.
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from Sparse 3D Point-Clouds

Abstract

The reconstruction of an object’s shape or surface from a set of 3D points is a fundamental
topic in material and life sciences, computationally handled in computer graphics. Such
points usually stem from optical or tactile 3D coordinate measuring equipment. Surface
reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction
from tomographic measurements or the alignment of intra-operative navigation and
preoperative planning data. In such scenarios, one usually has to deal with sparse data,
which significantly aggravates the problem. However, medical applications often provide
contextual information on the 3D point data that can be used to adopt prior information
on the shape that is to be reconstructed from the measurements. We propose the use
of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is
represented by a point distribution model (PDM), which is associated with a surface
mesh. Using the shape distribution that is modelled by the PDM, we reformulate the
problem of surface reconstruction from a probabilistic perspective based on a Gaussian
Mixture Model (GMM). In order to do so, the given measurements are interpreted as
samples of the GMM. By using mixture components with anisotropic covariances, that
are oriented according to the surface normals at the PDM points, a surface-based fitting is
accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner
yields the reconstruction of the surface from the given measurements. We compare our
method to the current standard approach (Iterative Closest Points) on several different
anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior
accuracy and robustness on sparse data.
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5.1 Introduction

The reconstruction of an object’s shape or surface from a set of 3D points is a common
topic in materials and life sciences, typically addressed in computer graphics (Berger
et al., 2014). The points are usually produced by optical or tactile 3D coordinate
measuring equipment, where non-contact measurements are often disturbed by artefacts
like reflections, noise, or outliers, making a proper geometric reconstruction even more
difficult.

Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruc-
tion from tomographic measurements via image segmentation. Conceptually speaking,
images provide implicit information on the location of anatomical structures via in-
tensity levels. This information is – in many approaches – converted into geometric
information via some kind of feature extraction method, either automatically (atlas- or
model-based approaches, learning methods, landmark detection, etc.) or interactively (e.g.
via semi-automated or manual labelling of image regions). In both cases, the uncertainty
due to noise or artefacts in the input image data is carried over to the geometric data
during the transformation process. In those approaches the segmentation problem is
effectively re-phrased as a surface reconstruction problem. Another example can be found
in computer-assisted surgery where a pre-operative therapy plan is transferred to the
operating room (OR) by means of a navigation system (or imaging – however, this can be
seen again as a segmentation problem). Here, optical or electromagnetic tracking devices
generate 3D positions of a patient’s surface intra-operatively. Matching a therapy plan to
those measurements amounts to a surface reconstruction and registration problem.

In contrast to mere 3D point-clouds that may represent virtually any object, medical
image data yield additional contextual information that can be used to adopt prior
information on the anatomical structures to be reconstructed. Heckel et al. (2011) make
use of the variational interpolation method (Turk and O’Brien, 1999), which essentially
uses a general prior on the surface smoothness. Going one step further, Pauly et al.
(2005) and Gal et al. (2007) have considered templates for 3D scan completion that are
matched to the measurements. However, these methods are limited since the available
measurements are assumed to be sufficiently dense (Berger et al., 2014). To tackle
this limitation, Bernard et al. (2015a) suggested the use of a Statistical Shape Model
(SSM) for surface reconstruction. Because the class of anatomical structures is known for
clinical routine tasks such as segmentation, registration, or intra-operative navigation, it
is possible to use their shapes as geometric priors.

With SSMs being rather strong and specific priors, a central question is how robustly and
accurately they can be used for surface reconstruction from a sparse set of surface point
measurements. Here we present a novel shape-aware surface reconstruction approach,
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which we evaluate accordingly. Using a Point Distribution Model (PDM) (Cootes and
Taylor, 1992), we incorporate a prior into our reconstruction framework that captures
the likely shape of an object to be extracted. In doing so, we reformulate the problem of
surface reconstruction from a probabilistic perspective, embedding the prior distribution
of the SSM parameters that explain plausible shapes into the objective function.

Our evaluation will consider several different anatomical structures and SSMs (brain,
femur, tibia, hip, liver), and sparse input point scenarios which may occur in different
applications, ranging from interactive segmentation to intra-operative registration for
navigation. Rather than restricting ourselves to particular applications by investigating
application-specific aspects in an exhaustive manner, our goal is to demonstrate the
general applicability of the proposed approach in order to emphasize that the method
may be useful in a wide range of settings.

The remainder of this article is organised as follows: Section 5.2 summarises previous
research relevant to our methodology, followed by a concise summary of our key con-
tributions in Section 5.3. In Sections 5.4 and 5.5, we familiarise the reader with the
theoretical background and define the scope of our work. In Section 5.6, we present several
variants of the shape-aware surface reconstruction method, including a time complexity
and convergence analysis. Section 5.7 contains experiments conducted using the proposed
methods. We draw our conclusions in Section 5.8.

5.2 Related Work

A plethora of methods for general surface reconstruction have been presented in the
literature so far (see e.g. the works by Raya and Udupa (1990); Bolle and Vemuri (1991);
Herman et al. (1992); Hoppe et al. (1992); Edelsbrunner and Mücke (1994); Bajaj et al.
(1995); Amenta et al. (1998); Bernardini et al. (1999); Treece et al. (2000); Kazhdan
et al. (2006); Schroers et al. (2014)). Many of them are summarized and described in the
State-of-the-Art Report (STAR) by Berger et al. (2014). In the remainder of the present
section, only those surface reconstruction methods will be discussed that go beyond pure
smoothness assumptions and make use of more explicit shape priors.

For the completion of 2D shapes, Guo et al. (2012, 2013) incorporate templates from a
shape database as (geometric) priors into a Bayesian framework. Similarly, a database of
3D shapes is used by Pauly et al. (2005) for completing 3D surface scans. For increased
flexibility compared to static priors, Gal et al. (2007) use a context-specific database
of local shape priors, where the input data is matched by (dynamically) combining
multiple local shape priors into a global prior. As pointed out by Berger et al. (2014),
both approaches described by Pauly et al. (2005) and Gal et al. (2007) are limited by
the assumption that the point-clouds are assumed to be sufficiently dense. A unified
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framework for repairing the geometry and texture of meshes has been presented by Park
et al. (2006). They employ a context-based geometry filling procedure for filling holes in
the surface, where available local patches of the mesh are used to fill its missing parts.
The task of obtaining high-resolution 3D meshes from low-quality input is tackled by
Shen et al. (2012). Their approach is to dynamically assemble object templates from
a database of object parts. As the name suggests, the 3D shape completion methods
discussed above have a common focus on completing (mostly small) missing parts of
meshes obtained from 3D scans. However, our interest lies primarily in methods that go
beyond patching or improving low-resolution input.

Blanz et al. (2004) have presented a closed-form solution for SSM-based 3D surface
reconstruction from a sparse set of points, which relies, however, on the assumption that
such a set of points is already in correspondence to the model. Albrecht et al. (2013)
introduced posterior shape models that have the objective to model the distribution of a
whole shape given only partial information. This method assumes that the corresponding
model points of the available partial data are known. In their experiments this issue
is either solved manually or using the Iterative Closest Point (ICP) method (Besl and
McKay, 1992). Similarly, for shape prediction from sparse observations, Blanc and
Székely (2012) use a variant of ICP that evaluates multiple initialisations. Anguelov
et al. (2005) introduced the shape completion and animation of people (SCAPE) method,
where one model for pose deformations and one model for shape variations are learned
separately. The main objective of this method is the completion of body shapes based
on a small number of known positions for some of the model points. Applied to bone
models, Rajamani et al. (2007) fit an SSM to a small number of anatomical landmarks
that correspond to some of the model points. Baka et al. (2010) fit an SSM to sparse
data points that are in correspondence with the model, applied to 2D heart datasets. By
producing confidence intervals as output, their method is able to incorporate uncertainties
in the input data. Instead of using a trained SSM, Lu et al. (2011) formulate a low-
rank matrix recovery problem for restoring missing parts of objects in archaeological
studies. Considering that a set of (incomplete) objects of the same class is available, and
that correspondences between common parts are known, their approach is based on the
assumption that all shapes are approximately linearly correlated. A shortcoming of the
methods discussed so far is that they all assume known correspondences. However, if the
objects do not exhibit a sufficient amount of distinct features, the identification of exact
correspondences is very difficult or even infeasible in practice.

In the literature, there are several methods published addressing this difficulty in (auto-
matically) detecting the correspondence between sparse data points and a model. Due
to its simplicity, the ICP algorithm, where correspondences and transformations are
estimated in an alternating manner, is a very popular method for the registration of
two shapes represented as point sets. Numerous variants of the originally-proposed
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method have since been developed, e.g. by Rusinkiewicz and Levoy (2001); Segal et al.
(2009); Maier-Hein et al. (2012); Bouaziz et al. (2013); Billings et al. (2015). The surface
reconstruction method by Stoll et al. (2006), for instance, deforms a given template to fit
point-cloud data. To do so, the user defines initial correspondences between the template
and a set of points, which are then refined iteratively in an ICP-like manner. Along
the lines of Stoll et al. (2006), for knee surgery, Fleute and Lavallée (1998); Fleute et al.
(1999) have presented a methodology to find pose and shape deformation parameters in
order to fit an SSM to very sparse data points. Their approach resembles ICP due to
the alternating closest point estimation and pose/deformation model parameter updates.
Similarly, Chan et al. (2003) reconstruct 3D models of bones in orthopaedic surgery
based on a sparse set of points obtained from ultrasound. Here shapes are repeatedly
instantiated using a PDM, where each shape instance is used as input to ICP in order to
(rigidly) fit the sparse points. This work has been extended by Barratt et al. (2008), who
use a PDM defined on a regular grid instead of the shape surface. Zheng et al. (2006) have
proposed a three-stage procedure for sparse shape reconstruction in computer-assisted
orthopaedic surgery. In the first stage, the pose of the sparse points is adapted using
ICP so that they best fit the mean shape. In the second stage, the shape deformation
parameters are estimated for the given correspondences, which are eventually refined
using a further deformation based on thin-plate splines.

Alternatively, in the work of Chang and Zwicker (2009), the registration of articulated
shapes in two range scans is based on a reduced deformation model defined on a regular
grid. In this approach, the deformations are modelled by a convex combination of rigid
transformations, where the weights are spatially varying. The registration is performed
by alternately updating the rigid transformations and their weights, where closest point
correspondences are recomputed after each step.

A promising approach of fitting a hand pose model to points that are sufficiently densely
sampled from depth images is presented by Taylor et al. (2014, 2016). The authors
formulate a continuous optimisation problem that solves simultaneously for surface-based
correspondences and model parameters using a nonlinear sum of squares objective.

Despite the immense amount of literature on applications and variations of Statistical
Shape Models (for an overview the interested reader is referred to the works by Heimann
and Meinzer (2009); Cootes and Taylor (1992); van Ginneken et al. (2002)), there have
been a limited number of investigations into the use of SSMs for interactive segmentation.
In the work of van Ginneken et al. (2003), a user directly manipulates points of the PDM,
which has the disadvantage that the user needs to estimate the (unknown) corresponding
position of the considered model point in the image. This is particularly difficult if the
object does not exhibit distinct features. In their slice-wise SSM-based segmentation of
abdominal aortic aneurysms, de Bruijne et al. (2004) initialise the current slice’s PDM
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fitting from the segmentation result of the previous slice, with the option of manually
correcting segmentations on a per-slice basis. Liu and Udupa (2009) present Oriented
Active Shape Models where the semi-automatic live-wire technique is coupled with an
Active Shape Model. Other authors present tools for the posterior correction of model-
based segmentations, such as Timinger et al. (2003); Schwarz et al. (2008); Tan and
Acharya (2014). van den Hengel et al. (2007) present an interactive procedure based on a
set of rules and 2D sketches for completing partial 3D models in structure from motion.

To summarise, existing approaches performing surface reconstruction using SSMs either
assume known correspondences or estimate discrete correspondences in an ICP-like
manner, where the surface reconstruction is achieved by fitting the SSM in a point-wise
manner to the given data points. One exception is the work by Taylor et al. (2016),
where, for sufficiently dense data, a surface-based hand pose model fitting is performed.

5.3 Main Contributions

Our main contribution is the introduction of a surface-based SSM fitting procedure in
order to reconstruct a surface from a sparse 3D point-cloud. We evaluate our approach on
a broad range of datasets (brain, femur, tibia, hip, liver) and show superior accuracy and
robustness compared to the standard approach of using ICP. The surface-based fitting
procedure is achieved by the following methodological contributions:

• By extending powerful existing point-set registration procedures (Myronenko et al.,
2007; Myronenko and Song, 2010; Horaud et al., 2011) such that anisotropic
covariances are used in combination with a PDM as transformation model, we
obtain a shape-aware surface reconstruction method that we show to be superior to
ICP with respect to robustness and accuracy.

• In earlier work, we used a spherical (or isotropic) GMM that accounted for a
point-based matching (Bernard et al., 2015a). We now complement this work by
presenting a formulation that is based on anisotropic GMMs that are oriented by
the surface normals, which in turn accounts for a surface-based fitting.

• A rigorous and self-contained derivation of the surface-based fitting method is
presented, leading to an Expected Conditional Maximisation (ECM) algorithm
(Meng and Rubin, 1993). ECM shares the same convergence properties as the
Expectation Maximisation (EM) method while being more general.

• We develop a fast approximation of the ECM-based fitting method. The approxima-
tion method has the same computational complexity as the spherical GMM-based
method and is empirically less prone to unwanted local optima compared to the
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ECM-based method.

5.4 Background

In this section we introduce our notation and we provide a definition of PDMs as they
are used throughout the subsequent sections.

5.4.1 Notation

1

p

and 0

p

denote the p-dimensional column vector containing ones and zeros, respectively.
I

p

denotes the p⇥ p identity matrix and diag(x) is the p⇥ p matrix with the elements
of the vector x 2 Rp on its diagonal. For a matrix A, by A

i,j

we denote the (scalar)
element in row i and column j. The colon-notation is used to denote all rows or columns,
e.g. A

:,j

denotes the column vector formed by the j-th column of A.

By p(x) we denote the probability density function (p.d.f.), or probability mass function
in the discrete case, where x can indicate both a random variable and a realisation of
it, depending on the context. N (x|µ,⌃) denotes the Gaussian p.d.f. with mean µ and
covariance matrix ⌃.

5.4.2 Point Distribution Models

Statistical Shape Models based on Point Distribution Models (Cootes and Taylor, 1992)
are an established technique to capture nonlinear shape deformations in R3 from training
data by using a linear model in the higher-dimensional shape space. Let {X

k

: 1  k  K}
be the set of K training shapes, where each shape is represented by N points (or vertices)
in 3 dimensions written as the matrix X

k

2 RN⇥3. In order to process multiple shapes
in a meaningful way, it is essential that the rows for all X

k

are corresponding, i.e. the
N vertices of all K shapes are in correspondence. The PDM is obtained by finding an
(affine) subspace close to the subspace spanned by the training shapes, which is commonly
performed by Principal Components Analysis (PCA).

