System Testing of Timing Requirements based on
Use Cases and Timed Automata

Chunhui Wang, Fabrizio Pastore, Lionel Briand
SNT - University of Luxembourg
Email: {chunhui.wang,fabrizio.pastore,lionel.briand} @uni.lu

Abstract—In the context of use-case centric development and
requirements-driven testing, this paper addresses the problem
of automatically deriving system test cases to verify timing
requirements. Inspired by engineering practice in an automotive
software development context, we rely on an analyzable form of
use case specifications and augment such functional descriptions
with timed automata, capturing timing requirements, following
a methodology aiming at minimizing modeling overhead. We
automate the generation of executable test cases using a test
strategy based on maximizing test suite diversity and building
over the UPPAAL model checker. Initial empirical results based
on an industrial case study provide evidence of the effectiveness
of the approach.

I. INTRODUCTION

For most embedded systems, standards require system
testing to explicitly demonstrate that the software meets its
functional and safety requirements, e.g. the capability of the
system to promptly detect error conditions.

Motivated and inspired by actual engineering practice in
the automotive domain, this paper addresses the automatic
generation of system test cases for testing software timeliness,
i.e. the ability of the software to satisfy timing constraints. A
solution is devised to target embedded system development
contexts where use case specifications are used to spec-
ify functional requirements and partial timed automata are
adopted to capture timing requirements. We tackle two major
issues: (1) the automation of the test generation process with
minimal modelling overhead, and (2) the identification of input
sequences that increase the likelihood that the system will
break timing constraints.

Existing techniques for testing software timeliness rely upon
models that capture the timing constraints of the system,
mostly Timed Automata [1], [2], [3], [4] or UML state-
charts [5]. To limit modelling effort, our observation is that,
in practice, software engineers exclusively use timed automata
(or statecharts) to model the state transitions controlled by
timing constraints, but not the complex functional logic that
brings the system into a specific state. The consequence is
that automated techniques are currently used only to generate
abstract test cases that are then concretized into executable
test cases by means of test adaptation or test transformation
approaches [6].

Unfortunately, the cost for transforming an abstract test case
into an executable test case is not negligible. Test engineers
actually need to carefully read the functional specifications of
the software to determine the inputs that bring the system into

a specific state. The only possible alternative to fully automate
the generation of executable test cases is to rely on very
detailed system models, e.g. automata that integrate timing
constraints and constraints on events and data inputs. However,
if functional requirements have already been documented, for
example in the widely-used form of use case specifications,
software engineers are unlikely to produce additional detailed
models.

Semi-automated approaches that support software engineers
in automatically deriving system test cases from textual re-
quirement specifications exists [7], [8], [9], [10], but they
do not deal with the problem of testing software timeliness,
e.g. a temperature error can only be confirmed when the
measurement value goes out of range for a certain time to
prevent signal toggling. For example, UMTG [10], from our
previous work, addresses this challenge in the context of use
case-driven development and relies on the natural language
processing of use case specifications, elicited using a restricted
format, to extract the information required for testing the
system.

When testing software timeliness, software engineers must
take into account the fact that the violation of timing con-
straints may depend on specific sequences of inputs. In other
contexts, meta-heuristic search has shown to be effective
in identifying the software inputs that lead to worst-case
scenarios in embedded systems in terms of reaching critical
states [11] or missing task deadlines [12]. In our context, our
objective is different as we want to identify critical sequences
of inputs leading to violations of timing requirements and,
further, we must search for such sequences without running
test cases on the deployment platform to guide us.

This paper proposes Test Generation combining Timed
Automata and Use Case Specifications, TAUC, an approach
and a tool for automatically generating executable test cases
targeting software timeliness. TAUC automatically builds the
detailed models necessary to generate executable test cases
by combining the information appearing in functional spec-
ifications (use case specifications) and models of the timing
requirements of the system (timed automata). It thus prevents
software engineers from designing very detailed timing au-
tomata when use case specifications are available. In addi-
tion, TAUC automatically builds test suites that exercise the
functionality regulated by timing requirements by optimising
diversity among test inputs, thus increasing the probability of
identifying problems dependent on specific input sequences.

This paper has been accepted for publication in the proceeding of the 10th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2017), IEEE. DOI: 10.1109/ICST.2017.34.

Fabrizio PASTORE
This paper has been accepted for publication in the proceeding of the 10th IEEE International Conference on Software Testing, Verification and Validation (ICST 2017), IEEE. DOI: 10.1109/ICST.2017.34.

To automate testing, TAUC needs to determine what func-
tional inputs are needed to reach certain system states, and for
this reason, TAUC must identify the dependencies between
functional scenarios and timed automata. More specifically,
TAUC determines which functional scenarios bring the system
into a specific state, and which functional scenarios can take
place when the system is in a given state. TAUC relies upon
UMTG to identify the test inputs that exercise functional
scenarios, and automatically processes test inputs and timed
automata to identify their dependencies.

TAUC automatically models these dependencies by aug-
menting the set of user-provided timed automata capturing
timing requirements. This helps contain the engineers’ mod-
elling effort and enables the use of UPPAAL [13], a model
checker for symbolic reachability analysis of timed automata.
It is employed for the generation of test cases that include
both inputs derived from use case specifications and timing
constraint on the inputs, e.g. the delay between two inputs,
derived from timed automata.

Test generation with UPPAAL guarantees edge coverage,
i.e. functional coverage, but does not aim at increasing the
chance to identify the violation of timing requirements. For
this reason TAUC includes a meta-heuristic search algorithm
that iteratively modifies the test cases generated by UPPAAL
to maximize test suite diversity within a certain test bud-
get. Test suite diversity is maximized by deriving test cases
that provide diverse sequences of inputs to the system, thus
increasing the probability to identify violations of timing
requirements that depend on specific input sequences.

The paper proceeds as follows. Section II provides back-
ground information on UMTG. Section III motivates our work.
Section IV provides an overview of TAUC. Sections V to IX
detail TAUC steps. Section X reports on empirical results ob-
tained with an industrial case study in the automotive domain.
Section XI discusses related work. Section XII concludes the

paper.
II. BACKGROUND ON UMTG

TAUC relies upon UMTG to process functional require-
ments. This Section provides background information on the
modelling methodology that should be adopted by software en-
gineers to elicit functional requirements that can be processed
with UMTG. To this end, we present a simplified version of the
design artifacts of BodySense, an automotive system developed
by our industrial partner IEE [14].

A. Eliciting Use Case Specifications

We expect that software engineers elicit functional require-
ments by means of use case specifications written according to
the RUCM format. RUCM is a use case format that provides
restriction rules and keywords constraining the use of natural
language in use cases. For details, the reader is referred to [15].
UMTG [10], on which TAUC builds, relies on the application
of RUCM in order to enable the automated analysis of use
case specifications.

TABLE I
BodySense USE CASES

Use Case: Identify the Occupancy Status of a Seat

Precondition

The system has been initialized

1.1 Basic Flow

1.The system REQUESTS capacity FROM the seat sensor.
2.INCLUDE USE CASE Self diagnosis.

