
PhD-FSTC-2016-43
The Faculty of Science, Technology and Communication

Dissertation

Defence held on 08/11/2016 in Luxembourg

to obtain the degree of

Docteur de l’Université du Luxembourg

en Informatique

by

Thomas Hartmann
Born on 13th November 1981 in Kaufbeuren (Germany)

Enabling Model-Driven Live Analytics

For Cyber-Physical Systems:

The Case of Smart Grids

Dissertation defence committee

Prof. Dr. Nicolas Navet, chairman

Professor, University of Luxembourg, Luxembourg, Luxembourg

Dr. François Fouquet, vice-chairman

Research Associate, University of Luxembourg, Luxembourg, Luxembourg

Prof. Dr. Yves Le Traon, supervisor

Professor, University of Luxembourg, Luxembourg, Luxembourg

Prof. Dr. Jordi Cabot, member

Professor, Universitat Oberta de Catalunya, Castelldefels (Barcelona), Spain

Prof. Dr. François Taïani, member

Professor, Université de Rennes 1, Rennes Cedex, France

Dr. Jacques Klein, expert

Senior Research Scientist, University of Luxembourg, Luxembourg, Luxembourg

Abstract

Advances in software, embedded computing, sensors, and networking technologies will
lead to a new generation of smart cyber-physical systems that will far exceed the capa-
bilities of today’s embedded systems. They will be entrusted with increasingly complex
tasks like controlling electric grids or autonomously driving cars. These systems have
the potential to lay the foundations for tomorrow’s critical infrastructures, to form the
basis of emerging and future smart services, and to improve the quality of our everyday
lives in many areas. In order to solve their tasks, they have to continuously monitor
and collect data from physical processes, analyse this data, and make decisions based
on it. Making smart decisions requires a deep understanding of the environment, in-
ternal state, and the impacts of actions. Such deep understanding relies on e�cient
data models to organise the sensed data and on advanced analytics. Considering that
cyber-physical systems are controlling physical processes, decisions need to be taken
very fast. This makes it necessary to analyse data in live, as opposed to conventional
batch analytics. However, the complex nature combined with the massive amount of
data generated by such systems impose fundamental challenges. While data in the
context of cyber-physical systems has some similar characteristics as big data, it holds
a particular complexity. This complexity results from the complicated physical phe-
nomena described by this data, which makes it di�cult to extract a model able to
explain such data and its various multi-layered relationships. Existing solutions fail to
provide sustainable mechanisms to analyse such data in live.

This dissertation presents a novel approach, named model-driven live analytics.
The main contribution of this thesis is a multi-dimensional graph data model that
brings raw data, domain knowledge, and machine learning together in a single model,
which can drive live analytic processes. This model is continuously updated with the
sensed data and can be leveraged by live analytic processes to support decision-making
of cyber-physical systems. The presented approach has been developed in collaboration
with an industrial partner and, in form of a prototype, applied to the domain of smart
grids. The addressed challenges are derived from this collaboration as a response to
shortcomings in the current state of the art. More specifically, this dissertation provides
solutions for the following challenges:

First, data handled by cyber-physical systems is usually dynamic—data in motion as
opposed to traditional data at rest—and changes frequently and at di↵erent paces.
Analysing such data is challenging since data models usually can only represent a
snapshot of a system at one specific point in time. A common approach consists in
a discretisation, which regularly samples and stores such snapshots at specific times-
tamps to keep track of the history. Continuously changing data is then represented as
a finite sequence of such snapshots. Such data representations would be very ine�cient
to analyse, since it would require to mine the snapshots, extract a relevant dataset,
and finally analyse it. For this problem, this thesis presents a temporal graph data
model and storage system, which consider time as a first-class property. A time-relative
navigation concept enables to analyse frequently changing data very e�ciently.

i

Secondly, making sustainable decisions requires to anticipate what impacts certain
actions would have. Considering complex cyber-physical systems, it can come to sit-
uations where hundreds or thousands of such hypothetical actions must be explored
before a solid decision can be made. Every action leads to an independent alternative
from where a set of other actions can be applied and so forth. Finding the sequence
of actions that leads to the desired alternative, requires to e�ciently create, represent,
and analyse many di↵erent alternatives. Given that every alternative has its own his-
tory, this creates a very high combinatorial complexity of alternatives and histories,
which is hard to analyse. To tackle this problem, this dissertation introduces a multi-
dimensional graph data model (as an extension of the temporal graph data model)
that enables to e�ciently represent, store, and analyse many di↵erent alternatives in
live.

Thirdly, complex cyber-physical systems are often distributed, but to fulfil their tasks
these systems typically need to share context information between computational en-
tities. This requires analytic algorithms to reason over distributed data, which is a
complex task since it relies on the aggregation and processing of various distributed
and constantly changing data. To address this challenge, this dissertation proposes
an approach to transparently distribute the presented multi-dimensional graph data
model in a peer-to-peer manner and defines a stream processing concept to e�ciently
handle frequent changes.

Fourthly, to meet future needs, cyber-physical systems need to become increasingly
intelligent. To make smart decisions, these systems have to continuously refine be-
havioural models that are known at design time, with what can only be learned from
live data. Machine learning algorithms can help to solve this unknown behaviour
by extracting commonalities over massive datasets. Nevertheless, searching a coarse-
grained common behaviour model can be very inaccurate for cyber-physical systems,
which are composed of completely di↵erent entities with very di↵erent behaviour. For
these systems, fine-grained learning can be significantly more accurate. However, mod-
elling, structuring, and synchronising many fine-grained learning units is challenging.
To tackle this, this thesis presents an approach to define reusable, chainable, and in-
dependently computable fine-grained learning units, which can be modelled together
with and on the same level as domain data. This allows to weave machine learning
directly into the presented multi-dimensional graph data model.

In summary, this thesis provides an e�cient multi-dimensional graph data model to
enable live analytics of complex, frequently changing, and distributed data of cyber-
physical systems. This model can significantly improve data analytics for such systems
and empower cyber-physical systems to make smart decisions in live. The presented so-
lutions combine and extend methods from model-driven engineering, models@run.time,
data analytics, database systems, and machine learning.

Keywords: Model-driven engineering, Models@run.time, Data analytics, Cyber-
physical systems, Internet of Things, Graph databases, Machine learning, Temporal
data, What-if analysis, Distributed reasoning

ii

Acknowledgments

This work has been funded by the National Research Fund Luxembourg (grant
6816126) and Creos Luxembourg S.A. under the SnT-Creos partnership program.

The PhD experience goes beyond research, experimentations, and paper writing. It is
indeed a challenging life experience that started in August 2013 and which outcome
owes much to the support and help of many people.

First of all, I want to express my sincere thanks to my supervisor Prof. Dr. Yves
Le Traon for giving me the opportunity to pursue my PhD studies within his group
and under his supervision. He always encouraged me, had a permanent confidence in
me, and supported me throughout these years. I have learned a lot from his rigorous
scientific guidance as a researcher and from his positive, motivating, and open-minded
attitude as a team leader. I am equally grateful to my co-supervisor Dr. Jacques Klein
for his advice, optimism, countless discussions, guidance, and for always emphasising
the bright side of things.

My special thanks goes to my daily advisor Dr. François Fouquet for his patience,
advice, and flawless guidance throughout the sometimes daunting world of academia.
He taught me how to do research, conduct rigorous experiments, write scientific papers,
and always pushed me a step further. I am very happy about the friendship we have
built up during the years.

I am grateful to the members of my dissertation committee, Prof. Dr. Jordi Cabot,
Prof. Dr. François Täıani, and Prof. Dr. Nicolas Navet, for their time to review my
work and for providing interesting and valuable feedback.

My sincere thanks also goes to Yves Reckinger and Robert Graglia from Creos for the
many fruitful discussions and the time they found to collaborate with us. It was really
useful and rewarding to me to be able to apply my research on a concrete industrial
case.

I would also like to express my warm thanks to all current and former members of
the SerVal team for the plenty good co↵ee breaks, discussions, and the great times
we had. I wish all of them the very best. In particular, I want to thank Dr. Assaad
Moawad, Dr. Grégory Nain, and Matthieu Jimenez for their continuous feedback and
proofreading. I also want to express my thanks to all my co-authors and to the people I
have been in touch with during my PhD journey and that are not explicitly mentioned
here.

Finally, and more personally, I would like to express my heartfelt thanks to my family
and my friends for their continuous and unconditional support during these last years.
The role they all played in this journey is more important than they can possibly know.

iii

Contents

List of abbreviations and acronyms xi

List of figures xv

List of tables xvii

List of algorithms and listings xviii

1 Introduction 1
1.1 Context . 2
1.2 The smart grid case study . 4

1.2.1 The smart grid vision . 4
1.2.2 Smart grids in the context of this thesis 6

1.3 Terminology . 8
1.4 Challenges . 11

1.4.1 Overview . 11
1.4.2 Challenges addressed in this thesis 11

1.5 Approach: model-driven live analytics 14
1.6 Contributions . 15
1.7 Thesis structure . 17

I Background and state of the art 19

2 Background 21
2.1 Data analytics . 22

2.1.1 Taxonomy of data analytics . 22
2.1.2 Batch and (near) real-time analytics 23
2.1.3 Complex event processing . 24
2.1.4 Extract-transform-load and extract-load-transform 24
2.1.5 OLAP and OLTP . 25

2.2 Modelling . 25
2.2.1 Model-driven engineering . 26
2.2.2 MOF: The Meta Object Facility 27
2.2.3 Models@run.time . 29
2.2.4 Meta models, models, and runtime models in the context of this

dissertation . 30
2.2.5 Modelling frameworks . 32

2.2.5.1 The Eclipse Modeling Framework 32
2.2.5.2 The Kevoree Modeling Framework 33

2.3 Database systems . 34
2.3.1 The CAP theorem . 35
2.3.2 Consistency models: ACID and BASE 35
2.3.3 Key-value stores . 36
2.3.4 Graph stores . 37

v

Contents

2.4 Machine learning . 38

3 State of the art 41
3.1 Analysing data of cyber-physical systems 42
3.2 Data analytics platforms . 42

3.2.1 Online analytical processing (OLAP) 42
3.2.2 The Hadoop stack . 44
3.2.3 The Spark stack . 45

3.3 Stream processing frameworks . 48
3.4 Graph processing frameworks . 53
3.5 Graph databases . 60
3.6 Analysing data in motion . 63

3.6.1 Temporal databases . 63
3.6.2 Temporal RDF and OWL . 64
3.6.3 Model versioning . 64
3.6.4 Time series databases . 65
3.6.5 Temporal graph processing . 66

3.7 Exploring hypothetical actions . 70
3.8 Reasoning over distributed data in motion 72
3.9 Combining domain knowledge and machine learning 74
3.10 Synthesis . 76

II Analysing data in motion and what-if analysis 79

4 A continuous temporal data model to e�ciently analyse data in mo-
tion 81
4.1 Introduction . 82
4.2 Time as a first-class property . 84
4.3 Continuous validity of model elements 85
4.4 Navigating in time . 87

4.4.1 Selecting model element versions 87
4.4.2 Time-relative navigation . 87

4.5 Storing temporal data . 89
4.6 Implementation details and API . 90
4.7 Evaluation . 91

4.7.1 KPI-1: Model updates . 92
4.7.2 KPI-2: Navigating the context model in time 94
4.7.3 KPI-3: Storing temporal data 95

4.8 Conclusion . 96

5 A multi-dimensional graph data model to support what-if analysis 99
5.1 Introduction . 100
5.2 Motivating example . 102
5.3 Many-world graphs . 103

5.3.1 Key concepts . 103
5.3.2 Many-world graph semantics . 105
5.3.3 Base graph (BG) . 105
5.3.4 Temporal graph (TG) . 106

vi

Contents

5.3.5 Many-world graph (MWG) . 108
5.4 MWG implementation . 110

5.4.1 Mapping graph nodes to state chunks 110
5.4.2 Indexing and resolving state chunks 112

5.4.2.1 Index time tree (ITT) 112
5.4.2.2 World index maps (WIM) 113
5.4.2.3 Chunk resolution algorithm 114

5.4.3 Scaling the processing of graphs 115
5.4.4 Querying and traversing graphs 115

5.5 Experiments . 116
5.5.1 Experimental setup . 117
5.5.2 Base graph benchmarks . 117
5.5.3 Temporal graph benchmarks . 118
5.5.4 MWG benchmarks of a node . 119
5.5.5 MWG benchmarks of a graph 120
5.5.6 Deep what-if simulations . 121
5.5.7 Smart grid case study . 122
5.5.8 Discussion and perspectives . 123

5.6 Conclusion . 124

III Reasoning over distributed data and combining domain
knowledge with machine learning 125

6 A peer-to-peer distribution and stream processing model 127
6.1 Introduction . 128
6.2 Reactive distributed models@run.time 129

6.2.1 Overview: distributed models as data stream proxies 130
6.2.2 Models@run.time as streams . 130
6.2.3 Distributed models@run.time 132
6.2.4 Reactive models@run.time . 134

6.3 Evaluation . 136
6.3.1 Evaluation setting . 136
6.3.2 Scalability for large-scale models 137
6.3.3 Scalability for large-scale distribution 137
6.3.4 Scalability for frequently changing models 138

6.4 Discussion: distribution and asynchronicity 140
6.5 Conclusion . 141

7 Weaving machine learning into data modelling 143
7.1 Introduction . 144
7.2 Combining learning and domain modelling 147

7.2.1 Objectives . 147
7.2.2 Meta meta model . 147
7.2.3 Micro learning units . 148
7.2.4 Modelling language . 150

7.2.4.1 Semantic . 150
7.2.4.2 Syntax . 153

7.2.5 Model learning patterns . 154

vii

Contents

7.2.5.1 Weaving learned attributes into domain classes 154
7.2.5.2 Defining a learning scope for coarse-grained learning in

domain models . 154
7.2.5.3 Modelling relations between learning units and domain

classes . 155
7.2.5.4 Decomposing complex learning tasks into several micro

learning units . 155
7.2.6 Framework implementation details 156

7.3 Evaluation . 157
7.3.1 Experimental Setup . 157
7.3.2 Accuracy . 158
7.3.3 Performance . 159

7.4 Discussion: meta learning and meta modelling 161
7.5 Conclusion . 161

IV Industrial application and conclusion 163

8 Industrial application: electric overload prediction and warning 165
8.1 Context . 166

8.1.1 The Creos partnership . 166
8.1.2 The REASON project . 166

8.2 Smart grid meta model . 168
8.3 Electric overload prediction and warning 168
8.4 Electric load approximation . 170

8.4.1 General considerations . 170
8.4.2 Topology scenarios . 173

8.4.2.1 Single cable . 173
8.4.2.2 Cabinet connecting several cables 173
8.4.2.3 Parallel cables . 174

8.4.3 Considering active and reactive energy 175
8.4.4 Deriving the electric load . 175
8.4.5 Integration into the smart grid meta model 177

8.5 Predicting consumption behaviour . 177
8.5.1 General considerations . 177
8.5.2 Live machine learning . 178
8.5.3 Gaussian mixture models . 178
8.5.4 Profiling power consumption . 179
8.5.5 Integration into the smart grid meta model 180

8.6 Evaluation . 180
8.6.1 Experimental Setup . 181
8.6.2 Performance of electric load approximation 182
8.6.3 Accuracy of electric load approximation 182
8.6.4 E�ciency of electric consumption prediction 183
8.6.5 Accuracy of electric consumption prediction 184

8.7 Conclusion . 185

9 Conclusion 187
9.1 Summary . 188

viii

Contents

9.2 Future research directions . 190
9.2.1 Searching and selecting appropriate actions 190
9.2.2 Reinforcement learning for improved action selection 190
9.2.3 Encoding continuously evolving data 190
9.2.4 Meta model evolution . 191
9.2.5 Memory management for analytics 191
9.2.6 Data sharding . 192

9.3 Outlook . 193

List of papers and tools 195

Bibliography 199

ix

List of abbreviations and acronyms

AJAX asynchronous JavaScript and XML. 141

AMI advanced metering infrastructure. 6

AMR automated meter reading. 6

AP asynchronous parallel. 54, 56, 59

API application programming interface. 32, 34, 45–47, 49, 50, 53, 56, 57, 62, 64, 90,
92, 134, 135, 141, 154, 156, 192

BAP barrier-less asynchronous parallel. 54, 59

BG base graph. 106

BGL Boost Graph Library. 58

BSON binary JSON. 35, 131

BSP bulk synchronous parallel. 54, 56, 58–60, 74, 149

CASE computer-aided software engineering. 32

CDN content delivery network. 132–135

CDO connected data objects. 73

CEP complex event processing. 24, 57, 59

CGI compact graph index. 69

CMOF Complete MOF. 28

CORBA Common Object Request Broker Architecture. 28

CPS cyber-physical system. 2, 3, 10–15, 23, 31, 33, 34, 42, 45, 47, 48, 53, 58, 66,
72–74, 76, 82, 100, 128, 130, 138, 146, 157, 161, 189, 191

DAG directed acyclic graph. 71

DHT distributed hash table. 132, 135

DSML domain-specific modelling language. 26–28, 31

EBNF Extended Backus–Naur Form. 28

ELT extract-load-transform. 24, 25

EMF Eclipse Modeling Framework. 30–34, 73, 135, 150, 157

EMOF Essential MOF. 28, 32, 33, 147

xi

List of abbreviations and acronyms

ETL extract-transform-load. 24, 25, 48

GAS gather, apply, and scatter. 55, 57–59, 74

GMM Gaussian mixture model. 178

GPL general-purpose language. 26

GPS Graph Processing System. 58

GWIM Global World Index Map. 113, 114

HDFS Hadoop Distributed File System. 44–46, 49

HGS Historical Graph Store. 68–70

ICT information and communication technologies. 4

IDE integrated development environment. 33

IoT Internet of Things. 2, 23, 34, 42, 47, 66, 72, 76, 100, 102, 144, 146, 157, 161, 188,
189

ITT Index Time Tree. 112, 114, 116, 118, 119

JSON JavaScript object notation. 35, 54, 89, 95, 112, 131

KDE kernel density estimate. 178

KMF Kevoree Modeling Framework. xv, 32–34, 90, 91, 97, 101, 106, 112, 114, 115,
129, 135–137, 146, 156, 157, 179

KPI key performance indicator. 92, 94

LABS locality aware batch scheduling. 66, 67

LDP large deep prediction. 94

LSB least significant bit. 133

LU large update. 92, 94

LWIM Local World Index Map. 113, 114

LWP large wide prediction. 94

MAD magnetic, agile, and deep. 43, 44

MDA model-driven architecture. 27

MDE model-driven engineering. 14, 15, 26, 27, 29–32, 47, 141, 156

MIW Massive Insertion Workload. xvii, 117, 118

xii

List of abbreviations and acronyms

MOA Massive Online Analysis. 75

MOEA multi-objective evolutionary algorithm. 190

MOF meta object facility. xv, 27–29, 72, 89, 147

MSB most significant bit. 132

MTGL MultiThreaded Graph Library. 58

MU minor update. 92, 94

MWG many-world graph. xvii, 101, 105, 108–113, 115–124

OCL object constraint language. 141, 153, 191

OLAP online analytical processing. 25, 42–44, 71, 76, 77

OLTP online transactional processing. 25

OMG Object Management Group. 27, 28

OWL web ontology language. 26

PDF probability density function. 178

PLC powerline communication. 8, 166

PSW parallel sliding window. 56, 59

RDD resilient distributed dataset. 45, 46, 67

RDF resource description framework. 26, 62, 89

SCADA supervisory control and data acquisition. 8

SDP small deep prediction. 94

SIW Single Insertion Workload. xvii, 117, 118

SPC Stream Processing Core. 51, 52

SWP small wide prediction. 94

TAF Temporal Graph Analysis Framework. 68

TG temporal graph. 106–108

TGI Temporal Graph Index. 68

UI user interface. 166, 167

UML Unified Modeling Language. 27, 28, 31, 32, 150, 151, 191

UoW unit of work. 115

xiii

List of abbreviations and acronyms

WIM World Index Map. 120

XMI XML metadata interchange. 32, 73

XML extensible markup language. 27, 32, 35, 54

xiv

List of figures

1.1 Working principle of cyber-physical systems and area of thesis contri-
butions . 3

1.2 The smart grid vision . 5
1.3 Schematic representation of the smart grid communication infrastructure 7
1.4 Conceptual smart grid model . 9
1.5 Model-driven live analytics . 14
1.6 Thesis contributions . 15
1.7 Thesis structure . 17

2.1 Taxonomy of data analytics . 22
2.2 Schematic working principle of a typical pipeline-based batch data an-

alytic processes . 24
2.3 The four layered meta model hierarchy of meta object facility (MOF) . 29
2.4 Schematic representation of models@run.time 30
2.5 Relation between meta models, models, and object graphs in the context

of this thesis . 31
2.6 A simple key-value example . 37
2.7 A simple graph example . 37

3.1 Overview of the state of the art related to this thesis 43

4.1 Linear sampled context . 83
4.2 Time-distorted/temporal context . 85
4.3 Continuous validity of model elements 86
4.4 Time-evolving context model . 88
4.5 Time-relative navigation using a navigation context 88
4.6 Key/value structure for time-relative storage 89
4.7 Memory usage for model update operations using the full sampling strat-

egy . 92
4.8 Memory usage for model update operations using the temporal data

model . 93
4.9 Update time for model manipulations using the full sampling strategy . 93
4.10 Update time for model manipulations using the temporal data model . 93
4.11 Required storage space to save temporal data 96

5.1 State chunks of a node in two worlds 104
5.2 Types of many-worlds . 105
5.3 TG node timeline . 107
5.4 Many worlds example . 110
5.5 Mapping of nodes to storable state chunks 111
5.6 Example ITTs for node Eve of Figure 5.5 113
5.7 Example of di↵erent configurations of the same number of worlds l, but

with a di↵erent m . 114
5.8 Graph memory management in Kevoree Modeling Framework (KMF) . 115
5.9 Insert and read performance before and after the divergent timepoint s 120

xv

List of figures

5.10 Read performance before the divergent timepoint, over several worlds
and several percent of nodes modified 121

5.11 Average read performance over 120, 000 generations with 3 % mutations 122
5.12 Performance of load calculation in a what-if scenario for the smart grid

case study . 123

6.1 Models as continuous streams of chunks 131
6.2 Distribution model . 133
6.3 Composition of ids for distributed models 133
6.4 Blocking and non-blocking operation calls 136
6.5 Scalability of read operations for large-scale models 138
6.6 Spectral probability density of the model update latency 139
6.7 Required time for update operations of di↵erent size 140

7.1 Meta meta model . 148
7.2 Schematic representation of a micro learning unit 149
7.3 Coarse-grained profiling (top) vs micro learning profiling (bottom) . . . 159
7.4 Power prediction error histograms . 160

8.1 REASON: a near real-time monitoring and analytics tool for Creos . . 167
8.2 From the smart grid model (1) we first infer the electrical topology

scenario (2), then combine it with live measurements (or predictions)
and apply the appropriate electrical formulas (3), to finally derive the
load approximation (4) . 171

8.3 Single cable on a substation . 173
8.4 A cabinet connecting several cables . 174
8.5 Parallel cables: a) at a transformer substation, b) at cabinets, c) indirect

parallel cables . 176
8.6 Power consumption measures (in blue) and average values (in red) . . . 179
8.7 Probability distribution function (pdf) of the consumption values from

Figure 8.6 built with live machine learning 180
8.8 Scalability of electric load approximation 183
8.9 Accuracy of electric consumption prediction over time 184

xvi

List of tables

1.1 Smart grid features compared to the existing electricity grid 5

3.1 Summary and comparison of important stream processing frameworks . 52

3.2 Summary and comparison of important graph processing frameworks . 59

3.3 Summary and comparison of important graph databases 62

3.4 Summary and comparison of temporal graph processing frameworks . . 70

4.1 Reasoning time to predict the electric consumption (in milliseconds) . . 95

5.1 Massive Insertion Workload (MIW) and Single Insertion Workload
(SIW) benchmark speed in 1000 values/second for both many-world
graph (MWG) and Neo4J. Larger numbers mean better results (shown
in bold). 118

5.2 Average insert and read time in thousands of values per second. The
execution is for di↵erent timepoints for the same node and in the same
world. 118

6.1 Measured latency (in ms) to propagate changes 139

7.1 Loading time and profiling time in seconds. Scalability test over 5000
users and 150 millions power records 160

8.1 Performance evaluation . 182

xvii

List of algorithms and listings

1 Serialised version of a smart meter model element 89
2 Usage of the temporal data model API 91
3 State chunk resolution . 114
4 CDN interface . 134
5 Subscription for model changes . 135
6 Asynchronous method calls with KDefer 136
7 Grammar of our modelling language . 153
8 Meta model of a smart meter with anomaly detection 154
9 Meta model of a power classifier . 155
10 Meta model of a smart meter profiler 156
11 Meta model of a concentrator and its profiler 156
12 Smart grid meta model used in REASON 169
13 Smart grid meta model used in REASON 177
14 Extended smart grid meta model used in REASON 181

xix

1
Introduction

This chapter begins with the context of this dissertation, followed by an introduction
of smart grids, which are used throughout this thesis as motivation and main case
study as well as a representative example of a cyber-physical system. Next, important
terminology is defined. Then, this chapter sets out the challenges addressed in this
thesis and introduces an approach, named model-driven live analytics, designed to tackle
these challenges. Finally, an overview of the contributions and the structure of this
thesis is presented.

Contents
1.1 Context . 2

1.2 The smart grid case study 4

1.3 Terminology . 8

1.4 Challenges . 11

1.5 Approach: model-driven live analytics 14

1.6 Contributions . 15

1.7 Thesis structure . 17

1

Chapter 1. Introduction

1.1 Context

Cyber-physical systems (CPSs) are engineered systems that tightly couple computa-
tional algorithms and physical components. Continuous improvements in processing
power and device miniaturisation allow us to embed advanced computing and commu-
nication capabilities in more and more physical objects, diluting the border between the
digital and physical world. CPSs “interact with their environments via sensors and
actuators, and monitor and control physical processes, using feedback loops, where
physical processes and computations a↵ect each other” [221]. Advances in software,
embedded computing, sensors, and networking technologies will lead to a new genera-
tion of smart cyber-physical systems that will far exceed the capabilities of today’s em-
bedded systems. These systems have the potential to lay the foundations for our critical
infrastructures of tomorrow, form the basis of emerging and future smart services, and
improve the quality of our everyday lives in many areas. Examples of cyber-physical
systems include smart grids, smart buildings and cities, medical systems, robotic sys-
tems, self-driving cars, and what is often referred to as Industry 4.0 [222]. Applications
of CPSs are expected to have significant societal and economical implications. They
will transform the way how we interact with the physical world around us [268], where
computation is no longer decoupled from its environment. Cyber-physical systems are
closely related to the Internet of Things (IoT) and the terms CPS and IoT are often
used interchangeably, depending on the context they are used in [241].

CPSs are entrusted with increasingly complex tasks and are on the cusp of controlling
critical processes of our physical world, like it is the case for smart grids or self-driving
cars. In order to meet the demands accompanied by such tasks, these systems need
to become more and more intelligent [267]. Russel and Norvig describe an intelligent
system or agent as “a system that perceives its environment and takes actions that
maximize its chances of success” [278]. To be able to make such decisions, these systems
need a deep understanding of their environment, internal state, impacts of their actions,
and their goals. This relies on e�cient data models to organise the sensed data and on
advanced analytics to extract conclusions from the examined data. Therefore, CPSs
continuously collect data measured by sensors, reason about this data, make decisions
based on it, and if necessary take corrective actions via actuators. The ability to
analyse the sensed data and to draw conclusions out of it is a major prerequisite for
taking smart actions.

Considering that CPSs are controlling critical physical processes, decisions usually
need to be taken very fast, e.g., in seconds or even milliseconds. This requires systems
to analyse data in live, as opposed to conventional batch analytics. However, the
complex nature combined with the massive amount of data generated by such systems
impose fundamental challenges. While data in the context of cyber-physical systems
has similar characteristics as big data, it has a particular complexity. This complexity
results from the complicated physical phenomena described by this data, which makes
it di�cult to extract a model able to explain such data and its various multi-layered
relationships. Existing solutions fail to provide sustainable mechanisms to analyse such
data in live.

This is the area this dissertation contributes to. More specifically, this thesis aims

2

1.1. Context

Physical
components

Computational
components

feedback loopSensors Actuators

communication system

environment

distributed entities

0001011
1010101
0010101

environment

environment

analysing and
reasoning

Thesis contributions:
how to efficiently model and store
this data to enable near real-time
(live) analytics
Goal: support (autonomous)
decision-making processes

combines raw data, domain knowledge,
and machine learning

legend
data + domain
knowledge
learned information
relationships/
dependencies

storage

multi-dimensional graph data model
and storage:

Figure 1.1: Working principle of cyber-physical systems and area of thesis contributions

to provide the means to enable live analytics of complex CPS data, with the goal
to support decision-making processes. In the context of this dissertation the terms
live and “near real-time” are used in opposition to batch processing, emphasising that
computations are expected to be executed “reasonably fast”. What reasonably fast
is, depends on the application domain. In the context of smart grids, and therefore
in this work, near real-time means in the range of seconds. However, no hard real-
time guarantees are made. In contrast, Altmeyer et al., [74] discuss challenges and an
approach to model and ensure hard real-time requirements, such as those often found in
embedded systems. This thesis investigates how complex CPS data can be structured
and organised to enable live analytics, given the specific constraints and requirements
of such systems. The main contribution of this thesis is a multi-dimensional
graph data model and storage that brings raw data, domain knowledge,
and machine learning together in a single model, which in turn can drive
live analytic processes. Figure 1.1 depicts the working principle of cyber-physical
systems and shows the area of the contributions of this thesis.

Throughout this dissertation smart grids are used as the main case study. Covering
whole countries, smart grids are not just very complex, they are also one of the largest
CPSs currently developed. Smart grids allow utilities to collect and analyse massive
amounts of data, with the goal to drive operational and customer values from it. This
includes, for example, energy theft and anomaly detection, demand response, variable
pricing, consumer classification, and advanced monitoring and failure detection. Since
these systems are time-critical, it is often not su�cient to collect this data in big data
centres and analyse it in batch mode. Instead, decisions about taking action often must
be reached quickly and on a local basis, i.e., close to the source of data [277]. In the

3

Chapter 1. Introduction

literature this is sometimes called “edge computing” [280] or “fog computing” [100].
This, together with the diversity, complexity, and the amount of data collected in smart
grids makes them a representative case study for the context of this dissertation.

This thesis has been conducted in an industrial context in collaboration with Creos
Luxembourg S.A.1, the main electricity grid operator in the country. The addressed
challenges are derived from this collaboration as a response to shortcomings in the
current state of the art (cf. Chapter 3). A prototype of the proposed solutions has
been developed and applied. The collaboration with Creos made it possible to discuss
and refine the research ideas behind this thesis based on actual requirements and,
wherever possible, to evaluate them based on data from a real system.

1.2 The smart grid case study

This section first introduces the main ideas and the vision behind smart grids. It then
describes smart grids in the context of this thesis and presents a conceptual smart grid
model, which is used throughout this dissertation.

1.2.1 The smart grid vision

The traditional electricity grid was designed for the demand of the 20th century. In
order to keep pace with the rising demand for energy it must undergo substantial
changes. The vision of the smart grid aims to increase e�ciency and reliability of the
electricity grid by transforming today’s centralised electricity grid into a distributed,
self-adaptive, and self-healing smart grid of tomorrow. In future, renewable energies
and distributed micro-generations are expected to be seamlessly integrated into the
electricity grid. This is depicted in Figure 1.2. To enable this, the smart grid emerges
as a convergence of information and communication technologies (ICT) with power
system engineering [142]. The backbone of this e↵ort is the facilitation of modern
ICT to allow two-way communication and an automated control of devices. This
underlying communication infrastructure is essential for the smart grid and is what
ultimately enables the smart grid to be smart. In fact, it is what allows many advanced
features, such as monitoring and diagnostics, remote meter reading, remote control of
devices, and demand-side management.

While there is no clear and generally accepted definition of what a smart grid is, there
is a consensus that a two-way flow of both information and electricity is the salient
characteristic of smart grids [75], [142], [141], [254]. Farhangi [142] describes a num-
ber of additional smart grid features commonly mentioned in literature and compares
them with the existing electricity grid. This comparison is summarised in Table 1.1.
The vision of the smart grid promises a modernised power grid, which is able to meet
the increased electricity demand, is more e�cient and reliable, decreases brownouts,

1http://www.creos-net.lu/start.html

4

1.2. The smart grid case study

Figure 1.2: The smart grid vision

Table 1.1: Smart grid features compared to the existing electricity grid [142]

Existing electricity grid Smart grid

Electromechanical Digital

One-way communication Two-way communication

Centralised generation Distributed generation

Hierarchical Network

Few sensors Sensors throughout

Blind Self-monitoring

Manual restoration Self-healing

Failures and blackouts Adaptive and islanding

Manual check/test Remote check/test

Limited control Pervasive control

Few customer choices Many customer choices

5

Chapter 1. Introduction

blackouts, and surges whilst reducing costs for energy producers and consumers alike.
A power grid, which allows near real-time troubleshooting, autonomously detects is-
sues, and proactively addresses them before they become problems. Such an advanced
grid could pave the way for smart devices, smart homes, electric vehicle charging, and
would give customers more control over their power bill. It would allow to seamlessly
integrate renewable energies and could help to significantly reduce our carbon foot-
print. However, there is still a long way to go and massive changes are necessary to
transform the existing power grid into a smart grid. The main drivers towards this
vision are new communication, sensing, and control systems, which are integrated at
all levels of the electricity grid. These enable utilities to create new layers of intel-
ligence [118] over current and future infrastructures, by continuously collecting and
analysing data throughout the grid, and taking corrective actions when needed.

1.2.2 Smart grids in the context of this thesis

Smart grids are used as the main case study to evaluate the proposed concepts of
this dissertation. The objective is to analyse data collected in a cyber-physical system
in near real-time, and to ultimately support decision-making processes based on the
results of this analysis. In the context of smart grids, it is the communication infras-
tructure which allows to collect and process the sensed data. It is what enables the
cyber part of the smart grid. Therefore, the smart grid communication infrastructure
is the primary focus for the context of this thesis. In the following, the relevant entities
are introduced.

Smart meters are the cornerstones of the smart grid communication infrastructure.
Installed at customers’ houses they continuously measure electric consumption, the
quality of power supply and regularly report these values to utilities for monitoring
and billing purposes. Initially, their main task was essentially automated meter reading
(AMR) but they quickly evolved to the so-called advanced metering infrastructure
(AMI) [142]. AMI provides a two-way communication system, which allows to send
remote commands to meters. Smart meters often control other devices like water and
gas meters, or micro generation devices. Usually, these are less powerful devices than
smart meters in terms of control abilities, e.g., they have only limited functionalities
regarding flow control, compared to the load management of an electrical smart meter.
Smart meters are also used as gateways for the smart home [260]. This enables smart
home devices to use the communication infrastructure provided by the smart grid.
Through AMI, utilities can get nearly instantaneous information about customers’
consumption demand. This, together with the ability of smart meters to restrict the
maximum allowed consumption and to connect/disconnect specific loads, e.g., electric
vehicles, opens the way for intelligent load management. Smart meters can even be
used to remotely switch o↵ the electricity of a connected customer.

A second important building block of the smart gird communication infrastructure are
so-called data concentrators. Data concentrators collect and store consumption data
from a number of associated smart meters. Physically, data concentrators are often
located at, or near power substations. In regular intervals (typically several times a
day, in some settings immediately) they send this data to a data centre, where it is

6

1.2. The smart grid case study

Central data centre

Concentrator

Smart meter Smart meter
(repeater)

Concentrator

Smart meterSmart meter
(repeater)

Smart meter

Water meter Gas meter

Smart meter
(repeater)

Smart meter

Gas meter

communication
media

……

communication
media

communication
media

communication
media

Figure 1.3: Schematic representation of the smart grid communication infrastructure

stored, aggregated and analysed. All smart meters associated to a concentrator are
controlled by it. Smart meters can be either directly connected to a data concentrator,
or can use any other smart meter as a gateway, e.g., due to long distances, noises, and
interference signals. These gateways are regular smart meters. Smart meters acting
as gateways are referred to as repeaters. Either way, at a time t each smart meter is
registered to at most one concentrator, wether directly, or via one or several repeaters.
Similar, at a time t, a smart meter which is not directly connected to a concentrator,
can use at most one other smart meter as a repeater and so forth. This characteristic
forms a communication topology as depicted in Figure 1.3. As shown in the figure,
the topology is organised as a tree, where each data concentrator is the root node of a
subtree. The individual subtrees are connected to a data centre. Smart meters dynam-
ically reorganise this topology by reconnecting to other smart meters, e.g., if a repeater
fails, a connection is broken, or noises disturb the communication. Such changes occur
comparatively frequently, e.g., in Luxembourg the average is 30 changes per hour [173].
Concentrators have the ability to send commands, like requesting consumption data
or restricting the maximum allowed consumption of a customer. This property divides
the smart grid communication infrastructure into smaller, autonomous areas, where
each area is controlled by a data concentrator. This is often referred to as the dis-
tributed control ability of the smart grid [142]. To do so, compared to smart meters,
concentrators are usually equipped with a considerable amount of storage capacity
and computation power. Data concentrators are by no means powerful data centres,
but have enough storage and computation capacity to perform specific monitoring
and analytic tasks. Since data concentrators receive near real-time information about
customers’ consumption values, as well as grid status updates, and can also control

7

Chapter 1. Introduction

connected smart meters, data concentrators are ideally suited for analysing this data
and taking corrective actions if necessary.

Di↵erent communication technologies, wired and wireless, are used for data transmis-
sion between the smart grid devices. As discussed in [230], depending on the specific
requirements of a smart grid deployment, such as time of deployment, installation and
maintenance costs, availability of a technology, or minimum data transfer rate require-
ments, some technologies are more appropriate than others. Examples are powerline
communication (PLC), cellular technologies like GPRS, or internet via copper lines and
optical fibre. The smart grid communication topology in Luxembourg is built upon
a PLC network. A major advantage of PLC is that the same media that is used for
electric power transmission can be reused for establishing the communication network
and transmitting data. On the other hand, a major concern with PLC is the amount of
electrical noise and disturbances that may be encountered. This requires advanced er-
ror detection techniques. Another consequence that results from using PLC is that the
communication topology depends on the physical network. Smart grid devices can only
communicate with each other, if a physical connection is available. This restricts the
possible communication topologies. The communication between data concentrators
and a central data centre in Luxembourg relies on GPRS and optical fibre connections.

Figure 1.4 shows a conceptual model of the described smart grid communication in-
frastructure. In the following we will refer to this model as “conceptual smart grid
model” or simply “smart grid model”. This model contains the relevant notions of
smart grids and their relationships in the context of this thesis.

Electricity grids are typically controlled by supervisory control and data acquisition
(SCADA) systems, which control electricity production and delivery in real-time. It is
the responsibility of these systems to ensure the global stability of the grid. SCADA
systems have strong constraints concerning latency to ensure resilience of the grid in
case of over-usage, as for example described by Aim et al., [75]. A challenge when
designing smart grid infrastructures is the coordination of SCADA systems and the
new communication networks across smart meters. SCADA systems typically focus
on global electricity production and delivery management, while the new smart grid
communication network focuses on local consumption optimisation and management.
In the scope of this thesis the proposed solutions are applied aside from already exist-
ing SCADA systems. The goal of this work is to leverage the real-time data, which
recently becomes available due to the new smart grid technologies, as well as to pro-
vide additional monitoring and control abilities on a higher lever, rather than replacing
already existing control systems.

1.3 Terminology

This section defines the recurring terminology used in this dissertation. Further details
and additional definitions are provided in Chapter 2 of this manuscript.

8

1.3. Terminology

Co
nc
en
tra
to
r

Ce
nt
ra
lD
at
aC
en
tre

*
0.

.1cu
st

om
er

co
ns

um
pt

io
n

0.
.1

1
m

ea
su

rin
gT

im
e:

 D
at

e
ac

tiv
eE

ne
rg

yP
ro

du
ce

d:
 D

ou
bl

e
ac

tiv
eE

ne
rg

yC
on

su
m

ed
: D

ou
bl

e
re

ac
tiv

eE
ne

rg
yC

on
su

m
ed

:D
ou

bl
e

re
ac

tiv
eE

ne
rg

yP
ro

du
ce

d:
 D

ou
bl

e

C
on

su
m
pt
io
n

ad
dr

es
s:

 S
tri

ng

C
us

to
m
er

m
ax

Al
lo

w
ed

Po
w

er
: D

ou
bl

e
du

ra
tio

nT
oR

ea
d:

 D
ou

bl
e

el
ec

tri
ci

ty
Ac

tiv
e:

 B
oo

le
an

hi
gh

Po
w

er
C

ur
re

nt
Ac

tiv
e:

 B
oo

le
an

di
st

an
ce

To
C

on
ce

nt
ra

to
r:

Do
ub

le
is

Re
pe

at
er

: B
oo

le
an

Sm
ar
tM

et
er

m
at

er
ia

l:
St

rin
g

si
ze

: D
ou

bl
e

re
m

ar
k:

 S
tri

ng

W
ire
dC
om

m
un
ic
at
io
nM
ed
ia

pa
yl

oa
d:

 S
tri

ng
C
om

m
un
ic
at
io
nM
ed
ia

lo
ca

tio
n

1

*

se
ria

lN
um

be
r:

St
rin

g
co

m
m

un
ic

at
io

nA
ct

iv
e:

 B
oo

le
an

En
tit
y

co
m

m
un

ic
at

io
nM

ed
ia

s

1.
.*

*

re
gi

st
er

ed
By

re
gi

st
er

ed
En

tit
ie

s

*
0.

.1

st
ar

tP
oi

nt
1

1

ad
dr

es
s:

 S
tri

ng
gp

sL
at

itu
de

: S
tri

ng
gp

sL
on

gi
tu

de
: S

tri
ng

Lo
ca
tio
n

en
dP

oi
nt

M
et
er

G
as
M
et
er

W
at
er
M
et
er

PL
C

W
ire
le
ss
C
om

m
un
ic
at
io
nM
ed
ia

O
pt
ic
al
Fi
br
e

Co
pp
er

G
PR
S

W
LA
N

Figure 1.4: Conceptual smart grid model

9

Chapter 1. Introduction

• The term model denotes to an abstraction or simplification of a subject one
wants to reason about in some form or another [271]. A subject can be something
from the real world, or something virtual. Models are simplifications in the sense
that they only represent a certain part of the subject, i.e., they limit the scope of
a subject to the relevant parts, given a certain purpose [286]. While models are
conceptual constructs, a concrete instance of a model consists of data structures,
which implement the semantic of the model. In the context of this thesis, models
are used to create abstractions of cyber-physical systems.

A famous definition of the term model was coined by Je↵ Rothenberg, who defines
a model as follows: “A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot represent all aspects of
reality. This allows us to deal with the world in a simplified manner, avoiding
the complexity, danger, and irreversibility of reality” [274].

Another often cited definition is the one from Seidewitz: “A model is a set of
statements about the system under study” [285].

• A meta model defines the structure of a model. A meta model is a model itself,
which makes statements about what can be expressed in valid models [285]. It
o↵ers the vocabulary for formulating reasonings on top of a given model. Both,
models and meta models are models but have di↵erent purposes. A meta model
describes a model [271]. The term “meta” is relative in the sense that, depending
on the perspective, a model can be a model or a meta model. An instance of a
meta meta model is a meta model, the instance of a meta model is a model and
so forth.

Seidewitz provides the following definition of a meta model: “A metamodel is a
specification model for which the systems under study being specified are models
in a certain modeling language” [285].

• Runtime models are models used during the execution of a system. This disser-
tation refers to such models as models@run.time. A runtime model represents
a system under study and is linked in the sense that a runtime model constantly
mirrors the system and its current state and behaviour [96]. Models@run.time
are used during the execution of a system to reason about its state.

Blair et al., define a model@run.time as: “A model@run.time is a causally con-
nected self-representation of the associated system that emphasizes the structure,
behavior, or goals of the system from a problem space perspective” [96].

• Modelling denotes to the activity of creating models of a subject.

• Respectively, meta modelling refers to the process of creating meta models of
a subject.

• Following the context definition of Dey and Abowd [70], in this thesis the in-
ternal state together with the surrounding environment of a CPS is referred to
as context or system context. In this dissertation we use models, or more
specifically, models@run.time, to represent the context of CPSs and to reason
about it.

10

1.4. Challenges

1.4 Challenges

1.4.1 Overview

In today’s complex cyber-physical systems data is generated in very large scale by a
wide range of sources, such as sensors and embedded devices [191]. As it turns out, the
complexity of this data is at least as much of a challenge in gaining profound insights
as is the sheer size of it. In fact, even relatively small but complex datasets can be
di�cult to analyse. In the context of CPSs the complexity results from the complicated
physical phenomena described by this data, which makes it di�cult to extract a model
able to explain such data and its various multi-layered relationships.

Furthermore, these systems are expected to react quickly, which requires fast, i.e.,
in near real-time, data analysis. In addition to that CPSs usually have only limited
computational capabilities. Even though—driven by advances in embedded systems
and their falling prices—the computing power of CPSs is getting more and more pow-
erful, they can most of the time not rely on big clusters and batch processing for their
analytic tasks.

The high complexity of CPS data makes it necessary to properly structure and organise
data to e�ciently analyse it. This requires appropriate models, able to represent the
context (internal state and surrounding environment) of a cyber-physical system [181].
Building, storing, and loading appropriate context models to enable e�cient live an-
alytics for CPSs is challenging [261]. Existing solutions fail to provide sustainable
mechanisms to analyse such data in live.

In the following, an overview of the main challenges addressed in this thesis is presented.
In the contribution part of this dissertation each challenge is then discussed in detail.
Each challenge corresponds to a concrete need encountered during the collaboration
with Creos Luxembourg S.A.

1.4.2 Challenges addressed in this thesis

Analysing data in motion. Data handled by cyber-physical systems is usually
dynamic, i.e., it is constantly changing [191], [224]. This is also known as data in
motion, as opposed to traditional data at rest, or as temporal data [186]. For example,
physical quantities measured by sensors, such as temperature, pressure, speed, and
distance are inherently temporal. Moreover, data in CPSs often changes frequently
and at very di↵erent paces. It is usually not enough to only consider the current
data. Instead, reasoning processes typically need to analyse and compare data from
the current context with its history [188], [171], [202]. For instance, predicting the
electric load for a particular region requires a good understanding of the past electricity
production and consumption in this region, as well as recent data, such as current and
forecasted weather conditions. However, data models can usually only reflect the
context of a CPS at a given point in time, i.e., they only represent a snapshot of a
real system at one specific timestamp. Such discretisation leads to a representation of

11

Chapter 1. Introduction

temporal context data as a finite sequence (potentially distributed) of snapshots (e.g.,
proposed by [188], [171]). As a consequence, the state of a context model between two
snapshots is not defined. This results in losing the semantic of continuously evolving
data [289]. To address this problem, it is a common approach to regularly sample and
store the context of a system at a very high rate in order to provide analytic algorithms
with enough historical data. In order to correlate data from di↵erent timestamps,
analytic algorithms then need to mine a huge amount of snapshots, extract a relevant
dataset, and finally analyse it (e.g., [239], [188], [171]). This requires heavy resources
and/or is time-consuming, which stands in conflict with the near real-time response
time requirements such systems need to meet.

Challenge #1:
One of the major challenges addressed in this thesis is how data models and associated
storage systems can be organised to o↵er reasoning algorithms an e�cient, coherent,
and consistent view of temporal data.

Exploring hypothetical actions. Making sustainable decisions requires to antici-
pate the possible impacts of actions. The exploration of what might happen if this or
that action would be taken is referred to as what-if analysis [167], [41]. Every action
triggers e↵ects which potentially lead to an alternative state from where a set of other
actions can be applied and so forth. Considering complex systems, like cyber-physical
systems, it can come to situations where hundreds or thousands of alternative actions
must be explored before a solid decision can be made (e.g., optimisation and planning
tasks [138]). For example, in case of a potential overload situation the smart grid would
need to explore numerous chains of di↵erent actions, like restricting the maximum al-
lowed load for certain customers or regulating the charging of electric cars, to finally
decide for the most appropriate chain of actions. Every action can be interpreted as
a divergent point leading to an independent alternative. What-if analysis simulates
di↵erent actions and tries to find the sequence of actions which leads to a desired alter-
native [167], [41]. The usefulness of simulating actions based on models in the context
of CPSs has, for example, been shown by Fejoz et al., [143] (in this case using the
CPAL language [249]). An alternative can be interpreted as a snapshot of a system’s
context. In order to simulate di↵erent chains of actions, every alternative needs to be
able to evolve independently—both in space, i.e., leading to additional alternatives,
and in time. This leads to di↵erent histories in di↵erent alternatives, creating a very
high combinatorial complexity of alternatives and temporal data.

Challenge #2:
The second major challenge addressed in this dissertation is how data models and
associated storage systems can be organised to allow an e�cient exploration of a large
number of independent alternatives—in space and time—even on a massive amount of
data.

Reasoning over distributed data in motion. CPSs are not just getting more
and more large-scale and complex but are also increasingly equipped with distributed
control and decision-making abilities [267], [221]. Reasoning over distributed data is
a complex task [148] since it relies on the aggregation and processing of various dis-

12

1.4. Challenges

tributed and constantly changing data [232]. In fact, to fulfil their tasks, these systems
typically need to share context information between computational nodes (any com-
puter system reading, writing, or processing data in the context of a CPS). Therefore,
appropriate data models used to analyse data in a CPS must support such distribution.
Data models of complex CPSs can get very large, which makes sharing this information
e�ciently challenging. For example, the state of a smart grid is continuously updated
with a high frequency from various sensor measurements (like consumption or quality
of power supply) and other internal or external events (e.g., overload warnings). In
reaction to these state changes di↵erent actions can be triggered. However, reasoning
and decision-making processes are not centralised but distributed over smart meters,
data concentrators, and a central system [142], making it necessary to share context
information between these nodes. Smart grids, depending on the size of a city or coun-
try, can consist of millions of elements and thousands of distributed computational
nodes. This challenges the e�ciency of sharing context information, especially when
taking the near real-time requirements such systems usually need to meet into account.

Challenge #3:
How to handle large-scale, distributed, and frequently changing data to enable e�cient
analytics over distributed data is the third challenge addressed in this thesis.

Combining domain knowledge with machine learning. In order to meet future
needs CPSs need to become increasingly intelligent [267]. On the one hand, some
situations CPSs will face are predictable at design time. For example, to react to
critical overload situations, the maximum allowed load for customers could be restricted
or the charging of electric cars could be balanced accordingly. On the other hand, such
systems will also face events that are unpredictable at design time. For instance, the
electric consumption of a house depends on the number of people living there, their
activities, weather conditions, used devices, and so forth. Despite such behaviour
is unpredictable at design time, it is known at design time that this behaviour is
unknown [298] and that it can be learned later by observing past situations, once
data becomes available. Machine learning algorithms can help to solve this unknown
behaviour by extracting commonalities over massive datasets. However, in cases where
datasets are composed of independent entities (so-called system of systems [97]) which
behave very di↵erently, finding one coarse-grained common behavioural model can be
di�cult or even inappropriate. For example, the consumption of a factory follows a very
di↵erent pattern than the consumption of an apartment. Searching for commonalities
between these entities would not lead to correct conclusions. Instead, following a
“divide and conquer” strategy, learning on finer granularities can be considerably more
e�cient for such problems [330], [144]. However, learning on fine granularities leads to
many fine-grained learning units, which must be synchronised and composed to express
more complex behavioural models. Therefore, this requires an appropriate structure
to model such learning units and their relationships to domain knowledge.

Challenge #4:
The last challenge addressed in this thesis is how domain knowledge and machine learn-
ing can be seamlessly combined to improve data analytics for cyber-physical systems.

13

Chapter 1. Introduction

000101010
101010111
011000011
010101010
101010001
011010010

Data stream

Domain rules,
learning rules

Data
structure

Storage system

Real
system

Analysis

Meta model

multi-dimensional
graph data model

generate

legend
data + domain
knowledge
learned information
relationships/
dependencies

Figure 1.5: Model-driven live analytics

1.5 Approach: model-driven live analytics

In order to address the challenges related to live analytics of data arising in the context
of CPSs, this dissertation presents a novel model-based approach to structure and
process this data for e�cient analytics. The proposed approach combines methods from
model-driven engineering (MDE), the models@run.time paradigm, database systems,
and machine learning in order to analyse this data in live and turn it into actionable
insights. MDE suggests to focus on creating conceptual models of all topics related
to a specific problem [195]. These models capture the knowledge of domain experts
and can then be exploited in the process of solving this problem. This thesis seeks
to extend the applicability of MDE to bring it to another domain: data analytics.
The models@run.time paradigm has shown the potential of models to be used during
runtime to represent the context of CPSs and to reason about it [96], [246]. Following
this paradigm, in this dissertation runtime models are used to structure data of CPSs in
order to provide analytic algorithms with e�cient abstractions of these systems. These
abstractions are then used to drive analytic processes. Modern database technologies,
like NoSQL storage systems and graph database methods, are applied to create an
e�cient storage system for the proposed data model. Machine learning algorithms
are seamlessly integrated into this data model. With model-driven live analytics we
promote the usage of models as the centre element of analytic processes, where data
is structured, analysed, and stored based on a model. This is depicted in Figure 1.5.
Model-driven live analytics suggests to connect raw data, domain knowledge, and
machine learning into a single structure, which can be leveraged by analytic processes
to transform raw data into valuable or actionable insights. This thesis aims to provide
the means to build and store such a structure.

14

1.6. Contributions

A peer-to-peer distribution and stream processing model
A Peer-to-peer distribution and an asynchronous stream processing model
to enable reasoning over distributed, frequently changing data

A temporal data model
Data structures and associated storage systems to efficiently analyse
temporal, i.e., continuously evolving data

Weaving machine learning into domain modelling
Reusable, chainable, and independently computable micro machine
learning units to structure fine-grained learning together with domain data

contributionschallenges

Analysing data in motion

Reasoning over distributed
data in motion

Combining domain knowledge
and machine learning

core
contributions

derivative
contributions

addressed by

Enabling model-driven live analytics
for cyber-physical systems

A multi-dimensional graph data model
Data structures and associated storage systems to enable efficient
what-if analysis

M
odeling techniques

Exploring hypothetical
actions

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.6: Thesis contributions

1.6 Contributions

This dissertation addresses the above-mentioned challenges by extending the applica-
bility of MDE and models@run.time to the domain of live analytics for CPSs. The
hypothesis behind this dissertation is that complex and frequently changing data of
CPSs can be e�ciently, i.e., in near real-time, analysed by organising them in a data
model connecting raw data, domain knowledge, and machine learning. This hypothesis
is evaluated against a concrete smart grid case study. Figure 1.6 depicts the concrete
contributions made in this thesis and shows which of the challenges described in Sec-
tion 1.4 are addressed by each of these contributions. In the following, a short overview
is provided about each contribution.

A temporal data model. The first contribution of this dissertation addresses the
challenge of representing and storing temporal, i.e., continuously evolving data. There-
fore, it defines a temporal data model together with a time-relative navigation concept.
The proposed approach considers time as a first-class property crosscutting any context
element and any relation between context elements. This contribution also defines an
e�cient storage concept for the proposed temporal data model. The goal of this ap-
proach is to provide analytics with data structures to e�ciently reason about massive
amounts of continuously evolving data.

This contribution is based on the work that has been presented in the following papers:

• Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
Olivier Barais, and Yves Le Traon. A native versioning concept to support histor-
ized models at runtime. In Model-Driven Engineering Languages and Systems - 17th
International Conference, MODELS 2014, Valencia, Spain, September 28 - October 3,
2014. Proceedings, pages 252–268, 2014

• Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein, and
Yves Le Traon. Model-based time-distorted contexts for e�cient temporal reasoning.

15

Chapter 1. Introduction

In The 26th International Conference on Software Engineering and Knowledge Engi-
neering, SEKE 2014, Vancouver, BC, Canada, July 1-3, 2014., pages 746–747, 2014
(best paper award)

A multi-dimensional graph data model. The second contribution of this the-
sis tackles the challenge of simultaneously exploring di↵erent hypothetical actions. It
extends the temporal data model to a multi-dimensional data model able to reflect a
large number of di↵erent alternatives. The suggested data model allows each alterna-
tive to evolve independently with its own independent history in order to enable the
simultaneous exploration of many di↵erent actions. This contribution aims to define an
e�cient data model able to enable what-if analysis for a large number of independent
actions even on a massive amount of (temporal) data.

This contribution is based on the work that has been presented in the following paper:

• under submission at ACM/USENIX EuroSys 2017: Thomas Hartmann, Assaad
Moawad, Francois Fouquet, Gregory Nain, Romain Rouvoy, Yves Le Traon, and
Jacques Klein. PIXEL: A Graph Storage to Support Large Scale What-If Analysis

A peer-to-peer distribution and stream processing model. A third contri-
bution of this dissertation copes with the challenge of data analytics over massively
distributed datasets of frequently changing data. It proposes an approach to trans-
parently distribute the suggested data model in a peer-to-peer manner and defines a
stream processing method to e�ciently handle frequent changes. More specifically, it
combines ideas from reactive programming, peer-to-peer distribution, and large-scale
modelling. The objective of this contribution is to enable e�cient analytics over dis-
tributed datasets of frequently changing data.

This contribution is based on the work that has been presented in the following paper:

• Thomas Hartmann, Assaad Moawad, François Fouquet, Grégory Nain, Jacques Klein,
and Yves Le Traon. Stream my models: Reactive peer-to-peer distributed mod-
els@run.time. In 18th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September
30 - October 2, 2015, pages 80–89, 2015

Weaving machine learning into domain modelling. The fourth and last con-
tribution of this thesis addresses the challenge of modelling and combining domain
data and knowledge together with machine learning. It defines so-called micro learn-
ing units, which decompose learning tasks into reusable, chainable, and independently
computable units. The concept presented in this approach extends data models with
the ability to represent learned knowledge on the same level as domain data. This
contribution aims to weave micro machine learning into data modelling, i.e., to allow
to model learning and domain knowledge in the same data models and with the same
concepts.