We first define X = [x

1

, . . . ,x

K

] 2 R3N⇥K , with x

k

= vec(X

k

) 2 R3N . This allows to
compute the modes of shape variability as the eigenvectors of the sample covariance
matrix C =

1

K�1(X� ¯

x1

T

K

)(X� ¯

x1

T

K

)

T , where ¯

x =

1

K

P
K

k=1

x

k

denotes the mean of all
corresponding vertices for all shapes in 3N -dimensional shape space. Let � 2 R3N⇥M

be the matrix of the first M eigenvectors of C with largest eigenvalues. The PDM
y(↵) : RM ! R3N is a vector-valued function defined as

y(↵) =

¯

x + �↵ , (5.1)
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where ↵ 2 RM is the shape deformation parameter. The deformation of vertex i through
↵ is denoted by

y

i

(↵) = x̄

i

+ �

i

↵ , (5.2)
where the three rows of vertex i are selected appropriately from y(↵),

¯

x and � to obtain
y

i

(↵) 2 R3

, x̄

i

2 R3 and �

i

2 R3⇥M .

A common assumption is that ↵ follows a zero-mean Gaussian distribution, i.e. p(↵) =

N (↵|0
M

,⇤), where ⇤ = diag(�

1

, . . . ,�

M

) with �

m

being the m-th eigenvalue of C.
Therefore, thanks to imposing a distribution upon ↵, we obtain a distribution over shapes
(Albrecht et al., 2013).

Usually, in addition to the PDM accounting for shape deformations, a rigid transformation
is employed in order to account for the absolute pose of the shape y(↵) with respect to
some reference (e.g. the image coordinate system). In the following we assume that the
predominant part of the pose has already been normalised. Furthermore, minor pose
variations can be (approximately) captured implicitly in the PDM.

5.5 Problem Formulation

Given is a PDM that serves as prior for plausible shapes. Also, we assume that (for fixed
↵) the PDM points are vertices of an oriented triangular surface mesh M. Additionally,
we are given the set P = {p

j

: 1  j  P} of P surface points of the shape that is to be
reconstructed, where P is sparse in the sense that it only contains few measurements p

j

of the object’s surface. The objective is to find the deformation parameter ↵ such that
y(↵) “best agrees” with the points in P.

5.5.1 A Generative Model

Motivated by the widely used Coherent Point Drift (CPD) approach for general point-set
registration (Myronenko et al., 2007; Myronenko and Song, 2010), we now introduce a
probabilistic model based on imposing a distribution over each vertex i by using a GMM.

Given the set P and a PDM, we consider the following assumptions:

1. For i = 1, . . . , N , each PDM vertex position y

i

(↵) 2 R3 is considered as the mean
of a 3D Gaussian distribution with covariance ⌃

i

.

2. Each point p

j

2 P can be uniquely mapped to one specific vertex index i, its
generating component, from whose distribution it is drawn.
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As such, each point p

j

follows the distribution
p(p

j

|i, ↵,⌃

i

) = N (p

j

|y
i

(↵),⌃

i

) , (5.3)
where all p

j

for j = 1, . . . , P are independent. The corresponding graphical model is
depicted in Fig. 5.1. Note that all of the N Gaussian components are parameterised by ↵

and the covariances ˆ

⌃ := {⌃
i

}. We assume that each component with index i is chosen
with equal probability, i.e. p(i) =

1

N

.

pj

↵

i

j=1,. . .,P

ˆ

⌃

Figure 5.1: Graphical model of the generating process of P.

Our objective is to find the parameters ↵ and ˆ

⌃ that are most likely to have generated
the data points P. Since the generating component i

j

of p

j

is unknown, the indices of
the generating components are treated as latent variables. Therefore, to incorporate the
uncertainty about the generating component, we consider a GMM for the distribution of
p

j

, leading to

p(p

j

|↵,

ˆ

⌃) =

NX

i=1

p(i) p(p

j

|i, ↵,⌃

i

) (5.4)

=

1

N

NX

i=1

N (p

j

|y
i

(↵),⌃

i

) . (5.5)

Using Bayes’ theorem, one can derive the probability that the i-th mixture component
has generated the point p

j

, given also ↵ and ˆ

⌃, as

p(i|p
j

, ↵,

ˆ

⌃) =

p(p

j

|i, ↵,

ˆ

⌃)p(i)p(↵)p(

ˆ

⌃)

P
i

0 p(p
j

|i0, ↵,

ˆ

⌃)p(i

0
)p(↵)p(

ˆ

⌃)

(5.6)

=

p(p

j

|i, ↵,⌃

i

)p(i)P
i

0 p(p
j

|i0, ↵,⌃

i

0
)p(i

0
)

(5.7)

=

N (p

j

|y
i

(↵),⌃

i

)P
i

0 N (p

j

|y
i

0
(↵),⌃

i

0
)

. (5.8)
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5.5.2 Optimisation using EM

If the generating component i

j

of p

j

is unknown, according to eq. (5.5) all points p

j

2 P
are independent and identically distributed (i.i.d.). Thus, the log-likelihood as a function
of the model parameters ✓ := (↵,

ˆ

⌃) reads

L(✓) = ln p(P|✓) = ln

PY

j=1

NX

i=1

p(i)p(p

j

|i, ✓) (5.9)

=

PX

j=1

ln

NX

i=1

p(i)p(p

j

|i, ✓) .

The maximisation of L w.r.t. ✓ cannot be solved readily due to the sum appearing inside
the logarithm. Therefore, a common approach is to employ an iterative method for
the maximisation, where by ✓(n) we denote the estimate of ✓ at iteration n. Rewriting
eq. (5.9) as

L(✓, ✓(n)

) =

PX

j=1

ln

NX

i=1

p(i|p
j

, ✓(n)

)

p(i)p(p

j

|i, ✓)

p(i|p
j

, ✓(n)

)

(5.10)

allows applying Jensen’s inequality (Boyd and Vandenberghe, 2009), leading to

L(✓, ✓(n)

) �
PX

j=1

NX

i=1

p(i|p
j

, ✓(n)

) ln

p(i)p(p

j

|i, ✓)

p(i|p
j

, ✓(n)

)

=: Q(✓, ✓(n)

) . (5.11)

As such, the right-hand side of eq. (5.11), which we denote by Q(✓, ✓(n)

), is a lower
bound for L(✓, ✓(n)

). Maximising this lower bound is the key idea of the well-established
EM algorithm (Dempster et al., 1977). In the E-step, the probabilities p(i|p

j

, ✓(n)

)

are evaluated for fixed ✓(n) by using eq. (5.8). Then, in the M-step, Q in eq. (5.11) is
maximised w.r.t. ✓ for the fixed p(i|p

j

, ✓(n)

) computed before. An appealing characteristic
of EM is that in each iteration the log-likelihood L is guaranteed to not decrease, which
guarantees convergence.

5.6 Methods

We start by introducing an isotropic GMM, in analogy to the CPD algorithm (Myronenko
et al., 2007; Myronenko and Song, 2010). The difference to CPD is that we use a PDM as
transformation model. Subsequently, an anisotropic GMM approach is described, where
the covariance matrices are oriented according to the surface normals at the PDM points.
With that, we move from a purely point-based matching to a more surface-oriented fitting
approach. Eventually, we describe a fast approximation of the anisotropic GMM method.
By using an extension to this approximation, one can ensure that it is an instance of
the Generalised Expectation Maximisation (GEM) method and thus the convergence is
guaranteed.
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5.6.1 Surface Reconstruction using an Isotropic GMM

Assuming that all N Gaussian components share the same (spherical) covariance ⌃

i

=

�

2

I

3

, the generative model of eq. (5.3) reads
p(p

j

|i, ↵,�) = N (p

j

|y
i

(↵),�

2

I) . (5.12)
With that, the update in the E-step in eq. (5.8) becomes

p(i|p
j

, ↵,�) =

exp(� 1

2�

2 kpj � y

i

(↵)k2)
P

i

0 exp(� 1

2�

2 kpj � y

i

0
(↵)k2)

. (5.13)

The M-step comprises maximising

Q(↵,�, ↵(n)

,�

(n)

) = const +

PX

j=1

NX

i=1

p(i|p
j

, ↵(n)

,�

(n)

) ln[p(i)p(p

j

|i, ↵,�)] (5.14)

w.r.t. ↵ and �. Setting the gradient of Q w.r.t. ↵ to zero reveals that ↵ can be found by
solving the linear system A↵ = b, with

A =

X

i,j

p(i|p
j

, ↵(n)

,�

(n)

)�

T

i

�

i

and (5.15)

b =

X

i,j

p(i|p
j

, ↵(n)

,�

(n)

)�

T

i

(p

j

� x̄

i

) . (5.16)

Similarly, � is computed by

�

2

=

1

3P

X

i,j

p(i|p
j

, ↵(n)

,�

(n)

)kp
j

� y

i

(↵)k2 . (5.17)

Since the maximisation of Q w.r.t. ↵ does not depend on �, we first compute ↵ and
then compute � with the obtained ↵, which results in the global maximiser of Q in each
M-step. As such, this case is an instance of the ordinary EM algorithm (Dempster et al.,
1977). The pseudocode is presented in Algorithm 4.

Input: ¯

x,�,P
Output: ↵,�

2

Initialise: ↵ = 0, �2
=

1
3NP

P
i,j kpj � x̄ik2, P 2 RP⇥N , y =

¯

x+�↵

1 repeat
// E-step

2 foreach j = 1, . . . , P do
3 z = 0

4 foreach i = 1, . . . , N do
5 Pji = exp(� 1

2�2 kpj � yik2)
6 z = z +Pji

7 Pj,: =
1
zPj,:

// M-step

8 ↵ = (

P
i �

T
i �i

P
j Pji)

�1
(

P
i �

T
i

P
j Pji(pj � x̄i))

9 y =

¯

x+�↵

10 �

2
=

1
3P

P
i,j Pjikpj � yik2

11 until convergence

Algorithm 4: Pseudocode of the isotropic GMM fitting method.

67



Chapter 5. Shape-aware Surface Reconstruction from Sparse 3D
Point-Clouds

Maximum A Posteriori (MAP) Solution

We can cast the log-likelihood from eq. (5.9) into a Bayesian view, leading to
L

posterior
(✓) = ln[p(P|✓)p(✓)] , (5.18)

where additional knowledge in the form of the prior distribution p(✓) is incorporated. By
assuming p(↵) = N (↵|0

M

, ⇤) as described in Section 5.4.2, and choosing a uniform prior
for p(�), the prior distribution results in p(✓) / p(↵). When estimating the parameters
in the M-step, ↵ is now found by solving the system ˆ

A↵ = b where ˆ

A = A + �

2

⇤

�1.
The additional term �

2

⇤

�1 corresponds to a Tikhonov regulariser. However, now both
updates of ↵ and � depend on each other, leading to an instance of the ECM algorithm,
which has similar convergence properties as the ordinary EM. To obtain the MAP solution,
we have to change the expression in line 8 in Algorithm 4, which uses now the value of �
from the previous iteration to update ↵. We refer to the MAP solution of the surface
reconstruction using an isotropic GMM as ISO.

5.6.2 Surface Reconstruction using an Anisotropic GMM

The previous approaches use the same (spherical) covariance for each of the N Gaussian
components, which can be seen as a purely point-based fitting. However, in a vast amount
of medical applications of SSMs, the points of the PDM represent the vertices of a surface
mesh. This surface mesh is in general only an approximation of a continuous surface.
Whilst the sparse points P are assumed to lie on this continuous surface, in general they
do not coincide with the PDM vertices. Hence, matching the surface, depending on the
PDM deformation parameter ↵, is more appropriate. A didactic 2D example is presented
in Fig. 5.2.

Surface-aligned Covariance Matrices

We now formalise this surface-based fitting method using a GMM with anisotropic
covariance matrices that are oriented according to the surface normals. In the GMM,
the covariance matrix of each component i, i.e. each vertex of the PDM, is defined as
⌃

i

(�, ↵) := �

2

C

i

(↵). The scalar parameter �2 can be seen as a global scaling factor,
whereas the matrix C

i

(↵) models the anisotropy of the surface structure locally by using
a larger variance in the direction of vectors lying in the tangent plane of the PDM surface,
compared to the variance along the PDM normal direction (cf. Fig. 5.2 (c)).

Assuming that the surface mesh M of the underlying shape of the PDM is given in the
form of oriented triangles (cf. Section 5.5), with i

2

and i

3

we denote the index of the “left”
and “right” neighbour vertex of i, respectively. With that, the surface normal at vertex i
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is given by

n

i

(↵) =

(y

i2(↵)� y

i

(↵))⇥ (y

i3(↵)� y

i

(↵))

k(y
i2(↵)� y

i

(↵))⇥ (y

i3(↵)� y

i

(↵))k . (5.19)

The covariance matrix of vertex i is defined as
C

i

(↵) = (

1

⌘

� 1)n

i

(↵)n

T

i

(↵) + I

3

, (5.20)

where the parameter ⌘ � 1 weights the variances of vectors along the normal direction
compared to the tangential direction. For the covariance matrix ⌃

i

(�, ↵), the variance
along the normal n

i

(↵) is given by �

2

⌘

, and the variance in the direction of any vector in
the tangent plane is �2. As such, for ⌘ = 1 one obtains the isotropic GMM described in
Section 5.6.1, and choosing ⌘ > 1 achieves the desired behaviour of modelling a larger
variance in the tangent plane. A derivation for eq. (5.20) can for example be found in
the work of Hill et al. (1995). Note that for ⌘ > 0, the matrix C

i

(↵) is symmetric and
positive definite with the eigenvalues { 1

⌘

, 1, 1}. The inverse of C

i

, the precision matrix, is
given by

W

i

(↵) := C

�1
i

(↵) = (⌘ � 1)n

i

(↵)n

T

i

(↵) + I

3

. (5.21)

MAP Solution

The Q function for the MAP solution now reads

Q(↵,�, ↵(n)

,�

(n)

) = const� 1

2

↵T

⇤

�1↵� 3P

2

ln�

2 (5.22)

� 1

2�

2

X

i,j

p(i|p
j

, ↵(n)

,�

(n)

)(p

j

� y

i

(↵))

T

W

i

(↵)(p

j

� y

i

(↵)) .

(a) (b) (c)

Figure 5.2: Anisotropic covariance matrices to achieve a surface-based fitting. The sparse
points P are shown in red, the PDM of a rectangle is shown in green, where the green
points define the PDM vertices (N = 12, M = 2, P = 12). The orientation of the
covariance matrices is shown as white ellipse. The objective is to deform the rectangle
PDM such that it fits the red points by adjusting ↵. The initialisation is shown in
(a). Since the red points are sampled between the PDM points (cf. shape approximation
problem (Hill et al., 1995)), using spherical covariance matrices results in a fit that is
even worse than the initialisation (b), whereas using anisotropic covariances results in a
more accurate fit (c).
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As already described, the E-step is solved by evaluating eq. (5.8). Then, the M-step
comprises maximising Q in eq. (5.22) w.r.t. ↵ and �. Due to the dependence of W

i

on
↵, finding ↵ that maximises Q does not admit a closed-form solution anymore. Instead,
↵ is now obtained using the BFGS quasi-Newton method (Nocedal and Wright, 2006).
The idea is to start with the old value ↵(n), and then iteratively move along directions
that increase Q. Whilst the ordinary Newton method requires the gradient of Q as well
as its Hessian, the BFGS quasi-Newton method uses an approximation of the Hessian
that is cheap to compute. We now derive the gradient of Q w.r.t. ↵, i.e.

r↵Q =

h
@Q

@↵m

i

m

. (5.23)

For brevity, we write @· to denote the partial derivative @·
@↵m

w.r.t. ↵
m

, where the
dependence on m is implicit. First, we note that the cross-product u⇥ v of two vectors
u, v 2 R3 can be written as the matrix multiplication [u]⇥v, where the operator [·]⇥ :

R3 ! R3⇥3 creates a skew-symmetric matrix from its input vector by

[

0

B@
u

1

u

2

u

3

1

CA]⇥ :=

2

64
0 �u

3

u

2

u

3

0 �u

1

�u

2

u

1

0

3

75 . (5.24)

Introducing
b

i

(↵) := (y

i2(↵)� y

i

(↵))⇥ (y

i3(↵)� y

i

(↵)) , (5.25)

we can write n

i

(↵) =

bi(↵)

kbi(↵)k . Now, by representing the cross product in (5.25) as a
matrix product with the notation from (5.24), and by using the product rule, the partial
derivative of b

i

(↵) is given by
@b

i

(↵) = {@[y

i2(↵)� y

i

(↵)]⇥}(y

i3(↵)� y

i

(↵)) (5.26)

+ [y

i2(↵)� y

i

(↵)]⇥{@(y

i3(↵)� y

i

(↵))}
= [�

i2,m ��

i,m

]⇥(y

i3(↵)� y

i

(↵)) (5.27)

+ [y

i2(↵)� y

i

(↵)]⇥(�

i3,m ��

i,m

) .