3.INCLUDE USE CASE Classify occupancy status.

4.The system VALIDATES THAT no error is detected and no error is qualified.
5.The system VALIDATES THAT the occupant class is valid.

6.The system SENDS the occupant class TO AirbagControlUnit.

10 |Postcondition: The occupant class has been sent to AirbagControlUnit.
11 |1.2 Specific Alternative Flow

12 |RFS 4

13 |1. The system sends the error class to AirbagControlUnit.

14 |2. ABORT.

15 |Postcondition: Classification filters have been reset.

O 001NN W —O

30 |Use Case: Self Diagnosis

31 |2.1 Basic Flow

32 |1.The system REQUESTS temperature FROM the temperature sensor.
33 |2.The system VALIDATES THAT the temperature is valid.

37 |2.2 Specific Alternative Flow
38 |RFS 2
39 |1. The system sets the TemperatureError as detected.

40 |2. RESUME 3.

Table I shows two use cases of BodySense, Identify the
Occupancy Status of a Seat (Line 0) and Self Diagnosis (Line
30). The former describes the main functionality of BodySense,
while the latter deals with the identification of runtime errors,
e.g. it detects the presence of a TemperatureError if the
temperature measured by the sensor is out of range (Line 39).
In Table I, RUCM keywords enabling automated processing
of use case specifications are written in capital letters.

In addition to use case specifications, UMTG also requires
a domain model of the system. The design of domain models
is a common software analysis practice [16]. To enable test
case generation, UMTG requires that software engineers spec-
ify constraints expressed in the Object Constraint Language
(OCL [17]), based on the domain model. These constraints
precisely specify conditional statements, effects of internal
steps, and post-conditions of use case flows.

The constraint TemperatureSensor: self.temperature.value
> 0 and self.temperature.value < 40 for example, is used
to further specify the conditional statement in Line 33 (the
temperature is valid) and shows that the temperature is valid
when its value lies between 0 and 40.

B. Identification of Test Inputs with UMTG

UMTG identifies a set of functional scenarios, i.e. sequences
of steps in a use case specification, that ensure that the basic
flow and each alternative flow of the use case specifications
are covered at least once.

Fig. 1 shows the functional scenario that covers line 39 of
BodySense use case specifications. Each scenario is a sequence
of steps in the use case specification. UMTG associates to each
step the following information: Input steps are linked to the
domain entities received as input by the system. Conditional
steps are linked to the OCL constraints that further specify
them, e.g. the step of Line 33, which detects the presence
of a temperature value out of range, is linked to constraint

UseCaseStart Condition Internal
(line 2) Input (line 4) | (lme 32) (lme 33) (lme 39)
Vi oy "C'o}i(z} v 'C'Z)},}}'rb'i;[r'i
#3 !
Legend:

|:| Use Case Step

Constraint/

Domain Entity

The false branch of
the conditional
step has been taken

Constraints mentioned in the paper:

Constraint#2: context TemperatureSensor: self.temperature.value > 0
and self .temperature.value < 40)
Constraint#3: context TemperatureError: self.isDetected = true

Constraint#4: context Error: self.isDetected = false and self.isQualified = false
Fig. 1. Example of a functional scenario

occupancyStatus

= -Occupanc: 4
:BodySense :OccupancyStatus
occupantClassForAirbagControl = OccupantClass::Init
temperatureSensor - ;
errors P . . :AirbagControlUnit
V “TemperatureSensor | ‘emperature status = OccupantClass::Error
‘TemperatureError a0
isDetected = true ‘Temperature
isQualified = false value = 76

Fig. 2. Object diagram generated by UMTG.

#2 (see Fig. 1). Internal steps are linked to postconditions
that characterize the state resulting from their execution. The
internal step of Line 39, for example, is linked to constraint
#3, which indicates that the system has set TemperatureError
as being detected (see Fig. 1).

The constraints appearing in a use case scenario are used
by UMTG to identify test inputs. For each scenario under test,
UMTG builds a path condition and uses a constraint solver
dedicated to OCL to identify an instance of the domain model,
i.e. an object diagram, for which the path condition evaluates
to true. Fig. 2, for example, shows an object diagram that
satisfies the path condition required to exercise the scenario in
Fig. 1.

III. MOTIVATING EXAMPLE

This section presents an example that shows that abstract
test cases generated with traditional approaches usually require
additional engineers effort to be used as executable test cases,
while TAUC automatically generates executable test cases thus
saving engineers effort.

A. Modelling of Timing Requirements

The timing properties of a system are typically modelled
using Communicating Timed Automata [18] or UML state-
charts. In this paper we make use of the former, and adopt the
formalization from [13].

A timed automaton is a tuple (L,10,C, A, V, E,I), where
L is a set of locations, [0 € L is the initial location, C is
a set of clocks, A is a set of actions, V' is a set of state
variables, F is a set of edges between locations. I is a set
of invariants assigned to locations. Each edge may have an
action, a guard and a set of updates. Updates are expressed in
form of assignments that can reset clocks or state variables.

Each location might be associated with a state invariant that
constrains clocks or state variables.

With communicating timed automata, the state of the system
is captured by the values of state variables and the set of
active locations across all the automata. Actions are used to
synchronize different automata. Each action is expressed with
the notation event! or event?. The notation event! indicates that
the event is sent when the edge is fired, while the notation
event? indicates that the edge is fired only if this event has
been received from another automaton.

Fig. 3-a shows a timed automaton that captures the timing
properties concerning the qualification of temperature errors.
The variable z is a clock variable, while isDetected and
isQualified are two state variables. The edge that connects
locations NotDetectedNotQualified and DetectedNotQualified
can be fired only when the event detected, that indicates
that a temperature error has been detected, has been received
by the automaton. The location DetectedNotQualified has an
invariant that indicates that the clock variable x must be below
4800 ms when the location is active. The guard condition
on the edge between the location DetectedNotQualified and
DetectedQualified indicates that this edge cannot be fired
if the clock x is below 3100. In effect the edge between
locations DetectedNotQualified and DetectedQualified can be
fired anytime when the clock variable x has a value between
3100 and 4800.

B. Limitations of Test Generation Based on Timed Automata

Software engineers may use the timed automaton of Fig. 3-
a to automatically generate timeliness abstract test cases by
using an automated technique [19]. The first three operations
performed by an automatically generated test case might be:
(1) generate the event detected (which is supposed to bring
the system into the state DetectedNotQualified from the initial
state NotDetectedNotQualified), (2) wait for 4801 milliseconds
(to be sure that the edge has been fired), (3) check that the
system is in the state DetectedQualified and otherwise fail.

To transform this abstract test case into an executable test
case the software engineer needs to determine how to generate
the event defected. This activity is not trivial because one has
to carefully read the software specifications to determine the
conditions under which a temperature error is detected. For
a complex system, finding all the temperature requirements
could be particularly expensive. For example, the engineer
might need to read all the specification documents to be sure
that the temperature range does not vary according to working
conditions (e.g. in the presence of other system errors).

