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SUMMARY

We present a remeshed particle-mesh method for the simulation of three-dimensional compressible turbulent
flow. The method is related to the mesh free smoothed particle hydrodynamic (SPH) method, but the
present method introduces a mesh for efficient calculation of the pressure gradient, and laminar and
turbulent diffusion. In addition, the mesh is used to remesh (reorganise uniformly) the particles to ensure
a regular particle distribution and convergence of the method. The accuracy of the presented methodology
is tested for a number of benchmark problems involving two- and three-dimensional Taylor-Green flow,
thin double shear layer, and three-dimensional isotropic turbulence. Two models were implemented, direct
numerical simulations, and Smagorinsky model. Taking advantage of the Lagrangian advection, and the
finite difference efficiency, the method is capable of providing quality simulations while maintaining its
robustness and versatility. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Smoothed Particle Hydrodynamics (SPH) method was introduced independently by Gingold
and Monaghan [2], and by Lucy [4], with the aim to simulate astrophysical problems. Over the years
SPH has been extended and applied in many areas. Stam and Fiume [18] first used SPH to simulate
fire. Müller et al. [23] developed an SPH method which can be applied on real-time fluid simulation.
The SPH method was also extended in free surface flows problems [15], and low-Reynolds number
viscous flows [10, 19, 32], Cummins et al. [12] extended SPH to simulate incompressible fluids,
followed by Shao et al. [35] who propose an SPH simulation for Newtonian and non-Newtonian
flows with a free surface. Cleary and Monaghan [38] extended SPH to heat transfer simulation, and
finally the method was developed for multi-phase flows simulation by Morris [31].

Turbulence modelling with SPH is a rather new field of research. Monaghan [16] introduced a
Lagrangian-averaged Navier-Stokes turbulence model modifying the original SPH method for the
simulation of two-dimensional turbulence. The method is computationally inefficient due to the
reduced time step compared to the spectral method one [13], but the simulated energy spectrum
and velocity profiles were found to be in good agreement with the results obtained using spectral
methods.

Three SPH turbulence models were introduced by Violeau and Issa [8], two algebraic models,
and one based on the Reynolds stress model. Two-dimensional open channel turbulent flow and
two-dimensional collapsing water column cases were simulated, the kinetic energy, dissipation rate
and eddy viscosity results were in good agreement with Monaghan [16] results, but the method
may not be competitive in comparison with grid-based method, due to the small time step required
resulting a large computational cost.

Dalrymple and Rogers [1] used a large eddy simulation (LES) turbulence model to simulate two-
dimensional breaking waves with SPH. Robinson and Monaghan [24] studied how SPH performs
in a direct numerical simulation (DNS) of decaying turbulence in a two-dimensional no-slip wall-
bounded domain. They showed that the original SPH method can reproduce the energy cascade,
which filled to an end state of a large monopole vortex that filled the domain, but their work was
limited to two-dimensional cases.

Ellero et al. [22] and Shi [41] studied studied isotropic homogeneous turbulence cases with high
Mach number and showed that SPH in its original form has an effective implicit viscosity. Finally
Adami [33] proposed a new algorithm combining the homogenisation of the particle configuration
by a background pressure which reduces the artificial numerical dissipation.

In this work we present a hybrid remeshed smoothed particle hydrodynamics method (hrSPH)
for the simulation of three-dimensional turbulent flows. Rather than simplifying the framework
and solve the system of equations solely on the grid, we combine an Eulerian mesh with
Lagrangian particles to use the advantages of both schemes. We want to keep the free of the
convection Courant Friedrichs Lewy (CFL) condition that the classical SPH method enjoys,
whilst to take advantage of the computational efficiency to compute the derivatives on the
grid, which is computationally cheaper than the nearest neighbour search of mesh free particle
methods. The hrSPH also shares the adaptive character of SPH. The hrSPH framework is the
first step toward a wider vision, in which the Lagrangian part (i.e. the particles) will play an
important rule when a complex geometry is needed. After all, it combines the abilities to apply
Particle-Particle interactions to a part of the PDEs and Finite Differences to the other part.

The method is based on the remeshed smoothed particle method introduced by Chaniotis et
al. [20] and Chatelain et al. [26]. The presented method differs from that the one of Chaniotis,
as we take advantage of both the Lagrangian properties of the SPH along with the efficiency of
Finite Difference scheme in which we interpolate the particles and compute the governing
equations on the right hand side, rather than performing Particle-Particle interactions. We
furthermore extend the framework of Chatelain et al. [26] in order to solve the full set of the
Navier-Stokes equations. Subsequently, we add a the subgrid model to the system of equations.
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The particles are remeshed (uniformly reinitialised) onto uniform grid using a third order
interpolation scheme to overcome the clustering or distortion of particles.