This contribution is based on the work that has been presented in the following papers:

16

1.7. Thesis structure

Part I: Background and state of the art
Part II: Analysing data in motion and what-if analysis
Part III: Reasoning over distributed data and
 combining domain knowledge with machine
 learning
Part IV: Industrial application and conclusion

- A temporal context model, time-relative
navigation, temporal data storage.
- A multi-dimensional graph data model,
 index structures and storage mechanisms

- A transparent peer-to-peer distribution and
stream processing model
- Reusable, chainable, and independently
computable micro machine learning units

Thesis contribution:
enabling model-driven
live analytics for CPSs

Part III

Part II

Data modelling, data analytics, database
technologies, and machine learning

Part I

Industrial application on a smart grid system,
conclusion, discussion, and future work Part IV

00101011
11001011
10110011

Figure 1.7: Thesis structure

• under submission at International Journal on Software and Systems Modeling (SoSyM):
Thomas Hartmann, Assaad Moawad, Francois Fouquet, and Yves Le Traon. The Next
Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling

• Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Tejeddine
Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric consumption detection
based on multi-profiling using live machine learning. In 2015 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2015, Miami, USA,
November 2-5, 2015

1.7 Thesis structure

This thesis encompasses four parts. The first part introduces the technical background
of this dissertation and the state of the art. Then, the two main parts of this manuscript
propose solutions to address the challenges presented in Section 1.4. Each of the four
challenges is addressed in a separate chapter and each of the chapters starts with an
introduction to and a motivation for addressing the challenge. In this way, each of these
chapters can be read independently. Finally, a fourth part presents a concrete industrial
case study and the conclusion of this dissertation. In the following, the structure of
the dissertation along with an overview of each part is depicted in Figure 1.7.

Part I: Background and state of the art. In this part the technical background
of this thesis is presented in Chapter 2. The background includes data analytics, data
modelling techniques, database technologies, and machine learning approaches. The
state of the art regarding this dissertation is discussed in Chapter 3.

Part II: Analysing data in motion and what-if analysis. This is the first of
two main contribution parts. It defines the core concepts and foundations of this the-
sis. Chapter 4 introduces a novel approach for representing temporal data together
with a time-relative navigation between elements. It defines a data model and storage
system for e�ciently analysing temporal data. By means of a concrete smart grid
load prediction case study, it is shown that this approach can significantly outperform
the state of the art. Chapter 5 presents an approach to explore alternative futures,

17

Chapter 1. Introduction

which inevitably diverge when exploring the impact of di↵erent what-if decisions. This
chapter extends the temporal data model and storage system with an additional di-
mension, allowing to explore many di↵erent alternatives. The chapter demonstrates
that the proposed data model can e�ciently fork and update thousands of independent
alternatives composed of millions of temporal elements.

Part III: Reasoning over distributed data and combining domain knowledge
with machine learning. Part III is the second of two main contribution parts.
It builds on top of the data model and storage system described in Part II. First,
Chapter 6 introduces an approach for scalable and distributed data models, combining
ideas from reactive programming, peer-to-peer distribution, and large-scale modelling.
This chapter extends the data model defined in the previous part with a distribution
concept and a stream processing model to enable an e�cient processing of frequently
changing, distributed data. It is shown that these techniques can enable frequently
changing, reactive distributed data models that can scale to millions of elements and
several thousand computational nodes. Then, Chapter 7 presents an approach to
combine machine learning and domain modelling. It suggests decomposing learning
into reusable, chainable, and independently computable micro learning units, which
are modelled together with and on the same level as domain data. It therefore extends
the data model definition presented in the previous chapters with the ability to define
fine-grained micro machine learning units. An evaluation based on the smart grid
case study illustrates that using micro machine learning for such scenarios can be
significantly more accurate than coarse-grained learning while the performance is fast
enough to be used for live learning.

Part IV: Industrial application and conclusion. This part presents a concrete
industrial application from the smart grid domain and concludes this dissertation.
Chapter 8 first describes the case study and how the problems are addressed using
model-driven live analytics, before it presents and discusses the results. Finally, this
dissertation is concluded in Chapter 9, where possible future research directions are
discussed.

18

Part I

Background and state of the art

2
Background

This chapter presents the technical background for this dissertation, before the state
of the art is discussed in the following chapter. It first introduces important terms and
techniques for data analytics. Then, the chapter details the modelling background for
the present thesis before it introduces background work of database systems. Finally,
an overview of machine learning techniques is provided.

Contents
2.1 Data analytics . 22

2.2 Modelling . 25

2.3 Database systems . 34

2.4 Machine learning . 38

21

Chapter 2. Background

descriptive predictive prescriptive

what happened?

number of
posts, likes, checkins, …

what might happen? what should we do?

mining historical data

why did it happen?

statistical forecasting

machine learning

predictive modeling

simulation
data aggregation

averaging and
summarizing

statistics

optimization

what-if

decision modeling

Figure 2.1: Taxonomy of data analytics

2.1 Data analytics

Today, data is generated in very large scale by a wide range of sources, such as sensors,
embedded devices, social media, and audio/video. Advances in storage technologies
and their continuously falling prices allow to collect and store huge amounts of data
for a long time, creating entirely new markets aiming at valorising this data. Recent
studies, for example from McKinsey [43], emphasise the tremendous importance of
this relatively new field by calling it the “next frontier for competition”. Others even
compare the value of data for modern businesses with the value of oil, referring to data
as “the new oil” [53]. However, as it is the case for crude oil, data in its raw form is not
very useful. To transform crude oil into value, a long valorisation chain, composed of
heterogeneous transformation steps, needs to be applied before oil becomes the essential
energy source we all so heavily rely on. Similarly to oil, to turn data into the multi-
billion dollar business that some analysts predict it will become [43], we need to process
and refine data before we can get valuable insights out of it. This process of turning
raw data into valuable insights is referred to as data analytics. It has the potential
to help us to better understand our businesses, environment, physical phenomena,
bodies, health, and nearly every other aspect of our lives. However, turning collected
data into competitive advantages remains a big challenge. Analysing data fast enough
to support decision-making processes of cyber-physical systems is a main motivation
behind this dissertation.

2.1.1 Taxonomy of data analytics

Commonly in literature three main types of data analytics are distinguished [218], [132].
Figure 2.1 summarises these three main types.

The first is descriptive analytics. It describes and summarises “what happened?”.
It also answers the question “why did it happen?”. Common techniques for descriptive
analytics are data mining, statistics, and other types of post-mortem analysis. For

22

2.1. Data analytics

example, it can provide the number of likes, posts, or check-ins in a social network.
Descriptive analytics mainly provide trending information on past or current events.

The next step is predictive analytics. It answers the question “what might happen?”.
It utilises techniques such as statistical forecasting, predictive modelling, and machine
learning. Predictive analytics helps to anticipate likely scenarios. Since these methods
are probabilistic, it can only forecast what might happen based on historical data. An
example is producing a credit score of customers to predict the probability of these to
pay future credit payments back on time. Another example is sentiment analysis.

The third and most advanced type of analytics is prescriptive analytics. It is able to
explore multiple potential futures based on the taken actions. Prescriptive analytics is
therefore able to answer the question “what should we do?” in respect to a certain goal.
This goes beyond mere statistical forecasting. Instead, it is necessary to explore what
happens if this or that action would be taken, i.e., to explore di↵erent alternatives.
What-if analysis is an essential but challenging part of prescriptive analytics. The
model-driven live analytics approach proposed in this thesis aims at enabling live
prescriptive analytics for cyber-physical systems.

2.1.2 Batch and (near) real-time analytics

Traditionally, data analytics, especially for large datasets, is batch analytics. Batch
data processing is designed to e�ciently process high volumes of data (terabytes or
even petabytes), where first large datasets are collected over a period of time, then
processed, and finally the batch results are produced. Batch analytics process data in
a pipeline-based way: first the data to be analysed is extracted from di↵erent sources
(e.g., databases, social media, or stream emitters), then it is copied into some form of
usually immutable data structures, then it is stepwise processed, and finally an out-
put is produced. By parallelising the processing steps, e.g., based on the map-reduce
programming model [128], these techniques are able to mine huge amounts of data
and can find all kinds of useful correlations. This process is depicted in Figure 2.2.
Examples for batch analytics are log analysis, solving of complex optimisation prob-
lems, business intelligence, and sorting of huge datasets. Batch processing can take up
to hours, or even days. The Apache Hadoop [319] technology stack is an example of a
popular batch processing toolset.

In contrary, (near) real-time analytics involves a continual data input, process,
and output of data. Real-time data analytics requires data to be processed in a short
amount of time (up to seconds or minutes). Data is processed as soon (or close to) when
data comes into a system. The goal is to enable organisations or systems to take imme-
diate actions. Examples where real-time analytics is needed are IoT, CPSs, or real-time
dashboards to reflect business changes throughout the day. Twitter Heron [213] and,
to a lesser extent, Apache Spark [327] are examples of real-time analytic frameworks.
Most businesses today use batch analytics, in fact, real-time analytics is yet in its
infancy.

23

Chapter 2. Background

databases

Storage

…

stream

social media

extract
and copy

processing

…

…

outputimmutable
data structures

extracted
dataset

in-memory
or on disc

processing

processing

no semantic link

analytic
results

Figure 2.2: Schematic working principle of a typical pipeline-based batch data analytic
processes

2.1.3 Complex event processing

Closely related to real-time data analytics is complex event processing
(CEP) [220]. Basically, the goal of CEP is to identify cause-and-e↵ect relationships
among events (in real-time) in streams of data. CEP combines data from multiple
sources in order to identify patterns about more complex events. This allows to, in-
stead of querying data for an event, be notified and react in case a complex event
happens. Examples where CEP can be applied are social media posts, stock mar-
ket feeds, tra�c reports, and text messages. Operational Intelligence, for instance,
combines real-time data processing and CEP to gain valuable insights into operations.

2.1.4 Extract-transform-load and extract-load-transform

Extract-transform-load (ETL) and extract-load-transform (ELT) are two terms often
used in today’s analytic environments. Therefore, both terms are introduced in the
following.

Traditional data warehousing is following an ETL process. That is, data is in a first
step extracted, i.e., copied from source systems to a staging area. In a second step,
data is transformed and processed. This means, data is reformatted for the warehouse
and business calculations are applied. Finally, data is loaded. In the loading step data
is copied from the staging area into the data warehouse. A key limitation of ETL is
that early in the process it must be decided what data is important and should be
extracted to the staging area and processed. Only this data will later become available

24

2.2. Modelling

in the data warehouse. Furthermore, transformed data cannot be modified after. For
example, extracted data may no longer exist in the source or staging database. Also,
in case any bugs are discovered in the transform phase, or if the transform process
should be changed, this cannot easily be achieved in ETL, since the original raw data
is not stored. In addition, this multi-layered process delays the availability of data in
the warehouse. Nonetheless, ETL is currently the most used approach.

In recent years, the transformation step is more and more pushed towards the data
source (database). Since in this approach, the transformation is done after the load-
ing phase, it is called ELT. By loading source data directly into the target environ-
ments instead of a staging/transformation platform, data becomes available signifi-
cantly sooner. Data can then directly be processed, i.e., transformed, in the target
platform. In ELT, the load process is isolated from the transformation process. This
even allows to delay the transform step to query time. ELT makes sense in case the
target is a computational powerful computer. Whereas in ETL transformations are
processed by ETL tools, in ELT transformations are processed directly by the target
datasource.

In short, the main di↵erence between ETL and ELT is where data is processed.

2.1.5 OLAP and OLTP

Online analytical processing (OLAP) is a technique often used for business intelligence,
report writing, financial reporting, budgeting, and data mining. It enables users to
selectively extract and view data from di↵erent points of view. OLAP systems store and
manage large amounts of historical data with the goal to analyse this data. The term
OLAP was introduced based on the term online transactional processing (OLTP) from
traditional databases. OLTP is a class of systems that facilitates transaction-oriented
applications. OLTP environments are used to transact and query against data, and
support the daily operational needs of the business enterprise [120]. OLAP is discussed
in more detail in Chapter 3.

2.2 Modelling

Modelling is a fundamental process in software engineering. The term model denotes
to an abstraction or simplification of a subject one wants to reason about in some
form or another. Models are simplifications in the sense that they only represent
a certain part of the subject, i.e., they limit the scope of a subject to the relevant
parts, given a certain purpose. A subject can be something from the real world, or
something imaginary. Models o↵er a simpler, safer and cheaper [274] means to reason.
Benyon [91] defines a model as follows: “A model is a representation of something,
constructed and used for a particular purpose”.

Over time di↵erent languages, formalisms, and concepts to model and reason about
systems have been developed and used for di↵erent purposes [261], [84], [296]. Entity-

25

Chapter 2. Background

relationship models [287], for example, are used as a general modelling concept for de-
scribing entities and the relationships between them. They are widely used for defining
data models that can be implemented in databases, especially in relational databases.
Other examples are ontologies, the resource description framework (RDF) [217], and
the web ontology language (OWL) [315], which are particularly used in the domain of
the Semantic Web. These allow to describe facts in a subject-predicate-object manner
and provide means to reason about these facts. A subject is a resource, a predicate
denotes aspects of the resource and specifies a relationship between the subject and
object. For example, the fact “the table is made of wood” is a triple of a subject (the
table), a predicate (is made of), and an object (wood).

Most modelling approaches have in common that they describe a context using a set
of concepts (also called: classes, types, elements), attributes (or properties), and the
relations between them. We refer to the representation of a context (set of described
elements) as a context model or simply as model and to a single element (concept) as
model element or simply as element.

Closely related to modelling is the concept of meta modelling. A meta model is
an abstraction of the model itself. It defines the properties of the model. A model
conforms to its meta model, comparable to how a program conforms to the grammar
of the language it is written in. In this respect, a meta model is a model itself, which
makes statements about what can be expressed in valid models. It o↵ers the vocabulary
for formulating reasonings on top of a given model. Both, models and meta models
are models but have di↵erent purposes. A meta model describes a model. The term
“meta” is relative in the sense that, depending on the perspective, a model can be
a model or a meta model. An instance of a meta meta model is a meta model, the
instance of a meta model is a model and so forth.

This thesis builds on the concepts of model-driven engineering and models@run.time,
which are detailed in the following.

2.2.1 Model-driven engineering

MDE [195], [101] is a software development methodology to address the increasing
domain complexity of today’s application domains. Model-driven engineering focuses
on the specification of formal models. It promotes to provide abstractions of the
problem space that express designs in terms of application domains (e.g., finance,
telecom, healthcare) rather than abstractions of the solution space (i.e., the domain of
computing technologies). More specifically, MDE addresses platform complexity and
expresses domain concepts by combining [281]:

• Domain-specific modelling languages (DSMLs) “whose type systems for-
malise the application structure, behaviour, and requirements within particular
domains, such as software-defined radios, avionics mission computing, online
financial services, warehouse management, or even the domain of middleware
platforms [281]”. In contrary to a general-purpose language (GPL), which is
broadly applicable across application domains, a DSML is specialised to a par-

26

2.2. Modelling

ticular application domain. Domain-specific modelling languages can be textual
or graphical and are used by developers to build applications in terms of the
concepts and relations of a particular domain. They are tailored to match the
semantics and syntax of a certain domain. In this respect, a DSML provides a
type system for the domain concepts.

• Transformation engines and generators “that analyse certain aspects of
models and then synthesise various types of artefacts, such as source code, sim-
ulation inputs, extensible markup language (XML) deployment descriptions, or
alternative model representations [281]”. This allows to generate systematic
functionalities. Examples are persistence layers, constraint checking, and plat-
form dependent code. Besides saving development time, automated code gener-
ation and transformation also ensures what is often referred to as “correct-by-
construction”, as opposed to conventional “construct-by-correction”.

Often claimed advantages of MDE are: abstraction from specific realisation technolo-
gies (improved portability, interoperability), automated code generation and transfor-
mation (increased productivity, e�ciency), model checking and verification (improved
quality), separation of application and infrastructure code, reusability, readability, and
cost-e↵ectiveness [281], [195] [83]. On the other hand, common critic points of model-
driven engineering is the comparatively high initial e↵ort, e.g., for defining DSMLs,
scalability issues, poor tool support [195] [83], [320], and organisational challenges to
adopt MDE [185]. The two de facto standards for model-driven engineering are model-
driven architecture (MDA) promoted by the Object Management Group (OMG) and
the Eclipse ecosystem of modelling tools and languages [28]. OMG provides a set of
specifications, such as MOF [238] and the Unified Modeling Language (UML) [253],
rather than concrete implementations.

Model-driven engineering focuses on creating and exploiting domain models at di↵erent
levels of abstraction, which are conceptual models of all topics related to a specific
problem. Nonetheless, MDE largely applies models to certain parts of the development
process. In particular, structural and compositional aspects in the design phase or
model checking and verification in the testing phase [281]. The models@run.time
paradigm (cf. Section 2.2.3) suggests to extend the usage of models from the design
phase to the runtime of a system. In this thesis, we apply and extend model-driven
engineering and models@run.time techniques to create abstractions of cyber-physical
systems, suitable for near real-time analytics of data collected in such systems.

2.2.2 MOF: The Meta Object Facility

Considering the importance and influence the Meta Object Facility (MOF) has on
model-driven engineering, this section provides an overview about MOF. MOF is an
OMG standard for model-driven engineering. The MOF specification [238] defines its
scope as:

“This International Standard provides the basis for metamodel definition in OMG’s
family of MDA languages and is based on a simplification of UML2’s class modeling

27

Chapter 2. Background

capabilities. In addition to providing the means for metamodel definition it adds core
capabilities for model management in general, including Identifiers, a simple generic
Tag capability and Reflective operations that are defined generically and can be applied
regardless of metamodel.”

MOF was developed with the intention to o↵er a type system for entities in Common
Object Request Broker Architecture (CORBA) and a set of interfaces to manipu-
late those types. CORBA is an OMG standard [252] by itself. It has been designed
to enable communication between systems deployed on diverse platforms, on di↵er-
ent operating systems, programming languages, and computing hardware. Although
CORBA itself uses an object-oriented model, systems using CORBA do not have to
be object-oriented. It is an example of a distributed object paradigm. MOF enables
to define the structure (or abstract syntax) of data or of a language. The primarily
purpose of MOF is to provide means to define meta models. In this respect, MOF plays
a similar role than Extended Backus–Naur Form (EBNF) plays for defining program-
ming language grammars. In short, MOF is a DSML to define meta models. There
are two versions of MOF, Essenntial MOF (EMOF) (a reduced version) and Complete
MOF (CMOF). The variant ECore, defined in the Eclipse Modeling Framework (cf.
Section 2.2.5.1), is strongly based on EMOF.

Despite the fact that various OMG specifications refer to a four layered meta model
architecture—shown in Figure 2.3—MOF in fact defines fundamental modelling con-
cepts that can be used to handle any number of layers (meta levels) greater than one.
Figure 2.3 shows on the left the MOF-layers and on the right side excerpts of the cor-
responding model and its relationships to the other layers. Due to the widespread use
of the four layered meta model architecture in literature, the four layers are presented
in the following:

• M3 or meta meta model level: represents the language used by MOF to
define meta models, called M2-models. MOF can be defined by itself.

• M2 or meta model level: this layer represents the UML meta model, i.e., the
model that describes UML. The M2-layer is used to define M1-layer models.

• M1 or model level: this layer defines user models expressed in UML.

• M0 or runtime level: the last layer, called M0-layer, is used to describe real-
world objects, i.e., the running system.

The modelling concepts Classifier and Instance or Class and Object and the ability to
navigate from an instance to its meta object, i.e., its classifier, allows MOF to handle
an arbitrary number of layers (at least two). MOF is reflective (can be used to define
itself), therefore there is no need to add an additional layer on top of M3. As can be
seen in Figure 2.3, what is a model and what a meta model is relative and depends on
the viewpoint. If we consider a M1-layer model, a M2-layer model is the meta model of
it, but—on the same time—the M1-layer model is a meta model of a M0-layer model.

Models@run.time seek to extend the applicability of model-driven engineering, which
is mainly applied at the design time of a system, to the runtime environment. This

28

2.2. Modelling

M3
meta meta model layer
(MOF) Class

M2
meta model layer
(UML, CWM, …)

Attribute Class Instance

<<instanceOf>><<instanceOf>>

<<instanceOf>>

M1
model layer
(Domain/user models)

M0
runtime layer
(Described objects from
the “real world”)

classifier

+consumption: Double
SmartMeter

consumption=35.12
:aSmartMeter<<snapshot>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

aSmartMeter

Figure 2.3: The four layered meta model hierarchy of MOF

thesis builds on models@run.time concepts, therefore this paradigm is detailed in the
following section.

2.2.3 Models@run.time

Over the past few years, an emerging paradigm called models@run.time [96], [246]
proposes to use models both at design and runtime in order to support self-adaptive
systems. Models@run.time empower self-adaptive systems with a model-based ab-
straction causally connected to their own current state. The model provides up-to-
date information about the system, i.e., it reflects the current state of the system.
Since the model is causally connected to the system, adaptions can be made at the
model level. Similar to model-driven engineering, models@run.time are models at a
high level of abstraction and related to the problem space rather than the solution
space. Models@run.time are tied to the models produced as artefacts from the MDE
process [96]. Blair et al., [96] define a model@run.time as: “a model@run.time is
a causally connected self-representation of the associated system that emphasizes the
structure, behavior or goals of the system from a problem space perspective”.

At design time, following the model-driven engineering paradigm, models support the
design and implementation of the system. The same (or similar) models are then
embedded at runtime in order to support reasoning processes. Models provide a se-
mantically rich way to define a context and can be used in reasoning activities. This

29

Chapter 2. Background

Real systemMeta model Runtime model

1

0..1

customer

id: Long
address: String

Customer

id: Long
activeEnergy: Double
reactiveEnergy: Double

SmartMeter

id: Long

Concentrator

0..1

*

concentrator

defines domain concepts

reflected by

reasoning

manipulates
conforms to /
is instance of

Figure 2.4: Schematic representation of models@run.time

is depicted in Figure 2.4. As can be seen in the figure, a meta model is used to define
the domain concepts of the real system, i.e., it specifies the elements which can be
used by the model. The actual runtime model is an abstraction of the real system and
conforms to (is an instance of) its meta model. Runtime models—as abstractions of
the real system—can be used to reason about the state of the real system. Due to the
causally link of the model@run.time, it reflects the current state of the real system and
vice versa, the real system can be manipulated through the runtime model.

Models@run.time are often mentioned in the context of architectural and variability
models [246], [155], [109], where architectural models are used as runtime artefacts
to enable architecture-based dynamic adaptation and reconfiguration. For instance,
this enables systems to (i) dynamically explore several adaptation options (models) in
order to optimise their state, (ii) select the most appropriate one, and (iii) run a set of
verifications of viability on new configurations before finally asking for an actual ap-
plication. As stated by Blair et al., [96], runtime models can also be used “to support
dynamic state monitoring and control of systems during execution, or to dynamically
observe the runtime behaviour of systems”. Following these considerations, in the con-
text of this dissertation, we suggest to use models—as abstractions—of cyber-physical
systems (in particular smart grids) during runtime in order to structure and reason
about the state of these systems with the goal to support decision-making processes.
Therefore, we extend runtime models with a temporal dimension (cf. Chapter 4), the
ability to explore many di↵erent hypothetical actions (cf. Chapter 5), to reason about
distributed, constantly changing data (cf. Chapter 6), and learning (cf. Chapter 7).
This thesis pursues the idea of model-driven engineering and models@run.time further
and brings it to another domain: near real-time data analytics.

2.2.4 Meta models, models, and runtime models in the con-
text of this dissertation

To clarify the used terminology, Figure 2.5 shows the relations between meta models,
models, and object graphs in the context of this dissertation. In MDE approaches, we
usually first model a domain using a meta model, defined in languages like Eclipse Mod-

30

2.2. Modelling

*

0..1
customer

id: Long
address: String
nbResidents: Integer

Customer

id: Long
activeEnergy: Double
reactiveEnergy: Double

SmartMeter

id: Long

Concentrator

0..1

*

public interface SmartMeter {
public void setCustomer(Customer customer);

 public Customer getCustomer();

public void setAactiveEnergy(double activeEnergy);
 public double getActiveEnergy();

public void setReactiveEnergy(double activeEnergy);
 public double getReactiveEnergy();

public void setConcentrator(Concentrator
concentrator);

public Concentrator getConcentrator();
}

public interface Concentrator {
public Collection<SmartMeter> getSmartMeters();
public void setSmartMeters(Collection<SmartMeter>

smartMeters);
}

public interface Concentrator {
public String getAddress();
public void setAddress(String address);

public int getNbResidents();
public void setNbResidents(int nbResidents);

}

Meta Model Generated Modelling API Object Graph

one or several
transformation or
generation steps

defined as EMF, UML, DSL, … implemented in Java, Scala, C++, …

runtime
usage

concentrator

= models@run.time

Figure 2.5: Relation between meta models, models, and object graphs in the context
of this thesis

eling Framework (EMF), UML, or other graphical or textual domain specific modelling
languages. For this purpose, this thesis uses a textual DSML which is conceptually
close to EMF but provides a di↵erent syntax. The relevant parts of this language, its
syntax and semantics, are described throughout this thesis in the context when the
language is used. Then, one or several transformation or generation steps transform
the meta model into the actual model, usually implemented in an object-oriented pro-
gramming language, like Java, Scala, or C++. The generator used in this dissertation
currently supports Java and JavaScript. This model can then used in the implemen-
tation of an application. During system execution, the runtime model can therefore
be interpreted as an object graph. In this thesis we use the terms runtime model and
object graph synonymously. To refer to a meta model we explicitly use the terms meta
model or domain model. We refer to the representation of a context (set of described
elements) as a context model or simply as model and to a single element (concept) as
model element or simply as element.

The object graph (runtime model) is where the main contributions of this thesis are.
More specifically, the present dissertation introduces a multi-dimensional graph data
model (cf. Chapter 5), which allows to represent and analyse the context of complex
CPSs in live. In this respect, meta models can be seen as a typing layer on top of
the graph data model. Of course, in addition—following default MDE techniques—it
allows to add more meta information, which can be used by the object graph during
the execution of a system, i.e., at runtime. For example, as presented in Chapter 7 of
this thesis, learning rules can be seamlessly defined in the meta model layer and later,
during runtime, leveraged by the object graph data model.

31

Chapter 2. Background

2.2.5 Modelling frameworks

MDE frameworks historically emerged from computer-aided software engineering
(CASE) tools developed in the 80s. Since then, they evolved into full MDE ecosystems.
This section gives an overview about two concrete open source modelling frameworks,
1) the Eclipse Modeling Framework (EMF) and 2) the Kevoree Modeling Framework
(KMF). EMF is presented, since it is considered as the de facto standard for mod-
elling frameworks. On the other hand, KMF is discussed because it was specifically
developed to support the models@run.time paradigm. For this reason, the concepts
presented in this dissertation have been implemented and integrated into KMF.

2.2.5.1 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [294] is a de facto modelling standard and
part of the Eclipse ecosystem [29]. On its project website1 it is described as “a mod-
elling framework and code generation facility for building tools and other applications
based on a structured data model. From a model specification described in XML meta-
data interchange (XMI), EMF provides tools and runtime support to produce a set of
Java classes for the model, along with a set of adapter classes that enable viewing and
command-based editing of the model, and a basic editor.” EMF allows di↵erent ways to
define models, e.g., annotated Java, UML, XML, or graphical/textual modelling tools.
The specified models can then be imported into EMF. It provides the foundations for
interoperability with other EMF-based applications and tools of the Eclipse ecosystem.
EMF consists of three main building blocks:

• EMF.Core: The framework core contains the meta model (Ecore) for describing
models. The core also includes runtime support for models (change notifications,
persistence support with XMI serialisation) and a reflective application program-
ming interface (API) for manipulating EMF objects.

• EMF.Edit: The EMF.Edit framework contains reusable classes (e.g., content
and label provider classes, a command framework) for building editors for EMF
models.

• EMF.Codgen: The code generation facility provides support to build a com-
plete editor for EMF models. It also contains a UI to specify generation op-
tions and which generators should be invoked. EMF.Codgen supports three level
of code generation: model (Java interfaces and implementation classes for the
model classes, factory and package implementation class), adapters (implementa-
tion classes that adapt the model classes for editing and displaying), and editors
(a basic generated editor, which can be further customised).

Ecore is the meta model at the base of EMF. It enables to define domain models.
Ecore is its own meta model, i.e., it is defined with itself. Despite some di↵erences,
EMOF and Ecore concepts are very similar. EMF can be considered as a “tuned Java

1https://eclipse.org/modeling/emf/

32

2.2. Modelling

implementation” of most of EMOF. Over the years, EMF has been used to implement
a large number of tools and evolved into a widely used modelling framework.

However, EMF has been mainly developed with design time models in mind and less
with runtime models. This leads to some significant shortcomings and limitations
when used in the context of models@run.time. Therefore, with the Kevoree Model-
ing Framework, an alternative to EMF has been developed, specifically to meet the
models@run.time requirements.

2.2.5.2 The Kevoree Modeling Framework

The Kevoree Modeling Framework (KMF) [147], [151] is an alternative to EMF. Like
EMF, KMF is a modelling framework and code generation toolset for building object-
oriented applications based on structured data models. However, while EMF was
primarily designed to support design-time models, KMF is specifically designed to
support the models@run.time paradigm and targets runtime models. While the basic
concepts remain similar, runtime models—especially runtime models of complex cyber-
physical systems—usually have higher requirements regarding memory usage, runtime
performance, and thread safety. Therefore, EMF faces some limitations in supporting
the models@run.time paradigm, which KMF tries to address [147]. More specifically,
Fouquet [147] et al., state the following requirements of models@run.time, which have
initially lead to the development of KMF:

• Reduced memory footprint: the more e�cient a modelling framework (its
runtime) is, the more devices are capable of running it. This is especially impor-
tant for models@run.time, which for example are used in the context of CPSs
and must run on comparatively limited devices.

• Dependencies: the size of needed dependencies should be fairly small, since all
dependencies need to be deployed on every device using models@run.time. The
tight coupling and integration of EMF into the Eclipse IDE comes with the price
of comparable large dependencies.

• Thread safety: models@run.time are often used in distributed and concurrent
environments. This can lead to concurrent modifications of runtime models and
must be e�ciently supported by a models@run.time runtime.

• E�cient model (un)marshalling and cloning: For verification or reasoning
purposes, runtime models need to be cloned locally on a device in order to reason
on an independent representation. In addition, runtime models often need to be
communicated to other computational nodes (in distributed systems, like smart
grids), thus an e�cient models@run.time infrastructure must provide e�cient
model cloning and (un)marshalling.

• Connecting models@run.time to classical design tools: an e�cient run-
time model infrastructure should provide transparent compatibility with design
environments. Therefore, the Kevoree Modeling framework comes with plugins
for intelliJ for a seamless integration into an integrated development environment
(IDE).

33

Chapter 2. Background

KMF promotes the use of models not only for code generation or architectural man-
agement but also during runtime as a central artefact. Therefore, KMF was from the
ground up developed with strict performance and memory requirements in mind. It
provides its own (textual) modelling language. The semantic of this language is close
to Ecore, however it is not compatible. We use KMF to integrate the concepts intro-
duced in this dissertation. Besides the fact that KMF has been designed specifically
for models@run.time, we decided to use KMF as base for our approach rather than,
for example, EMF for several additional reasons. First, we found that KMF is a more
lightweight framework, making fundamental changes on the core, e.g., to implement
asynchronous calls for read and write operations, easier. Secondly, KMF is more suit-
able to process large datasets, i.e., has lower memory requirements [147]. Thirdly,
KMF can be easily extended with di↵erent storage concepts, e.g., key-value stores.
This is especially important for our approach, since the large amount of data, which
needs to be analysed in the context of CPSs and IoT, usually does not fit completely
in memory. Instead, data must be e�ciently loaded from external storage to memory
and vice versa. Last but not least, KMF is the main modelling framework inside our
research group at the SnT.

2.3 Database systems

Analysing data of CPSs in order to support decision-making processes makes it neces-
sary to not only consider the current context of a system but to also take the history
into account. Due to the large amount of data generated by these systems, keeping the
full data history in main memory is not practical. Instead, if the context model and
its history exceed a certain size, it is necessary to store parts of the data in databases
and load it only on demand.

Over the past few years, so-called NoSQL databases have been brought into focus
in the context of big data and real-time analytics and are challenging the dominance
of relational databases. The definition of NoSQL, which stands for “Not Only SQL”
or “Not Relational”, is not generally recognised [106]. Nonetheless, these databases
are usually characterised by addressing at least some of the following points: non-
relational, horizontally scalable, simple API, capable of managing a huge amount of
data, weaker consistency models than classical SQL databases, schema-free, easy repli-
cation support, and easily distributable. NoSQL databases were originally motivated
by Web 2.0 applications and the accompanying need to scale to thousands or millions of
users performing updates as well as reads. A very interesting characteristic of NoSQL
databases from a developers point of view is that they allow to develop applications
without having to convert in-memory structures to relational structures (the so-called
impedance mismatch). NoSQL databases range in functionality from simple key-value
stores, over disturbed hash tables, to highly scalable database systems. Often, four
di↵erent categories of NoSQL databases are distinguished:

• Document databases: store data in key/document manner, where a document
is a complex data structure. Documents can usually contain many di↵erent key-
value, key-array, or key-document pairs. An example for a document database

34

2.3. Database systems

is mongoDB [45]. Common formats for documents are XML, JavaScript object
notation (JSON), binary JSON (BSON), and so on.

• Graph stores: used to store complex graph-like structured data, e.g., social
network connections. Popular examples of graph stores are Neo4j [47] and Gi-
raph [5].

• Key-value stores: store data in form of simple key-value pairs. Examples of
key-value stores are Riak KV [56] and Berkeley DB [19].

• Column stores: column-family databases store data in form of rows that consist
of many columns associated with a row key. A group of columns saved together
in one row is called column family. Cassandra [3] is a popular example of a
column-family database.

In this dissertation, we leverage key-value stores as a main technology of our persistence
solution for the presented multi-dimensional graph data model (cf. Chapter 5). The
data model itself and its storage concepts are inspired by graph stores. Therefore,
we present important concepts of key-value stores and graph stores in Section 2.3.3
and 2.3.4 respectively. Before that, we present an important conjecture which is often
discussed in the context of NoSQL databases.

2.3.1 The CAP theorem

Brewer’s CAP theorem [158] states that for a distributed system it is impossible to
simultaneously provide all three of the following guarantees:

• Consistency: all nodes see the same data at the same time.

• Availability: every request receives a response about whether it succeeded or
failed.

• Partition tolerance: the system continues to operate despite arbitrary parti-
tioning due to network failures.

Many modern NoSQL databases allow to be configured by developers to tune these
three parameters to their needs.

2.3.2 Consistency models: ACID and BASE

While the prevailing consistency model for most relational databases is the ACID
model, many NoSQL databases adopt the BASE [264] consistency model.

ACID stands for:

35

Chapter 2. Background

• Atomic: all operations of a transaction either succeed or every operation is
rolled back.

• Consistent: after a transaction is completed, the state of the database is struc-
turally sound.

• Isolated: concurrent access to data is managed by the database, each transaction
appears to run sequentially.

• Durable: results of a completed transaction are permanent, even in the advent
of failures.

This strong consistency model comes with the price that it needs usually sophisticated
locking techniques, which are often heavyweight and possibly a bottleneck for applica-
tions. The basic idea behind the BASE consistency model is that many applications
might not need such a strong consistency model, and/or scalability, performance, and
resilience are more important requirements than strong data consistency.

BASE stands for:

• Basic availability: the database appears to work most of the time.

• Soft-state: stores don’t have to be write-consistent, nor do di↵erent replicas
have to be mutually consistent all the time.

• Eventual consistency [314]: stores exhibit consistency at some later point
(e.g., lazily at read time). Frey et al., [152] discuss an interesting approach of
di↵erentiated eventual consistency.

Which consistency model is more appropriate varies from application to application.
As stated in the CAP theorem, it is impossible to simultaneously provide consistency,
availability, and partition tolerance at the same time, developers and software archi-
tects have to find the best trade-o↵ according the requirements of their respective
application.

2.3.3 Key-value stores

Key-value stores are simple associative arrays or dictionaries where records are stored
and retrieved using keys. This is depicted in Figure 2.6. Values can either be retrieved
using a key, put for a specific key, or deleted from the data store using a key. Keys can
be hashed, which enables put(key,value), get(key), and delete(key) operations
to be very e�cient. The value in a key-value store is usually some form of a blob, i.e.,
the data store just stores the value, without specifying or knowing what is inside. It is
the responsibility of the application to interpret and understand what is stored inside
the blob value. This makes key-value stores appropriate for various data. There exists
a wide variety of implementations, for example, some of them support the ordering of

36

2.3. Database systems

<key=1>

<value=object>

activeEnergy = 74.3 wh

communicationActive = true

isRepeater = true

registeredBy = [5]

registeredEntities = [3,2]

key

value

1

5

3

2

key

0011001100011110011

1111011000011110000

1010101010110100111

1011101111111110111

value

Figure 2.6: A simple key-value example

SmartMeter
 serialNumber: 1
 activeEnergy: 74.3 wh
 communicationActive: true
 isRepeater: true
 registeredBy: [5]
 registeredEntities: [3,2]

Concentrator
 serialNumber: 5
 activeEnergy: 223.2 wh
 communicationActive: true
 registeredEntities: [1,2,3]registeredBy

SmartMeter
 serialNumber: 2
 activeEnergy: 91.8 wh
 communicationActive: true
 isRepeater: false
 registeredBy: [1]

SmartMeter
 serialNumber: 3
 activeEnergy: 57.1 wh
 communicationActive: true
 isRepeater: false
 registeredBy: [1]

registeredBy

registeredBy

Figure 2.7: A simple graph example

keys. Di↵erent implementations support di↵erent consistency models, di↵erent distri-
bution, and di↵erent conflict resolution strategies. Some are plain in-memory stores
while others allow to persist data. Key-value stores don’t enforce strict schemas and
provide very good horizontal scaling characteristics what helped their dissemination in
cloud computing and big data technologies. We leverage key-value stores as the base
persistence technology behind our approach.

2.3.4 Graph stores

Graphs allow to describe complex domains in terms of rich graph structures. Like
mathematical graphs, graphs in database models consist of nodes (entities) and edges
(relationships). Entities can be thought of, for example, as an object in an application.
Graphs enable it to store entities and relationships between these entities. This maps

37

Chapter 2. Background

closely to many problem domains. Figure 2.7 shows a simple graph example. The fig-
ure resembles the example shown in Figure 2.6. In most graph data models nodes can
have properties (attributes). Some graph models also allow edges to have attributes.
Graph databases embrace the concept of relationships as a core concept in their data
models and store them as first class citizens. This allows to query relationships faster
than in traditional database models, where relations (especially many-to-many) of-
ten need to be expensively computed at query time. Furthermore, the data model of
graph databases is closer to the object-oriented model used in many of todays applica-
tions, making their integration easier. Graph databases are besides document-oriented
databases and key-value stores one major category of NoSQL databases. One of the
main ideas behind graph databases is the fact that information in the real world are
practically never isolated pieces but rich, interconnected concepts. Neo4j [47] is one of
the first and most famous graph data bases.

2.4 Machine learning

Machine learning is an evolution of pattern recognition and computational learning
theory in artificial intelligence. It explores the construction and study of algorithms
that can learn from and make predictions on data. It uses algorithms operating by
building a mathematical model from example inputs to make data-driven predictions
or decisions, rather than strictly static program instructions [318]. The essence of
machine learning is to create compact mathematical models that represent abstract
domain notions of profiles, tastes, correlations, and patterns that: 1) fit well the current
observations of the domain and 2) are able to extrapolate well to new observations [242].

Several categorisations of machine learning techniques are possible. We can divide
these techniques according to the nature of the used learning: In supervised learning
data has predefined and well known fields to serve as expected output of the learn-
ing process. While in unsupervised learning input data is not labeled and does not
have a known field defined as output. Machine learning algorithms try to deduce
structures present in the input data to find hidden patterns. In some cases, input
data is a mixture of labelled and unlabelled samples. This class of problems is called
semi-supervised learning. Many machine learning algorithms require some parameters
(called hyper-parameters) to configure the learning process itself. In some situations,
these parameters can also be learned or adapted according to the specific business
domain. Thus, they are called meta learning parameters and the process of learning
such parameters is called meta learning. For the rest of the paper we will refer to
such parameters simply as parameters.

Another categorisation of machine learning techniques is according to the frequency of
learning: In online learning, for every new observation of input/output, the learning
algorithm is executed and its state is updated incrementally with each new observation.
This is also known as live, incremental, or on-the-fly machine learning. We speak of
o✏ine learning or batch learning when a whole dataset or several observations are
sent in “one shot” to the learning algorithm. We speak of lazy learning, or on-demand
learning when we train a machine learning technique only for the purpose of estimating

38

2.4. Machine learning

the output of a specific input vector. The learning technique is trained using a small
batch or a subset of observations similar to the requested input. This type o↵ers a
case-based or context-based reasoning because the learning is tailored for the requested
input.

Finally, a machine learning module can be composed by combining several machine
learning submodules. This is usually called ensemble methods. It is often used to create
a strong machine learning model from multiple weaker machine learning models that
are independently trained. The results of the weaker models can be combined in many
ways (voting, averaging, linear combination) to improve the overall learning. Some
techniques split the training data over the weaker models, this is called bagging. Other
techniques split over the features and some split over both data and features. Random
forests are a powerful example of these techniques, where the global machine learning
module is composed by several decision trees, each trained on a subset of data and
features. Neural networks are another example, where the global network is composed
by several neurones, each can be seen as an independent learning unit.

39

3
State of the art

This chapter discusses work related to the one presented in this dissertation. First, it
presents related approaches for analysing data in the context of cyber-physical systems.
Then, major data analytics platforms, stream and graph processing frameworks, and
graph databases are detailed. Finally, the related work regarding the four challenges
addressed in this dissertation is discussed.

Contents
3.1 Analysing data of cyber-physical systems 42

3.2 Data analytics platforms . 42

3.3 Stream processing frameworks 48

3.4 Graph processing frameworks 53

3.5 Graph databases . 60

3.6 Analysing data in motion . 63

3.7 Exploring hypothetical actions 70

3.8 Reasoning over distributed data in motion 72

3.9 Combining domain knowledge and machine learning . . . 74

3.10 Synthesis . 76

41

Chapter 3. State of the art

3.1 Analysing data of cyber-physical systems

The specific challenges of data analytics—or big data analytics—in the context of IoT
and cyber-physical systems have been discussed and identified as an open issue by
several researchers, e.g., [191], [270], [293]. Jara et al., [191] describe existing ana-
lytics solutions, discuss open challenges, and provide some guidelines to address these
challenges. As a major di↵erence between existing big data analytics and analytics
for CPSs, they discuss the need for real-time analytics as a vertical requirement from
communication to analytics. They propose a hybrid approach, where real-time analyt-
ics is used for control and, in addition, batch processing for modelling and behaviour
learning. Ray [270] proposes an architecture for autonomous perception-based decision
and control of complex CPS. As two of the main challenges he identifies the complexity
of such systems (e.g., stemmed from the complex underlying physical phenomena) and
their usually high performance requirements. Ray argues that, therefore, an e�cient
abstraction is the key for modelling and analysing data of cyber-physical systems.
Similar, Stankovic [293] in his discussion about research directions for the Internet of
Things, mentions the challenges of converting the continuously collected raw data into
usable knowledge, as one of the big challenges.

Thematically close to the context of our work is the work of Šikšnys [291]. Šikšnys
focuses on the planning phase in the context of large-scale multi agent CPSs. As a
main contribution, Šikšnys provides a definition and a conceptual model (composed
of a flexibility model, a prescriptive model, and a decision model) of what he calls
“PrescriptiveCPS”. Sikšnys contributions remain at the level of a conceptual model,
rather than proposing a concrete technical approach for data analytics of CPSs.

In the following we discuss analytics platforms, frameworks, and technologies that
are related to our approach, before we present the related work specific for the four
challenges addressed in this dissertation. Figure 3.1 presents an overview of the state
of the art presented in the following chapters.

3.2 Data analytics platforms

Over the years, data management systems have pushed the limits of data analytics for
huge amounts of data further and further.

3.2.1 Online analytical processing (OLAP)

In the 1990’s Codd et al., [116] presented a category of database processing, called
OLAP, which since then has implemented and widely used in many commercial
database systems. It addresses the lack of traditional database processing to con-
solidate, view, and analyse data according to multiple dimensions, i.e., from multiple
perspectives. The term multi-dimensional in the context of OLAP is used in a very

42

3.2. Data analytics platforms

Analysing data of CPS’s

Challenge #1:
Analysing data in motion

Challenge #2:
Exploring hypothetical actions

Challenge #3:
Reasoning over distributed
data in motion

Challenge #4:
Combining domain knowledge and

machine learning

Stream processing
frameworks

Temporal databases
Temporal RDF and OWL
Model versioning
Time series databases
Temporal graph processing

MS Excel
Hypothetical database queries

Infinite models
Streaming model transformations
Change-driven model transformations
Large-scale models and persistence
Propagation of model changes

TensorFlow
GraphLab
Infer.NET (model-based ML)

Graph processing
frameworks

Storm, Heron, Flink, …

Pregel, Giraph, GraphLab, …

Graph databases
Neo4j, DEX, Titan, …

OLAP

Hadoop

Spark

Figure 3.1: Overview of the state of the art related to this thesis

di↵erent way than in the context of this dissertation. Whereas in this thesis we refer
to “time” and “alternative worlds” as di↵erent dimensions of data, a dimension in
OLAP environments means a di↵erent perspective of the same data, i.e., highlighting
di↵erent aspects of the same data for di↵erent purposes or for di↵erent stake holders.
OLAP o↵ers three basic analytical operators: roll-up, drill-down, and slicing/dicing.
Roll-up is used to consolidate data, this includes for example aggregation of data. In
contrary, drill-down is used to enable users to view the details. Slicing and dicing
allows users to take out (slice) specific datasets and view (dice) these slices from di↵er-
ent perspectives. In OLAP contexts, these perspectives are called dimensions. Typical
examples of OLAP applications are business reporting, management reporting, mar-
keting, and business process management. OLAP enables complex analytical (ad hoc)
queries with fast execution times. The core of OLAP systems are so-called OLAP
cubes (sometimes referred to as hypercubes). An OLAP cube is basically a multi-
dimensional array of data. OLAP cubes are usually filled and prepared in batch mode
from di↵erent sources. Therefore, OLAP techniques are not suitable for live analytics
of complex and frequently changing data of cyber-physical systems. Moreover, OLAP
is usually performed on powerful and centralised servers.

In a more recent work about best practices for big data analytics, Cohen et al., [117]
present what they call “MAD Skills”. They highlight the practice of magnetic, agile,
and deep (MAD) data analysis as a departure from traditional data warehousing and
business intelligence. This paper mainly discusses suggestions to better address the
massive-scale of data, today’s analytics has to face. More specifically, they highlight

43

Chapter 3. State of the art

the need to make analytics more “magnetic”, “agile”, and “deep”. With magnetic they
refer to the idea that analytics, to keep pace with ubiquitous data sources, should incor-
porate many di↵erent data sources, regardless of data quality issues. This is opposed to
traditional approaches, where data is carefully cleansed before integrated. Agile means
to easily ingest, digest, produce, and adapt data at a rapid pace. Finally, deep refers
to the ability to integrate sophisticated statistical methods that go well beyond the
roll-ups and drill-downs of traditional business intelligence. The ideas presented in this
work originated mainly from their development of an analytics platform for Fox Inter-
active Media, using a large installation of the Greenplum database system. MAD skills
provide a new perspective on data analytics and o↵er many interesting suggestions to
tackle the increasing amount of data in the domain of analytics. However, MAD skills
are mainly (organisational) recommendations and best practices how to use already
existing technologies and methods rather than providing new methods. This means
that, like traditional data analytics (think of OLAP), MAD skills are mostly suitable
for centralised batch analytics and business intelligence in general.

3.2.2 The Hadoop stack

A very visible approach in the context of big data analytics is the open source Apache
Hadoop framework [7]. The Hadoop stack is a framework for distributed storage and
distributed processing of very large datasets across computer clusters using simple
programming models. It is built to scale from single commodity computers to clusters
of thousands of machines. Hadoop consists of four main components:

• Hadoop Distributed File System (HDFS): The HDFS [290] is designed for
storing large datasets and to stream those to applications at a high bandwidth.
This allows to distribute storage and computation across servers.

• Hadoop YARN: YARN [310] is a job scheduling and cluster resource manage-
ment framework. The main idea of YARN is to decouple the programming model
from the resource management infrastructure.

• Hadoop MapReduce: A YARN-based implementation of the map-reduce pro-
gramming model [128].

• Hadoop Common: The common utilities supporting the Hadoop stack.

Hadoop was inspired by the Google File System [157] and map-reduce publica-
tions [128]. Since then, it has been successfully used in a wide range of projects
across many companies, e.g., Yahoo!, Facebook, and LinkedIn. Nonetheless, writing
map-reduce jobs is very low level and often leads to code which is hard to maintain and
reuse. Therefore, with Hive [305] Facebook created an open source data warehousing
solution on top of Hadoop, which allows to express queries in a SQL-like declarative
language, which are compiled to map-reduce jobs. This language o↵ers a type system
with table support containing primitive types, collections (e.g., arrays, maps), and
nested compositions. Like Hive, Pig [13] enables to execute ad-hoc queries on his-
torical data using a higher level—compared to implementing map-reduce jobs—query

44

3.2. Data analytics platforms

language. With HBase [10] an open source column store on top of HDFS has been
developed based on the concepts of Google’s BigTable to provide the Hadoop stack
with a non-relational, distributed database.

The Hadoop stack was designed and optimised to e�ciently process massive datasets
of structured, semi-structured, and unstructured data—but it was essentially designed
as a batch processing system. Despite some recent attempts to add support for in-
teractive SQL queries against Hadoop data, like Impala [11] and Hawq [9], Hadoop
is nonetheless fundamentally a batch operation environment. The fact that streamed
data is first stored on disk and then analysed through map-reduce jobs comes with
performance limitations, which makes the Hadoop stack less appropriate for real-time
analytics and is therefore not well suited for live analytics of CPS data. Moreover,
Hadoop doesn’t provide native support for any of the four challenges identified in this
dissertation: analysing data in motion, exploring hypothetical actions, reasoning over
distributed data in motion (though it supports distributed data at rest), combining
domain knowledge and machine learning.

3.2.3 The Spark stack

Besides Hadoop, Spark [14] is probably one of the most prominent big data analytic
frameworks today. Spark is an open source cluster computing framework. It was
originally developed at the University of California at Berkeley’s AMPLab. In the
meantime, Spark has become an Apache top-level project. It o↵ers an interface for
programming clusters with implicit data parallelism and fault-tolerance. Spark makes
intensive use of an execution engine that supports cyclic data flow and in-memory
computation. Spark developers claim that programs run much faster than Hadoop,
especially for in-memory computations [14].

The core of the Spark processing model is a data structure, called resilient dis-
tributed dataset (RDD) [326]. RDDs are distributed memory abstractions that
enable programmers to perform in-memory computations on large clusters in a fault-
tolerant way. In contrary to other approaches, like Hadoop, where results can only
be reused between several processing iterations (or queries) by writing and reading
them to disk, RDDs allow to store results in memory and reuse them across several
iterations. Two types of applications motivated the development of RDDs: iterative
algorithms and interactive data mining tools. For these cases, keeping data in mem-
ory can significantly improve the performance [326]. A RDD can be thought of as an
immutable multiset of data items, which are distributed over a cluster of machines.
RDDs were developed to address the limitations of the Hadoop map-reduce paradigm,
which forces a linear data flow on distributed programs.

Spark SQL [80] is a component of the Spark stack, which integrates relational pro-
cessing with Spark’s functional API. This allows programmers to leverage the benefits
of relational processing while working with the Spark stack. A declarative DataFrame
API seamlessly integrates with procedural Spark code and allows to cross-fertilise re-
lational and procedural processing. Spark SQL enables developers to express complex
analytics in form of a rich API.

45

Chapter 3. State of the art

Spark itself provides only the computing core and data structures. To be used as a full
data analytics framework it requires a cluster manager and a distributed storage sys-
tem. As cluster managers, besides supporting standalone, i.e., native Spark clusters,
Spark supports, among others, Hadoop YARN and Apache Mesos [12]. It supports
a wide variety of distributed storage systems, e.g., HDFS, Cassandra, Amazon S3,
Tachyon [223] (renamed into Alluxio), and many more. The Spark core itself can be
seen as an alternative and faster processing model to replace Hadoop’s computation
model. However, by itself, Spark is, like Hadoop, essentially a batch processing frame-
work. In order to address the increasing need for (near) real-time analytics, Spark
comes with a streaming component, called Spark Streaming.

The core concept of Spark Streaming is to divide arriving data into mini-batches
(short, stateless, deterministic tasks) of data and then to perform RDD transformations
and computations on those mini-batches. A big advantage of this is that it allows to
write streaming jobs the exact same way than batch jobs. However, on the downside
this comes with the limitation that the latency is equal to the mini-batch duration.
Spark Streaming is built on so-called “discretised streams” (D-Streams), which are
proposed by Zaharia et al., [328] as a processing model for fault-tolerant streaming
computation at a large-scale. D-Streams aim at enabling a parallel recovery mechanism
that should improve e�ciency. While Spark’s batch-based streaming mechanism works
very well for many domains, like business intelligence or social media analytics, for
applications that need to (potentially) react to every data record this is problematic.
For example, in the context of cyber-physical systems, it is often not appropriate
to wait the end of a batch period before reacting. Also, in batch-based processing
systems it is often di�cult to deal with poor data quality. For example, records can be
missing, data streams can arrive out of (creation) time order, and data from di↵erent
sources may be generated at the same time, but some streams may arrive delayed.
These real-time factors cannot be addressed easily in a batch-based processing. This is
usually much easier to overcome in a record-by-record stream processing system, where
each record has its own timestamp, and is processed individually. The same counts for
finding correlations between multiple records over time. Batch-based stream processing
is limiting the granularity of a response inherently to the length of a batch.

The GraphX [323] component of Spark is especially interesting in the context of this
dissertation. Many problem domains, from social networks over advertising to machine
learning, can be naturally expressed with graph data structures. However, it is di�cult
and often ine�cient to directly apply existing data-parallel computation frameworks
to graphs. To address this, GraphX allows to express graph computations, that can
model the Pregel [232] abstraction, on top of Spark. Like Spark itself, GraphX was
originally developed at the University of California, at Berkeley’s AMPLab. It maps
distributed graphs as tabular data structures to fit the graph representations into the
Spark processing model. GraphX aims at combining the advantages of data-parallel
and graph-parallel systems by allowing to formulate graph computations within the
Spark data-parallel framework [323]. With GraphFrames [126] the authors present an
integrated API for mixing graph and relational queries on top of Spark. It enables
users to combine graph algorithms, pattern matching, and relational queries. While
representing complex data in form of graphs goes into a similar direction than the
approach followed in this thesis, the graph data structure provided in GraphX does

46

3.2. Data analytics platforms

not provide means to represent and analyse data in motion, nor does it support to
represent and analyse many di↵erent alternatives.

With MLlib [237] the Spark stack provides a distributed machine learning library on
top of Spark’s core. It supports several languages and, therefore, provides a high-level
API to simplify the development of machine learning tasks. A wide variety of machine
learning and statistical algorithms have been implemented and integrated into MLlib,
such as support vector machines, logistic regression, linear regression, decision trees,
alternating least squares, k-means, and many more. MLlib greatly benefits from the
integration into the Spark ecosystem and can leverage its components, like GraphX
and Spark SQL. While MLlib is able to extract commonalities over massive datasets in
a very e�cient way, it is mostly a coarse-grained and pipeline-based learning approach.
This makes it less appropriate for online learning and for structuring fine-grained learn-
ing units of entities which behave very di↵erently, as it is needed for CPSs. Although,
by leveraging Spark’s host languages, learning tasks can be implemented on a higher
level of abstraction, implementing learning tasks with MLlib remains challenging. In
this dissertation we propose an approach to model machine learning together with the
domain data itself, instead of managing learned and collected data in di↵erent models.

Velox [121] is an online model management, maintenance, and serving platform for
the Spark analytics stack, which aims at serving and managing models at scale. A
model in the context of Velox refers to learning models,i.e., models built from training
datasets in order to enable predictions (not to models in the sense of MDE). While
commodity cluster compute frameworks like Hadoop and Spark enabled to facilitate
the creation of statistical models that can be used to make predictions in a variety of
applications, e.g., personalised recommendations or targeted advertising, they mostly
neglect the problems of how models are trained, deployed, served, and managed. A
common approach is to store the computed models into a data store that has no
knowledge about the semantics of the model [121]. This let it to other application
layers to interpret and serve the models and to manage the machine learning life
cycles, e.g., to integrate feedback into the models. Velox aims at filling this gap
of model serving and management. Therefore, it performs two main tasks. First,
Velox exposes models as a service via a generic API which provides predictions for
a range of query types. Secondly, it manages the model life cycle, i.e., it keeps the
model up-to-date by implementing o✏ine and online maintenance strategies. Instead
of providing an additional modelling layer for model management and maintenance,
the approach presented in this thesis suggests to integrate model management and
maintenance directly into data and domain modelling. More specifically, by expressing
the relationships and dependencies of learned information together with and on the
same level as collected data—combined with online learning techniques—the model is
always up-to-date. Moreover, this model is used to generate a domain-specific API
(through MDE techniques), which enable applications to leverage the information and
semantics captured in the model.