C. Automated Testing with TAUC

TAUC assumes that software engineers have produced use
case specifications written in the RUCM format like the one
shown in Section II, and timed automata that capture timing
requirements for the identification of errors, such as the one
in Fig. 3-a.

The test generation process implemented by TAUC guaran-
tees that all the edges of the timing requirements automata

detected?

isDetected == true

isDetected := true, x := 0 scenario? .
. ! Xx:=0 DetectedNotQualified
NotDetectedNotQualified DetectedNotQualified NotDetectedNotQualified X <= 4800
2 i0?
= unDetected? 4800 ccenarion)—_) scenario?
unDetected?| isDetected := false, x := 0 isDetected == false lsDet()e(c.t_e(é == false isDetected == true
X >= 6100 x >= 3100 x >= 6100 x >= 3100
isQualified : false isQualified := true isQualified : false isQualified := true
5 isDetected == true
detected? scenario? .
isDetected := true, x := 0 detected? isDetected == false x:=0 isDetected == true
: i0?
x <= 8100 unDetected? ‘ scenario? scenario? scenario”?
NotDetectedQualified DetectedQualified X <=8100 = jsDetected == false i
isDetected := false, x := 0 NotDetectedQualified X =0 DetectedQualified

(a)

(b)

Fig. 3. (a) Automaton that captures how TemperatureErrors are qualified and dequalified in BodySense. (b) Same automaton, but automatically augmented
by TAUC with dependencies to functional scenarios. Edges are labelled by the triple guard (green), action (light blue), and update (blue).

are covered at least once and that, furthermore, test suites
contain test inputs that are combined in ways to maximize
their diversity.

For example, TAUC may generate a timeliness test case for
BodySense that begins in the state NotDetectedNotQualified
(initial state of the system), simulates the sending of the value
76 from the temperature sensor (in this way the edge is fired
and the new active location is DetectedNotQualified), waits for
4801 milliseconds, and checks that the system is in the state
DetectedQualified. In contrast to the test case generated with a
traditional approach (Section III-B), the test case generated by
TAUC does not require that the software engineer manually
determines that an input temperature with a value above 40 is
needed to reach location DetectedNotQualified. The concrete
test input to be used is automatically generated by TAUC.

To identify the concrete test inputs to be used in a test case,
TAUC relies upon the identification of dependencies between
functional scenarios and timed automata. These dependencies
are used to determine which functional scenarios need to be
exercised to bring the system to a specific state. In the case
of BodySense, TAUC automatically detects that there is a
dependency between the event detected on the automata in
Fig. 3-a and the use case step of Line 39, The system sets
the TemperatureError as detected. This dependency enables
TAUC to determine that the inputs that exercise the use case
scenario that covers Line 39, i.e. an object diagram that assigns
the value 76 to the temperature sensor, is necessary to bring
the system into the state DetectedNotQualified.

TAUC also generates test cases that highly differ from one
another, to maximize the diversity of the test suite. A test case,
different from the one presented above, is generated by TAUC
to send an interrupt, followed by a message, while the system
is in the location DetectedNotQualified. Such test cases check
the effect of different inputs on timing requirements. Details
are provided in the coming sections.

IV. OVERVIEW OF TAUC

When use case specifications are used to specify the soft-
ware functional behaviour, TAUC spares software engineers

4. Generation of a Timeliness
Test Model

Environment
Automata

2. Identification of

! 1. Analysis and Design | 2 f
' Environment Automata | | Functional Scenarios
i Use Cases 1 .
! Scenario

Use Case Scenarios
Automata

' TimingReq Automata |
: Domain Model Object Diagram

Augmented TimingReq
Automata

3. Identification of Depend:

3.1 Analysis of Object DiagramAssignments
Input Assignments Output Assignments
State Assignments

‘5. Identification of Timeliness Scenarios

6. Generation of Executable Timeliness
Test Cases

3.2 Identification of | | 3.3 Identification of | | |16 Wi P
functional scenarios that | | State Invariants Gli/]lag‘l])‘i‘:lt; 1|62 %2?5:?32 é:?'s‘:;act
trigger state transitions PV bhieE | st Casesinto
Legend Automated -7 Manual
Output Activity Activity Executable Test Cases

Fig. 4. Steps of TAUC.

from the burden of manually determining the functional inputs
required for testing timing requirements. TAUC works in six
steps, shown in Fig. 4.

In Step 1, analysis and design, software engineers produce
RUCM use case specifications that capture the functional
requirements of the system, and timed automata that capture
both the timing requirements of the system and the timing
properties of the environment. Note that in practice, our
observation is that such specifications are commonly used to
communicate with customers and other stakeholders.

In Step 2, identification of functional scenarios, the tech-
nique relies upon UMTG to automatically identify functional
scenarios, and the inputs required to trigger each scenario.

Step 3 concerns the identification of the dependencies
between functional scenarios and timed automata. We identify
two types of dependencies: (1) the outputs produced by the
system during the execution of specific functional scenarios
may correspond to events that trigger state transitions, (2)
specific functional scenarios might be executed only in certain
system states, i.e. only when specific state invariants hold.
TAUC automatically identifies these dependencies.

In Step 4, TAUC generates a Timeliness Test Model, i.e.
a collection of models that include environment automata
provided by software engineers in Step 1, automata generated
by TAUC to model functional scenarios (scenario automata),
and automata generated by TAUC by extending timing require-

ments automata. Timeliness Test Models capture the depen-
dencies between functional scenarios and timing requirements
automata, and thus enable the adoption of UPPAAL for the
generation of executable test cases targeting timeliness.

In Step 5, TAUC derives timeliness scenarios. A timeliness
scenario is a sequence of delays, edges and locations of the
Timeliness Test Model, that specifies a valid execution. A
single timeliness scenario generally covers multiple functional
scenarios. TAUC generates an initial suite of fimeliness sce-
narios with UPPAAL. This initial test suite is then extended by
TAUC using a meta-heuristic search strategy that maximizes
diversity among the timeliness scenarios in the test suite.

In Step 6, TAUC generates executable test cases from
the timeliness scenarios derived in Step 5. This activity is
performed by means of a mapping table provided by software
engineers.

The next sections describe in details the different steps of
TAUC with the exception of Step 2, which coincides with the
execution of UMTG, already described in Section II.

V. ANALYSIS AND DESIGN

Software engineers produce the artifacts required by TAUC:
use case specifications written according to the RUCM format,
the domain model (designed as UML class diagram), and
timed automata for timing requirements. The notations for
use case specifications and timed automata have already been
introduced in Sections II and III. This section focuses on
the methodological aspects of the analysis and design phase,
where we specify the system aspects that should be modelled
by means of timed automata: the timing requirements under
test, and the relevant aspects of the environment.

A. Modelling Timing Requirements

The identification of timing requirements is a manual
activity. We expect that software engineers define a timed
automaton for each entity in the domain model that features
one or more timing constraints.

State variables appearing in the timed automata have coun-
terparts in the domain model. More specifically, each state
variable is also an attribute of the entity modelled by the timed
automaton. Fig. 3-a shows the automaton that captures the
timing constraints related to the entity TemperatureError. The
variables isDetected and isQualified are two attributes of the
entity TemperatureError and, therefore, the assignments to the
state variables isDetected and isQualified capture changes to
the state of the entity TemperatureError.