The mass and the impulse of the particles are interpolated onto the mesh, where the
moments(mass, momentum, angular momentum, etc.) rate of change is computed. These are used
to update the velocity and the position of the particles.

Direct numerical simulations (DNS), along with Smagorinsky [17] model are applied in this
study. Details of the governing equations are presented in section 3, and the hrSPH method is
explained in section 4, and finally the two- and three-dimensional results are presented in section 5.

2. GOVERNING EQUATIONS

The compressible flow is governed by the Navier-Stokes equations describing conservation of mass

Dρ

Dt
= −ρ∂ui

∂xi
(1)

and conservation of momentum,

ρ
Dui
Dt

=
∂p

∂xi
+
∂τij
∂xj

+
∂τ sgsij

∂xj
(2)

where

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (3)

where D�
Dt = ∂�

∂t + (u · 5) (�) denotes the material derivative, ui is the velocity, p is the pressure, ρ
is the density, τij is the shear stress, µ is the dynamic viscosity, δij is the Kronecker delta, and τsgs
is the sub-grid stress tensor, which is zero in case of direct numerical simulation.

In the presented work the flow is uniquely described by the Reynolds number Re = Uρ0L/µ,
and the Mach number Ma = U/c. L is the characteristic length, ρ0 is the reference density, U is the
reference velocity, and c is the speed of sound.

To close the system (Eqs. (1-2)), the following equation of state is used,

p = ρc2 (4)
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2.1. Turbulence modelling

Direct numerical simulations are generally limited to low Reynolds number flow due to the available
computational resources. In the present work we model the turbulent sub-grid stresses using the
standard Smagorinsky model [17], defined as

τ sgsij = ρ (Cs∆)
2
√

2SijSijŜij (5)

with

∆ = h, (6)

where Cs is a non dimensional constant for which values ranging from 0.1 to 0.24 have been
suggested in literature [34], ∆ is the model length scale which is proportional to the the grid spacing
Eq. (6), h are the mesh spacing, Ŝij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
∂uk

∂xk
δij is the the filtered strain tensor, and

(Cs∆)
2√

2SijSij is the norm of the filtered strain tensor, where Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

3. NUMERICAL MODELLING

3.1. The hybrid remeshed SPH method

The basic idea of the hybrid remeshed smooth particle method (hrSPH) is to discretise the governing
equations using Lagrangian particles carrying mass and impulse; the hybrid remeshed SPH method
computes the right-hand side (RHS) of the governing equations by interpolating the mass and
impulse of the particle onto a regular mesh, and from these, the flow density and velocity fields
are obtained on the mesh nodes. These in turn allow for efficient calculation of the RHS using high
order finite differences.

The used interpolating technique is explained in the following part.

3.1.1. Smoothing Interpolation

The particle-to-mesh and mesh-to-particle interpolation is obtained using moment conserving
interpolation. The interpolation was introduced to minimise the error that ordinary (not continuous
everywhere) interpolations produce, through a moments-conserving interpolation (conservation of
mass, momentum, angular momentum, etc.) [39, 28, 9]. However in mesh-to-particle interpolation,
conservation of moments is generally not possible due to the non-uniform spacing of the target
particles, though the interpolation error decreases as a power of the mesh spacing h. This power is
called the order of convergence of the interpolation scheme.

The strengths (characteristics) of the particles (mass, and impulse) read:

wp =

(
mp

mpup

)
, (7)

where, up is the three velocity component u, v, w, and mp is the mass of the particle.
Fig. 1 shows 2-dimensional particle-to-mesh interpolation, where the strength of the particle is

interpolated to the mesh using high order kernel as following:

ω(xm) =

N∑
p=1

ωpW (xm − xp, h), (8)

where N is the number of particles, h is the mesh spacing, W is the high order kernel, ωp is the
strength of the particles, xm is the position of mesh node m, and xp is the position of particle p.
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Figure 1. Schematic representation of particle-to-mesh interpolation in 2D using an interpolation function
with support region ±2h (shaded in yellow). Blue particles and are within the support region of the centre
node (black) and hence assigned onto it. Green particles which lie outside the support region are not

considered.