Essentially, Spark is like Hadoop a pipeline-based analytics framework. Although, it
allows to e�ciently process mini-batches in a stream-based way with Spark Streaming,
the core of Spark is pipeline-based. While this is appropriate for many application
domains, for others, like cyber-physical systems and IoT, which often require imme-
diate reactions, such pipeline-based approach is problematic. This is continued in

47

Chapter 3. State of the art

machine learning libraries, like MLlib, which are built on top of Spark’s core and are
therefore also mainly designed for a pipeline-based processing model. This, essen-
tially, makes Spark, like Hadoop, less appropriate for near real-time analytics. While
GraphX o↵ers rich, graph-based data structures in Spark, it does not provide support
for time-evolving graphs nor for representing many di↵erent alternatives. Both, Spark
and Hadoop enable distributed computing and are able to process data close to the
source. However, although both analytics stacks are scalable, they require a consider-
able amount of computation power and are not well suited for smaller devices. While
Velox and MLlib o↵ers higher-level abstractions for learning, it does not allow to model
data and learning at the same level. Whereas data analytics in the context of cyber-
physical systems requires to analyse data in live, the amount of data is usually less
compared to business intelligence or social media analytics, where Spark and Hadoop
are optimised for. Although, the amount of data to be analysed in the context of this
dissertation is “big” it is not in the dimensions of petabytes, as it can be the case for
Spark. In summary, while there are similarities of our approach compared to Spark
and Hadoop, the specific requirements of live analytics of CPS data and, therefore, the
resulting techniques are quite di↵erent.

3.3 Stream processing frameworks

This section discusses real-time stream data processing systems. In contrary to Hadoop
and Spark, these have been designed from the beginning as real-time data analytics
frameworks.

Storm [308] is a real-time fault-tolerant and distributed stream data processing sys-
tem developed at Twitter and released as an open source Apache project. It is one of
the early open source and popular stream processing systems. Storm is mainly written
in Clojure. It has been designed for use cases like real-time analytics, online machine
learning, continuous computation, and ETL. Storm aims to become for real-time an-
alytics what Hadoop is for batch analytics. The basic data processing architecture of
Storm uses streams of tuples flowing through topologies [308]. In the context of Storm,
a topology is essentially a graph where nodes are computations and edges represent
the data flow. Two types of nodes are distinguished, spouts and bolts. Spouts are
tuple sources for the topology and bolts are processing the tuples. Spouts are typically
pulling data from queues like Kafka [209]. Topologies in Storm can have cycles. Storm
itself runs distributed clusters, e.g., Mesos. In Storm terminology a Nimbus is a mas-
ter node. Clients send their topologies to such master nodes. The master node then
handles the distribution and coordinates the execution of the topology. The execution
is done on worker nodes, where each can run an arbitrary number of worker processes.
At any time a worker process is mapped to a single topology. On the other hand,
a single machine can have several worker processes. A worker process runs a JVM,
which in turn can run one or more executors. An executor consists of one or several
tasks. The actual work for bolds or spouts is done in tasks. Through YARN, Storm
can be integrated into the Hadoop stack. Storm supports two data guarantee seman-
tics, at-least-once as well as at-most-once processing. Data can be persisted in various
key-value stores. Trident [66] is an extension and alternative interface to Storm. It

48

3.3. Stream processing frameworks

provides exactly-once processing, transaction-like persistence (with various key-value
stores), and a set of analytical operations on top of streams. Like Storm, Trident was
developed at Twitter.

Heron [213] is the successor of Storm. Like Storm, it has been developed at Twitter.
Heron aims at addressing some of Storm’s limitations (scalability, debug-ability, man-
ageability, and e�cient sharing of cluster resources) for processing the continuously
increasing amount of data at Twitter. Heron is API-compatible with Storm. One of
the issues addressed in Heron is the fairly complex design of Storm’s workers by replac-
ing it by a simpler model. A second change in Heron concerns the Nimbus, which is
functionally overloaded in Storm and can therefore lead to a significant overhead [213].
Instead, Heron uses existing open source schedulers, e.g., YARN and Aurora [329] and
adds a new component, a topology master. The topology master manages a topology
throughout its existence. Heron also introduces stream managers, which handle the
routing of tuples e�ciently. Unlike Storm’s workers, Heron uses so-called “Heron In-
stances” where each one is a JVM process, which runs only a single task of a spout or
bold. These—and other smaller changes and improvements—help to address some of
the limitations of Storm. Heron, like Storm, supports both, at-least-once and at-most-
once processing. Data can be persisted in various key-value stores.

Flink [4] is another open source framework for distributed big data analytics. It is an
Apache project. Like Storm and Heron, Flink has been designed for real-time analyt-
ics. Flink supports exactly-once data processing. The core of Flink is a distributed
streaming data flow engine, which provides data distribution, communication, and
fault tolerance for distributed computations over data streams. Streams in Flink con-
sist of key-value tuples. Flink enables to write programs in Java or Scala which are
automatically compiled into Flink data flow programs. These can then be executed
in a cluster or cloud environment. Flink itself doesn’t provide a data storage system,
instead it uses existing distributed storage systems like HDFS or HBase. Flink takes
data input from message queues like Kafka. It includes several modules and APIs to
create applications with:

• DataStream API: The core stream processing API of Flink. DataStream pro-
grams are implementing transformations (e.g., filtering, updating, aggregating)
on data streams. Message queues or socket streams are used as data sources.
Results are delivered using sinks, which for example write the results to files,
sockets, or external systems.

• DataSet API: An API for batch analytics. DataSet programs are implementing
transformations (e.g., filtering, mapping, joining, grouping) on data sets. Data
sources are, for example, files or collections. Like for data streams, results are
returned using sinks.

• Table API: A SQL-like querying language, embedded in Java and Scala. Oper-
ates on a relational table abstraction, which can either be created from external
data sources, or existing DataSet and DataStream abstractions. Flink’s Table
API o↵ers relational operators like selection, aggregation and table joins.

In addition to this, Flink comes with a number of libraries:

49

Chapter 3. State of the art

• CEP: A library to detect complex event patterns in data streams. Events can
then be constructed from matching sequences.

• Machine Learning library: FlinkML is Flink’s machine learning library. It
supports a growing number of algorithms, such as support vector machines, mul-
tiple linear regression, k-Nearest neighbours join, alternating least squares. It is
planned to extend FlinkML to streaming, i.e., to enable online learning, but at
the time this dissertation was written FlinkML is limited to batch learning.

• Gelly: Gelly is a graph API for Flink. It provides utilities to simplify graph
analysis applications in Flink. Graphs can be transformed and modified with
high-level functions, similar to how Flink supports batch processing. The graph
API can only be used for batch processing.

Flink provides APIs for processing distributed batch data and distributed streams of
data. It is an alternative to Spark and Hadoop but also to Storm and Heron. While
Flink provides many interesting features, machine learning and graph processing is
currently limited to batch processing. The streaming API is limited to process n-
tuples of data. More complex data structures, like graphs, are not supported by the
streaming API. Furthermore, it doesn’t provide support for time evolving data nor
exploring many di↵erent alternatives in parallel.

S4—Simple Scalable Streaming System [250]—is another distributed, partially fault-
tolerant platform for processing streams of data. It has been originally developed at
Yahoo! and has become, in the meantime, an Apache project. The architecture of S4
is close to the Actors model [71] and inspired by the map-reduce approach. It has been
designed as a general purpose distributed stream computing platform. Computations
in S4 are performed by so-called Processing Elements (PEs) and messages between PEs
are transmitted in form of data events. PEs do not share any state, event emission
and consumption are the only way of interaction. A stream in S4 is defined as a
sequence of elements (events) of form (K,A) where K and A are the tuple-valued
keys and attributes. The S4 platform consumes such streams, computes intermediate
values, and optionally emits streams. A PE instance consists of four components: 1)
its functionality implemented in a class, 2) the types of events that it can consume, 3)
the keyed attribute in those events, 4) the value of the keyed attributes. Processing
Nodes (PNs) serve as logical hosts to PEs. The responsibility of a PN is to listen to
events, execute operations on incoming events, dispatch events, and to emit output.
S4’s communication layer uses ZooKeeper [16] to coordinate between nodes in a cluster.
No explicit data guarantees are made and data is not persisted to disk.

Other than Flink—which provides a full stack of analytics libraries—S4 focuses on
distributed stream processing. Like Flink, S4’s stream processing API is limited to data
tuples, i.e., it doesn’t support more complex data structures (like graphs). Moreover,
it doesn’t support analysing temporal data nor does it support exploring hypothetical
actions. Last but not least, S4 doesn’t provide any machine learning library.

MillWheel [72], developed at Google, is a framework for building distributed low-
latency data processing applications. In MillWheel, users specify directed computa-
tion graphs and the application code which runs on a node. Arbitrary topologies

50

3.3. Stream processing frameworks

can be defined for the computation graph. The system handles persistent state of
the continuous flow of data records (via BigTable [111]) and manages fault-tolerance
guarantees. Data records are continuously delivered along the edges of the graph. Its
programming model provides a notion of time. This makes it possible to write time-
based aggregations. MillWheel places great emphasis on fault-tolerance. It guarantees
that every data record in the system is delivered to its consumers and handles the
processing of records in an idempotent manner. MillWheel uses checkpoints to per-
sist its progress at fine granularity. Viewed from a high level MillWheel is a graph of
user-defined transformations (called computations) on input data that produces out-
put data. Computations can be parallelised across several machines. Input and output
streams are defined as 3-tuples of (key, value, timestamp). The key is a metadata field
with semantic meaning, the value is an arbitrary byte string, and timestamps are de-
fined as values (usually the time an event occurred). One of the main motivations
behind the development of MillWheel was that many other stream processing frame-
works do not implement an exactly-once processing idiom (the Trident extension of
Storm provides this meanwhile, as well as Apache Flink) or don’t provide su�cient
fault-tolerant persistent state support for Google’s use cases.

Samza [59] is another distributed stream processing framework. It as an Apache
project and provides the at-least-once data processing guarantee. Streams in Samza
consist of key-value tuples. Samza uses Kafka as messaging service and YARN as a
resource manager to provide fault-tolerance. Besides fault-tolerance, durability (mes-
sages are processed in the order they are written and no message is lost), processor
isolation, and scalability, Samza provides managed states. This means that Samza
manages snapshotting and restoration of a stream processor’s state. In case a stream
processor is restarted, its state is restored from a snapshot. Samza streams are or-
dered, partitioned, “replayable”, and fault tolerant. A stream consists of immutable
messages of a similar type. Data can be persisted with RocksDB [57]. The computing
unit performing a logical transformation is called job in Samza. For scalability rea-
sons, streams and jobs are chopped into smaller units: partitions and tasks. A stream
consists of one or several partitions. Each partition is a totally ordered sequence of
messages. Tasks are used to scale jobs. They are the unit of parallelism of the job—
just as the partition is for the stream. A task consumes data from one partition for
each of the job’s input stream. The number of input partitions determine the number
of tasks. A data flow graph can be built by composing multiple jobs. The edges are
then streams containing the actual data and the nodes are here for transformations.

Stream Processing Core (SPC) [76] is a distributed stream processing middleware
developed by IBM. SPC has been developed to support stream-mining applications
using a subscription like model for specifying stream connections. Moreover, it provides
both relational and user-defined operators. SPC is built to support applications which
are composed from user-developed processing elements. These processing elements
take data streams from sources as input, filter, and mine them. Continuous inquires,
which are expressed as processing flow graphs are evaluated over streams of data.
A subscription-like model is used to specify for flow-graphs which streams should be
processed. It allows stream mining across raw data streams and data streams generated
by other applications. SPC is designed to address the following points:

51

Chapter 3. State of the art

Table 3.1: Summary and comparison of important stream processing frameworks

distributed comp. source guarantees storage data
processing model available model

Storm 3 stream 3 at-least-once 3 k/v tuple
at-most-once (k/v stores)

Trident 3 stream 3 exactly-once 3 k/v tuple
at-most-once (k/v stores)

Heron 3 stream 3 at-least-once 3 k/v tuple
at-most-once (k/v stores)

Flink 3 stream 3 exactly-once 3 k/v tuple
batch e.g., HBase,... graph (only

batch)
S4 3 stream 3 no explicit 7 k/v tuple

guarantees
MillWheel 3 stream 7 exactly-once 3 3-tuple

BigTable (k,v,
timestamp)

Samza 3 stream 3 at-least-once 3 k/v tuple
RocksDB

SPC 3 stream 7 no explicit no details complex
guarantees provided object

• data to be processed is streamed by default

• applications are not restricted to relational operators

• applications are inherently distributed

• support for discovery of new data streams

• processing elements of di↵erent applications need to share data to annotate dis-
covered data in streams

• the volume of incoming data is very large, thus the system needs to be scalable

In SPC, high-level user requests are translated into processing flow graphs, referred to
as jobs or applications. Jobs consist of one or several processing elements, which are the
fundamental building blocks of an application written with SPC. Processing elements
can communicate via ports, and can read, process, and write streams of data. They
read streams from input ports and write streams to output ports. Each port defines a
format, which defines the structure of the elements of a stream. Stream elements are
referred to as stream data objects. Stream data ojects are typed using a global type
system. SPC is designed to run on large-scale clusters. No explicit guarantees for data
processing are made.

Table 3.1 provides a summary and comparison of the discussed stream processing
frameworks. The table shows for each if it supports distributed processing, the com-
putation model (stream or batch), if the source code is available, data guarantees, if
it supports persistent storage, and the used data model.

52

3.4. Graph processing frameworks

In contrary to Hadoop and Spark, stream processing frameworks are specifically de-
veloped to address the challenge of near real-time data analytics and are therefore
especially interesting for this thesis. For example, stream processing presents a good
basis for enabling to reason about distributed and frequently changing data (cf. Chap-
ter 6). While frameworks like Flink influenced the design and implementation of
our approach, they lack major features needed for analysing data of complex cyber-
physical systems. First of all, the data model underlying these approaches is rather
simple (mostly key-value pairs), which makes it di�cult to model the often complex
data and relationships of CPSs. Moreover, this makes it di�cult to apply an appropri-
ate handling of time for complex structured data and/or the exploration of di↵erent
hypothetical actions. Secondly, complex analytics and machine learning algorithms
often rely on complex data representations, like graphs, to work e�ciently. This is
hard to model and represent with stream processing frameworks alone, i.e., it is not
natively supported. As a consequence, it is also di�cult to integrate machine learning
techniques into the live analysis. Overall, existing stream processing frameworks are
very suitable for real-time analytics of systems like social networks, where information
like the number of likes, friends, etc. need to be counted and aggregated. However,
for live analytics of complex CPS data, they are insu�cient.

3.4 Graph processing frameworks

Recently, much work in the area of data analytics focuses on large-scale graph rep-
resentation, storage, and processing for analytics. Graphs are suitable to represent
complex data and relationships [47], [288], [232] and are therefore especially interest-
ing for this thesis in order to represent the context of complex CPSs. These approaches
have significantly influenced the design and implementation of our work.

Pregel [232] from Google is a well-known system for large-scale graph processing. In
Pregel, programs are expressed as sequences of iterations, which are called supersteps.
A vertex can receive messages (sent in the previous iteration), send messages (to other
vertices), modify its state and the state of its outgoing edges, and mutate the topology
of the graph. The authors of [232] refer to this as a “vertex-centric approach”. Pregel
supports distribution but hides details—like fault-tolerance—behind an abstract API.
The Pregel framework calls for each vertex a user-defined function (conceptually in
parallel) during the execution of the superstep. A function implements a specific
behaviour for a single vertex and a single superstep. It can read messages (sent by
other vertices in the previous superstep), send messages to other vertices (which will
receive the message in the next superstep), and modify the state of the vertex and its
outgoing edges. Somewhat similar to map-reduce, this allows to focus on local actions,
processing them independently, while the composition is handled by the system. The
goal of this synchronous design is to make it easier to reason about program semantics
when implementing algorithms and, at the same time, to ensure that Pregel programs
are free of deadlocks. Assuming enough parallel machines, the performance of Pregel
programs should be nonetheless comparable with asynchronous systems [232]. A Pregel
computation takes an initialised graph as input, performs a sequence of supersteps
separated by global synchronisation points, and yields an output. The vertices within a

53

Chapter 3. State of the art

superstep compute in parallel. Pregel’s computation model is inspired by Valiant’s bulk
synchronous parallel (BSP) model [309]. Edges in Pregel are not first-class citizens,
meaning they have no associated computations. Algorithms terminate in the Pregel
computation model if all vertices are simultaneously inactive and no messages are in
transit. All vertices start as active and set themselves inactive if they have finished their
associate computations. A vertex is reactivated if it receives a message. Otherwise,
inactive vertices are no longer called in subsequent supersteps. The set of values
explicitly output by the vertices are the result of a Pregel program. In short, Pregel
implements a pure message passing model, without the possibility of remote reads or
any other kind of shared memory. For performance reasons, in a distributed scenario,
messages are delivered asynchronously in batches. It keeps vertices and edges on the
machine that performs the computation and uses network transfers only for messages.
Fault-tolerance is implemented by checkpointing. Pregel uses a master/workers model.
Pregel does not provide graph persistence but expects the graph to be completely in
memory while processing.

Giraph [5] is an Apache project and inspired by Pregel. Like Pregel, Giraph imple-
ments a BSP model. Compared to Pregel, it adds several additional features, such as
master computation, sharded aggregators, edge-oriented input, and out-of-core com-
putation. The graph model is similar to Pregel, consisting of vertices and edges, where
each can store a value. Messages can be sent between vertices. The computation model
is also similar to Pregel, consisting of BSP-like sequences of iterations (supersteps).
Giraph allows to implement graph processing jobs based on Hadoop’s map-reduce im-
plementation. Giraph is sometimes considered as the open source implementation of
Google’s Pregel. It allows graph structure changes. Facebook [113] made a number of
usability, performance, and scalability improvements to Giraph in order to use it on
very large-scale graphs (up to one trillion edges). Han and Daudjee [170] propose with
GiraphUC a barrier-less asynchronous parallel (BAP) computation model, which
aims to reduce both message staleness and global synchronisation. Therefore, they in-
troduce local barriers (per worker) and logical supersteps. Logical supersteps are not
globally coordinated, which allows di↵erent workers to execute a di↵erent number of
logical supersteps. Global supersteps group a number of logical supersteps, which are
separated by global barriers. They implement their BAP approach into Giraph, while
preserving its BSP developer interface. Like Giraph itself, GiraphUC allows graph
topology changes. With Giraph++ [306] IBM proposes what they call a “think like
a graph” programming model in opposition to the “think like a vertex” model, imple-
mented for example in Pregel. This graph-centric model opens the partition structure
of the graph up to users in order to be able to bypass heavy message passing and
scheduling mechanisms within a partition. Giraph++ uses an asynchronous paral-
lel (AP) computation model. They implemented this model on top of Giraph. This
graph-centric model enables a lower level access, which is often needed to implement
algorithm-specific optimisations. Giraph++ supports asynchronous computations and
allows graph topology mutations. While Giraph itself, like Pregel, does not provide a
persistence model, Apache Gora [6] fills this gap. Gora provides a data model and
persistence for big data. It supports di↵erent data stores, e.g., di↵erent column stores,
key-value stores, document stores, and even relational database systems. Therefore, it
requires to define a data model (using a JSON-like schema) and a XML mapping file,
defining how the graph data is mapped to a persistent data store.

54

3.4. Graph processing frameworks

GraphLab [228] is a graph-based, distributed computation framework written in
C++. It has originally been developed at Carnegie Mellon University and is avail-
able under the Apache license. The Turi company has been created to commercialise
and continue the development of GraphLab [67]. Recently, Turi has been bought by
Apple Inc. GraphLab was initially created for machine learning tasks but is now used
for a broader range of tasks. While Pregel and Giraph are bulk synchronous mes-
sage passing abstractions, GraphLab is an asynchronous distributed shared memory
abstraction. Vertex programs can directly access information on the current vertex,
adjacent edges, and also adjacent vertices (regardless of the edge direction). The com-
putation model of Pregel and Giraph runs all vertex programs simultaneously in a
sequence of supersteps. In GraphLab, vertex programs have shared access to a dis-
tributed graph, where data is stored on every vertex and every edge. GraphLab uses
a so-called gather, apply, and scatter (GAS) model. The gather phase calls a gather()
function in the vertex class on each edge on the vertex’s adjacent edges, which returns
a value for each gather. An apply phase, which calls an apply() function on the vertex
class, passing the sum of the gather values as an argument. The scatter phase calls
a scatter() function on the vertex class, again for each edge on the vertex’s adjacent
edges. In contrary to Pregel and Giraph, where a change made to a vertex or edge data
is only visible in the next superstep, in GraphLab changes are immediately visible to
adjacent vertices. The GraphLab computation model allows vertex programs to sched-
ule neighbouring vertex programs to be executed in the future. GraphLab prevents
neighbouring program instances from running simultaneously in order to ensure seri-
alisability. GraphLab was designed for sparse data with local dependencies, iterative
algorithms, and potentially asynchronous executions. Moreover, GraphLab provides
a set of consistency models, allowing users to specify the consistency requirements
without the need to develop their own locking strategies. With SNAPLE, Kermar-
rec et al., [198] present an interesting approach for link prediction for GAS graph
computation models, implemented on top of GraphLab. In [227] the authors extend
the GraphLab abstraction to a distributed setting while preserving strong data con-
sistency guarantees. GraphLab supports synchronous and asynchronous computations
and allows graph structure changes with the exception of deletions.

PowerGraph [161] is another large-scale graph-parallel abstraction, like Pregel and
GraphLab, but was specifically designed for graphs having highly skewed power-law
degree distributions, as it is the case for many real-world graphs. PowerGraph can be
seen in many ways as a successor of GraphLab. In their work, Gonzalez et al., [161]
present a new approach to distributed graph placement and representation for such
power-law graphs. More specifically, they suggest to partition graphs by cutting ver-
tices instead of cutting edges. Moreover, update functions for a vertex in PowerGraph
are parallelised across multiple machines instead of running on a single one. Instead
of factoring the computation over vertices, like many other approaches, they suggest
to factor computation over edges. They argue that this often leads to a greater par-
allelism and reduces network communication and storage costs. PowerGraph uses a
GAS computation model. In its gather phase information about adjacent vertices and
edges is collected by a sum over the neighbourhood of the vertex. The sum function
is user-defined and must be commutative and associative. The result of the sum oper-
ation is then used in the apply phase to update the central vertex. The scatter phase,
finally, uses this value to update the data on adjacent edges. PowerGraph aims to

55

Chapter 3. State of the art

split high-degree vertices and to therefore allow greater parallelism in natural graphs.
It supports both, synchronous as well as asynchronous computations. PowerGraph
allows graph mutations with exception of deletions.

GraphChi [214] is a disk-based graph framework for running large-scale computa-
tions e�ciently on a single personal computer, i.e., in a not distributed way. Unlike
many other graph processing frameworks, GraphChi does not require the graph to be
completely in memory for computations but allows to process graphs from secondary
storage. GraphChi introduces a parallel sliding window (PSW) method to be able to
execute advanced data mining, graph mining, and machine learning algorithms on large
graphs using a standard personal computer. The PSW method uses an asynchronous
computation model and makes updated values immediately visible to subsequent com-
putations. PSW processes graphs in three steps: 1) loading a subgraph from disk,
2) updating vertices and edges, and 3) writing updates to disk. GraphChi splits the
vertices of a graph into disjoint intervals. Each interval is associated to a shard, which
stores the edges (in the order of their source) that have a destination in the interval.
Then, GraphChi processes a graph in execution intervals, i.e., it processes vertices
one interval at a time. After a subgraph for an interval has been loaded from disk
into RAM, update functions for each vertex can be executed in parallel. To prevent
race conditions (update functions accessing edges concurrently), GraphChi enforces
external determinism, which ensures that each execution of PSW produces the same
result. This is realised by updating vertices that have edges with both endpoints in
the same interval in a sequential order. GraphChi allows graphs to evolve, i.e., it
allows changes in the graph structure. Two programming models are supported by
GraphChi, the “standard model” and an alternative “in-memory vertices model”. The
standard programming model assumes that there is not enough RAM to store the
values of vertices. Therefore, vertex values are broadcasted via edges. This model can
be ine�cient if vertex values are large, since they need to be replicated to all edges.
For such cases, GraphChi provides an alternative programming model. This model
requires that all vertex values can be stored in RAM. As a consequence, update func-
tions can read neighbour values directly, without the need to broadcast vertex values
to incident edges.

GRACE [317] is another graph-parallel programming platform. It aims at combining
the convenient and relatively simple programming model of BSP with the perfor-
mance of asynchronous execution. GRACE implements the AP computation model.
It separates application logic from execution policies. GRACE provides a synchronous
iterative graph programming model (e.g., to debug and test applications) and a paral-
lel execution engine for both synchronous and asynchronous execution. For accessing
state, GRACE uses a message passing-based API, which is similar to the one of Pregel.
An interesting aspect of GRACE is its customisable runtime. Users can implement
their own execution policies. Unlike many other graph-parallel abstractions and pro-
gramming platforms, GRACE has been developed for single machines (not distributed)
and uses a shared memory model for data access. GRACE does not allow to mutate
the graph topology.

Signal/Collect [297] is a programming model for synchronous and asynchronous (dis-
tributed) graph algorithms. Algorithms in signal/collect are written from the perspec-
tive of vertices and edges. The programming model implies that edges “signal” and

56

3.4. Graph processing frameworks

vertices “collect”. Signalling means that an edge computes a message based on the
state of its source vertex. The message is then sent to the target vertex of the edge.
Collecting means that a vertex uses the received message to update its state. The sig-
nal/collect programming model allows to execute these operations in parallel all over
the graph. Thus, it applies an asynchronous programming model. The computation
stops when all messages have been collected and all vertex states have been computed.
The authors of Signal/Collect introduce a threshold value, which determines if a node
should collect its signals or wether it should send signals. Signal/Collect uses a shared
memory approach for implementing the signalling. It also allows mutation of the graph
structure while processing the graph. In the original paper, Signal/Collect didn’t sup-
port distributed computations, however, the Signal/Collect implementation has been
extended to support distributed computations in the meantime.

Trinity1 [288] from Microsoft is a general purpose graph engine over a distributed
memory cloud. It leverages graph access patterns in online and o✏ine computations
to optimize memory and communication. Trinity aims at supporting e�cient online
query processing and o✏ine analytics on large graphs on commodity machines. The
Trinity architecture organises the memory of multiple machines into a globally ad-
dressable, distributed memory (called a memory cloud) to support large-scale graphs.
A Trinity system consists of three main components that communicate through a net-
work: slaves, proxies, and clients. Slaves are responsible to store graph data and to
perform computations (including sending and receiving messages) on that data. Trin-
ity proxies are middle tiers between slaves and clients and only manage messages but
don’t “own” any data. Finally, clients are user interface tiers between the Trinity sys-
tem and users. The Trinity memory cloud is basically a distributed key-value store. In
addition, Trinity o↵ers a message passing framework. Trinity enables users to define
graph schemas, communication protocols, and computations with the “Trinity Specifi-
cation Language”. The data model of Trinity supports graphs (composed from nodes
and edges) on top of an in-memory key-value store. This is somehow similar to how
graphs are stored in the approach presented in this thesis, although we use key-value
stores for persisting graph data on disk. The key is a system-wide unique identifier
and the value is the node. In Trinity, when the value is associated with a schema, the
value is called cell and the key cell id. While trinity ensures atomicity of operations
on a single cell (key-value pair), it does not provide ACID transactions.

GraphCEP [235] is an approach to combine graph processing and parallel CEP for
real-time data analytics. GraphCEP is built around a split–process–merge architec-
ture. Splitters are responsible for appropriately splitting the incoming event streams
in a way that operator instances can detect occurring patterns. Operator instances can
run in parallel and use an interface to the distributed graph processing system. This
allows to further parallelise the processing of graph structured data in a single operator
instance. Mergers, reorder the concurrently detected events from operator instances
into a deterministic order. The GraphCEP framework combines stream partitioning
(splitters) with distributed graph processing (operator instances). GraphCEP uses
parallel CEP for stream processing and a GAS API for distributed graph processing.
The contribution made by GraphCEP is this combination of parallel CEP and graph
processing. It does not implement a new distributed graph processing engine but is

1Trinity is the name of the research project, the public release has been renamed to Graph Engine

57

Chapter 3. State of the art

designed to use already existing GAS graph processing frameworks.

Table 3.2 summarises and compares the above discussed graph processing frameworks.
The table shows for each graph processing framework if it requires the graph to be fully
in memory (no storage) while processing, what computation model it applies and if it
allows to mutate the graph structure while processing, if the source code is available,
if it supports distributed computing, and if it supports stream processing of graphs.

Besides these, there exists a wide variety of additional graph processing frameworks,
which are conceptually similar to the ones discussed above. They mostly provide op-
timisations for specific use cases or are alternative implementations. For example,
Graph Processing System (GPS) [279] is another (optimised) open source implemen-
tation of Pregel, provided by Stanford. Apache Hama [8] is an implementation of the
BSP programming model and includes in addition packages for query processing, graph
computing, and machine learning. GraM [322] is another e�cient and scalable graph
engine from Microsoft Research and the University of Peking for a large class of widely
used graph algorithms, which focuses—like the work presented in [263]—especially on
multicore processing. GBASE [192] is another scalable and general graph manage-
ment system from Carnegie Mellon University and IBM T.J. Watson, built on top of
map-reduce/Hadoop. Qin et al., [266], Bu et al., [103] (HaLoop), and Kang [193]
(PEGASUS) present similar approaches, using optimised map-reduce for graph pro-
cessing. In the same direction, Ekanayake et al., [137] propose with Twister a runtime
for iterative map-reduce. Cassovary [166] is an open source processing library from
Twitter for non-distributed large-scale graphs. Presto [312] is a distributed system
for machine learning and graph processing that extends R and addresses many of
its limitation, like leveraging multi-cores and dynamic partitioning of data to miti-
gate load imbalance. Parallel Boost Graph Library (BGL) [162] and MultiThreaded
Graph Library (MTGL) [92] are generic libraries for distributed graph computation.
PrIter [332], Piccolo [262], Galois [31], Naiad [248], DryadLINQ [325] are systems for
general-purpose distributed data-parallel computing. These are suitable but not lim-
ited for graph processing. X-Stream [276] (single shared-memory machine) and its
successor Chaos [275] (multiple machines) are systems for processing both in-memory
and out-of-core graphs.

While most graph processing frameworks require the graph to be completely in-memory
while processing [113], others, like Roy et al., [275], suggest to process graphs from
secondary storage. We allow in our approach to store graph data on secondary storage,
since even with the availability of huge clusters at a certain point the limit of in-memory
solutions is reached. Given that our proposed approach is built to evolve extensively
in time and many worlds, the need for secondary storage is even more underlined,
since many di↵erent versions of nodes can co-exist, making graphs even bigger. In
addition, as argued in Chapter 1, the available computation power of CPSs in the
context of this thesis is often limited, i.e., data is often not processed in huge data
centres but on commodity machines. This makes it necessary to process graphs from
secondary storage and not only from main memory. Most graph processing frameworks
are not built for stream processing and o↵er only limited support for it. GraphCEP
is one of the few exceptions. Instead, most graph processing frameworks first load
graph data from a storage, perform the graph processing, and then store the results

58

3.4. Graph processing frameworks

Table 3.2: Summary and comparison of important graph processing frameworks

storage computation source distr. stream
model available comp. support

Pregel 7 BSP 7 3 7
sync. exec.

message passing
graph mutation

Giraph 7(natively) BSP 3 3 7
3(w. Apache Gora) sync. exec.

message passing
graph mutation

GiraphUC 7 BAP 3 3 7
async. exec.

message passing
graph mutation

Giraph++ 7 AP 3 3 7
async. exec.

message passing
graph mutation

GraphLab 7 GAS 3 3 7
sync. exec.

and async. exec.
distr. shared memory
no deletion mutation

PowerGraph 7 GAS 3 3 7
sync. exec.

and async. exec.
distr. shared memory
no deletion mutation

GraphChi 3 PSW 3 7 3
async. exec.
disk-based

graph mutation
GRACE 7 AP 7 7 7

supports sync.
and async. exec.
shared memory

no graph mutation
Signal/Collect 7 signal/collect 3 7 7

sync. exec. (recently
and async. exec. added)

shared mem. f. signaling
graph mutation

Trinity 7 no specific comp. model 3 3 7
random graph access
distr. memory cloud
message passing

GraphCEP 7 parallel CEP for stream 3 3 3
GAS for graph processing

59

Chapter 3. State of the art

back to a persistent storage. In contrary, our approach requires strong support for
frequently changing data. The computation model of our approach is more inspired
by the distributed shared-memory model of GraphLab rather than the BSP model of
Pregel. Whereas none of the above mentioned graph processing frameworks support
time evolving graphs, some graph abstractions support graphs evolving over time.
These are discussed in Chapter 3.6. Moreover, current graph abstractions don’t support
to evolve in many di↵erent worlds, i.e., they lack concepts to support analysing many
di↵erent hypothetical actions (cf. Chapter 3.7). Although, the proposed data model
of our approach is essentially also a graph structure, it is semantically richer due to
the fact that data is modelled in terms of domain concepts and relations between
these domain concepts, i.e., they have a strongly typed schema, rather than being
simple nodes and edges. This essentially allows to model domain knowledge, data, and
learning in the same model and with the same concepts (cf. Chapter 7).

3.5 Graph databases

Closely related to graph processing frameworks are graph databases.

Neo4j [47] is one of the first and most well-known graph databases today. It o↵ers
native graph storage, processing, querying, and is fully ACID compliant. Neo4j is
written in Java and can be accessed from applications written in other languages
using Neo4j’s query language Cypher [23]. The data model of Neo4j consists of nodes
and relationships (edges). Both, nodes and relationships can contain properties. In
addition to properties and relationships, nodes can be labelled. Nodes have unique
conceptual identities and are typically used to represent the entities of a domain.
Every relationship must have a start node and an end node. Relationships are defined
between node instances, not node classes. Labels are named graph constructs, which
are used to group several nodes into sets. This allows queries to operate on smaller sets
instead of the whole graph, making queries more e�cient. Neo4j supports replication
but until now it does not o↵er support for distribution. The community edition of
Neo4j is open source under a GPL license. An enterprise edition is developed by Neo
Technology Inc. under a commercial as well as a free AGPL license.

DEX [234], [233] (recently rebranded to Sparksee) is a high performance graph
database management system based on bitmaps and additional secondary structures.
DEX uses bitmaps as primary structures to store and manipulate the graph data, since
they allow to represent information in a compact way and can be operated e�ciently
with logic operations. The logical data model of DEX defines a labeled and attributed
multigraph as G = {L,N,E,A}, where L is a collection of labels, N the collection
of nodes, E the collection of edges (directed or undirected), and A the collection of
attributes. Labeled graphs in DEX provide a label for nodes and edges, defining their
types. In DEX two types of graphs are distinguished, the DbGraph is the persistent
graph that contains the whole database, and RGraphs that are used to temporarily
query results. The design of DEX follows four goals: 1) it must be possible to split
the graph into smaller structures for improved caching and memory usage, 2) object
identifiers for nodes and edges should be used to speed-up graph operations, 3) spe-

60

3.5. Graph databases

cific structures must be used to accelerate the navigation and traversal of edges, and
4) attributes should be indexed to allow queries over nodes and edges based on value
filters [234]. DEX uses bitmaps to define which objects (nodes or edges) are selected
or related to other objects. As auxiliary structures, DEX uses maps with key values
associated to bitmaps or data values. These two structures are combined to build
links: binary associations between unique identifiers and data values. This allows for
an identifier to return the value, and the other way around for a value, to return the
associated identifiers. A graph is then built out of links, maps, and bitmaps. The
original DEX papers [234], [233] contain no information about transaction support but
the current version [61] is fully ACID conform. DEX has been initially developed by
the Data Management group at the Polytechnic University of Catalonia (DAMA-UPC)
and later on by a created spin-o↵ called Sparsity Technologies. It comes with a dual
license, a free one for evaluation and academic purposes and one for commercial usage.
The source code is not available as open source.

HyperGraphDB [187] is a graph database which was specifically designed for arti-
ficial intelligence and Semantic Web projects. It is based on generalised hypergraphs
(e.g., as proposed in [99], [159]) where hyperedges can contain other hyperedges. Hy-
pergraphs are extensions of standard graphs that allow edges to point to more than two
nodes. In HyperGraphDB edges can also point to other edges. It is transactional and
embeddable. As stated by Iordanov [187], the representational power of higher-order n-
ary relationships was the main motivation behind the development of HyperGraphDB.
The basic structural unit in the HyperGraphDB data model is called atom. Each atom
has a tuple of atoms associated. This tuple is called target set and its size is referred
to as the atom’s arity. Atoms of arity 0 are nodes, while atoms of arity > 0 are links.
The set of links pointing to an atom a is called the incidence set of atom a. Each atom
in HyperGraphDB has a value, which is strongly typed. HyperGraphDB uses a two-
layered architecture: the hypergraph storage layer and a model layer. As storage layer,
HyperGraphDB suggests—like we do in our approach—to use key-value stores. The
only requirement imposed by HyperGraphDB is that indices support multiple ordered
values per single key. The model layer contains the hypergraph atom abstraction, the
type system, caching, indexing, and querying. HyperGraphDB supports data distri-
bution, using an agent-based peer-to-peer framework. Activities are asynchronous and
incoming messages are dispatched using a scheduler and processed in a thread pool.
HyperGraphDB is open source under the LGPL license.

Titan [65] is a distributed graph database. It supports ACID transactions, eventual
consistency, and is designed to be used with di↵erent data backends, e.g., Apache
Cassandra, Apache HBase, and Oracle BerkeleyDB. Titian is open source and supports
di↵erent processing frameworks, among others, Apache Spark, Apache Giraph, and
Apache Hadoop. It supports TinkerPop Gremlin [15] queries. Titan is open source
und the Apache 2 license.

OrientDB [52] is another distributed database. A distinctive characteristic of Ori-
entDB is its multi-model, besides from being a graph database, it also supports doc-
ument and key-value data models. OrientDB supports schema-less, schema-full, and
schema-mixed modes and allows to query data with a slightly extended SQL (OrientDB
SQL) variant and with TinkerPop Gremlin. It supports ACID transactions, sharding,
and provides encryption models for data security. OrientDB implements several in-

61

Chapter 3. State of the art

Table 3.3: Summary and comparison of important graph databases

distributed transactional query source
language (ql) available

Neo4j 7 fully ACID Cypher (declarative) 3
DEX 7 fully ACID API for graph traversal 7

(current version) no explicit ql
HyperGraphDB 3 transactional API for graph operations 3

(depends on (depends on relational-style queries
underlying underlying
k/v store) k/v store)

Titan 3 fully ACID and TinkerPop Gremlin 3
eventual consistency API for graph traversal

OrientDB 3 fully ACID and TinkerPop Gremlin 3
eventual consistency OrientDB SQL

(slightly extended SQL)
API for graph traversal

InfiniteGraph 3 fully ACID and TinkerPop Gremlin 7
eventual consistency API for graph traversal

dexing strategies based on B-trees and extendible hashing. This allows fast traversal
(O(1) complexity) of one-to-many relationships and fast add/remove link operations.
OrientDB comes in two versions, a free community edition licensed under Apache 2
and a commercial enterprise edition with professional support. The community edition
is available as open source.

InfiniteGraph [36] is a distributed graph database, which is, in the meantime, in-
tegrated into the thingspan [37] analytics stack. The InfiniteGraph graph model is a
labeled, directed multigraph. Edges in InfiniteGraph are first-class entities with their
own identity. InfiniteGraph provides ACID transactions and supports a schema-full
model. InfiniteGraph has been developed by Objectivity Inc. and is not available as
open source.

Table 3.3 summarises and compares the discussed graph databases. The table shows
for the discussed graph databases if they support distribution, their transaction model,
the used query language, and if the source code is available.

Like it is the case for graph processing frameworks, there exists also a wide variety of
additional graph databases, which are conceptually similar to the ones discussed but
which provide optimisations for specific use cases or are alternative implementations.
ArrangoDB [17] is among the most well-known ones and supports multiple data mod-
els: graph, key-value, and document. Another one is FlockDB [30] which has been
developed by Twitter in order to store social graphs. AllegroGraph [2] is a triple store
designed to store RDF triples. Stardog [63], GraphDB [35], Dgraph [25], InfoGrid [40],
blazegraph [21], GraphBase [33], and VelocityDB [68] are other examples of mostly
commercial, generic graph databases.

The boundary between graph databases and graph processing frameworks is not sharp:
on the one hand, some graph processing frameworks o↵er persistence and, on the

62

3.6. Analysing data in motion

other hand, some graph databases only provide weak consistency models, like BASE.
Nonetheless, most graph databases o↵er stronger consistency and transaction models
than graph processing frameworks, whereas the latter have a stronger focus on graph
traversing and distributed processing. The contribution of this dissertation is somehow
in the middle of these two categories. Despite the main focus is a multi-dimensional
graph data model for near real-time analytics, we also put a strong emphasis on e�cient
storage concepts for this graph model. None of the mentioned graph databases allow
to natively represent time nor many di↵erent hypothetical worlds. Although, Neo4j
does not support time natively, there are some discussions and patterns on how to best
model time dependent data [55], [32]. These are discussed in more detail in Chapter 3.6.

3.6 Analysing data in motion

The need to deal with temporal data appears in many domains and has been discussed
by di↵erent communities over time.

3.6.1 Temporal databases

Considering versioning (or time) as a crosscutting concern of data modelling has been
discussed for a long time, especially in (relational) database communities. In [115]
Cli↵ord et al., provide a formal semantic for historical databases and an intentional
logic. Rose and Segev [273] incorporate temporal structures in the data model itself,
rather than at the application level, by extending the entity-relationship data model
into a temporal, object-oriented one. They also propose a temporal query language for
the model. Ariav [273] also introduces a temporally-oriented data model (as a restricted
superset of the relational model) and provides a SQL-like query language for storing
and retrieving temporal data. He adds a temporal aspect to the tabular notion of data
and provides a framework and a SQL-like query language for storing and retrieving
data, taking their temporal context into account. The works of Mahmood et al., [231]
and Segev and Shoshani [284] go into a similar direction. The latter also investigate the
semantics of temporal data and corresponding operators independently from a specific
data model in [283]. Some of these temporal features are integrated into the SQL:2011
or ISO/IEC 9075:2011 [212] standard. This standard provides language extensions for
temporal data definition and manipulation. For example, it allows to define a time
period, which basically uses two standard table columns to define the start and end
of a named time period. Major database vendors, like IBM, Oracle, and Microsoft
implemented at least some of the temporal features based on this standard into their
products. Regardless of noteworthy work in this area, temporal relational databases
found only little consideration in practice. This mostly leaves the management of
time to the application level, which often leads to tedious and complicated ad-hoc
implementations. Besides being di�cult to maintain these solutions are usually highly
specialised and not reusable. In a newer work [111], Google embeds versioning at the
core of their BigTable implementation by allowing each cell in a BigTable to contain
multiple versions of the same data (at di↵erent timestamps).

63

Chapter 3. State of the art

AlthoughNeo4j doesn’t provide native support for managing time-evolving data, there
are some best practices and patterns about how to model temporal data. In [55] meth-
ods how to model a time-varying social graph to mine for proximity of individuals,
where nodes are individuals and edges represent proximity/contact relations of indi-
viduals, are discussed. First, the term frame is introduced, which is the basic temporal
unit. A frame has a time interval defined by a start time and an end time. A time-
varying graph is modelled in the following way:

• nodes of the social graph are nodes in Neo4j

• edges of the social graph are nodes in Neo4j

• intervals of time are nodes in Neo4j

Graph changes can be tracked by traversing from one frame to the next. Indexing of the
timestamped sequence of frame nodes enables an e�cient random access to the frame
timelines. In [32], GraphAware, a Neo4j TimeTree library is presented. GraphAware
is a library for managing time in Neo4j as a tree of time instants. It enables to
represent events as nodes and link them to Neo4j nodes representing instants of time.
This allows to capture the time of an event’s occurrence. For example, to model that
an email was sent on a specific day, in GraphAware a node Email would be created
and linked to a node Day using a SENT ON relation. The library provides an API to
create basic, time-related queries. While these best practices and patterns allow to
model time-evolving graphs, these solutions are rather complicated, even for small
examples. Moreover, time is modelled like domain concepts and therefore scattered
over the whole graph. This brings additional complexity for creating, updating, and
querying domain nodes, due to the explicit management of time. Also, such solutions
are usually application specific and cannot easily be reused in other applications (with
exception of the library-based approach).

3.6.2 Temporal RDF and OWL

The necessity to store and reason about versioned data has also been discussed in the
area of the Semantic Web and its languages, like RDF [217] and OWL [315]. For
example, Motik [247] presents a logic-based approach for representing versions in RDF
and OWL. He also proposes to extend SPARQL to temporal RDF graphs and presents
a query evaluation algorithm.

3.6.3 Model versioning

Recently, the need to e�ciently version models has been explored in the domain of
model-driven engineering. However, model versioning has been mainly considered
so far as an infrastructural issue in the sense that models are artefacts (i.e., meta
models) that can evolve and must be managed in a similar manner to textual artefacts

64

3.6. Analysing data in motion

like source code, rather than from a runtime model perspective. Moreover, model ver-
sioning alone does not address the problem of discretisation, i.e., it does not provide
a temporal semantic, which would allow model elements to evolve independently and
at di↵erent paces while preserving a consistent way to navigate the model in space
and time. Kerstin Altmanninger et al., [73] analyse the challenges coming along with
model-merging and derive a categorisation of typical changes and resulting conflicts.
Building on this, they provide a set of test cases which they apply on state of the
art versioning systems. Koegel and Helming [204] take a similar direction with their
EMFStore model repository. Their work focuses on how to commit and update changes
and how to perform a merge on a model. Brosch et al., [102] also consider model ver-
sioning as a way to enable e�cient team-based development of models. They provide
an introduction to the foundations of model versioning, the underlying technologies
for processing models and their evolution, as well as the state of the art. Taentzer
et al., [300] present an approach that, in contrast to text-based versioning systems,
takes model structures and their changes over time into account. In their approach,
they consider models as graphs and focus on two di↵erent kinds of conflict detec-
tion, operation-based conflicts between di↵erent graph modifications and the check for
state-based conflicts’ on merged graph modifications. These works consider versioning
at a model level rather than at a model element level. Moreover, these approaches
focus on versioning of meta models whereas our work focuses on versioning of run-
time/execution models. Our approach enables not only to version a complete model,
but considers versioning and history as native mechanisms for any model element.
Moreover, versioning in the modelling domain is usually considered from a design/ar-
chitecture/infrastructural point of view, and models are versioned as source code files
would be. In contrast to this, our versioning approach regards the evolution of model
elements from an application point of view (e.g., BigTable or temporal databases). It
allows to keep track of the evolution of domain model elements—their history—and
use this history e�ciently on an application level.

Most of the above mentioned work address storing and querying of versioned data
but largely ignores the handling of versioning at an application level. However, many
reasoning processes require to explore simultaneously the current state and past history
to detect situations like a system state flapping. Our approach proposes to consider
model versioning and history as native mechanisms for modelling foundations. We
not only e�ciently store historical data (what is done in other works before), but we
propose a way to seamlessly use and navigate in historized models. Also, we do not
extend a specific data model (e.g., the relational data model or object-oriented one)
but use model-driven engineering techniques to integrate versioning as a crosscutting
property of any model element. We aim at providing a natural and seamless navigation
into the history of model element versions.

3.6.4 Time series databases

With the emergence of big data, the Internet of Things, and cyber-physical systems
temporal aspects of data, in form of time series databases, lately gained again
in importance [224]. Time series databases are optimised for handling timestamped
data values. Usually, a time series is a successive sequence taken at equally spaced

65

Chapter 3. State of the art

points in time. Time series databases are heavily used for data mining and forecast-
ing [196], [140], [169], [110]. One of the newest time series databases which received
much attention lately is influxdb [39]. They position themselves as an IoT and sensor
database for real-time analytics. While many time series databases provide interesting
features, like SQL-like query languages, their data model is essentially flat and does not
support complex relationships between data. Mostly, only a flat value (like an integer
or double) is stored together with a timestamp. This also counts for Atlas [18], which
was developed by Netflix to manage dimensional time series data for near real-time op-
erational insights, and OpenTSDB [51]. RRDtool [58] is another famous data logging
and graphing system for time series. All of this work has in common that it provides
high performance storage and management specialised for time series data. However,
these solutions provide very little support for richer data models, like graphs, if any.
Usually only one flat value together with a timestamp is stored, therefore complex data
models with relationships between data are di�cult to build with time series’. Also,
most time series’ require equally spaced points in time and do not allow data to evolve
at di↵erent paces. While this is sometimes the case for regular sensor measurements,
it does not fit the numerous and heterogenous events occurring in complex CPSs and
IoT. Time series databases make it also di�cult to correlate and analyse events com-
posed from di↵erent independently timed values, i.e., values not stored at the same
time intervals.

3.6.5 Temporal graph processing

The need to analyse time-dependent events has also been discussed in graph pro-
cessing communities. This is especially interesting in the context of this work, since
our proposed model-driven live analytics approach essentially also relies on a complex
graph model (of interacting model elements, i.e., objects).

Chronos [171] is a storage and execution engine for iterative graph computation
on temporal graphs. It is designed for running in-memory, both on multi-core ma-
chines and in distributed settings. Chronos defines a temporal graph as a sequence
of graph snapshots at specific points in time. Data locality is a central design goal
behind Chronos. A stack of graph snapshots can be seen from two dimensions, 1) the
time dimension across snapshots and 2) the graph-structure dimension among neigh-
bours within one snapshot. Chronos favours time(-dimension) locality over structure(-
dimension) locality. In addition, Chronos schedules graph computation to leverage the
time-locality in the temporal graph layout, i.e., the computation model of Chronos uses
batch operations for each vertex (or each edge) across multiple snapshots. Chronos
adopts locality aware batch scheduling (LABS). Instead of assigning di↵erent snap-
shots to di↵erent cores, Chornos assigns di↵erent graph partitions (across multiple
snapshots) to di↵erent cores. To store temporal graph data on disk, Chronos defines
snapshot groups. A snapshot group is valid for a certain time interval and consists
of a full snapshot for the beginning of the interval and all deltas until the end of the
interval. This allows to reconstruct temporal graphs within an interval while keeping
a compact format to store the temporal graph data. Besides describing this disk lay-
out, no further information about concrete storage technologies are provided in [171].
The source code of Chronos is not available. Chronos addresses the need to analyse

66

3.6. Analysing data in motion

temporal data by optimising the data locality and scheduling of the graph computa-
tion. Nonetheless, the temporal data model of Chronos itself is rather standard and a
temporal graph is represented as a sequence of full graph snapshots. This comes with
some limitations: First of all, full graph snapshots are expensive in terms of memory
requirements (both on disk and in-memory). Secondly, for every small change in the
graph it would be necessary to snapshot the graph in order to keep track of the full
change history. Thirdly, the continuous semantic of time is losed by the discretisa-
tion in snapshots. Thus, navigating in the time and space dimensions of the graph is
problematic, which complicates analytic algorithms.

GraphTau [188] is a time-evolving graph processing framework built on top of Apache
Spark. It represents time-evolving graphs as a series of consistent graph snapshots.
Dynamic graph computations are performed as a series of deterministic batch com-
putations on discrete time intervals. A graph snapshot in GraphTau is a regular
graph, based on two Spark RDDs, one for vertices and one for edges. Design goals of
GraphTau are a “consistent and fault tolerant snapshot generation”, a “tight coordi-
nation between snapshot generation and computation stages”, and “ operations across
multiple graph snapshots” [188]. GraphTau allows algorithms to run continuously as
new data becomes available. Two computation models are o↵ered, 1) the pause-shift-
resume model and the online rectification model The pause-shift-resume model starts
running an algorithm with the availability of the first snapshot, pauses if a new snap-
shot becomes available, switches to the new snapshot, and finally resumes computation
on the new graph. On the other side, the rectification model allows applying di↵er-
ential computation on a wide variety of graph algorithms. GraphTau tries to unify
data streaming and graph processing by building on Spark’s RDD data structure and
its streaming mechanisms. For storing graph snapshots, GraphTau relies on graph
databases like Titan and Neo4j. The source code of GraphTau is not available. Simi-
larly to Chronos, GraphTau models temporal graphs as a sequence of snapshots—with
the before mentioned consequences.

With ImmortalGraph [239] Miao et al., presents an extension of Chronos. Like
it is the case for Chronos, data locality is a central design goal of ImmortalGraph.
ImmortalGraph takes both, persistent storage and memory into account and regards
data locality for time and graph-structure. In addition, they propose a locality-aware
scheduling for iterative computations on temporal graphs. Like Chronos, Immortal-
Graph uses snapshot groups for their graph layout. A snapshot group consists of a
graph state representing a time range [t1, t2]. It contains a snapshot of the complete
graph at time t1 and graph updates until t2. Graph states between t1 and t2 can
then be computed by applying the updates on the graph snapshot at t1. A temporal
graph then consists of a series of snapshot groups for successive time ranges. Within
a snapshot group, updates can be stored in structure-locality or time-locality order.
Like Chronos, ImmortalGraph uses LABS. Similar to most other approaches, Immor-
talGraph represents a temporal graph as a sequence of graph snapshots. This leads to
potentially a huge number of snapshots (in case of frequently changing data), which
are di�cult to analyse e�ciently. In addition, in order to find a specific version of
the time-evolving graph, ImmortalGraph needs to compute the version based on a
snapshot and deltas, which can be ine�cient for highly time-dependent analytics.

Instead, with Temporal graphs, Kostakos [208] discusses a graph representation

67

Chapter 3. State of the art

that encodes temporal data into graphs. Kostakos assumes for his approach that
events are instantaneous and have no temporal duration, i.e., an event starts and
finishes at the same point in time. In some respects similar to what we propose, he
suggests to create one node instance per semantic node per point in time. Then, he
uses unweighted directed edges to link node instances that are linked to each other.
Kostakos links consecutive pairs of node instances of a node instance set with additional
directed edges, where the weight represents the temporal distance between the pair. In
addition, he defines a number of temporal graph metrics, such as temporal proximity,
geodesic proximity, and temporal availability, on which he puts a large focus on. While
the presented data model is interesting, it is rather abstract. Important topics, like
storage, distribution, graph processing and traversing, details on creation of new nodes
and modifications of existing nodes, are not presented in detail—neither is a concrete
implementation provided.

Khurana and Deshpande [202] propose withHistorical Graph Store (HGS) another
interesting approach for storing and analysing historical graph data at large scale. HGS
consists of two major components, the Temporal Graph Index (TGI) and the Temporal
Graph Analysis Framework (TAF). TGI is the index component to e�ciently store
the graph history by partitioning and encoding di↵erences over time (called deltas).
These deltas are designed to e�ciently retrieve temporal graph primitives such as
neighbourhood versions, node histories, and graph snapshots. TGI uses distributed
key-value stores (like Apache Cassandra) to store the partitioned deltas. TGI is an
extension of DeltaGraph [200], a previous work of the authors. It contains various
forms of di↵erences in the graph, such as atomic events and changes in subgraphs over
intervals of time. The temporal index of TGI is basically a set of di↵erent changes
or deltas. Deltas are stored in three di↵erent forms in TGI. First, atomic changes
are stored in chronological order in event list partitions. This enables direct access
to changes of a part or whole of the graph at specific timepoints. Secondly, the state
of nodes at di↵erent timepoints is stored in form of derived snapshot partition deltas.
This enables direct access to the state of a neighbourhood or the entire graph at specific
timepoints. Thirdly, TGI stores a meta index of pointers to the list of chronological
changes for each node. TAF is a framework to specify a wide range of temporal graph
analysis tasks. The execution engine of TAF is implemented on top of Apache Spark.
The data model of HGS defines a temporal graph store as a sequence of snapshots.
Similar to what we propose, HGS is a node-centric approach, i.e., the graph is seen as
a set of evolving vertices over time and edges are considered as attributes of the nodes.
While TGI is a powerful indexing strategy for time-evolving graphs, the fact that
TAF is based on Spark comes with the respective restrictions (cf. Chapter 3.2.3) for
live analytics. Furthermore, the organisation of representing time-evolving graphs in
snapshots makes it less suitable for analysing frequently changing data, since snapshots
from di↵erent timepoints must be computed. The source code of HGS is not available
as open source.

Kineograph [112] from Cheng et al., is a distributed system that takes incoming data
streams to construct a continuously changing graph. It also supports graph-mining al-
gorithms to extract insights from frequently changing graph structures through an
incremental graph computing engine. To support graph mining algorithms that as-
sume a static graph structure, Kineograph supports an e�cient snapshotting strategy,

68

3.6. Analysing data in motion

called epoch commit protocol. This decouples graph mining from graph updates. Ki-
neograph first imports raw data through a set of ingest nodes. Ingest nodes analyse
the incoming data records and create transactions of graph updates. Each transaction
is assigned with a sequence number and then distributed to graph nodes. Graph nodes
form a distributed in-memory key-value store. The storage engine maintains with each
vertex an adjacency list as metadata and independently stores application data. First,
graph nodes store updates from ingest nodes, then each ingest node reports the graph
update in a global progress table. A snapshotter periodically instructs graph nodes to
take a snapshot based on the sequence numbers in the progress table. The sequence
numbers are used as a global logical clock defining the end of an epoch. Graph nodes
then can commit stored local graph updates in an epoch following a pre-determined
order. Each epoch commit produces a snapshot. Graph updates trigger incremen-
tal graph computations on the new snapshot to update associated values of interest.
Kineograph’s partitioning is based on the hashing of vertex ids, without any locality
considerations. In order to enable various graph mining algorithms that might require
di↵erent communication models, Kineograph supports the push [229] and the pull [262]
models. The source code of Kineograph is not publicly available.

G* [215] is a framework for large-scale distributed processing of dynamic graphs.
G* allows to store graph data on a persistent storage. Like many other approaches,
time-evolving graphs in G* are represented as a sequence of graph snapshots (regular
clones of the graph at di↵erent timestamps). However, in order to optimise storage,
G* uses an index, called compact graph index (CGI), which allows to take advantage
of commonalities among the graph snapshots. This index contains tuples of (vertex
ID, disk location) pairs. CGI stores only one (vertex ID, disk location) tuple for
every vertex version in a collection for the combination of graphs that contains that
version. G* focuses on data locality by assigning a subset of vertices and their outgoing
edges from multiple graphs to a server. This allows to access all edges of a vertex
without contacting other servers. Queries can be executed in parallel using distributed
operators to process graph data in parallel. The source code of G* is not publicly
available and no explicit support for stream processing, i.e., frequent small changes, is
provided.