We observed that in practice, software engineers avoid de-
tails that are unnecessary to describe timing requirements, i.e.
details about the functional operations that trigger certain state
transitions. In fact software engineers often produce timed
automata with edges synchronized with events that stand for
the execution of one, or several, specific functional scenarios.
These events are not generated by any other automata of the
system; we call these events scenario events, since they are
expected to be generated as a result from the completion of a
functional scenario.

Carlnfo!
x> 40

!
DMAinterrupt! ErrorListRequest!
x> 41 X > 40

@ Occupancylnfo!

x> 40

(@) (b)

Fig. 5. Environment automata for BodySense

Section VI shows how TAUC automatically detects scenario
events without requiring additional information from software
engineers. This allows software engineers to follow usual
design practices with reasonably small timed automata models.

B. Modelling the Environment

Environment automata are used to capture the arrival fre-
quency of inputs, including interrupts or messages. This in-
formation is necessary to avoid the generation of invalid test
cases, e.g. test cases that send inputs with a frequency not
supported by the system bus.

We model the arrival of inputs by means of events. The
event names must match entity names used in the domain
model. Fig. 5 shows two environment automata of BodySense
that capture timing characteristics of interrupts and messages.
For example, the minimal interarrival time of DMA interrupts
is 41 milliseconds (a), while messages’ minimal interarrival
time is 40 milliseconds (b).

VI. IDENTIFICATION OF DEPENDENCIES

Dependencies between timed automata and functional sce-
narios are of two kinds: (1) outputs produced by functional
scenarios may fire state transitions, (2) certain functional
scenarios can be executed if and only if the system has reached
specific states, i.e. specific state invariants are true.

To identify these dependencies, TAUC works in three steps:
First, TAUC looks for scenario outputs and assignments to
state variables by analyzing the object diagram associated by
UMTG to each specific scenario. Then it compares scenario
outputs and update operations in the automata to identify
the edges fired by each scenario. Finally, it relies upon state
assignments to identify the state invariants of each functional
scenario.

A. Analysis of attributes in object diagrams

To identify the dependencies between scenarios and timed
automata, TAUC first classifies each value assigned to the
attributes of the object diagrams to distinguish between the
inputs required to exercise a functional scenario, the state in-
variants that must hold when a functional scenario is executed,
and the output generated during the execution of the scenario.

TAUC classifies the assignments in the object diagrams as
input, output, and state.

Output assignments set values to satisfy the post-conditions
of internal steps. Input assignments and state assignments
instead set values that satisfy the constraints associated to the
conditional steps of a scenario. Assignments to attributes of

Temperature.value:=76 InputAssignment: regards an attribute of class

Temperature, linked to the input step of line 32.

TemperatureError.isDetected:=true OutputAssignment: generated to satisfy
constraint#3, which is linked to an internal step.

TemperatureError.isQualified:=false StateAssignment: generated to satisfy constraint
#4. TemperatureError is not linked to any input step.

Fig. 6. Assignments required to exercise the scenario in Fig. 1.

domain entities appearing in input steps are considered input
assignments. Assignments to attributes of domain entities not
associated with input steps are state assignments (attributes
that are not input parameters must be state variables).

Fig. 6 shows a classification of the assignments appearing
in the object diagram of Fig. 2. The assignment Tempera-
ture.value := 76 in Fig. 6 is an input assignment. Indeed, the
attribute value, which belongs to the entity Temperature, is
referred to in the input step of Line 32 (Fig. 1). The assignment
TemperatureError.isDetected := true is an output assignment
since it satisfies the constraint #3, which is associated with
the InternalStep of Line 39 (Fig. 1). The assignment Temper-
atureErrorisQualified := false is a state assignment since it
satisfies the negation of constraint #4, which is associated with
the conditional step of Line 7 (Fig. 1), and TemperatureError
is not an input, thus implying TemperatureError.isQualified is
a state variable.

B. Identification of functional scenarios that trigger state
transitions

In Section V we have described how software engineers
adopt scenario events to reduce modelling effort. To further
reduce engineers effort, TAUC automatically detects the func-
tional scenarios that dispatch each scenario event.

By relying upon scenario events, software engineers hide
details about the complex relationships between system inputs
and the firing of an edge. For example in the automaton of
Fig. 3-a, the edge that connects states NotDetectedNotQuali-
fied and DetectedNotQualified is fired upon the reception of
the scenario event detected. The model does not specify the
input constraints under which the edge is fired, but shows the
effect of the execution of this edge on the system state, i.e.
the assignment of the value true to variable isDetected.

Since scenario events trigger edges that update the system
state, to automatically detect the scenarios that dispatch sce-
nario events, TAUC assumes that a functional scenario triggers
a scenario event if it brings the system into the same state, i.e.
if it generates a set of output assignments that is a superset of
the assignments in the update operations associated with the
edge that consumes the scenario event.

The functional scenario in Fig.1 leads to the output assign-
ment TemperatureError.isDetected:=true (see Fig. 6), which
appears also in the updates of the edge that connects locations
NotDetectedNotQualified and DetectedNotQualified (see the
timed automata of Fig. 3-a). For this reason TAUC determines
that the scenario in Fig. 1 is the one that dispatches the
event detected that triggers the edge between the two above-
mentioned locations.

C. Identification of state invariants

Functional scenarios are enabled only when specific state
invariants hold. For example, in BodySense, a scenario that
performs self diagnosis in the absence of error conditions
cannot be exercised if the system already detected errors in
previous executions.

State invariants are implicitly specified in use case specifica-
tions by means of constraints that capture properties of state
variables. TAUC makes the state invariants associated with
each functional scenario explicit by identifying the constraints
that determine the value of each state assignment. State
assignments aim to satisfy conditions that must hold to execute
a specific functional scenario and these conditions are thus
state invariants.

In the running example the state assignment TemperatureEr-
ror.isQualified:=false results from Constraint #4 in Fig. 1. This
constraint is thus a state invariant that must hold to execute
the functional scenario.

In the presence of constraints that relate both input and state
variables, TAUC extracts the subexpression concerning state
variables only. In the presence of multiple state assignments,
TAUC builds a state invariant that joins all the constraints that
determine the value of the different state variables.

VII. GENERATION OF THE TIMELINESS TEST MODEL

We use the term Timeliness Test Model to indicate a
network of communicating timed automata that enable the
generation of timeliness test cases.

Timeliness Test Models include the environment automata,
scenario automata that capture the behaviour of functional
scenarios, and augmented timing requirements automata. Sce-
nario automata and augmented timing requirements automata
are automatically generated by TAUC. Augmented timing
requirements automata include guard conditions and events
that capture the dependencies between timing requirements
automata and functional scenarios. The Timeliness Test Mod-
els capture all the information required for test generation in
the form of timed automata, thus enabling TAUC to rely upon
UPPAAL for the automatic generation of test cases.

Scenario automata

For each functional scenario, TAUC automatically generates
a scenario automaton. Each scenario automaton contains two
edges.