The smoothing interpolation is continuous everywhere in the interpolation stencil, and provide
moment conserving interpolation. The M ′4 introduced by [14] interpolate the strength of the
particles to the mesh, the strengths are redistributed onto the surrounding mesh nodes as follows

M ′4(x, h) =


1− 5s2

2 + 3s3

2 0 ≤ s < 1, s = |x|
h

(1−s)(2−s)2
2 1 ≤ s < 2,

0 s ≥ 2,

(9)

where |x| is distance of the particle to the mesh.
This M ′4 kernel has a four-point support with an error of O(h3), and the stencil of the discrete

interpolation operator based on M ′4 consists of 64 grid points.
The differential operator for the momentum equation are computed on the mesh, taking advantage

of finite difference efficiency rather than using the particle-particle interaction. To maintain the
Lagrangian advantages of the hrSPH , advection is taking part on the particles, by interpolating the
rate-of-change in momentum to the particles (mesh-particle interpolation), which is used to integrate
the velocity and position of the particles forward in time.

We note the mesh controls the adaptivity and provides support for the fast evaluation of the
pressure and stress tensor terms, the hrSPH mainly keeps the linear stability unconditional. The
non-linear stability condition requires that particles trajectories do not cross [29]

4 t ≤ C ‖5u‖−1
∞ , (10)

where4t is the time step, and C is the no linear Courant Friedrichs Lew (CFL) condition.

3.1.2. Remeshing

In the SPH method particles may cluster in one area of the computational domain and spread
apart in another, as a result of the strain of the flow. When this occurs, the system looses the ability
to recover continuous velocity and density fields.

When the distortion of the particle distribution occurres, the particle-mesh interpolation function
is unable to ensure the continuity of the system, resulting in the inaccurate representation of the
diffusion effect along with the pressure gradient (rate-of-change of momentum). To abrogate this

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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problem, Chaniotis et al. [20] introduced the re-meshed smooth particle hydrodynamics method in
which the position of the particles is periodically reinitialised to a uniform grid and the old particles
properties are interpolated to the new ones. This interpolation has been implemented in several
methods including particle methods [27, 30, 28].

By remeshing the particles using the high order interpolation kernel the following is
accomplished:

• We retain the Lagrangian characteristic and the stability of the particle method. This gives
us a large amount of control over the accuracy, as it leads to a more accurate computation
of the derivatives compared to the classical particle-particle interaction (classical SPH).

• We decrease the computational costs thanks to:

1. The exploitation of the regularity of the particles.
2. Avoiding the costly nearest neighbour search. SPH method requires nearest

neighbour searches for each particle to evaluate derivatives such as the pressure
gradient. This adds to the computational costs of the classical SPH.
We also remesh the particles and solve the right hand side of the equations on the
grid. This increases the computational efficiency as nearest neighbours do not have
to be found and the speed of Finite Difference schemes is utilised. The cost of
remeshing each time step is around 10% of the total costs [20] which is a small
price compared to the total cost that the SPH required, along to the advantage of
ensuring that the particles are always in-space, resulting an accurate approximation
of the flow strain.

3. The interpolation of the particle’s characteristics on a uniform grid grants the
method an increased computational efficiency to compute the derivatives using
Finite Differences.

• Remeshing ensures that particles do not get too close to each other. This is an advantage
as the pressure force in the momentum equation proportional to the derivative of the
kernel, which in the case of M ′4 is reduced to zero when the distance between the
particles is small. In this case the pressure force becomes attractive resulting in significant
errors in the classical SPH method [20].

The remeshing frequency in our framework can vary depending on the strain of the flow and
the size of the time step. If the particles maintain their uniform distribution, as in the case of
uniform flow fields without circulations and low Reynolds number (Re), remeshing only needs
to be applied once per ten time steps, or even less frequent. In case of turbulent flows in which
the flows recirculate however, remeshing is performed for every time step [20]. In the test cases
in this framework we perform remeshing every time step, unless stated otherwise.

The accuracy of the method comes with a minimal additional computational cost while
maintaining the adaptive character of the method. The implementation of high-order remeshing
schemes improves the accuracy of hrSPH and additionally increases the computational
efficiency of the algorithm.

The remeshing algorithm with finite support may result in numerical errors, as it may
introduce substantial numerical diffusion. However, Koumoutsakos [28] and Chaniotis et
al. [20] have shown that the introduced dissipation by remeshing and the errors of the computed
gradients, induced by particle distortion, are proportional. These gradients remain substantially
small if remeshing is performed at each time step. As discussed by Koumoutsakos [28] finally,
remeshing acts like a subgrid scale and has a negligible effect on the accuracys

3.2. The hrSPH algorithm

Our method is divided into three parts:

1. Computing the rate of change

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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(a) Particle-mesh interpolation of the mass and impulse of the particle.

m(xm) =

N∑
p=1

mp W (xm − xp, h), (11)

m(xm)u(xm) =

N∑
p=1

mpup W (xm − xp, h) (12)

where N is the number of particles, h is the mesh spacing, W is the high order kernel,
up is the three velocity component u, v, w, and mp is the mass of the particle, xm is the
position of mesh node m, and xp is the position of particle p.