Table 3.4 summarises the discussed temporal graph processing frameworks. It shows
for each discussed temporal graph processing framework the used storage concept, if
it supports distributed processing, if the source code is available, how the temporal
graph is represented, and if stream processing is supported.

Most of these approaches have in common that they represent time-evolving graphs,
in some form or another, as a sequence of snapshots. Di↵erent approaches use dif-
ferent trade-o↵s between required storage space and performance to access a graph
snapshot at a specific point in time. Using full snapshots, for example, comes with
high storage costs (disk and in-memory) but allows fast access to graph data at any
timepoint. Others, like HGS, provide more complex indexing strategies, such as using
regular snapshots and, in addition, store deltas for a snapshot for a certain time inter-
val. The state of a graph at any timepoint in this interval is then recomputed by using
the snapshot and applying the deltas. We found that snapshotting (both, full and
partly snapshotting) comes with comparable high memory requirements (in disk and

69

Chapter 3. State of the art

Table 3.4: Summary and comparison of temporal graph processing frameworks

storage distributed source temp. graph stream
processing available represent. support

Chronos no details 3 7 seq. of 7
provided snapshots

ImmortalGraph no details 3 7 seq. of 7
(ext. of Chronos) provided snapshots
GraphTau uses graph DBs, 3 7 seq. of 3

e.g., Titan, Neo4j snapshots
Temporal graphs no details no details 7 no details 7
(Kostakos) provided provided provided
HGS uses distributed 3 7 seq. of 7

k/v stores snapshots
e.g., Cassandra

Kineograph yes, but no 3 7 seq. of 3
details provided snapshots

G* yes, but no 3 7 seq. of 7
details provided snapshots

in memory). In addition, the graph data model of most of these approaches requires
to keep a full graph snapshot (or at least comparable large parts) for a certain point
in time in-memory. All of this makes it di�cult to analyse frequently changing graph
data in live. This is even more the case if approaches are built around Spark-like or
tightly iterative computation models, like it is the case for GraphTau. Additionally,
considering frequently changing data, most snapshotting approaches require for every
change to snapshot the graph in order to keep track of the full change history. This
can lead to a vast amount of snapshots, even for delta-based ones. All of the above
mentioned approaches loose the continuous semantic of time [289] by discretising con-
tinuously evolving graph data. This makes querying and traversing graph data more
complex, since the discretised timepoints must be always taken into consideration, i.e.,
the state of a graph is not defined between the two closest snapshots. Thus, navigat-
ing in the time and space dimensions of the graph is problematic, which complicates
analytic algorithms. Last but not least, none of these approaches support representing
many di↵erent hypothetical graph states and none of these approaches can be easily
extended to support this.

3.7 Exploring hypothetical actions

The importance of exploring di↵erent hypothetical actions has been discussed in dif-
ferent domains.

In a small scale, Microsoft integrated what-if analysis in their popular spreadsheet tool
Excel [41]. It allows to “try” di↵erent values (scenarios) for formulas. For instance,
it allows to specify a result that a formula should produce and then to evaluate what
sets of values will produce this result.

70

3.7. Exploring hypothetical actions

The idea of what-if analysis with hypothetical queries has been discussed in database
communities. Balmin et al., [85] proposed an approach for hypothetical queries in
OLAP environments. They enable data analysts to formulate possible business sce-
narios, which then can be consequently explored by querying. Unlike other approaches,
they use a “no-actual-update” policy, i.e., the possible business scenarios are never ac-
tually materialised but only kept in main memory. In a similar approach, Gri�n and
Hull [163] focus on queries with form Q when {U} where Q is a relational algebra query.
This paper develops a framework for evaluating hypothetical queries using a “lazy”
approach, or using a hybrid of eager and lazy approaches. They present an equational
theory and family of rewriting rules. In [78] and [77], Arenas et al., developed an
approach for hypothetical temporal queries of form “Has it always been the case that
the database has satisfied a given condition C”. Despite there is no explicit time in
these queries, they call them “temporal” due to a similarity with dynamic integrity
constraints.

Although these approaches have a similar goal than our approach, they di↵er in many
major points. First, they mainly aim at data analysts who perform selective queries
on a modest number of possible business scenarios to investigate impacts of decisions.
In contrary, we aim at intelligent systems and complex data analytics, which need to
explore a very large number of parallel actions (e.g., as for genetic algorithms or the
presented smart grid case study), which can be highly nested. Moreover, these systems
usually face significantly higher demands regarding performance. In addition, most of
the above mentioned approaches do not support (or only in a limited manner) the
co-evolution of worlds, which is an essential feature of our proposed multi-dimensional
graph data model. Another major di↵erence is that our data model is a fully temporal
graph, supporting both the exploration of di↵erent hypothetical worlds and the tem-
poral evolution of data and temporal queries. Our proposed multi-dimensional graph
data model can be used in arbitrary middleware layers for analytics and is independent
of the concrete underlying database, whereas most of the work on hypothetical queries
has been done on relational databases.

A very recent work in this direction is Noms [48], a decentralised database based on
ideas from Git, developed from former Google employees. As in Git, data in Noms
is represented as a directed acyclic graph. Every node in the directed acyclic graph
(DAG) has a hash, which is derived from the values of the node and from the values
of the nodes reachable from that node (transitively). A Noms database is essentially
a Merkle DAG [44]. Nodes with di↵erent hashes represent di↵erent logical values and
nodes with same hashes represent identical logical values. Similar to our approach,
Noms is implemented on top of key-value stores, such as LevelDB. Data in Noms is
always immutable, once it is stored, it is never changed, but represented as a sequence of
state changes. Noms stores the entire change history and provides a Git-like workflow,
including operations to fork, merge, and e�ciently synchronise changes. This makes
Noms appropriate for data version control, applications which need to store the data
history, and also as an archival database. Noms is in an early development state and
currently misses some major features like a query language. While the fork mechanism
of Noms can be used to create di↵erent what-if scenarios, this isn’t the purpose of
Noms. Instead, Noms can be best compared with a Git for large-scale, structured
data. In particular, it is not very well suited for many small changes over time, due

71

Chapter 3. State of the art

to the fact that deduplication is managed on a chunk level of 4 KB. If we take the
application domain of this thesis, CPSs, or IoT, such small changes, e.g., regularly
collected sensor values, are the norm. Moreover, di↵erent elements change at very
di↵erent paces. For such cases, Noms would create complete copies of the dataset.
Also, the indexing strategy used in Noms makes it more appropriate for traceability
rather than live analytics of frequently changing data.

3.8 Reasoning over distributed data in motion

Reasoning over complex, distributed data which changes very frequently is challenging
and has been discussed by di↵erent communities. While stream processing frameworks,
as discussed, allow to quickly analyse data—even in a distributed scenario—the un-
derlying data model of stream processing frameworks is rather simple and insu�cient
for modelling data of complex CPSs.

In modelling domains, several authors identified the need of infinite, unbounded mod-
els and some sort of model streaming. In [119] Combemale et al., propose a formal
definition of an infinite model as an extension of the MOF formalism together with a
formal framework to reason on queries over these infinite models. Their work aims at
supporting the design and verification of operations that manipulate infinite models.
Particularly, they propose formal extensions of the MOF upperbound attribute of the
Property element to define infinite, unbounded collections and iterate over them. For
similar reasons, we also define models as infinite streams of model chunks. However,
our approach goes beyond this and allows the distribution of model chunks over com-
putational nodes and the definition of repeatable asynchronous operations to lazily
(re)load these chunks from remote computational nodes. This is somewhat similar to
what is proposed for stream processing [81] in programming languages or database
management systems.

In [122] Cuadrado et al., discuss the motivation, scenarios, challenges, and initial solu-
tions for streaming model transformations. They motivate the need for this new kind
of transformation with the fact that a source model might not be completely available
at the beginning of the transformation, but might be generated step by step. They
present an approach and provide a prototype implementation, built on top of the Elec-
tic transformation tool. Interestingly, they highlight possible benefits of distributed
model transformations by replicating the same transformations in several execution
nodes. In a similar direction goes the work of Dávid et al., [127]. They suggest
to use incremental model query techniques together with complex event processing
to stream model transformations. Their approach foresees to populate event streams
from elementary model changes with an incremental query engine and to use a com-
plex event processing engine to trigger transformation rules. This is applied for gesture
recognition for data coming from a KINECT sensor. On the contrary to [122] their
approach uses derived information regarding the model in the form of change events,
which decouples the execution from the actual model. Ráth [269] presents an ap-
proach for change-driven model transformations, directly triggered by complex model
changes carried out by arbitrary transactions on the model. They identify challenges

72

3.8. Reasoning over distributed data in motion

for change-driven transformations and define a language for specifying change-driven
transformations as an extension of graph patterns and graph transformation rules.
This language is a generalisation of previous results on live model transformations,
o↵ering trigger events for arbitrarily complex model changes, and dedicated reactions
for specific kinds of changes. Our and these approaches have in common that we
identify a need for continuous or infinite models. Unlike these approaches we do not
stream events or model transformations and use complex event processing engines to
detect complex events, but view runtime models itself as continuous streams. We use
observers on top of these streams of model chunks to e�ciently distribute frequently
changing runtime models of CPSs. Beyond model queries, our approach defines a
generic distributed modelling layer for runtime usages. However, incremental queries
are also a clear illustration of the kind of applications which should be built with such
unbounded models.

Several authors worked on the issues of large-scale models [206], model persistence, and
the fact that they might grow too big to fit completely into main memory. Benelallam
et al., [89] present with Neo4EMF a scalable persistence layer for EMF based on Neo4j.
Neo4EMF o↵ers on-demand loading of model elements and by using Neo4j as a back-
end, it enables to use advanced features like online backups, horizontal scalability, and
advanced monitoring. Neo4EMF is now called NeoEMF/Graph [160]. MongoEMF [46]
is similar to Neo4EMF but is using mongoDB [45] as a persistence backend. In this
context, Connected data objects (CDO) [22] is a distributed shared model on top of
EMF, which has been designed as a development-time model repository and runtime
persistence framework with pluggable storage backend support. Pagán et al., [259]
propose Morsa, an approach for scalable access to large models through on demand
loading. They suggest to use NoSQL databases for model persistence and provide a
prototype that integrates transparently with EMF. In their evaluation they showed
that they have significantly better results than the EMF XMI file-based persistence
and CDO. In a similar direction goes the work of Koegel and Helming [204], Gomez
et al., [160], or Hartmann et al., [174]. However, none of this work addresses distri-
bution or asynchronicity. To address the scalability of queries, Száárnyas et al., [299]
present an adaptation of incremental graph search techniques, like EMF-IncQuery.
They propose an architecture for distributed and incremental queries.

Fouquet et al., [148] discuss the challenge how to propagate reconfiguration policies
of component-based systems to ensure consistency of architecture configuration mod-
els over dynamic and distributed systems. They propose a peer-to-peer distributed
dissemination algorithm for the models@run.time context based on gossip algorithms
and vector clock techniques that are able to propagate the reconfiguration policies to
preserve consistency of architecture configuration models among all computation nodes
of the system. While their goal is essentially to propagate changes made in the model
of one computation node to the model of other computation nodes, their approach
di↵ers significantly from ours. First, they focus mainly on architectural configuration
models [246], which are typically of manageable size and can be exchanged in one piece.
On the contrary, we focus on big runtime models supporting millions of elements over
several thousand distributed instances, making it basically impossible to exchange the
complete model in a reasonable time. Secondly, our approach promotes observable
streams and asynchronous operations enabling a reactive programming style, which

73

Chapter 3. State of the art

makes it unnecessary to compare exchanged models in order to find changes in the
models propagated from one computation node to others. Last but not least, instead
of using a gossip and vector clock-based dissemination strategy to ensure model con-
sistency, we rely on protocols like web sockets or WebRTC together with lazy loading
to stream our models between distributed nodes.

As mentioned earlier, graph data structures can be used to represent the context of
complex systems, like CPSs. Many graph processing frameworks and graph databases
(cf. Chapters 3.4, 3.5, and 3.6.5), like Pregel, Giraph, and GraphLab support dis-
tributed computing. Some of them, e.g., Titan, OrientDB, and Giraph (through
Apache Gora) in addition support persistence. However, while these approaches enable
distributed computing, e.g., through BSP, GAS, or map-reduce computation models,
they have not been designed for frequently changing data. Instead, their goal is es-
sentially to process computation intensive algorithms and distribute the computation
for performance reasons. Our approach, on the other hand, aims at quickly reacting
to frequently changing data. Stream processing frameworks, on the other hand, al-
low to react to frequent changes, however, the simple underlying data models (mostly
key-value tuples), are usually insu�cient to model the complex data of CPSs.

3.9 Combining domain knowledge and machine
learning

Over the last few years, machine learning has become an important technique for
many application domains. However, implementing machine learning algorithms and
integrating them into applications remains challenging. Di↵erent approaches have been
taken to address this.

TensorFlow [69] is an interface for expressing machine learning algorithms and an exe-
cution engine to execute these on a wide range of devices from phones to large clusters.
A TensorFlow computation is represented as a directed graph. Nodes in the graph rep-
resent mathematical operations, called ops, while the edges represent multidimensional
data arrays, called tensors. An op takes zero or more tensors, performs computations,
and produces zero or more tensors. Two phases are distinguished in TensorFlow. A
construction phase where the graph is assembled and an execution phase which uses
a session to execute ops in the graph. TensorFlow is used within Google for a wide
variety of projects, both for research and for use in Google’s products. Similar to our
approach, TensorFlow allows to model machine learning at a higher level of abstrac-
tion. However, unlike in our approach machine learning is expressed in its own model
aside from the domain model and not connected to it. TensorFlow is adapted for image
and video recognition, whereas our approach is adapted for learning from frequently
changing domain data.

GraphLab [229] goes in a similar direction than TensorFlow. In Section 3.4, GraphLab
has been discussed from the perspective of graph processing frameworks. Now, in this
Section, GraphLab is discussed from the perspective of a machine learning framework.
Low et al., propose an approach for designing and implementing e�cient and prov-

74

3.9. Combining domain knowledge and machine learning

ably correct parallel machine learning algorithms. They suggest to use a data graph
abstraction to encode the computational structure as well as the data dependencies of
the problem. Vertices in this model correspond to functions which receive information
on inbound edges and output results to outbound edges. Data is exchanged along
edges between vertices. GraphLab aims at finding a balance between low-level and
high-level abstractions. In contrary to low-level abstractions GraphLab manages syn-
chronisation, data races, and deadlocks and maintains data consistency. On the other
side, unlike high-level abstractions GraphLab allows to express complex computational
dependencies using the data graph abstraction. Low et al., [227] present a distributed
implementation of the GraphLab abstraction. Like TensorFlow, GraphLab is an inter-
face for expressing machine learning algorithms and an execution engine. While there
are similarities, like the idea that machine learning algorithms should be expressed
with a higher-lever abstraction, our approach focuses on weaving machine learning
algorithms into domain modelling. This allows to use results from learning algorithms
in the same manner than other domain data.

In [95] Bishop proposes a model-based approach for machine learning. This approach
comes closest to ours. He introduces a modelling language for specifying machine
learning problems and the corresponding machine learning code is then generated au-
tomatically from this model. As a motivation Bishop states the possibility to create
highly tailored models for specific scenarios, as well as for rapid prototyping and com-
parison of a range of alternative models. With Infer.NET he presents a framework for
running Bayesian inference in graphical models. Infer.NET is used in several practical
applications. Similar to Bishop we propose to express machine learning problems in
terms of a modelling language and automate the mapping of a domain problem to
the specific representation needed by a concrete machine learning algorithm. While
Bishop suggests to specify machine learning problems in separate models with a dedi-
cated modelling language, our approach extends domain modelling languages with the
capability to specify machine learning problems together with domain models using the
same modelling language. This allows to decompose learning into many small learning
units which can be seamlessly used together with domain data.

Stone and Veloso [295] present a survey of multiagent systems from a machine learning
perspective. The survey is intended to serve as an introduction to the field of multiagent
systems as well as an organisational framework. They discuss robotic soccer as an
example application of complex multiagent systems. This survey is interesting in the
context of our work since it focuses, like our work, on machine learning for systems
that consist of multiple independent entities that interact in a domain.

Domingos et al., [134] propose an approach for incremental learning methods based
on Hoe↵ding bounds. They suggest to build decision trees on top of this concept and
show that these can be learned in constant memory and time per example, while being
very close to the trees of conventional batch learners. With Massive Online Analysis
(MOA) Bifet et al., [94] present an implementation and a plugin for WEKA [168]
based on Hoe↵ding trees. Our contribution is a methodology to weave micro machine
learning into data modelling to support applications which need online analysis of
massive data streams.

Hido et al., [182] present a computational framework for online and distributed ma-

75

Chapter 3. State of the art

chine learning. There key concept is to share only models rather than data between
distributed servers. They propose an analytics platform, called Jubatus, which aims at
achieving high throughput for online training and prediction. Jubatus focus on real-
time big data analytics for rapid decisions and actions. It supports a large number
of machine learning algorithms, e.g., classification, regression, and nearest neighbour.
Jubatus only shares local models, which are smaller than datasets. These models are
gradually merged. Jubatus, like our approach, allows independent and incremental
computations. However, Jubatus doesn’t aim at combining domain modelling and ma-
chine learning, neither does it allow to decompose a complex learning task into small
independent units, which cab be composed.

These approaches allow to model machine learning and the corresponding machine
learning code is then generated automatically, but they don’t address the challenge,
how machine learning and domain modelling can be combined. While intelligent sys-
tems like CPSs have to face many unpredictable events, they also face many predictable
situations for which behavioural models can be already defined at design time of the
system. In fact, learned information can directly depend on domain knowledge and
vice versa. Therefore, modelling domain knowledge and machine learning indepen-
dently, in di↵erent models, with di↵erent modelling languages and techniques, can be
ine�cient.

3.10 Synthesis

While a lot of interesting work has been done in the domain of data analytics, ex-
isting solutions do not meet the requirements of analysing complex and frequently
changing data of CPSs. Analytics platforms like OLAP, Hadoop, and also Spark have
been mainly developed for pipeline-based (distributed) batch analytics. On the other
hand, stream processing frameworks like Storm, Flink, and MillWheel do allow fast
and distributed processing of frequently changing data, however their underlying data
model is rather simple (mostly key-value tuples), which makes it di�cult to represent
complex structured data, as needed in the context of CPSs. In addition, this simple
data model makes it also di�cult to combine machine learning and domain modelling
in a single model. Graph processing frameworks like Pregel, Giraph, and GraphLab
aim at tacking the challenge to model complex data and to e�ciently analyse it in a
distributed manner. However, they mostly consider only static graph data, i.e., they
load a graph into memory, process the data, and subsequently store the result. In
other words, graph processing frameworks are predominately not suitable to analyse
frequently changing data. Graph databases like Neo4j, DEX, and Titan fall into a
similar category. Therefore, some graph processing frameworks, e.g., Chronos, His-
torical Graph Store, and Kineograph have been developed to tackle the challenges of
time-evolving graphs. The vast majority of these use some form of graph snapshotting
and represent a temporal graph as a sequence of such snapshots. Such discretisation
leads to loosing the continuous semantic of temporal data [289]. Also, very frequent
and small changes—like it is the case for cyber-physical systems and IoT—lead to a
large amount of (redundant) snapshot data. This, in turn, makes correlating data
from di↵erent snapshots resource consuming, conflicting with the near real-time re-

76

3.10. Synthesis

quirements such systems usually face. Moreover, with the exception of OLAP, none
of these solutions allow to explore many hypothetical actions. Existing solutions for
hypothetical queries in OLAP environments fail short to explore a large number of
hypothetical actions, complex actions, or nested actions. In summary, none of the
existing solutions allows to: 1) analyse frequently changing data (data in motion), 2)
explore many di↵erent hypothetical actions, 3) reason over distributed data in motion,
and 4) combine domain knowledge and machine learning at the same time.

77

Part II

Analysing data in motion and
what-if analysis

4
A continuous temporal data model to

e�ciently analyse data in motion

This chapter introduces a novel temporal data model and storage system, together with
a time-relative navigation semantic to tackle the challenge of e�ciently analysing data
in motion. This is essential since reasoning processes typically need to analyse and
compare the current context with its history. Yet, existing approaches fail to provide
sustainable mechanisms to e�ciently support the notion of time.

This chapter is based on the work that has been presented in the following papers:

• Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
Olivier Barais, and Yves Le Traon. A native versioning concept to support histor-
ized models at runtime. In Model-Driven Engineering Languages and Systems - 17th
International Conference, MODELS 2014, Valencia, Spain, September 28 - October 3,
2014. Proceedings, pages 252–268, 2014

• Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein, and
Yves Le Traon. Model-based time-distorted contexts for e�cient temporal reasoning.
In The 26th International Conference on Software Engineering and Knowledge Engi-
neering, SEKE 2014, Vancouver, BC, Canada, July 1-3, 2014., pages 746–747, 2014
(best paper award)

Contents
4.1 Introduction . 82

4.2 Time as a first-class property 84

4.3 Continuous validity of model elements 85

4.4 Navigating in time . 87

4.5 Storing temporal data . 89

4.6 Implementation details and API 90

4.7 Evaluation . 91

4.8 Conclusion . 96

81

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

4.1 Introduction

Cyber-physical systems need to continuously analyse their context in order to adapt
themselves to varying conditions. Therefore, building appropriate context represen-
tations, able to reflect the current context, i.e., the internal state and environment,
is of key importance. This task is not trivial [261] and di↵erent approaches and lan-
guages are currently used to build such context representations, e.g., ontologies [226]
or DSLs [181], for di↵erent purposes. In the domain of model-driven engineering, the
paradigm of models@run.time [246], [88] has proven its suitability to represent and
reason about the context of cyber-physical systems. In this thesis we build on—and
extend—the concepts of models@run.time to create context models. As CPSs evolve
in a dynamic context, reasoning processes need to analyse and compare the current
context with its history.

Let us consider the smart grid example. Due to changes in the production/consump-
tion chain over time, or to the sporadic availability of natural resources (heavy rain or
wind), the properties of the smart grid must be continuously monitored and adapted
to regulate the electric load in order to positively impact costs and/or eco-friendliness.
For instance, predicting the electric load for a particular region requires a good un-
derstanding of the past electricity production and consumption in this region, as well
as other data coming from the current context (such as current and forecast weather).
Since the electrical grid cannot maintain an overload for more than a few seconds or
minutes [108], it is important that protection mechanisms work in this time range
(near real-time). Therefore, reasoning processes need to be able to e�ciently analyse
temporal, i.e., continuously evolving, data. Such data is also called dynamic or data
in motion (as opposed to traditional data at rest) [186].

However, models@run.time and model-driven engineering in general lack native mech-
anisms to e�ciently support the notion of time. In fact, models, as abstractions of the
context of a real system, are usually only able to reflect a snapshot of a real system at
one specific timestamp. Therefore, they are not able to represent continuously evolv-
ing contexts. It is a common approach for such systems to regularly sample and store
the context of a system at a very high rate in order to provide reasoning algorithms
with historical data. Figure 4.1 shows a context—represented as an object graph—
sampled at three di↵erent timestamps, t

i

, t
i+1, and t

i+2. As discussed in Chapter 2,
models@run.time can be thought of as object graphs, where every object (i.e., node in
the graph) corresponds to one model element of the runtime model. Respectively, ev-
ery edge in the graph corresponds to one relationship. Model elements of the runtime
model conform to their respective meta classes. It is important to note that in this
context the terms model element, context element, and object are all refering to the
runtime model of the context and are therefore used interchangeably. Each graph in
the figure represents the context at a given point in time, where all context variables,
independently from their actual values, belong to the same time. This is represented
in the figure by placing the graphs in horizontal planes in time. The evolution of
the system in time is then represented as a stack of context snapshots, where every
snapshot represents the object graph (context) at one point in time.

82

4.1. Introduction

t
i

t
i+1

t
i+2

context co
nt
ex
t

ti
m
e

Figure 4.1: Linear sampled context

This systematic, regular context sampling, however, yields to a vast amount of data
and redundancy, which is very di�cult to analyse and process e�ciently. Moreover, it is
usually not su�cient to consider and reason just with data from one timestamp, e.g., t

i

or t
i+1. Instead, for many reasoning processes, e.g., to investigate a potential causality

between two phenomena, it is necessary to simultaneously consider and correlate data
from di↵erent timestamps (e.g., t

i

and t
i+1). Reasoning processes, therefore, need

to mine a huge amount of data, extract a relevant view (containing elements from
di↵erent snapshots), and analyse this view. This overall process requires some heavy
resources and/or is time-consuming, conflicting with the near real-time response time
requirements such systems usually need to meet. Going back to the smart grid example:
In order to predict the electric load for a region, a linear regression of the average
electric load values of the meters in this region, over a certain period of time, can be
computed. Therefore, reasoning processes would need to mine all context snapshots in
this time period, extract the relevant meters and electric load values, and then compute
the load value.

Because of this limitation, models fail in providing suitable and sustainable abstrac-
tions to deal with domains relying on temporal reasoning. An e�cient temporal data
model would 1) anchor time as an integral part of a data model and its elements,
2) provide a semantic to e�ciently navigate in space (i.e., in the object graph repre-
senting the context) and in time, 3) o↵er a storage mechanism for e�ciently storing
temporal data.

It is important to keep in mind, as discussed in Chapter 2 of this thesis, that time series
are not abel to represent complex context models. Time series are only able to represent
“flat” timestamped values but not complex interconnected models, where every model
element and every relationship between model elements can evolve independently in
time. In addition, time series usually assume that values evolve following fixed time
intervals, instead of on-demand. Moreover, time series databases mostly o↵er only
limited capabilities to analyse this data.

In this chapter we propose a temporal data model as an extension of models@run.time.
More specifically, this data model provides a native notion of time to enable e�cient

83

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

reasoning over temporal data. A novel navigation semantic and concept allows to
e�ciently navigate the temporal model and allows to consider it as continuous, instead
of as a stack of snapshots. Finally, an innovative storage concept allows to only store
changed elements instead of full snapshots.

The remainder of this chapter is as follows. Section 4.2 describes the concepts of our
approach and shows how we suggest to inject time as a first-class property into data
models. Then, Section 4.3 defines a temporal validity for context elements. Based on
this, Section 4.4 presents a novel temporal navigation semantic. It defines operations
to navigate in the time dimension of a context element and a time-relative navigation
concept for traversing the relationships within a temporal context model. Section 4.5
presents an e�cient storage system for temporal data. Implementation details and
a concrete API example is provided in Section 4.6. We evaluate our approach in
Section 4.7 on a concrete smart grid reasoning engine for electric load prediction. The
conclusion of the chapter is presented in Section 4.8.

4.2 Time as a first-class property

In a first step towards a temporal data model, we suggest to consider time as a first-class
property, crosscutting any context element, i.e., every object of the graph. This allows
each element to evolve independently in time. To do so, we associate every element of
the context model with a timestamp. In this way, the semantically same object can
exist at di↵erent timestamps with di↵erent values, i.e., in di↵erent versions. While
every object in the graph can be uniquely defined by a single identifier, to uniquely
define an object and its version, we need an additional identifier. For this purpose,
we define—in addition to an object identifier—a timestamp. It is important to note
that this timestamp reflects the domain time rather than the system time. In the
context of this work, timestamps are used to distinguish di↵erent versions of an object
in terms of domain evolution over time. For now, these timestamps are not used in
order to create a partial ordering of events in distributed systems, like for example
proposed by Lamport [216]. A runtime model can then be composed of objects from
di↵erent timestamps. Physics, and especially the study of laser [307], discusses a time
distortion [183] property, specifying that the current time is di↵erent depending on the
point of observation. Applied to our case, this means that context elements can have
di↵erent values, depending on the origin of the navigation context, i.e., depending on
the timestamp of the inquiring actor. For this reason, we refer to such contexts as
time-distorted contexts, or simply temporal contexts. Figure 4.2 shows such a time-
distorted context. The context is again represented as an object graph. Here, the
context variables—again independently from their actual values—belong to di↵erent
timestamps. Such a context can no longer be represented as a graph lying entirely in
one horizontal plane (in time). Instead, graphs representing temporal contexts lie in
a curved plane. These can be considered as specialised views, dedicated for a specific
reasoning task, composing navigable contexts to reach elements from di↵erent points
in time. In contrast to the usage of the term view in database communities we do
not aggregate data but o↵er a way to e�ciently traverse specific time windows of a

84

4.3. Continuous validity of model elements

t
i

t
i+1

t
i+2

context co
nt
ex
t

ti
m
e

Figure 4.2: Time-distorted/temporal context

context. It is important to note that navigating from one node in the object graph to
another one is no longer uniquely defined. Instead, di↵erent values could be resolved
depending on the time.

We claim that such temporal context representations, which weave time directly into
the data model itself, can e�ciently empower temporal analytic processes and can
outperform traditional full sampling approaches. The contribution of this chapter is
to consider temporal information as a first-class property, crosscutting any context
element, allowing to organise context representations as temporal views dedicated for
reasoning processes, rather than a mere stack of snapshots. We argue that this ap-
proach can enable many analytic processes to react in near real-time.

Our hypothesis is that temporal knowledge is part of a domain itself and that defining
and navigating temporal data directly within domain contexts is far more e�cient
and convenient than regularly sampling a context and independently querying each
object with the appropriate time. Therefore, we provide a concept to navigate into
the time dimension of contexts. Most importantly, we enable a context representation
to seamlessly combine elements from di↵erent points in time, forming a time-distorted
context, which is especially useful for time related reasoning.

4.3 Continuous validity of model elements

Instead of relying on context snapshots, we define a context model as a continuous
temporal structure. Nevertheless, each context element (object) of this structure can
evolve independently. Since every change occurs at a specific timestamp, e.g., data
measured from sensors at regular intervals, every data model is defined only at discrete
timepoints. Considering the fact that every context element can evolve independently
and at di↵erent paces, analytic processes need to find the “correct” time point in order
to extract the correct version of an element.

85

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

me1(t1)

t1 t2

time

validity of me1(t1): [t1, t2)
me1(t2)

validity of me1(t2): [t2, ∞)

t3

me2(t3)
validity of me2(t3): [t3, ∞)

Figure 4.3: Continuous validity of model elements

Let us take a concrete example. Smart meters regularly measure and report customers’
consumption values. Di↵erent smart meters might send their values at di↵erent time
points. Reasoning processes analysing this data would have to find for every smart
meter the time point of the latest measured value, relative to the reasoning time, to
be able to extract the correct values. This is not just the case for “flat” values, like
consumption data, but also for relationships between context elements.

In order to define a context as a continuous structure, we specify a continuous validity
for context elements. Therefore, we first define an implicit validity for elements of
the context model. As mentioned before, each context element is associated with a
timestamp. This timestamp reflects the domain time at which this value become valid.
In other words, a timestamp defines a version v

me(t) of a (context) model element
m

e

at a time t. A version contains the values of all attributes and relationships of
a model element at one timepoint. If a model element now evolves, an additional
version of the same element is created and associated to a new timestamp: the domain
time at which the new version is valid. Timestamps can be compared and thus form
a chronological sequence. Therefore, although timestamps are discrete values, they
logically define intervals in which a model element can be considered as valid with
regards to a timestamp.

We define a continuous temporal semantic where a model element is valid from the
moment it is captured until a new version is captured. New versions are only created
if necessary, i.e., if a context element actually changes. Figure 4.3 shows two context
elements, m

e1 with two versions and m
e2 with one version, and their corresponding

validity periods. As represented in the figure, version m
e1(t1) is valid in interval [t1,

t2[. Since there is no version of model element m
e1, which is captured later than t2, the

validity of version m
e1(t2) is the open interval [t2, +1[. Accordingly, version m

e2(t3)
is valid in [t3, +1[.

Although context elements are still sampled at discrete timestamps, a continuous va-
lidity allows to represent a context as a continuous structure. This structure provides
the foundation for our continuous temporal data model. In fact, it is what allows con-
text elements to evolve independently and at di↵erent paces, making the full sampling
of a context model unnecessary.

86

4.4. Navigating in time

4.4 Navigating in time

A flexible navigation in time requires to 1) select a specific version of a model element
and 2) a time-relative navigation concept for traversing the temporal data model.

4.4.1 Selecting model element versions

Based on the idea that it is necessary for intelligent systems to consider not only the
current context but also historical data to correlate or investigate potential causalities
between two phenomena, we provide means to enable an e�cient navigation into time.
Therefore, we define three basic operations, which can be called on each model element:

• The shift operation is the main possibility to navigate a model element through
time. It takes a timestamp as parameter, looks for the context element version
of itself, which is valid at the required timestamp, loads the corresponding ver-
sion of the element from storage (can be main memory) and returns the loaded
version. Due to the definition of a continuous validity of model elements, the
shift operation always returns a valid version, i.e., the last version relative to the
timestamp for which the shift operation was called.

• The previous operation is a shortcut to retrieve the direct predecessor (in terms
of time) of the current context element.

• The next method is similar to the previous operation but retrieves the direct
successor of the current context element.

These operations allow to shift context elements, independently from each other,
through time.

4.4.2 Time-relative navigation

Traversing an object graph composed of elements from di↵erent timestamps is complex,
since a relationship r from an element m

e1 to an element m
e2 is no longer uniquely

defined. Thus, the navigation between context elements cannot rely on relations (in
space) only. Instead—depending on the timestamps t1 and t2 of m

e1 and m
e2, and

depending on the set of versions of m
e1 and m

e2—a relationship r from m
e1 to m

e2 can
link di↵erent versions of m

e2. This means, which version of m
e2 is related to m

e1 by r
depends on the timestamp t of m

e1. Processing this time-relative navigation manually
is complicated and error-prone. Therefore, we provide a concept to automatically
resolve relationships, taking the time aspect into account, while traversing the context
model. This time-relative resolution is completely transparent and hidden behind
methods to navigate in the graph. Hereby, each context element is resolved relative to
the time where the navigation is performed from.

87

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

smart meter
 id: 2
 time: t1
 consumption: 15
 customers: [3]
 concentrators: [1]

time

customer
 id: 3
 time: t1
 meters: [2]

concentrator
 id: 1
 time: t1
 meters: [2]

t1 t2

smart meter
 id: 2
 time: t2
 consumption: 28
 customers: [3]
 concentrators: [1]

concentrator
 id: 1
 time: t1
 meters: [2]

smart meter
 id: 2
 time: t3
 consumption: 83
 customers: [3]
 concentrators: [1]

concentrator
 id: 1
 time: t1
 meters: [2]

t3

customer
 id: 3
 time: t1
 meters: [2]

customer
 id: 3
 time: t1
 meters: [2]

… …

Figure 4.4: Time-evolving context model

relationship r

c(t1): [t1, t∞)

concentrator smart meter

sm(t1): [t1, t2)

navigation
context

sm(t2): [t2, t3)

sm(t2): [t3, t ∞)

Figure 4.5: Time-relative navigation using a navigation context

Figure 4.4 shows a concrete example of a time evolving context model. The context is
again represented as an object graph. As can be seen in the figure, the object graph
consists of three di↵erent objects (context elements). The smart meter element evolves
at t1, t2, and t3, all other objects remain unchanged. This leads to one version of the
concentrator and customer object and to three versions of the smart meter object.
The di↵erent versions of the smart meter object di↵er in the consumption values and
the timestamps. The relationship from the concentrator to the smart meter object is,
therefore, not uniquely defined. Instead, traversing a temporal data model is thus only
defined by two dimensions: space and time.

To cope with this problem, we define what we call a navigation context. Selecting or
navigating context elements is always relative to a navigation context. The navigation
context is either set globally before a context model is traversed, or is implicitly set
when one of the basic temporal operations is used. If we consider again the example
presented in Figure 4.4 and assume that the navigation context is set to a time t

i

, where
t
i

� t2^ < t3, navigating the context model from the concentrator to the smart meter
object would yield the latest valid version of the smart meter relative to the navigation
context, which is the smart meter object with, id: 3, time: t2, and consumption: 28.
This time-relative navigation in context models is depicted in Figure 4.5.

Considering model elements in the context of a specific time interval creates a nav-
igable time dimension for context models. This time-relative data resolution is one
of the novel concepts of this contribution. Unlike in previous approaches (e.g., rela-

88

4.5. Storing temporal data

object id timestamp serialised
objectkey value

Figure 4.6: Key/value structure for time-relative storage

tionships in MOF [238] or predicates in RDF [217]), the navigation function is not
constant but yields di↵erent results depending on the navigation context (i.e., the
current observation timepoint).

4.5 Storing temporal data

In this section we describe an approach to e�ciently store temporal data. Therefore, we
rely on two properties: 1) each context element (object) must be uniquely identifiable,
and 2) it must be possible to get a serialised representation of all attributes and
relationships of a context element, with no relativity to a time. To ensure the first
property, we define an unique identifier for every context element, e.g., an ongoing
number. Since the same semantic object can exist in several versions, i.e., in di↵erent
states, we need an e�cient way to store and load these di↵erent versions. Therefore,
we define a surrogate key, which consists of an object identifier and a timestamp,
to uniquely identify an object version. For the second property, we serialise context
elements into string representations. Similar to the concept of traces [98], [203], each
model element can be transformed into a string representation and vice versa. The
string representation of a model element includes all its attribute and relationship
information. We use a compressed JSON-like format for the serialisation. Listing 1
shows the smart meter object from Figure 4.4 in version [t2, t3) in its serialised form.
This makes it possible to organise temporal data in a key/value manner. As key, we

Listing 1 Serialised version of a smart meter model element

{
"metaclass ": "lu.uni.snt.reason.SmartMeter"
"id": 2,
"time": "t2",
"consumption ": 28
"customers ": "[3]" ,
"concentrators ": "[1]"

}

use the identifier of an object together with a timestamp. Respectively, as value we use
the serialised form of the version of this object. This is depicted in Figure 4.6. This
organisation allows us to use technologies eligible for big data to e�ciently store and
load context data. The data can be stored using di↵erent back ends,e.g., key/value
stores, or simply in memory (as a cache).

89

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

Since data captured in context models usually evolve at a very high pace (milliseconds
or seconds), and our approach foresees to not only store the current version of model
elements but also historical ones, context models can quickly become very large. In
such cases, context models may no longer fit completely into memory, or at least it is no
longer practical to do so. Therefore, based on our storage concept, we implement a lazy
loading mechanism to enable e�cient loading of big context models. Elements of the
runtime model are dynamically (on-demand) loaded into main memory when the object
graph is traversed. Therefore, our implementation allows to manage context models of
arbitrary sizes e�ciently and it hides the complexity of resolving—and navigating—
temporal data.

4.6 Implementation details and API

This section describes how we integrate our temporal modelling approach into the open
source modelling framework KMF and show an API example of how temporal data can
be manipulated within this implementation. In order to implement a temporal data
model in KMF, we first adapt the handling of unique identifiers. Therefore, we extend
KMF’s generator to generate for every created object an unique object identifier, simply
called id. As id’s we use an ongoing number of longs. The id is a technical identifier and
independent of any business identifier. Additionally, we extend the KMF generator to
automatically generate a timestamp attribute for all context elements and an associated
public getter method to read the timestamp value. Next, we generate a key method,
which returns a concatenation of id and timestamp in the from of [id,timestamp]. This
key uniquely identifies a context element version and is used for storing and loading
context elements in key/value stores. For every context element we generate a generic
method to serialise and unserialise the object into a string representation and vice versa.
We provide an expandable datastore interface and several implementations for di↵erent
key/value stores. Currently we provide implementations for Google’s LevelDB [42],
Facebook’s RocksDB [57], Redis [54], and mongoDB [45]. Finally, the navigation
context is implemented as a special object given to the factory of the generated API.
The navigation context object determines which version should be resolved while the
model is traversed.

Modelling approaches usually use meta model definitions (i.e., concept descriptions) to
generate domain specific APIs. The following example illustrates our API. In addition
to a classical modelling API, our implementation provides functions for creating, delet-
ing, storing, loading, and shifting versions of context elements. Applications can use
this API to create new context elements, specify their timestamps, store them, change
their attributes and relationships, and store new versions (with di↵erent timestamps).
In addition, the API can be used to specify the context time on which elements should
be resolved while traversing the model. One can imagine the definition of the context
time as the curve shown in Figure 4.2. Listing 2 shows Java code that uses a Con-
text ctx (an abstraction to manipulate model elements) to perform these actions. The
API provides a seamless way to create, manipulate, and navigate in the temporal data
model.

90

4.7. Evaluation

Listing 2 Usage of the temporal data model API

//creating and manipulating model elements
ctx.setTime("2014/3/1"); //sets the context time

SmartMeter m1 = ctx.createSmartMeter("m1"); (//creates a new smart meter
//add a new consumption object
m1.setConsumption(ctx.createConsumption (125.6));

SmartMeter m2 = ctx.load("m2"); //retrieves smart meter m2 at the context time
m2.setConsumption(ctx.createConsumption (77.12)); //sets new value
m2.setRegisteredBy(m1); //sets the registerBy relation

ctx.setTime("2014/3/2"); (//sets the context time
SmartMeter m1_2 = m1.shift("2014/3/2"); //shifts smart meter m1 in time
m1_2.setConsumption(ctx.createConsumption (193.7));

// definition of the context time
ctx.setTime("2014/3/3"); //sets the context time
SmartMeter r_m1 = ctx.load("m1"); //loads the smart meter at the context time
assert(r_m1.getConsumption ()==193.7); //latest value relative to context time

SmartMeter r_m2 = r_m1.getRegisteredEntities ().get (0);
assert(r_m2.getConsumption ()==77.12);
assert(r_m2.getTime ()=="2014/3/3"); //retrieves time where it is resolved to

4.7 Evaluation

In this section, we evaluate if the proposed temporal data model is able to e�ciently
analyse data in motion. Therefore, we apply it on an industrial case study and evaluate
its impact. The case study is taken from our cooperation with Creos Luxembourg S.A.
and has initially led to the research behind this approach. In a nutshell, in this case
study we evaluate the performance of a reasoning engine that needs to analyse temporal
smart grid data. Therefore, it has to aggregate and navigate temporal data and, if
necessary, take corrective actions. This case study is based on the smart grid model
presented in Figure 1.4, which is periodically filled with live data from smart meters
and sensors. Based on the electric consumption, smart meters can derive the electric
load in a region. The idea for this reasoning engine is to predict, if the load in a certain
region will likely exceed or surpass a critical value. Therefore, a linear regression of the
values of the meters in this region, over a certain period of time, has to be computed.

This case study has been implemented twice, once with a traditional sampling strat-
egy, and once using our temporal data model, which we implemented into the KMF
framework (cf. Section 4.6). The full sampling approach and our approach both use
Google’s LevelDB as a storage backend and both are executed using JDK 8. All ex-
periments are conducted on a MacBook Pro with an Intel Core i7 CPU, 16GB RAM,
and a SSD. Each experiment has been executed 100 times and the presented results
are average values.

91

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

50

100

Number of model elements

M
ai
n
M
em

or
y
(i
n
M
B
)

Full Sampling LU
Full Sampling MU

Figure 4.7: Memory usage for model update operations using the full sampling strategy

The following validation is based on three key performance indicators (KPIs): 1) time
and memory requirements to update the context model, 2) performance to navigate
the context model in time, and 3) space requirements for persisting the temporal data.
For each KPI, we compare our approach with the classic sampling strategy, taking a
snapshot of the entire model for each modification (or periodically). The measured
memory value for KPI-1 is main memory (RAM), for KPI-3 it is disk space. The
measured time is the time required to complete the reasoning process (depending on
the KPI). Main memory is measured in terms of used heap memory, queried using
Java’s runtime API.

4.7.1 KPI-1: Model updates

First, we evaluate time and memory requirements to update the proposed temporal
data model and compare this to a full sampling approach. We analyse modifications of
two magnitudes: 1) a large update (LU) that consists in creating a new concentrator
and a smart meter subtree (1,000 units) and 2) a minor update (MU) that consists
in updating the consumption value of a specific smart meter, which is already present
in the context model. For this experiment, we keep the size of each update constant
but vary the size of the context model and the history. We grow the context model
from 0 to 100,000 elements, which approximately corresponds to the dimension of the
actual size of our Luxembourg smart grid model. The results of KPI-1, in terms of
memory usage, are depicted in Figure 4.7, for using the full sampling approach and
in Figure 4.8, for using the temporal data model. Outcomes of KPI-1, with respect
to the required time for updating the context models are shown in Figure 4.9, for full
sampling and in Figure 4.10, for the temporal data model.

Let us first consider main memory. The full sampling strategy depends on the size
of the model, as reflected by the linear progression of the required main memory size,
to perform the updates. In contrary, our approach results in two flat curves for LU

92

4.7. Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

1

1.5

2

2.5

Number of model elements

M
ai
n
M
em

or
y
(i
n
M
B
)

Temporal Data Model LU
Temporal Data Model MU

Figure 4.8: Memory usage for model update operations using the temporal data model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

500

1,000

1,500

2,000

Number of model elements

U
p
d
at
e
ti
m
e
(i
n
m
s)

Full Sampling LU
Full Sampling MU

Figure 4.9: Update time for model manipulations using the full sampling strategy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

20

40

60

80

100

Number of model elements

U
p
d
at
e
ti
m
e
(i
n
m
s) Temporal Data Model LU

Temporal Data Model MU

Figure 4.10: Update time for model manipulations using the temporal data model

93

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

and MU updates, showing that the required memory only depends on the size of the
update, not on the size of the model. This is confirmed by the fact that LU requires
more memory than MU, but both are constant—less than 2.5 MB, compared to up to
100 MB of the full sampling strategy. This is due to our lazy loading approach, i.e.,
only the elements which need to be updated are loaded into main memory.

Next, we look at the time required to update context models. The time to insert
new elements using the full sampling approach depends on the size of the model, but
is nearly constant with the proposed temporal data model. This behaviour is similar
to what we observed for the required main memory. The fact that the updated time
is less for MU compared to LU confirms that our approach reduces the time needed
to modify elements. Looking at the results of the experiments, KPI-1 demonstrates
that even in the worst case scenario, where all elements evolve at the same pace, our
approach o↵ers a major improvement for model update operations (factor of 33 for
time and between 50 to 100 for memory).

Finally, we analyse the capability of our temporal data model to handle batch inser-
tions. Therefore, we additionally performed a batch insert using once the full sampling
and once our approach. The batch insert consists of 10,000 historical values for each
smart meter, resulting in a model of 1 million elements. As a result, we obtain 267
seconds to insert with the full sampling strategy and 16 seconds for our approach.
This means that even in the worst case, we still have an improvement of a factor of
17 for the insertion time.

4.7.2 KPI-2: Navigating the context model in time

For the following experiment, we consider an already existing smart grid model con-
taining, a history of consumption values. We evaluate the required time to execute a
complex computation over the historical consumption data. We run several prediction
algorithms over the model, which correlate historical data in order to predict the future
state of the grid and, for example, throw an alert in case of a potential overload risk.

We define two prediction categories, each for two di↵erent scales, resulting in 4 di↵erent
reasoning processes: 1) small deep prediction (SDP), 2) small wide prediction (SWP),
3) large deep prediction (LDP), and 4) large wide prediction (LWP). Wide prediction
means that the algorithm uses a correlation of data from neighbouring smart meters
in order to predict the future consumption. This means that the algorithm needs to
explore, i.e., navigate, the model in wide. The underlying idea is that the electric
consumption within a region (a number of geographically close smart meters) remains
comparable over time for similar contexts (weather conditions, time of the year, etc.).
The deep prediction strategy uses the history of customers to predict their consumption
habits. In this case, the algorithm needs to navigate the model in deep, i.e., it needs
to navigate the history of a model element. For both approaches we perform a linear
regression to predict the future consumption using two scales: large (100 meters) and
small (10 meters).

94

4.7. Evaluation

Table 4.1: Reasoning time to predict the electric consumption (in milliseconds)

Type SDP SWP LDP LWP

Full 1,147.75 ms 1,131.13 ms 192,271.19 ms 188,985.69 ms

Lazy 2.06 ms 0.85 ms 189.03 ms 160.03 ms

Factor 557 1,330 1,017 1,180

The results are presented in Table 4.1. The gain factor of using the
temporal data model, compared to full sampling, is defined as Factor =
(Full Sampling time / Native V ersioning time). As can be seen in Table 4.1, the
gain factor lies between 557 and 1,330. Using the proposed temporal data model in-
stead of a full sampling approach, reduces the processing time from minutes to seconds.
This experiment showed that the usage of a temporal data model can significantly re-
duce the time to analyse historical data. This can enable reasoning processes to react
in near real-time.

4.7.3 KPI-3: Storing temporal data

In this section, we evaluate the overhead, introduced by our approach, for storing
temporal data. As in the experiments before, we compare the results with a full
sampling strategy. Our goal is to determine, how much of a model must be changed in
one step, so that storing temporal models is more costly in case of disc space, compared
to a full sampling approach. Intuitively, the more changes are done, the higher the
overhead will be compared to full sampling. In other words, we want to investigate,
after which percentage of modifications becomes our solution less e�cient in terms of
storage space, compared to the full sampling approach. It is important to note that
the navigation gains remain still valid.

For this evaluation, we load an existing model (containing 100 smart meters), update
the consumption value of several meters, serialise it again and store it. By varying
the percentage of smart meters updated per version (period), we can compare the size
of the storage space, which is required for the comparison with our approach and the
full sampling approach. To ensure a fair comparison we use for both cases a compact
JSON serialisation format. Results are depicted in Figure 4.11.

Regardless of the amount of modifications, the full sampling approach requires 39.1
KB to store one version (snapshot) of the model. This is a serious overhead for small
modifications. In contrary, the temporal data model requires a variable amount of
storage space, i.e., the required storage space depends on the amount of modifica-
tions. It varies from 393 bytes for 1% of changes to 39.8 KB for 100% of changes (the
complete model changes). A linear augmentation of model changes leads to a linear
augmentation of needed storage space. This confirms that our storage strategy for
model elements has no unexpected side e↵ect.

95

Chapter 4. A continuous temporal data model to e�ciently analyse data in motion

0 20 40 60 80 100

0

2

4

·104

Percentage of modifications per version

S
to
ra
ge

si
ze

(i
n
by

te
s)

Full sampling
Temporal data model

96 98 100

3.8

3.9

4
·104

Zoom (same legends)

Figure 4.11: Required storage space to save temporal data

To put the observed results into perspective, our proposed temporal data model reduces
the required storage space by 99.5% for 1% of changes. On the other hand, it increases
the required storage space by 1.02% for 100% of modifications. This means that up
to 98.5% of modifications of a model, our approach needs less memory than a full
sampling approach. Also, the overhead of 1.02% for a change of the full model has
to be set into relation to the features enabled by this overhead (navigation, insertion
time gains, comparison time gains).

Besides the presented runtime usage improvements, this validation shows that the tem-
poral data model o↵ers nearly constant time and memory behaviour, which allows to
face massive amounts of historical data and large-scale context models. This validation
demonstrates that the proposed temporal data model is able to e�ciently analyse data
in motion.

4.8 Conclusion

Modelling approaches, such as models@run.time, provide semantically rich reflection
layers, which enable cyber-physical systems to reason about their context. As these
systems evolve over time, reasoning processes typically need to analyse and compare
the current context with its history. The use of models to organise and store such
dynamic data—also called data in motion—su↵ers from the lack of sustainable mech-
anisms to e�ciently handle historical data. Despite the fact that considering time as
a crosscutting concern of data modelling has been discussed since quite some time,
today’s modelling approaches mostly still rely on a discrete representation of time.
Therefore, a common approach consists in a temporal discretisation, which regularly
samples the context (snapshots) at specific timestamps to keep track of the history.
Analysing these data would then require to mine a huge amount of snapshots, extract
a relevant view, and finally analyse it. This would require lots of computational power
and be time-consuming, conflicting with the near real-time response time require-
ments these systems usually face. In this chapter, we presented a novel temporal data
model, which considers time as a first-class property crosscutting any model element,

96

4.8. Conclusion

allowing to organise context representations as temporal views dedicated for reasoning
processes, rather than a mere stack of snapshots. By introducing a temporal valid-
ity, independently for each model element, we allowed each model element to evolve
independently and at di↵erent paces, making the full sampling of a context model
unnecessary. Finally, we added a time-relative navigation, which makes an e�cient
navigation between model elements, coming from di↵erent timestamps, possible. This
allows us to assemble a temporal data model for reasoning purposes and seamlessly and
e�ciently navigate along the time dimension of data, without the need to manually
mine the necessary data from di↵erent context models. The proposed temporal data
model has been implemented and integrated into the open source modelling framework
KMF and evaluated on a smart grid reasoning engine for electric load prediction. We
showed that our approach supports temporal reasoning processes, outperforms a full
context sampling by far, and can be compatible with near real-time requirements. To
sum up, we demonstrated that the proposed temporal data model is able to e�ciently
analyse data in motion.

97

5
A multi-dimensional graph data model to

support what-if analysis

Over the last few years, the cross-fertilisation of big data and cyber-physical systems,
respectively, the Internet of Things has boosted data analytics from a descriptive era,
mostly confined to the explanation of past events, to the emergence of new predictive
techniques. Nevertheless, existing predictive techniques still fail to envision alternative
futures, which inevitably diverge when exploring the impact of what-if decisions. What-
if analysis calls for the design of scalable data models that can cope with the complexity
and the diversity of representing and exploring many di↵erent alternatives. This chap-
ter introduces a multi-dimensional graph data model, called many-world graph, which
combines multi-dimensional graphs and temporal data to organise a massive amount of
unstructured and continuously changing data. The proposed data model is an extension
of the temporal data model presented in the previous chapter.

This chapter is based on the work that has been presented in the following paper:

• under submission at ACM/USENIX EuroSys 2017: Thomas Hartmann, Assaad
Moawad, Francois Fouquet, Gregory Nain, Romain Rouvoy, Yves Le Traon, and
Jacques Klein. PIXEL: A Graph Storage to Support Large Scale What-If Analysis

Contents
5.1 Introduction . 100

5.2 Motivating example . 102

5.3 Many-world graphs . 103

5.4 MWG implementation . 110

5.5 Experiments . 116

5.6 Conclusion . 124

99

Chapter 5. A multi-dimensional graph data model to support what-if analysis

5.1 Introduction

In their “2013 Hype Cycle of Emerging Technologies” report Gartner considers pre-
scriptive analytics as one of the “innovation triggers” of the next five to ten years [1].
For instance, the emerging domains of cyber-physical systems and the Internet of
Things are expected to increasingly control bigger and bigger parts of our critical
infrastructures, like electric grids, (semi-)autonomously [194]. This requires advanced
data analytics to turn the huge amount of collected data into valuable insights to iden-
tify suitable decisions [277]. However, technologies for prescriptive analytics are yet
in their infancies. It heavily relies on the exploration of what might happen if this or
that action would be applied, which is referred to as what-if analysis [167]. What-if
analysis therefore plays a crucial part of decision-making.

Every action induces some side-e↵ects, which potentially lead to an alternative state
from where a set of other actions can be applied and so forth. When considering
complex systems, such as CPSs or IoT, hundreds or thousands of alternative actions
must be explored simultaneously. As in the many-world interpretation [139], every
action can be interpreted as a divergent point leading to an alternative, independent
world. This means that every data variable can have alternative values in di↵erent
worlds. What-if analysis therefore tries to establish the sequence of actions that leads
to the desired values of all variables, i.e., the desired world.

In addition, actions and values have a temporal dimension. As discussed in detail
in Chapter 4, it is usually not enough to consider just the current state of a system,
but it is often necessary to also consider and reason about historical data, using for
instance approaches like sliding window analytics [93]. Therefore, given a specific
world, variables can have di↵erent values for di↵erent points in time. This can lead to
di↵erent histories for the values of variables in di↵erent worlds. In addition to that,
every world and their variables can evolve independently at di↵erent paces. This leads
to a huge combinatorial complexity of world and timepoint alternatives. Therefore,
what-if analysis requires to define a data model that can represent at the same time:

• Temporal—i.e., evolving—data: Most of nowadays data is temporal in na-
ture: from social networks, financial transactions, medical records to self-driving
cars. What-if analysis typically not only needs to process current, but also his-
torical data (cf. Chapter 4).

• Several alternative worlds: To independently explore di↵erent actions, it is
necessary to “fork” or “snapshot” the underlying data, so that every action can
be simulated on its own dataset.

The fast-growing area of graph analytics (for example GraphX [323]) suggests to or-
ganise the massive amounts of unstructured, constantly changing data which such
analytics have to deal with, as graphs. Graphs and associated computation models
have been demonstrated to be especially suitable to depict complex data and their
relationships [232], [240]. An increasing number of work discuss challenges of tempo-
ral aspects of graph data [82], [107], [201], however an e�cient exploration of many

100

5.1. Introduction

independently evolving worlds remains an open issue. As discussed in Chapter 2, mod-
els@run.time can be thought of as object graphs, where every node corresponds to one
model element of the runtime model. Respectively, every edge in the graph maps to
a relationship of the runtime model. In this chapter, we follow the terminology of
graph analytics and speak about nodes and edges rather than model elements and
relationships.

To address the combinatorial complexity of world and timepoint alternatives, we pro-
pose in this chapter a novel graph data model, called many-world graph (MWG), where
values of each node are resolved on-demand, based on the viewpoint (defined by a world
and a timepoint) where we read from. As in the famous example of Schrödinger’s
cat [282], where the cat is “dead” and “alive” at the same time (in di↵erent worlds)
and the actual state is just revealed at the moment the cat is observed, in our approach
nodes and edges can have many di↵erent values at the same time (depending on the
world and time), which are just revealed at the moment the graph is observed. Like in
this example, every node can have alternative values depending on the current view-
point (time and world). Let us now suppose we could influence the state of the cat.
The goal would then be, if we want to save the cat, to select the sequence of actions
that leads to the world where the graph represents the state where the cat is consid-
ered as alive. Based on this concept, our MWG implements an e�cient on-demand
fork concept for nodes and edges and at the same time supports temporal nodes and
edges. We show that this allows to e�ciently explore a large number of independent
actions—in time and many worlds—even on a massive amount of data (hundreds of
millions of nodes, timepoints, and hundreds of thousands of worlds). We believe that
this model can prepare the ground for e�cient what-if analysis.