The first edge of the scenario automaton captures dependen-
cies by means of a guard condition for the state invariant of
the scenario, and an update for each output assignment. This
means that the edge can be fired, i.e. the scenario is executed,
only if the state invariant holds. The firing of the edge updates
the state of the system as specified by the output assignments.
In other words, the scenario automaton shows when a scenario
executes and how it affects the state of the system. Given that
state invariants identified in the previous step are expressed
as OCL constraints, TAUC translates these constraints in a
format compatible with the UPPAAL syntax. According to our
experience, the set of primitive types supported by UPPAAL

(boolean, integer, and double) is rich enough to not limit the
kinds of constraint that can be translated in practice.

Fig. 7 shows an example of generated automaton. In the
case of Fig. 7, the guard condition on the first edge indi-
cates that TemperatureError should not have been already
qualified at the beginning of the scenario (as shown by the
guard condition TemperatureError.isQualified == false). The
update operations on the edge capture the scenario output by
setting the TemperatureError as detected (see the assignment
TemperatureError.isDetected := true).

The second edge of the scenario automaton is used to
synchronize scenarios and augmented timing requirements
automata. This edge generates the event scenario, which is
consumed by the augmented timing requirement automata, and
indicates that the scenario has been executed to completion.
This edge also presents a guard condition that captures the
scenario frequency (provided by the software engineer). In
the case of BodySense, each scenario is executed every 1700
milliseconds (See Fig. 7).

temperatureError.isQualified == false
temperatureError.isDetected := true, x := 0
Q
X <= 1700
Start x == 1700 Running

scenario!
Fig. 7. Automaton for the Scenario in Fig. 1

Augmented timing requirements automata

The next step is to modify and augment timing requirements
automata. TAUC proceeds as follows. For each scenario event
mapped to a scenario output, TAUC replaces the event name
in the timing requirements automata with the synchronization
event scenario?, which indicates that the event is dispatched
only if a scenario had been executed to completion.

Furthermore, TAUC adds a guard condition that checks if
the output of the scenario just executed corresponds with the
output assignment mapped to the scenario event. This way
an edge with a scenario event is fired only if the scenario
that generates the corresponding output assignment has been
executed.

Fig. 3-b shows, for example, that the edge from location
NotDetectedNotQualified to location DetectedNotQualified is
fired only if a functional scenario has been executed and
temperatureError has been set to detected. The latter is cap-
tured through a guard condition which distinguishes different
scenarios.

VIII. IDENTIFICATION OF TIMELINESS SCENARIOS

TAUC automatically generates the timeliness test suite for
the system, which consists of a set of timeliness scenarios.
A timeliness scenario is a sequence of delays, edges and
locations of the Timeliness Test Model, that specifies a valid
execution.

A minimal test adequacy criterion to test software timeliness
is to exercise all the timing constraints at least once. This
is achievable by relying upon a test suite that covers all
the locations with invariants including clock variables and all
the edges with guard conditions including clock variables. In

practice this condition can be easily satisfied by a test suite
that achieves edge coverage. However, in addition to this, we
should consider that some failures may only be triggered by
specific sequences of test inputs that might not be generated
by achieving edge coverage.

In our context we thus need to generate timeliness scenarios
in such a way that, within a test budget, we achieve edge
coverage and maximize our chances to find a sequence of
inputs that triggers a failure. Moreover, these two goals should
be achieved without relying upon the execution of test cases
during test generation. In fact in many embedded systems, the
test budget, i.e. the number of test cases that can be executed,
is limited because test execution is particularly expensive, e.g.
the test execution environment and hardware must be manually
set up. Given our objectives and constraints, we present below
a test strategy based on maximizing diversity among timeliness
scenarios.

Our strategy to increase the chances to trigger a failure, is to
generate a test suite that: 1) executes as many diverse paths as
possible that include the same edges relevant to timeliness, 2)
executes paths with a maximum diversity of inputs, interrupts,
and messages. However, in the presence of multiple timed
automata, the search space for the identification of execution
sequences is large and, for a given test budget, cannot be
exhaustively explored to identify an optimal diverse subset
of timeliness scenarios. For this reason the test generation
process implemented by TAUC relies upon a metaheuristic
search algorithm that maximizes the differences among the
timeliness scenarios in the test suite.

The algorithm performs four activities described in the
following paragraphs: Generation of Scenarios That Cover
All Edges, Generation of New Scenarios, Computation of
Similarity Score, Identification of Scenarios that Maximize
Diversity.

Generation of Scenarios That Cover All Edges

To achieve edge coverage, TAUC relies upon the approach
proposed in [19]. It builds a reachability formula that checks
for the existence of a trace for which all the edges are covered.
TAUC then relies upon UPPAAL to identify the shortest
timeliness scenario (called trace in UPPAAL) that satisfies the
given formula.

Some of the events generated by UPPAAL automata corre-
spond to parametric system inputs. In the case of BodySense
this happens for messages of type Carlnfo, which have two as-
sociated parameters, velocity and beltStatus. Parameter values
are not generated by UPPAAL, but are required to properly
execute the system. For this reason, TAUC processes the
timeliness scenarios generated by UPPAAL and automatically
selects the parameter values to be associated to parametric
inputs. TAUC simply assigns to each parameter a valid, ran-
domly selected value. In the case of BodySense, we deal with
both enumerations and numeric values. Enumeration values
are selected from the values indicated in the domain model,
while numeric values are randomly selected within a range
specified by the software engineer.

Generation of New Scenarios New scenarios are then gen-
erated by mutating an existing scenario. To this end TAUC
selects an existing timeliness scenario and a mutation point, i.e.
a position in the scenario, and then generates a new scenario by
copying the events in the scenario up to the mutation point and
then by filling the rest of the new scenario with new events.
These new events are identified by employing the simulation
functionality provided by UPPAAL, which, given the current
state of the automata, returns a list of enabled edges. New
events are randomly selected till the same length of the initial
timeliness scenario is reached. Values of parametric events are
generated as well, by following the same procedure indicated
previously.

Computation of Similarity Score The diversity among the
timeliness scenarios in a test suite is maximized when the
average pairwise similarity between all pairs of timeliness
scenarios in a test suite is minimized [20].

To compute the similarity score, TAUC takes into account
differences in both event names and event parameter values.
TAUC relies upon the Lenvenshtein string alignment algorithm
to identify matching events [21]. Similarly to [20], TAUC
assigns a score of +3 to matching events, -2 to mismatching
events, and -1 to gaps. In addition to this, in the presence
of mismatching parameter values, TAUC decreases the score
by a value between -1 (gap) and -2 (mismatch). More pre-
cisely, TAUC decreases the score by 1 plus the fraction of
mismatching parameter values. Fig. 8-a shows the similarity
score calculated for the alignment of two timeliness scenarios
of BodySense.

Identification of Scenarios that Maximize Diversity

To build the timeliness test suite, TAUC first augments the
UPPAAL test suite with newly generated timeliness scenarios
until the test suite reaches the desired size (budget). Such new
scenarios are then iteratively updated to maximize diversity.