(b) On the grid, obtain the velocity from the interpolated impulse

u(xm) =
m(xm)u(xm)

m(xm)
(13)

(c) On the grid, compute the fluid density from the interpolated mass and the pressure from
the equation of state Eq. (4).

ρ(xm) =
m(xm)

h3
(14)

(d) On the grid, compute the rate-of-change of the fluid momentum on the mesh (∆um)
using finite-differences.

(e) The rate-of-change of momentum is interpolated from the grid to the particles
(∆up), Fig. 2.

∆u(xp) =

N∑
p=1

∆um,W (xm − xp, h) (15)

2. Updating the particles
This part takes place on the set of particles, where the interpolated rate of change in velocity
is used to update the velocity and position of the particles.

~ut+1
p = ~utp + ∆~up ∗∆t (16)

~xt+1
p = ~xtp + ~up ∗∆t (17)

Figure 2. Schematic representation of mesh-to particle interpolation in 2D using an interpolation function
with support region ±2h (shaded in yellow). the blue particle and mesh nodes (black) are within the support
region of the centre particle and hence assigned onto it. Green mesh and nodes lying outside the support and

are not considered.
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3. Remeshing the particles:
In case of distortion and particle clustering (high CFL number, high gradients), interpolate the
strengths of the particles to the mesh via M ′4 interpolation function, generate a new set of the
particles, interpolate the strengths back to the new set of particles.

For clarity an pseudo-code of the hrSPH algorithm follows,
Initialisation: Create particles carrying the initial mass mp, and impulse mpup;
while t < endT ime do

On the particles:
for p=1 to N do

Interpolate the particle impulse and mass to the grid Eq. (11, 12).
end
On the grid:

for p=1 to N do
Obtain the velocity from the interpolated impulse Eq. (13);
Obtain the density from the interpolated mass Eq. (14);
Obtain the pressure from the equation of state Eq. (4);
Right hand side computation:
Using finite-difference, compute the rate-of-change of the fluid momentum Eq. (2);

end
for p=1 to N do

Interpolate the the change of momentum to the particles Eq. (15).
end

On the particles:
for p=1 to N do

Update the velocity and position of the particles Eq. (16, 17).
end
if Remeshing = true then

Do remeshing;
end

end
Algorithm 1: The hrSPH algorithm

Solving the continuity equation Eq. (1) is not consistent with the system, rather the mass of the
particles is updated via the M ′4 function. This sequence is repeated in a third-order Runge-Kutta
scheme [3] The pressure gradient is solved with a second order central difference scheme, while
diffusion is computed using a second order central difference scheme.

We want to note that the number of the particles is equivalent to the number of the grid
points in all benchmarks in section (4), unless the number of the particles is stated explicitly.
As mentioned before, remeshing is furthermore performed at every time step, unless stated
otherwise.

4. VERIFICATION FOR THE HRSPH METHOD FOR VISCOUS FLOW

To verify the method, we perform a series of benchmarks, including: two- and three-dimensional
Taylor-Green flow [11], thin double shear layer [21], and three-dimensional isotropic turbulence. In
this manuscript the flow is characterised by the dimensionless Mach number Ma and the Reynolds
number Re, which allow the reader to reproduce any of the benchmarks. The characteristic length
scales L are the computational domain unless otherwise is stated, and the velocity u is normalised
by either the maximum velocity or the reference velocity.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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4.1. Two-Dimensional Taylor-Green flow

As a first test of the hrSPH method, we perform a simulation of the 2D incompressible Taylor-Green
flow. Taylor-Green is a periodic flow of decaying vortices in the x-y plane as follows,

u(x, y, t) = −Uebt cos

(
2πx

L

)
sin

(
2πy

L

)
(18)

v(x, y, t) = Uebt sin

(
2πx

L

)
cos

(
2πy

L

)
(19)

p(x, y, t) = p0 −
U2

4
ebt
[
cos

(
4πx

L

)
+ cos

(
4πy

L

)]
, (20)

where b = −8π2

Re , Re = ρ0UL/µ is the Reynolds number, L is the characteristic length of the
system, ρ0 is the reference density, µ is the viscosity. To approximate the incompressible reference
solution, we choose a Mach number Ma is equal to 0.1, and the pressure reference is p0 = 1

M2 .
The computational domain is [L× L] with periodic boundary conditions. We perform simulations
for Reynolds numbers in the range (100 − 103) to validate the accuracy of the method with the
viscous effect (dominant, intermediate and minimal). The third order Runge-Kutta scheme is used
throughout with a constant time step.