We integrated this data model into the Kevoree Modeling Framework1, to evaluate its
capabilities and limits. First, we evaluate its performance when used as a base graph
storage. We compare our approach with a state of the art graph storage. Secondly, we
focus on evaluating the temporal aspects of our approach. Besides raw performance
testing for di↵erent scenarios, we compare our approach to a state of the art time
series database. Thirdly, we evaluate the performance of inserting and reading from
many di↵erent worlds for di↵erent scenarios. Finally, we validate our approach with a
scenario from the smart grid case study. For all cases, we discuss results, limits, best
and worst cases.

The remainder of this chapter is organised as follows. First, Section 5.2 motivates the
research behind this contribution, based on the smart grid case study. Sections 5.3
and 5.4 introduces the main concepts of MWG and their implementation in KMF. We
thoroughly evaluate our approach in Section 5.5. The chapter concludes in Section 5.6.

1The source code of our many-world graph implementation is available under
https://github.com/kevoree-modeling/mwDB

101

Chapter 5. A multi-dimensional graph data model to support what-if analysis

5.2 Motivating example

Existing solutions supporting prescriptive analytics, and more specifically what-if anal-
ysis, are poorly addressing the challenges of scalability. To illustrate this issue, we con-
sider the smart grid case study, which builds on prescriptive analytics to take advanced
and (semi-)autonomous decisions to adjust the load and the topology of the smart grid
dynamically. Prescriptive analytics aims to explore several candidate actions to answer
the question “what should we do?”, in respect to a given goal (cf. Chapter 2). Beyond
statistical forecasting, prescriptive analytics requires to explore what happens if this or
that action would be applied, i.e., to navigate through di↵erent alternative scenarios.
In this chapter, we focus more specifically on what-if analysis, which is an essential
and challenging part of prescriptive analytics.

Intelligent load management is a major concern for electricity utility companies [142].
In particular, they are expected to avoid potential overload situations in electricity
cables by appropriately balancing the load. The electric load in cables depends on the
consumption of customers connected to a given cable, on the topology (i.e., how cables
are connected to each other), and on power substations. A topology can be changed by
opening/closing so-called fuses in cabinets. This results in connecting/disconnecting
the cables that connect households to di↵erent power substations, therefore impacting
the electricity flow in the grid. Applying prescriptive analytics to this scenario would
mean to simulate the electric load for di↵erent hypothetical topologies (what-if scenar-
ios) with the goal to find an “optimal” one—i.e., where the load in all cables is best
balanced. Then, the necessary actions leading to this topology can be suggested as a
result of the prescriptive analytic process. Smart grids are very large-scale systems,
connecting hundreds of thousands or even hundreds of millions of nodes (customers).
This makes the simulation of di↵erent what-if scenarios very challenging. Moreover,
many di↵erent topologies are possible, which can easily lead to thousands of di↵erent
scenarios.

To avoid potential overload situations, alternative topologies need to be explored a
priori, i.e., before the problem actually occurs. The computation of the electric load
depends, aside from the topology, on the consumption data of customers. In the con-
text of a smart grid, this data is measured by smart meters, which are installed at cus-
tomers’ homes and regularly report to utility companies (e.g., every 15 minutes [179]).
One can compute the electric load based on profiles of customers’ consumption be-
haviour. These profiles are built using live machine learning algorithms, as the ones
we introduced in [179]. However, the huge amount of consumption data quickly leads to
millions of values per customer and e�ciently analysing such large historical datasets is
challenging. The temporal dimension of data often results in ine�cient data querying
and iteration operations to find the requested data. While this issue has been exten-
sively discussed by the database community in the 80s and 90s [115], [283], this topic
is gaining popularity again with the advent of time series databases for IoT and sensor
data (e.g., influxDB [39]). Time series can be seen as a special kind of temporal data,
which is defined as a sequence of timestamped data points, and is used to store data like
ocean tides, stock values, and weather data. It is important to note that in time series,
data is “flat”—i.e., , time series’ only contain primitive values, like raw measurements.
However, they are not able to model complex data structures and their relationships,

102

5.3. Many-world graphs

like for example the evolution of a smart grid topology. Therefore, time series analysis
is not su�cient to support complex what-if analysis and prescriptive analytics. On
the other side, graph-based storage solutions (e.g., Neo4j [47]), despite some attempts
to represent time dependent graphs [107], [55], [32], are poorly addressing the time
dimension in their model. They are either failing to navigate through alternative ver-
sions of a given graph, or covering this issue by generating distinct clones of the graph
(cf. Chapter 3).

These limitations, therefore, motivates our work to support such large-scale what-
if analysis for prescriptive analytics. More specifically, we introduce the concept of
many-world graphs as a scalable data model to explore alternative scenarios in the
context of what-if analysis.

5.3 Many-world graphs

In this section we detail a multi-dimensional graph data model, called many-world
graph. The goal of this data model is to e�ciently support large-scale what-if analysis.
First, we introduce the key concepts behind many-world graphs. Then, we formalise
its semantics, starting by a simple graph model, which we extend in a first step with a
temporal dimension and in a second step with a dimension to represent several di↵erent
alternatives.

5.3.1 Key concepts

This chapter introduces the notion of many-world graphs, which are directed graphs
whose structure and properties can evolve along time and parallel worlds. In particular,
many-world graphs build on the following core concepts:

• Timepoint: a discrete event, usually encoded as a timestamp

• World: a parallel world (or universe), used as an identifier

• Node: a domain-specific concept, which exists across worlds, used as an identifier

• State: the value of a node for a given world and timepoint

• Timeline: a sequence of states for a given node and a given world

Depending on the considered timepoint (t) and world (w), di↵erent states can therefore
be resolved from a given node (n), as illustrated in Figure 5.1. States are organised
into chunks (c), which can be uniquely mapped from any viewpoint hn, t, wi.

Therefore, we define a function read, which resolves for a node (n), a timepoint (t),
and a world (w) a state chunk (c).

103

Chapter 5. A multi-dimensional graph data model to support what-if analysis

world0

world1s

timeline

state chunk

Figure 5.1: State chunks of a node in two worlds

Definition 1 Function read(n, t, w) 7! c
t

We associate each state chunk with a timepoint (c
t

) and define a timeline as:

Definition 2 A timeline (t
n,w

= [c0, . . . , cn]) is an ordered sequence of chunks belong-
ing to a given node (n) from a given world (w).

Alternative state chunks in di↵erent worlds, therefore, form alternative timelines. As
a consequence, a resolution function (read) returns a chunk (c

t

) for an input viewpoint
as the “closest” state chunk in the timeline.

Therefore, when a many-world graph is navigated, state chunks of every node have
to be resolved according to an input world and timepoint. The processing of many-
world graphs made of millions of nodes cannot be done in memory, thus requiring to
e�ciently store and retrieve chunks from a persistent data store. For this purpose, we
decompose state chunks into keys and values and we store these values in a key/value
storage. The mapping of nodes to state chunks (including attributes and references to
other nodes) and their storage is further detailed in Section 5.4.1.

While prescriptive analytics builds on what-if analysis for new worlds along time,
there are two techniques that can be employed when forking worlds: snapshotting and
a shared past (cf. Figure 5.2).

Snapshotting consists in copying all state chunks of all timepoints from a parent world
p to the child world w, thus leaving both worlds to evolve completely independently,
in the past and in the future. Although this approach is simple, it is obviously very
ine�cient in terms of time and storage to clone all state chunks of all historical records.

We therefore propose to adopt an alternative approach based on a shared past. Let us
consider a scenario where a new world w is diverged from a parent p at a point s in
time. Before timepoint s, both worlds share the same past and thus resolve the same
state chunks. After the divergence timepoint s, world w and p co-evolve, which means
that each can have their own timeline for t � s. Therefore, both worlds share the same
past before the divergent point (for t < s), but each evolves independently after the
divergent point for t � s.

104

5.3. Many-world graphs

a) Snapshotting b) Shared past

w

p p

w

pss

copy

timeline

Figure 5.2: Types of many-worlds

5.3.2 Many-world graph semantics

With the many-world graph (MWG), we seek to e�ciently structure and analyse data
that can evolve independently in time and many worlds. In an abstract way, such a
graph can be defined as G = N ⇥ T ⇥W , where N is the set of nodes, T the set of
timepoints, and W the set of worlds. This would be the equivalent of snapshotting.
However, what-if analysis needs to explore many di↵erent actions, which usually does
not a↵ect all data in all worlds and all timepoints. Therefore, snapshotting would be an
extremely ine�cient approach to manage such a graph. To address this combinatorial
problem of world and timepoint alternatives, we define our MWG in a way so that
values of each node are resolved on-demand, based on a world and a timepoint. We
avoid snapshotting with a novel concept of on-demand forks of nodes. In this section,
we formalise the semantics of our MWG by starting with a base graph definition,
which we first extend with temporal semantics (time-evolving graph) and then with
the many-world semantics.

5.3.3 Base graph (BG)

A graph G is commonly defined as an ordered pair G = (V,E) consisting of a set V of
vertices (or nodes) and a set E of edges. In order to distinguish between nodes and their
states, we define a di↵erent layout. First, we define a node as a conceptual identifier
that is mapped to what we definet as a “state chunk”. A state chunk contains the
values of all attributes and edges which belong to a node. Attributes are typed with one
of the following primitive types: int, long, double, string, bool, or enumeration.

Definition 3 Formally, the state chunk of a node n is: stateChunk
n

= (A
n

, R
n

),
where A

n

is the set of tuples of names and values of the attributes of this node and R
n

is the set of tuples of names and values of relationships from n to other nodes.

From now on, we refer to edges as directed relationships or simply as relationships.
Unlike other graph models (e.g., the one from Neo4j [240]) our model does not support
attributes for edges. Besides being simple, this also makes our graph data model similar
to the object-oriented one, which today is the dominating data model of many modern

105

Chapter 5. A multi-dimensional graph data model to support what-if analysis

programming languages, like Java, C#, Scala, and Swift. It also enables a seamless
integration into KMF.

We introduce the function read(n) that resolves the state chunk of a node n. It returns
the state chunk of the node, which contains the relationships or edges to other nodes.
We can now define a base graph (BG) as:

Definition 4 BG = {read(n), 8n 2 N}

The main di↵erence to common graph definitions is that our base graph is not statically
defined, but is the result of the evaluation of the read(n) function over all nodes n. This
means that the graph is dynamically created. Implicitly, all state chunks of all nodes
are dynamically resolved and the graph is created by linking the nodes accordingly to
the relationships defined within the resolved state chunks.

In this way, only the destination nodes need to be listed in the set, since all the directed
edges start from the same node n, thus making it redundant to list the source node.
For example, if we have: stateChunk

n

= {{att1}, {m, p}}, where m, p 2 N , this means
that the node n has one attribute and two relationships (one to node m and another
one to node p). Two directed edges can be implicitly constructed: n! m and n! p.

5.3.4 Temporal graph (TG)

In this section, we extend our BG with temporal semantics. Therefore, we extend the
function read(n) with a function read(n, t), with t 2 T . T is a totally ordered sequence
of all possible timepoints: 8t

i

, t
j

2 T : t
i

 t
j

_ t
j

 t
i

. We also extend the state chunk
to its temporal representation:

Definition 5 stateChunk
n,t

= (A
n,t

, R
n,t

), where A
n,t

and R
n,t

are the sets of resolved
values of attributes and relationships, for the node n at time t.

Then, we define the temporal graph (TG) as follows:

Definition 6 TG(t) = {read(n, t), 8n 2 N}, 8t 2 T .

Every node of the TG can evolve independently. As timepoints can be compared, they
naturally form a chronological order. We define that every state chunk belonging to a
node in a TG is associated to a timepoint and can therefore be organized according to
this chronological order in a sequence TP ✓ T . We call this ordered sequence of state
chunks the timeline of a node. The timeline tl(n) of a node n is defined as:

Definition 7 tl
n

= {stateChunk
n,t

, 8t 2 TP ✓ T}

106

5.3. Many-world graphs

timeline t2

scn1,t1

t1

tl

t

read(n1,t) = scn1,t1

scn1,t2
read(n1,t) = scn1,t2read(n1,t) = ∅

Figure 5.3: TG node timeline

The two basic operations insert and read are defined as:

Definition 8 Operation insert(stateChunk
n,t

, n, t) :
(StateChunk ⇥ N ⇥ T) 7! {;}, as the operation that inserts a state chunk in the
timeline of a node n, such as:
tl
n

:= tl
n

[{stateChunk
n,t

}

Definition 9 Operation read(n, t) :
(N ⇥ T) 7! StateChunk, as the operation that retrieves, from the timeline tl

n

, and
up until time t, the most recent version of the state chunk of n, which was inserted at
timepoint t

i

.

read(n, t) =

8
>><

>>:

stateChunk
n,ti if (stateChunk

n,ti 2 tl
n

)
^(t

i

2 TP) ^ (t
i

< t)
^(8t

j

2 TP ! t
j

< t
i

)
; otherwise

According to these definitions, although timestamps are discrete, they logically define
intervals in which a state chunk can be considered as valid within its timeline (cf.
Chapter 4). Considering the following operations:

insert(sc
n1,t1 , n1, t1) and insert(sc

n1,t2 , n1, t2), where we are inserting 2 state chunks
sc

n1,t1 and sc
n1,t2 for the same node n1 at two di↵erent timepoints with t1 < t2, we

define that sc
n1,t1 is valid in the open interval [t1, t2[, and sc

n1,t2 is valid in [t2,+1[(as
defined in Chapter 4). Therefore, an operation read(n1, t) resolves ; if t < t1, scn1,t1

when t1 t < t2, and sc
n1,t2 if t � t2 for the same node n1. The corresponding time

validities are depicted in Figure 5.3.

Since state chunks with this semantic have temporal validities, relationships between
nodes also have temporal validities. This leads to temporal relationships between TG
nodes and forms a natural extension of relationships in the time dimension.

107

Chapter 5. A multi-dimensional graph data model to support what-if analysis

Once the time resolution returns the correct timepoint t
i

, the temporal graph can be
reduced to a base graph, therefore a TG for a particular t can be seen as a base graph:

Definition 10 TG(t) ⌘ BG
ti, for t = t

i

.

5.3.5 Many-world graph (MWG)

To extend the TG with a many-world semantic, we refine the definition of the resolution
function read(n, t), by considering, in addition to time the di↵erent worlds, the function
read(n, t, w), with t 2 T and w 2 W , where W is the set of all possible worlds, which
resolves the state chunk of node n at timepoint t in world w. In analogy to Section 5.3.4,
the state chunk definition is extended as follows:

Definition 11 stateChunk
n,t,w

= (A
n,t,w

, R
n,t,w

),
where A

n,t,w

and R
n,t,w

are the sets of resolved values of attributes and relationships,
for the node n at time t, in world w.

From this definition, a many-world graph (MWG) is formalised as:

Definition 12 MWG(t, w) = {read(n, t, w), 8n 2 N}, 8(t, w) 2 T ⇥W , where W is
a partially ordered set of all possible worlds.

The partial order < on the set W is defined by the parent ordering, with (p < w) ⌘
(p = parent(w)). Intuitively, the set W is partially ordered by the generations of
worlds, however worlds that are created from the same parent, or the world that are
created from di↵erent parents, cannot be compared (in terms of order) to each other.
Moreover, we define the first created world as the root world, with parent(root) = ;.
Then, all other worlds are created by diverging from the root world, or from any other
existing world in the world map set WM of our many-world graph. The divergence
operation is defined as follows:

Definition 13 Operation w = diverge(p) :
World 7! World, as the function that creates world w from the parent world p, with
p < w and p 2WM ✓ W . After the divergence, we have: WM := WM [{w}

According to this definition, we call the world w as the child of world p and it is added
to the world map of our many-world graph. For the many-world graph, we define the
local timeline of a world and a node as ltl

n,w

:

Definition 14 ltl
n,w

= {stateChunk
n,t,w

, 8t 2 TP
n,w

}

108

5.3. Many-world graphs

With TP
n,w

✓ T , which is the ordered subset of timepoints for node n and world w,
i.e., the timepoints where node n in world w has been changed. As TP

n,w

is ordered,
there exists a timepoint s

n,w

, which is the smallest timepoint in TP
n,w

. s
n,w

defined as:
s
n,w

2 TP
n,w

, 8t 2 TP
n,w

, s
n,w

< t. We call this timepoint a divergent timepoint—
i.e., where the world w starts to diverge from its parent p for node n. Following the
shared-past concept between a world and its parent as described in Section 5.3, we
define the global timeline of a world per node as:

Definition 15

tl(n,w) =

⇢
; if w = ;
ltl(n,w) [subset{tl(n, p), t < s

n,w

}, p < w

The global timeline of a world, according to this definition, is the recursive aggregation
of the local timeline of the world w, and the subset of the global timeline of its parent
p, up until the divergent point s

n,w

.

Finally, we extend the operations insert and read as:

Definition 16 Operation insert(stateChunk
n,t,w

, n, t, w) :
(StateChunk ⇥N ⇥ T ⇥W) 7! {;}, as the function that inserts a state chunk in the
local timeline of node n and world w, such as: ltl

n,w

:= ltl
n,w

[{stateChunk
n,t,w

}

Definition 17 Operation read(n, t, w) :
(N⇥T ⇥W) 7! StateChunk, as the function that retrieves a state chunk from a world
w, at time t. It is recursively defined as:

read(n, t, w) =

8
<

:

read
ltln,w(n, t) if (t � s) ^ (ltl

n,w

6= ;)
read(n, t, p) if (t < s) ^ (p < w, p 6= ;)
; Otherwise

The insert operation always operates on the local timeline ltl
n,w

of the requested
node n and world w. For the read operation, if the requested time t is greater or equal
to the divergent point in time s

n,w

, of the requested world w and node n, the read is
resolved on the local timeline ltl

n,w

, as defined in Section 5.3.4. Otherwise, if the time
is less than the divergence timepoint, we recursively resolve on parent p of w, until we
reach the corresponding parent to read from.

Once the world resolution is completed, a many-world graph state chunk can be reduced
to a temporal graph state chunk, which in turn can be reduced to a base graph state
chunk once the timepoint is resolved. Similarly, over all nodes, a many-world graph
can be reduced to a temporal graph, then to a base graph, once the read function
dynamically resolves the world and time.

Figure 5.4 shows an example of a MWG with several worlds, where w0 is the root
world. In this figure, w1 is diverged from w0, w2 from w1, and w3 from w0. Thus, we
have the following partial order: w0 < w1 < w2 and w0 < w3. But no order between

109

Chapter 5. A multi-dimensional graph data model to support what-if analysis

world w0

world w1

s1

world w2

s2time

M
any w

orlds

ti

 scn,ti,w1

 scn,ti,w0
 scn,ti-1,w0

ti-1

ltln,w2

ti+1s0

world w3

s3

 scn,ti+1,w2

ltln,w1

ltln,w0

ltln,w3

Figure 5.4: Many worlds example

w3 and w2 or between w3 and w1; si for i from 0 to 3, represent the divergent timepoint
for world w

i

respectively. An insert operation on the node n and in any of the worlds
w

i

, will always insert in the local timeline ltl
n,wi of the world w

i

. However, a read
operation on the world w2, for instance, according to the shared-past view, will resolve
a state chunk from ltl

n,w2 if t � s2, from ltl
n,w1 if s1 t < s2, from ltl

n,w0 if s0 t < s1,
and ; if t < s0.

It is important to note that this semantic goes beyond copy-on-write [153] strategies.
In fact, a world is never copied, not even if data is modified. Instead, only modified
nodes are copied and transparently loaded.

5.4 MWG implementation

Our MWG concept is supported by an implementation and integration into the Kevoree
Modeling Framework, to provide the support for creating, reading, updating, forking,
and deleting graphs and nodes along time. In particular, the following sections there-
fore dive into the implementation details to clarify the technical choices we made to
outperform the state of the art.

5.4.1 Mapping graph nodes to state chunks

The MWG is a conceptual view of data to work with temporal data and to explore
many di↵erent alternative worlds. Internally, we structure the data of a MWG as an
unbounded set of what we call state chunks. Therefore, as discussed in Section 5.3, we
map the conceptual nodes (and relationships) of a MWG to state chunks. State chunks
are the internal data structures reflecting the MWG and at the same time also used
for storing the MWG data. A state chunk contains, for every attribute of a node, the
name and value of the attribute and, for every outgoing relationship, the name of the
relationship and a list of identifiers of the referenced state chunks. Figure 5.5 depicts,
in form of a concrete example, how nodes are mapped to state chunks in accordance

110

5.4. MWG implementation

friend

Eve

Bob

Bob’s video

owns

t i

friend

watched
Eve

Bob

Bob’s video

owns

t i+1

Key: {
 node: 1,
 time: i,
 world: m
}
Value: {
 name: Bob
 friends: Set[3]
 owns: Set[4]
}

Key: {
 node: 3,
 time: i,
 world: m
}
Value: {
 name: Eve,
 friends: Set[1]
}

Key: {
 node: 4,
 time: i,
 world: m
}
Value: {
 description: Bob’s Video
}

Key: {
 node: 2,
 time: i+2,
 world: n
}
Value: {
 name: Alice,
 friendRequests: Set[1]
}

Key: {
 node: 3,
 time: i+1,
 world: m
}
Value: {
 name: Eve,
 friends: Set[1]
 watched: Set[4]
}

friend

watched

Eve

Bob

owns

friendRequest
Alice

Bob’s video
Corresponding state chunks

Many-world graph evolution

world n

friend

watched
Eve

Bob

Bob’s video

owns

t i+2

world m

parent

time

Figure 5.5: Mapping of nodes to storable state chunks

with the semantic definitions of Section 5.3.2.

As it can be seen for time t
i

(the starting time of the MWG), we map the nodes and
the relationships to three state chunks: one for Eve, one for Bob, and one for Bob’s
video. At time t

i+1, the MWG evolves in the form that a relationship watched from
Eve to Bob’s video is added. Since this evolution only a↵ects Eve, we only create
one additional state chunk for Eve for the corresponding time t

i+1. All other nodes
are unchanged at time t

i+1 and therefore are still valid. Then, at time t
i+2, world

m of the MWG diverges into two worlds, world m and n. While world m remains
unchanged, in world n Bob meets Alice, who sends a friend request to Bob. Only Alice
changes (comes into the game) so that we only create one additional state chunk for
Alice for time t

i+2 and world n. Here, we see the advantage of the MWG and its
semantic: while we are able to represent complex graph data, which evolves in time
and in many worlds, we only need to store a fraction of this data. In this example,
the graph contains semantically 13 di↵erent nodes and 16 relationships (counting each
bidirectional relation as two) and evolves in two di↵erent worlds and three di↵erent
timestamps, but we only have to create five state chunks to represent all of this.
Whenever the MWG is traversed (or data queried in some form) the correct state
chunks are retrieved with the right time and world. The resolution algorithm behind
this is presented in details in Section 5.4.2.3.

State chunks are the units we use for storage—and as we will see in the next Chapter,
also for distribution. They are stored on disk and loaded into main memory while
the MWG is traversed or when nodes are explicitly retrieved. Loading state chunks
can be qualified as lazy, because only attributes and sets of identifiers are loaded.
This theoretically allows to process unbounded MWGs. For persistent storage of state
chunks, we rely on common key/value stores by using the 3-tuple of {node; time;world}

111

Chapter 5. A multi-dimensional graph data model to support what-if analysis

as key and the state chunk as value. We serialise the chunk state into a Base64 encoded
JSON string. Despite being simple, this format has the advantage that state chunks
can be easily distributed over networks (cf. Chapter 6). Moreover, it reduces the
minimal required interface to insert state chunks into and read from a persistent data
store to put and get operations. This allows to use di↵erent storage backends depending
on the requirements of an application: from in-memory key/value stores up to complex
and distributed NoSQL databases.

5.4.2 Indexing and resolving state chunks

In this section, we detail the implementation of the index structures used in KMF and
the state chunk resolution algorithm. We combine two structures for the indexes of
the MWG: time trees and many-world maps.

5.4.2.1 Index time tree (ITT)

As discussed in Section 5.3.3, timepoints are chronologically ordered. This creates
implicit intervals of “validity” (cf. Chapter 4) for nodes in time. Finding the right
“position” in a timeline of a node must be very e�cient. New nodes can be inserted at
any time, i.e., not just after the last one. Besides skip lists [265], ordered trees (e.g.,
binary search trees) are suitable data structures to represent a temporal order, since
they have e�cient random insert and read complexities. If we consider n to be the total
number of modifications of a node, the average insert/read complexity is O(log(n)) and
O(n) in the worst case (inserting new nodes at the end of a timeline). Given the fact
that inserting new nodes at the end of a timeline and reading the latest version of
nodes is the common case, we use red-black trees for the implementation of our time
tree index structure. The self-balancing property of red-black trees avoids that the tree
only grows in depth and improves the worst case of insert/read operations to O(log(n)).
Furthermore, we used a custom Java implementation of red-black trees, using primitive
arrays as a data backend to minimise garbage collection times, as garbage collection
can be a severe bottleneck in graph data stores [311]. Every conceptual node of a
MWG can evolve independently in time. For scalability reasons, we decided to use
one red-black black tree, further called Index Time Tree (ITT), per conceptual node
to represent its timeline. Figure 5.6 depicts how the ITT looks like and evolves for the
node Eve introduced in Figure 5.5.

As it can be seen, at time t
i

, one conceptual version of node Eve exists and, therefore,
the ITT has only one entry. At time t

i+1, Eve changes, a new conceptual version of
this node is created and the ITT is updated accordingly. Then, at time t

i+2, there are
additional changes on the MWG, which do not impact Eve: the ITT of Eve remains
unchanged.

112

5.4. MWG implementation

ti

ti+1

ti

time tree for Eve
at time i

time tree for Eve
at time i+1

ti+1

ti

time tree for Eve
at time i+2

Figure 5.6: Example ITTs for node Eve of Figure 5.5

5.4.2.2 World index maps (WIM)

Since new worlds can diverge from existing worlds at any time and in any number,
the hierarchy of worlds can arbitrarily grow both in depth and width. As it can be
observed in Figure 5.4, the divergent point is therefore not enough to identify the
parent relationship. In our many-world resolution, we use a global hash map, which
stores for every world w the corresponding parent world p from which w is derived:
w ! p. We refer to it as Global World Index Map (GWIM). This allows us to insert
the parent p of a world w, independently of the overall number of worlds, in average in
constant time O(1) and in the worst case in O(l), where l is the total number of worlds.
We also use a custom Java hash map implementation built with primitive arrays to
minimise garbage collector e↵ects.

In addition to the GWIM, we define one local index map, called Local World Index Map
(LWIM), per conceptual node to identify di↵erent versions of the same conceptual node
in di↵erent worlds. In this map, we link every world in which a node exists with its
“local” divergent time, meaning the time when this node was first modified (or created)
in this world and therefore starts to diverge from its parent: w ! t

local divergence

. When
a conceptual node is first modified (or created) in a world, its state chunk is copied
(or created) and the LWIM of the node is updated, i.e., the world in which the node
was modified, is inserted (and mapped to its local divergence time). Both, the GWIM
as well as the LWIM must be recursively accessed for every read operation of a node
(see the semantic definition in Section 5.3.5).

Other than the total number of worlds l, we define another notation: m, as the max-
imum number of hops necessary to reach the root world, i.e., the depth (m l).
Figure 5.7 reports an example of two MWG with the same number of worlds l = 6,
but in the first case we can always reach the root world in m = 1 hop, while in the
second case, we might need m = 4 hops in the worst case (from world w4 to w0).

The recursive world resolution function has a minimum complexity of O(1) in the best
case, where all worlds are directly derived from the root world (shown in Figure 5.7-a).
The worst case complexity is O(m) O(l), like for the stair-shaped case shown in
Figure 5.7-b, where we might to have to go several hops down before actually resolving
the world. In the next section, we show how these index structures are used to resolve
state chunks.

113

Chapter 5. A multi-dimensional graph data model to support what-if analysis

a) l= 6 worlds, m=1 (maximum
hops to reach root)

b) l= 6 worlds, m=4
(maximum hops to reach root)

rootroot w0

w1

w2

w3

w4

w5

w0

w1

w2

w3

w4

w5

timeline

divergent
point

divergent
point

Figure 5.7: Example of di↵erent configurations of the same number of worlds l, but
with a di↵erent m

5.4.2.3 Chunk resolution algorithm

To illustrate the resolution algorithm implemented in KMF, let us consider the example
of Figure 5.5. Assuming we want to resolve node Bob at time t

i+2 in world n. We
first check the LWIM of Bob and see that there is no entry for world n, since Bob
had never been modified in this world. Therefore, we resolve the parent of world n
with the GWIM, which is world m. A glance in the LWIM of Bob reveals that world
m diverged (or started to exist in this case) for Bob at time t

i

. This indicates that
world m is the correct place to lookup state chunks, since we are interested in Bob at
time t

i+2, which is after time t
i

where world m for Bob starts to be valid. World m
is the “closest” where Bob has been actually modified. Otherwise, it would have been
necessary to recursively resolve the parent world of m from the GWIM until we find
the correct world. In a last step, we look at the ITT of Bob to find the “closest” entry
to time t

i+2, which is time t
i

. Finally, this index indicates KMF to resolve the state
chunk for Bob (id 1) with the following parameters: {node 1; time i;world m}. This
state chunk resolution is summarised in Listing 3.

Listing 3 State chunk resolution

1: procedure resolve(id, t, w)
2: lwim getLWIM(id)
3: s lwim.get(w)
4: if t >= s then
5: itt getITT (id)
6: return itt.get(t, w)
7: else
8: p GWIM.getParent(w)
9: return resolve(id, t, p)

10: end if
11: end procedure

The full resolution algorithm has a complexity of O(1) for insert, and a complexity
of O(1) + O(m) + O(n) O(l) + O(n) for read operations, where l is the number of
worlds, and n number of time points, and m maximum depth of worlds.

114

5.4. MWG implementation

Buffer size

Memory
consumption

{
 …
}

{
 …
}

{
 …
}

Mapping

Many-world graph

Key-Value
Database

Key-Value
Database

load

unload
state chunks

…

Figure 5.8: Graph memory management in KMF

5.4.3 Scaling the processing of graphs

Memory management and transactions or “units of work” are closely related. In our
implementation of KMF, we first need to connect our framework to a database. This
connection, further called unit of work (UoW), marks the beginning of what can be
seen in a broader sense as a long-living transaction. While working with this connection
the state chunks representing the MWG are loaded on-demand into main memory. All
modifications of the MWG are therefore performed in memory. When saving, the
modified (and new) state chunks are written from memory into persistent key/value
stores and the used main memory is cleared. This marks the end of this connection
(unit of work or long-living transaction).

To non-intrusively work with graphs of unlimited sizes, we allow to optionally automate
the handling of UoWs. Therefore, it is possible to define a fixed bu↵er size for UoWs.
Whenever the actual memory consumption is close to exceed the defined bu↵er size
(e.g., reaches 80% of the specified size) the state chunks are automatically stored in
the persistent key/value store and the memory is freed. This, together with the on-
demand loading of state chunks into main memory, allows KMF to non-intrusively work
with MWGs of theoretically unlimited sizes. The automated memory management
mechanisms are depicted in Figure 5.8.

This comes with the drawback that it is hard to isolate or rollback changes made in a
UoW since they could be already (partly) persisted. For this reason, we are working
on the concept of merging a world into another one. This would allow KMF to use the
concept of worlds as isolated transactions. A new UoW could then simply always start
a new temporal world and in case the UoW should be actually saved, the temporal
world could be merged into the world where it diverged from.

5.4.4 Querying and traversing graphs

For querying the MWG, we provide a language which syntax is similar to graph traver-
sal languages, like Gremlin [272]. The novel part is that we can specify the world w

115

Chapter 5. A multi-dimensional graph data model to support what-if analysis

and time t that we want to explore before traversing the graph, e.g., mwg.of(w, t).
Then, when we traverse the graph, state chunks will be always resolved (according to
Algorithm 3) with this world and time. Besides this, our graph traversal language is
rather standard so that we do not detail it here. It should be mentioned that nodes
and attributes are strongly typed and, as mentioned in Section 5.3.3, these types map
directly to the ones of modern object-oriented languages. This allows to provide an
interface for these languages (we currently support Java and TypeScript), which en-
ables to query the MWG directly from a program and return correspondingly typed
objects. All graph traversal operations are performed asynchronously and a scheduler
transparently dispatches each call to the available resources. For future work, we plan
to integrate secondary indexes, which we do not support for the time being.

5.5 Experiments

Our MWG is designed to independently explore di↵erent actions on several nodes in
time and many alternative worlds. The goal of this section is to thoroughly assess
the theoretical complexity of the MWG implementation for time and world resolution
under load and to identify its practical boundaries.

First, the experimental setup is detailed in Section 5.5.1. Then, we evaluate the perfor-
mance of our base graph by comparing it with Neo4j, a state of the art graph database.
In this first benchmark we evaluate only the base graph without time and many worlds.

After this, we benchmark the ITT in Section 5.5.3 by inserting/reading millions of
timepoints for the same node and in the same world. As a reference, we compare our
results to influxDB [39], a state of the art time series database. It is important to
keep in mind that the MWG is able to handle full temporal graph data where every
node and every relationship can independently evolve (cf. Chapter 4), whereas time
series databases are designed for “flat” timestamped values. We chose to compare the
performance of our approach to influxDB for three main reasons: First, as of today,
it is one of the fastest time series databases, which optimise both read and insert
operations with dedicated time indexes, similar to our implementation. Secondly, it
does not include any third party dependencies, thus making a direct comparison more
meaningful. And last but not least, they provide a performance benchmark, which we
use as reference for the comparison.

In Section 5.5.4, we validate the complexity of insert and read operations of our world
index map over 2, 000 nodes for 2 di↵erent worlds. We extend this experiment to a
larger scale in Section 5.5.5, by varying the percentage of modified nodes and number
of nested worlds. In Section 5.5.6 we simulate a what-if scenario from the domain
of evolutionary algorithms, where a small percentage of nodes (mutation rate 3 %)
changes between each generation. We show that our MWG is appropriate for such
applications and can scale to hundreds of thousands of independent worlds. Finally,
we evaluate our implemented solution on a concrete real-world case study from the
smart grid domain in Section 5.5.7, to asses its practical capabilities and limits.

116

5.5. Experiments

5.5.1 Experimental setup

For all experiments, we use the throughputs of insert and read operations as key
performance indicators. We executed each experiment 100 times to assess the repro-
ducibility of our results. Unless stated otherwise, all reported results are the average
of the 100 executions. All experiments have been executed on the high performance
computer (HPC)2 of the University of Luxembourg (Gaia cluster). We used a Dell
FC430 instance with 2 Intel Xeon E5-2680 v3 processors, running at 2.5 GHz clock
speed and 128 GB of RAM. The experiments were executed with Java version 1.8.0 73.
All experiments (except the comparison to influxDB) have been executed in-memory
without persisting results. The rational behind this is that we want to evaluate our
MWG implementation and not the performance of 3rd party key/value stores, which
we use for persisting data. All experiments are available on GitHub3.

5.5.2 Base graph benchmarks

The objective of this experiment is to evaluate the performance of our MWG imple-
mentation as a standard graph storage, neglecting time and many-worlds. Therefore,
this section compares the performance of our implementation to state of the art graph
databases. For this comparison, we use the graph database benchmark [34] provided by
Beis et al., [87]. This benchmark is based on the problem of community detection in
online social networks. It uses the public datasets provided by Stanford Large Network
Dataset Collection [62]. This dataset collection contains sets from “social network and
ground-truth communities” [324], which are samples extracted from Enron, Amazon,
YouTube, and LiveJournal.

The benchmark suite defines several metrics, among which:

• MIW to create the graph database and configure it for massive loading, then
populate it with a particular dataset. The time for the creation of the whole
graph is measured.

• SIW: to create the graph database and populate it with a particular dataset.
Every object insertion (node or edge) is committed directly and the graph is
constructed incrementally. The insertion speed is then measured.

We compare the performance of our MWG implementation to Neo4j, which was the
best performing base graph in [87]. Table 5.1 reports on the results of MIW and SIW,
for both, our MWG implementation and Neo4j, along the di↵erent datasets. For all
benchmarks, MWG outperforms Neo4j by factors ranging from 1.3x to 20x, especially
in the SIW benchmark, due to the advanced caching techniques implemented in MWG,
which allows the MWG to retrieve a node much faster.

2https://hpc.uni.lu
3https://github.com/kevoree-modeling/experiments

117

https://github.com/kevoree-modeling/experiments

Chapter 5. A multi-dimensional graph data model to support what-if analysis

Table 5.1: MIW and SIW benchmark speed in 1000 values/second for both MWG and
Neo4J. Larger numbers mean better results (shown in bold).

MIW SIW

dataset nodes edges Neo4J MWG Neo4J MWG

name (x1000) (x1000) (x1000 val/sec) (x1000 val/sec) (x1000 val/sec) (x1000 val/sec)

Enron 36 367 54.3 162.4 2.1 24.4

Amazon 403 3,387 319.2 433.4 1.0 17.5

YouTube 1,134 2,987 121.0 153.0 0.5 17.3

LiveJournal 3,997 34,681 99.2 314.1 0.3 10.2

Table 5.2: Average insert and read time in thousands of values per second. The
execution is for di↵erent timepoints for the same node and in the same world.

(n) in Insert speed Read speed Insert / Read /

millions (1000 val./s) (1000 vsl./s) log(n) log(n)

1 589.17 605.30 42.6 43.8

2 565.05 564.11 38.9 38.8

4 554.40 544.23 36.4 35.8

8 537.22 528.18 33.8 33.2

16 520.98 516.26 33.2 31.1

32 515.05 485.73 29.8 28.1

64 489.55 458.32 27.2 25.5

128 423.53 400.49 22.7 21.5

256 391.56 378.50 20.2 19.5

5.5.3 Temporal graph benchmarks

The aim of this experiment is to validate the complexity of the ITT (cf. Section 5.4.2.1).
We compare the performance of temporal data management of our approach with
plain time series databases. Therefore, we consider only one world and one node
id and benchmark the throughput of insert and read operations over a varying size
of timepoints, from 1 million to 256 million. Table 5.2 reports the measured results
under progressive load, to check the complexity according to the expected one.

As one can observe, read and insert performance follows an O(log(n)) scale as n in-
creases from 1 million to 256 million. The performance deterioration beyond 32 million
can be explained due to a 31 bit limitation in the hash function of the ITT. This comes
from the fact that our ITT is implemented as a red-black tree backed by primitive Java
arrays. These are limited to 31 bit indexes (1 bit is used for the sign). At these large
numbers, collisions become very recurrent. For instance, for the 256 million case, there
are around 8% of collisions. This compares to less than 0.02% of collisions for 1 million.

118

5.5. Experiments

To address this problem, we plan for future work an o↵-heap memory management im-
plementation (based on Java’s unsafe operations), which would allow us to solve the
limitation of 31 bit indexes for primitive arrays and to use hash functions with more
than 31 bits.

For the comparison with a time series database, influxDB in this case, we use the
influxDB benchmark [38]. It consists of creating 1, 000 nodes (time series), where 1, 000
historical values are inserted in each node on a standard MacBook Pro. The second
test consists of creating 250, 000 nodes, where 1, 000 historical values are inserted in
each, executed on an Amazon EC2 i2.xlarge instance.

The main di↵erence with the experiment presented above is that the ITT of each
node does not grow the same way in terms of complexity as an ITT of 250 million
elements in a single node does. Just for the sake of comparison, we applied the same
benchmarks using the same machine types. We use RocksDB [57] as our key/value
backend. Despite the fact that our MWG is not limited to flat time series, but a full
temporal graph, we are able to outperform influxDB by finishing the MacBook test
in 388 seconds compared to their 428 seconds (10% faster), and by getting an average
speed of 583, 000 values per second on the Amazon instance, compared to their 500, 000
values per second (16% faster). It is important to note that, when all elements are
inserted in the same ITT, the speed drops to 391, 560 inserts per second in average (as
shown in Table 5.2). This is due to the increased complexity of balancing the ITT of
one node. The experiment therefore assess that our implementation is able to manage
full temporal graphs as e�ciently (on a comparable scale) as time series databases are
able to manage flat sequences of timestamped values.

5.5.4 MWG benchmarks of a node

In this experiment, we show the e↵ect on insert and read performance of creating
many worlds from one node. Diverging only one world from the root world is not
enough to measure a noticeable performance di↵erence. Therefore, we created 100
nested parallel worlds from a root world w0. We measure the insert performance for
the worlds w0 and w100. Then we measure, for the root world, the read performance R0

at a shared past timepoint t1 = 5000 < s and R1 at timepoint t2 = 15000 > s (after
the divergence). We repeat the experiments for the same timepoints t1 and t2, but
from the perspective of world w100, to get read performance R2 and R3. The results
are depicted in Figure 5.9, as box plots over 100 executions. From these results, we
can conclude the following points: The insert performance is similar for both worlds.
The read performance for the root world is not a↵ected by the divergence R0 = R1.
The read performance of world w100 depends on the timepoint. It is faster to read
after the divergence point than before it, i.e., R3 > R2. This is due to the recursive
resolution algorithm of our MWG implementation, as explained in Section 5.4.2.2.

In this experiment, we validated that the write and read performance on the many-
world graph are not a↵ected by the creation of several worlds. In particular, we also
showed that the read speed is kept steady, after the divergence for the child worlds.

119

Chapter 5. A multi-dimensional graph data model to support what-if analysis

Figure 5.9: Insert and read performance before and after the divergent timepoint s

5.5.5 MWG benchmarks of a graph

To study the e↵ect of recursive world resolution for the whole graph, we consider the
stair-shaped scenario presented in Figure 5.7-b. In this benchmark, we create a
graph of n = 2000 nodes, each having an initial fixed timeline of 10, 000 timepoints
in the main world. Then, we select a fixed x% amount of these nodes to go through
the process of creating the shape of stairs of m steps across m worlds. In each step,
we modify one timepoint in the corresponding world of the corresponding node. For
this experiment, we vary m from 1 to 5, 000 worlds by steps of 200 and x from 0 to
100% per steps of 10%. This generates 250 di↵erent experiments. We executed each
experiment 100 times and averaged the read performance of the whole graph before the
divergent time, from the perspective of the last world. Figure 5.10 shows the results
in form of a heat map of the average read performance for the di↵erent combinations
of number of worlds and percentage of nodes changed. The brightest area in the figure
(lower left) represent the best performance (low number of worlds or low percentage
of nodes changed in each world). The darkest area (upper right) represent up to 26%
of performance drop (when facing an high percentage of changes and an high number
of worlds).

This benchmark is the worst case for the MWG, since for mth world, a read operation
might potentially require m hops on the World Index Map (WIM), before actually
resolving the correct state (e.g., reading the first inserted node from the perspective
of the last created world), as discussed in Section 5.4.2.2. The performance drop is
linear in O(m) and it is also linear according to the percentage of nodes changed from
one world to another. For less than 20% of changes, the performance drop is hardly
noticeable even at an high number of worlds (lower right). It is important to note
that our solution only stores the modifications for the di↵erent worlds and rely on
the resolution algorithm to infer the past from the previous worlds. Any snapshotting

120

5.5. Experiments

Figure 5.10: Read performance before the divergent timepoint, over several worlds and
several percent of nodes modified

technique, cloning the whole graph of 2, 000 nodes, each including 10, 000 timepoints,
for 5, 000 times would be much costlier to process than our solution. To sum up, we
show in this section that our index structure allows independent evolution of nodes
at scale. The performance decreases linearly with the percent of nodes changed and
according to the maximum number of reached worlds.

5.5.6 Deep what-if simulations

As the motivation of our work is to enable deep what-if simulations, we benchmark
in this section the read performance over a use-case close to the ones we can find in
this domain. We use a setup similar to the previous section: a graph of n = 2, 000
nodes with initially 10, 000 timepoints in the root world. The di↵erence is that we
fixed the percentage of changes between one world to another to x = 3% (similar to a
nominal mutation rate in genetic algorithms of 0.1%–5% [292]). The second di↵erence
is that changes only randomly a↵ect 3% of the nodes for each step. This is unlike
the previous experiment, where the target was to reach a maximum depth of worlds
for the same amount of x% of nodes. We executed this simulation in steps of 1, 000
to 120, 000 generations (120 experiments, each repeated 100 times). The number of
generations is similar to the typical number of generations in genetic algorithms [292].
In each generation, we create a new world from the previous one and randomly modify
3% of the nodes. At the end of each experiment, we note the performance of reading
the whole graph of 1, 000 nodes. Figure 5.11 reports on the results our implementation
of a MWG achieves. In particular, one can observe that the read performance drops
linearly, 28% after 120, 000 generations. This validates the linear complexity of the
world resolution, as presented in Section 5.4.2.2 and the usefulness of our approach for
what-if simulations, when a small percentage of nodes change, even in a huge amount

121

Chapter 5. A multi-dimensional graph data model to support what-if analysis

Figure 5.11: Average read performance over 120, 000 generations with 3 % mutations

of deep nested worlds.

5.5.7 Smart grid case study

In this experiment, we evaluate the our implementation on a real-world smart grid
case study, which we introduced in Section 5.2. In particular, we leverage our MWG
to optimise the electric load in a smart grid. Therefore, we build profiles for the con-
sumption behaviour of customers. Based on the predicted consumption, we simulate
di↵erent hypothetical what-if scenarios for di↵erent topologies, compute the expected
electric load in cables, and derive the one with the most balanced load in all cables.
This allows to anticipate which topology is likely to be the best for the upcoming days.

For this experiment, we use an in-memory configuration, without a backend storage,
because we do not need to persist all the di↵erent alternatives. We use the publicly
available smart meter data from households in London [60]. As the dataset from our
partner Creos Luxembourg S.A. is confidential, we use this publicly available dataset
for the sake of reproducibility. The grid topology used in our experiments is based
on the characteristics of the Luxembourg smart grid deployment [173]. We consider
5, 000 households connected to the smart grid, considering 4, 000 consumption reports
per customer. This leads to 20, 000, 000 values used to learn the profiles. As described
in [173] around 100 customers are connected to one transformer substation. We sim-
ulate 50 power substations for our experiments and we suppose that every household
can be connected to every power substation. This is a simplification of the problem,
since which household can be connected to which power substation depends on the un-
derlaying physical properties of the grid, which we neglect in the following experiment.

Figure 5.12 reports on the simulation results over 500, 000 worlds, where in each world

122

5.5. Experiments

Figure 5.12: Performance of load calculation in a what-if scenario for the smart grid
case study

we mutate 3% of the power substations connections to smart meters. We plot the
time spent (in ms) on the load calculations and world creation (fork time) per world.
As depicted in Figure 5.12, both curves are quite constant, with some peaks due to
garbage collection. Based on Figure 5.12, we can conclude that our proposed MWG is
scalable and can apply to large-scale systems, such as the smart grid.

5.5.8 Discussion and perspectives

Beyond the specific case of smart grids we described in this chapter, we believe that
MWGs can find applications in a large diversity of application domains, including social
networks [198], digital marketing, smart cities, healthcare, sales, and biology [167]. For
example, in the case of smart cities, a MWG can store and learn the mobility models of
citizens and then explore the impact of closing/opening roads on the tra�c. Another
domain of application for such what-if analysis is weather forecasting. As weather
forecasts are built on complex models, anticipating the impacts of certain e↵ects (e.g.,
air pollution) requires to simulate what would happen in such cases, based on complex
simulation models. Additionally, in the domain of software engineering, MWGs can
be used to trace the evolution of mobile apps [180] and thus identify the sequence of
refactoring actions to be performed in order to improve the software quality. MWGs
can also be used to monitor the execution of deployed software and explore future
states, thus predicting the impact of changing parameters or executing specific actions.

Aside of potential applications of this approach, our perspectives also include the
extension of MWGs to consider di↵erent laws of evolution for the stored graphs, thus
going beyond the application of machine learning [179]. We are also looking at the
integration of our solution with existing graph processing systems, like Giraph [5].
Finally, beyond the support of what-If analysis, the coverage of alternative prescriptive
analytics based on MWG is another research direction we are aiming for.

123

Chapter 5. A multi-dimensional graph data model to support what-if analysis

5.6 Conclusion

We proposed a novel graph data model, called many-world graph, which allows to
e�ciently explore a large number of independent actions—both in time and many
worlds—even on a massive amount of data. We validated that our MWG implemen-
tation follows the theoretical time complexity of O(log(n)) for the temporal resolution
and O(m) for the world resolution, where m is the maximum number of nested worlds.
Our experimental evaluation showed that even when used as a base graph—without
time and many-worlds—our MWG implementation outperforms a state of the art graph
database, Neo4j, for both mass and single inserts. A direct comparison with a state of
the art time series database, influxDB, showed that although the MWG is not just a
simple time series, but a fully temporal graph, the temporal resolution performance is
comparable or in some cases even faster than time series databases. The experimental
validation showed that the MWG is very well suited for what-if analysis, especially
when only a small percentage of nodes changes. Regarding the support for prescrip-
tive analytics, we showed that the MWG implementation is able to handle e�ciently
hundreds of millions of nodes, timepoints, and hundreds of thousands of independent
worlds.

124

Part III

Reasoning over distributed data
and combining domain knowledge

with machine learning

6
A peer-to-peer distribution and stream

processing model

The models@run.time paradigm promotes the use of models during the execution of
cyber-physical systems to represent their context and to reason about their runtime be-
haviour. In the previous chapters, we introduced a scalable multi-dimensional graph
data model that can cope with the complexity and the diversity of representing and
exploring many di↵erent alternatives, combined with temporal data. However, the re-
cent trend towards highly interconnected cyber-physical systems with distributed control
and decision-making abilities makes it necessary to e�ciently reason over distributed
data. Coping at the same time with the large-scale, distributed, and constantly chang-
ing nature of these systems constitutes a major challenge for analytic processes and
their underlying data models. This chapter presents a peer-to-peer distribution mech-
anism for the data model introduced in the previous chapters. A stream processing
model on top of this enables to e�ciently reason over distributed and frequently chang-
ing data. Reasoning over distributed data becomes more and more crucial, given the
trend towards highly interconnected cyber-physical systems with distributed control and
decision-making abilities, such as smart grids.

This chapter is based on the work that has been presented in the following paper:

• Thomas Hartmann, Assaad Moawad, François Fouquet, Grégory Nain, Jacques Klein,
and Yves Le Traon. Stream my models: Reactive peer-to-peer distributed mod-
els@run.time. In 18th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September
30 - October 2, 2015, pages 80–89, 2015

Contents
6.1 Introduction . 128

6.2 Reactive distributed models@run.time 129

6.3 Evaluation . 136

6.4 Discussion: distribution and asynchronicity 140

6.5 Conclusion . 141

127

Chapter 6. A peer-to-peer distribution and stream processing model

6.1 Introduction

Over the past few years the models@run.time paradigm has proven the potential of
models to be used not only at design-time but also at runtime to represent the context
of cyber-physical systems, to monitor their runtime behaviour and reason about it,
and to react to state changes [96], [88]. Reasoning on the state of a cyber-physical
system is a complex task, since it relies on the aggregation and processing of various
constantly evolving data such as sensor values. As detailed in Chapter 4 and Chap-
ter 5, this requires scalable data models that can cope with the complexity and the
diversity of representing and exploring many di↵erent alternatives, combined with tem-
poral data. Therefore, we introduced a scalable multi-dimensional graph data model
(cf. Chapter 4 and Chapter 5)—to represent the context of CPSs—that can cope
with the complexity and the diversity of representing and exploring many di↵erent
alternatives, combined with temporal data. However, the recent trend towards highly
interconnected cyber-physical systems with distributed control and decision-making
abilities makes it necessary to e�ciently reason over distributed data.

To fulfil their tasks, these systems typically need to share context and state infor-
mation between computational nodes. Unlike in the previous chapter, where a node
denoted a node in the context of a graph data model, in this chapter a node refers to a
computational node, i.e., any computer system reading, writing, or processing data in
the context of a cyber-physical system. Given the fact that our approach promotes the
use of runtime data models to represent the state and context information of CPSs,
the runtime models of distributed CPSs must also be distributed. Moreover, as shown
in the previous chapters, runtime models of complex CPSs can get very large and
the underlying data can change very frequently. This makes it di�cult to share this
information e�ciently.

Let us consider the smart grid case study as a concrete example. Smart grids are char-
acterised as very complex and highly distributed CPSs [303], where various sensor data
and information from the electric topology must be aggregated and analysed. To sup-
port reasoning and decision-making processes, we use the smart grid model presented
in Section 1.2.2. The state of the smart grid, i.e., its runtime model, is continuously
updated with a high frequency from various sensor measurements (like consumption
or quality of power supply) and other internal or external events (e.g., overload warn-
ings). In reaction to these state changes, di↵erent actions can be triggered. However,
reasoning and decision-making processes are not centralised but distributed over smart
meters, data concentrators, and a central system [142], making it necessary to share
context information between these nodes. The fact that runtime models of smart grids,
depending on the size of a city or country, can reach millions of elements and thousands
of distributed nodes, challenges the e�ciency of sharing context information.

These challenges are not specific to the smart grid but also arise in many other large-
scale, distributed cyber-physical systems, where state and context information change
frequently. For example, advanced automotive systems, process control, environmental
control, avionics, and medical systems [221].

Despite the fact that models@run.time enable the abstraction of such complex sys-

128

6.2. Reactive distributed models@run.time

tems during runtime, to the best of our knowledge, there is no approach tackling the i)
large-scale, ii) distributed, and iii) constantly changing nature of these systems
at the same time [149], [301]. This chapter introduces a distributed models@run.time
approach combining ideas from asynchronous, reactive programming, peer-to-peer dis-
tribution, and large-scale models@run.time. The introduced distribution and stream
processing model allows to distribute our previously proposed multi-dimensional graph
data model (cf. Chapter 4 and Chapter 5) in a peer-to-peer manner and to e�ciently
reason over distributed, frequently changing data.

First of all, since models@run.time are continuously updated during the execution
of a system, they cannot be considered as bounded but can change and grow indefi-
nitely [119]. Therefore, we define models as observable streams of model chunks, where
every chunk contains data related to one model element (e.g., a meter). This stream-
based interpretation of models, allows to process models chunk-by-chunk regardless of
their global size. Secondly, we distribute and exchange these model chunks between
computational nodes in a peer-to-peer manner and on-demand to avoid the exchange of
full runtime models. That peer-to-peer distribution can lead to highly scalable imple-
mentations has, for example, also been discussed in [197]. Moreover, the use of a lazy
loading strategy allows to transparently access the complete virtual model from every
node, although chunks are actually distributed across nodes. Thirdly, we leverage ob-
servers, an automatic reloading mechanism of model chunks (in case of changes), and
asynchronous operations to enable a reactive programming style, allowing a system to
dynamically react to context changes.

We integrated our approach into the KMF [147], [151] by entirely rewriting its core to
apply a thoroughly reactive and asynchronous programming model. Evaluated on an
industrial-scale smart grid case study, inspired by the Creos project, we demonstrate
that our approach enables frequently changing, reactive distributed models and can
scale to millions of elements distributed over thousands of nodes, while the distribution
and model access remains fast enough to enable reactive systems.

The remainder of this chapter is as follows. Section 6.2 presents our approach of
reactive distributed models at runtime, which we evaluate in Section 6.3. In Section 6.4
we discuss the need for asynchronicity, to distribute models before we conclude in
Section 6.5.

6.2 Reactive distributed models@run.time

This section details our approach of reactive peer-to-peer distributed models@run.time.
It begins with an overview of our proposition. It then describes how runtime models are
split into chunks to allow to define models of arbitrary size as observable, continuous
streams of chunks. Next, this section details how these chunks together with peer-
to-peer distribution techniques, lazy loading, and automatic chunk reloading are used
to transparently distribute runtime models over computational nodes. Finally, this
section presents how asynchronous programming empowers the reactivity of systems
regarding changes and events.

129

Chapter 6. A peer-to-peer distribution and stream processing model

6.2.1 Overview: distributed models as data stream proxies

The goal of this contribution is to enable i) large-scale, ii) distributed, and iii) con-
stantly changing models@run.time that can scale to millions of elements distributed
over thousands of nodes, while keeping the distribution and model access fast enough
to enable reactive systems. To address the distribution and the context sharing need,
we propose a concept of runtime models, which are virtually complete and spread over
the computational nodes of a distributed CPS. Indeed, every model element can be
accessed and modified from every node, regardless on which nodes the model element
is physically present. To tackle the large-scale aspect, data is never copied a priori.
Instead, runtime models are considered as proxies of data, loading the related data
only on-demand. This is achieved by splitting runtime models into streams of data
chunks, where every chunk corresponds to one model element. These data chunks are
physically distributed in a peer-to-peer manner, using distribution strategies similar
to those used for media sharing. Finally, reactive programming concepts and a fine-
grain (i.e., per model element) load and update strategy are used together, to cope
with the constantly changing nature of model elements. Asynchronous operations al-
low to address the inherent uncertainty of network communications and the reactive
aspect empowers models to dynamically react, by observing changes on the shared
data stream. These characteristics are closely interlinked and we claim that the com-
bination of the three can o↵er distributed and scalable models@run.time, able to deal
with constantly changing model elements. This approach is depicted in Figure 6.1 and
detailed in the rest of this section.

6.2.2 Models@run.time as streams

In a formal way, we denote by N the set of the connected nodes. Every node n
i

2 N ,
consists of a tuple of unique id

i

and an (infinite) sequence of model chunks S
ni .

