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Abstract

Natural Language (NL) is arguably the most common vehicle for specifying requirements.
This dissertation devises automated assistance for some important tasks that requirements engi-
neers need to perform in order to structure, manage, and elaborate NL requirements in a sound
and effective manner. The key enabling technology underlying the work in this dissertation is
Natural Language Processing (NLP). All the solutions presented herein have been developed and
empirically evaluated in close collaboration with industrial partners.

The dissertation addresses four different facets of requirements analysis:

• Checking conformance to templates. Requirements templates are an effective tool for
improving the structure and quality of NL requirements statements. When templates are
used for specifying the requirements, an important quality assurance task is to ensure that
the requirements conform to the intended templates. We develop an automated solution for
checking the conformance of requirements to templates.

• Extraction of glossary terms. Requirements glossaries (dictionaries) improve the under-
standability of requirements, and mitigate vagueness and ambiguity. We develop an auto-
mated solution for supporting requirements analysts in the selection of glossary terms and
their related terms.

• Extraction of domain models. By providing a precise representation of the main concepts
in a software project and the relationships between these concepts, a domain model serves
as an important artifact for systematic requirements elaboration. We propose an automated
approach for domain model extraction from requirements. The extraction rules in our ap-
proach encompass both the rules already described in the literature as well as a number of
important extensions developed in this dissertation.

• Identifying the impact of requirements changes. Uncontrolled change in requirements
presents a major risk to the success of software projects. We address two different dimen-
sions of requirements change analysis in this dissertation: First, we develop an automated
approach for predicting how a change to one requirement impacts other requirements. Next,
we consider the propagation of change from requirements to design. To this end, we develop
an automated approach for predicting how the design of a system is impacted by changes
made to the requirements.
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Chapter 1

Introduction

1.1 Context
Requirements Engineering (RE) is the systematic process of identifying, specifying, analyzing, and
maintaining the requirements for a proposed system. Requirements capture the capabilities, charac-
teristics, qualities, and operational constraints of a system envisaged by the users or other stakeholders
of a system [Sommerville and Sawyer, 1997, Young, 2004, van Lamsweerde, 2009, Pohl, 2010, Hull
et al., 2011, Pohl and Rupp, 2011, Chemuturi, 2012].

Broadly, requirements are specified using two main formats: natural language and formal lan-
guage. Natural language (NL) is arguably the more common of the two in industrial settings. NL
tends to be easier to understand by the stakeholders as no special training is required. NL further
has the advantage that it can be used in any problem domain and is flexible to accommodate arbi-
trary abstractions and refinements [Pohl and Rupp, 2011]. Despite these advantages, NL is prone to
ambiguity, vagueness, incompleteness, and inconsistency [Pohl and Rupp, 2011]. Unless appropriate
analysis, verification and validation processes are put in place, the use of NL can negatively impact
the quality of requirements specifications.

This dissertation aims to capitalize on the benefits of NL for specifying requirements, and yet pro-
vide automation for a number of complex and laborious quality assurance and analysis tasks that need
to be performed over NL requirements. The main enabling technology in this dissertation is Natural
Language Processing (NLP). By providing the ability to identify and extract semantic information
from NL requirements, NLP plays a vital role in automated requirements analysis.

The majority of the research presented in this dissertation has been done in collaboration with
SES [SES, 2016], a leading satellite solutions provider worldwide. The software solutions developed
by SES require them to follow development standards set by the European Space Agency (ESA). A
typical project at SES involves multiple stakeholders, with high-level requirements that originate from
numerous sources. The requirements, which are by and large written in NL, constitute the basis for
contractual agreements between the stakeholders and thus correlate directly with cost, responsibility
and legal liability considerations. Due to these factors, SES has a strong interest in NL require-
ments analysis solutions that can provide assistance in better manipulation and quality assurance of
requirements. We have developed in collaboration with SES several solutions aimed at automated
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requirements analysis. While informed by practical considerations at SES, our solutions are not re-
stricted to SES and generalize to other contexts in which NL requirements are used. One of the
research solutions developed in this thesis –the subject of Chapter 7– is the result of a collaboration
with Delphi Automotive Systems Luxembourg [Delphi, 2016]. Delphi is a leading parts supplier in
the automotive industry. Similar to the solutions built in collaboration with SES, the results of our
collaboration with Delphi are generalizable to a wider variety of contexts.
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Figure 1.1. Dissertation overview and organization.