TAUC replaces a scenario already in the test suite with a
new scenario only if the new scenario augments the diversity
of the test suite. More precisely, every time a new scenario
is generated, TAUC identifies the scenario that should be
replaced to obtain a test suite with the lowest average pairwise
similarity. Test generation terminates after a given number of
iterations provided by the user.

IX. GENERATION OF EXECUTABLE TEST CASES

For each timeliness scenario TAUC generates a correspond-
ing abstract test case. Abstract test cases are an intermediate
representation used by TAUC for the generation of the final
executable test cases.

Abstract test cases are composed of a sequence of input
operations, delays and oracles. Fig. 8-b shows an abstract test
case generated from a timeliness scenario of BodySense. Input
operations are followed by the input parameters to be set,
delays are identified by the keyword wait followed by the time
to wait for, while oracles (identified by the keyword check in
Fig. 8-b) consist of a list of expressions that check the values
of observable system variables.

TABLE I
MAPPING TABLE FOR BodySense

Pattern to match (Operation and Inputs) [Result (Operation and Inputs)

Input [TemperatureSensor.value = (¥) [SetBus Pin =TEMPERATURE Value = $1

Check | TemperaturcError.isDetected=true | CheckBus | TEMPERATURE_ERROR=01h

TABLE III
FAULT COVERAGE MEASURED AGAINST 323 FAULTY VERSIONS.

Average Coverage (£ Std. Dev) by Test suite size (number of test cases)
25 50 75 100 122
TAUC 85% +0 88% +0.41 91% =+0.46 91% +0.38 91% +0.42
Random | 7% +o 12% +3.26 22% +3.16 30% +£5.96 40% +3.58
Manual - - - - 60%

To generate test inputs TAUC focusses only on the edges
that belong to environment automata and scenario automata.
For each edge of environment automata that generates an
event, TAUC identifies a corresponding test input (event names
correspond to entities of the domain model, see Carlnfo in
Fig. 8). Every time TAUC encounters the first edge of a
scenario automata, it adds to the abstract test case the input
assignments associated with the scenario to be executed (see
Step 1 in Fig. 8-b). All the other edges of environment and
scenario automata are ignored because they correspond to
synchronization operations between automata.

To generate delays TAUC takes into account the fact that
timing properties are typically characterized by uncertainty
expressed in terms of ranges in which edges are expected to
be taken. TAUC focusses on the maximum amount of time
in the range and introduces a delay using a wait operation
blocking for the maximum amount of time in the range.

To generate oracles TAUC should ideally add, for each edge,
an operation that checks if the expected target location has
been reached. However, given that many embedded systems,
such as BodySense, do not make their current internal state
fully observable, TAUC can be configured to derive an oracle
that checks for the values assigned to observable system
variables. Fig.8-b shows an oracle derived from the edge that
connects location DetectedNotQualified with location Detect-
edQualified (Step 6 of Scenario 2).

Abstract test cases are then translated into executable test
cases by means of mapping tables as described in [10].
Mapping tables contain regular expressions that match the
inputs in the abstract test cases and allow to replace abstract
test inputs with concrete test inputs. Table II shows a portion
of the mapping table used to transform the abstract test case
in Fig. 8-b into the executable test case of Fig. 8-c.

X. EMPIRICAL EVALUATION

We empirically evaluated the fault detection capability of
TAUG, i.e. the capability of TAUC to determine if the software
implementation does not meet its timing requirements. The
case study used for our experiments is BodySense, which is a
typical, non-trivial embedded system developed on a real-time
operating system - MicroC/OS [22]. BodySense is already in
production and presents several critical timing requirements
that IEE engineers must verify in compliance with the ISO-
26262 safety standard [23].

To perform our experiments, we implemented TAUC in
Java and integrated it with UMTG [24] and UPPAAL. TAUC

Timeliness Scenario 1 Timeliness Scenario 2 Similarity |Scenario Abstract Test Case Executable Test Case
Score Steps
edge(ScenarioAutomatal .Start , edge(ScenarioAutomata2.Start , 2 1 [Input| System.initialized = true] | [Reset__][Time=INIT TIME]
ScenarioAutomatal .Running) ScenarioAutomata2 Running) .
scenario scenario 3 | Input] TemperatureSensor.value =76] | [SetBus _][Pin=TEMPERATURE Value=76 |

ControlRequest(ClearData) - -1

| Input] ...ClassForAirbagControl = Adult |

SetPin__|[Channel=RELAY Capacitance=85]

edge(TemperatureErrorNotDetectedNotQualified ,edge(TemperatureError.NotDetectedNotQualified 43
TemperatureError.DetectedNotQualified) TemperatureError.DetectedNotQualified) -

CarInfo(Driving, UnBuckled) CarlInfo(Driving, Buckled) -1.5

clock x in [3100,4800] clock x in [3100,4800] +3

Wait | Value=4800

edge(TemperatureError.DetectedNotQualified, edge(TemperatureError DetectedNotQualified,

Lo +3
TemperatureError.DetectedQualified) TemperatureError.DetectedQualified)

|CheckBus|[TEMPERATURE_ERROR=81h |

6 [Check] TemperatureError.isQualified = true|

@

® ©

Fig. 8. (a) Alignment of two Timeliness Scenarios, (b) Abstract Test Case generated from Timeliness Scenario 2, and (c) Executable Timeliness Test Case.

prototype is available at the following URL: https://taucgen.
github.io.

In our experiments we compared the fault coverage of the
BodySense test suite manually written by software engineers
familiar with the system and domain, with the fault cover-
age of 10 test suites (to account for randomness) generated
with TAUC and with a random approach, which serves as a
baseline. To be fair, we configured the random approach to
generate timeliness scenarios with the same number of events
in the test cases generated by TAUC. We considered test suites
of various sizes, including 25, 50, 75, 100, and 122 test cases.
The BodySense actual test suite contains 122 test cases and
was therefore considered to represent a realistic test budget.

Modifying the implementation of BodySense to create faulty
versions for purely experimental purposes and running all
the test suites on all mutant implementations on the actual
deployment platform is far too expensive. For this reason we
automatically generated 323 faulty versions of the Timeliness
Test Model by means of dedicated mutation operators, then
simulated the execution of the test cases against the mutated
models by adapting the approach described in [25] to our case.

Different mutation operators for timed automata are de-
scribed in literature [26], [27]; for our experiments we consid-
ered the mutation operators that may impact timing require-
ments, including Restricting Clock Conditions [26], Widen-
ing Clock Conditions [26], Shifting Clock Conditions [26],
Change Target Location (CTL) [27]. We did not consider
operators that alter the functional behaviour only, for example
the ones that change the source and the target of an edge.
However, to simulate the case in which the system is stuck in
a state and breaks timing requirements, we configured the CTL
operator to create self loops on edges with clock variables.

We generated each faulty version of BodySense models
by executing a single mutation operator on the Timeliness
Test Model. All the guard conditions, invariants, and edges
of the Timeliness Test Model are mutated once by each
applicable mutation operator. Mutation operators may lead to
equivalent mutants, i.e. timed automata that satisfy the original
requirements. We manually removed all the equivalent mutants
and ended up with an evaluation benchmark of 323 mutant
versions of BodySense timeliness test models.