Moreover,

@kb
i

(↵)k =

b

T

i

(↵){@b

i

(↵)}
kb

i

(↵)k . (5.28)

By using the quotient rule, the partial derivative of n

i

(↵) is given by

@n

i

(↵) =

kb
i

(↵)k{@b

i

(↵)}� b

i

(↵){@kb
i

(↵)k}
kb

i

(↵)k2 . (5.29)

Using @n

i

(↵), we can write
@W

i

(↵) = (⌘�1)({@n

i

(↵)}n

T

i

(↵) + n

i

(↵){@n

T

i

(↵)}) . (5.30)
Now, given the expression for @W

i

(↵), we can finally compute the partial derivative of
Q w.r.t. ↵

m

, which is

@Q(↵,�, ↵(n)

,�

(n)

) = �(⇤

�1
)

m,:

↵� 1

2�

2

X

i,j

p(i|p
j

, ↵(n)
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(n)

)· (5.31)
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� y

i

(↵))] .
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In order to obtain ↵, one option is to run the quasi-Newton procedure until convergence,
where one obtains an ↵ that (locally) maximises Q. With that, the updates of � on ↵

depend on each other and the procedure reverts to the ECM algorithm (Meng and Rubin,
1993), as already stated for the MAP solution in Section 5.6.1. An alternative is to run
only a single quasi-Newton step in each M-step. With that, the obtained ↵ is not a local
maximiser of Q; however, one has still the guarantee that Q is non-decreasing. As such,
this procedure reverts to the GEM algorithm (Dempster et al., 1977).

Finally, the �-update for fixed ↵ is given by

�

2

=

1

3P

X

i,j

p(i|p
j

, ↵(n)

,�

(n)

)(p

j

� y

i

(↵))

T

W

i

(↵)(p

j

� y

i

(↵)) . (5.32)

The pseudocode of the anisotropic GMM fitting procedure is presented in Algorithm 5.

Input: ¯

x,�,P, ⌘,M
Output: ↵,�

2

Initialise: ↵ = 0, �2
=

1
3NP

P
i,j kpj � x̄ik2, P 2 RP⇥N , y =

¯

x+�↵

1 foreach i = 1, . . . , N do
// compute Wi

2 ni =

(yi2
�yi)⇥(yi3

�yi)

k(yi2
�yi)⇥(yi3

�yi)k
3 Wi = (⌘ � 1)nin

T
i + I3

4 repeat
// E-step

5 foreach j = 1, . . . , P do
6 t = 0

7 foreach i = 1, . . . , N do
8 Pji = exp(� 1

2�2 (pj � yi)
T
Wi(pj � yi))

9 t = t+Pji

10 Pj,: =
1
t Pj,:

// M-step

11 ↵ = quasi-Newton(Q,rQ,↵)
12 y =

¯

x+�↵
13 foreach i = 1, . . . , N do

// compute Wi

14 ni =

(yi2
�yi)⇥(yi3

�yi)

k(yi2
�yi)⇥(yi3

�yi)k
15 Wi = (⌘ � 1)nin

T
i + I3

16 �

2
=

1
3P

P
i,j Pji(pj � yi)

T
Wi(pj � yi)

17 until convergence

Algorithm 5: Pseudocode of the anisotropic GMM fitting method. The notation “quasi-
Newton(Q,rQ, ↵)” denotes running the quasi-Newton method for maximising Q w.r.t.
↵, where rQ is its gradient and the third argument is the initial value of ↵. If the GEM
approach is used, the quasi-Newton method is run only for a single iteration. Note that
the surface mesh M is used for the normal computations.

In the next section we introduce an approximation of the ↵-update that is a much faster
alternative to the quasi-Newton method.
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Fast Approximate Anisotropic GMM

The main idea of our proposed approximation is to use the previous value ↵(n) instead of ↵

for computing the anisotropic covariance matrices C

i

(↵(n)

) during the ↵-update in the M-
step. Our key assumption is that the PDM is well-behaved in the sense that neighbouring
vertices vary smoothly during deformation; thus, locally the deformation of an individual
triangle is nearly a translation. Since surface normals are invariant to translations it
follows that kn

i

(↵)� n

i

(↵(n)

)k is small, which implies that kW
i

(↵)�W

i

(↵(n)

)k is also
small.

The resulting Q function using the proposed approximation is now given by
˜

Q(↵,�, ↵(n)

,�

(n)

) = const� 1

2

↵T

⇤

�1↵� 3P

2

ln�

2 (5.33)
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where the difference to Q in eq. (5.22) is that the constant W

i

(↵(n)

) is now used in place
of the function W

i

(↵). As such, the ↵-update in the M-step is a quadratic concave
problem that can be solved efficiently. The solution for ↵ is found by solving the linear
system ˜

A↵ =

˜

b, where ˜

A 2 RM⇥M is given by
˜

A = �
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and ˜

b 2 RM by
˜

b =

X
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The pseudocode for this approximate method is similar to Algorithm 5, except for line 11,
where the quasi-Newton method is replaced by solving a linear system for the update of
↵.

In order to guarantee that the approximate method converges, it is necessary that in the
M-step the value of the exact Q in eq. (5.22) is non-decreasing, i.e. the new ↵ =

˜

A

�1
˜

b

obtained using ˜

Q must fulfil
Q(

˜

A

�1
˜

b,�

(n)

, ↵(n)

,�

(n)

) � Q(↵(n)

,�

(n)

, ↵(n)

,�

(n)

) . (5.36)
For ⌘ = 1 the methods reverts to the isotropic method and condition (5.36) vacuously
holds. However, for ⌘ > 1 this is not true in general. One way to ensure that Q is
non-decreasing is to evaluate the condition in eq. (5.36) in each iteration, and in the case
of a violation revert to one of the quasi-Newton methods for the ↵-update. Specifically,
we consider a single quasi-Newton step for updating ↵. We denote the approximate
method without this convergence check as ANISO, and the method with the convergence
check and the quasi-Newton step as fallback as ANISOc.

In Fig. 5.3 we illustrate the behaviour of Q and compare it with ˜

Q for various choices of ⌘.
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↵1↵2

Q

⌘ = 1

↵1↵2

Q

⌘ = 4

↵1↵2

Q

⌘ = 16

↵1↵2

Q

⌘ = 64

Figure 5.3: Illustration of the behaviour of Q for various ⌘. The height and the colour
of the surface both show the value of Q, eq. (5.22), depending on ↵

1

and ↵
2

. The red
grid shows its concave approximation ˜

Q as presented in eq. (5.33). The red dot denotes
the value of Q at ↵(n); at this position Q =

˜

Q. The yellow dot indicates the maximum
of Q. For the trivial case of ⌘ = 1 it can be seen that Q =

˜

Q everywhere, whereas an
increasing ⌘ leads to a larger discrepancy between Q and ˜

Q as well as to an “increased
non-concavity” of Q.

Note that for visualisation purposes we have chosen M = 2, whereas in higher-dimensional
cases the effect of an increasing ⌘ on the non-concavity can be expected to be more severe.

5.6.3 Performance Analysis

Table 5.1 summarises the computational complexity of the individual subroutines involved
in the presented methods.

Table 5.1: Computational complexity table. The complexity of the ↵-update for one
iteration of the BFGS quasi-Newton methods is O(M

2

) plus the complexity of the
evaluation of Q and rQ (Nocedal and Wright, 2006) (we use n to denote the number of
iterations of the quasi-Newton method). The complexity of the ↵-update of the remaining
methods comprises the computation of A/

˜

A and b/

˜

b, as well as solving a linear system
of equations of size M ⇥M , for which we present the complexity O(M

3

) due to the
matrix inversion involved. Note that in ? we present the complexity for general ⇤, for
diagonal ⇤ the quadratic time complexity in M reduces to linear complexity.

anisotropic ISO
ECM GEM ANISOc ANISO

update y O(MN)

compute {Wi} O(N) -

E-step O(NP )

↵-update

evaluate Q, eq. (5.22) O(MN +M

2
+NP )

? -

evaluate rQ, eq. (5.26) O(M

2
+MNP )

? -

construct A/

˜

A - O(M

2
N +NP )

construct b/

˜

b - O(MN +NP )

total ↵-update O(n(M

2
+MNP )) O(M

2
+MNP ) O(M

3
+MNP +M

2
N) O(M

3
+M

2
N +NP )

�-update O(NP )

total (per outer iteration) O(n(M

2
+MNP )) O(M

2
+MNP ) O(M

3
+MNP +M

2
N) O(M

3
+M

2
N +NP )
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In Fig. 5.4 we plot the mean of the normalised value of Q as a function of the processing
time for all four anisotropic fitting methods. For each random run we sample a shape
instance by drawing ↵ (cf. Section 5.4.2), select P points randomly from the mesh surface
(cf. Section 5.7), and run the four methods. The obtained Q for the four methods are
then normalised such that in each run the smallest Q corresponds to 0 and the largest
Q corresponds to 1 (normalisation w.r.t to all four methods simultaneously). We have
found that the single-step quasi-Newton method (GEM) is faster compared to the full
quasi-Newton procedure (ECM). Moreover, compared to both quasi-Newton methods,
the approximate methods are much faster. Since the ANISOc method makes use of
elements both of the GEM and the ANISO method, the total time complexity of the
ANISOc method is the combined time complexity for GEM and ANISO (cf. Table 5.1).
Nevertheless, in our simulations the ANISOc method comes close to the ANISO method in
terms of convergence speed. This is because in the early stages of the iterative procedure
the ANISOc method in most cases satisfies condition (5.36) by using approximate M-
steps. A violation of condition (5.36) happens more frequently in the later stages of the
iterative procedure, where additionally the slower quasi-Newton M-step update has to be
performed.

Since the results shown in Fig. 5.4 suggest that the ANISO method is faster whilst being
on par with the other methods, for further experiments we chose to use the ANISO
method as representative for the anisotropic fitting methods, which allowed us to evaluate
more extensive configurations due to its computational efficiency.
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Figure 5.4: Proportion of best value of Q versus processing time averaged over 100

random runs for the four anisotropic methods for two choices of ⌘ (in the columns). In
each row a different dataset has been used to produced the results, from top to bottom
we show results produced by the brain shapes dataset (N = 1792, M = 16, P = 30,
cf. Section 5.7.2), the femur dataset (N = 3800, M = 59, P = 30, cf. Section 5.7.3),
the tibia dataset (N = 4071, M = 59, P = 30, cf. Section 5.7.3), and the hip dataset
(N = 5603, M = 47, P = 30, cf. Section 5.7.5).
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5.7 Experiments

In this section we evaluate the proposed fitting procedures on five datasets, which are
summarised in Table 5.2. For the generation of the set of sparse points P, we sample
sparse points randomly on the shape surfaces. For sampling the random points on
the shape surface, we first select a triangle from the surface mesh with a probability
proportional to its area. Then, we uniformly sample a point lying within the triangle
according to the procedure presented by Osada et al. (2002). Moreover, we evaluate noisy
versions of these points by adding Gaussian noise with standard deviation �̃ to each point
individually.

In addition to the probabilistic fitting methods presented in this paper, we also use a
regularised ICP method as baseline for fitting the PDM to the sparse points, which is
outlined in Algorithm 6. Moreover, in our evaluation we compare the ground truth data
to the mean shape, i.e. in this setting we do not run any fitting procedure at all, which
amounts to setting ↵ = 0.

The anisotropic method requires to set the parameter ⌘ accounting for the amount of
anisotropy. We evaluate various choices of ⌘ = 2, 4, 8, 16 and report results for the value
of ⌘ that leads to the highest average Dice Similarity Coefficient (cf. Section 5.7.1).

We consider leave-all-in (LAI) and leave-one-out (LOO) experiments. The LAI experi-
ments measure the performance of our method given a perfect model, whereas the LOO
experiments evaluate the generalisation ability to unseen data.

5.7.1 Evaluation Metrics

Let X be the set of points representing the vertices of a high-resolution mesh of the
ground truth shape, and let Y be the set of the points of the PDM after fitting. We use

N
x

= arg min

y2Y
kx� yk

2

and (5.37)

N
y

= arg min

x2X
kx� yk

2

(5.38)

to denote the nearest neighbour of x in Y and of y in X , respectively.

Table 5.2: Size of datasets.
N N (ds) K M (LAI) M (LOO)

brain shapes 1792 371 17 16 96 (kPCA)
femur 3800 759 60 59 58

tibia 4701 814 60 59 58

hip 5603 1120 48 47 46

liver 4542 908 112 111 110
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Input: ¯

x,�,P,⇤

Output: ↵
Initialise: ↵ = 0, p = vec([p1, . . . , pP ]) 2 R3P

1 repeat
2 y =

¯

x+�↵
// Find nearest neighbours

3 N = findNearestNeighbourIndices(y, P)
// Solve linear system for ↵

4 A = �N ,:

5 b = p� ¯

xN
6 ↵ = (A

T
A+ ⇤

�1
)

�1
A

T
b // Tikhonov regularisation

7 until convergence

Algorithm 6: Pseudocode of the ICP baseline method. The notation �N ,:

and ¯

xN
means selecting the appropriate rows from � and ¯

x according to the indices of the nearest
neighbours N .

The (symmetric) Hausdorff distance S

max

between X and Y is given by
S

max

(X , Y) = max{max

x2X
kx�N

x

k
2

, max

y2Y
ky �N

y

k
2

} . (5.39)

The (symmetric) average distance Savg is given by

Savg(X , Y) =

1

kXk+kYk(
X

x2X
kx�N

x

k
2

+

X

y2Y
ky�N

y

k
2

) . (5.40)

In addition, we use the Dice Similarity Coefficient (DSC) as volumetric metric, which is
defined as

DSC(V
x

, V
y

) =

2|V
x

\ V
y

|
|V

x

| + |V
y

| (5.41)

for the volumetric segmentations V
x

and V
y

.

