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Luxembourg Centre for Systems Biomedicine (LCSB)
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LCSB – Research Groups & Interdisciplinarity
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Research Focus & Main Goals

“Small N, Large P“

problem

Research focus: Analysis of omics data from case/control studies

���� GOALS: Interpret biological differences between patients and controls,

identify candidate disease genes & biomarkers for validation

Patients Controls

~50k-600k

features

(genes,

proteins,

SNPs, etc.)

~100 – 1000 samples
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Overview of machine learning analysis types for omics data

Unsupervised Analyses:
(no sample labels used)

- Clustering samples (columns)
- Clustering biomolecules (rows)
- Bi-Clustering (rows & columns)

Supervised Analyses

(using labelled training data):

- Differential expression analysis
- Pathway enrichment analysis
- Network/causal reasoning canalysis
- Sample classification/regression
- Gene/protein function classification 

“hard“
“hard“
“hard“

“easy“
“easy“
“hard“
“hard“
“hard“

Complexity:

Example: High-
throughput gene 
expression data
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Common challenges for functional genomics data analysis (1)

• Small number of samples in relation to large number of biomolecules

(“Small N, Large P“ problem) � “curse of dimensionality“

• Large number of uninformative and/or functionally redundant biomolecules

(shared function & expression/activation pattern)

• Real signal shifted and scaled by additive and multiplicative noise

bias prior to 
normalization

after 
normalization
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Common challenges for functional genomics data analysis (2)

• Outliers (among biomolecules or samples) and transcriptional amplification in 

sample subset

• Imbalances in no. of samples per condition (e.g. lack of control samples)

• Confounding factors and inadequate matching of patients & controls

False colour heat map (left) and bar chart (right) of distances between microarrays
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The “curse of dimensionality“

For increasing numbers of 

biomolecules/features:

• the space spanned by these

features grows exponentially

� the available data

becomes sparse

� more data points

needed to train

reliable diagnostic

models
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Strategies to address common issues in omics analysis

Statistical approaches:

• Use dimension reduction techniques, dedicated methods to exploit on-chip replicates

and spike-in controls, model averaging methods for machine learning (e.g. ensemble 

classification, consensus clustering)

Data integration methods / exploiting prior biological knowledge:

• Apply meta-analyses across multiple studies, combining information across 

complementary omics & clinical data in supervised machine learning models

• Analyse and integrate data on the level of cellular pathways & molecular networks

Computer-assisted study design / power calculation:

• Design the study with a sufficient number of replicates per class/condition and 

balanced classes; reduce impact of confounding factors via algorithmic sample 

selection/matching
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Using prior knowledge in omics data analysis - Overview

Data integration at the 

level of biomolecules:

• Exploit functional relationships 

between biomolecules:

� cellular pathway membership

� protein complex membership

� interaction in gene regulatory

or protein interaction networks

• Exploit biomolecular relationships

across different omics:

� genes encoding proteins

� enzymes converting metabolites

…

Data integration at the level of samples:

• Exploit meta information for each sample 

(clinical data, sample quality, storage duration)

• Exploit correlation patterns across different 

omics data collected for the same samples

...
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Pathway-based sample classification (PathVar software)

Motivation: Gene/protein expression alterations in diseases tend to be

co-ordinated at the level of cellular pathways

� Use “pathway fingerprints“ (weighted sums of gene expression levels from

all pathway members) as candidate biomarkers with increased robustness

Omics dataCellular pathwaysPathway databases

Compute weighted sum of

expression levels for each

pathway (e.g. using PCA)

Pathway-level activity

measures (fingerprints) 

Map expression

levels

Min. size:

10 genes
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Pathway-level sample classification results 

• Map omics data onto Gene Ontology (GO) biological processes

(example: Parkinson‘s disease case/control post-mortem brain transcriptomics data)

• Use “pathway fingerprints“ and a Support Vector Machine for classification

(10-fold cross-validation; feature selection: empirical Bayes moderated t-statistic)

87.5 ± 17.784.2 ± 18.286.7 ± 18.591.7 ±±±± 13.6GO - MDS

95 ±±±± 10.592.5 ± 12.195 ±±±± 10.589.2 ± 14.2GO - PCA

84.2 ± 18.290 ± 12.984.2 ± 13.981.7 ± 17.5GO - Max.