Simulation of test cases execution [25] is based on UPPAAL
and requires that executable test cases are translated into
sequential timed automata to be composed with the BodySense
mutated models. The generated automata have edges that

either send inputs to the system or validate operation results.
A dedicated testing clock is used to trace execution time.
Operation results are validated by means of guard conditions
that check if system variables have specific values when the
testing clock reaches a given value, i.e the time appearing in
the wait conditions of the executable test cases. An error state
is reached when the values are not the expected ones. A test
case is considered to fail if an error state is reachable.

Results. We measured the percentage of faults (mutants)
identified by each test suite. A test suite identifies a fault
if at least one of its test cases fails. Table III reports the
results obtained with the three approaches (for TAUC and
random we report the average across the 10 runs). The table
clearly shows that TAUC detects between two and twelve
times more faults than random testing, depending on the
test suite size. It is also clear that TAUC is significantly
more effective than expertise-based manual testing with 31%
additional faults detected, on average. In addition, TAUC is
more effective than both random and manual testing even with
much smaller-size test suites. This mostly results from the
capability of TAUC to generate input sequences covering non-
trivial interactions between system components. For example,
to increase test diversity, TAUC generates test cases that send
multiple messages on the bus thus enabling the detection of
faults that slow down the execution of the interrupt handler,
which in turn causes a delay in the qualification of errors.

TAUC subsumes the other approaches, i.e. TAUC detects
all the faults detected by the random and the manual test
suites. However, TAUC does not identify all the faults. Since,
in the case of BodySense, TAUC has to rely upon partial
oracles that check state variable values only and not the
complete system state also captured by active locations. Such
information, in embedded systems, is often not observable, as
discussed in section IX. The faults not covered by TAUC are
caused by the CTL operator, which leads to mutated edges
that correctly update system variables but bring the system
into a wrong state. TAUC test cases always exercise the fault,
i.e. cover the mutated edge, but only the test cases that verify
additional system behaviors after reaching the faulty state can
detect the fault (some of TAUC test cases do this by sending
additional inputs to the system and by detecting that the system
response is not the expected one). Test cases that terminate just
after reaching the faulty state instead cannot fail. Manual and
random test cases suffer from the same problem.

Testing Cost. In the case of TAUC, testing cost depends
on the effort required for producing timed automata, use case
specifications, and mapping tables.

To perform the experiment, there was no additional cost
associated with writing use case specifications as they were
already produced for communication purposes and to perform
functional testing with UMTG.

We supported software engineers in the design of 25 timed
automata: three environment automata (with a total of 6 loca-
tions, 11 edges, and 8 guard conditions) and 22 requirement
automata that model error conditions. Note that modelling of
requirement automata is simplified by the fact that the different
errors are managed in similar ways (all the automata match
the same template, which has 4 locations, 10 edges, 2 guard
conditions and 2 scenarios events). Such numbers suggest
that the complexity of the models required by TAUC can be
managed by experienced software engineers. In addition, given
that timed automata provide a clear representation of timing
requirements, usually spread across textual specification docu-
ments, engineers agreed that their value go beyond the benefits
provided by automatic test generation.

XI. RELATED WORK

Techniques that support testing of software timeliness in-
clude model-based approaches, and approaches based on meta-
heuristic search.

Model-based approaches for testing software timeliness
often rely upon timed automata [1]. Most test generation
approaches rely upon coverage strategies adapted from tradi-
tional finite state machine testing [28], [29]. Other approaches
adopt model checkers for test generation. In these cases,
the model is typically annotated with auxiliary variables or
automata that enable the formulation of the testing purpose
or the coverage criterion as a reachability problem [1], [19].
Finally, some approaches rely upon coverage criteria explicitly
defined for guard conditions over clock variables [3], [4].
The main limitation of these approaches is that they require
complete models, i.e. models that contain all the information
required to identify the inputs to be sent to the system in
order to trigger state transitions. Without complete models,
model-based approaches can be used to generate abstract
test cases only, which then need to be concretized through
test adaptation, or test transformation approaches [6]. TAUC
instead requires minimal modelling of the timing properties
and no additional adaptation or transformation layers. It further
relies upon use case specifications, which are commonly used
in many domains for communication purposes, to generate the
test inputs that lead to targeted state transitions.

Other approaches rely upon other formalisms such as UML
Statecharts [5], Extended Finite State Machines [30], and
Attribute Event Grammars [31], but they share the same
practical limitations mentioned above with approaches based
on timed automata.

Metaheuristic search has been successfully applied to test-
ing deadline misses and computing worst case execution time.
Di Alesio et al. combine genetic algorithms and constraint

programming to identify scenarios in which the tasks execution
time is close or breaks the deadline [12]. TAUC has a
different goal in a different context, i.e. the system testing
of timing requirements, expressed as timed automata, based
on information available in use case specifications.

Igbal et al. [11] use search-based algorithms to stress
test real-time software by repeatedly executing the software
while simulating the environment. Their goal, which is quite
different from ours, is to reach critical error states. Another
main difference is that TAUC does not require the execution of
test cases, thus being more suitable when test cases execution
is expensive or the environment cannot be fully simulated.

A few approaches use genetic algorithms to generate test
cases specifically targeting timing properties specific to in-
terrupt handlers [32], [33]. In contrast, TAUC is generally
applicable to all systems whose functionality is captured as
use case specifications.

XII. CONCLUSION

In this paper we presented TAUC, a model-driven approach,
inspired by industrial practice, to automate the system testing
of software timeliness properties in the context of use-case
driven development, when system requirements are expressed
as use cases to communicate with clients and other stakehold-
ers. In addition to use case specifications, TAUC relies on
timed automata to capture timing requirements and relevant
environment properties. It generates effective test cases by
means of a meta-heuristic search algorithm that maximizes
test suite diversity. Our objective is to minimize modelling
overhead while enabling effective test generation in contexts
where it cannot be guided by test execution results, e.g.,
embedded systems.

TAUC processes use case specifications to identify the test
inputs that fire the state transitions in timed automata. It
automatically identifies dependencies between use case speci-
fications and timed automata, and captures them in timeliness
test models that are also timed automata, thus enabling the
use of UPPAAL for test automation. Timeliness test models
are fed into UPPAAL to generate test cases that guarantee a
basic coverage of edges with timing requirements.

To generate test cases that effectively stress timing require-
ments given a certain budget (test suite size), TAUC uses a
meta-heuristic search algorithm that iteratively improve the
test cases generated with UPPAAL to build a test suite that
maximizes test case diversity, which has shown in past studies
to increase fault detection.

Empirical results obtained with an industrial case study
show that, given a constant test budget, TAUC is significantly
more effective than a manual test suite devised by experienced
engineers and random testing.

ACKNOWLEDGMENT

Supported by the Fonds National de la Recherche, Luxembourg
(FNR/P10/03) and the European Research Council under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant
agreement number 694277). We would like to thank Thierry Stephany
and the IEE software engineers for their support.