S
ni = {s

i1, . . . , sij, . . . }. A model chunk corresponds to the state chunks introduced
and formalised in the previous chapters (cf. Chapter 5). Each model chunk s

ij

con-
tains the state of one runtime model element me

k

. As detailed in Chapter 4 and
Chapter 5, considering the dimensions time and alternative worlds, a semantic model
element can in fact map to several state chunks—depending on the time and world.
However, for the sake of simplicity, we neglect the time and world dimensions in the
following explanations. We assume that each state chunk has a unique id [207], which
is automatically generated when a model element is created during runtime. In our
proposed multi-dimensional graph data model (cf. Chapter 5) this unique id is a 3-
tuple of (id, time, world). For reasons of simplification, in this chapter, we generally
speak about a unique id, instead of the 3-tuple. Each model element contains a set of
attributes and a set of relationships to other model elements (cf. Chapter 5).

Our global, distributed runtime model M , is thus the aggregation of all these dis-
tributed model elements. As argued, runtime models of cyber-physical systems need
to be continuously updated to reflect state changes of the underlying systems. This
makes it di�cult to consider them as bounded [119]. Moreover, as we have already
defined a mapping between the model element updates and the model chunks s

ij

, we

130

6.2. Reactive distributed models@run.time

attr1: String
attr2: Double

Class1
attr1: Int
Class2

*0..1

op1: float
op2: void

attr1: String
Class3

attr1: String
attr2: Double
attr3: boolean

Class4

*

1

op1: String
Class5

*

0..1

*0..1

Object-oriented API

updates

class Class1 {
 getAttr1(): String;
 setAttr1(String attr1);
 getAttr2(): Double;
 setAttr2(String attr2);
 getClass2s(): Class2[]
 setClass2s(Class2[]
 class2s); }
class Class2 { ...
}
class Class3 : Class1{ ...
}
...

...
id:3 id:8 id:1 id:6observable

stream
id:1 id:10 id:7

......

Meta model

generate

Runtime model chunks

notification
chunk i

push/read
chunk i

subscribe

subscribe

reads

Da
ta

 s
pa

ce
M

od
el

in
g

sp
ac

e

{
"metaclass": Class1
"attr1": "value1",
"attr2": 10,
"class2s": [2,3,5]
}

key: i

time

Runtime model

manipulate

id:i

id:3

id:6

Figure 6.1: Models as continuous streams of chunks

can consider that M is the virtual aggregation of all the model chunks created on all
the nodes: M =

S
ni2N

S
ni . This is described in Figure 6.1.

Next, we define two functions, serialize and unserialize, for every model element.
The function serialize takes a model element as input and creates a compact JSON
format (similar to BSON) of the runtime model element as output. It contains the
unique id and data of the model element. The id of a model element is immutable,
meaning that it cannot be changed during the whole lifetime of an element. Similarly,
the unserialize function takes a JSON representation of the model element as input
and creates a model element as output. The id of model elements together with the
serialize and unserialize functions, allow us to split models in a number of chunks.

It is important to note that for each point in time a model still consists of a finite
number of chunks. However, considering the fact that a model can continuously, i.e.,
infinitely, evolve over time, a model can be interpreted as an infinite stream of model
chunks, where every model element changed, is added to the stream. Newly created
model elements are considered in the same way as changes. To delete elements we define
an explicit function delete. This function removes an element from all relations where
it is referenced. In addition, all elements contained in the deleted one are recursively
considered as deleted. Streams are naturally ordered by time, e.g., based on a clock
strategy [216].

The definition of a unique id for every model element and the way we split models
into chunks also allow us to leverage a lazy loading [259] strategy for chunks. Indeed,
references are resolved on-demand, meaning that the actual data of model elements are

131

Chapter 6. A peer-to-peer distribution and stream processing model

loaded only when accessed by an explicit request, or by traversing the model graph. For
one-to-one relationships, the chunks only contain the unique id of the target model
element, and a (primitive) array of ids in case of one-to-many relationships. If a
relationship changes, the chunk is updated. An example of a chunk can be seen in the
lower right corner of Figure 6.1. With this strategy, we enable the loading of model
elements on-demand, regardless if they come from a file, local or remote database, or—
as discussed in subsection 6.2.3—if they are distributed in a peer-to-peer manner. Since
model element chunks can potentially be modified by a concurrent (local or remote)
process, we reload model element chunks when they are accessed again. To reduce the
overhead caused by this reloading, we use a caching strategy [199] to decide wether an
element needs to be reloaded or not. This is a trade-o↵ between the freshness of data
and overhead of reloading.

In Section 6.3, we demonstrate that this approach enables to e�ciently process large-
scale models that do not necessarily fit completely into main memory, by allowing
to manipulate models chunk-by-chunk. In addition, this lays the foundation for our
peer-to-peer-based distribution approach.

6.2.3 Distributed models@run.time

This subsection describes the peer-to-peer distribution of data chunks. We first discuss
how we enable distributed runtime models and how we uniquely identify distributed
model elements. Then, we outline the generic content delivery network (CDN) interface
to bridge the gap between the model and data space. Finally, we discuss how we
distribute data chunks using distributed hash tables (DHTs).

The idea of this contribution is to o↵er a virtually complete view of runtime models,
even though they are actually distributed over several nodes. To ensure consistency
between runtime models, they all conform to the same meta model. To avoid the
need of a-priori replication, we use runtime models as data proxies. The task of model
proxies is to decompose all model operations into data chunk operations. This is
the responsibility of a so-called content delivery network, which provides operations
to retrieve (get) and share (put) data chunks. Figure 6.2 depicts the distribution
architecture of our approach. As can be seen in the figure, every computational node
operates on his own instance of the model. Whenever the model is traversed, the
corresponding state chunks are loaded from the stream (or local cache) and vice versa,
when a computational node changes the model, the corresponding state chunks of the
changed elements are pushed to the stream so that other computational nodes can be
notified about the changes.

Since model elements can be created on any node, we first have to refine our id genera-
tion strategy to avoid id overlaps. Consensus algorithms like RAFT [257] or Paxos [136]
are able to o↵er strong consistency guaranties. However, they are not designed for very
high volatility like needed for object creation. Therefore, we define our ids with the
goal to reduce the amount of consensus requests based on a leader approach [257]. We
use 64 bits ids composed of two parts. A 20 bits prefix (most significant bit (MSB))

132

6.2. Reactive distributed models@run.time

Content delivery
network

Meta model

Runtime model

Node 1

Runtime model

Node 2

Runtime model

Node 3

Runtime model

Node i

...
id:3 id:8 id:1 id:iobservable

stream
id:1 id:10 id:3

......

M
od

el
in

g
sp

ac
e

Da
ta

 s
pa

ce

conforms to

conforms to conforms to

conforms to

notification
chunk

push/read
chunk

notification
chunk

push/read
chunk

subscribe

subscribe

Complete virtual
model

OO API

generates

cache cache cache cache

Figure 6.2: Distribution model

MSB LSB

44 bit local identifier20 bit prefix

0 1 0 1 1 1 0 0 ... 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 ... 1

Figure 6.3: Composition of ids for distributed models

is negotiated at the time a node connects to the CDN and is from this point assigned
to the node. The remaining 44 bits are used for locally generated identifiers (least
significant bit (LSB)). This composition of ids is depicted in Figure 6.3.

Prefixes are allocated in a token ring. Besides being a simple implementation for
the prefix negotiation, it also allows to reuse prefixes in case the 20 bit limit is
reached, i.e., in case more than 220 participants are involved. The number of concurrent
connections is limited by the prefix size. With 20 bits prefixes we enable more than
one million connections without a risk of collision. Managing prefixes in a token ring
and reusing them, allows us to use more than one million connections, but with an
increasing number of connections the risk of collisions also increases. By using 44
bit for local identifiers every node can create 244 objects per prefix (about 17, 592
billions). If a node needs to create more objects, another prefix must be requested
from the CDN. As depicted in Figure 6.2, every node relies on a content delivery
network, which is responsible for the data chunk exchange strategy, prefix negotiation,

133

Chapter 6. A peer-to-peer distribution and stream processing model

and network related operations. Di↵erent implementations of the CDN can support
di↵erent distribution scenarios. We now focus on peer-to-peer distribution. Listing 4
illustrates a simplified interface definition of a CDN driver.

Listing 4 CDN interface

interface ModelContentDelveryDriver {
atomicGet(byte[] key , Callback <byte[]> callback);
get(byte[] key , Callback <byte[]> callback);
put(byte[] key , byte[] val , Callback callback);
multicast(long[] nodes ,byte[] val , Callback callback);

}

The method atomicGet is used during the prefix negotiation phase and requires a con-
sensus like algorithm, e.g., RAFT. The methods get and put are the two primary meth-
ods to load, store, and share data chunks. These operations can be implemented using
a multicast dissemination strategy or with more advanced concepts like distributed
hash table algorithms. These algorithms o↵er partitioning of storage to replicate data
over the network. Finally, the method multicast is used for the dissemination of mod-
ification events to all subscribed nodes. All these methods are asynchronous and use
callbacks to inform about their execution results.

A content delivery network driver needs to be instantiated at each node to enable
nodes to collaborate to exchange data chunks. Like the PeerCDN project [321], the
CDN implementation used in our approach relies on the Kademlia [236] distributed
hash table to implement the get and put operations. Since Kademlia scales very well
with the number of participants, we leverage it on top of a WebSocket communication
layer.

Another possibility would be using Gossip-like protocols [133] (especially in case of
deep network topologies) for propagating this information to the participating peers.
Such approach could be, for example, built with GossipKit [304], [225].

6.2.4 Reactive models@run.time

As discussed, a key requirement for models@run.time-based systems is to be able to
quickly react to state changes. In order to ensure reactivity, we make our streams
of model chunks observable [154]. We enable runtime models to subscribe to these
observable streams. Therefore, we define an API that allows to specify which model
elements should be observed. This is usually domain-specific knowledge. Then, when-
ever one of these runtime model elements changes (regardless if due to local or remote
changes) the observer (a runtime model) is notified. Di↵erent runtime models can
observe di↵erent model elements, depending on which changes are important for this
observer. For example, the top of Figure 6.1 shows that the runtime model subscribes
to changes of the two runtime model elements with id = 3 and id = 6. This means
that whenever one of the model elements with id = 3 or id = 6 changes, the observer

134

6.2. Reactive distributed models@run.time

(runtime model) is notified. The information, which runtime model observes which
model elements, is managed by the CDN and stored in a DHT. Listing 5 shows how
the generated API can be used to subscribe for model element changes.

Listing 5 Subscription for model changes

runtimeModel.subscribeAll(false);
runtimeModel.subscribe(3, new Callback () {

/* callback code */ };
);
runtimeModel.subscribe(6, new Callback () {

/* callback code */ };
);
}

There are two important concepts to note. First, explicitly subscribing only to elements
that are important for the computational node hosting this runtime model reduces the
unnecessary propagation of information through the network. Secondly, it can be
specified what should happen, i.e., what code should be executed, when the observed
change occurs. This allows a reactive programming style by declaratively specifying
what should happen if a certain event occurs. As can be seen in Listing 5, the second
parameter of the subscribe method is a callback, meaning that this is a non-blocking
code. Since distributed systems are inherently asynchronous this non-blocking capa-
bility is key [146]. Without the support of non-blocking operations this would mean
that a computation node is blocked until the awaited event occurs. For example, if a
data concentrator intends to read the consumption value of an associated smart meter,
with a blocking operation the concentrator (thread) would be blocked until the value
arrives. Since this can take several seconds the computation time of the concentrator
is wasted and cannot be used for something else in the meantime. Blocking operations
are therefore contradictory to the requirement that models@run.time-based systems
need to be able to quickly react to state changes.

Current standard modelling frameworks, like EMF, are strictly synchronous. This
makes them inappropriate for highly distributed and asynchronous applications. Thus,
we completely rewrote the core of KMF to apply a thoroughly reactive and asyn-
chronous programming model. In fact, every method call in KMF is asynchronous and
therefore non-blocking. This principle is shown on the right side of Figure 6.4.

The left side of Figure 6.4 shows in comparison a synchronous, i.e., blocking operation
call. As can be seen in the figure, non-blocking operation calls do not block the calling
process until the triggered operation is finished. Therefore, the caller process can do
something else in the meantime. As soon as the operation execution finishes, the caller
is notified using a callback. To avoid deeply nested callbacks, which is occasionally
referred to as callback hell [145], every method call in KMF immediately returns a
KDefer object, which is similar to a Future or Promise. These objects enable the
definition of a control flow by specifying that the execution of one KDefer depends on
the result of another KDefer and so on. Listing 6 shows how this looks like.

135

Chapter 6. A peer-to-peer distribution and stream processing model

Process A

Process B

start operation

time t1 t2

Process A

Process B

start operation operation
finished

time t1 t2

Blocking operations Non-blocking operations

operation
finished

Figure 6.4: Blocking and non-blocking operation calls

Listing 6 Asynchronous method calls with KDefer

KDefer filter = runtimeModel.createDefer ();
KDefer defer = class2.getClass2s ();
filter.wait(defer);
filter.setJob(new KJob() { /* filter class2s */ });

Listing 6 filters the results of the getter of class2s. However, the getter is asynchronous
and therefore filtering the result can only start when the getter is executed. This is
realised by defining that the filter has to wait for the results of the getter. It is
important to note that this is not an active wait. Instead, the control flow immediately
continues (non-blocking) and the execution of the filter object is delayed until the
getter finishes. To make it easier to traverse models (without the need to deal with
callbacks) we define a traversal language on top of KMF. The execution of KDefers are
transparently mapped to processes in KMF. A task scheduler system allows to specify
a specific strategy. This allows a map-reduce-like [128] approach to horizontally scale
by parallelising method calls.

6.3 Evaluation

In this section we evaluate our reactive peer-to-peer distributed models@run.time ap-
proach. We show that it can scale to runtime models with millions of elements dis-
tributed over thousands of nodes, while the distribution and model access remain fast
enough to react in near real-time. Our evaluation is based on a smart grid case study,
inspired from a real-world smart grid project. We implemented and integrated our
approach into the Kevoree Modeling Framework.

6.3.1 Evaluation setting

We evaluate our approach in terms of its capability to tackle our three main require-
ments: i) large-scale models, ii) distributed models, and iii) frequently changing mod-
els. For this evaluation we use the smart grid model presented in Section 1.2.2 and vary
it in size and distribution. Experiments are executed on a 2.6 GHz Core i7 CPU with

136

6.3. Evaluation

16GB RAM and SSD, using the Java version of KMF. We use Docker [27] containers
to emulate many di↵erent computational nodes. Every presented value is averaged
from 10 measurements. The evaluation experiments are available on GitHub1.

6.3.2 Scalability for large-scale models

In this benchmark we investigate the scalability characteristics of our approach for
large-scale models. Therefore, we read a number of model elements and analyse how
the performance of this is impacted by the model size. As discussed, complex cyber-
physical systems often need to leverage very large models for their reasoning tasks.
However, many operations performed on shared models only use a small fraction of
the complete model for their reasoning activities. As argued in this chapter, this is
often due to the distributed nature of processing tasks. For instance, in the smart
grid scenario, every concentrator mainly needs the part of the model representing its
district. Therefore, we evaluate the performance of reading a constant number of model
elements (25 elements) and analyse how this is impacted by the model size. In this
experiment, we increase the number of model elements step by step to more than 1.5
million elements, while the model is distributed over two nodes. In the next subsection
we analyse the e↵ect of a highly distributed model. For each model size, we read
25 elements from the model. More specifically, we read consumption values of smart
meters in order to approximate the electric loading. The read operations are performed
on one node, which communicates through a WebSocket communication protocol with
the other node. Since models are composed of object graphs, the performance of read
operations usually di↵ers depending if a model is very deep or wide. For this reason,
we evaluated both scenarios: once we increased the model size in depth and once in
width. Our results are presented in Figure 6.5.

It is important to note that the time to load the model elements is barely a↵ected
by the model size. In fact, scalability for models which are large in width, is nearly
constant, while for models which are large in depth is nearly linear. In this experiment,
we demonstrated that our distributed models@run.time approach allows distributed
read operations in an order of magnitude of milliseconds (between 12 and 28 ms) in
a model with millions of elements. From this experiment, we can conclude that our
concept of model elements, which act as proxies on a stream of data chunks, is suitable
for large-scale models@run.time.

6.3.3 Scalability for large-scale distribution

In this experiment we investigate the ability of our distributed runtime model approach
to collaborate with a huge number of nodes through a shared common context. We
evaluate the capacity of the model to propagate changes to a huge amount of collabo-
rating nodes. This large scale distribution is representative for smart grid architectures.
To conduct the experiments we used five physical computers (Intel Core i7 with 16GB

1https://github.com/kevoree/xp-models15/

137

Chapter 6. A peer-to-peer distribution and stream processing model

Figure 6.5: Scalability of read operations for large-scale models

RAM), connected through a local area network. On each computer we sequentially
started 200 virtual docker nodes using the Decking tool [24] (from 200 up to 1000
nodes) and measured the propagation time of model updates. The 200 docker nodes
per physical computer result from a limit of the Linux Kernel. We simulate changes in
the smart grid topology, which have to be propagated to all nodes. For this, every five
seconds one of the nodes (virtual machines) in the network is updating a value and
propagates this change. Changes are propagated using the described observer tech-
nique. We measure the required time for propagating the changes. Figure 6.6 shows
the results in five scales, represented by the probability spectral density (grouped by
10 ms), reaching from 200 to 1000 collaborating nodes.

The spectral density reflects the probability of each latency depending on the number
of nodes. With this benchmark, we demonstrate that our approach can handle a high
number of collaborating nodes, while the latency remains low. The raw results are
shown in Table 6.1.

6.3.4 Scalability for frequently changing models

CPSs and their associated sensors lead to frequent updates in their associated context
models. Therefore, in this benchmark we evaluate the ability of our distributed data
stream concept to partly update runtime models with a high frequency. In the following
benchmarks we use two nodes, connected through a WebSocket connection. In a first
benchmark, we investigate the highest possible volatility of a model element. On a

138

6.3. Evaluation

Figure 6.6: Spectral probability density of the model update latency

Table 6.1: Measured latency (in ms) to propagate changes

Nodes Nb. Min(ms) Max(ms) Avg(ms)

200 11 188 88.01

400 63 220 128.75

600 87 253 169.52

800 102 289 185.62

1000 141 355 224.66

139

Chapter 6. A peer-to-peer distribution and stream processing model

Figure 6.7: Required time for update operations of di↵erent size

model with 1.5 million elements, we evaluate how frequently a single element can be
updated per second. We evaluated the time to update the value of an attribute on
one node and to send an update notification to the node. We measured the maximal
frequency (based on the average latency) our implementation is able to handle: 998
updates per second for a model with 1.5 million elements.

In a second benchmark we evaluated the ability of our approach to handle changes of
di↵erent size in large models. Therefore, we first updated a small percentage of the
model and then increased the percentage of changes step by step. We measured the
time needed to update the model and inform the other node about the change (context
sharing). Figure 6.7 presents our results.

The results show that our approach approximately scales linear to the percentage of
changes. For changes of a small part of the model (around 10% which is equivalent to
150,000 elements) our approach remains below 10 seconds. Only if 70% or more of the
model changes the update and propagation time exceeds one minute. These results
show that our approach is able to handle a high volatility of model elements while still
o↵ering good latency properties.

6.4 Discussion: distribution and asynchronicity

The border between large-scale data management systems and models is becoming
more and more blurry as models@run.time progressively gains maturity through large-
scale and distribution mechanisms. It is clearly important to evaluate the limits and
the potential reuse of each domain. In this context, for example, Gwendal et al., [124]

140

6.5. Conclusion

present a framework to handle complex queries on large models by translating object
constraint language (OCL) queries to Tinkerpop Gremlin. Despite the feasibility of
mapping models@run.time into distributed databases, which takes care of data repli-
cation, it quickly leads to many limitations in practice. Indeed, to mimic synchronous
calls, heavy and costly distributed algorithms have to be involved, such as consensus
or RAFT. However, because every communication can fail, the uncertainty is at the
heart of the distribution. Instead of hiding it, most of nowadays software stacks ex-
ploit explicit asynchronous programming to scale their distributed computations. In
this trend we can mention the well-known asynchronous JavaScript and XML (AJAX),
the API of NodeJS server, or distributed P2P communication, which are by default
asynchronous. Therefore, beyond the ability to distribute in a scalable manner mod-
els@run.time over nodes, our contribution also includes, at its core, an asynchronous
layer in models. We are convinced that this change is inescapable if runtime models
should go beyond the barrier of computer memory in order to exploit the power of
distributed systems. Moreover, asynchronous modelling can pave the way to define
the semantic of partial and large-scale models. Benelallam et al., [90] also identify
the e�cient processing of very large models as one key requirement for the adoption of
MDE in industrial contexts. The presented techniques can also be useful in the context
of collaborative (meta) modelling, as for example discussed in [189] and in [79].

6.5 Conclusion

Cyber-physical systems, such as smart grids, are becoming more and more complex
and distributed. Despite the fact that models@run.time enable the abstraction of such
complex systems during runtime and to reason about it, the combination of the i)
large-scale, ii) distributed, and iii) constantly changing nature of these systems is a
big challenge. These characteristics are closely interlinked: The increasing complexity
of cyber-physical systems naturally leads to bigger models, which are—due to their
size—also more di�cult to distribute or replicate. Finally, the distributed aspect in-
herently leads to asynchronicity and this in turn requires the ability to dynamically
react to events, instead of actively waiting. This chapter introduced a distributed
models@run.time approach, combining ideas from reactive programming, peer-to-peer
distribution, and large-scale models@run.time. First, since models@run.time are con-
tinuously updated during the execution of a system, they cannot be considered as
bounded but can change and grow indefinitely. We defined models as observable
streams of model chunks. This stream-based interpretation of models allows to pro-
cess models chunk by chunk regardless of their global size. Secondly, we distribute and
exchange these model chunks between computational nodes in a peer-to-peer manner
and on-demand to avoid the necessity to exchange full runtime models. The use of a
lazy loading strategy, allows to transparently access the complete virtual model from
every node, although chunks are actually distributed across nodes. Thirdly, we lever-
age observers, an automatic reloading mechanism of model chunks (in case of changes),
and asynchronous operations to enable a reactive programming style, allowing a sys-
tem to dynamically react to context changes. We integrated our approach into the
Kevoree Modeling Framework and evaluated it on an industrial-scale smart grid case
study. We demonstrated that this approach can enable frequently changing, reactive

141

Chapter 6. A peer-to-peer distribution and stream processing model

distributed models and can scale to millions of elements distributed over thousands of
nodes, while the distribution and model access remains fast enough to enable reactive
systems. The experimental validation showed that our peer-to-peer distribution and
stream processing model for our proposed multi-dimensional graph data model allows
to e�ciently reason over distributed, frequently changing data.

142

7
Weaving machine learning into data

modelling

This chapter presents an approach to weave machine learning directly into data mod-
elling. It suggests to decompose learning into reusable, chainable, and independently
computable micro learning units, which are modelled together with and on the same
level as domain data. This allows to seamlessly integrate domain knowledge and ma-
chine learning into the data model introduced in the previous chapters.

This chapter is based on the work that has been presented in the following papers:

• under submission at International Journal on Software and Systems Modeling (SoSyM):
Thomas Hartmann, Assaad Moawad, Francois Fouquet, and Yves Le Traon. The Next
Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling

• Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Tejeddine
Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric consumption detection
based on multi-profiling using live machine learning. In 2015 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2015, Miami, USA,
November 2-5, 2015

Contents
7.1 Introduction . 144

7.2 Combining learning and domain modelling 147

7.3 Evaluation . 157

7.4 Discussion: meta learning and meta modelling 161

7.5 Conclusion . 161

143

Chapter 7. Weaving machine learning into data modelling

7.1 Introduction

In order to meet future needs, software systems need to become increasingly intelligent.
A prominent example are cyber-physical systems and Internet of Things applications.
Advances in software, embedded systems, sensors, and networking technologies have
led to a new generation of systems with highly integrated computational and physi-
cal capabilities, which nowadays are playing an important role in controlling critical
infrastructures, like the power grid. Such systems face many predictable situations
for which behavioural models can be already defined at design time of the system. In
order to react to critical overload situations, for example, the maximum allowed load
for customers can be restricted. This is called known domain knowledge. In addition,
intelligent systems have to face events that are unpredictable at design time. For in-
stance, the electric consumption of a house depends on the number of persons living
there, their activities, weather conditions, used devices, and so forth. Although such
behaviour is unpredictable at design time, it is identifiable and a hypothesis about it
can be already formulated and solved later by observing past situations, once data
becomes available. Sutcli↵e et al., [298] suggest to call this known unknown.

To make smart decisions, intelligent systems have to continuously refine
behavioural models that are known at design time with what can be learned
only from live data, to solve known unknowns.

The goal of the contribution behind this chapter is to combine both into a single
data model—more specifically, into the proposed multi-dimensional graph data model
introduced in the previous chapters. This would allow to seamlessly integrate machine
learning into this model, in a way that parts of the model are learned, others are
computed, based on domain knowledge, and some others are measured.

Machine learning algorithms can help to solve unknown behaviours by extracting com-
monalities over massive datasets. Peter Norvig describes machine learning and artifi-
cial intelligence as “getting a computer to do the right thing when you don’t know what
that might be” [251]. Learning algorithms can infer behavioural models based on past
situations, which represent the learned common behaviour. However, in cases where
datasets are composed of independent entities which behave very di↵erently, finding
one coarse-grained common behavioural model can be di�cult or even inappropriate.
This applies particularly for the domain of cyber-physical systems and IoT. For exam-
ple, considering the electrical grid, the consumption of a factory follows a very di↵erent
pattern than the consumption of an apartment. Searching for commonalities between
these entities is not helpful. To sum up, coarse-grained learning alone, which is based
on the “law of large numbers”, can be inaccurate for systems which are composed of
several elements, which behave very di↵erently.

Instead, following a divide and conquer strategy, learning on finer granularities can be
considerably more e�cient for such problems [330], [144]. This is, for example, used
in text, sentiment [205], and code analysis [219], where a segmentation by the domain
of words can help to reduce complexity. Similarly, multi-granular representations [331]
have been applied to solve hierarchical or micro-array-based [135] learning problems.
Aggregating simple learning units [255] has been successfully used to build probabilistic

144

7.1. Introduction

prediction models [114]. In accordance to the pedagogical concept [184], we refer to
small fine-grained learning units as micro learning. We claim that micro learning is
appropriate to solve the various known unknown behavioural models in systems which
are composed of several elements, which behave very diverse and can be significantly
more accurate than coarse-grained learning approaches.

Applying micro learning on systems, such as the electric grid, can potentially lead
to many fine-grained learning units. Furthermore, they must be synchronised and
composed to express more complex behavioural models. Therefore, an appropriate
structure to model learning units and their relationships to domain knowledge is re-
quired. Frameworks like TensorFlow [69], GraphLab [229] or Infer.NET [95] also divide
machine learning tasks into reusable pieces, structured with a model. They propose a
higher level abstraction to model the learning flow itself by structuring various reusable
and generic learning subtasks. While these approaches solve the complexity of com-
plicated learning tasks, they focus only on modelling the learning flow, without any
relation to domain data and its structure. This makes it necessary to express domain
knowledge and data in di↵erent models, using di↵erent languages and tools and leads
to a separation of domain data, knowledge, known unknowns, and associated learning
methods. This requires a complex mapping between these concepts for every micro
learning unit. A similar conclusion has been drawn by Vierhauser et al., [313] for
monitoring system of systems.

To address this complexity, in this chapter we propose to weave micro
machine learning seamlessly into data modelling.

Specifically, our approach aims at:

• Decomposing and structuring complex learning tasks with reusable, chainable,
and independently computable micro learning units to achieve a higher accuracy
compared to coarse-grained learning.

• Seamlessly integrating behavioural models, which are known at design time, be-
havioural models that need to be learned at runtime, and domain models in a
single model, expressed with one modeling language using the same modeling
concepts.

• Automating the mapping between the mathematical representation, expected by
a specific machine learning algorithm, and the domain representation [95] and
independently updating micro learning units to be fast enough to be used for live
learning.

We take advantage of the modelled relationships between domain data and behavioural
models (learned or known at design time), which implicitly define a fine-grained map-
ping of learning units and domain data.

Let us consider a concrete use case. In order to be able to detect anomalies and predict
potential problems, like electric overload, before they actually happen, various data
collected in a smart grid, e.g., consumption data, must be monitored and profiled.

145

Chapter 7. Weaving machine learning into data modelling

The important smart grid entities for the context of this chapter are smart meters and
concentrators (cf. Section 1.2.2).

For various tasks, like electric load prediction or detection of suspicious consumption
values, customers’ consumption data need to be profiled independently and in real
time. This is challenging due to performance requirements but also due to the large
number of profiles, which need to be synchronised for every new value. To model
such scenarios, we need to express a relation from a machine learning profiler to the
consumption of a customer. Since the connections from smart meters to concentrators
vary over time, a concentrator profiler depends on the profiles of the currently con-
nected meters. A coarse-grained profiler at the concentrator level will not take into
account the connection changes at real-time and their implications in predicting the
electric load. Coarse-grained profiling alone can be very inaccurate in such cases.

Another example where micro learning and composing complex learning from smaller
units can be significantly more accurate than coarse-grained learning are recommender
systems. These can be composed from one micro learning unit per customer and one
micro learning per product. Again, using only coarse-grained profiles for customers
and products can be inaccurate. In case of recommender systems, micro learning can
even be combined with coarse-grained learning by taking in addition to the individual
profiles of customers and products also the coarse-grained profiles of every purchase
into account.

The bottom line is that micro learning units and combining them to larger learning
tasks is especially useful for systems which are composed of multiple independent
entities which behave very di↵erently. CPSs and IoT systems are domains where these
characteristics apply specifically.

We evaluate our approach on the smart grid case study and show that:

• Micro machine learning for such scenarios can be more accurate than coarse-
grained learning.

• The performance is fast enough to be used for live learning.

We implemented and integrated our approach into the open-source modelling frame-
work KMF, which was specifically designed for the requirements of CPSs and IoT.
More specifically, we integrated this approach into the multi-dimensional graph data
model, proposed in this thesis (cf. Chapter 4 and Chapter 5), which is the core data
structure underlying KMF.

The remainder of this chapter is as follows. Section 7.2 presents our model-based micro
machine learning approach. We discuss the meta model definition used in our approach
and present a modelling language to seamlessly model machine learning and domain
data. In Section 7.3 we evaluate our approach on a smart grid case study, followed by
a discussion in Section 7.4. A conclusion is presented in Section 7.5.

146

7.2. Combining learning and domain modelling

7.2 Combining learning and domain modelling

In this section we first discuss the objectives of our approach. Then, we present the
meta model definition (meta meta model) which we use for the implementation of our
approach and detail what exactly micro learning units are. Next, we present the syntax
and semantic of our modelling language and show concrete examples of its usage. This
section ends with presenting important implementation details.

7.2.1 Objectives

In order to weave micro machine learning into domain modelling we need to extend
modelling languages to model learned attributes and relations and “default” ones seam-
lessly together. It requires modelling languages to allow to specify in a fine-grained way,
what should be learned, how (algorithm, parameters) something should be learned,
and from what (attributes, relations, learned attributes, learned relations) something
should be learned. To be appropriate for live learning, this fine-grained learning units
need to be independently computable and updatable.

We use a meta meta model to define this weaving. A meta meta model specifies
the concepts which can be expressed in a concrete meta model, i.e., it specifies what
can be expressed in meta models conforming to it. This allows domain modes to
express learning problems. Based on this, we can define a concrete modelling language,
providing the necessary constructs to weave machine learning into domain modelling.

7.2.2 Meta meta model

We first specify the meta model definition (meta meta model) underlying our approach.
This definition, shown in Figure 7.1, is inspired by MOF/EMOF and extended with
concepts to express machine learning directly in the domain modelling language. Sec-
tion 7.2.4 describes the modelling language we built around this meta meta model and
defines the formal semantic and syntax of the language. Elements related to machine
learning are depicted in the figure in light grey. We focus on these elements since
other parts comply with standard meta model definitions, like EMOF or MOF. As
can be seen in the figure, we define meta models consisting of an arbitrary number of
meta classes and enums. Meta classes in turn have an arbitrary number of properties.
Properties are attributes, relations, or what we call “specified properties”. Specified
properties are either “learned properties” or “derived properties”. Learned properties
are relations or attributes, which will be learned by a specific machine learning algo-
rithm. A concrete learning algorithm can be specified with the specification “using”.
Parameters for the learning algorithm can be defined with the specification “parame-
ter”. The “feature” specification allows to access properties from other meta classes
or enums.

Derived properties are similar to learned properties, however derived properties don’t

147

Chapter 7. Weaving machine learning into data modelling

MetaClass

MetaModel

Enum

Property

Attribute

Relation

LearnedProperty

DerivedProperty

SpecifiedProperty Specification

Using

Parameter

Feature

LearnedAttribute

LearnedRelation

DerivedAttribute

DerivedRelation

**

1 1

*

1

1 *

Figure 7.1: Meta meta model

have a state associated, i.e., they don’t need to be trained but simply compute a value.
The value of a derived attribute is calculated from the values of attributes of other
meta classes. Whereas the value of a learned attribute depends on a state and past
executions, i.e., on learning. As we will see in Section 7.2.6, this is reflected by the
fact that for derived properties we only generate so-called “infer” methods whereas
for learned properties we generate “learn” and “infer” methods.

7.2.3 Micro learning units

The core elements of our approach are micro learning units. As explained in Section 7.1
we use the term “micro learning unit” to refer to small fine-grained learning units.
These units are designed to decompose and structure complex learning tasks with
reusable, chainable, and independently computable elements. Figure 7.2 illustrates a
concrete example of a micro learning unit and set it into relation to the meta and
instance levels. In the top left of the figure we see the definition of a SmartMeter meta
class. Besides two attributes, activeEnergy and reactiveEnergy, one derived prop-
erty named aboveThreshold and one learned property named powerProbabilities

are defined. As will be detailed in Section 7.2.6, specifying the learned property
powerProbabilities results in automatically generating the necessary code for the
mapping between the internal representation of a machine learning algorithm and do-
main models. The machine learning algorithm will be “weaved” inside the meta model
instances, in this case of SmartMeter instances. As illustrated, the micro learning unit

148

7.2. Combining learning and domain modelling

activeEnergy = 53
reactiveEnergy = 17
(learned) powerProbabilities =
(derived) aboveThreshold =

meter_m0:SmartMeter

activeEnergy: Double
reactiveEnergy: Double
learned powerProbabilities {
 using ‘GaussianMixtureModel’

…
}
derived aboveThreshold {

…
}

SmartMeter

m0_powerProbabilities:LearningUnit

m0_powerProbabilities :LearningState

«using››

meta level instance level micro learning unit level

Figure 7.2: Schematic representation of a micro learning unit

is an instance of a learning algorithm, contained in an object and related to a state.
It is also related to the instance of the SmartMeter class, or more specifically to the
learned attribute. In fact, every instance of a SmartMeter class has its own (automati-
cally generated) instance of a micro learning unit. Technically, micro learning units are
realised as special nodes of the multi-dimensional graph data model (cf. Chapter 5).
Like any other node in this data model, micro learning units are therefore mapped to
one or several (taking the time and alternative world dimensions into account) state
chunks.

As can be seen in the figure, machine learning (via learned properties) can be seamlessly
integrated and mixed with domain modelling. Section 7.2.4 presents our proposed
modelling language and details how this can be defined within the concrete syntax
of this language. The resultant ability to seamlessly define relationships from learned
properties to domain properties and to other learned properties—and vice versa from
domain properties to learned properties—enables composition, reusability, and inde-
pendent computability/updates of micro learning units. An additional advantage of
independent micro learning units is that they can be computed in a distributed way.
Basically, every learning unit can be computed on a separate machine. Such distribu-
tion strategy relies on a shared model state, as for example presented in [177]. The
computation can then be triggered in a BSP way [156] over this shared state.

Our approach is built in a way that the same learning models can be used in several
tasks without the need to duplicate it. For example, in the smart metering domain,
the electricity consumption profile of a user can be used to: predict the electrical
load, classify users according to their profile, or to detect suspicious consumption
behaviour. The possibility to compose micro learning units allows a segregation of
learning concerns. In case an application requires a combination of di↵erent machine
learning techniques, it is not necessary to mash traditional algorithms for each step
together. Instead, independent micro learning units can be composed in a divide-and-
conquer manner to solve more complex learning problems. This is shown in more
detail in Section 7.2.5. In addition, the learning algorithm itself is encapsulated and
the mapping between the domain model and the data representation expected by the
respective learning algorithm is automatically generated. In this way, the learning
algorithm can be easily changed without the need to change the interface for the
domain application.

149

Chapter 7. Weaving machine learning into data modelling

The possibility to derive attributes from others, allows to create richer models. In fact,
ensemble methods in the machine learning domain, derive stronger machine learning
models from weaker machine learning models by combining the results of the smaller
units. In our data model, we enable ensemble methods from several learned attributes
(learnt through di↵erent weaker machine learning models) by creating a derived at-
tribute that combines their results.

Even though our approach promotes micro learning, there are nonetheless scenarios
where it is helpful to also learn coarse-grained behaviour, e.g., the consumption profile
of all customers. Therefore, we allow to specify a scope for learned properties. The
default scope is called local and means that the learning unit operates on an per
instance level. For coarse-grained learning we o↵er a global scope, which means that
the learning unit operates on a per class level, i.e., on all instances of the specified
class.

7.2.4 Modelling language

In this section we introduce our modelling language to enable a seamless definition of
domain data, its structure, and associated learning units. This language is inspired by
the state of the art in meta modelling languages (e.g., UML [253], SysML [164], EMF
Ecore [104]). The semantic of the language follows the one of UML class diagrams
extended with learning units. Many modelling languages, like UML, are graphical.
Advantages of graphical modelling languages are usually a flatter learning curve and
better readability compared to textual modelling languages. On the other hand, tex-
tual modelling languages are often faster to work with, especially for experts. Also,
editors and programming environments are easier to develop and less resource hun-
gry for textual languages. A recent study of Ottensooser et al., [258] showed that
complex processes and dependencies are more e�cient to express in a textual syn-
tax than a graphical one. For these reasons we decided to first implement a textual
modelling language. For future work we plan to propose an additional graphical mod-
elling language. The multi-dimensional graph data model (cf. Chapter 5), proposed
in this dissertation, is then generated based on the model definition expressed in this
language.

In the following, we first present the semantic of the language followed by a definition
of its syntax. Then, we illustrate by means of the concrete smart grid use case how
this language can be used to express di↵erent combinations of machine learning and
domain modelling.

7.2.4.1 Semantic

Our modelling language follows the formal descriptive semantic and axioms of UML
class diagrams, as defined in [333]. We first present the necessary formalism of UML
class diagrams and then extend this formalism to include axioms for weaving learned
and derived properties into our language.

150

7.2. Combining learning and domain modelling

Definition 18 Let {C1, C2, ..., Cn

} be the set of concrete meta classes in the meta
model, we have 8x (C1(x) _ C2(x) _ ... _ C

n

(x)) is an axiom, where 8x, 8i, j, (C
i

(x) =
C

j

(x))) C(i = j)

In this definition we state that any object x should be at least (inheritance) an instance
of one of the meta classes defined in the meta model. Additionally, given an object
x all meta classes verifying C(x) should be linked by a relationship of inheritance
following classical UML semantics and as defined in [333]. This inheritance model is
not described here for sake of simplicity and to keep the emphasis on learning aspects.

Definition 19 For each meta attribute att of type T in C, we have: 8x, y C(x) ^
(att(x, y)! T (y)) is an axiom.

In the second definition, we are stating that if x is an instance of a meta class C, which
has a certain meta attribute att of type T , the value y of this meta attribute should
always be of type T .

Definition 20 For each relationship rel from meta class C1 to another meta class C2,
we have:
8x, y (C1(x) ^ rel(x, y))! C2(y) is an axiom.

In this definition, if a meta class C1 has a relationship rel to a meta class C2, and x is
an instance of C1, having a relation rel to y, this implies that y should be an instance
of C2.

Definition 21 For each relationship rel from meta class C1 to C2, if 0e1..e2
0 is its

multiplicity value, we have:
8x C1(x)! (e1 ||y|rel(x, y)|| e2) is an axiom.
Similarly, for each meta attribute att in C1, if 0e1..e2

0 is its multiplicity value, we have:
8x C1(x)! (e1 ||y|att(C1, x) = y|| e2) is an axiom.

In Definition 21, we state that an attribute or a relationship can have minimum and
maximum bounds defined in the meta model, and any instance of the meta class should
have its attributes and relationships respecting these bounds.

Following the same approach, we extend the classical UML definition of meta class,
by adding two new kinds of properties: learned and derived attributes and relations.
In particular, a meta learned attribute learnedatt, in a meta class C, is a typed
attribute of a type T that represents a known unknown in the business domain. It is
learned using a machine learning hypothesis. This hypothesis can be created from a
parametrized machine learning algorithm, its parameters, a set of features extracted
from the business domain, and a past learned state that represents the best fitted
model of the learning algorithm to domain data. A meta derived attribute derivedatt,
is very similar to the learnedatt with the only di↵erence that the deriving algorithm

151

Chapter 7. Weaving machine learning into data modelling

does not depend on a past state but only on extracted features. In other terms, a meta
derived attribute, has a type T , a set of extracted features, a deriving parametrised
algorithm and its parameters. The same definition applies for learned and derived
relations that behave in the same manner than attributes with only a di↵erent result
type (e.g., collection of nodes as output).

A step called feature selection in the meta modelling of C
x

is required in order to
specify the dependencies needed in order to learn learnedatt or derive derivedatt. The
feature selection can be done only over meta attributes reachable within the host meta
class C

x

. We define this reachability operation by the following:

Definition 22 reach : (metaClass⇥metaAtt) 7! boolean
reach(C

x

, a) = att(C
x

, a) _ learnedatt(C
x

, a) _ derivedatt(C
x

, a)
_(9C

y

|rel(C
x

, C
y

) ^ reach(C
y

, a))

In this definition, a meta attribute a is considered as reachable from a meta class C
x

,
either if it is a meta attribute, meta learned attribute, or meta derived attribute within
the meta class C

x

itself, or if C
x

has a relationship to another class C
y

, which contains
a or it can be reachable from there, using recursively another relationship.

Definition 23 Let F be the set of features to extract in order to learn learnedatt in
a meta class C, we have:
8f 2 F, (f ! = learnedatt) ^ reach(C, f) is an axiom.
Similarly, in order to derive derivedatt, we have:
8f 2 F, (f ! = derivedatt) ^ reach(C, f) is an axiom.

In other words, a meta learned or derived attribute can extract their features from
the meta attributes defined within the meta class C (except itself to avoid circular
reasoning) or reachable from its relationships in a recursive way.

Definition 24 To summarize, a meta learned attribute learnedatt has a type T , a
set of feature extractions F , a parameterised learning algorithm alg

p1,...,pn, a set of
parameters p1, ..., pn, and an learned state LS.
Moreover, we have: 8x, y C(x) ^ (learnedatt(x, y)! T (y))
^ y = alg

p1,...,pn(eval(F), LS) is an axiom.

Similarly, a meta derived attribute derivedatt has a type T , a set of feature extractions
F , a parameterised learning algorithm alg

p1,...,pn, a set of parameters p1, ..., pn.
We have: 8x, y C(x) ^ (derivedatt(x, y)! T (y))
^ y = alg

p1,...,pn(eval(F)) is an axiom.

In Definition 24, we present that the meta learned or derived attribute is typed in
the same manner of classical meta attributes (Definition 19), and the type has to
be always respected. By extension, learned and derived relations follow strictly the
same definition than learned and derived attributes and therefore will not be repeated

152

7.2. Combining learning and domain modelling

here. Moreover, the learned attributed is calculated by executing the parameterised
learning algorithm over the extracted features and the learned state. For the derived
attributed, it is calculated by executing the parameterised deriving algorithm over only
the extracted features. Both learned and derived properties are considered as specified
properties, because they require some specifications (features, parameters, algorithm),
in order to be calculated. This is depicted in our meta meta model in Figure 7.1.
Finally, at an instance level, an object state is composed by the state of its classical
attributes, relationships, and the states of each of its learned attributes.

As our model has a temporal dimension, every meta attribute has a time dimen-
sion, and by extension, the learned state has as well a temporal dimension. All meta
attributes, relationships, states, and parameters are replaced by their temporal repre-
sentation (For example: att 7! att(t)). For feature extraction, it is possible to extract
the same attributes but coming from di↵erent points in time as long as the attributes
are reachable.

7.2.4.2 Syntax

The syntax of our textual modelling language is inspired by Emfatic [123] and is an
extension of the language defined in [150]. Listing 7 shows its formal grammar. The
parts in italic show the language extensions.

Listing 7 Grammar of our modelling language

metaModel ::= (class | enum)*
enum ::= ’enum’ ID ’{’ ID (’,’ ID)* ’}’
class ::= ’class’ ID parent? ’{’ property* ’}’
property ::= annot* (’att’ | ’rel’) ID : ID spec?

parent ::= ’extends’ ID (’,’ ID)*
annot ::= (’learned’ | ’derived’ | ’global’)
spec ::= ’{’ (feature | using | param)* ’}’
param ::= ’with’ ID (STRING | NUMBER)
feature ::= ’from’ STRING
using ::= ’using’ STRING

This grammar reflects the classic structure of object-oriented programs. Multiplici-
ties of relationships (indicated by the keyword rel are by default unbounded, i.e.,
too many. Explicit multiplicities can be defined using the with clause, e.g., with

maxBound * or with minBounds 1. Meta models are specified as a list of meta classes
(and enums). Classes, Enums and their Properties are defined similar to Emfatic.
To distinguish static, learned, and derived properties, we introduce annotations for
attribute and relation definitions. In addition to this, a specification block can option-
ally refine the behaviour expected from the corresponding property. A specification
can contain statements to declare the algorithm to use, feature extraction functions,
and meta parameters to configure the used algorithms. Feature extraction statements
are using string literals where a OCL-like notation [49] is used to navigate to reachable
properties.

153

Chapter 7. Weaving machine learning into data modelling

7.2.5 Model learning patterns

Similarly to how modelling methodologies have led to design patterns to solve com-
mon problems, in this subsection we describe patterns to weave machine learning into
models. We describe how our language can be used on the concrete smart grid use case
with di↵erent combinations of machine learning and domain modelling. The section
starts with a simple domain model, then explains di↵erent combinations of domain
data and learning, and ends with a more complex example on how di↵erent learnings
can be composed.

7.2.5.1 Weaving learned attributes into domain classes

Let’s start with a simple example. Listing 8 shows the definition of a class SmartMeter.
It contains two attributes activeEnergy and reactiveEnergy and a relation to a
customer. These are the typical domain attributes, defining a SmartMeter class.

In this class, we define a learned attribute anomaly that automatically detects abnor-
mal behaviour, based on profiling active and reactive energy. To do so, we specify to
use a Gaussian anomaly detection algorithm as learning algorithm. In this example,
the attribute anomaly can be seamlessly accessed from all SmartMeter instances. In
fact, the attribute can be used similar to “normal” ones (i.e., not learned), however, in-
stead of the default getter and setter methods, the generated API will provide a train

and an infer method. This example shows how learned attributes can be seamlessly
woven into domain classes.

Listing 8 Meta model of a smart meter with anomaly detection

class SmartMeter {
att activeEnergy: Double
att reactiveEnergy: Double
rel customer: Customer
learned att anomaly: Boolean {

from "activeEnergy"
from "reactiveEnergy"
using "GaussianAnomalyDetection"

}
}

7.2.5.2 Defining a learning scope for coarse-grained learning in domain
models

Listing 9 shows an example of a power classification problem. In this listing, first
an enumeration ConsumptionType with three categories of consumption types (low,
medium and high) is defined. Then, we extend the class SmartMeter to add a global
classify attribute, which classifies users according to their consumption behaviours.
It learns from activeEnergy, reactiveEnergy, and nbResidents.

154

7.2. Combining learning and domain modelling

This example shows coarse-grained learning, where all instances of a domain class
contribute to one learning unit. It demonstrates that attribute extractions cannot
only happen at the level of attributes of the current instance but also to any reachable
attribute from the relation of the current instance. In this example, the attribute
nbResidents, which is the number of residents within the household of each customer,
is extracted from a concrete Customer instance of a concrete SmartMeter instance.
Moreover it shows how to specify the machine learning hyper-parameters (here the
learning rate and regularization rate) within the learned attribute using the keyword
with.

Listing 9 Meta model of a power classifier

enum ConsumptionType { LOW , MEDIUM , HIGH }

class SmartMeter{
[...]
global learned att classify: ConsumptionType {

from "customer.nbResidents"
from "activeEnergy"
from "reactiveEnergy"
with learningRate 0.001
with regularizationRate 0.003
using "LinearClassifier"

}
}

7.2.5.3 Modelling relations between learning units and domain classes

Listing 10 shows the meta class of a SmartMeterProfiler. In a first step, we define
that such profilers have relationships to SmartMeter instances and vice versa. Then,
we extract several attributes from this relationship. For instance, we get the hour
of the day, the active and reactive energy, and calculate the square value. Attribute
extractions can be any mathematical operations over the attributes that are reachable
from the relationships defined within the class. In this example, the profiler learns
the probabilities of the di↵erent power consumptions, hourly based, using a Gaussian
mixture model algorithm [179].

7.2.5.4 Decomposing complex learning tasks into several micro learning
units

For the last example, we show how to use domain information to derive an advanced
profiler at the concentrator level, using the fine-grained profilers at the smart meters.
First, we define a class Concentrator that contains relations to the connected smart
meters. Then, we define a ConcentratorProfiler with a relation to a Concentrator

and vice versa. Inside this profiler, we derive an attribute powerProbabilities using

155

Chapter 7. Weaving machine learning into data modelling

Listing 10 Meta model of a smart meter profiler

class SmartMeterProfiler {
rel smartMeter: SmartMeter with minBound 1 with maxBound 1
learned att powerProbabilities: Double [] {

from "Hour(smartMeter.time)"
from "smartMeter.activeEnergy ^2"
from "smartMeter.reactiveEnergy ^2"
using "GaussianMixtureModel"

}
}

class SmartMeter {
[...]
rel profile: SmartMeterProfiler

}

the keyword derived and using an aggregation function that combines the proba-
bilities from the fine-grained profiles. This example shows how fine-grained machine
learning units can be combined to larger machine learning units.

Listing 11 Meta model of a concentrator and its profiler

class Concentrator {
rel connectedSmartMeters: SmartMeter
rel profile:ConcentratorProfiler

}

class ConcentratorProfiler {
rel concentrator: Concentrator
derived att powerProbabilities: Double [] {

from concentrator.connectedSmartMeters.profile
using "aggregation"

}
}

7.2.6 Framework implementation details

Our approach is implemented into the Kevoree Modeling Framework and via plug-
ins integrated as a full modelling environment into IntelliJ IDE1. The development
process with KMF follows a classical MDE approach, starting with a meta model
definition. The complete LL grammar of our extended modelling language is available
as open-source2. KMF contains a code generator, based on Apache Velocity [64], to
generate APIs for object-oriented languages. Currently, our generator targets Java
and TypeScript.

1https://www.jetbrains.com/idea/
2https://github.com/kevoree-modeling/dsl

156

7.3. Evaluation

The generated classes can be compared to what is generated by frameworks like EMF.
In the following, we focus on the machine learning extensions. According to what is
defined in the meta model, our code generator “weaves” the concrete machine learning
algorithms into the generated classes and also generates the necessary code to map
from a domain representation (domain objects and types) to the internal mathematical
representation expected by the learning algorithms (double arrays, matrices, etc) and
vice versa. Various machine learning algorithms can be integrated in our framework.
Currently, we implemented the following algorithms:

• Regression: Live linear regression

• Classification: Live decision trees, Naive Bayesian models, Gaussian Bayesian
models

• Clustering : KNN, StreamKM++

• Profiling : Gaussian Mixture Models (Simple & Multinomial)

For every derived property our generator adds an infer method to the generated
class, which contains the code to compute the property according to its meta model
definition. Similar, for every learned property our generator adds an infer to read
the state of the learning unit and a train method to trigger the injected learning
algorithm.

Since KMF targets CPSs and IoT applications it has a strong focus on performance.
The core data structure underlying KMF is the multi-dimensional graph data model
introduced in Chapter 5.

Since relationships between domain classes and micro learning units are explicitly de-
fined, they can be used during runtime to infer for which changes a micro learning unit
needs to be recomputed. This is realised using change listeners and an asynchronous
message bus. As a result, our framework supports fully independent updates of learn-
ing units. Leveraging the underlying multi-dimensional graph data model this can
even be done in a distributed manner.

7.3 Evaluation

In this section we evaluate our approach based on two key performance indicators:
1) can micro machine learning be more accurate than coarse-grained learning and 2)
is the performance of using micro machine learning fast enough to be used for live
learning and thus for live analytics.

7.3.1 Experimental Setup

We evaluate our approach on the smart grid use case. We implemented a prediction
engine for customers’ consumption behaviour using our modelling framework. This

157

Chapter 7. Weaving machine learning into data modelling

engine predicts the consumption behaviour based on live measurements coming from
smart meters. We implemented this evaluation twice, once with a classical coarse-
grained approach and another time with our micro learning based-approach. The goal
is to demonstrate that our micro learning-based approach can be more accurate while
remaining fast enough to be used for live learning.

For our experiments we consider 2 concentrators and 300 smart meters. We use pub-
licly available smart meter data from households in London3. The reason why we use
publicly available data for this experiment, instead of data from our industrial part-
ner Creos Luxembourg S.A., is that this data is confidential what would prohibit to
publish this data for reproducibility. Our experiments are based on 7,131,766 power
records, from where we use 6,389,194 records for training and 742,572 records for test-
ing. The used training period is 15/08/2012 to 21/11/2013 and the testing period from
21/11/2013 to 8/01/2014.

For the first experiment, we use a coarse-grained profiler on the concentrators. All
smart meters send their data regularly to concentrators where the sum of all connected
smart meters is profiled. In a second experiment we use our micro learning-based ap-
proach and use one individual profiler for every smart meter and define an additional
profiler for every concentrator, which learn from the individual profilers of the con-
nected smart meters. As learning algorithm we use in both cases Gaussian mixture
models, with 12 components, profiling the consumption over a 24 hours period, result-
ing in 2-hours resolution (24/12=2). We train the profilers for both cases during the
training period, then we use them in the testing period to estimate/predict the power
consumptions for this period.

We simulate regular reconfigurations of the electric grid, i.e., we change the connections
from smart meters to concentrators. This scenario is inspired by the characteristics of a
typical real-world smart grid topology, as described in [173]. Every hour we randomly
change the connections from smart meters to concentrators. At any given point in
time, each concentrator has between 50 and 200 connected meters.

We performed all experiments on an Intel Core i7 2620M CPU with 16 GB of RAM
and Java version 1.8.0 73. All experiments are available at GitHub4.

7.3.2 Accuracy

First, we compare the coarse-grained profiling to the micro learning approach to predict
the power consumption over the testing set. Figure 7.3 shows the results of this
experiment. In both plots, the blue curve represents the testing dataset, i.e., the real
power consumption that has to be predicted.

The coarse-grained profiler is not a↵ected by the topology changes. In fact, the profiler
at the concentrator level has learned an average consumption that is always replayed
without considering the connected smart meters. This explains the periodic, repetitive

3http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
4https://github.com/kevoree-modeling/experiments

158

7.3. Evaluation

Figure 7.3: Coarse-grained profiling (top) vs micro learning profiling (bottom)

aspect of the prediction curve.

In contrary, the micro learning approach defines a profiler on the concentrator as a
composition of the profilers of all connected smart meters, as shown in the meta model
in Listing 11. In case the topology changes, e.g., a smart meter disconnects, the
concentrator profiler (composed of several smart meter profilers) will no longer rely on
the profiler of the disconnected smart meter. As depicted in Figure 7.3, for the micro
machine learning profiling, the plotted curve is significantly closer to the curve of the
real testing set than the coarse-grained learning; although both uses the same profiling
algorithm: a Gaussian mixture model. For readability reasons we only display the first
12 days of predictions. Prediction curves in case of micro learning are very close (even
hard to distinguish) to the real testing set.

We plot the histogram of the prediction errors for both, coarse-grained and micro
learning in Figure 7.4. It shows the distribution of the prediction error of both cases.
Overall, micro learning leads to an average error of 3,770 wh, while coarse-grained
learning leads to an average error of 6,854 Wh. In other words, the error between the
prediction and real measurement is divided by two. Knowing that the average power
consumption over the whole testing set is 24,702 Wh, we deduce that the micro learning
profiling has an accuracy of 85%, while coarse-grained learning has an accuracy of 72%.
The accuracy is calculated by (1�avgError/avgPower). We can conclude that micro
learning can be significantly more accurate than coarse-grained learning.

A noticeable result is that the same algorithm can lead to a better accuracy when used
at a smaller level and combined with the domain knowledge. Therefore, we argue that
this decision is very important and motivate by itself the reason why we focus this
contribution on o↵ering modelling abstractions for this purpose.

7.3.3 Performance

In terms of performance, Table 7.1 shows the time needed in seconds to load the data,
versus the time needed to perform the live profiling for di↵erent numbers of users and

159

Chapter 7. Weaving machine learning into data modelling

Figure 7.4: Power prediction error histograms

Table 7.1: Loading time and profiling time in seconds. Scalability test over 5000 users
and 150 millions power records

Number of Number of Loading data Profiling

users records time in s. time in s.

10 283,115 4.28 1.36

50 1,763,332 21.94 7.20

100 3,652,549 44.80 14.44

500 17,637,808 213.80 67.12

1000 33,367,665 414.82 128.53

5000 149,505,358 1927.21 564.61

power records. For instance, for 5000 users and their 150 million power records, it
takes 1927 seconds to load and parse the whole dataset from disk (around 32 minutes,
given that the dataset is around 11 gb large). However, only 564 seconds are spent for
profiling (less than 10 minutes).