5.7.2 Brain Shapes

For deep brain stimulation (DBS) surgery the availability of patient-specific 3D models
of relevant brain structures would be highly beneficial both for surgery planning and
for intra-operative navigation (Bernard et al., 2012). However, a manual segmenta-
tion is too costly for the daily clinical routine use and the clinical acceptance of fully
computer-generated 3D models for such highly individualised surgeries stems a prob-
lem for automated segmentation methods. One interesting application of our presented
shape-aware surface reconstruction method is interactive segmentation. This could be
implemented by alternating between the user annotating brain structure boundaries and
running our fitting method in order to reconstruct a surface from the user-input.

We consider a multi-object PDM that captures the inter-relation between the brain
structures Substantia Nigra & Subthalamic Nucleus (SN+STN, as compound object),
Nucleus Ruber (NR), Thalamus (Th) and Putamen & Globus Pallidus (Put+GP, as
compound object), where all structures are considered bilaterally. The mean of the PDM
is shown in Fig. 5.5 (a). The motivation for using a multi-object PDM is to be able to
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(a) (b) (c)

Figure 5.5: Brain shapes dataset. (a) Mean shape with N = 1792 vertices. (b) Downsam-
pled mean shape with 371 vertices. In (a,b) P = 36 sparse points have been randomly
drawn from the original surface according to the procedure described in Section 5.7. (c)
A shape instance from the training set with partial contours.

reconstruct surfaces of objects, even if for some of the structures no annotation has been
provided, e.g. because the image contrast is too low for identifying the boundaries of
these particular structures with high confidence.

In Fig. 5.5 (a), random sparse points that are generated according to the procedure
described in Section 5.7 are shown. In addition, we use a set P that comprises (partial)
contours, as shown in Fig. 5.5 (c). These partial contours can for example be drawn by a
user in an interactive segmentation setting. For the partial contours we considered two
settings, c

1

and c

2

. For c

1

, we have two contours in four of the eight brain structures,
as shown in Fig. 5.5 (c). For c

2

, we have a single contour for each of the eight brain
structures. Note that when considering partial contours, for each p

j

2 P we assume that
it is known to which of the eight brain structures it belongs, which is used to constrain
the E-step in our fitting methods (and the nearest-neighbour routine for the ICP method).
In order to evaluate the robustness of our presented method with respect to noisy input,
we also created noisy contours. For that, each partial contour is translated by a random
vector that has a zero-mean Gaussian distribution with covariance �̃I

2

.

Pose Normalisation

The PDM is learned from multi-label segmentations that are all represented in a common
coordinate system, the ICBM 152 (Fonov et al., 2009) template space (MNI) in our case
(more details on the manual annotation and the establishment of correspondences can be
found in our previous work (Bernard et al., 2014, 2016c)). The alignment of the patient
images into the MNI template space is conducted using the rigid image registration
method FLIRT (Jenkinson and Smith, 2001). Hence, thanks to this alignment, the
orientation and position are already approximately normalised. Nevertheless, minor pose
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variations may still be present between the individual images. Whilst the translational
part of these pose differences can be captured precisely by the PDM, the rotational part
can only be captured approximately. However, due to the normalisation to the MNI
space it can be expected that the rotational part is small and as such the first-order
approximation that is captured by the PDM is of sufficient accuracy. Consequently, for a
new patient image that is to be segmented, a normalisation to the MNI template space is
sufficient.

Results

For each of the K = 17 training shapes we sample 20 instances of sparse points P,
leading to 17 · 20 = 340 runs per method. As such, the total number of computed surface
reconstructions is 2·6·6·340 = 24, 480 (LOO and LAI, 6 method/noise settings, 6 settings
of P, where 4 settings of random points on the shape surface and 2 settings of partial
contours were considered). For the LAI simulations we used a PCA-based PDM with
M = 16 modes. For the LOO experiments we used kernel PCA (kPCA) with M = 96

modes to learn the PDM, which is able to improve the generalisation ability of the PDM
from our small training dataset comprising K = 17 shapes (Bernard et al., 2016a). First,
we compute all metrics for each of the eight brain structure objects individually, which
are then summarised by computing the average for DSC and Savg, and by computing the
maximum for S

max

.

The results of the ICP method, the ANISO method, and both the ISO and ANISO
method with a downsampled PDM are shown in Figs. 5.6 and 5.7. In each column a
different metric is shown. In each figure, the first row shows the mean and the second row
shows the standard deviation of the respective score. Each subplot shows the value of
the metric depending on the considered setting of P , as described above. The solid lines
indicate the noise-free case, the dotted lines the noisy case with �̃ = 2, and the dashed
line the mean shape baseline (cf. Section 5.7).

As anticipated, the plots confirm that with respect to fitting accuracy an increasing
number of measurements P improves the results. Moreover, it can be seen that the
ANISO method (green) outperforms the ICP method (blue) in all cases, where the
standard deviation of ICP is much larger. Moreover, the ANISO-ds method (black)
outperforms the ISO-ds method (red), which confirms our elaborations in Fig. 5.2 on
real data. In all cases, running any fitting method is superior compared to simply using
the mean shape. Due to the simplicity of the ICP method, its runtime is much lower
compared to the proposed fitting methods. However, by using the ANISO method with a
downsampled PDM, the runtime can be reduced compared to the original ANISO method,
whilst still having superior fitting accuracy compared to ICP.
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Figure 5.6: Summary of brain shape LAI results.
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Figure 5.7: Summary of brain shape LOO results.
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5.7.3 Knee Bones: Femur and Tibia

Knee malalignment is assumed to be associated with knee osteoarthritis (OA), where
both Varus and Valgus malalignment are a potential risk factor. In late stages of knee OA
a total knee replacement is often the ultima ratio. In total knee prosthesis, malalignment
has a direct impact on the load situation. Knowledge of the accurate bone shape aids
implant design as well as patient-specific planning and could also predict OA progression.

However, the manual segmentation of knee bones is tedious, time consuming and highly
subjective. Thus, in recent years many semi-automatic and fully automated segmentation
methods have been proposed for CT and MRI data of the human knee (Heimann and
Meinzer, 2009; Aprovitola and Gallo, 2016). In this section we illustrate the potential
benefit of our method for knee bone segmentation for both, a femur and a tibia SSM.
Given points that were defined in an image on the respective bone’s surface, the proposed
shape-aware surface reconstruction method can be used for the task of SSM-based knee
bone segmentation. These points could be manually defined or automatically detected
by algorithms like SIFT (Lowe, 1999), SURF (Bay et al., 2008) or machine learning
techniques in general (Yang et al., 2015; Xue et al., 2015).

Pose Normalisation

For the femur and tibia dataset we assumed that the pose has already been normalised and
we directly worked in the space of the SSM. In practice, this can for example be tackled in
a similar manner as by Seim et al. (2010), who proposed an automated SSM-based knee
bone segmentation, where initially the model is positioned inside the three dimensional
CT or MR image via Generalised Hough Transform (Ballard, 1981).

Results

We present experiments for a PDM of the femur with N = 3800 points (cf. Fig. 5.8 (a))
and a PDM of the tibia with N = 4701 points (cf. Fig. 5.8 (c)). Additionally, we evaluated
the ANISO method using the downsampled PDMs, denoted ANISO-ds, where only a
subset of the original PDM vertices are used (cf. Fig. 5.8 (b) and Fig. 5.8 (d)). Random
sparse points are generated according to the procedure described in Section 5.7, where for
each training shape 10 instances of sparse points P are sampled. In Fig. 5.8 such random
instances of P are shown for the mean shapes of both bones.

LAI and LOO experiments have been carried out for the femur and tibia model evaluating
the same metrics as before. For both models our PCA-based PDM has K = 60 training
shapes with M = 59 modes for the LAI experiments, and has K = 59 training shapes
with M = 58 modes for the LOO experiments.
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(a) (b) (c) (d)

Figure 5.8: Femur and tibia datasets. (a) Femur mean shape with N = 3800 vertices.
(b) Downsampled mean shape with 759 vertices. (c) Tibia mean shape with N = 4701

vertices. (d) Downsampled mean shape with 814 vertices. For both bone models P = 36

sparse points have been randomly drawn from the original surface according to the
procedure described in Section 5.7.

A summary of the results comparing the ICP method, the ANISO method and the
ANISO-ds method are shown in Figs. 5.9 and 5.10 for the femur and in Figs. 5.11 and 5.12
for the tibia. In each of the first three columns a different metric is shown. The last
column shows the runtime. The upper row depicts the mean and the lower row the
standard deviation. Each subplot shows the value of the metric as a function of the
number of sparse points P .
It can be seen that for both bone PDMs if only P = 9 points are available, the ICP
method’s results appear slightly better than the ANISO method’s results. Once more
points become available, both anisotropic methods outperform the ICP method. Surpris-
ingly, the ANISO-ds method, which uses a downsampled PDM, outperforms the ANISO
method for P = 9. We assume that this is because the original PDMs with N = 3800

vertices for the femur and N = 4701 vertices for the tibia contain fine local details that
lead to an overfitting when reconstructing the surface from only P = 9 points. In contrast,
the downsampled PDM contains less details that may impede the surface reconstruction.
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Figure 5.9: Summary of femur LAI results.
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Figure 5.10: Summary of femur LOO results.
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Figure 5.11: Summary of tibia LAI results.
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Figure 5.12: Summary of tibia LOO results.
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5.7.4 Liver

Automated liver segmentation is beneficial for many applications, such as surgery planning
(e.g. prior to hepatic resection (Gao et al., 1996)), lesion detection, automated detection
of liver cancer, and the development of radiation treatment programs (Campadelli et al.,
2009). However, for up to 1000 axial CT slices this is tedious work (Zhou et al., 2006)
that can require more than one hour (Campadelli et al., 2009). Similar to the previous
section on knee bone segmentation, our proposed method could improve the accuracy of
the automated liver volume segmentation. Again, we assume, that the pose has already
been normalised.

Results

We carried out LAI and LOO experiments using a liver PDM with N = 4542 points
(cf. Fig. 5.13 (a)). The PDM has K = 112 training shapes with M = 111 modes for
the LAI experiments, and has K = 111 training shapes with M = 110 modes for the
LOO experiments. Figure 5.13 (b) shows the downsampled PDM used for the ANISO-ds
experiments and again random instances of P are shown for the original and downsampled
mean shape. For each training shape 10 instances of sparse points P are sampled.

A summary of the results comparing the ICP method, the ANISO method and the
ANISO-ds method are shown in Figs. 5.14 and 5.15. In each of the first three columns a
different metric is shown. The last column shows the runtime. The upper row depicts the
mean and the lower row the standard deviation. Each subplot shows the value of the
metric as a function of the number of sparse points P .

For both settings, LAI and LOO, without any Gaussian disturbance (�̃ = 0) the anisotropic
method is outperfoming the ICP method with respect to the mean DSC regardless of how
many random points have been sampled. Especially for 36 and 90 points the accuracy of
the anisotropic method becomes increasingly superior compared to ICP. Considering the
random points disturbed by Gaussian noise with �̃ = 2cm, the ICP method yields better
results for 9 points and comparable results for 18 points. With this disturbance, for the
LAI and the LOO experiments at least 36 points seem to be necessary for the anisotropic
method to achieve better results than the ICP method with respect to the DSC.
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(a)

(b)

Figure 5.13: Liver dataset. (a) Mean shape with N = 4542 vertices. (b) Downsampled
mean shape with 908 vertices. P = 36 sparse points have been randomly drawn from the
original surface according to the procedure described in Section 5.7.
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Figure 5.14: Summary of liver LAI results.
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Figure 5.15: Summary of liver LOO results.
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5.7.5 Hip

For total hip replacement computer-assisted pre-operative planning systems are already
used to improve the positioning of the acetabular cup to avoid dislocation and to minimize
wear. For these systems a prerequisite is often the 3D segmentation of the pelvis.
Differentiation between the acetabulum and the (arthritic) femoral head is a challenging
tasks. Our approach might be used to improve segmentation accuracy not only for the
knee bone and liver segmentation, but also for the pelvis segmentation.

Results

We carried out LAI and LOO experiments using a hip PDM with N = 5603 points
(cf. Fig. 5.16 (a)). The PDM has K = 48 training shapes with M = 47 modes for
the LAI experiments, and has K = 47 training shapes with M = 46 modes for the
LOO experiments. Figure 5.16 (b) shows the downsampled PDM used for the ANISO-ds
experiments and again random instances of P are shown for the original and downsampled
mean shape. For each training shape 10 instances of sparse points P are sampled.

A summary of the results comparing the ICP method, the ANISO method and the
ANISO-ds method are shown in Figs. 5.17 and 5.18. For both settings, LAI and LOO,
without any Gaussian disturbance (�̃ = 0) the anisotropic method outperforms the ICP
method with respect to the mean Dice Similarity Coefficient for more than 9 points.
Again, the accuracy is increasing with more sampled points and the difference between
the anisotropic method and ICP becomes more clearly visible for 36 and 90 points.
Considering the random points disturbed by a Gaussian of 2 mm (�̃ = 2), the ICP
method yields again better results for 9 points and comparable results for 18 points for
both experimental settings.
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(a)

(b)

Figure 5.16: Hip dataset. (a) Mean shape with N = 5603 vertices. (b) Downsampled
mean shape with 1120 vertices. P = 36 sparse points have been randomly drawn from
the original surface according to the procedure described in Section 5.7.
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Figure 5.17: Summary of hip LAI results.
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Figure 5.18: Summary of hip LOO results.
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5.8 Conclusion and Outlook

In this paper we have presented a methodology for a shape-aware surface reconstruction
from sparse surface points. The proposed methodology is superior compared to the
standard approach of ICP with respect to accuracy and robustness on a wide range
of datasets. In this method, the likely shape of the object that is to be reconstructed
is captured by a PDM associated with a surface mesh. By interpreting the available
sparse surface points as samples of a GMM, the surface reconstruction task is cast as
maximisation of the posterior likelihood, which we tackle by variants of the EM algorithm.
In order to achieve a surface-based fitting, we use a GMM with anisotropic covariance
matrices, which are oriented by the surface normals at the PDM points. However, this
results in a non-concave optimisation problem that is to be solved in each M-step. We
deal with this by maximising a concave approximation that considers the surface normals
of the PDM computed from the previous value of the shape deformation parameter. We
have presented an intuitive explanation why this approximation makes sense with the
assumption that neighbour PDM vertices vary smoothly and the fact that surface normals
are invariant to translations. We empirically demonstrated that finding a global maximum
of this approximation leads to better results compared to finding a local optimum during
the exact (non-concave) M-step. Moreover, our proposed concave approximation results
in an algorithm that has the same time complexity as the isotropic fitting procedure.

The proposed surface reconstruction method deals exclusively with shape deformations.
Thus, the normalisation of the pose must be solved a-priori in an application-dependent
manner. In the example of the multi-object brain shape reconstruction we dealt with this
issue using rigid image registration in order to align the data into a common coordinate
system. Dealing with the limitation of not explicitly considering a rigid transformation
in order to model the pose of the object is the next step in order to achieve an even
broader applicability. Whilst in principal one can formulate an analogous problem that
considers the pose, the resulting problem is much more difficult to solve. This is because
a simultaneous maximisation must be performed with respect to the rigid transformation
and the shape deformation parameter. This is usually done iteratively, as in Active Shape
Model search (Cootes and Taylor, 1992). With that, particular challenges to be dealt
with are that the resulting surface reconstruction procedure would be much more sensitive
to unwanted local optima as well as much slower.