71.7 ± 24.979.2 ± 23.368.3 ± 25.171.7 ± 21.9GO - Min.

86.7 ± 14.379.2 ± 20.181.7 ± 17.576.7 ± 18.8GO - Stddev.

91.7 ± 13.695 ±±±± 10.591.7 ± 13.684.2 ± 13.9GO - Median

89.2 ± 14.292.5 ± 12.190 ± 12.984.2 ± 13.9GO - Mean

92.5 ± 12.192.5 ± 12.189.2 ± 14.289.2 ± 14.2Gene-level model

100503010Attribute type

Accuracy and stddev. for different numbers of selected attributes
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Molecular networks as prior knowledge (GenePEN software)

Motivation: Disease-associated perturbations are often localized in biological networks. 

Finding these network clusters may help us to develop more robust biomarker models.

Question: How can we find clustered gene/protein groups efficiently, accounting for 

their predictivity and connectedness in the network?

Example sub-network (Meta-

analysis of 8 post-mortem 

microarray datasets for 

substantia nigra tissue) :

Over-expressed in PD

Under-expressed in PD
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GenePEN - Workflow

Input:

• Omics dataset X (p rows = biomolecules, n columns = samples)

• Class labels y (e.g. “patient” or “control”)

• Table A of interactions/similarities between rows in X (e.g. protein-protein interactions)

Output:

• A subset of discriminative biomolecules (rows in X) representing a connected component 

in A  (� an altered sub-network) that provides a signature to classify new samples
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GenePEN - Approach

Idea: Cast the feature selection as an optimization problem, maximizing two quantities:

� the estimated diagnostic prediction accuracy of the classifier

� the connectedness of selected features/biomolecules in the network

� formulate an objective function (details not shown):

loss-function (minimize error)       trade-off parameter penalty-function (network grouping)

� Output after optimization procedure: A selection of features (w) that minimizes the objective 

function (features which minimize the prediction error and are well-grouped in the network)
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• Parkinson’s disease test dataset: Microarray gene expression data from post mortem

brain samples (substantia nigra) of 43 PD patients and 50 controls (Zhang et al., 2005)

• Network data: Human genome-scale protein-protein interaction network constructed from 

80,543 public, direct physical interactions between 10,042 proteins. 

• Comparison to other approaches: GenePEN was compared against related methods 

with other penalty functions:

� Lasso (Tibshirani, 1996)              � sparse feature selection, but no feature grouping

� Elastic Net (Zou & Hastie, 2005) � cannot account for external network data

� Pairwise Elastic Net � can take external network data into account

(Lorbert, 2010 & 2013)                     to achieve a partial grouping of features

GenePEN – Application to Parkinson‘s disease data
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Comparison: Largest clusters found for 50 selected genes

Lasso Elastic Net PEN (2010)

PEN (2013) GenePEN ���� cluster of 34 genes

(accuracy comparable to best alternative)
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GenePEN: Biological analysis of predictive sub-networks

Largest connected graph component 

identified for Parkinson’s disease:

• red = over-expressed in PD

blue = under-expressed in PD

node borders = individual statistical 

significance (from gray to blue with 

increasing significance)

• individually significant genes are  

significantly over-represented in the 

sub-network (p = 0.01)

• GSK3B contains polymorphisms

associated with Parkinson’s disease
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Summary

• Many tools are available to address statistical challenges in omics data analysis 

� computer-guided study design, dedicated normalization methods, 

exploiting prior knowledge from molecular networks and pathways

• PathVar uses “pathway activity fingerprints“ derived from omics data and known

pathway definitions to build robust diagnostic machine learning models

• GenePEN discovers discriminative sub-networks for diagnostic sample 

classification and enables an interpretation of disease-associated molecular 

alterations at the network level
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