1.2 Contributions and Organization
In this dissertation, we investigate selected facets of requirements analysis in an industrial context and
devise, using NLP, novel solutions for automating the analysis tasks under investigation. Figure 1.1
provides an overview of the different solutions developed throughout this dissertation and illustrates
the solutions over a small sample of NL requirements derived from the Finnish nuclear plant safety
regulations [STUK, 2016]. The requirements have been slightly modified from their original form to
better exemplify our solutions.

Specifically, the solutions developed in this dissertation are as follows:

• Template Conformance Checking (TCC), marked (1) in Figure 1.1, automatically validates the
application of a requirements template on requirements sentences. This solution requires as
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input a set of NL requirements and the intended requirements template to conform with. For
the example requirements of Figure 1.1, the intended template is Easy Approach to Require-
ments Syntax (EARS) [Mavin et al., 2009, Mavin and Wilkinson, 2010, Gregory, 2011]. This
solution returns conformance diagnostics for the input requirements and, when a requirement is
non-conformant, the reason for non-conformance. For the example requirements in the figure,
R1 and R3 are conformant to the EARS template, whereas R2 is not. The reason why R2 is
non-conformant is that the conditional phrase “if a nuclear accident alarm is raised” appears at
the end of the requirements statement rather than at the beginning, as prescribed by the EARS
template. It must be noted that among the five solutions depicted in Figure 1.1, only TCC is
targeted at structured requirements that conform to a template; all other solutions are targeted
at the more general case where the NL requirements are unrestricted, and thus do not neces-
sarily follow a template. Our TCC solution has been published in a conference paper [Arora
et al., 2013a], and a follow-up journal paper [Arora et al., 2015a]. An additional workshop pa-
per [Arora et al., 2014b] and a tool paper [Arora et al., 2013b] have been published to provide
insights into the technical details of our solution. We cover TCC in Chapter 3.

• Glossary Terms Extraction and Clustering (GE), marked (2) in Figure 1.1, automatically ex-
tracts potential glossary terms from an input set of requirements statements, and clusters the
extracted terms based on the similarity between the terms. The example output from GE in Fig-
ure 1.1 shows four clusters of relevant terms for the input requirements (R1-R3). Such clusters
help requirements analysts in selecting the most suitable glossary terms, writing definitions for
these terms, and identifying variant phrases that may have been used for referring to the same
concept. For instance, the cluster with keywords “first degree of defence” and “second degree
of protection” highlights a potential variation (namely “defence” versus “protection”) in the
terminology. Such variations, unless they are unified or made explicit, can result in inconsisten-
cies. Our GE solution accounts for both syntactic and semantic similarities between terms when
clustering them. We provide practical guidelines for selecting the optimal number of clusters
for a given set of requirements. This work has been published in a conference paper [Arora
et al., 2014a]. A follow-up journal paper has been written, which is currently undergoing a
minor revision for publication at IEEE Transactions of Software Engineering. We cover GE in
in Chapter 4.