In our evaluation we considered a wide range of datasets in order to demonstrate its
general applicability, where dealing with certain application-specific aspects is out of
scope of this work. One relevant question to be answered when applying the proposed
methodology to medical imaging problems is how to obtain the 3D surface points. The
analysis of which points are most useful for the reconstruction is one interesting direction
for future work.
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6 A Solution for Multi-Alignment by

Transformation Synchronisation

Abstract

The alignment of a set of objects by means of transformations plays an important role
in computer vision. Whilst the case for only two objects can be solved globally, when
multiple objects are considered usually iterative methods are used. In practice the iterative
methods perform well if the relative transformations between any pair of objects are free
of noise. However, if only noisy relative transformations are available (e.g. due to missing
data or wrong correspondences) the iterative methods may fail. Based on the observation
that the underlying noise-free transformations can be retrieved from the null space of
a matrix that can directly be obtained from pairwise alignments, this paper presents
a novel method for the synchronisation of pairwise transformations such that they are
transitively consistent. Simulations demonstrate that for noisy transformations, a large
proportion of missing data and even for wrong correspondence assignments the method
delivers encouraging results.

6.1 Introduction

The alignment of a set of objects by means of transformations plays an important role in
the field of computer vision and recognition. For instance, for the creation of Statistical
Shape Models (SSMs) (Cootes and Taylor, 1992) training shapes are initially aligned for
removing pose differences in order to only model shape variability.

The most common way of shape representation is by encoding each shape as a point-cloud.
In order to be able to process a set of shapes it is necessary that correspondences between
all shapes are established. Whilst there is a vast amount of research in the field of shape
correspondences (for an overview see the survey papers by (Heimann and Meinzer, 2009;
van Kaick et al., 2011)), in this paper we focus on the alignment of shapes and we assume
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that correspondences have already been established.

The alignment of two objects by removing location, scale and rotation is known as
Absolute Orientation Problem (AOP) (Horn et al., 1988) or Procrustes Analysis (Gower
and Dijksterhuis, 2004). For the AOP there are various closed-form solutions, among them
methods based on Singular Value Decomposition (SVD) (Arun et al., 1987; Schönemann,
1966); based on eigenvalue decomposition (Horn et al., 1988); based on unit quaternions
(Horn, 1987) or based on dual quaternions (Walker et al., 1991). A comparison of these
methods (Eggert et al., 1997) has revealed that the accuracy and the robustness of all
methods are comparable.

The alignment of more than two objects is known as Generalised Procrustes Analysis
(GPA). Whilst a computationally expensive global solution for GPA in two and three
dimensions has been presented by Pizarro and Bartoli (2011), the most common way for
solving the GPA is to align the objects with a reference object. However, fixing any of
the objects as reference induces a bias. An unbiased alternative is to align all objects
with the adaptive mean object as reference. An iterative algorithm then alternatingly
updates the reference object and estimates the transformations aligning the objects. The
iterative nature of these methods constitutes a problem if the relative transformation
between any pair of objects is noisy. This is for example the case if data is missing,
correspondences are wrong or if the transformations are observed by independent sensors
(e.g. non-communicating robots observe each other). Noisy relative transformations can
be characterised by transitive inconsistency, i.e. transforming A to B and B to C might
lead to a different result than transforming A directly to C.

This paper presents a novel method for synchronising the set of all pairwise transformations
in such a way that they globally exhibit transitive consistency. Experiments demonstrate
the effectiveness of this method in denoising noisy pairwise transformations. Furthermore,
using this novel method the GPA is solved in an unbiased manner in closed-form, i.e. non-
iterative. Transformation synchronisation is applied to solve the GPA with missing data
as well as with wrong correspondence assignments and results in superior performance
compared to existing methods.

Our main contribution is a generalisation of the techniques presented by Chaudhury et al.
(2013); Hadani and Singer (2011a,b); Singer and Shkolnisky (2011), who have introduced
a method for minimising global self-consistency errors between pairwise orthogonal
transformations based on eigenvalue decomposition and semidefinite programming. With
permutation transformations being a subset of orthogonal transformations, Pachauri et al.
(2013) demonstrate that the method by Singer et al. is also able to effectively synchronise
permutation transformations for globally consistent matchings.

In our case, rather than considering the special case of orthogonal matrices, we present a
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synchronisation method for invertible linear transformations. Furthermore, it is demon-
strated how this method can be applied for the synchronisation of similarity, euclidean
and rigid transformations, which are of special interest for the groupwise alignment of
shapes.

Whilst the proposed synchronisation method is applicable in many other fields where
noisy pairwise transformations are to be denoised (e.g. groupwise image registration or
multi-view registration), in this paper GPA is used as illustrating example.

6.2 Methods

For the presentation of our novel transformation synchronisation method the notation
and some foundations are introduced first. Subsequently, a formulation for the case
of perfect information is given. Motivated by these elaborations, a straightforward
extension to handle noisy pairwise transformations is presented. Finally, various types of
transformations are discussed.

6.2.1 Notation and Foundations

X

i

,X

j

2 Rn⇥d are matrices representing point-clouds with n points in d dimensions where
in the following all X

i

are simply referred to as point-clouds. Let I be the identity matrix
and 0 be the vector containing only zeros, both having appropriate dimensions according
to their context. The Frobenius norm is denoted by k ·k

F

. Let T

ij

2 Rd⇥d be an invertible
transformation matrix aligning point-cloud X

i

with X

j

(for all i, j = 1, . . . , k), where
T

ij

= T

�1
ji

. Furthermore, T = {T

ij

}k
i=1,j=1

is the set of all k

2 pairwise transformations.

A desirable property of the set of transformations T is that it complies with the following
transitive consistency condition:

Definition 3. The set of relative transformations T is said to be transitively consistent if
T

ij

T

jl

= T

il

for all i, j, l = 1, . . . , k .

Definition 3 states that the transformation from i to j followed by the transformation
from j to l must be the same as directly transforming from i to l.

Lemma 4. The set of relative transformations T is transitively consistent if and only if
there is a set of invertible transformations { ¯

T

i

}k
i=1

such that
T

ij

=

¯

T

i

¯

T

�1
j

for all i, j = 1, . . . , k .

Proof. For the sake of completeness a proof is provided.
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“(”: Transitive consistency of T follows directly from the definition T

ij

=

¯

T

i

¯

T

�1
j

, since
for all i, j, l = 1, . . . , k it holds that

T

il

=

¯

T

i

¯

T

�1
l

=

¯

T

i

I

¯

T

�1
l

(6.1)

=

¯

T

i

(

¯

T

�1
j

¯

T

j

)

¯

T

�1
l

(6.2)

= (

¯

T

i

¯

T

�1
j

)(

¯

T

j

¯

T

�1
l

) (6.3)

= T

ij

T

jl

. (6.4)

“)”: In the rest of the proof we direct our attention towards the necessity of the existence
of the ¯

T

i

transformations.

First of all, if the transformations in T are transitively consistent
T

ii

= I for all i = 1, . . . , k . (6.5)
This follows by the fact that the T

ii

needs to be invertible while satisfying, by Definition
3, that T

ii

T

ii

= T

ii

.

Let ¯

T

0
i

= T

i1

for all i. Now we show that ¯

T

0
i

are such ¯

T

i

matrices we seek. Since, by using
(6.5), ¯

T

0
1

= I, we can write T

i1

=

¯

T

0
i

I =

¯

T

0
i

(

¯

T

0
1

)

�1.

Now for any T

ij

, we can use that
T

1i

T

ij

= T

1j

. (6.6)
Thus,

T

ij

= T

�1
1i

T

1j

= T

i1

T

�1
j1

=

¯

T

0
i

(

¯

T

0
j

)

�1
. (6.7)

6.2.2 Perfect Information

Due to Lemma 4, there is a reference coordinate frame, denoted by ?, from which there are
T

i?

transformations such that T

ij

= T

i?

T

?j

for all i, j. Note that the reference coordinate
frame is merely used as a tool for deriving our method and it is irrelevant what the actual
reference frame is. Let us introduce

W =

h
T

ij

i
=

2

664

T

11

· · · T

1k

... . . . ...
T

k1

· · · T

kk

3

775 (6.8)

=

2

664

T

1?

T

?1

· · · T

1?

T

?k

... . . . ...
T

k?

T

?1

· · · T
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T

?k

3

775 (6.9)
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=

2

664

T
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T
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1?
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T
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k?

... . . . ...
T

k?

T
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T
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= U
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, (6.11)
where

U

1

=

2

66664

T

1?

T

2?

...
T

k?

3

77775
and U

2

=

h
T

�1
1?

, T

�1
2?

, . . . , T

�1
k?

i
.

Using this notation, finding either U

1

or U

2

(up to an invertible linear transformation)
gives the transitively consistent transformations.

Definition 4. Let A 2 Rp⇥q. The set
im(A) = {Ax | x 2 Rq}

is the column space of A and the set
ker(A) = {x 2 Rq | Ax = 0}

is the null space of A.

Note that due to the invertability of T

i?

(for all i = 1, . . . , k) it holds that the matrix U

1

has rank d and thus the dimensionality of the column space im(U

1

) of U

1

is exactly d.

Proposition 1. Let Z = W � kI. The linear subspace ker(Z) has dimension d and is
equal to im(U

1

).

Proof. First it is shown that the columns of U

1

are contained in the null space of Z, i.e.
im(U

1

) ✓ ker(Z), and then it is shown that the null space of Z has exactly dimension d.

Note that U

2

U

1

= kI, which we will make use of shortly. Multiplication of U

1

on the
right to W = U

1

U

2

gives

WU

1

= U

1

U

2

U

1

= U

1

kI (6.12)

, WU

1

= kU

1

(6.13)

, WU

1

� kU

1

= 0 (6.14)

, (W � kI)U

1

= 0 (6.15)

, ZU

1

= 0 with Z = W � kI . (6.16)

From (6.16) it can be seen that all the columns of U

1

are contained in the null space of
Z, so im(U

1

) ✓ ker(Z).

99



Chapter 6. A Solution for Multi-Alignment by Transformation
Synchronisation

However, it still remains to be shown that the dimensionality of ker(Z) is exactly d, i.e.
im(U

1

) spans the entire null space of Z and not just a part of it. This is done by showing
that there are no non-zero vectors x that are not contained in im(U

1

) but are contained
in ker(Z).

Formally this is expressed by the requirement that the set
A = {x 2 Rkd | x 6= 0,x /2 im(U

1

),x 2 ker(Z)}
is empty. Suppose now that A is not empty, so it contains the element x 2 Rkd. Using
the orthogonal decomposition theorem, the vector x can be rewritten as x = x

ker

+ x

im

,
where x

ker

2 ker(U

T

1

) and x

im

2 im(U

1

). The definition of A states that x /2 im(U

1

),
which implies that x

ker

6= 0. Further, the definition of A states that
x 2 ker(Z) (6.17)

, Zx = 0 (6.18)

, Z(x

ker

+ x

im

) = 0 (6.19)

, Zx

ker

+ Zx

im

= 0 . (6.20)
Per definition x

im

2 im(U

1

) ✓ ker(Z), so it follows that Zx

im

= 0, leading to
Zx

ker

= 0 . (6.21)
Multiplication of x

T

ker

on the left gives
x

T

ker

Zx

ker

= 0 (6.22)

, x

T

ker

(U

1

U

2

� kI)x

ker

= 0 (6.23)

, x

T

ker

U

1

U

2

x

ker

� kx

T

ker

x

ker

= 0 (6.24)

, x

T

ker

U

T

2

U

T

1

x

ker

� kx

T

ker

x

ker

= 0 . (6.25)
Per definition x

ker

2 ker(U

T

1

), so U

T

1

x

ker

= 0, leading to
x

T

ker

x

ker

= 0 (6.26)

, x

ker

= 0 . (6.27)
Equation (6.27) is a contradiction to x

ker

6= 0, thus, the set A is empty.

Proposition 1 states that U

1

in (6.16) can, up to an invertible linear transformation, be
retrieved by finding the d-dimensional null space of Z. Let Z = U⌃V

T be the Singular
Value Decomposition (SVD) of Z. The d columns of V corresponding to the zero singular
values span ker(Z) and give a solution to (6.16).

As we are only able to retrieve the transformations T

i?

in the blocks of U

1

up to invertible
linear transformations, w.l.o.g. we create a new version of U

1

, call it U

0
1

, with the first
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d⇥ d block being equal to the identity, as

U

0
1

= U

1

T

�1
1?

=

2

66664

T

1?

T

�1
1?

T

2?

T

�1
1?

...
T

k?

T

�1
1?

3

77775
. (6.28)

6.2.3 Noisy Pairwise Transformations

Up until this point, the matrix U

1

is obtained under perfect information, i.e. the
transitivity condition in Definition 3 holds for all T

ij

transformations contained in the
blocks of W. However, we are interested in the case when the transitivity condition does
not hold due to measurement noise. Assume now that we have a noisy observation of
W, denoted as ˜

W. Also, let the noisy version of Z be ˜

Z =

˜

W � kI. Now, in general
it is not the case that the null space of ˜

Z is d-dimensional. Instead, the least-squares
approximation of the d-dimensional null space is considered, which leads to the following
optimisation problem:

Problem 1. Least-squares Transformation Synchronisation

minimise
ˆ

T1?,..., ˆTk?

k˜Z ˆ

U

1

k2
F

subject to u

T

i

u

j

= 0 for all i 6= j

ku
i

k = 1 for all i

ˆ

U

1

=

h
u

1

, . . . ,u

d

i
2 Rkd⇥d

.

The rank-d approximation of the null space of ˜

Z can be retrieved using the SVD of
˜

Z = U⌃V

T . In this case the columns of V corresponding to the d smallest singular
values span the rank-d approximation of the null space of ˜

Z, giving ˆ

U

1

, the estimate for
U

1

. By using (6.28), ˆ

U

0
1

can be retrieved from ˆ

U

1

.

6.2.4 Affine Transformations in Homogeneous Coordinates

In this section it is shown that the method is also applicable for invertible affine transfor-
mations, rather than invertible linear transformations. This is done by representing the
d-dimensional affine transformations T

ij

by using (d+1)⇥(d+1) homogeneous matrices.
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Each affine transformation T

ij

can be written as

T

ij

=

"
A

ij

0

t

ij

1

#
, (6.29)

where A

ij

is the (invertible) linear d⇥d transformation matrix and t

ij

is the d-dimensional
row vector representing the translation. The inverse of T

ij

is given by

T

�1
ij

=

"
A

�1
ij

0

�t

ij

A

�1
ij

1

#
. (6.30)

Similar to the linear case described in (6.8), the matrix W is constructed from all T

ij

. It
is assumed that the matrix ˜

W, corresponding to the noisy observation of W, contains
blocks that are proper affine transformations, i.e. the last column of each block is

h
0 1

i
T

.

A simple way to ensure that the synchronised transformations are affine transformations
in homogeneous coordinates is to add the row vector z =

h
z z . . . z

i
2 Rk(d+1), with

z =

h
0 0 . . . 0 1

i
2 Rd+1, to the matrix ˜

Z. By adding the vector z to ˜

Z, the vector

z

T is removed from the null space of ˜

Z. Using this approach, a solution is then found by
solving Problem (1) with the updated ˜

Z. Then the resulting ˆ

U

0
1

gives an estimate of the
first d columns of ˆ

T

i?

(i = 1, . . . , k) and these are the columns we seek.