Another observation that can be deduced from Table 7.1 is that both loading and
training time are linear with the number of records loaded (O(n) complexity). A
considerable performance increase can be achieved by distributing and parallelising
the computation, especially using micro learning, where every profile can be computed
independently. We decided to present results without the usage of a distributed storage
backend (e.g., HBase [10]). This would pollute computation times due to networking
and caching e↵ects. However, our results allow to meet the performance requirements
of case studies like the smart grid. Indeed, during these experiments our modelling
framework ingest more than 60,000 values per seconds on a single computer. This is

160

7.4. Discussion: meta learning and meta modelling

comparable to data processing frameworks like Hadoop [105].

7.4 Discussion: meta learning and meta modelling

Weaving machine learning into domain modelling opens up interesting possibilities in
the intersection of meta learning and meta modelling. Meta learning is about learning
the parameters of the learning class itself and adapting these parameters to the specific
business domain, where the learning is applied to. The following points are considered
as typical meta learning problems:

• Changing the inference algorithm.

• Adding or removing more input attributes.

• Modifying the math expression of an attribute.

• Changing learning parameters (for ex. learning rate).

• Chaining or composing several learning units.

Such changes can be introduced during the execution of the system, reflecting new
domain knowledge, which needs to be injected. Therefore, considering that we model
learning parameters, this makes it necessary to enable meta class changes at runtime.
However, changing learning algorithms or parameters can occur more often than meta
model changes. This opens up the reflection on new research directions about frequent
meta model updates.

We developed our modelling framework for micro learning. Nonetheless, as discussed,
we support fine-grained but also coarse-grained learning. However, our framework—
and approach—is clearly designed for micro learning and is therefore mainly useful
for systems which are composed of several elements which behave di↵erently. Exam-
ples for such systems are CPSs, IoT, and recommender systems. For systems dealing
mainly with large datasets of “flat data”, i.e., unstructured data without complex re-
lationships between, our model-based micro learning approach is less beneficial. Our
approach is mostly beneficial for systems dealing with complex structured and highly
interconnected domain data, which have to continuously refine behavioural models
that are known at design time with what can be learned only from live data to solve
known unknowns.

7.5 Conclusion

Coarse-grained learned behavioural models do not meet the emerging need for combin-
ing and composing learnt behaviours at a fine-grained level, as for instance required for
CPSs and IoT systems, which are composed of several elements which are diverse in

161

Chapter 7. Weaving machine learning into data modelling

their behaviours. In this chapter we proposed an approach to seamlessly integrate mi-
cro machine learning units into domain modelling, expressed in a single type of model,
based on one modelling language. This allows to automate the mapping between the
mathematical representation expected by a specific machine learning algorithm and
the domain representation. We showed that by decomposing and structuring complex
learning tasks with reusable, chainable, and independently computable micro learning
units the accuracy compared to coarse-grained learning can be significantly improved.
We demonstrated that the ability to independently compute and update micro learn-
ing units makes this approach fast enough to be used for live learning and, therefore,
for live analytics. This makes it possible to weave machine learning directly into the
distributed, multi-dimensional graph data model introduced in this dissertation.

162

Part IV

Industrial application and
conclusion

8
Industrial application: electric overload

prediction and warning

This chapter presents an industrial application using the techniques presented in the
previous parts of this dissertation. More specifically, it describes how model-driven live
analytics is applied in order to realise an intelligent near real-time electric overload
prediction and warning system.

This chapter is based on the work that has been presented in the two following papers:

• Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Jacques Klein,
and Yves Le Traon. Near real-time electric load approximation in low voltage cables of
smart grids with models@run.time. In Proceedings of the 31th Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016

• Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Tejeddine
Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric consumption detection
based on multi-profiling using live machine learning. In 2015 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2015, Miami, USA,
November 2-5, 2015

Contents
8.1 Context . 166

8.2 Smart grid meta model . 168

8.3 Electric overload prediction and warning 168

8.4 Electric load approximation 170

8.5 Predicting consumption behaviour 177

8.6 Evaluation . 180

8.7 Conclusion . 185

165

Chapter 8. Industrial application: electric overload prediction and warning

8.1 Context

In this section, we first describe the partnership between Creos and the SnT, Uni-
versity of Luxembourg. Then, we detail the REASON project in which context this
dissertation is conducted in.

8.1.1 The Creos partnership

Creos, a member of the Enovos Group, owns and manages the electricity and nat-
ural gas networks in Luxembourg. Currently, more than 650 people are working at
Creos. The company is responsible for the planning, realisation, extension, main-
tenance, management and breakdown service of the high, medium, and low tension
electricity networks and the high, medium, and low pressure natural gas pipelines it
manages. The Creos networks include some 9,000 kilometres of electricity lines and
approximately 1,900 kilometres of natural gas pipelines. Almost 240,000 customers
are connected to the electricity network and approximately 45,000 customers to the
natural gas network. Creos also provides management and meter reading, processing
of customer consumption data, and billing for network access.

Creos is a member of the Smart Grid Luxembourg 2.0 consortium, which goal is to ex-
plore and develop future energy services in smart grids. Therefore, several technologies
of data transmission (e.g., PLC, fiber, GPRS ...) are tested in various pilot projects
by Creos. The primary objective of the Smart Grid Luxembourg 2.0 consortium is to
set up a technical infrastructure that collects data from smart meters (electricity, gas).
A second objective is to analyse the interaction with users, and a third objective is
to develop an architecture that is compliant with future challenges of the European
energy and water market (clear, integration of renewable energy, electric vehicles, etc.).
This is to initiate a “breeding ground” for innovative services including opportunities
with the potential to create new service companies in Luxembourg.

Alongside technological tests, Creos launched a research project together with the SnT,
University of Luxembourg, to explore and provide ideas how the new information and
communication technologies can provide added value for smart grids. This research
project is where the work behind this PhD thesis is conducted in.

8.1.2 The REASON project

In the context of this partnership, we developed a live monitoring and analytics system,
called REASON. REASON is based on the model-driven live analytics approach
presented in this dissertation. The objective of REASON is to analyse the collected
data in near real-time and to support decision-making processes based on this analysis.
This can help to make the electricity grid able to dynamically react and adapt itself
to evolving contexts. Besides giving recommendations, REASON also provides an
interactive user interface (UI), which visualises the collected, computed, and learned

166

8.1. Context

cables cabinets electric load approximation

Figure 8.1: REASON: a near real-time monitoring and analytics tool for Creos

data. Figure 8.1 shows a screenshot of this UI. As can be seen in the figure, REASON
displays all smart metes, concentrators, the physical, as well as the communication
topology, in form of an interactive geographical map. Since this system is based on the
multi-dimensional graph data model (and its temporal aspects), described in Chapter 4
and Chapter 5 of this thesis, REASON allows to show (and analyse) the state of the
grid at any point in the past. The ability of this data model to represent and explore
many di↵erent actions, allows REASON to simulate hypothetical actions, e.g., to
connect or disconnect certain cables. Due to the fact, that our proposed data model
seamlessly combines machine learning and domain data, for example, the consumption
profile and therefore the expected future consumption of customers can be displayed.
The possibility to distribute our data model over several nodes allows to deploy an
instance of REASON on every data concentrator.

One major feature implemented in REASON is a near real-time electric overload pre-
diction and warning system. The goal is to anticipate the load in cables and to simulate
corrective actions—e.g., topology changes—in order to find suitable counter-reactions,
before the overload actually occurs. In fact, REASON is able to approximate the
load in electrical cables, based on simplified electrical models and learned consump-
tion profiles of customers, and to predict potential overload situations. In addition, it
can simulate di↵erent actions and their e↵ects on the load in order to find appropriate
counter-reactions. This feature is detailed in the following.

The rest of this chapter is structured as follows. First, in Section 8.2 we present the
meta model used in REASON. Then, Section 8.3 introduces the problem of electric
overload risks in electricity cables. Section 8.4 presents how we approximate the electric
load based on simplified electrical formulas and models. In Section 8.5, we detail how
we predict the electric consumption of customers in order to predict the electrical load

167

Chapter 8. Industrial application: electric overload prediction and warning

in cables. We evaluate our near real-time electric overload prediction and warning
system in Section 8.6. Finally, this chapter concludes in Section 8.7.

8.2 Smart grid meta model

In a first step, we defined together with the domain experts from Creos the meta model
used in REASON. This meta model defines the smart grid topology structure, the
essential attributes and relations, and domain knowledge, necessary for the context of
this case study. Listing 12 shows a simplified version of it, defined in our textual meta
modelling language (cf. Chapter 7).

The presented meta model is then used to generate a corresponding model, the multi-
dimensional graph data model (cf. Chapter 5), which is used during runtime. This
model is continuously updated with sensed data and is the foundation of our near
real-time electric overload prediction and warning system.

8.3 Electric overload prediction and warning

The ever-increasing demand for energy and the increasingly complex grid structure,
e.g., due to an integration of renewable energies and distributed micro generations,
entails a high overload risk in electricity networks. This motivates the interest of
Creos—and other electricity grid operators—to predict the electric load in the network
to anticipate overload risks. Therefore, we are working together with Creos on a
feature, built into REASON, to continuously analyses the state of the grid based on
a runtime model, using machine learning techniques, live measurements, and domain
knowledge to derive and predict the electric load in cables in near real-time. This,
combined with the possibility to simulate di↵erent actions and their impacts, allows to
take appropriate counter reactions before the overload actually occurs. For example,
by opening/closing fuses, the physical network can be reconfigured to balance the load
or, in future scenarios, electric vehicles could be forced to delay their charge cycles
or to transfer electricity back to the grid in peak times [165]. Another strategy is to
remotely limit the maximal allowed power consumption for certain customers.

Computing the electric load in cables is challenging and requires complex and com-
putational intensive power flow calculations and up-to-date measurements of electric
consumption. These are usually based on a static and therefore often outdated view
of the physical grid topology. Thus, the electric load in cables is usually only calcu-
lated in case of major topology changes. For this reason, such tools are ill-suited for
near real-time calculations, as needed for our electric overload prediction and warning
system. In Section 8.4 of this chapter, we present how our model-driven live analytics
approach can be used to approximate the load in cables in near real-time.

Anticipating the electric load in cables depends on an accurate prediction of customers

168

8.3. Electric overload prediction and warning

Listing 12 Smart grid meta model used in REASON

abstract class Entity {
att serialNumber: String
att communicationActive: Boolean
att activeEnergyConsumed: Double
att reactiveEnergConsumed: Double
att activeEnergyProduced: Double
att reactiveEnergProduced: Double

rel registeredBy: Entity
rel registeredEntities: Entity
rel location: Location
rel cables: Cable

}

class SmartMeter : Entity {
att maxAllowedPower: Double
att durationToRead: Double
att electricityActive: Boolean
att highPowerCurrentActive: Boolean
att distanceToConcentrator: Double

rel customer: Customer

derived att isRepeater: Boolean {
from "registeredEntities"
using "deriveIsRepeater"

}
}

class Customer {
att name: String

}

class Concentrator: Entity {
}

class Location {
att address: String
att latitude: String
att longitude: String

}

class Cable {
att payload: String
att material: String
att size: Double
att remark: String
att startPoint: Location
att endPoint: Location

rel entities: Entity
}

169

Chapter 8. Industrial application: electric overload prediction and warning

consumption behaviour. Instead of approximating the load in cables based on current
consumption values, the use of predicted values allows to forecast the electric load in
cables. Section 8.5 details how the techniques presented in this dissertation allow to
seamlessly integrate learned consumption profiles into the multi-dimensional domain
data model.

We apply the proposed multi-dimensional graph data model (cf. Chapter 5) to combine
learning customers’ consumption behaviour and approximating the electric load in
cables into a single model. This model is continuously updated with sensed data. On
top of this model we then built our near real-time electric overload prediction and
warning system. By taking the size of cables into account, we can approximate the
maximum capacity of each cable and create alarms if the load is likely to reach (based
on the prediction) a threshold value, e.g., 75% of its capacity. REASON can be used
to simulate di↵erent actions, e.g., changing the topology, to anticipate the impacts of
these actions, and to eventually find a solution to avoid the potential overload. This has
been developed together with Creos for the near real-time electric overload prediction
and warning system and also for technicians to decide wether—and when—it is safe
to disconnect a cable for maintenance reasons.

8.4 Electric load approximation

In this section, we describe how we approximate the electric load in cables and how
we simulate the impacts on the load in case of changes (e.g., cable disconnections,
topology reconfigurations). The objective is to build an electric load monitoring system
as well as a decision support system for technicians. By combining the electric load
approximation with predicted consumption values (detailed in the next section), the
electric load in cables cannot just be approximated for the current time but can also
be predicted.

8.4.1 General considerations

To solve the problem of a dynamic anticipation of the electrical load in the grid under
certain planned/unplanned events, we combine our smart grid model (cf. Section 1.4)
and active data (continuously updated at runtime). Based on this model, we analyse
the state of the grid and apply electrical formulas, based on a simplified electrical
model, in relation with reactive/active aspects that are beyond the scope of common
simulation tools. The simplified electrical formulas are domain knowledge and inte-
grated as such into our multi-dimensional graph data model (cf. Chapter 5). This
enables to consider dynamic changes, (e.g., in the physical grid topology but also in
the measured values, like consumption data). Figure 8.2 shows an overview of our
approach.

In a first step, we derive the current topology from our model-based abstraction of the
grid. The model is continuously updated from the live measurements of the smart grid.

170

8.4. Electric load approximation

Transformer
Substation

Arbitrary Number of
smart meters

C
ab

le

1

i2

i1 iL
1

1) 2)

3) 4)

derive

derive

smart grid topology model electrical grid topology scenario

live measurements +
electrical formulas approximated load

Figure 8.2: From the smart grid model (1) we first infer the electrical topology scenario
(2), then combine it with live measurements (or predictions) and apply the appropriate
electrical formulas (3), to finally derive the load approximation (4)

Then, based on the derived physical topology, we apply simplified electrical formulas
for the load approximation. In a final step, we solve the formulas and calculate the
electric load. In the following we describe these steps in more detail.

The fundamental physical law on which the following calculations are based on is
Kirchho↵’s current law [256]. It says that “the sum of all currents flowing into a node
is equal to the sum of the currents flowing out of this node”, or more formal:

P
n

k=1 Ik = 0, where n is the total number of currents flowing towards or away from
the node.

If we apply this on our topology model, we can derive four basic rules for the electric
load approximation:

1) For every cable we need one current calculation for the ends of the cable, i1
and i2. Since we only have the consumption values of all smart meters and our topol-
ogy model, which specifies—among other things—which smart meter is connected
to which physical cable, all loads of a cable can be summed up as: I

L

=
P

j

i
loadj

(neglecting the active and reactive impact form the cable, e.g., losses, generation).
These loads can be considered as a current flow out of the cable (to the consumer) and
according to Kirchho↵’s current law, we can derive following equation: i1 + i2 = I

L

.
i1 and i2 are the dominating values for the electric load considerations since they
determine the cable loads.

171

Chapter 8. Industrial application: electric overload prediction and warning

2) We can apply Kirchho↵’s current law for all cabinets, meaning that all cur-
rents of cables j connected to a cabinet will sum up:

P
j

i
cabinetj = 0.

3) For a dead end cable the current at one end is 0.

4) For each circle (cables are directly or indirectly connected in a circular way)
the point that is from a physical point of view the nearest to the transformer
substation has to be determined. On this point the two cables that are part of the
circle must carry the same current: i1 = i2.

Those rules allow us to calculate the currents at both ends of every cable, in-
dependently of the grid structure. In any topology with n cables we implicitly have
2 ⇤ n unknowns (current at the start and end of each cable) and we, therefore, need
2⇤n equations to solve the system. Since we have as many equations as unknowns the
system to solve will be a square matrix and have always one solution. For example, if
we consider the three cables in Figure 8.5a, the equation system to solve would look
like the following example:

Each row corresponds to one equation. The columns of the matrix represent for each
cable the loads i1 and i2 for the ends of the cable. This means that the first two
columns belong to cable 1, the next two to cable 2 and so forth.

In order to approximate the electric load of all cables we have to traverse the topology
graph, detect the di↵erent scenarios regarding the above described four rules, and
build and solve the equation system. In the following subsections we describe the
di↵erent scenarios in more detail and show how we derive the necessary equations. We
assume that the smart grid topology in Luxembourg consists of multiple subgraphs
and transformer substations are not interconnected. In special cases, where this is not
true, our load approximation will yield slightly inaccurate results. We can reduce the
complexity of the equation system by deriving one equation system per transformer
substation. This can be parallelised so that all equation systems can be independently
calculated at the same time. By changing the state of fuses and/or cables in our
topology model we can simulate how the electric load in all cables will be e↵ected.

172

8.4. Electric load approximation

Transformer
Substation

Arbitrary Number
of smart meters

C
ab

le
 1

i2

i1

iL1

Figure 8.3: Single cable on a substation

8.4.2 Topology scenarios

In this section we introduce the di↵erent topology scenarios we have to consider in
order to approximate the electric load.

8.4.2.1 Single cable

The first topology scenario we look at is a single cable on a cabinet or transformer
substation. Figure 8.3 shows the corresponding topology excerpt. The arrows on cable
1 indicate the conceptual flow of the loads i1 and i2. The Figure shows an arbitrary
number of smart meters connected to cable 1. The sum of all loads of the smart meters
are indicated by load I

L1 . We are only interested in the load of the low-voltage cable
(cable 1), not in cables connecting meters to the low-voltage cables. We can derive
following equations:

Cable 1:

Dead end of cable 1:

i1 + i2 = iL1
i2 = 0

System to be solved:

1 1
0 1 X

i1
i2

iL1=
0

8.4.2.2 Cabinet connecting several cables

The next scenario is a cabinet connecting several cables. Figure 8.4 illustrates an
excerpt of a corresponding topology, to clarify this scenario. We assume that all fuses
in cabinet 1 are closed, so that cables 1, 2, and 3 are connected. For each cable we
have again two loads for both cable ends. On each cable an arbitrary number of smart
meters is connected, which individual loads are summed up in one load value for each
cable. Cable 2 and 3 have dead ends (no other cable is connected to this cable end).
Therefore, we can derive the equations below:

173

Chapter 8. Industrial application: electric overload prediction and warning

Transformer
Substation

Arbitrary Number
of smart meters

C
ab

le
 1

i2

i1

iL1

Cabinet 1

i3 i4 Arbitrary Number
of smart meters

iL3

i6C
ab

le
 3

i5

Arbitrary Number
of smart meters

iL2
C

ab
le

 2

Figure 8.4: A cabinet connecting several cables

Cable 1: i1 + i2 = iL1
Cable 2: i3 + i5 = iL2
Cable 3: i4 + i6 = iL3
Cabinet 1: i2 + i3 + i4 = 0
DE cable 2: i5 = 0
DE cable 3: i6 = 0

DE: dead end

8.4.2.3 Parallel cables

The most complicated scenario are parallel cables, which can appear in di↵erent types.
First, several cables can start at the same transformer and end at the same cabinet.
Second, parallel cables can appear between two cabinets. This means that several
cables start at the same cabinet and all of them end at the same cabinet. Last but not
least, we have to consider “indirect parallel cables”. These start at the same substation
but not necessarily end immediately at the same cabinet. If a cable ends at a cabinet
and is there connected to another cable, which ends at the cabinet where other cables
starting at the substation ends, they indirectly form a circle. These three scenarios are
sown in Figure 8.5. Figure 8.5a shows parallel cables at a transformer, 8.5b parallel
cables at a cabinet, and 8.5c indirect parallel cables. For 8.5c we can derive following
equations:

174

8.4. Electric load approximation

Cable 1: i1 + i2 = iL1
Cable 2: i3 + i4 = iL2
Cable 3: i5 + i6 = iL3
Cable 4: i7 + i8 = iL4
Cable 5: i9 + i10 = iL5
Cabinet 1: i4 + i5 + i7 = 0
Cabinet 2: i2 + i8 + i9 = 0
DE cable 3: i6 = 0
DE cable 5: i10 = 0
Circle at i1 – i3 = 0
Transformer:

DE: dead end

8.4.3 Considering active and reactive energy

The calculations so far are only valid for purely resistive loads (only active power).
However, in a real grid the current always has a reactive component. To take this
fact into account, we apply complex numbers: i1 = i1active + j ⇤ i1reactive , where j is
the imaginary complex number, with (j2 = �1). To simplify the approximations we
assume that the voltage at each point is equal to 230 V. Since we have the active and
reactive energy from the smart meter measurements (customers’ consumption data),
we can simplify the calculation by taking the active power P and reactive power Q into
account, instead of calculating first the current and divide it into an active and reactive
part: S1 = P1active + j ⇤ Q1reactive where j is the complex number. The principal to
establish the equations stays the same. On the first topology example (see Figure 8.3)
this looks like below:

8.4.4 Deriving the electric load

To approximate the load in cables, we first create all necessary equations. After this
step, we solve the matrix equations and calculate for every cable the components P1,
Q1, P2, and Q2 (the two ends of a cable). With this, it is possible to calculate the
electric load i1 and i2 for every cable:

i1 =
p

P

2
1+Q

2
1p

3⇤230 , i2 =
p

P

2
2+Q

2
2p

3⇤230

In order to simulate the impacts on the electric load if, for example, a cable would be
disconnected, we can simply update the topology model with the disconnected cable

175

Chapter 8. Industrial application: electric overload prediction and warning

Transformer
Substation

Arbitrary Number
of smart meters

C
ab

le
 1

a)

Arbitrary Number
of smart meters

C
ab

le
 2

i3i1

iL1 iL2

Cabinet 1i2 i4

i5

i6

C
ab

le
 3

Arbitrary Number
of smart meters

iL3

b) Transformer
Substation

Arbitrary Number
of smart meters

C
ab

le
 1

i2

i1
iL1

Cabinet 1

i4 i6

i5i3

C
ab

le
 2

C
ab

le
 3

Arbitrary
Number of
smart meters

Arbitrary
Number of
smart meters

iL3iL2

Cabinet 2

i7

i8

Arbitrary Number
of smart meters

iL4

c)

Transformer
Substation

Arbitrary Number
of smart meters

C
ab

le
 1

Arbitrary Number
of smart meters

C
ab

le
 2

i3i1

iL1

iL2

C
ab

le
 4

Arbitrary Number
of smart meters

Cabinet 1

i6i5
Cable 3

Arbitrary
Number of
smart
meters

iL3

iL4

i7 i8

i9

Cabinet 2

i10

Arbitrary Number
of smart meters

iL5

Figure 8.5: Parallel cables: a) at a transformer substation, b) at cabinets, c) indirect
parallel cables

176

8.5. Predicting consumption behaviour

and trigger the load approximation. Therefore, the concerned equations are recreated
and the load in the cables is updated accordingly.

8.4.5 Integration into the smart grid meta model

Finally, we can extend the smart grid meta model definition with two derived proper-
ties: electricLoad and overloadRisk. This is shown in Listing 13.

Listing 13 Smart grid meta model used in REASON

class Cable {
[...]
derived att electricLoad: Double {

using "approximateElectricLoad"
}

derived att overloadRisk: Boolean {
using "deriveOverloadRisk"

}
}

As can be seen in the listing, the electric load is computed in a function approximate-
ElectricLoad. This function is implemented with the described strategy to approximate
the load. The derived overloadRisk attribute is computed in a function deriveOver-
loadRisk. Depending on the material, size, and load of the cable, this function yields
if there is an overload risk.

8.5 Predicting consumption behaviour

The previous section described how the electric load in cables can be approximated,
using our model-driven live analytics approach. In order to provide timely warnings
it is necessary to predict the load in cables in advance. This requires to accurately
predict customers’ consumption behaviour. In this section, we describe how we apply
our approach to learn customers’ consumption behaviour by combining learning and
modelling.

8.5.1 General considerations

As detailed in Chapter 7 of this dissertation, the presented multi-dimensional domain
data model enables to seamlessly integrate machine learning. We leverage this feature
to learn the consumption behaviour of customers. Therefore, we add a profiler to
every smart meter. Whenever the model is updated with a new consumption value,
the profile of the corresponding smart meter is automatically updated. Updates of

177

Chapter 8. Industrial application: electric overload prediction and warning

profiles are computed in live. The following sections detail live learning and Gaussian
mixture models, which are internally used to build the profiles.

8.5.2 Live machine learning

From observing large sequences of data, machine learning and pattern recognition
algorithms can build models that reflect or represent, to a certain degree of accuracy,
the domain or the environment on which they are trying to learn from. In real-world
environments, large sequences of data may not be available in advance, may take too
much time to gather, or they can be very expensive in terms of computation power
to process in a batch mode. For a reactive system, operating in (near) real-time, fast
response times are a crucial requirement. In order to address this, we use live machine
learning algorithms [211] with the following characteristics (cf. Chapter 7):

• The algorithms should be able to create or update the models whenever new
data arrives (on the fly).

• The computational e↵ort needed for a single update should be minimal and
should not depend on the amount of data observed so far.

• The update should only depend on the latest observed value and should not
explicitly require access to old data.

• The generated models should be compact and should not grow significantly with
the number of observed instances.

8.5.3 Gaussian mixture models

In this section, we explore modelling power consumption usage by probability den-
sity functions (PDFs) based on kernel density estimates (KDEs). Particularly, we use
Gaussian mixture models (GMMs), which are known to be a powerful tool in approx-
imating distributions, even when their form is not close to Gaussian [316]. A GMM
is a probabilistic model that assumes that all data points are derived from a mixture
of Gaussian distributions with unknown parameters. Mixture models are basically
generalising k-means clustering.

Definition 25 In a nutshell, A Gaussian mixture model of M components, provides
the following probability distribution function of an event x happening:

p(x) =
P

M

j=1 wj

K
�j(x), with

K
�j(x) = (2⇡�2)�1/2 exp�(x�xj)2/(2�2).

178

8.5. Predicting consumption behaviour

Figure 8.6: Power consumption measures (in blue) and average values (in red)

K
�j(x) is one Gaussian component of the mixture model, with an average of x

j

, a
standard deviation of �

j

and a weight w
j

. These parameters must be learned from the
data on the fly.

We implemented an online learning algorithm, based on [210], that is able to update
the Gaussian mixture model in near real-time. This algorithm is integrated into KMF
and used in our software monitoring and alerting system.

8.5.4 Profiling power consumption

In order to build consumption profiles in near real-time, we feed the measured consump-
tion values from smart meters to our profiler and process them online. In Luxembourg,
each smart meter reports its consumption values every 15 minutes for electricity (and
60 minutes for gas). Figure 8.6 shows an example of measurements from one customer
(one smart meter) over a period of 24 hours.

The measurements were taken on 31 weekdays (Monday to Friday). The x-axis in the
figure represents the time of the day and the y-axis the consumption (active energy
consumed) in Wh. Every blue point in the figure corresponds to one measurement
value. For example, if we take the time 6.00 am, every point along the y-axis belongs
to one measurement for one day at 6.00 am. In red, the figure shows the average for
every time, i.e., the average value over all days at every measured time (15 minute
intervals). Based on these measurements, we can create our consumption profiles for
this customer by feeding these measures to our profiler (in real-time) and processing
them online. For every new value the consumption profile of the customer will be
refined (recalculated). Figure 8.7 shows the profile (the Gaussian mixture model),
constructed for the example of Figure 8.6.

As an example, the power usage of this user is quite predictable at midnight (varying

179

Chapter 8. Industrial application: electric overload prediction and warning

Figure 8.7: Probability distribution function (pdf) of the consumption values from
Figure 8.6 built with live machine learning

between 0 and 200 Wh). This is reflected in the profile by a Gaussian Kernel with
low variance and we are quite confident (with high probability) that the next mid-
night measure will be also between 0-200 Wh. However, if we compare this with the
consumption at noon, where the user consumes between 0 and 1000 Wh, the profiling
has a higher variance, the probability is distributed over a wider range, and thus the
prediction is less accurate. In such situations, having a contextual profiling can help
to significantly increase the accuracy of the prediction. For instance, during weekends
at noon, the consumption may be varying in a less wider range than during weekdays
at noon.

8.5.5 Integration into the smart grid meta model

As described in Chapter 7, we integrate the learning of consumption profiles directly
into the model. This is shown in Listing 14.

This model can now be used in analytic processes to seamlessly predict the electric
load in electricity cables.

8.6 Evaluation

In this section we evaluate our electric overload prediction and warning system. There-
fore, we first detail the experimental setup. Then, we evaluate the performance and
accuracy of the electric load approximation, before we investigate the e�ciency and
accuracy of consumption profiling.

180

8.6. Evaluation

Listing 14 Extended smart grid meta model used in REASON

class SmartMeterProfiler {
[...]
rel smartMeter: SmartMeter [1..1]
learned att powerProbabilities: Double [] {

from "Hour(smartMeter.time)"
from "smartMeter.activeEnergy ^2"
from "smartMeter.reactiveEnergy ^2"
using "GaussianMixtureModel"}

}
}

class SmartMeter {
[...]
rel profile: SmartMeterProfiler

}

8.6.1 Experimental Setup

In order to evaluate our electric overload prediction and warning system, we use the
smart gird meta model, presented in Section 8.2. This model is applied on a smart
grid testbed deployed in Luxembourg. It contains three transformer substations, 218
smart meters, 30 cables, and 27 cabinets.

The number of 10 cables and 100 smart meters per substation is representative for
three phase grids, like the ones in Germany, Switzerland, Austria, or Luxembourg.
Furthermore, cables of di↵erent substations are usually not interconnected. Therefore,
the electric load in cables can be independently approximated for the cables of each
transformer and can be parallelised.

To evaluate the accuracy and performance of the consumption value prediction, we
investigate one cable and 30 connected smart meters. We use in total a number of
631,355 consumption values (of these 30 meters) to train the learning. Since the electric
load in a cable depends on the consumption of all connected meters, we aggregate
their consumption values for the evaluation of the accuracy. Then, we use a test
dataset of 2,778 values (timepoints) to test the accuracy of the prediction. The used
training period is 15/08/2012 to 21/11/2013 and the testing period from 21/11/2013
to 17/01/2014.

We used this model to evaluate our approach in terms of performance and accuracy,
to validate its suitability to be used in a near real-time simulation system for electric
load prediction and warning, in low-voltage cables. We run the experiments on a 2.6
GHz Intel Core i7 with 8 GB of RAM.

181

Chapter 8. Industrial application: electric overload prediction and warning

Scenario Overall Creating Solving

Transformer Substation 1

(103 meters, 12 cables) 191 ms 190 ms (99.95%) 1 ms (0.05%)

Transformer Substation 2

(71 meters, 10 cables) 157 ms 156 ms (99.94%) 1 ms (0.06%)

Transformer Substation 3

(56 meters, 8 cables) 143 ms 142 ms (99.93%) 1 ms (0.07%)

Table 8.1: Performance evaluation

8.6.2 Performance of electric load approximation

To evaluate the performance of electric load approximation, we changed the topology
several times and recalculated the electric load in all cables. We divided the calculation
in two steps: 1) traversing the smart grid graph, finding the topology scenarios and
building the equations, and 2) solving the matrix equation system. For the latter we
use a BLAS library [20]. For each of the three scenarios (every transformer substation),
we randomly changed the topology (cable connections) 100 times and measured the
average times for the recalculation. We neglected I/O operations as far as possible
by caching all data instead of reading it from disk. The results of this evaluation are
shown in Table 8.1. As can be seen, the costly part is the creation of the equations.
This is not a surprise, since our algorithms have to traverse the model graph, detect the
scenarios, resolve the appropriate consumption data (right time and customers), and
derive the equations. We then gradually increased the complexity of the grid topology
(number of cables) in order to evaluate the scalability of our approach and found that
the time to approximate the electric load is about linear. This is shown in Figure 8.8.
Since our approach allows to independently build and solve the equation systems for
every transformer substation, the overall time is determined by the number of cores
(to parallelise) and the most complex subgraph. The recalculation time of less than 2
ms, in average, fulfils the near real-time requirement.

8.6.3 Accuracy of electric load approximation

In order to evaluate the accuracy of our model-based approach, we compared our re-
sults with the results of the power flow calculation tool (DIgSILENT [26]), which is
currently used by Creos. DIgSILENT is a powerful tool for modelling of generation-,
transmission-, distribution- and industrial grids, and the analysis of these grids’ in-
teractions. It includes advanced features like an AC Newton-Raphson method and a
linear DC method. Further, it supports any combination of meshed 1-, 2-, and 3-phase
AC and/or DC systems and takes reactive power limits into consideration. In short,
DIgSILENT uses advanced and di�cult to calculate algorithms, which are based on a

182

8.6. Evaluation

0 5 10 15 20 25 30

0

200

400

Grid complexity (number of cables)

T
im

e
in

m
s

Figure 8.8: Scalability of electric load approximation

deep representation of electrical and physical laws. On the other hand, our proposed
model-based approach is based on comparatively simple and easy to calculate approx-
imations of these laws. For the evaluation, the power flow calculation department
of Creos took a snapshot of the smart grid topology and consumption data, created
manually a static configuration for the power flow calculation tool, and calculated the
exact loadings. We analysed the results for several di↵erent scenarios and cables and
compared it to our approximation approach. For each cable we compared the calcu-
lated values for the active as well as reactive energy, at the beginning and ending of the
cables, and the cable loading. We found that our approximation approach remaining
very accurate with deviations below 5%. The biggest discrepancy we found is 5.77%
and the smallest 0.07%. In average, we got an deviation of only 1.89%. This shows
that our approach is able to dynamically recalculate the electric load in cables in near
real-time while still is very accurate.

8.6.4 E�ciency of electric consumption prediction

The core live learning algorithm GMM to update the profiles of the whole dataset
for 30 customers and 631,355 consumption values takes roughly one second. This is
around 1,670 nanoseconds per consumption value. Considering that the interval of
consumption reading in Luxembourg is 15 minutes, we are able to process around
538,922 consumption readings during one cycle on a single core.

Assessing the fact that the computation is conducted in a single thread on a classical
computer processor (single core on an Intel i7 processor), we can consider that our
approach is fast enough to be used in a live monitoring system. For example, in the case
of Luxembourg, with approximately 550,0001 inhabitants (and much less households),
a standard laptop is su�cient to profile the consumption values of the whole country
in live.

1http://www.luxembourg.public.lu/fr/societe/population/

183

Chapter 8. Industrial application: electric overload prediction and warning

Figure 8.9: Accuracy of electric consumption prediction over time

8.6.5 Accuracy of electric consumption prediction

In order to measure the accuracy of our electric consumption prediction, we compare
our predicted consumption values to actual ones. Therefore, we consider one cable
and 30 connected meters. We compare the sum of the actual consumption values of
the connected meters to the sum of the predicted values. As test dataset we use 2,778
timepoints and compare the actual values to the predicted ones. The results are shown
in Figure 8.9. The actual consumption over the tested time period (of all smart meters
connected to the cable) is 20,211,043 wh and the predicted one is 17,787,342.65. This
corresponds to an error rate of 18.81% or an accuracy of 81,19%.

Even though the presented approach is relatively accurate, building highly accurate
profiles is challenging. This comes especially because electric consumption depends
on the context [86], e.g., geographical area, number of residents, temperature, date
(vacation, weekday, weekend), type of the heating system, habits of inhabitants, etc.
Given the high number of context parameters, it is very di�cult to build reliable pro-
files. For example, a private customer can have a very di↵erent consumption profile
depending on the weather conditions or during vacation compared to working days.
Moreover, context parameters can depend on each other, e.g., the temperature on
a winter Sunday afternoon may have di↵erent influence on the load profile than the
temperature on a summer Monday afternoon. Due to this variability, a single con-
sumption profile per customer, which simply computes an average consumption can be
inaccurate. Therefore, we are working together with Creos on a multi-context profiling
method [179]. Instead of building one profile per customer, we create multiple pro-
filers, one per context and customer. The context, for example, can include features
like: user type (individual, family, industry, commercial), temporal context (season of
the year, month, weekday, holidays), and so forth. We are currently investigating how
this impacts e�ciency and accuracy of the predictions.

184

8.7. Conclusion

8.7 Conclusion

In this chapter, we presented a concrete industrial application of the concepts pro-
posed in this dissertation. More specifically, a near real-time electric overload predic-
tion and warning system has been presented. Such a system is of great interest for
Creos, and other grid providers, to better anticipate the load in increasingly complex
grid structures (e.g., due to the integration of renewable energies). Anticipating the
load in cables is challenging, since it relies on the combination of live measurements
(customers’ consumption values), domain knowledge (electrical formulas to derive the
electric load), learning rules (consumption profiles of customers), and the topology
structure (connections of smart meters and cables). The presented system is build on
top of the multi-dimensional graph data model and the model-driven live analytics
approach introduced in this thesis in order to address these challenges. Therefore, we
defined, together with domain experts of Creos, a smart grid meta model to represent
the grid topology and to define the domain knowledge (in form of electrical formulas)
necessary to approximate the load in cables. The time dimension (cf. Chapter 4) of our
proposed graph data model is exploited to represent topology changes, data measured
at di↵erent frequencies, and learned information. Live learning, i.e., building profiles
of customers’ consumption behaviour, is seamlessly integrated into the data model
and is leveraged by analytic processes in the same way than measured or computed
(based on domain knowledge) values. Last but not least, the ability of the presented
graph data model to represent and explore many di↵erent alternatives (cf. Chapter 5)
allows to simulate di↵erent actions and their impacts. This makes it possible—e.g.,
in case of a predicted overload risk—to automatically explore di↵erent actions, derive
the hypothetical load in cables and, based on this, to suggest an action to avoid a
potential overload before it actually happens. Hence, this makes prescriptive analytics
possible and shows that the presented multi-dimensional graph data model can enable
model-driven live analytics.

More precisely, we have shown that this approach is able to approximate and predict
the load in cables with a high accuracy and is able to simulate the impacts of topology
changes in near real-time. The presented idea, which has been developed in cooperation
with our industrial partner Creos, has been implemented as a monitoring system to
detect potential overloads in cables as well as for technicians to decide wether it is safe
to disconnect a cable for maintenance.

185

9
Conclusion

This chapter concludes the dissertation and presents future research directions.

Contents
9.1 Summary . 188

9.2 Future research directions 190

9.3 Outlook . 193

187

Chapter 9. Conclusion

This chapter is organised as follows. Section 9.1 summarises the contributions of this
dissertation before Section 9.2 discusses potential directions for future work.

9.1 Summary

Recent studies, for example from McKinsey [43], emphasise the tremendous impor-
tance of data analytics by calling it the “next frontier for competition”. Others even
compare the value of data with the value of oil, referring to data as “the new oil” [53].
To turn data into valuable insights or actionable intelligence, we need to process and
“understand” the large amounts of data collected from various sources. Data analytics
has the potential to help us to better understand our businesses, environment, phys-
ical phenomena, bodies, health, and nearly every other aspect of our lives. However,
turning collected data into competitive advantages remains a big challenge.

Most of todays data analytic techniques are processing data in a pipeline-based way:
they first extract the data to be analysed from di↵erent sources,e.g., databases, social
medias, or stream emitters, copy them into some form of usually immutable data struc-
tures, stepwise process it, and then produce an output. By parallelising the processing
steps, e.g., based on the map-reduce programming model [128], these techniques are
able to mine huge amounts of data in comparatively little time and can find all kind
of useful correlations. While this is suitable for tasks like sorting vast amounts of
data, analysing huge log files, or mining social medias for trends (even in near real-
time) it is less suitable for analytics of domains with complicated relationships between
data, where several di↵erent analytic techniques and models need to be combined with
domain knowledge and machine learning in order to refine raw data into deep under-
standing [121]. For such analytics, a pipeline-based approach has severe drawbacks and
easily leads to an ine�cient “blindly store everything and analyse it later” approach,
which is referred to as the “big data pathology” or “big data trap” [190].

Cyber-physical systems and IoT are such domains, where traditional approaches fail to
envision sustainable techniques for analysing data in live in order to support decision-
making processes. For such systems it is crucial to quickly analyse the sensed data
and to draw conclusions out of it. In this context, we identified four main challenges,
which are addressed in this disseration:

• Analysing data in motion

• Exploring hypothetical actions

• Reasoning over distributed data in motion

• Combining domain knowledge and machine learning

This work presented a novel approach, called model-driven live analytics for cyber-
physical systems, which aims at addressing these challenges. The proposed techniques
have been exemplified and evaluated on a smart gird case study.

188

9.1. Summary

In the first part of this dissertation we introduced the context and the challenges we
were facing when analysing data of complex CPSs, like smart grids, in live. Thereafter,
we presented the background and discussed the state of the art in Part II.

The third part focused on analysing data in motion and what-if analysis. Chapter 4
first presented a continuous semantic for temporal data and a corresponding data
model. We showed that this data model is able to represent time as a first-class prop-
erty, crosscutting any model element and any relationship. Besides enabling a seamless
navigation in time and space, we showed that this data model can significantly out-
perform classical solutions for both, required storage and time to analyse this data. In
Chapter 5, we extended this temporal data model, by combining graphs and temporal
data, into a multi-dimensional graph model. This allows intelligent systems to explore
alternative actions in parallel in order to gradually converge towards their goals. We
showed that the proposed graphs are able to handle e�ciently hundreds of millions of
nodes, timepoints, and hundreds of thousands of independent worlds. The concepts be-
hind this multi-dimensional graph data model are the foundations of our model-driven
live analytics approach and the major contribution of this dissertation.

In the fourth part, Chapter 6 discussed how the previously defined data model sup-
ports the distributed, large-scale, and continuously changing nature of complex cyber-
physical systems. More specifically, we presented an approach based on a combina-
tion of ideas from reactive programming, peer-to-peer distribution, and large-scale
models@run.time. This approach enables to define distributed models as observable
streams of chunks that are exchanged between nodes in a peer-to-peer manner. A lazy
loading strategy allows to transparently access the complete virtual data model from
every node, although chunks are actually distributed across computational nodes. We
demonstrated that this approach can enable frequently changing, reactive distributed
models and can scale to millions of elements distributed over thousands of nodes, while
the distribution and model access remains fast enough to enable reactive systems. In
Chapter 7, we proposed to integrate learning directly into domain modelling. We ar-
gued that coarse-grained learned behavioural models do not meet the emerging need
for combining and composing learnt behaviours at a fine-grained level, for instance
for CPSs and IoT systems, which are composed of several elements which are diverse
in their behaviours. Instead, we proposed an approach to seamlessly integrate micro
machine learning units into domain modelling, expressed in a single type of model,
based on one modelling language. We showed that by decomposing and structuring
complex learning tasks with reusable, chainable, and independently computable micro
learning units the accuracy compared to coarse-grained learning can be significantly
improved. We demonstrated that the ability to independently compute and update
micro learning units makes this approach fast enough to be used for live learning.

Finally, Chapter 8 introduced an industrial application of the proposed model-driven
live analytics approach. In this chapter we showed on a concrete real-world use case
how model-driven live analytics can be applied to build a live analytic system, able to
anticipate the load in cables and to simulate corrective actions in order to find suitable
counter reactions before an overload actually occurs.

189

Chapter 9. Conclusion

9.2 Future research directions

This section describes potential future research directions.

9.2.1 Searching and selecting appropriate actions

In this dissertation, we proposed methods to explore many alternative actions in paral-
lel in order to enable intelligent systems to converge towards their goals (cf. Chapter 5).
Every action potentially leads to an alternative state from where a set of other actions
can be applied and so forth. However, the resulting set of possible actions can be
potentially too large to be fully explored, especially given the near real-time require-
ments such systems usually face. Therefore, techniques to reduce the search space are
needed.

Algorithms, like greedy, genetic, evolutionary, and multi-objective evolutionary algo-
rithm (MOEA) are candidates for reducing large search spaces. An interesting future
research direction would be to investigate how such algorithms can be integrated into
the proposed model-driven live analytics approach. One of the resulting challenges
would be how to evaluate the state of a runtime model, i.e., how to express fitness
functions for models. With the development of the Polymer [244] framework we did a
first step into this direction. Polymer aims at providing a model-driven approach to
define fitness functions and mutation operators without MOEA encoding knowledge.

Other approaches, which would be interesting to investigate, include machine learning
algorithms, like reinforcement learning, and a combination of di↵erent techniques.

9.2.2 Reinforcement learning for improved action selection

A very interesting future research direction is the usage of reinforcement learning in
our approach. Reinforcement learning is used to help software agents to take in partic-
ular environments the actions to maximise their rewards. It is inspired by behaviourist
psychology. A reward feedback is required for the agent to learn its behaviour. Rein-
forcement learning is a promising technology to enable intelligent systems to select the
most appropriate actions based on previously learned behaviour. Therefore, integrat-
ing reinforcement learning into our model-driven live analytics approach is planned as
future work.

9.2.3 Encoding continuously evolving data

Even though, the temporal data model presented in this thesis (cf. Chapter 4) is
able to e�ciently represent continuously evolving data and is far more e�cient than
snapshotting, it still stores every changed model element. Considering, for example
sensor data, this can easily lead to a huge amount of data, which is not just costly

190

9.2. Future research directions

to store but also to analyse. Jacobs [190] even calls the modelling of timed data as
enumerations of discrete timed values, “big data pathology” or “big data trap”. A
future research direction is to investigate how timed data—especially flat data, like
sensor values—can be more e�ciently represented. In addition, it would be interesting
to see, if the defined temporal semantic, which foresees to resolve for each point in time
the last valid version, could be improved for specific types of data. For example, if we
consider temperature data, it would be more accurate to retrieve an average between
two values instead of the last valid (measured) one. Another idea would be to just
store a value if it is “significantly di↵erent” from the previous one, e.g., specified with
a threshold value in the domain model.

In a first work towards this goal [245] we used polynomials to represent and store sensor
data. Instead of storing every value, we only store a polynomial as long as the sensor
values can be adequately represented with it, i.e., within an accepted error tolerance.
As a side e↵ect this representation also approximates values between two explicit mea-
surements. This approach could be even further generalised by, for example, storing
data as polynomial of polynomials, or other mathematical functions.

9.2.4 Meta model evolution

Currently we don’t foresee an evolution of meta models over time. In future work we
want to investigate how an independent evolution of meta models could be achieved.
Meta classes can be represented using the same concepts and techniques than used for
regular objects. Every object in a graph can then be simply associated to the object,
representing its meta class. Since meta classes at runtime would be normal objects,
they also would automatically be able to evolve in time. Just like any other object. As
a consequence, for every point in time, every object is associated to one version of a
meta class. If the meta class evolves, a new version of the object would point to a new
version of the meta class object. This would enable di↵erent objects to use di↵erent
versions of a meta model. State chunks could then be migrated (semi) automatically
on the fly.

An interesting work in this direction is presented in [125]. Gwendal et al., discuss a
model-driven technique to map UML/OCL conceptual schemas to an abstraction layer
on top of di↵erent graph databases. This allows to generate database-level queries, e.g.,
for Tinkerpop Gremlin, via an intermediate graph meta model.

9.2.5 Memory management for analytics

Analysing the state of CPSs requires to process large amounts of data. Our analytics
framework is implemented in Java. Processing massive data, in languages like Java,
results in creating many temporary objects in main memory. One big advantage of
Java is its automatic memory management and garbage collection. However, a big
disadvantage coming with garbage collection is that it is unpredictable, comparably
slow, and can severely delay the execution of programs. This is especially problematic

191

Chapter 9. Conclusion

considering near real-time requirements.

Every new object is created in the heap memory section. If the heap reaches a certain
size, garbage collection is triggered and all objects, which are “not reachable”, i.e.,
not referenced by an active object, are marked as garbage. Analytic processes usually
load and analyse lots of data. This means that the heap is quickly filled and garbage
collection is triggered. The garbage collection process now needs to check the whole
heap space for unused objects. Garbage collection can be triggered at any time and
finding not reachable objects in large graphs is expensive. This is a common chal-
lenge in many big data frameworks, e.g., based on map-reduce approaches, and can
significantly slow down analytic processes.

For future work we plan to investigate a more specialised memory management and
layout. Instead of relying only on a heap memory section for objects and an automatic
garbage collection, we plan to divide the object memory in two zones: 1) a specific
zone for objects used for analytics; this zone will be managed manually or by our
framework, 2) the usual heap memory zone for all other objects; this zone is managed
by Java’s garbage collector. We pan to use Java’s unsafe API for managing this new
memory zone o↵ heap. This allows to manually (by our framework) allocate memory
for objects used for analytic processes, aside from heap memory. Since these objects
reside outside of the heap zone, this would avoid unnecessary garbage collector runs.
As soon as an analytic process does not need an object anymore, it manually (by our
framework) removes the object from the o↵ heap memory zone. This is inspired by
techniques used for high-frequency trading, e.g., ChronicleMap [50].

9.2.6 Data sharding

How to e�ciently shard data in the context of model-driven live analytics is a major
future research direction. Besides generic approaches to horizontally partition data,
e.g., based on unique identifiers of data (the x datasets go to partition y, the next
x datasets to partition z, and so forth), or solely relying on an underlying key-value
store, investigating how domain knowledge could be leveraged for sharding seems to
be promising. For example, in the smart grid use case presented in this dissertation,
data of geographically close smart meters and data concentrators could be stored
together. Such information could be expressed in the meta model. Another idea would
be to apply machine learning algorithms to learn how data should be distributed and
reallocate data accordingly.

An interesting approach in the context of user-generated content services is presented
by Delbruel et al., [131]. They present a technique to use global predictions in large-
scale decentralised systems to forecast where content will likely be consumed and use
this information to distribute data accordingly. In [130] and [129] the authors show,
for the domain of video serving, that tags on a per-user basis, which are associated
to videos, can be used as markers of a video’s geographic di↵usion, with some tags
strongly linked to well identified geographic areas. A more general consideration about
programming of large-scale distributed systems is given by Täıani [302]. He discusses
three main topics: 1) modular fault-tolerance (in peer-peer overlays), 2) component-

192

9.3. Outlook

based development and programmability (in gossip-based protocols), and 3) interactive
performance analysis (in grid middleware).

9.3 Outlook

The presented model-driven live analytics approach pursues the idea of model-driven
engineering further and brings it to the domain of data analytics. In some respects,
it can be seen as an advancement of the models@run.time paradigm. Similar to this
paradigm, model-driven live analytics suggests to use domain models as abstractions
which are simpler than the reality. These models reflect the knowledge of domain
experts in form of domain laws and learning rules and drive analytic processes. Model-
driven live analytics combines various areas of research, such as software engineering,
machine learning, model-driven engineering, models@run.time, databases, and big data
analytics. While this thesis focuses on developing model-driven live analytics for cyber-
physical systems, we believe that the usefulness of the presented concepts goes beyond
this domain and that model-driven live analytics can be applied as a general data
analytics method.

193

List of papers and tools

Papers included in the dissertation:

• 2016

– Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Jacques
Klein, and Yves Le Traon. Near real-time electric load approximation in low
voltage cables of smart grids with models@run.time. In Proceedings of the 31th
Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016

• 2015

– Thomas Hartmann, Assaad Moawad, François Fouquet, Grégory Nain, Jacques
Klein, and Yves Le Traon. Stream my models: Reactive peer-to-peer dis-
tributed models@run.time. In 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, September 30 - October 2, 2015, pages 80–89, 2015

– Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Tejed-
dine Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric consumption
detection based on multi-profiling using live machine learning. In 2015 IEEE In-
ternational Conference on Smart Grid Communications, SmartGridComm 2015,
Miami, USA, November 2-5, 2015

• 2014

– Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
Olivier Barais, and Yves Le Traon. A native versioning concept to support his-
torized models at runtime. In Model-Driven Engineering Languages and Systems
- 17th International Conference, MODELS 2014, Valencia, Spain, September 28
- October 3, 2014. Proceedings, pages 252–268, 2014

– Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
and Yves Le Traon. Reasoning at runtime using time-distorted contexts: A mod-
els@run.time based approach. In The 26th International Conference on Software
Engineering and Knowledge Engineering, SEKE 2014, Vancouver, BC, Canada,
July 1-3, 2013., pages 586–591, 2014

– Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
and Yves Le Traon. Model-based time-distorted contexts for e�cient temporal
reasoning. In The 26th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2014, Vancouver, BC, Canada, July 1-3, 2014.,
pages 746–747, 2014

– Thomas Hartmann, François Fouquet, Jacques Klein, Grégory Nain, and Yves Le
Traon. Reactive security for smart grids using models@run.time-based simulation
and reasoning. In Smart Grid Security - Second International Workshop, Smart-
GridSec 2014, Munich, Germany, February 26, 2014, Revised Selected Papers,
pages 139–153, 2014

List of papers and tools

– Thomas Hartmann, François Fouquet, Jacques Klein, Yves Le Traon, Alexander
Pelov, Laurent Toutain, and Tanguy Ropitault. Generating realistic smart grid
communication topologies based on real-data. In 2014 IEEE International Con-
ference on Smart Grid Communications, SmartGridComm 2014, Venice, Italy,
November 3-6, 2014, pages 428–433, 2014

Papers not included in the dissertation:

• Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory Nain, Jacques Klein,
and Yves Le Traon. Beyond discrete modeling: A continuous and e�cient model for iot.
In 18th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015,
pages 90–99, 2015

• Assaad Moawad, Thomas Hartmann, François Fouquet, Jacques Klein, and Yves Le
Traon. Adaptive blurring of sensor data to balance privacy and utility for ubiquitous
services. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
Salamanca, Spain, April 13-17, 2015, pages 2271–2278, 2015

• Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory Nain, Jacques Klein,
and Johann Bourcier. Polymer - A model-driven approach for simpler, safer, and evolu-
tive multi-objective optimization development. In MODELSWARD 2015 - Proceedings
of the 3rd International Conference on Model-Driven Engineering and Software Devel-
opment, ESEO, Angers, Loire Valley, France, 9-11 February, 2015., pages 286–293,
2015

Papers currently under submission:

• under submission at ACM/USENIX EuroSys 2017: Thomas Hartmann, Assaad
Moawad, Francois Fouquet, Gregory Nain, Romain Rouvoy, Yves Le Traon, and
Jacques Klein. PIXEL: A Graph Storage to Support Large Scale What-If Analysis

• under submission at International Journal on Software and Systems Modeling (SoSyM):
Thomas Hartmann, Assaad Moawad, Francois Fouquet, and Yves Le Traon. The Next
Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling

• under submission at IEEE Computer Magazine: Thomas Hartmann, Assaad Moawad,
Francois Fouquet, Gregory Nain, Jacques Klein, Yves Le Traon, and Jean-Marc Jeze-
quel. Model-Driven Analytics: Connecting Data, Domain Knowledge, and Learning

Participated in the development of the following software systems during
the dissertation:

• mwDB: A many-world graph storage and processing framework, used as core for the
latest version of the Kevoree Modeling Framework (KMF) (https://github.com/
kevoree-modeling/mwDB)

• KMF : A modelling, code generation, and analytics framework for cyber-physical sys-
tems and IoT applications (https://github.com/kevoree-modeling/framework)

196

https://github.com/kevoree-modeling/mwDB
https://github.com/kevoree-modeling/mwDB
https://github.com/kevoree-modeling/framework

9.3. Outlook

• Kevoree Polymer : A multi-objective optimisation framework on top of models (https:
//github.com/dukeboard/kevoree-genetic)

• SGT Gen: A smart grid topology generator (https://github.com/thomashartmann/
smartgrid-topology-generator)

• REASON : A smart grid dashboard and analytics tool for visualising and analysing
smart grid data in near-real time (closed source)

197

https://github.com/dukeboard/kevoree-genetic
https://github.com/dukeboard/kevoree-genetic
https://github.com/thomashartmann/smartgrid-topology-generator
https://github.com/thomashartmann/smartgrid-topology-generator

Bibliography

[1] 2013 Hype Cycle Special Report Evaluates the Maturity of More Than 1,900 Tech-
nologies. [Online]. Available: http://www.gartner.com/newsroom/id/2575515. Ac-
cessed: November 2015.

[2] AllegroGraph. [Online]. Available: http://allegrograph.com/. Accessed: April
2016.

[3] Apache Cassandra. [Online]. Available: http://cassandra.apache.org/. Accessed:
March 2016.

[4] Apache Flink. [Online]. Available: https://flink.apache.org/. Accessed: February
2016.

[5] Apache Giraph. [Online]. Available: http://giraph.apache.org/. Accessed: Febru-
ary 2016.

[6] Apache Gora. [Online]. Available: http://gora.apache.org/index.html. Accessed:
February 2016.

[7] Apache hadoop. [Online]. Available: https://hadoop.apache.org. Accessed: March
2016.

[8] Apache Hama. [Online]. Available: https://hama.apache.org/. Accessed: February
2016.

[9] Apache Hawq. [Online]. Available: http://hawq.incubator.apache.org/. Accessed:
March 2016.

[10] Apache HBase. [Online]. Available: https://hbase.apache.org/. Accessed: March
2016.

[11] Apache Impala. [Online]. Available: http://impala.io/. Accessed: March 2016.

[12] Apache Mesos. [Online]. Available: http://mesos.apache.org/. Accessed: February
2016.

[13] Apache Pig. [Online]. Available: https://pig.apache.org/. Accessed: March 2016.

[14] Apache Spark. [Online]. Available: http://spark.apache.org/. Accessed: March
2016.

[15] Apache TinkerPop. [Online]. Available: http://tinkerpop.apache.org/. Accessed:
April 2016.

[16] Apache ZooKeeper. [Online]. Available: https://zookeeper.apache.org/. Accessed:
February 2016.

[17] ArrangoDB. [Online]. Available: https://www.arangodb.com/. Accessed: April 2016.

[18] Atlas Graph. [Online]. Available: https://github.com/Netflix/atlas/wiki/Graph.
Accessed: July 2016.

199

http://www.gartner.com/newsroom/id/2575515
http://allegrograph.com/
http://cassandra.apache.org/
https://flink.apache.org/
http://giraph.apache.org/
http://gora.apache.org/index.html
https://hadoop.apache.org
https://hama.apache.org/
http://hawq.incubator.apache.org/
https://hbase.apache.org/
http://impala.io/
http://mesos.apache.org/
https://pig.apache.org/
http://spark.apache.org/
http://tinkerpop.apache.org/
https://zookeeper.apache.org/
https://www.arangodb.com/
https://github.com/Netflix/atlas/wiki/Graph

Bibliography

[19] Berkeley DB. [Online]. Available: http://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/overview/index.html. Accessed: March
2016.

[20] BLAS (Basic Linear Algebra Subprograms). [Online]. Available: http://www.netlib.
org/blas/. Accessed: July 2016.