• Domain Model Extraction (ME), marked (3) in Figure 1.1, automatically extracts a domain
model from an input set of NL requirements. Domain models provide a precise and yet intuitive
way for domain experts to capture their otherwise tacit knowledge about the salient concepts in
a domain and the relationships between these concepts [Schneider, 2009]. The ME solution is
a generalization of our GE work, as the identification of the salient domain concepts is similar
across both approaches. The relationships between these terms, otherwise implicitly captured
by the clusters in the GE approach are explicated by our ME solution. The output of ME
depicted in Figure 1.1 is a domain model fragment extracted automatically from our example
requirements. Our ME solution is rule-based. We propose in our work new rules to improve
the completeness of automated domain model extraction. Our ME solution has been published
as a conference paper [Arora et al., 2016]. We cover ME in in Chapter 5.

• The last two solutions, marked (4) and (5) in Figure 1.1, both have to do with requirements
change analysis. Uncontrolled requirements evolution presents one of the biggest risks to the
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success of software projects [van Lamsweerde, 2009]. Manually identifying the impact of re-
quirements changes is an arduous task; automated assistance aimed at facilitating this task is
therefore beneficial. We propose two change impact analysis solutions addressing two differ-
ent dimensions of requirements change propagation: propagation of change from one require-
ment to another (inter-requirements), and propagation of change from requirements to design
(requirements-to-design):

– Our Inter-Requirements Change Impact Analysis (IR-CIA) solution, marked (4) in Fig-
ure 1.1, automatically analyzes the impact of changing one requirement on other require-
ments. In addition to a set of requirements, IR-CIA requires two additional inputs: the
change request and the change rationale. In Figure 1.1, the change request is the deletion
of the condition in R2, with the rationale being that leak-prevention should be monitored
constantly, rather than only when a nuclear accident alarm has been raised. For a given
change and a given rationale, our solution computes a quantitative score (not shown in
Figure 1.1) signifying how likely it is for each requirements statement to be impacted.
Our solution is equipped with guidelines to assist analysts in deciding which requirements
are most likely to be impacted based on the scores and thus need to be manually inspected.
For instance, the IR-CIA results in Figure 1.1 suggest that for the above-described change
to R2, only R3 is likely to be impacted but not R1. Our IR-CIA solution, which we cover
in Chapter 6, has been published as a conference paper [Arora et al., 2015a] and a tool
paper [Arora et al., 2015c].

– Our Requirement-to-Design Change Impact Analysis (RD-CIA) solution, marked (5) in
Figure 1.1, focuses on propagating changes from NL requirements to system designs,
when the requirements and design elements are expressed using Systems Modeling Lan-
guage (SysML) models. Our RD-CIA solution requires four inputs: the requirements,
SysML design models with dependency links between requirements and design blocks,
a change request, and the rationale for the change. The solution computes a quantitative
score (not shown) signifying how likely it is for any given design element to be impacted
by the requirements change in question. Guidelines similar to those in our IR-CIA solu-
tion are utilized for identifying design elements that are most likely to be impacted. For
instance, in Figure 1.1, the RD-CIA output indicates that for the given change in R2, all
blocks except B5 are likely to be impacted. Our RD-CIA solution has been published as a
conference paper [Nejati et al., 2016] and is covered in Chapter 7.

Before proceeding to present the dissertation contributions in Chapters 3 through 7, we provide in
Chapter 2 the overall background for our work.
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Chapter 2

Background

This chapter provides background information for the dissertation. The content of the chapter is
organized under four headings: (1) Natural Language (NL) requirements, (2) Natural Language Pro-
cessing (NLP), (3) Unified Modeling Language (UML) and Systems Modeling Language (SysML),
and (4) Quality Attributes.