6.2.5 Similarity Transformations

Similarity transformations are transformations that allow for translations, isotropic scaling,
rotations and reflections. To retrieve similarity transformations, the estimates of the
synchronised affine transformations ˆ

T

i?

(i = 1, . . . , k) are determined first. The translation
component ˆ

t

i?

of ˆ

T

i?

can directly be extracted from ˆ

T

i?

since it has the structure presented
in (6.29). To obtain the scaling factor and the orthogonal transformation, the linear
component ˆ

A

i?

is factorised using SVD, resulting in ˆ

A

i?

= U

i?

⌃

i?

V

T

i?

. The orthogonal
component ˆ

Q

i?

is then given by
ˆ

Q

i?

= U

i?

V

T

i?

, (6.31)
and the isotropic scaling factor ŝ

i?

is given by

ŝ

i?

=

0

@
dY

j=1

|(�
i?

)

jj

|

1

A

1
d

, (6.32)

where (�

i?

)

jj

is the j-th element on the diagonal of ⌃

i?

.

Remark 1. It can be shown that retrieving the orthogonal component as presented
in eq. (6.31) is the least-squares solution to the projection onto the set of orthogonal
matrices. However, in eq. (6.32) the isotropic scaling factor is retrieved as the geometric
mean of the individual axis-aligned scaling factors. The least-squares solution to the
projection onto the set of similarity transformations is given by the arithmetic mean, i.e.
ŝ

lsq

i?

=

1

d

P
d

j=1

|(�
i?

)

jj

|.
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6.2.6 Euclidean Transformations

Similarity transformations without isotropic scaling are called euclidean transformations.
To obtain euclidean transformations, the similarity transformations are extracted and the
scaling factors ŝ

i?

(for all i = 1, . . . , k) are set to 1.

6.2.7 Rigid Transformations

Euclidean transformations without reflections are called rigid transformations. Rigid
transformations can be obtained by ensuring that the determinant of the rotational
component ˆ

Q

i?

described in (6.31) equals 1. This can be achieved by setting
ˆ

Q

i?

= U

i?

D

i?

V

T

i?

, with (6.33)

D

i?

= diag(1, . . . , 1, det(V

T

i?

U

i?

)) . (6.34)

6.3 Experiments

By generating ground truth data and adding Gaussian noise to it, we first compare the error
of the synchronised transformations using our method to the error of the unsynchronised
transformations. Furthermore, the transformation synchronisation method is applied
for solving the Generalised Procrustes Problem with missing points and with wrong
correspondence assignments.

6.3.1 Noisy Transformations

In this section it is described how the ground truth transformations are generated,
how noisy versions thereof are generated and eventually results of the transformation
synchronisation method are presented.

Ground Truth Transformations

For the analysis of the performance of our method we generate a set of random transfor-
mations T

?

= {T

i?

}k
i=1

, that are used in turn to generate the transitively consistent set
of pairwise transformations T = {T

ij

= T

i?

T

�1
j?

}k
i=1,j=1

, serving as ground truth for the
evaluation. The generation of T

?

is described in the following.

The dot-notation is used to illustrate that ẋ is a random variable with a particular
probability distribution. For generating the set T

?

, we assume that the point-clouds that
lead to the transformations have some structural similarity, i.e. the transformations are
not entirely random. In particular, the scaling factors, the translation components and
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the linear part of the transformation are restricted in the sense that they cannot be
arbitrary. However, arbitrary orientations in d-dimensional space are allowed for.

The set T
?

contains the elements T

i?

(i = 1, . . . , k), which are samples of

˙

T =

"
ṡ

˙

Q

˙

N 0

˙

t 1

#
, (6.35)

where ṡ ⇠ U(0.5, 1.5) is a scaling factor and ˙

t ⇠ U(�2.5, 2.5)

d is a translation, with
U(a, b)

d denoting the d-dimensional uniform distribution having the open interval (a, b)

d

as support. Samples of the d⇥d random rotation matrix ˙

Q are drawn by extracting
the rotational component of a non-singular random matrix as described in (6.31). The
d⇥d random noise matrix ˙

N is given by ˙

N = I + ✏̇, where ✏̇ ⇠ N (0, 0.1

2

)

d⇥d is a d⇥d

random matrix with each element having univariate normal distribution N (0, 0.1

2

). The
purpose of creating the noise in the way using the random matrix ˙

N is to restrict the
linear component in the transformation and thus to avoid ill-conditionedness with very
high probability.

Depending on the type of transformation that is evaluated, the parameters of T
?

have
different properties, which are summarised in Table 6.1.

Q̇ ṫ ṡ Ṅ

linear | det | = 1 = 0 ⇠ U(0.5, 1.5) ⇠ I + ✏
affine | det | = 1 ⇠ U(0.5, 1.5)d ⇠ U(0.5, 1.5) ⇠ I + ✏
similarity | det | = 1 ⇠ U(0.5, 1.5)d ⇠ U(0.5, 1.5) = I
euclidean | det | = 1 ⇠ U(0.5, 1.5)d

=1 = I
rigid det = 1 ⇠ U(0.5, 1.5)d

=1 = I

Table 6.1: Properties of components of random transformations for different types of
transformations generated according to (6.35).

Once the ground truth set T of transitively consistent transformations has been established,
a noisy version thereof is synthetically created, as described in the next section.

The error e(T 1

, T 2

) between two sets of pairwise transformations T 1

= {T

1

ij

}k
i,j=1

and
T 2

= {T

2

ij

}k
i,j=1

is defined as

e(T 1

, T 2

) =

1

k

2

kX

i,j=1

kT 1

ij

� T

2

ij

k
F

. (6.36)

Additive Gaussian Noise

The set of noisy pairwise transformations ˜T N is created by adding to each element of
the matrix T

ij

a sample from N (0,�

2

), which is conducted for all matrices T

ij

2 T with
i 6= j. In the case of homogeneous transformation matrices T

ij

, no noise is added to the
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last column, which shall always be (0 1)

T .

Results of the simulations are shown in Fig. 6.1. The first row of graphs show that for
all types of transformations the error of synchronised transformations is smaller than
the error of the unsynchronised transformations and that the slope of the error in the
synchronised case is smaller than in the unsynchronised case. In the second row it can
be seen that, even with a high amount of noise (� = 0.5), the error of the synchronised
transformations decreases with an increasing number of objects k. As anticipated, with
increasing k there is more information available, directly resulting in a lower error. The
last row of graphs shows that increasing the dimensionality results in an increasing error;
however, the error of the synchronised transformations increases slower than for the
unsynchronised ones.
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Figure 6.1: Error for additive normal noise ˜T N for different configurations as specified in
the graph title with one varying parameter (horizontal axis). Each row of graphs shows a
particular varying parameter (�, k and d from top to bottom) and each column of graphs
shows a particular transformation type (affine, linear, similarity, euclidean, rigid, from
left to right). The error as defined in (6.36) of the unsynchronised noisy transformations
is shown in green and of the synchronised transformations in blue. Shown is the average
error of 100 randomly generated sets of ground truth transformations, where for each
ground truth transformation 20 runs of adding noise have been performed, resulting in a
total of 2000 simulations per graph.
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6.3.2 Generalised Procrustes Analysis

In addition to evaluating the synchronisation of noisy pairwise transformations we have
applied our method for solving the Generalised Procrustes Problem (GPP), which is done
on the one hand with missing data and on the other hand with wrong correspondence
assignments. For both simulations the 2D fish shapes from the Chui-Rangarajan dataset
(Chui and Rangarajan, 2003) with different levels of deformation and noise have been
used (refer (Chui and Rangarajan, 2003) for more details). For each level of deformation
and noise the dataset contains K = 100 shapes, each comprising n = 98 points in d = 2

dimensions.

Finding the similarity transformation that best aligns two shapes, which is a subroutine
for the evaluated reference-based, the iterative mean shape-based and the synchronisation-
based method, is performed by an AOP implementation with symmetric scaling factors
(Horn et al., 1988). In the reference-based solution of GPP one shape is randomly selected
as reference and all other shapes are aligned with the reference. For the iterative mean
shape-based method the initial reference shape is selected randomly and then the mean
shape is iteratively updated. In the synchronisation-based solution of GPP all k

2 pairwise
AOPs are solved first, followed by the synchronisation of the resulting transformations in
order to aggregate all information contained in the pairwise transformations. Additionally,
the stratified GPA method proposed in (Bartoli et al., 2013) is evaluated for solving the
GPP. In our experiments we have observed that by using the stratified GPA method
the linear part of the resulting transformations may collapse to the zero matrix; in order
to enable a comparison with the other methods in these cases the linear part of the
transformation has simply been set to the identity matrix.

In the missing data experiments as well as the wrong correspondence experiments for
each single run k = 30 out of K = 100 shapes are randomly selected. For the experiments
in the missing points case the missing points are simulated by discarding points according
to a given probability. For the experiments with wrong correspondences the correct
correspondences are randomly disturbed in order to simulate wrong correspondences.

In contrast to solving the AOPs, in both experiments the computation of the error is
performed using the original shape (i.e. with all points and with perfect correspondences).
With that we investigate up to which amount recovering the original shapes from corrupt
shape data is possible. The average shape error of a set of shapes X = {X

i

}k
i=1

is defined
as e(X ) =

1

k

2

P
k

i,j=1

kX
i

�X

j

k
F

.
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Missing Points

In every run, additionally to randomly selecting 30 out of 100 shapes, each data point
of a shape is considered to be missing with probability ⌘. As the implemented methods
solve the AOP only for common points in each pair of shapes, values for ⌘ larger than 0.7

have not been investigated because with ⌘ > 0.7 the cases that the number of common
points in a pair of shapes is less than d = 2 occur too frequently (for d-dimensional data,
there must be at least d points in each shape in order to result in a system that is not
under-determined). Also, for ⌘  0.7 it is possible that the number of common points
in a pair of shapes is less than d = 2; in these cases the draw of missing data is simply
repeated.
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Figure 6.2: Average shape error for the reference-based (green), iterative mean shape-
based (black), synchronisation-based (blue) and stratified (red) method for solving the
GPP with missing data. The horizontal axis shows the probability ⌘ that a point is
considered missing. At the top of each graph three shapes according to the particular
level of deformation or noise are depicted. Shown is the average shape error for 500 draws
of missing data in each graph. In every run k = 30 out of K = 100 shapes are randomly
selected, where each shape comprises n = 98 points in d = 2 dimensions.

In Fig. 6.2 the resulting error of the reference-based, the iterative mean shape-based,
the synchronisation-based and the stratified solution of the GPP with missing data are
shown for different levels of deformation and noise. It can be seen that even with an
increasing amount of missing data, when using the synchronisation-based method the
error increases only slightly, whilst the error of the reference-based method increases
significantly with a larger amount of missing points. With respect to the error, the
transformation synchronisation method performs only marginally better than the iterative
mean shape-based method and the stratified method. However, the average runtimes
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for solving a single GPP instance was 0.007 s for the reference-based method, 0.162 s for
the synchronisation-based method, 1.932 s for the iterative mean shape-based method
and 2.265 s for the stratified method, illustrating that our method performs significantly
better than all other methods when taking runtime and error into account at the same
time.

Wrong Correspondence Assignments

Additionally to the case of missing points, we have applied our method to solve the GPP
with wrong correspondence assignments between shapes. In order to mimic practical
applications, where it is frequently the case that the true correspondences are unknown
and thus it must be assumed that wrong correspondences are present, we do not make
any efforts to correct these wrong correspondences (such as using RANSAC (Fischler
and Bolles, 1981) or permutation synchronisation (Pachauri et al., 2013)). Instead, for
each pair of shapes the AOP is solved whilst being aware that some of the points in the
one shape have wrong counterparts in the other shape. Of course this will have influence
on the resulting transformations. Thus, the objective of the simulations described in
this section is to assess to what extent the transformations from shapes with wrong
correspondences can be reconstructed using transformation synchronisation.

In every run, additionally to randomly selecting 30 out of 100 shapes, the correspondences
between the n points in each shape are disturbed. For disturbing the correspondence
assignments each pair of shapes that is to be aligned is considered independently. For
that, a proportion of ⌫ 2 [0, 1] points from the total number of n points is selected.
Then, as correspondences between the pair of point-clouds X

i

,X

j

2 Rn⇥2 are implicitly
given by the ordering of the rows, the rows corresponding to the previously selected
points are reordered randomly in one of the point-clouds, directly resulting in disturbed
correspondence assignments between the pair of point-clouds X

i

,X

j

.

In Fig. 6.3 the reference-based, the iterative mean shape-based, the synchronisation-based
and the stratified solution of the GPP with wrong correspondences are shown for different
levels of deformation and noise. On the right of Fig. 6.3 examples of the correspondences
between pairs of shapes are depicted for different values of ⌫.

It can be seen that for different levels of deformation and different levels of noise with
70%� 80% of wrong correspondences the outcome is only marginally affected when using
our proposed method. In contrast, all other evaluated methods result in significantly
larger errors, which can be explained by the fact that our method is the only one that is
able to make use of the information that is contained in all pairwise transformations.
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Figure 6.3: Average shape error for the reference-based (green), iterative mean shape-
based (black), synchronisation-based (blue) and stratified (red) method for solving the
GPP with wrong correspondences. The horizontal axis shows the proportion ⌫ of wrong
correspondences. At the top of each graph three shapes according to the particular level
of deformation or noise are depicted. Shown is the average shape error for 500 runs
of disturbing correspondence assignments in each graph. In every run k = 30 out of
K = 100 shapes are randomly selected, where each shape comprises n = 98 points in
d = 2 dimensions. In the right-most column examples of the correspondence assignments
between a pair of shapes are depicted for different values of ⌫ in each row. In order to
keep the visualisation as coherent as possible, the wrong correspondences (red lines) and
the correct correspondences (green lines) are shown separately.
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6.4 Conclusion

The alignment of multiple (corresponding) point-clouds simultaneously is generally tackled
by iteratively aligning all point-clouds to some reference. Whereas this approach is biased
(selecting a fixed reference) or initialisation-dependent (using the adaptive mean as
reference) we have presented a method that is completely unbiased and does not depend
on initialisation.

Our key observation is that the underlying noise-free transformations can be retrieved
from the null space of a matrix that can directly be obtained from pairwise alignments.
Whilst related approaches for rotation matrices (Hadani and Singer, 2011a,b; Singer and
Shkolnisky, 2011) or permutation matrices (Pachauri et al., 2013) have been proposed,
we have generalised the synchronisation method to handle general linear and affine
transformations as well as similarity, euclidean and rigid transformations. Experimentally
we were able to demonstrate that the proposed method is able to effectively reduce noise
from the set of pairwise transformations and to solve the Generalised Procrustes Problem
at least as good as existing approaches for the missing data case whilst significantly
outperforming other methods for the presented wrong correspondence case.
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7 Transitively Consistent and Un-

biased Multi-Image Registration

Using Numerically Stable Transfor-

mation Synchronisation

Abstract

Transitive consistency of pairwise transformations is a desirable property of groupwise
image registration procedures. The transformation synchronisation method (Bernard
et al., 2015b) is able to retrieve transitively consistent pairwise transformations from
pairwise transformations that are initially not transitively consistent. In the present paper,
we present a numerically stable implementation of the transformation synchronisation
method for affine transformations, which can deal with very large translations, such as
those occurring in medical images where the coordinate origins may be far away from each
other. By using this method in conjunction with any pairwise (affine) image registration
algorithm, a transitively consistent and unbiased groupwise image registration can be
achieved. Experiments involving the average template generation from 3D brain images
demonstrate that the method is more robust with respect to outliers and achieves higher
registration accuracy compared to reference-based registration.