The flow maximum velocity decay behaviour with Re = 100 calculated using hrSPH with
resolution of [64× 64] is presented in Fig. 3 which shows a good agreement with the incompressible
exact solution Uex = Uebt.
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0.4
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0.9

1.0

Time

m
a

x
(u

)/
U

Figure 3. The maximum normalised velocity decay profile with Re = 100. Comparison of the hrSPH
solution (-) with the exact incompressible solution(•). The hrSPH solutions shows a good agreement with

the the incompressible exact solution Uex = Uebt.

To test the accuracy of the method at higher Reynolds numbers we perform simulations at
Re = 102. The predicted velocity decay shown in Fig. 4 is found in excellent agreement with the
exact solution.
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Figure 4. The maximum normalised velocity decay profile with Re = 102. Comparison of the hrSPH
solution (-) with the exact incompressible solution (•). The hrSPH solutions shows a good agreement with

the the incompressible exact solution Uex = Uebt.

For the error analysis of the hrSPH simulation, the relative error (L∞) is used

L∞(t) =

∣∣∣∣u(t)− Uex (t)

Uex (t)

∣∣∣∣ , (21)

where, u(t) is the maximum velocity magnitude of the hrSPH simulation at time t, and Uex(t)
denotes the maximum velocity magnitude of the exact solution at time t.

The relative error L∞ for the hrSPH method calculation is between 0.5% and 1.4% for Re = 102

Fig. 5, which is twice as accurate then previously reported for SPH simulations [33, 20].
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Figure 5. The relative error of the maximum velocity for the 2D Taylor-Green flow at Re = 102 using the
hrSPH method with resolution of [64 × 64]. The relative error L∞ for the hrSPH method calculation is

between 0.5% and 1.4% for Re = 102

The hrSPH relative error increases as the Reynolds number increases for a fixed grid resolution,
with less numerical dissipation which is a plus advantage for the hrSPH method.
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The maximum of the relative error max(L∞) shown in Fig. 6, for a 64× 64 resolution is less than
2% for Re in the range considered 1− 103.
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m
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Figure 6. max(L∞) error of the hrSPH simulations of the 2D Taylor-Green flow for different Reynolds
number with a fixed grid resolution [64 × 64]. The maximum of the relative error max(L∞) is less than 2%

for Re in the range considered 1 − 103.

Finally we tested the convergence rate of the relative error L∞ for a spatial grid refinement. The
profile of the maximum relative error max(L∞) of the hrSPH simulation with different resolution
[16× 16, 32× 32, 64× 64, 128× 128, and 256× 256] is presented in Fig. 7

The hrSPH exhibits a third order convergence in space, with third order diffusion and pressure
gradient, which is consistent with the order of the M ′4 interpolation function as represented in
Fig. 7.
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Figure 7. max(L∞) error of the hrSPH simulations for the Taylor-Green flow with different resolutions with
Re = 100(·), along with the third order convergence rate. The hrSPH exhibits a third order convergence in

space, which is consistent with the order of the M ′4 interpolation function.
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4.2. Thin double shear layer

To illustrate the performance of the hrSPH method on under resolved flow, we simulated the
evolution of a thin double shear layer. The thin double shear layer, which is often considered to be
too difficult to simulate due to the produced small scales. The main challenge of the this problem as
showed by Brown and Minion [21], occurs when the method is producing the spurious structures,
in the case when the flow is sufficiently under-resolved. Brown and Minion [21] tested several
numerical schemes, and showed that given a sufficient resolution (256× 256) all the numerical
schemes provided a reasonably accurate solutions. But given a coarser mesh (128× 128) the
methods generate a non physical spurious vortex in the shear layer between the two vortices, with
an early oscillations at t = 1.0.

Drikakis and Smolarkiewicz [6] studied the spurious structure, aiming to understand the
numerical mechanism behind it. They indicated that the generation of the spurious structure depends
on the choice of the advective scheme.

The computational domain is a unit square with periodic boundary conditions. The flow velocity
u = (u, v) is initially consists of a horizontal shear layer of a finite thickness as

u(x, y) = tanh(80×min(y − 0.25, 0.75− y)) (22)
v(x, y) = δ sin(2π(x+ 0.25)), (23)

In the simulation we set δ = 0.05, Reynolds number Re = 104, and Mach number Ma = 0.1,
initially we start with a uniform pressure and density. Fig. 9 shows the evolution of the vorticity
for three different mesh resolutions; a fine one with 400× 400, a 200× 200, and a coarser one with
100× 100. We note that using the hrSPH method, with a relatively low resolutions we are able to
overcome the development of the spurious vortex compared to previous studies [7] cf. Fig. 8.