2.1 Natural Language Requirements
NL requirements may come in many forms, including (IEEE-830 style) “shall” requirements, use
cases, user stories, scenarios, and feature lists [Pohl and Rupp, 2011]. Some of these representations
are more suitable for specifying certain requirements types than others. For example, use case descrip-
tions and user stories are more suited for specifying user requirements (problem domain) than system
requirements (solution domain). A brief description of some of the most common NL requirements
representations follows:

IEEE-830 style “shall” requirements [IEEE Computer Society and Board, 1998] are expressed
as statements starting with “The system shall ...”, with the possibility to replace “system” with an
appropriate system or actor name. For instance, the statement “The temperature sensor shall send the
temperature of the ducts to the duct monitoring system” is a shall requirement. The modal verb “shall”
in the requirements statement can be replaced by other close variants, such as “will” and “should”.
The modal verb signifies how binding a requirement is. Requirements with “shall” are typically taken
to be legally binding; those with“should” are not legally binding; and those with “will” are meant
for the future [Rupp, 2009]. A wide range of requirements types are expressible using the IEEE-
830 format, which is not necessarily the case for other NL formats [IEEE Computer Society and
Board, 1998]. Additionally, the IEEE-830 format requires virtually no prior training and is easily
understandable by all stakeholders.

Use cases are generalized descriptions of interactions between a system-to-be and the relevant
actors. Use cases are used primarily for capturing functional requirements, and more specifically
the system’s functional behavior upon a request from an actor under specific conditions. User re-
quirements, e.g., user goals and the tasks they should be able to perform, are also captured in use
cases [Wiegers, 2005]. A use case description typically includes at least the following information:
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Chapter 2. Background

name of the use case, brief description, precondition(s), actors, dependencies, flow of events, basic
and alternative flows, and postcondition(s).

User stories are brief descriptions of the functionality of a system described from a users’ per-
spective. Users stories are most commonly used in agile software development and are generally
specified using a pattern - As a h type of user i, I want h some goal i so that h some reason i. An
example instantiation of this pattern would be “As a system administrator, I want to generate a report
of all the sessions in the archived sessions list with a timestamp so that a daily log of handled sessions
is maintained”.

Feature list is yet another NL requirements format commonly used in agile settings [Chemuturi,
2012]. Feature lists specify the features that need to be built into a system from a client / user’s
perspective. Feature lists are used in an iterative fashion and are usually reset after a fixed time
frame, e.g., two weeks. The list and the description of the features are specified along with any
supplementary information about the features such as their priority, and the current version of the
feature implemented on the system. Figure 2.1 shows an example features list, with two features for
managing the comments of users in an application.

Table 2.1. Feature list example.

3

1

Development 
Effort (Man Days)

Must

Priority

Should

F002 Deletion 
Warning

A pop-up appears asking the users to confirm they 
want to delete their comments and remind them 
that comments will be irretrievable after deletion.

F001
Editable 

Comments 
Section

Currently, users are only allowed to add new 
comments.  Amend it to allow users to edit their 
existing comments.

Id Feature Description

All the solutions in this dissertation are grounded on IEEE-830 style “shall” requirements. This
was necessitated mainly by the need to align the developed solutions with the development practices
at the collaborating companies. In the remainder of the dissertation, when referring to an NL require-
ment or requirements statement, the IEEE-830 format is implied, unless explicitly stated otherwise.

2.2 Natural Language Processing
Natural Language Processing (NLP) refers to the computerized understanding, analysis, manipula-
tion, and generation of natural language [Manning and Schütze, 1999, Jurafsky and Martin, 2009].
Table 2.2 shows the NLP techniques used in this dissertation. A general overview of these techniques
is provided below. More details are provided in the individual chapters based on the context and
needs. For the purpose of illustration, let Rx denote the following requirements statement in the rest
of this section: “The system shall send the log messages to the database via the monitoring interface”.

Text chunking is an NLP technique for delineating non-overlapping phrases in sentences (in our
case requirements statements) [Jurafsky and Martin, 2009]. These phrases include, among others,
Noun Phrases (NPs) and Verb Phrases (VPs). The NPs in Rx are “the system”, “the log messages”,
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Table 2.2. NLP techniques applied for different approaches in this dissertation.