7.1 Introduction

Image registration has attracted a lot of attention in the medical imaging community
mainly due to the vast amount of applications both in research and in the clinic. Applica-
tions include surgery planning, multi-modal diagnosis, statistical analyses, normalisation,
computational anatomy, longitudinal studies, image segmentation, and many more. The
registration (or alignment) of a moving image with a fixed image can be defined as finding
a spatial mapping that transforms the moving image such that it fits the fixed image
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“best”. To measure the agreement of two images, mostly intensity-based metrics are used
as surrogates for the unknown true correspondence. The mapping is in general obtained
by optimisation methods, where it is necessary to select an application-dependent trans-
formation model. Commonly, the transformation models are categorised by affine/linear
and deformable transformations. Affine transformation models have a low number of
degrees-of-freedom that allow only for a coarse alignment and thus are insensitive to
overfitting. On the contrary, deformable transformation models are capable of aligning
images on a very fine scale; however, controlling the trade-off between overfitting and
realistic deformation is difficult. Frequently, affine transformations serve as initialisation
for deformable transformations to avoid overfitting in the early stage of the optimisation.

The simultaneous registration of multiple images is more difficult. Different approaches
to tackle this problem are: aligning each image individually to a fixed reference (e.g.
chosen as one of the images); aligning each image with an iteratively evolving reference
image (Joshi et al., 2004; Reuter et al., 2012); finding a path of pairwise transformations
containing all images (Škrinjar et al., 2008); image congealing, where the variability along
the known axes of variation is removed iteratively (Learned-Miller, 2006; Zöllei et al.,
2005), and the related accumulated pair-wise estimates (APE) approach (Wachinger and
Navab, 2013); considering a minimum description length (MDL) approach of a Statistical
Shape Model built from the correspondences given due to the groupwise image registration
(Cootes et al., 2004); or, using a Bayesian formulation for dense template estimation
based on Expectation Maximisation (EM) (Allassonnière et al., 2007). In the work by
Vercauteren et al. (2006), for video mosaicing with motion distortion correction, global
alignment is seen as estimation problem on a Lie group.

However, choosing a fixed reference image or a path of sequential transformations induces
a bias, and the iterative methods are generally local methods that are initialisation-
dependent. In any case this may result in suboptimal alignments. One way of measuring
the degree of suboptimality is to use a transitive consistency criterion, which is based
on the fact that for a perfect alignment the composite transformation from A to B to
C must be identical to the direct transformation from A to C. Registration methods
improving this transitive consistency have been proposed for deformable transformations
(Gass et al., 2014; Geng, 2007).

Based on recent works on transformation synchronisation (Bernard et al., 2015b), in this
paper an unbiased, truly reference-free and transitively consistent approach for aligning
multiple images under the affine transformation model is presented. Our approach is useful
in applications where the affine alignment of multiple images is required. This includes for
example the creation of an affine average template, the creation of an (affine) probabilistic
atlas, or the initialisation for deformable multi-image alignment. Furthermore, since
our approach is unbiased, the resulting average template is attractive for statistical
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analyses. By exploiting redundancies between pairwise transformations, a more global
approach of multi-image registration is achieved with the proposed method. Compared
to reference-based groupwise registration, this leads to higher registration accuracy.

7.2 Methods

In this section, the transformation synchronisation method is briefly recapitulated and a
numerically stable implementation thereof is presented that can handle large translations.
Subsequently it is described how the method can be applied to multi-image registration.

7.2.1 Overview of Transformation Synchronisation

Transformation synchronisation is a method for reconstructing transitively consistent
transformations from the set of (disturbed) pairwise transformations (Bernard et al.,
2015b), which is briefly summarised in the following.

At first, the case of perfect (undisturbed) data is described. Given is the set T = {T

ij

}k
i,j=1

containing k

2 pairwise transformations, where T

ij

2 R4⇥4 denotes an invertible affine 3D
transformation matrix from image i to image j represented in homogeneous coordinates.
The set T is said to be transitively consistent if T

ij

T

jl

= T

il

holds for all i, j, l = 1, . . . , k.

Assuming transitive consistency, every transformation matrix T

ij

can be represented as
T

i?

T

?j

, where ? denotes some reference coordinate system that is fixed for all i, j = 1, . . . , k

(Bernard et al., 2015b). For the case of undisturbed data, for any l it also holds that
T

?l

= T

�1
l?

. Arranging all k

2 transformations into a 4k ⇥ 4k matrix W gives
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with U
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=
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. This shows that

for transitively consistent transformations the matrix W can be factorised into U

1

U

2

.

Multiplying (7.1) with U

1

from the right leads to WU

1

= U

1

U

2

U

1

. Considering now that
U

2

U

1

= kI

4

, where I

n

denotes the n⇥n identity matrix, this results in
WU

1

= kU

1

, ZU

1

= 0

4k⇥4 with Z = W � kI

4k

. (7.2)
The latter shows that U

1

can, up to an invertible linear transformation multiplied on the
right, be obtained by finding the 4-dimensional nullspace of Z.

Now, if the pairwise transformations are obtained by independent measurements (e.g.
pairwise image registrations), in general it does not hold that the transformations are
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transitively consistent or inverse consistent. Therefore, in general Z does not have a
4-dimensional nullspace. Instead, we consider the least-squares approximation of the
4-dimensional nullspace of Z, which can be obtained by Singular Value Decomposition
(SVD) of Z. Let W =

h
T

ij

i
= U

1

U

2

be the so-obtained synchronised version from a

noisy W =

h
T

ij

i
.

7.2.2 Numerical Stability for Large Translations

Large translations in the pairwise transformations may lead to an ill-posed matrix W ,
constituting a problem with respect to the numerical stability of the synchronisation
method.

Each affine transformation block T

ij

in W has the form

T

ij

=

"
A

ij

0

3⇥1
t

ij

1

#
with A

ij

2 R3⇥3 and t

ij

2 R1⇥3
. (7.3)

Generally, in medical image registration it can be assumed that the anatomical entities
depicted in the images are similar to a certain extent as they represent objects of the
same (fixed) class (e.g. brains). This imposes certain properties onto the linear part A

ij

of the transformation: the rotational part of A

ij

can be arbitrary, because in principal
the orientation of the patient can be arbitrary. In contrast, the scaling or shearing are not
arbitrary (for example it is unlikely that the scale between two individual adult brains
differs by a factor of 10 or even more). Both properties imply that the values of the
elements in A

ij

are bounded, i.e. they are in (or close to) the interval [�1, 1]. In contrast,
the origin of the coordinate frame of each image can, in principal, be arbitrary. With that,
the values of the elements in the translation component t

ij

do not have such a bound,
i.e. they can be orders of magnitude larger than the elements of the linear part, which
impairs numerical stability.

Instead of directly finding the 4-dimensional least-squares approximation of the nullspace
of Z = W�kI

4k

, a numerically more stable approach is now described. For affine
transformations T

ij

the matrix Z is reducible, i.e. for some permutation matrix P , the
matrix Z

0
= P

T

ZP is a block upper triangular matrix of the form

Z

0
= P

T

ZP =

"
Z

11

Z

12

0

3k⇥k Z

22

#
, (7.4)

where the lower left block 0

3k⇥k contains the zeros from the homogeneous transformation
part, Z

11

2 {1, 1�k}k⇥k contains the constant elements from the homogeneous trans-
formation part, Z

22

2 R3k⇥3k contains the linear transformation part, and Z

12

2 Rk⇥3k

contains the (possibly large) translation components. Using the Dulmage-Mendelsohn
decomposition (Dulmage and Mendelsohn, 1958), the permutation P transforming Z to Z

0

114



7.2. Methods

in (7.4) is determined. In the following it is described how U
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, spanning the 4-dimensional
nullspace of Z

0, can be obtained. From U
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Eq. (7.5) is solved first for the matrix V

2

by finding the 4-dimensional nullspace of Z

22

using Singular Value Decomposition, which is stable since Z

22

contains the (well-posed)
linear transformation parts only. Once V

2

is known, the remaining part V
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of U
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is
determined by solving the linear system of equations Z
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for V
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. Obtaining
U
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from U

0
1

, U

2

from U

1

, and reconstructing W = U

1

U

2

eventually gives the synchronised
version W of W .

7.2.3 Multi-image Alignment

The processing pipeline of aligning multiple images is illustrated in Fig. 7.1.

Image 
Registration Transformation 

Synchronisation

Average Images
     Unaligned Images                      

I

1

, . . . , Ik

     Aligned Images in Space Ir

Apply Transformations
Tir

Pairwise Transformations
{Tij}k

i,j=1

8 i, j, l : TijTjl = Til

  Template Image         in Space ˆ

I

sync

r Ir
Pairwise Transformations

¬(8 i, j, l : TijTjl = Til)

{Tij}k
i,j=1

Multi-image Registration

Figure 7.1: Processing pipeline for aligning multiple images using transformation syn-
chronisation. Rectangles represent methods and rounded rectangles represent data.

First the set of transformations {T

ij

}k
i,j=1

between all pairs of unaligned images I

1

, . . . , I

k

is determined using any affine image registration algorithm. Then, all transformations
are synchronised using the numerically stable synchronisation method, resulting in the
set {T

ij

}k
i,j=1

of transitively consistent pairwise transformations.

In order to represent all images in the same coordinate system it is necessary to select
such a common coordinate system. Due to the transitive consistency of the set of all
pairwise transformations, in theory it is irrelevant what is chosen as common coordinate
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system. To be more specific, up to discretisation and interpolation, the resulting average
image is the same for any choice of coordinate system, thus, we consider our approach
to be unbiased. Interpolation bias can for example be handled by a mid-space based
normalisation (Reuter et al., 2012).

In order to be able to directly compare our method to the reference-based approach, we
create average images with the common coordinate system, image dimension and voxel size
of image I

r

for all r = 1, . . . , k. So, for a given image I

r

, each image I

i

(for i = 1, . . . , k)
is transformed to the space of the image I

r

by applying the transformation T

ir

. We
emphasize that I

r

should not be confused with the reference image in reference-based
multi-image registration (cf. preceding paragraph). Eventually, the average image ˆ

I

sync
r

of all k images (represented in the space of I

r

, thus having the same image dimensions) is
computed.

The use of transformation synchronisation constitutes the major difference to reference-
based template creation approaches, since this method is able to aggregate all information
contained in the set of pairwise transformations, in contrast to reference-based methods,
which only incorporate the information contained in k pairwise transformations.

7.3 Experiments

In this section the results of applying the proposed framework for the unbiased template
construction from 17 T1-weighted MR images is described. The dimensions of the images
are between 256⇥256⇥122 and 512⇥512⇥168 voxels, where the voxel sizes vary from
0.5⇥0.5⇥1 to approximately 0.9⇥0.9⇥1.4 (in mm3).

Two different affine registration methods have been used to find the set of pairwise
transformations (FLIRT (Jenkinson and Smith, 2001) and ANTS (Avants et al., 2011)).
To run the FLIRT algorithm, we set parameters as follows: normalised mutual information,
12 degrees-of-freedom and search angle [�20, 20] for the rotation in all directions. Cross-
correlation and the affine transformation model were used in ANTS. Other parameters
remained unchanged.

The reference-based alignment of images is used as baseline: (i) selection of reference
image I

r

; (ii) registration of all other images with I

r

; (iii) transformation of all images
to space of I

r

; and (iv) computation of average template ˆ

I

ref
r

. In order to perform a fair
analysis the evaluation has been carried out for all r = 1, . . . , k images I

r

as reference.

Furthermore, to enable a direct comparison between the reference-based and synchronisation-
based methods, for the latter a total of k average template images ˆ

I

sync
1

, . . . ,

ˆ

I

sync
k

are
created. The results of the synchronisation-based method are represented in the image
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spaces I

r

for r = 1, . . . , k only for the sake of comparability with the reference-based
method. By representing image I

i

in the space of image I

r

we mean applying the respective
transformations, i.e. T

ir

for the reference-based method and T

ir

for the synchronisation-
based method.

The average transitivity error etrans(T ) of a set of transformations T = {T

ij

}k
i,j=1

, which
measures the degree of transitive consistency of the set of pairwise transformations T , is
defined as

etrans(T ) =
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jl

� T

il

k
F

, (7.6)

where k · k
F

denotes the Frobenius norm.

Let ncc(I

i

, I

j

) be the normalised cross-correlation (NCC) between the images I

i

and
I

j

. In each experiment the NCC is computed k

2 times, i.e. for all r = 1, . . . , k and
i = 1, . . . , k the NCC is evaluated. For the reference-based method the NCC is computed
as c

ref
ir

= ncc(I

i

,

ˆ

I

ref
r

), and for the synchronisation-based method as c

sync
ir

= ncc(I

i

,

ˆ

I

sync
r

),
where image I

i

is in both cases represented in the space of I

r

.

Additionally to the average transitivity error and NCC, a landmark-based evaluation
criterion has been used. Based on a total of 8 bilateral brain structure segmentations of
Substantia Nigra & Subthalamic Nucleus (as compound object), Nucleus Ruber, Putamen
& Globus pallidus (as compound object), and Thalamus (Bernard et al., 2014), the centre
of gravity (COG) of each segmented object is determined. Let e

o,i,j,r

be the cog-error
that is defined as the magnitude of the error vector between the COG of object o in
image I

i

and the COG of object o in image I

j

, where I

i

and I

j

are both represented in
the space of image I

r

. In each experiment the cog-error is computed 8k

3 times for all
r = 1, . . . , k; i = 1, . . . , k; j = 1, . . . , k and for all eight objects o = 1, . . . , 8.

Results for the measures described above are summarised in Table 7.1.

e

ref
trans e

sync
trans c

ref
c

sync
e

ref
e

sync

F 9.142 0 0.859 ± 0.025 0.863 ± 0.017 5.042 ± 3.672 4.362 ± 2.439

A 12.004 0 0.861 ± 0.022 0.867 ± 0.017 5.157 ± 4.062 4.394 ± 2.483

Table 7.1: Comparison of reference-based method and synchronisation-based method for
two experiments (F=FLIRT, A=ANTS). The scores shown are the average transitivity
errors e

{ref,sync}
trans (high values indicate problems), the mean and the standard deviation of

the NCC c

{ref,sync} (higher mean is better), and the mean and the standard deviation of
the cog-error e

{ref,sync} in mm (lower is better).

For both experiments the distributions of c

{ref,osync,sync}
ir

and e

{ref,osync,sync}
o,i,j,r

are presented
as boxplots in Figs. 7.2 and 7.4, where the superscripts osync and sync are used to
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distinguish the original transformation synchronisation method and our proposed trans-
formation synchronisation method with the numerical stability improvement.

F/ref F/osync F/sync A/ref A/osyncA/sync
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Figure 7.2: Left: distribution of NCC c

ir

for i = 1, . . . , k and r = 1, . . . , k for the
reference-based method and the synchronisation-based methods (with and without the
numerical stability improvement) visualised as boxplots (median as red horizontal line,
25th and 75th percentile as blue box, extent of extreme points that are not considered
outliers as blue vertical line and outliers as black dots). Right: sorted NCC differences
c

sync
ir

� c

ref
ir

for i = 1, . . . , k and r = 1, . . . , k (FLIRT in blue, ANTS in red).