Figure 8. The development of a spurious vortex for the lower resolutions 256 × 256

However with the coarse 100× 100 mesh the hrSPH method produces the spurious structure and
the simulation failed, which agrees with the previous studies in [21].

The vorticity evolution for both resolutions 400× 400, and 200× 200 is presented in Fig. 9, both
cases were able to avoid the spurious structure.

With Reynolds number Re = 3× 103 a resolution of 100× 100 the hrSPH is able to simulate
without producing the spurious structure. At time t ≈ 4 we notice that oscillations are produced, as
mentioned by Minion [21], however this problem occurred after a long simulation time, as shown
in Fig. 10.

As the hrSPH enjoys the benefits of a Lagrangian advection, the method is able to provide accurate
results for the thin double shear layer with a lower mesh resolution meshes compared to previous
studies [21, 6, 7].
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Finally the calculated maximum error of the relative effective viscosity [5] µeff (t) = ε(t)
ε(t) to the

physical viscosity µ, where ε is the dissipation rate Eq. (24), and ε is the enstrophy Eq. (25).

ε =
dEk
dt

(24)

ε =

∫
Ω

ω · ω
2

dΩ, (25)

where Ek is the kinetic energy

Ek =

∫
Ω

ρ
u · u

2
dΩ, (26)

and ω is the vorticity, and Ω is the computational domain.
For the thin double shear layer flow with Re = 104 and resolution of 200× 200 at t = 1, the

maximum error of the relative effective viscosity is equal to 2%.

(a) time = 0.6 (b) time = 0.6

(c) time = 1.0 (d) time = 1.0

Figure 9. Vorticity magnitude of the thin double shear layer simulation with Re = 104. Left column using
200 × 200 particles, and right column using 400 × 400 particles. The hrSPH is able to avoid the development

of the spurious structure with a lower grid resolution compared to [7].
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Figure 10. The produced oscillation for the thin double shear layer using the hrSPH using a coarse 100 × 100
mesh. The hrSPH is able to avoid the development of the spurious structure, however oscillations are

produced at time t ≈ 4.

4.3. Three-dimensional Taylor-Green flow

This benchmark considers direct numerical simulation (DNS) with hrSPH method, three-
dimensional Taylor-Green is a periodic flow of decaying vortices in the x− y − z plane, with the
following initial conditions,

u(x, y, z) = U sin

(
2πx

L

)
cos

(
2πy

L

)
cos

(
2πz

L

)
(27)

v(x, y, z) = −U cos

(
2πx

L

)
sin

(
2πy

L

)
cos

(
2πz

L

)
(28)

w(x, y, z) = 0 (29)

p(x, y, z) = p0 +
ρ0U

2

16

(
cos

(
2πx

L

)
+ cos

(
2πy

L

))(
cos

(
2πz

L

)
+ 2

)
, (30)

where, U0 is the reference velocity, the Mach number Ma = 0.1, L is the respective length, and p0

is the reference pressure, which is determined from the reference density ρ0 by the equation of state
Eq. (4).

The aim of this test case is to test the accuracy of hrSPH for three-dimensional viscous flow
with Reynolds number Re = 1600, using direct numerical simulation. The flow is confined in a
cube with periodic boundary conditions defined as 0 ≤ x, y, z ≤ 2π. The computational meshes are
regular cartesian grids of 643, 1283, 2563 resulting in ∆x = 0.01, 0.05, 0.025. The third order Runge-
Kutta is used for time interpolation. Fig. 11, represents the isosurface of the vorticity magnitude at
different times. The evolution of the kinetic energy over time is presented in Fig. 12 (a), we observe
that the hrSPH method is capable to capture the basic dynamic flows for different grid resolutions
and is in a good agreement with the reference solution [36]. The change in the kinetic energy over
time for the three grid resolutions is insignificant, however the close up is shown in Fig. 12 (b),
shows that the coarser grid contains less energy than the finer one, and the energy decays faster as
time evolve.
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At early time steps as the vortices begin to evolve and maintain their shape, this phase
lasts approximately until t = 7 where the smooth structures begins to suffer changes in their
structure as the flow becomes turbulent, at t = 9 the coherent structure breaks down.