[21] blazegraph. [Online]. Available: https://www.blazegraph.com/product/. Accessed:
April 2016.

[22] CDO. [Online]. Available: http://wiki.eclipse.org/CDO. Accessed: April 2016.

[23] Cypher query language. [Online]. Available: https://neo4j.com/docs/

developer-manual/current/#cypher-query-lang. Accessed: April 2016.

[24] decking. Create, manage and run clusters of Docker containers. [Online]. Available:
http://decking.io/. Accessed: December 2015.

[25] Dgraph. [Online]. Available: https://dgraph.io/. Accessed: April 2016.

[26] DIgSILENT. [Online]. Available: http://www.digsilent.de/. Accessed: December
2015.

[27] docker. Build, Ship, Run. [Online]. Available: http://www.docker.com/. Accessed:
December 2015.

[28] Eclipse Modeling Project. [Online]. Available: https://eclipse.org/modeling/. Ac-
cessed: July 2016.

[29] eclipse. [Online]. Available: https://eclipse.org/. Accessed: July 2016.

[30] FlockDB. [Online]. Available: https://github.com/twitter/flockdb. Accessed:
April 2016.

[31] Galois. [Online]. Available: http://iss.ices.utexas.edu/?p=projects/galois.
Accessed: February 2016.

[32] GraphAware Neo4j TimeTree. [Online]. Available: https://github.com/

graphaware/neo4j-timetree. Accessed: April 2016.

[33] GraphBase. [Online]. Available: http://graphbase.net/. Accessed: April 2016.

[34] graphdb-benchmarks. [Online]. Available: https://github.com/socialsensor/

graphdb-benchmarks. Accessed: April 2016.

[35] GraphDB. [Online]. Available: http://ontotext.com/products/graphdb/. Ac-
cessed: April 2016.

[36] InfiniteGraph. [Online]. Available: http://www.objectivity.com/products/

infinitegraph. Accessed: April 2016.

[37] InfiniteGraph. [Online]. Available: http://www.objectivity.com/products/

thingspan/. Accessed: April 2016.

[38] influxDB Benchmark. [Online]. Available: https://goo.gl/tQtZET. Accessed: De-
cember 2015.

[39] influxdb: Time-Series Data Storage. [Online]. Available: https://influxdata.com/

time-series-platform/influxdb/. Accessed: April 2016.

200

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://www.blazegraph.com/product/
http://wiki.eclipse.org/CDO
https://neo4j.com/docs/developer-manual/current/#cypher-query-lang
https://neo4j.com/docs/developer-manual/current/#cypher-query-lang
http://decking.io/
https://dgraph.io/
http://www.digsilent.de/
http://www.docker.com/
https://eclipse.org/modeling/
https://eclipse.org/
https://github.com/twitter/flockdb
http://iss.ices.utexas.edu/?p=projects/galois
https://github.com/graphaware/neo4j-timetree
https://github.com/graphaware/neo4j-timetree
http://graphbase.net/
https://github.com/socialsensor/graphdb-benchmarks
https://github.com/socialsensor/graphdb-benchmarks
http://ontotext.com/products/graphdb/
http://www.objectivity.com/products/infinitegraph
http://www.objectivity.com/products/infinitegraph
http://www.objectivity.com/products/thingspan/
http://www.objectivity.com/products/thingspan/
https://goo.gl/tQtZET
https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Bibliography

[40] InfoGrid. [Online]. Available: http://infogrid.org/trac/. Accessed: April 2016.

[41] Introduction to What-If Analysis. [Online]. Avail-
able: https://support.office.com/en-US/article/

Introduction-to-what-if-analysis-22BFFA5F-E891-4ACC-BF7A-E4645C446FB4.
Accessed: July 2016.

[42] LevelDB. [Online]. Available: http://leveldb.org/. Accessed: April 2016.

[43] McKinsey & Company. Big data: The next frontier for competition. [Online]. http:

//www.mckinsey.com/features/big_data. Accessed: December 2015.

[44] Merkle DAG. [Online]. Available: https://github.com/jbenet/random-ideas/

issues/20. Accessed: August 2016.

[45] mongoDB. [Online]. Available: https://www.mongodb.com/. Accessed: March 2016.

[46] MongoEMF. [Online]. Available: https://github.com/BryanHunt/mongo-emf/wiki.
Accessed: August 2016.

[47] neo4j. [Online]. Available: https://neo4j.com/. Accessed: March 2016.

[48] Noms. [Online]. Available: https://github.com/attic-labs/noms. Accessed: Au-
gust 2016.

[49] Object Constraint Language. [Online]. Available: http://www.omg.org/spec/OCL/.
Accessed: December 2015.

[50] OpenHFT. Chronicle-Map. [Online]. Available: https://github.com/OpenHFT/

Chronicle-Map. Accessed: December 2015.

[51] OpenTSDB: The Scalable Time Series Database. [Online]. Available: http://

opentsdb.net/. Accessed: July 2016.

[52] OrientDB. [Online]. Available: http://orientdb.com/. Accessed: April 2016.

[53] Perry Rotella. Is Data The New Oil?. [Online]. Available: http://www.forbes.

com/sites/perryrotella/2012/04/02/is-data-the-new-oil/. Accessed: Decem-
ber 2015.

[54] redis. [Online]. Available: http://redis.io/. Accessed: April 2016.

[55] Representing time dependent graphs in Neo4j. [Online]. Avail-
able: https://github.com/SocioPatterns/neo4j-dynagraph/wiki/

Representing-time-dependent-graphs-in-Neo4j. Accessed: April 2016.

[56] RIAK KV. [Online]. Available: http://basho.com/products/riak-kv/. Accessed:
March 2016.

[57] RocksDB. [Online]. Available: http://rocksdb.org/. Accessed: April 2016.

[58] RRDtool: logging & graping. [Online]. Available: http://oss.oetiker.ch/rrdtool/.
Accessed: July 2016.

[59] samza. [Online]. Available: http://samza.apache.org/. Accessed: February 2016.

[60] SmartMeter Energy Consumption Data in London Households.
[Online]. Available: http://data.london.gov.uk/dataset/

smartmeter-energy-use-data-in-london-households. Accessed: December
2015.

201

http://infogrid.org/trac/
https://support.office.com/en-US/article/Introduction-to-what-if-analysis-22BFFA5F-E891-4ACC-BF7A-E4645C446FB4
https://support.office.com/en-US/article/Introduction-to-what-if-analysis-22BFFA5F-E891-4ACC-BF7A-E4645C446FB4
http://leveldb.org/
http://www.mckinsey.com/features/big_data
http://www.mckinsey.com/features/big_data
https://github.com/jbenet/random-ideas/issues/20
https://github.com/jbenet/random-ideas/issues/20
https://www.mongodb.com/
https://github.com/BryanHunt/mongo-emf/wiki
https://neo4j.com/
https://github.com/attic-labs/noms
http://www.omg.org/spec/OCL/
https://github.com/OpenHFT/Chronicle-Map
https://github.com/OpenHFT/Chronicle-Map
http://opentsdb.net/
http://opentsdb.net/
http://orientdb.com/
http://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil/
http://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil/
http://redis.io/
https://github.com/SocioPatterns/neo4j-dynagraph/wiki/Representing-time-dependent-graphs-in-Neo4j
https://github.com/SocioPatterns/neo4j-dynagraph/wiki/Representing-time-dependent-graphs-in-Neo4j
http://basho.com/products/riak-kv/
http://rocksdb.org/
http://oss.oetiker.ch/rrdtool/
http://samza.apache.org/
http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

Bibliography

[61] Sparksee. [Online]. Available: http://www.sparsity-technologies.com/. Accessed:
August 2016.

[62] Stanford Large Network Dataset Collection. [Online]. Available: http://snap.

stanford.edu/data/. Accessed: April 2016.

[63] Stardock. [Online]. Available: http://stardog.com/. Accessed: April 2016.

[64] The Apache Velocity Project. [Online]. Available: http://velocity.apache.org/.
Accessed: December 2015.

[65] Titan. Distributed Graph Database. [Online]. Available: http://titan.

thinkaurelius.com/. Accessed: April 2016.

[66] Trident API Overview. [Online]. Available: http://storm.apache.org/releases/

current/Trident-API-Overview.html. Accessed: March 2016.

[67] turi - create intelligence. [Online]. Available: https://turi.com/. Accessed: August
2016.

[68] VelocityDB. [Online]. Available: https://velocitydb.com/VelocityGraph.aspx.
Accessed: April 2016.

[69] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[70] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete
Steggles. Towards a better understanding of context and context-awareness. In Pro-
ceedings of the 1st International Symposium on Handheld and Ubiquitous Computing,
HUC ’99, pages 304–307, London, UK, UK, 1999. Springer-Verlag.

[71] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

[72] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven
Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-
tolerant stream processing at internet scale. Proc. VLDB Endow., 6(11):1033–1044,
August 2013.

[73] Kerstin Altmanninger, Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Kon-
rad Wieland, and Manuel Wimmer. Why model versioning research is needed!? an
experience report. In Proceedings of the Joint MoDSE-MC-CM 2009 Workshop, 2009.

[74] Sebastian Altmeyer and Nicolas Navet. Towards a declarative modeling and execution
framework for real-time systems. SIGBED Rev., 13(2):30–33, April 2016.

[75] S. Massoud Amin and B. F. Wollenberg. Toward a smart grid: power delivery for the
21st century. IEEE Power and Energy Magazine, 3(5):34–41, Sept 2005.

[76] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King,
Philippe Selo, Yoonho Park, and Chitra Venkatramani. Spc: A distributed, scalable
platform for data mining. In Proceedings of the 4th International Workshop on Data
Mining Standards, Services and Platforms, DMSSP ’06, pages 27–37, New York, NY,
USA, 2006. ACM.

202

http://www.sparsity-technologies.com/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://stardog.com/
http://velocity.apache.org/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
http://storm.apache.org/releases/current/Trident-API-Overview.html
http://storm.apache.org/releases/current/Trident-API-Overview.html
https://turi.com/
https://velocitydb.com/VelocityGraph.aspx

Bibliography

[77] Marcelo Arenas and Leopoldo Bertossi. Hypothetical temporal reasoning in databases.
Journal of Intelligent Information Systems, 19(2):231–259.

[78] Marcelo Arenas and Leopoldo Bertossi. Hypothetical temporal queries in databases. In
Proceedings “ACM SIGMOD/PODS 5th International Workshop on Knowledge Rep-
resentation meets Databases (KRDB’98): Innovative Application Programming and
Query Interfaces. Citeseer, 1998.

[79] Resmi Ariyattu and François Täıani. Filament : a cohort construction service for
decentralized collaborative editing platforms. In Compas 2016, Lorient, France, July
2016.

[80] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark
sql: Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1383–1394. ACM, 2015.

[81] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and issues in data stream systems. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’02, pages 1–16, New York, NY, USA, 2002. ACM.

[82] Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. Pagerank on an
evolving graph. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, pages 24–32, New York, NY, USA,
2012. ACM.

[83] Paul Baker, Shiou Loh, and Frank Weil. Model-driven engineering in a large industrial
context — motorola case study. In Proceedings of the 8th International Conference
on Model Driven Engineering Languages and Systems, MoDELS’05, pages 476–491,
Berlin, Heidelberg, 2005. Springer-Verlag.

[84] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-
aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4), 2007.

[85] Andrey Balmin, Thanos Papadimitriou, and Yannis Papakonstantinou. Hypothetical
queries in an olap environment. In Proceedings of the 26th International Conference
on Very Large Data Bases, VLDB ’00, pages 220–231, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[86] Cajsa Bartusch, Monica Odlare, Fredrik Wallin, and Lars Wester. Exploring variance
in residential electricity consumption: Household features and building properties. Ap-
plied Energy, 92(0):637 – 643, 2012.

[87] Sotirios Beis, Symeon Papadopoulos, and Yiannis Kompatsiaris. New Trends in
Database and Information Systems II: Selected papers of the 18th East European Con-
ference on Advances in Databases and Information Systems and Associated Satellite
Events, ADBIS 2014 Ohrid, Macedonia, September 7-10, 2014 Proceedings II, chapter
Benchmarking Graph Databases on the Problem of Community Detection, pages 3–14.
Springer International Publishing, Cham, 2015.

[88] Nelly Bencomo, Robert B. France, Betty H. C. Cheng, and Uwe Aßmann, editors. Mod-
els@run.time - Foundations, Applications, and Roadmaps [Dagstuhl Seminar 11481,
November 27 - December 2, 2011], volume 8378 of Lecture Notes in Computer Science.
Springer, 2014.

203

Bibliography

[89] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David Launay.
Neo4emf, a scalable persistence layer for emf models. In Proceedings of the 10th Eu-
ropean Conference on Modelling Foundations and Applications - Volume 8569, pages
230–241, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[90] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. Distributed model-
to-model transformation with atl on mapreduce. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2015,
pages 37–48, New York, NY, USA, 2015. ACM.

[91] David Benyon. Information and Data Modelling. McGraw-Hill Higher Education, 2nd
edition, 1996.

[92] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and algorithms for
graph queries on multithreaded architectures. In 2007 IEEE International Parallel and
Distributed Processing Symposium, pages 1–14, March 2007.

[93] Pramod Bhatotia, Umut A Acar, Flavio P Junqueira, and Rodrigo Rodrigues. Slider:
incremental sliding window analytics. In Proceedings of the 15th International Middle-
ware Conference, pages 61–72. ACM, 2014.

[94] Albert Bifet, Geo↵ Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive
online analysis. The Journal of Machine Learning Research, 11:1601–1604, 2010.

[95] Christopher M. Bishop. Model-based machine learning. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
371(1984), 2012.

[96] G. Blair, N. Bencomo, and R. B. France. Models@ run.time. Computer, 42(10):22–27,
Oct 2009.

[97] Gordon Blair, Yérom-David Bromberg, Geo↵ Coulson, Yehia Elkhatib, Laurent
Réveillère, Heverson B. Ribeiro, Etienne Rivière, and François Täıani. Holons: To-
wards a systematic approach to composing systems of systems. In Proceedings of the
14th International Workshop on Adaptive and Reflective Middleware, ARM 2015, pages
5:1–5:6, New York, NY, USA, 2015. ACM.

[98] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting model inconsistency
through operation-based model construction. In Proc. 30th Int. Conf. Software Engi-
neering, pages 511–520, 2008.

[99] Harold Boley. Directed recursive labelnode hypergraphs: A new representation-
language. Artificial Intelligence, 9(1):49 – 85, 1977.

[100] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Big Data and
Internet of Things: A Roadmap for Smart Environments, chapter Fog Computing: A
Platform for Internet of Things and Analytics, pages 169–186. Springer International
Publishing, Cham, 2014.

[101] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engi-
neering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.

[102] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and
Manuel Wimmer. An introduction to model versioning. In Proceedings of the 12th
International Conference on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems: Formal Methods for Model-driven Engineering, SFM’12,
pages 336–398, Berlin, Heidelberg, 2012. Springer-Verlag.

204

Bibliography

[103] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: E�-
cient iterative data processing on large clusters. Proc. VLDB Endow., 3(1-2):285–296,
September 2010.

[104] Franck Budinsky, David Steinberg, and Raymond Ellersick. Eclipse Modeling Frame-
work : A Developer’s Guide. 2003.

[105] D Carstoiu, A Cernian, and A Olteanu. Hadoop hbase-0.20. 2 performance evalua-
tion. In New Trends in Information Science and Service Science (NISS), 2010 4th
International Conference on, pages 84–87. IEEE, 2010.

[106] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27, May
2011.

[107] Ciro Cattuto, Marco Quaggiotto, André Panisson, and Alex Averbuch. Time-varying
social networks in a graph database: A neo4j use case. In First International Workshop
on Graph Data Management Experiences and Systems, GRADES ’13, pages 11:1–11:6,
New York, NY, USA, 2013. ACM.

[108] J. C. Cepeda, D.O. Ramirez, and D.G. Colome. Probabilistic-based overload estimation
for real-time smart grid vulnerability assessment. In Transmission and Distribution:
Latin America Conf. and Expo. (T D-LA), 2012 6th IEEE/PES, pages 1–8, 2012.

[109] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer, 42(10):37–43,
Oct 2009.

[110] Kin-Pong Chan and Ada Wai-Chee Fu. E�cient time series matching by wavelets. In
Data Engineering, 1999. Proceedings., 15th International Conference on, pages 126–
133, Mar 1999.

[111] Fay Chang, Je↵rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7, OSDI ’06,
pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[112] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: Taking the pulse
of a fast-changing and connected world. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages 85–98, New York, NY, USA,
2012. ACM.

[113] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc. VLDB
Endow., 8(12):1804–1815, August 2015.

[114] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. Predicting
delays in software projects using networked classification (t). In Proceedings of the 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
ASE ’15, pages 353–364, Washington, DC, USA, 2015. IEEE Computer Society.

[115] James Cli↵ord and David S. Warren. Formal semantics for time in databases. ACM
Trans. Database Syst., 8(2):214–254, June 1983.

205

Bibliography

[116] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line Analytical
Processing) to User-Analysts: An IT Mandate. E. F. Codd and Associates, 1993.

[117] Je↵rey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Wel-
ton. Mad skills: new analysis practices for big data. Proceedings VLDB Endowment,
2(2):1481–1492, August 2009.

[118] Debora Coll-Mayor, Mia Paget, and Eric Lightner. Future intelligent power grids:
Analysis of the vision in the european union and the united states. Energy Policy,
35(4):2453 – 2465, 2007.

[119] Benoit Combemale, Xavier Thirioux, and Benoit Baudry. Formally defining and iter-
ating infinite models. In Proceedings of the 15th International Conference on Model
Driven Engineering Languages and Systems, MODELS’12, pages 119–133, Berlin, Hei-
delberg, 2012. Springer-Verlag.

[120] S. S. Conn. Oltp and olap data integration: a review of feasible implementation meth-
ods and architectures for real time data analysis. In Proceedings. IEEE SoutheastCon,
2005., pages 515–520, April 2005.

[121] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J Franklin, Ali Ghodsi, and Michael I Jordan. The missing piece in com-
plex analytics: Low latency, scalable model management and serving with velox. arXiv
preprint arXiv:1409.3809, 2014.

[122] Jesús Sánchez Cuadrado and Juan de Lara. Streaming model transformations: Scenar-
ios, challenges and initial solutions. In Theory and Practice of Model Transformations,
pages 1–16. Springer, 2013.

[123] C Daly. Emfatic language reference. http://www.eclipse.org/epsilon/doc/

articles/emfatic/, 2004.

[124] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Mogwäı: a Framework to Handle
Complex Queries on Large Models. In International Conference on Research Challenges
in Information Science (RCIS 2016), Grenoble, France, June 2016.

[125] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. UMLtoGraphDB: Mapping Concep-
tual Schemas to Graph Databases. In The 35th International Conference on Conceptual
Modeling (ER2016), Gifu, Japan, November 2016.

[126] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei
Zaharia. Graphframes: an integrated api for mixing graph and relational queries. In
Proceedings of the Fourth International Workshop on Graph Data Management Expe-
riences and Systems, page 2. ACM, 2016.

[127] István Dávid, István Ráth, and Dániel Varró. Streaming model transformations by
complex event processing. In Model-Driven Engineering Languages and Systems, pages
68–83. Springer, 2014.

[128] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[129] Stéphane Delbruel, Davide Frey, and François Täıani. Decentralized view prediction
for global content placement. In Proceedings of the 14th International Workshop on
Adaptive and Reflective Middleware, ARM 2015, pages 10:1–10:3, New York, NY, USA,
2015. ACM.

206

http://www.eclipse.org/epsilon/doc/articles/emfatic/
http://www.eclipse.org/epsilon/doc/articles/emfatic/

Bibliography

[130] Stéphane Delbruel, Davide Frey, and François Täıani. Exploring the use of tags for
georeplicated content placement. In 2016 IEEE International Conference on Cloud
Engineering, IC2E 2016, Berlin, Germany, April 4-8, 2016, pages 172–181, 2016.

[131] Stéphane Delbruel, Davide Frey, and François Täıani. Mignon: A fast decentralized
content consumption estimation in large-scale distributed systems. In Distributed Ap-
plications and Interoperable Systems - 16th IFIP WG 6.1 International Conference,
DAIS 2016, Held as Part of the 11th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Pro-
ceedings, pages 32–46, 2016.

[132] Dursun Delen and Haluk Demirkan. Data, information and analytics as services. Decis.
Support Syst., 55(1):359–363, April 2013.

[133] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’87, pages 1–12, New York, NY, USA, 1987.
ACM.

[134] Pedro Domingos and Geo↵ Hulten. Mining high-speed data streams. In Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’00, pages 71–80, New York, NY, USA, 2000. ACM.

[135] K SRIVASTAVA Durgesh and B Lekha. Data classification using support vector ma-
chine. Journal of Theoretical and Applied Information Technology, 12(1):1–7, 2010.

[136] Partha Dutta, Rachid Guerraoui, and Leslie Lamport. How fast can eventual synchrony
lead to consensus? In Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
Int. Conf. on, pages 22–27. IEEE, 2005.

[137] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, and Geo↵rey Fox. Twister: A runtime for iterative mapreduce. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing,
HPDC ’10, pages 810–818, New York, NY, USA, 2010. ACM.

[138] Donia El Kateb, François Fouquet, Grégory Nain, Jorge Augusto Meira, Michel Acker-
man, and Yves Le Traon. Generic cloud platform multi-objective optimization leverag-
ing models@run.time. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 343–350, New York, NY, USA, 2014. ACM.

[139] Hugh Everett. ”relative state” formulation of quantum mechanics. Rev. Mod. Phys.,
29:454–462, Jul 1957.

[140] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence
matching in time-series databases. In Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’94, pages 419–429, New York,
NY, USA, 1994. ACM.

[141] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid — the new and improved power
grid: A survey. IEEE Communications Surveys Tutorials, 14(4):944–980, Fourth 2012.

[142] H. Farhangi. The path of the smart grid. IEEE Power and Energy Magazine, 8(1):18–
28, January 2010.

207

Bibliography

[143] L. Fejoz, N. Navet, S. M. Sundharam, and S. Altmeyer. Demo abstract: Applica-
tions of the cpal language to model, simulate and program cyber-physical systems. In
2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 1–1, April 2016.

[144] Clayton R Fink, Danielle S Chou, Jonathon J Kopecky, and Ashley J Llorens. Coarse-
and fine-grained sentiment analysis of social media text. Johns Hopkins APL Technical
Digest, 30(1):22–30, 2011.

[145] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling hell from
heaven and heaven from hell. In Proceedings of the Fourth ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’99, pages 114–125, New York,
NY, USA, 1999. ACM.

[146] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[147] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais, Noël
Plouzeau, and Jean-Marc Jézéquel. An eclipse modelling framework alternative to meet
the models@runtime requirements. In Proceedings of the 15th International Conference
on Model Driven Engineering Languages and Systems, MODELS’12, pages 87–101,
Berlin, Heidelberg, 2012. Springer-Verlag.

[148] François Fouquet, Erwan Daubert, Noël Plouzeau, Olivier Barais, Johann Bourcier, and
Jean-Marc Jézéquel. Dissemination of reconfiguration policies on mesh networks. In
Distributed Applications and Interoperable Systems - 12th IFIP WG 6.1 International
Conference, DAIS 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings, pages 16–
30, 2012.

[149] Francois Fouquet, Brice Morin, Franck Fleurey, Olivier Barais, Noel Plouzeau, and
Jean-Marc Jezequel. A dynamic component model for cyber physical systems. In
Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software
Engineering, pages 135–144. ACM, 2012.

[150] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais, Noël
Plouzeau, and Jean-Marc Jézéquel. Kevoree modeling framework (KMF): e�cient
modeling techniques for runtime use. CoRR, abs/1405.6817, 2014.

[151] Fouquet Francois, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais, Noël
Plouzeau, and Jean-Marc Jézéquel. Kevoree modeling framework (kmf): E�cient
modeling techniques for runtime use. arXiv preprint arXiv:1405.6817, 2014.

[152] Davide Frey, Achour Mostefaoui, Matthieu Perrin, Pierre-Louis Roman, and François
Täıani. Speed for the elite, consistency for the masses: di↵erentiating eventual consis-
tency in large-scale distributed systems. To appear in the proceedings of SRDS 2016.
http://srds2016.inf.mit.bme.hu, July 2016.

[153] Francisco Javier Thayer Fábrega, Francisco Javier, and Joshua D. Guttman. Copy on
write, 1995.

[154] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[155] J. C. Georgas, A. v. d. Hoek, and R. N. Taylor. Using architectural models to manage
and visualize runtime adaptation. Computer, 42(10):52–60, Oct 2009.

208

Bibliography

[156] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-synchronous parallel algorithms. Jour-
nal of Parallel and Distributed Computing, 22(2):251 – 267, 1994.

[157] Sanjay Ghemawat, Howard Gobio↵, and Shun-Tak Leung. The google file system.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[158] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[159] B. Goertzel. Patterns, hypergraphs and embodied general intelligence. In The 2006
IEEE International Joint Conference on Neural Network Proceedings, pages 451–458,
2006.

[160] Abel Gomez, Massimo Tisi, Gerson Sunyé, and Jordi Cabot. Map-based transparent
persistence for very large models. In Fundamental Approaches to Software Engineering,
pages 19–34. Springer, 2015.

[161] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 17–30, Berkeley, CA, USA, 2012. USENIX Association.

[162] Douglas Gregor and Andrew Lumsdaine. The parallel bgl: A generic library for dis-
tributed graph computations. In In Parallel Object-Oriented Scientific Computing
(POOSC, 2005.

[163] Timothy Gri�n and Richard Hull. A framework for implementing hypothetical queries.
In Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’97, pages 231–242, New York, NY, USA, 1997. ACM.

[164] Object Management Group. OMG Systems Modeling Language, Version 1.4. http:

//www.omg.org/spec/SysML/1.4/, June 2015.

[165] Christophe Guille and George Gross. A conceptual framework for the vehicle-to-grid
(V2G) implementation. Energy Policy, 37(11):4379–4390, 2009.

[166] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh.
Wtf: The who to follow service at twitter. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, pages 505–514, New York, NY, USA,
2013. ACM.

[167] Peter J. Haas, Paul P. Maglio, Patricia G. Selinger, and Wang Chiew Tan. Data is
dead... without what-if models. PVLDB, 4(12):1486–1489, 2011.

[168] Mark Hall, Eibe Frank, Geo↵rey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, November 2009.

[169] Jiawei Han, Guozhu Dong, and Yiwen Yin. E�cient mining of partial periodic patterns
in time series database. In Data Engineering, 1999. Proceedings., 15th International
Conference on, pages 106–115, Mar 1999.

[170] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems. Proc. VLDB Endow.,
8(9):950–961, May 2015.

209

http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/

Bibliography

[171] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A graph engine for tem-
poral graph analysis. In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, pages 1:1–1:14, New York, NY, USA, 2014. ACM.

[172] Thomas Hartmann, François Fouquet, Jacques Klein, Grégory Nain, and Yves Le
Traon. Reactive security for smart grids using models@run.time-based simulation and
reasoning. In Smart Grid Security - Second International Workshop, SmartGridSec
2014, Munich, Germany, February 26, 2014, Revised Selected Papers, pages 139–153,
2014.

[173] Thomas Hartmann, François Fouquet, Jacques Klein, Yves Le Traon, Alexander Pelov,
Laurent Toutain, and Tanguy Ropitault. Generating realistic smart grid communica-
tion topologies based on real-data. In 2014 IEEE International Conference on Smart
Grid Communications, SmartGridComm 2014, Venice, Italy, November 3-6, 2014,
pages 428–433, 2014.

[174] Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
Olivier Barais, and Yves Le Traon. A native versioning concept to support histor-
ized models at runtime. In Model-Driven Engineering Languages and Systems - 17th
International Conference, MODELS 2014, Valencia, Spain, September 28 - October 3,
2014. Proceedings, pages 252–268, 2014.

[175] Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein, and
Yves Le Traon. Model-based time-distorted contexts for e�cient temporal reasoning.
In The 26th International Conference on Software Engineering and Knowledge Engi-
neering, SEKE 2014, Vancouver, BC, Canada, July 1-3, 2014., pages 746–747, 2014.

[176] Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin, Jacques Klein,
and Yves Le Traon. Reasoning at runtime using time-distorted contexts: A mod-
els@run.time based approach. In The 26th International Conference on Software Engi-
neering and Knowledge Engineering, SEKE 2014, Vancouver, BC, Canada, July 1-3,
2013., pages 586–591, 2014.

[177] Thomas Hartmann, Assaad Moawad, François Fouquet, Grégory Nain, Jacques Klein,
and Yves Le Traon. Stream my models: Reactive peer-to-peer distributed mod-
els@run.time. In 18th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September
30 - October 2, 2015, pages 80–89, 2015.

[178] Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Jacques Klein,
and Yves Le Traon. Near real-time electric load approximation in low voltage cables of
smart grids with models@run.time. In Proceedings of the 31th Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016.

[179] Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger, Tejeddine
Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric consumption detec-
tion based on multi-profiling using live machine learning. In 2015 IEEE International
Conference on Smart Grid Communications, SmartGridComm 2015, Miami, USA,
November 2-5, 2015.

[180] Geo↵rey Hecht, Benomar Omar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. Tracking the Software Quality of Android Applications along their Evo-
lution. In Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2015), page 12. IEEE, November 2015.

210

Bibliography

[181] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context
information in pervasive computing systems. In Proc. 1st Int. Conf. Pervasive Com-
puting, Pervasive ’02, pages 167–180, 2002.

[182] Shohei Hido, Seiya Tokui, and Satoshi Oda. Jubatus: An open source platform for
distributed online machine learning. In NIPS 2013 Workshop on Big Learning, Lake
Tahoe, 2013.

[183] P. HUBRAL. Time migration—some ray theoretical aspects*. Geophysical Prospecting,
25(4):738–745, 1977.

[184] Theo Hug, Martin Lindner, and Peter A Bruck. Microlearning: Emerging concepts,
practices and technologies after e-learning. Proceedings of Microlearning, 5, 2005.

[185] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering prac-
tices in industry. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 633–642, New York, NY, USA, 2011. ACM.

[186] IBM, Paul Zikopoulos, and Chris Eaton. Understanding Big Data: Analytics for En-
terprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 1st edition,
2011.

[187] Borislav Iordanov. Hypergraphdb: A generalized graph database. In Proceedings of
the 2010 International Conference on Web-age Information Management, WAIM’10,
pages 25–36, Berlin, Heidelberg, 2010. Springer-Verlag.

[188] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving
graph processing at scale. 2016.

[189] Javier Luis Cánovas Izquierdo and Jordi Cabot. Collaboro: A collaborative (meta)
modeling tool. Technical report, PeerJ Preprints, 2016.

[190] Adam Jacobs. The pathologies of big data. Communications of the ACM, 52(8):36–44,
2009.

[191] A. J. Jara, D. Genoud, and Y. Bocchi. Big data for cyber physical systems: An
analysis of challenges, solutions and opportunities. In Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2014 Eighth International Conference on,
pages 376–380, July 2014.

[192] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos.
Gbase: A scalable and general graph management system. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11, pages 1091–1099, New York, NY, USA, 2011. ACM.

[193] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale
graph mining system implementation and observations. In Proceedings of the 2009
Ninth IEEE International Conference on Data Mining, ICDM ’09, pages 229–238,
Washington, DC, USA, 2009. IEEE Computer Society.

[194] Pradeeban Kathiravelu, Leila Sharifi, and Lúıs Veiga. Cassowary: Middleware platform
for context-aware smart buildings with software-defined sensor networks. In Proceedings
of the 2Nd Workshop on Middleware for Context-Aware Applications in the IoT, M4IoT
2015, pages 1–6, New York, NY, USA, 2015. ACM.

211

Bibliography

[195] Stuart Kent. Model driven engineering. In Proceedings of the Third International
Conference on Integrated Formal Methods, IFM ’02, pages 286–298, London, UK, UK,
2002. Springer-Verlag.

[196] Eamonn Keogh, Stefano Lonardi, and Bill ’Yuan-chi’ Chiu. Finding surprising patterns
in a time series database in linear time and space. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’02, pages 550–556, New York, NY, USA, 2002. ACM.

[197] A.-M. Kermarrec and F. Täıani. Want to scale in centralized systems? think p2p.
Journal of Internet Services and Applications, 6(1), 2015. cited By 0.

[198] Anne-Marie Kermarrec, François Täıani, and Juan M. Tirado. Scaling out link pre-
diction with SNAPLE: 1 billion edges and beyond. In Proceedings of the 16th Annual
Middleware Conference, Vancouver, BC, Canada, December 07 - 11, 2015, pages 247–
258, 2015.

[199] Farshad Khunjush and Nikitas J. Dimopoulos. Lazy direct-to-cache transfer during
receive operations in a message passing environment. In Proceedings of the 3rd Con-
ference on Computing Frontiers, CF ’06, pages 331–340, New York, NY, USA, 2006.
ACM.

[200] U. Khurana and A. Deshpande. E�cient snapshot retrieval over historical graph data.
In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 997–
1008, April 2013.

[201] Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph data
at scale. arXiv preprint arXiv:1509.08960, 2015.

[202] Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph data
at scale. In Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie Marian,
Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, editors, Proceedings of the
19th International Conference on Extending Database Technology, EDBT 2016, Bor-
deaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016., pages 65–76.
OpenProceedings.org, 2016.

[203] Jacques Klein, Jörg Kienzle, Brice Morin, and Jean-Marc Jézéquel. Aspect model un-
weaving. In LNCS 5795, editor, In 12th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2009), pages p 514–530, Denver, Col-
orado, USA, 2009.

[204] Maximilian Koegel and Jonas Helming. Emfstore: A model repository for emf models.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 2, ICSE ’10, pages 307–308, New York, NY, USA, 2010. ACM.

[205] Robert Kohtes. From Valence to Emotions: How Coarse Versus Fine-grained On-
line Sentiment Can Predict Real-world Outcomes. Anchor Academic Publishing
(aap verlag), 2014.

[206] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas, Richard F. Paige,
Esther Guerra, Jesús Sánchez Cuadrado, Juan de Lara, István Ráth, Dániel Varró,
Massimo Tisi, and Jordi Cabot. A research roadmap towards achieving scalability
in model driven engineering. In Proceedings of the Workshop on Scalability in Model
Driven Engineering, Budapest, Hungary, June 17, 2013, page 2, 2013.

212

Bibliography

[207] D.S. Kolovos, D. Di Ruscio, A. Pierantonio, and R.F. Paige. Di↵erent models for model
matching: An analysis of approaches to support model di↵erencing. In Comparison
and Versioning of Software Models, 2009. CVSM ’09. ICSE Workshop on, pages 1–6,
May 2009.

[208] Vassilis Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applica-
tions, 388(6):1007–1023, 2009.

[209] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB, pages 1–7, 2011.

[210] Matej Kristan and Aleš Leonardis. Multivariate online kernel density estimation. In
Computer Vision Winter Workshop, pages 77–86, 2010.

[211] Matej Kristan, Danijel Skočaj, and Ales Leonardis. Online kernel density estimation
for interactive learning. Image and Vision Computing, 28(7):1106–1116, 2010.

[212] Krishna Kulkarni and Jan-Eike Michels. Temporal features in sql:2011. SIGMOD Rec.,
41(3):34–43, October 2012.

[213] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter
heron: Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’15, pages 239–250, New York,
NY, USA, 2015. ACM.

[214] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph com-
putation on just a pc. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA, 2012.
USENIX Association.

[215] Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Jr., Sean R. Spillane, Jayadevan
Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The g* graph database: E�ciently
managing large distributed dynamic graphs. Distrib. Parallel Databases, 33(4):479–514,
December 2015.

[216] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[217] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3c recommendation, W3C, 1999.

[218] Steve LaValle, Eric Lesser, Rebecca Shockley, Michael S Hopkins, and Nina Kruschwitz.
Big data, analytics and the path from insights to value. 52(2):20–32, 2011.

[219] Tien-Duy B. Le, Xuan-Bach D. Le, David Lo, and Ivan Beschastnikh. Synergizing
specification miners through model fissions and fusions (t). In Proceedings of the 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
ASE ’15, pages 115–125, Washington, DC, USA, 2015. IEEE Computer Society.

[220] N. Leavitt. Complex-event processing poised for growth. Computer, 42(4):17–20, April
2009.

[221] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 363–369, May 2008.

213

Bibliography

[222] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture
for industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, 2015.

[223] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14, pages 6:1–6:15, New York, NY,
USA, 2014. ACM.

[224] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic represen-
tation of time series, with implications for streaming algorithms. In Proceedings of
the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, DMKD ’03, pages 2–11, New York, NY, USA, 2003. ACM.

[225] Shen Lin, François Täıani, and Gordon S. Blair. Facilitating gossip programming with
the gossipkit framework. In Distributed Applications and Interoperable Systems, 8th
IFIP WG 6.1 International Conference, DAIS 2008, Oslo, Norway, June 4-6, 2008.
Proceedings, pages 238–252, 2008.

[226] C.-H. Liu, K.-L. Chang, J.J.-Y. Chen, and S.-C. Hung. Ontology-based context repre-
sentation and reasoning using owl and swrl. In Communication Networks and Services
Research Conf. (CNSR), 2010 8th Annu., pages 215–220, 2010.

[227] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April 2012.

[228] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning.
CoRR, abs/1006.4990, 2010.

[229] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning.
CoRR, abs/1408.2041, 2014.

[230] Wenpeng Luan, D. Sharp, and S. Lancashire. Smart grid communication network
capacity planning for power utilities. In Transmission and Distribution Conference
and Exposition, 2010 IEEE PES, pages 1–4, April 2010.

[231] Nadeem Mahmood, S. M. Aqil Burney, and Kamran Ahsan. A logical temporal rela-
tional data model. CoRR, abs/1002.1143, 2010.

[232] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph process-
ing. In Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[233] Norbert Mart́ınez-Bazan, M. Ángel Águila Lorente, Victor Muntés-Mulero, David
Dominguez-Sal, Sergio Gómez-Villamor, and Josep-L. Larriba-Pey. E�cient graph
management based on bitmap indices. In Proceedings of the 16th International Database
Engineering & Applications Sysmposium, IDEAS ’12, pages 110–119, New York,
NY, USA, 2012. ACM.

[234] Norbert Martinez-Bazan, Sergio Gomez-Villamor, and Francesc Escale-Claveras. Dex:
A high-performance graph database management system. In Proceedings of the 2011
IEEE 27th International Conference on Data Engineering Workshops, ICDEW ’11,
pages 124–127, Washington, DC, USA, 2011. IEEE Computer Society.

214

Bibliography

[235] Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, and Kurt Rothermel.
Graphcep: Real-time data analytics using parallel complex event and graph process-
ing. In Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems, DEBS ’16, pages 309–316, New York, NY, USA, 2016. ACM.

[236] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system
based on the xor metric. In Revised Papers from the First International Workshop on
Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-
Verlag.

[237] Xiangrui Meng, Joseph Bradley, B Yuvaz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, D Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine
learning in apache spark. JMLR, 17(34):1–7, 2016.

[238] Meta object facility (MOF) 2.5 core specification, 2015. Version 2.5.

[239] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Enhong Chen, and Wenguang Chen. Immortalgraph: A system for
storage and analysis of temporal graphs. Trans. Storage, 11(3):14:1–14:34, July 2015.

[240] Justin J Miller. Graph database applications and concepts with neo4j. In Proceedings
of the Southern Association for Information Systems Conference, Atlanta, GA, USA
March 23rd-24th, 2013.

[241] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. In-
ternet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497 – 1516, 2012.

[242] Assaad Moawad. Towards Ambient Intelligent Applications Using Models@ run. time
And Machine Learning For Context-Awareness. PhD thesis, University of Luxembourg,
2016.

[243] Assaad Moawad, Thomas Hartmann, François Fouquet, Jacques Klein, and Yves Le
Traon. Adaptive blurring of sensor data to balance privacy and utility for ubiquitous
services. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
Salamanca, Spain, April 13-17, 2015, pages 2271–2278, 2015.

[244] Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory Nain, Jacques Klein,
and Johann Bourcier. Polymer - A model-driven approach for simpler, safer, and evolu-
tive multi-objective optimization development. In MODELSWARD 2015 - Proceedings
of the 3rd International Conference on Model-Driven Engineering and Software Devel-
opment, ESEO, Angers, Loire Valley, France, 9-11 February, 2015., pages 286–293,
2015.

[245] Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory Nain, Jacques Klein,
and Yves Le Traon. Beyond discrete modeling: A continuous and e�cient model for iot.
In 18th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015,
pages 90–99, 2015.

[246] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51, October
2009.

215

Bibliography

[247] Boris Motik. Representing and querying validity time in {RDF} and owl: A logic-based
approach. Web Semantics: Science, Services and Agents on the World Wide Web, 12
- 13:3 – 21, 2012. Reasoning with context in the Semantic Web.

[248] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Mart́ın Abadi. Naiad: A timely dataflow system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 439–455, New
York, NY, USA, 2013. ACM.

[249] Nicolas Navet, Löıc Fejoz, Lionel Havet, and Altmeyer Sebastian. Lean model-driven
development through model-interpretation: the cpal design flow. In 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016), 2016.

[250] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing
platform. In 2010 IEEE International Conference on Data Mining Workshops, pages
170–177, Dec 2010.

[251] Peter Norvig. Artificial intelligence. NewScientist, (27), November 2012.

[252] Object Management Group. OMG Common Object Request Broker Architecture,
Version 3.3. http://www.omg.org/spec/CORBA/3.3/, November 2012.

[253] Object Management Group. OMG Unified Modeling Language, Version 2.5. http:

//www.omg.org/spec/UML/2.5/PDF, March 2015.

[254] National Institute of Standards and Technology. NIST framework and roadmap for
smart grid interoperability standards, release 3.0, 2014.

[255] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart,
Ivan Beschastnikh, and Yuriy Brun. Behavioral resource-aware model inference. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 19–30, New York, NY, USA, 2014. ACM.

[256] Kalil T Swain Oldham. The Doctrine of Description: Gustav Kirchho↵, Classical
Physics, and the” purpose of All Science” in 19th-century Germany. ProQuest, 2008.

[257] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In Proc. USENIX Annual Tech. Conf., pages 305–320, 2014.

[258] Avner Ottensooser, Alan Fekete, Hajo A Reijers, Jan Mendling, and Con Menictas.
Making sense of business process descriptions: An experimental comparison of graph-
ical and textual notations. Journal of Systems and Software, 85(3):596–606, 2012.

[259] Javier Espinazo Pagán, Jesúss Sánchez Cuadrado, and Jesús Garćıa Molina. Morsa:
A scalable approach for persisting and accessing large models. In Model Driven Engi-
neering Languages and Systems, pages 77–92. Springer, 2011.

[260] Sang Hyun Park, So Hee Won, Jong Bong Lee, and Sung Woo Kim. Smart home —
digitally engineered domestic life. Personal Ubiquitous Comput., 7(3-4):189–196, July
2003.

[261] Mikko Perttunen, Jukka Riekki, and Ora Lassila. Context representation and rea-
soning in pervasive computing: a review. Int. Journal of Multimedia and Ubiquitous
Engineering, pages 1–28, 2009.

216

http://www.omg.org/spec/CORBA/3.3/
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF

Bibliography

[262] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs with parti-
tioned tables. In Proceedings of the 9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 293–306, Berkeley, CA, USA, 2010. USENIX
Association.

[263] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou, and
Maya Haridasan. Managing large graphs on multi-cores with graph awareness. In Pro-
ceedings of the 2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 4–4, Berkeley, CA, USA, 2012. USENIX Association.

[264] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[265] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, June 1990.

[266] Lu Qin, Je↵rey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin.
Scalable big graph processing in mapreduce. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 827–838, New
York, NY, USA, 2014. ACM.

[267] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The next com-
puting revolution. In Design Automation Conference (DAC), 2010 47th ACM/IEEE,
pages 731–736, June 2010.

[268] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
systems: The next computing revolution. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 731–736, New York, NY, USA, 2010. ACM.

[269] István Ráth, Gergely Varró, and Dániel Varró. Change-driven model transformations.
In Andy Schürr and Bran Selic, editors, Model Driven Engineering Languages and
Systems, volume 5795 of Lecture Notes in Computer Science, pages 342–356. Springer
Berlin Heidelberg, 2009.

[270] A. Ray. Autonomous perception and decision-making in cyber-physical systems. In
Computer Science Education (ICCSE), 2013 8th International Conference on, pages
1–10, April 2013.

[271] Alberto Rodrigues da Silva. Model-driven engineering. Comput. Lang. Syst. Struct.,
43(C):139–155, October 2015.

[272] Marko A. Rodriguez. The gremlin graph traversal machine and language (invited
talk). In Proceedings of the 15th Symposium on Database Programming Languages,
DBPL 2015, pages 1–10, New York, NY, USA, 2015. ACM.

[273] E. Rose and A. Segev. TOODM: A temporal object-oriented data model with temporal
constraints. Apr 1991.

[274] J. Rothenberg. Artificial intelligence, simulation & modeling. chapter The Nature
of Modeling, pages 75–92. John Wiley & Sons, Inc., New York, NY, USA, 1989.

[275] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, pages 410–424, New York,
NY, USA, 2015. ACM.

217

Bibliography

[276] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13, pages 472–488, New York, NY,
USA, 2013. ACM.

[277] Sebnem Rusitschka, Christoph Doblander, Christoph Goebel, and Hans-Arno Jacob-
sen. Adaptive middleware for real-time prescriptive analytics in large scale power
systems. In Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX In-
ternational Middleware Conference, Middleware Industry ’13, pages 5:1–5:6, New York,
NY, USA, 2013. ACM.

[278] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[279] Semih Salihoglu and Jennifer Widom. Gps: A graph processing system. In Proceedings
of the 25th International Conference on Scientific and Statistical Database Manage-
ment, SSDBM, pages 22:1–22:12, New York, NY, USA, 2013. ACM.

[280] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and
B. Amos. Edge analytics in the internet of things. IEEE Pervasive Computing,
14(2):24–31, Apr 2015.

[281] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006.

[282] E Schrödinger. The present status of quantum mechanics. Die Naturwissenschaften,
23(48):1–26, 1935.

[283] Arie Segev and Arie Shoshani. Logical modeling of temporal data. In Proceedings of
the 1987 ACM SIGMOD International Conference on Management of Data, SIGMOD
’87, New York, NY, USA, 1987.

[284] Arie Segev and Arie Shoshani. The representation of a temporal data model in the re-
lational environment. In Proceedings of the 4th International Conference on Statistical
and Scientific Database Management, SSDBM’1988, pages 39–61, London, UK, UK,
1988. Springer-Verlag.

[285] Ed Seidewitz. What models mean. IEEE Softw., 20(5):26–32, September 2003.

[286] Bran Selic. The pragmatics of model-driven development. IEEE Softw., 20(5):19–25,
September 2003.

[287] Peter Pin shan Chen. The entity-relationship model: Toward a unified view of data.
ACM Trans. Database Syst., 1:9–36, 1976.

[288] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 505–516, New York, NY, USA, 2013.
ACM.

[289] A. Sheth, C. Thomas, and P. Mehra. Continuous semantics to analyze real-time data.
IEEE Internet Computing, 14(6):84–89, Nov 2010.

[290] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–10, May 2010.

218

Bibliography

[291] Laurynas Siksnys. Towards Prescriptive Analytics in Cyber-Physical Systems. PhD
thesis, Dresden University of Technology, 2015.

[292] Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. Computer,
27(6):17–26, 1994.

[293] J. A. Stankovic. Research directions for the internet of things. IEEE Internet of Things
Journal, 1(1):3–9, Feb 2014.

[294] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[295] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learn-
ing perspective. Autonomous Robots, 8(3):345–383, 2000.

[296] Thomas Strang and Claudia L. Popien. A context modeling survey. In UbiComp 1st
Int. Workshop on Advanced Context Modelling, Reasoning and Management, pages
31–41, 2004.

[297] Philip Stutz, Abraham Bernstein, and William Cohen. Signal/collect: Graph algo-
rithms for the (semantic) web. In Proceedings of the 9th International Semantic Web
Conference on The Semantic Web - Volume Part I, ISWC’10, pages 764–780, Berlin,
Heidelberg, 2010. Springer-Verlag.

[298] Alistair Sutcli↵e and Pete Sawyer. Requirements elicitation: Towards the unknown un-
knowns. In Requirements Engineering Conference (RE), 2013 21st IEEE International,
pages 92–104. IEEE, 2013.

[299] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann, and
Dániel Varró. Incquery-d: A distributed incremental model query framework in the
cloud. In Model-Driven Engineering Languages and Systems, pages 653–669. Springer
International Publishing, 2014.

[300] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. A funda-
mental approach to model versioning based on graph modifications: From theory to
implementation. Softw. Syst. Model., 13(1):239–272, February 2014.

[301] Amir Taherkordi, Frederic Loiret, Romain Rouvoy, and Frank Eliassen. Optimizing
sensor network reprogramming via in situ reconfigurable components. ACM Trans.
Sen. Netw., 9(2):14:1–14:33, April 2013.

[302] François Täıani. Some Contributions to The Programming of Large-Scale Distributed
Systems: Mechanisms, Abstractions, and Tools. Accreditation to supervise research,
Université Rennes 1, November 2011.

[303] J. Taneja, R. Katz, and D. Culler. Defining cps challenges in a sustainable electric-
ity grid. In Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International
Conference on, pages 119–128, April 2012.

[304] F. Täıani, S. Lin, and G. S. Blair. Gossipkit: A unified componentframework for gossip.
IEEE Transactions on Software Engineering, 40(2):123–136, Feb 2014.

[305] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wycko↵, and Raghotham Murthy. Hive: A warehousing
solution over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–1629, August
2009.

219

Bibliography

[306] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From ”think like a vertex” to ”think like a graph”. Proc. VLDB
Endow., 7(3):193–204, November 2013.

[307] H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz. Time-resolved study of laser-
induced disorder of si surfaces. Phys. Rev. Lett., 60:1438–1441, Apr 1988.

[308] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14,
pages 147–156, New York, NY, USA, 2014. ACM.

[309] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[310] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth,
Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric
Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16, New
York, NY, USA, 2013. ACM.

[311] Lúıs Veiga, Rodrigo Bruno, and Paulo Ferreira. Asynchronous complete garbage collec-
tion for graph data stores. In Proceedings of the 16th Annual Middleware Conference,
Middleware ’15, pages 112–124, New York, NY, USA, 2015. ACM.

[312] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and Robert S.
Schreiber. Presto: Distributed machine learning and graph processing with sparse
matrices. In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 197–210, New York, NY, USA, 2013. ACM.

[313] Michael Vierhauser, Rick Rabiser, Paul Grunbacher, and Alexander Egyed. Develop-
ing a dsl-based approach for event-based monitoring of systems of systems: Experi-
ences and lessons learned (e). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 715–725. IEEE, 2015.

[314] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

[315] World Wide Web Consortium W3C. Owl 2 web ontology language. structural specifi-
cation and functional-style syntax, 2009.

[316] Matt P Wand and M Chris Jones. Kernel smoothing. Crc Press, 1994.

[317] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. Asynchronous
large-scale graph processing made easy. In CIDR 2013, Sixth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online
Proceedings, 2013.

[318] M. N. Wernick, Y. Yang, J. G. Brankov, G. Yourganov, and S. C. Strother. Machine
learning in medical imaging. IEEE Signal Processing Magazine, 27(4):25–38, July 2010.

[319] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

220

Bibliography

[320] Jon Whittle, John Hutchinson, Mark Rouncefield, H̊akan Burden, and Rogardt Heldal.
ustrial adoption of model-driven engineering: Are the tools. In Ana Moreira, Bernhard
Schätz, Je↵ Gray, Antonio Vallecillo, and Peter J. Clarke, editors, MoDELS, volume
8107 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[321] Jie Wu, ZhiHui Lu, BiSheng Liu, and Shiyong Zhang. Peercdn: A novel p2p network
assisted streaming content delivery network scheme. In Computer and Information
Technology, 2008. CIT 2008. 8th IEEE International Conference on, pages 601–606.
IEEE, 2008.

[322] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang
Lin, Yafei Dai, and Lidong Zhou. Gram: Scaling graph computation to the trillions.
In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages
408–421, New York, NY, USA, 2015. ACM.

[323] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx: A
resilient distributed graph system on spark. In First International Workshop on Graph
Data Management Experiences and Systems, GRADES ’13, pages 2:1–2:6, New York,
NY, USA, 2013. ACM.

[324] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. CoRR, abs/1205.6233, 2012.

[325] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

[326] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

[327] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association.

[328] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, pages 423–438, New York, NY, USA, 2013. ACM.

[329] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur Çetintemel, Mag-
dalena Balazinska, and Hari Balakrishnan. The aurora and medusa projects. IEEE
Data Eng. Bull., 26(1):3–10, 2003.

[330] Bo Zhang and Ling Zhang. Multi-granular representation-the key to machine intelli-
gence. In Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd Inter-
national Conference on, volume 1, pages 7–7, Nov 2008.

[331] Bo Zhang and Ling Zhang. Multi-granular representation-the key to machine intelli-
gence. In Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd Inter-
national Conference on, volume 1, pages 7–7. IEEE, 2008.

221

Bibliography

[332] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Priter: A distributed
framework for prioritized iterative computations. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 13:1–13:14, New York, NY, USA,
2011. ACM.

[333] Hong Zhu, Lijun Shan, Ian Bayley, and Richard Amphlett. Formal descriptive se-
mantics of uml and its applications. UML 2 Semantics and Applications, page 95,
2009.

222

	List of abbreviations and acronyms
	List of figures
	List of tables
	List of algorithms and listings
	Introduction
	Context
	The smart grid case study
	The smart grid vision
	Smart grids in the context of this thesis

	Terminology
	Challenges
	Overview
	Challenges addressed in this thesis

	Approach: model-driven live analytics
	Contributions
	Thesis structure

	I Background and state of the art
	Background
	Data analytics
	Taxonomy of data analytics
	Batch and (near) real-time analytics
	Complex event processing
	Extract-transform-load and extract-load-transform
	OLAP and OLTP

	Modelling
	Model-driven engineering
	MOF: The Meta Object Facility
	Models@run.time
	Meta models, models, and runtime models in the context of this dissertation
	Modelling frameworks
	The Eclipse Modeling Framework
	The Kevoree Modeling Framework

	Database systems
	The CAP theorem
	Consistency models: ACID and BASE
	Key-value stores
	Graph stores

	Machine learning

	State of the art
	Analysing data of cyber-physical systems
	Data analytics platforms
	Online analytical processing (OLAP)
	The Hadoop stack
	The Spark stack

	Stream processing frameworks
	Graph processing frameworks
	Graph databases
	Analysing data in motion
	Temporal databases
	Temporal RDF and OWL
	Model versioning
	Time series databases
	Temporal graph processing

	Exploring hypothetical actions
	Reasoning over distributed data in motion
	Combining domain knowledge and machine learning
	Synthesis

	II Analysing data in motion and what-if analysis
	A continuous temporal data model to efficiently analyse data in motion
	Introduction
	Time as a first-class property
	Continuous validity of model elements
	Navigating in time
	Selecting model element versions
	Time-relative navigation

	Storing temporal data
	Implementation details and API
	Evaluation
	KPI-1: Model updates
	KPI-2: Navigating the context model in time
	KPI-3: Storing temporal data

	Conclusion

	A multi-dimensional graph data model to support what-if analysis
	Introduction
	Motivating example
	Many-world graphs
	Key concepts
	Many-world graph semantics
	Base graph (BG)
	Temporal graph (TG)
	Many-world graph (MWG)

	MWG implementation
	Mapping graph nodes to state chunks
	Indexing and resolving state chunks
	Index time tree (ITT)
	World index maps (WIM)
	Chunk resolution algorithm

	Scaling the processing of graphs
	Querying and traversing graphs

	Experiments
	Experimental setup
	Base graph benchmarks
	Temporal graph benchmarks
	MWG benchmarks of a node
	MWG benchmarks of a graph
	Deep what-if simulations
	Smart grid case study
	Discussion and perspectives

	Conclusion

	III Reasoning over distributed data and combining domain knowledge with machine learning
	A peer-to-peer distribution and stream processing model
	Introduction
	Reactive distributed models@run.time
	Overview: distributed models as data stream proxies
	Models@run.time as streams
	Distributed models@run.time
	Reactive models@run.time

	Evaluation
	Evaluation setting
	Scalability for large-scale models
	Scalability for large-scale distribution
	Scalability for frequently changing models

	Discussion: distribution and asynchronicity
	Conclusion

	Weaving machine learning into data modelling
	Introduction
	Combining learning and domain modelling
	Objectives
	Meta meta model
	Micro learning units
	Modelling language
	Semantic
	Syntax

	Model learning patterns
	Weaving learned attributes into domain classes
	Defining a learning scope for coarse-grained learning in domain models
	Modelling relations between learning units and domain classes
	Decomposing complex learning tasks into several micro learning units

	Framework implementation details

	Evaluation
	Experimental Setup
	Accuracy
	Performance

	Discussion: meta learning and meta modelling
	Conclusion

	IV Industrial application and conclusion
	Industrial application: electric overload prediction and warning
	Context
	The Creos partnership
	The REASON project

	Smart grid meta model
	Electric overload prediction and warning
	Electric load approximation
	General considerations
	Topology scenarios
	Single cable
	Cabinet connecting several cables
	Parallel cables

	Considering active and reactive energy
	Deriving the electric load
	Integration into the smart grid meta model

	Predicting consumption behaviour
	General considerations
	Live machine learning
	Gaussian mixture models
	Profiling power consumption
	Integration into the smart grid meta model

	Evaluation
	Experimental Setup
	Performance of electric load approximation
	Accuracy of electric load approximation
	Efficiency of electric consumption prediction
	Accuracy of electric consumption prediction

	Conclusion

	Conclusion
	Summary
	Future research directions
	Searching and selecting appropriate actions
	Reinforcement learning for improved action selection
	Encoding continuously evolving data
	Meta model evolution
	Memory management for analytics
	Data sharding

	Outlook

	List of papers and tools
	Bibliography