Figure 7.3: Axial slices of brain average templates created using the reference-based
method (left) and the proposed synchronisation-based approach (right). Note the “ghost
effect” in the area of the nose for the reference-based method stemming from a bad
registration.

Fig. 7.2 reveals that with respect to NCC, on average the proposed approach outperforms
the reference-based method, whereas the original transformation synchronisation method
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Figure 7.4: Left: distribution of the cog-error e

o,i,j,r

for i = 1, . . . , k; j = 1, . . . , k; r =

1, . . . , k and o = 1, . . . , 8 for the reference-based method and the synchronisation-based
methods (with and without the numerical stability improvement) visualised as boxplots
(median as red horizontal line, 25th and 75th percentile as blue box, extent of extreme
points that are not considered outliers as blue vertical line and outliers as black dots).
Right: sorted cog-error differences e

ref
o,i,j,r

� e

sync
o,i,j,r

for i = 1, . . . , k; j = 1, . . . , k; r =

1, . . . , k and o = 1, . . . , 8 (FLIRT in blue, ANTS in red).

without the numerical stability improvement delivers on average lower scores than both
the reference-based method and our proposed method. Furthermore, the boxplots show
that using the reference-based method may result in outliers that have considerably lower
NCC scores. Fig. 7.3 (left) shows such a case when using the reference-based method for
brain average template creation, where there are undesired artefacts in the area of the
nose that are not present using the proposed synchronisation method (right).

Considering transitive consistency, which is frequently employed for evaluating the quality
of registration methods (Datteri and Dawant, 2012; Gass et al., 2014; Holden et al., 2000),
the proposed approach significantly outperforms the reference-based method since our
method always results in perfect transitive consistency. Whilst a low average transitivity
error does not necessarily imply a good registration (e.g. consider the trivial case of
not performing a registration at all, i.e. setting all transformations to identity), a large
average transitivity error indicates that there is a problem with the registration.

The cog-error, shown as boxplots in Fig. 7.4, reveal some extreme outliers of up to around
3.5 cm when using the reference-based method. For the synchronisation-based methods
the cog-error is always below 2 cm, where the proposed synchronisation method with
the numerical stability improvement has a slightly lower median when using FLIRT for
finding the pairwise transformations than the original synchronisation method. Note that
in general the cog-errors have comparably large values since due to the regularity of the
affine transformation model only a coarse alignment of structures is possible.
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7.4 Conclusion

A solution for the groupwise affine registration of images based on transformation syn-
chronisation has been presented. It has been shown that the method is more robust
with respect to outliers than the common reference-based method and that it leads to
improved registration accuracy. Our proposed approach can be seen as an averaging
procedure that removes noise (accounting for transitive inconsistency) from pairwise
transformations.

A shortcoming is that a quadratic number of pairwise transformations needs to be
available, which may, depending on the application, be unaffordable. However, because
an average template is usually created only once, in many cases the computational
overhead may be acceptable, since the extra-effort is compensated by a more reliable
result. An alternative approach is to find a trade-off between complete unbiasedness and
computational cost by synchronising only a subset of all pairwise transformations using
transformation synchronisation for partial data (Thunberg et al., 2015).

On its own, the proposed affine groupwise image registration procedure is valuable for
the construction of affine average templates. Moreover, it can be used as initialisation
for groupwise deformable image registration, where a good initial solution is essential
due to the highly non-convex nature of deformable registration methods. In the work by
Jia et al. (2010) a hierarchical groupwise registration scheme is presented that already
assumes a groupwise affine registration between all images. Also, in the work by Seghers
et al. (2004), for brain template generation the affine registration of a set of images is
performed by registering all images to an existing average template. In both approaches
our method can be used for the groupwise affine registration.

Due to the unbiasedness of the method it is ideal for statistical analyses. Our experiments
suggest that the reference-based method performs significantly worse for certain choices
of reference images, rendering the choice of reference crucial. Since a priori it is unknown
which of the images is a good reference and which is not, a reference-free method is
favourable in many scenarios.
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8 Potentials in Deep Brain Stimula-

tion

In this chapter the methodologies introduced in Parts I and II are discussed in the context
of deep brain stimulation (DBS). For that, a sketch is given that describes how the works
described in Chapters 3–7 could potentially be applied for DBS. The purpose of this is
on the one hand to further motivate the methodologies introduced in this thesis and to
highlight some ideas that have shaped this thesis. On the other hand, this part shall also
be considered as collection of ideas that may serve as inspirations for future work.

8.1 DBS Overview

Deep brain stimulation is a neurosurgical procedure where electrodes are permanently
implanted into deep regions of the brain. The implanted electrodes have the purpose to
modulate pathological brain activity in order to alleviate symptoms of certain neurological
diseases, such as Parkinson’s disease (PD) (Deuschl et al., 2006), or essential tremor
(Perlmutter and Mink, 2006). The entire DBS procedure can be divided into three phases,

1. the preoperative phase, where the surgery is prepared and planned;

2. the intraoperative phase, where the electrodes are implanted; and

3. the postoperative phase, where the stimulation is initiated and maintained.

Since the first two phases are most important in the context of this thesis, they will be
discussed in the following.
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8.2 Planning

The purpose of the planning phase is to identify the desired target position and the
trajectories of the electrodes through the brain. The particular structures that are to be
stimulated by the electrodes depend on the disease that is being treated. For example,
the Subthalamic Nucleus or the Globus Pallidus interna (Krack et al., 1998) are common
targets for PD. The main challenges during the planning phase is the identification of the
target position, and finding a (linear) path for the electrodes from the skull surface to
the target position without harming any critical areas.

A common approach is that the neurosurgeon plans the surgery based on computed
tomography (CT) and magnetic resonance imaging (MRI), where potentially multiple
MRI sequences are used. Usually the target and entry points are manually chosen by
the surgeon based on imaging. However, the accurate identification of the targets is very
challenging. Reasons for this difficulty include low image contrasts, noise, artefacts and a
general lack of the definitive knowledge which exact (regions of) brain structures need to
be stimulated in order to achieve the best outcome for a particular patient.

By acquiring the CT image with some sort of fiducial markers, e.g. with the stereotactic
frame mounted to the patient’s head, and by performing a co-registration between the
CT and MR images, transformations between the stereotactic coordinate system and the
individual image coordinate systems are available. This allows the transfer of the surgery
plan (intrinsically defined in image coordinates) to the stereotactic coordinate system
that is eventually used to carry out the surgery.

Idea 1. (Preoperative multi-image registration)
When more than two images are to be co-registered (e.g. more than a single MR image
sequence is used, or the co-registration with an atlas is desired), the preoperative registration
problem is a multi-image registration problem. In a similar fashion as described in
Chapter 7, the multi-image registration can be obtained by first obtaining all pairwise
image registrations, and then applying the transformation synchronisation method described
in Chapters 6 and 7.

8.2.1 Navigation

The objective of the navigation phase is to place the electrodes at a position such that the
outcome for the patient is “optimal”. In addition to the uncertainties occurring during the
planning phase, another uncertainty that must be accounted for is that the brain moves
after trepanation of the skull due to cerebrospinal fluid (CSF) coming out of the burr
hole, which is known as brain shift (Miyagi et al., 2007; Khan et al., 2007). Moreover,
(slight) uncertainties are also introduced due to the physically unavoidable mechanical
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errors of stereotactic devices.

Depending on the considered target structures, two approaches to deal with these un-
certainties, which may also be used in combination, are the acquisition of intraoperative
microelectrode recordings (MERs) (Israel and Burchiel, 2004), and intraoperative test
stimulations in order to assess how well the (awake) patient reacts to stimulations at
particular sites (Deuschl et al., 2006). The motivation of using MERs is that certain
brain structures have unique functional signatures that help to identify their location.
For that, up to five microelectrodes are inserted in parallel, and the tissue activity at
the electrodes’ tips is recorded at regular intervals along the linear electrode trajectory.
However, in order to make use of the full potential of the MERs, an excellent spatial
visualisation ability is demanded from the neurosurgeon. In particular, the neurosurgeon
mentally matches the MERs to the individual patient’s anatomy as seen in the preopera-
tive images. Given a patient-specific 3D model of the brain structures, this process can
be simplified by algorithmically matching the MERs to the 3D model (Gemmar et al.,
2008; Chaovalitwongse et al., 2011).

8.2.2 Patient-specific 3D Models

The previous elaborations emphasize one of the benefits of the availability of patient-
specific 3D models for DBS. A further use-case of such a 3D model would be the
post-operative analysis by visualising the 3D brain structures in combination with the
implanted electrodes, the volume of tissue activated (Butson et al., 2007), and fibre
tractography derived from diffusion imaging (Calabrese, 2016).

Whilst a patient-specific 3D model could in principal be created manually by the slice-wise
annotation of the 3D image, it is too costly to be used as part of the daily clinical routine.
Moreover, due to different anatomical structures having similar intensity patterns in MR
images (Tu et al., 2008), the manual segmentation is error-prone. Further disadvantages
of the slice-wise manual annotation include the consistency in only a particular image
slice (Fischl et al., 2002), and reproducibility issues (Castro et al., 2006; Haegelen et al.,
2012; Igual et al., 2013). An alternative to the manual annotation would be a fully
automated approach. However, a problem of a fully automated procedure for the creation
of patient-specific 3D models from images is the clinical acceptance for such highly
individualised surgeries. Interactive segmentation approaches, where the user interacts
with the segmentation algorithm and gradually produces the final segmentation, try to
combine the advantages of both worlds.

One approach of implementing interactive deep brain structure segmentations is to use
variational interpolation (Turk and O’Brien, 1999). In combination with the simultane-
ous multi-modality visualisation and histogram equalisation, this leads to an improved
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consistency of the results compared to the slice-wise annotation (Bernard et al., 2014).
The idea is that the user draws few contours on orthogonal slices of the objects to be
segmented, and then the variational interpolation method creates a smooth 3D object
from these contours. However, a downside of using variational interpolation is that it
uses smoothness as non-specific general prior. Moreover, another difficulty is that the
resulting interpolation due to the variational interpolation method may be non-intuitive
and difficult to control in certain scenarios, which is especially a problem in a clinical
setting.

Idea 2. (Interactive brain structure segmentation based on SSMs)
The idea is to replace the smoothness assumption in variational interpolation by a more
specific prior, namely SSMs. With that, a shape-aware surface reconstruction from sparse
user-input can be achieved. In the following, a sketch is given how the methodologies
introduced in this thesis can be used to implement such a method. For that, it is assumed
that a collection of training images is available in order to learn the SSM.

1. Image Alignment: Using the approaches in Chapters 6 and 7, all training images
are (coarsely) aligned by rigid transformations such that they are represented in the
same coordinate system.

2. Image Annotation and Correspondence Establishment: After the brain structures of
interest have been annotated in the training images, correspondences are established
using the method introduced in Chapter 3.

3. Dimensionality Reduction: A multi-object shape deformation model with local support
deformation factors is created (Chapter 4).

4. Interactive Segmentation: By incorporating the shape-aware surface reconstruction
method (Chapter 5) into an interactive environment, the shape deformation model
then serves as prior within an interactive setting.

Points 1–3 can be considered the training phase, which has to be conducted only once.
The outcome of the first three steps is a deformable atlas of the brain structures of interest.
Once this atlas has been established, it can be used for the segmentation of unseen images.
As such, for using the above procedure in a clinical setting, given the deformable atlas,
only the fourth step needs to be conducted in order to obtain a patient-specific 3D model
from a new patient’s images. In the following, some application-specific aspects of the
four points are discussed.

1. Image Alignment : It is proposed to use the rigid transformation model in order to
preserve angles and distances such that the original patient anatomy is retained.
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This alignment is essential for the subsequent correspondence establishment and
the dimensionality reduction.

2. Image Annotation and Correspondence Establishment : In order to create the SSM
it is necessary that annotations of the images are available. However, this can
be performed in an interactive manner by the approach based on variational
interpolation, simultaneous multi-modality visualisation and histogram equalisation
discussed above (Bernard et al., 2014). Since this procedure is conducted only
during training phase, the disadvantage of the difficult intuition of variational
interpolation in certain scenarios is less prominent compared to a clinical setting.

3. Dimensionality Reduction: The purpose of using a multi-object shape model is
to capture the inter-relation of the deformations between the individual brain
structures. By capturing this inter-relation, structures that are visually easy to
identify can provide additional geometric information to guide the identification of
structures that are more difficult to identify visually.

Due to the alignment of all images it can be expected that there are only minor pose
variations between the individual patient’s images (and their segmentations). Thus,
the alignment step commonly performed during PDM creation, cf. Section 1.1.2, is
not conducted. Minor pose variations, as well as the relative pose between individual
brain structures in the multi-object model, are implicitly captured by the PDM.
Whilst translations can be perfectly captured using a model that is linear in shape
space, for the rotational parts only a first-order approximation is captured by the
linear model.

A model with local support factors, instead of global support factors, has two main
advantages in this context. On the one hand, due to the locality of the deformations,
the model is more flexible and thus better capable to adapt to the individual patient
anatomy. On the other hand, due to the spatially localised deformations, structures
that are far away from each other do not directly affect the deformations of each
other, thus allowing a finer control of the interactive procedure. One potential
disadvantage is that, due to the increased flexibility, it may be more difficult to
fit a model with local support factors coarsely to the patient anatomy during the
initialisation phase. Thus, another option that may be worth investigating is to
consider a hybrid model that has both global and local support deformation factors.

4. Interactive Segmentation: The idea of the interactive environment is that the
user gradually draws (partial) contours of those (parts of) objects that exhibit a
distinctive boundary in the images. Immediately after the user draws a contour,
points on the contour are extracted and used as input to the surface reconstruction
method. The surface reconstruction method then fits the SSM to these points. This
procedure is repeated until the user is satisfied with the result.

127



Chapter 8. Potentials in Deep Brain Stimulation

One particular problem is that the quality of SSMs depends on the amount of available
training data (Heimann and Meinzer, 2009). However, the annotation of image data is
costly and thus the quantity of available data is limited. This has the effect that the
resulting SSM may not be able to generalise well to unseen data. One way of tackling this
problem is to synthetically enlarge the training data, as for example done by Cootes and
Taylor (1995). Another approach to achieve additional elasticity in the SSM, also closely
related to the synthetic data enlargement, is the direct modification of the covariance
matrix, as done by Wang and Staib (1998, 2000), which has also been adopted in the
approach described in Chapter 4. For the particular application of shape-aware surface
reconstruction, an alternative to modifying the SSM to obtain an increased flexibility
is to not only allow for the linear SSM deformation, but also for additional free-form
deformations. These free-form deformations can directly be reflected in the surface
reconstruction procedure in a similar manner as the Coherent Point Drift algorithm does
for nonlinear point-set registrations (Myronenko et al., 2007; Myronenko and Song, 2010).
Another approach, which would also be able to deal with extreme outlier cases, is to
provide the option of correcting inaccurate segmentations in a post-processing manner.
The latter approach of a posterior correction is also interesting for learning the shape
model in an iterative manner. For learning the shape model in an iterative manner,
initially a (weak) SSM is trained from only few training instances. However, as soon as
a new image has been satisfactorily segmented (by first fitting the weak SSM and then
manually correcting the result), these images can be used in order to train a (slightly
stronger) SSM.
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