Fig. 13 depicts the evolution of the dissipation rate (ε) Eq. (24), and the enstrophy (ε) Eq. (25).
Fig. 13(a) shows the time history of the enstrophy, it is clear that there is a large change in the
peak dissipation rate for the coarser grid (∆x = 0.01), this peak is improved by increasing the
grid resolution until we reach a good agreement with the reference solution at grid resolution
∆x = 0.025. The dissipation rate is represented in Fig. 13(b), we examine a large difference in
the dissipation peak at t = 9 where the coarser grid fails to estimate the correct dissipation peak.
The finer grid, with ∆x = 0.025, is consistent with the reference solution [37]. We calculated the
error of the relative effective viscosity µeff (t) = ε(t)/ε(t) to the physical viscosity. The maximum
error in the relative effective viscosity is about 2% for the hrSPH method.

To finally test the effect of the remeshing frequency, we run the same test case at Re = 1600
with ∆x = 0.05, whilst decreasing the time step by a factor of two (∆t = ∆t/2) and keeping
the remeshing frequency the same, we used the solution of the kinetic energy evolution with
∆x = 0.05 presented in Fig. 12 (a) as a reference solution to calculate the relative error L∞(%).
The reason is to check if our computation is well converged in time resolution. The results in
Fig. 14(b) show that no effect on the solution and the relative error L∞(%) is approximately
0%. This leads us to conclude that any changes in the solution will be a result of changing the
remeshing frequency. We thus also performed two test cases in which the remeshing frequency
is increased by a factor of two and four respectively, while decreasing the time step with a
factor of two and four as well. The results in Fig. 14(a), (b) show that the remeshing frequency
affects the results when the flow contains a substantial kinetic energy and small scales. The
relative error of the kinetic energy is approximately 2% when remeshing is performed at every
time step and approximately 4.5% if remeshing is performed once per four time steps. This can
be explained based on the fact that remeshing allow the system to regain it’s regularity as it
ensures the particles’ uniform distribution, even when flows with a large Reynolds number are
considered. As the kinetic energy decreases as a function of time, the relative error reduces to
well below 1%.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
Prepared using fldauth.cls DOI: 10.1002/fld



RSPHIT 17

(a) time = 0 (b) time = 2

(c) time = 4 (d) time = 8

(e) time = 12 (f) time = 16

0.025 0.05 0.075 0.1

Velocity magnitude

Figure 11. Isosurface of the vorticity magnitude for the Taylor-Green simulation at Re = 1600 with ∆x =
0.025.
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(a) Complete simulation.
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(b) Part of the simulation 10¡time¡20.

Figure 12. Evolution of the kinetic energy for the 3D Taylor-Green simulation, Re = 1600, using the hrSPH
method, with different resolution along with the reference solution. In (a), we observe that the hrSPH method
is capable to capture the basic dynamic flows for different grid resolutions and is in a good agreement with
the reference solution. The close up in (b), shows that the coarser grid contains less energy than the finer

one, and the energy decays faster as time evolve.
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Figure 13. Evolution of enstrophy (a), and dissipation rate (b) for the simulation of the 3D Taylor-Green
at Re = 1600 with different resolution using the hrSPH method. In (a) there is a large change in the peak
dissipation rate for the coarser grid, this peak is improved by increasing the grid resolution until we reach
a good agreement with the reference solution. In (b) we examine a large difference in the dissipation peak
at t = 9where the coarser grid fails to estimate the correct dissipation peak. The finer grid is consistent with

the reference solution.
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Figure 14. The effect of remeshing frequency on the the evolution of the kinetic energy for the 3D Taylor-
Green simulation (a), and the relative error of remeshing every 2 and 4 time steps (b), for the simulation of

the 3D Taylor-Green at Re = 1600.

4.4. Three-dimensional isotropic turbulence

We use hrSPH method to simulate three-dimensional isotropic turbulence in a periodic cube of
size L = 2π with a resolution of 643. The initial conditions are obtained from the JHU Turbulence
Database Cluster [40] a 10244 space-time history of a direct numerical simulation of incompressible
isotropic forced turbulent flow at Re ≈ 1460.

The data from the database contains the three velocity components and the pressure, the data is
for incompressible flow. A uniform non-dimensionalised pressure p∗ = p

ρU2 + 1 is added to the
database pressure, with Mach number Ma = 0.1. The 10243 resolution mesh is filtered with a
Gaussian filter with a specified cutoff to reduce the noise, and then down sampled to the desired
resolution (643).

Both the DNS and Smagorinsky models are used to predict the three-dimensional isotropic
turbulence problem, the Reynolds number ranging from Re = 300 to 104. The aim here is to
study the Reynolds number threshold for both models by maintaining the same resolution.