[1]

[2]

[3]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

REFERENCES

A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and
A. Skou, “Testing real-time systems using uppaal,” in Formal Methods
and Testing, ser. Lecture Notes in Computer Science, R. Hierons,
J. Bowen, and M. Harman, Eds. Springer Berlin Heidelberg, 2008,
vol. 4949, pp. 77-117.

A. En-Nouaary, R. Dssouli, and F. Khendek, “Timed wp-method: testing
real-time systems,” IEEE Transactions on Software Engineering, vol. 28,
no. 11, pp. 1023-1038, Nov 2002.

M. S. AbouTrab, M. Brockway, S. Counsell, and R. M. Hierons,
“Testing real-time embedded systems using timed automata based
approaches,” Journal of Systems and Software, vol. 86, no. 5, pp.
1209 — 1223, 2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121212003391

A. En-Nouaary and A. Hamou-Lhadj, “A boundary checking technique
for testing real-time systems modeled as timed input output automata
(short paper),” in Proceedings of the 2008 The Eighth International
Conference on Quality Software, ser. QSIC ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 209-215. [Online]. Available:
http://dx.doi.org/10.1109/QSIC.2008.53

T. Miicke and M. Huhn, “Generation of optimized testsuites for uml
statecharts with time,” in Testing of Communicating Systems, ser. Lecture

Notes in Computer Science, R. Groz and R. Hierons, Eds. Springer
Berlin Heidelberg, 2004, vol. 2978, pp. 128-143.
M. Utting and B. Legeard, Practical Model Based Testing. ~Morgan

Kaufmann Publishers, 2006, ch. 8.

M. Kaplan, T. Klinger, A. M. Paradkar, A. Sinha, C. Williams, and
C. Yilmaz, “Less is more: A minimalistic approach to UML model-
based conformance test generation,” in /st International Conference on
Software Testing, Verification, and Validation (ICST’08), 2008, pp. 82—
91.

G. Carvalho, D. Falcdo, F. Barros, A. Sampaio, A. Mota, L. Motta, and
M. Blackburn, “Test case generation from natural language requirements
based on SCR specifications,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC’13), 2013, pp. 1217-1222.

A. L. L. de Figueiredo, W. L. Andrade, and P. D. L. Machado,
“Generating interaction test cases for mobile phone systems from use
case specifications,” SIGSOFT Software Engineering Notes, vol. 31,
no. 6, pp. 1-10, 2006.

C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, “Automatic
generation of system test cases from use case specifications,” in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015,
pp. 385-396. [Online]. Available: http://doi.acm.org/10.1145/2771783.
2771812

M. Z. Igbal, A. Arcuri, and L. Briand, “Empirical investigation
of search algorithms for environment model-based testing of real-
time embedded software,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 199-209. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336777

S. Di Alesio, S. Nejati, L. Briand, and A. Gotlieb, “Combining genetic
algorithms and constraint programming to support stress testing of task
deadlines,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 2015.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL — a Tool Suite for Automatic Verification of Real-Time
Systems,” in Proceedings of Workshop on Verification and Control of
Hybrid Systems II1, ser. Lecture Notes in Computer Science, no. 1066.
Springer—Verlag, Oct. 1995, pp. 232-243.

“IEE sensing solutions,” http://www.iee.lu.

T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from
use case models to analysis models: Approach and experiments,” ACM

(16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

Transactions on Software Engineering and Methodology, vol. 22, no. 1,
2013.

C. Larman, Applying UML and Patterns:An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall
Professional, 2002.

“The Object Constraint
http://www.omg.org/spec/OCL/.

R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183-235, Apr. 1994. [Online]. Available:

http://dx.doi.org/10.1016/0304-3975(94)90010-8
A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou, “Time-

optimal real-time test case generation using uppaal,” in Formal Ap-
proaches to Software Testing, ser. Lecture Notes in Computer Science,
A. Petrenko and A. Ulrich, Eds. Springer Berlin Heidelberg, 2004, vol.
2931, pp. 114-130.

H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1, p. 6, 2013.

V. LEVENSHTEIN, “Binary codes capable of cor- recting spurious
insertions and deletions of ones.” Probl. Inf. Transmission, vol. 1, pp.
8-17, 1965.

Micrium Embedded Software, “Micro c/o0s,” https://www.micrium.com,
visited in 2016.

ISO, “ISO-26262: Road vehicles — functional safety.”

C. Wang, E Pastore, A. Goknil, L. C. Briand, and Z. Igbal, “Umtg:
A toolset to automatically generate system test cases from use case
specifications,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New York,
NY, USA: ACM, 2015, pp. 942-945.

A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and A. Skou,
Time-Optimal Real-Time Test Case Generation Using Uppaal. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 114-130.

M. S. Aboutrab, M. Brockway, S. Counsell, and R. M. Hierons, “Testing
real-time embedded systems using timed automata based approaches,”
J. Syst. Softw., vol. 86, no. 5, pp. 1209-1223, May 2013.

B. K. Aichernig, F. Lorber, and D. Nickovi¢, Time for Mutants — Model-
Based Mutation Testing with Timed Automata. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 20-38.

T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Transactions on Software Engineering, vol. 4, no. 3, pp. 178-187,
May 1978. [Online]. Available: http://dx.doi.org/10.1109/TSE.1978.
231496

R. Cardell-Oliver and T. Glover, “A practical and complete algorithm
for testing real-time systems,” in Formal Techniques in Real-Time and
Fault-Tolerant Systems, ser. Lecture Notes in Computer Science, A. Ravn
and H. Rischel, Eds. Springer Berlin Heidelberg, 1998, vol. 1486, pp.
251-261. [Online]. Available: http://dx.doi.org/10.1007/BFb0055352
M. Zheng, V. Alagar, and O. Ormandjieva, “Automated generation of
test suites from formal specifications of real-time reactive systems,”
Journal of Systems and Software, vol. 81, no. 2, pp. 286-304, Feb.
2008. [Online]. Available: http://dx.doi.org/10.1016/j.js5.2007.05.009
M. Auguston, J. B. Michael, and M.-T. Shing, “Environment behavior
models for scenario generation and testing automation,” in Proceedings
of the 1st International Workshop on Advances in Model-based Testing,
ser. A-MOST °05. New York, NY, USA: ACM, 2005, pp. 1-6.
[Online]. Available: http://doi.acm.org/10.1145/1082983.1083284

J. Regehr, “Random testing of interrupt-driven software,” in Proceedings
of the 5th ACM International Conference on Embedded Software, ser.
EMSOFT °05. New York, NY, USA: ACM, 2005, pp. 290-298.
[Online]. Available: http://doi.acm.org/10.1145/1086228.1086282

T. Yu, W. Srisa-an, M. B. Cohen, and G. Rothermel, “Simlatte: A
framework to support testing for worst-case interrupt latencies in em-
bedded software,” in Proceedings of the 7th International Conference on
Software Testing, Verification and Validation (ICST’14). 1EEE, 2014,
pp. 313-322.

Language (OCL),”