The simulation results that the DNS fails to properly predict the turbulent flow for Re >
2× 103. This is caused by the insufficiently fine mesh resolution required to solve the many
small scales the DNS is taking into account. The Smagorinsky model on the other hand fails
with the same resolution for Re > 6× 103, with the same resolution (643).

The energy spectrum is calculated as following, for each component of the velocity fields on the
grid the u = (ui, uj , uz) Fourier transformation is computed and denoted as û = (uki, ukj , ukz).
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The velocity spectrum tensor is computed as [41]:

E(k) =
1

2
|û(k) · û∗(k)| , (31)

where Û∗ is the complex conjugate of the transform velocity, and k = (ki, kj , kz) is the wave
number. Finally the energy spectrum E(k) is obtained as

E(k) = 4πk2 〈E(k)〉 , (32)

where 〈...〉 is an average over the thin spheric shell of radius k = |k|.

The temporal evolution of the energy spectrum for both models (DNS and Smagorinsky) with
Re = 2× 103 is shown in Fig. 15, along with the kinetic energy evolution for both models in
Fig. 16. It can be observed that the energy spectra in Fig. 15 are in good agreement. It can
also be seen that more energy is dissipated by the Smagorinsky model for high wave numbers.
Fig. 16 shows the subgrid model to dissipate energy faster than the DNS model due to the
modelled small scales.

The Courant number (CFL) defined in Eq. (10) is an important indicator of the stability
of the method, Fig. 17 shows the time evolution of the Courant number for both models
at Re = 2× 103. It can be observed that the DNS produces high error and gradients, with
big instability in the Courant number as it tries to resolve the many small scales in the
turbulent flow, however the Courant number stabilised after time t = 20, on the the other hand
Smagorinsky model did not suffer of such instability and the Courant number is decreasing in
relatively stable manner.
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Figure 15. The energy spectra, for both the DNS and the Smagorinsky model, with Re = 2 × 103 using the
hrSPH method. it can be observed that the energy spectra are in good agreement. It can also be seen that

more energy is dissipated by the Smagorinsky model for high wave numbers.
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Figure 16. The kinetic energy evolution in time, evaluated for both the DNS and the Smagorinsky model,
with Re = 2 × 103 using the hrSPH method. Here the subgrid model dissipate energy faster than the DNS

model due to the modelled small scales.
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Figure 17. The Courant number evolution for the Smagorinsky and DNS model with Re = 2 × 103. It can
be observed that the DNS produces high error and gradients, with big instability in the Courant number as it

tries to resolve the many small scales in the turbulent flow

Fig. 18 (a) shows the initialised velocity at time t = 0 and the simulated velocity magnitude decay
Fig. 18 (b),(c), and (d) for Reynolds number Re = 6× 103. The hrSPH method with Smagorinsky
model is used with remeshing every time step, as we find that for flow with strong vorticity the
particle distribution becomes distorted and the particles tend to clustered so that remeshing in each
time step is necessary.
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(a) time = 0 (b) time = 10

(c) time = 30 (d) time = 60

(e)

Figure 18. Velocity magnitude decay of the isotropic turbulence case

The energy spectrum calculated as in Eq. (31), and the dissipation of the energy agrees with the
Kolmogorov −5/3 profile [25]. The temporal evolution of the energy spectrum from the initial state
to the stationary state at time= 60 is shown in Fig. 19.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
Prepared using fldauth.cls DOI: 10.1002/fld



24 A. OBEIDAT AND S. BORDAS

k
10

0
10

1
10

2

E
(k

)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

time=10
time=20
time=30
time=40
time=50
time=60
-5/3

Figure 19. Time evolution of the energy spectra, evaluated at different time during the simulation, Re =

6 × 103 using the hrSPH method with Smagorinsky mode, along with the Kolmogorov −5/3 profile.

5. CONCLUSION

We presented a hybrid remeshed smoothed particle hydrodynamics method (hrSPH), taking
advantage of the Lagrangian advection, and the finite difference efficiency by computing the
differential operators on the mesh.

Two models were used a DNS model, and a Smagorinsky model. We verified our method through
several benchmarks, the hrSPH is able to resolve the flow with varying Reynolds number from 1 up
to 104. The method showed a third order converging for the Taylor Green flow case.

As a result of the Lagrangian advection that the method enjoys, we were able to resolve the double
thin shear layer without producing the spurious vortical structure with a coarser mesh than what
other studies suggested. And finally, the hrSPH method resolved the three-dimensional isotropic
turbulence flow with high Reynolds number on a coarse mesh using Smagorinsky model.
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