• Text Chunking
• Syntactic and Semantic 

Similarity Calculation
Chapter - 7 SysML Models Change Impact 

Analysis

Chapter - 6
• Text Chunking
• Syntactic and Semantic 

Similarity Calculation

Inter-Requirements Change 
Impact Analysis

Domain Model Extraction
• Text Chunking
• Phrase Structure Parsing
• Dependency Parsing

Chapter - 5

Chapter - 4 Glossary Terms Extraction and 
Clustering

• Text Chunking
• Syntactic and Semantic 

Similarity Calculation

Chapter - 3 Template Conformance 
Checking

• Text Chunking
• Phrase Structure Parsing

Chapter Task NLP Technique(s) Applied

“the database”, and “the monitoring interface”. The VP in Rx is “shall send”. Text chunking is
discussed in more detail in Chapter 3.

Phrase structure parsing is an NLP technique for determining the hierarchical phrasal structure
of sentences. Whereas text chunking returns a flat structure, phrase structure parsing returns a (hi-
erarchical) tree. Using this tree, the constituent phrases of a sentence can be retrieved at the desired
level of abstraction. Stated more precisely, phrase structure parsing returns both atomic phrases, i.e.,
phrases that can not be split further, and compound phrases, i.e., phrases that can be further split into
subphrases. For example, in Rx, the atomic NPs are the same as the ones identified by text chunking.
Phrase structure parsing further identifies a compound NP, namely “the database via the monitoring
interface”. Phrase structure parsing is discussed in more detail in Chapters 3 and 5.

Dependency parsing is an NLP technique for extracting the grammatical structure of sentences.
More specifically, dependency parsing identifies the dependency relationships between the words in
a sentence. For example, in Rx, one of the many dependencies returned by a dependency parser is
nsubj(send-4, system-2), stating that “system” is a subject of the verb “send”. The numbers in this
dependency correspond to the word sequence numbers in Rx. Dependency parsing is discussed in
more detail in Chapter 5.

Similarity calculation is an NLP technique for computing a degree of similarity between dif-
ferent textual elements. The similarity is computed based on a measure, which may be a syntactic
or a semantic one. Syntactic similarity signifies the similarity between the string content of differ-
ent textual elements. For example, Dice’s coefficient [Dice, 1945] is a syntactic similarity measure
that computes the similarity between two strings as twice the ratio of the number of common words
between the strings to the total number of words in the strings. Dice’s coefficient between “nuclear
power plant” and “nuclear accident”, for instance, would be 0.4. Semantic similarity measures com-
pute the similarity of words based on their semantics or meaning in a dictionary. For example, the
PATH measure computes the similarity between words based on the distance between them in a the-
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saurus Is-a hierarchy graph. The PATH similarity score between “car” and “bicycle” is, for instance,
0.33, as, in an Is-a tree, both concepts are descendants of the concept of “wheeled vehicle”. Similarity
measures are discussed in more detail in Chapters 4, 6, and 7.

SysMLUML 2

Sequence Diagram
State Machine Diagram
Use Case Diagram
Package Diagram 

Requirement Diagram
Parametric Diagram

Activity Diagram
Block Definition Diagram
Internal Block Diagram

Figure 2.1. Relation between SysML and UML [OMG, 2016].

2.3 UML and SysML
The Unified Modeling Language (UML) is a general-purpose modeling language for specifying, vi-
sualizing, constructing, and documenting the artifacts of object-oriented software systems [Larman,
2005]. UML diagrams can be classified into two categories: structural and behavioral. Structural dia-
grams model the elements present in a software system and behavioral diagrams describe the system’s
functionality.

The Systems Modeling Language (SysML) is a graphical modeling language for systems en-
gineering that can be used for specification, analysis, design and verification of complex systems
containing hardware, software, personnel, facilities and procedures [INCOSE, 2016]. SysML ex-
tensively reuses a subset of UML 2 and provides extensions to the existing diagrams in UML 2.
Figure 2.1 shows the relation between SysML and UML 2. SysML reuses Sequence Diagrams, State
Machine Diagrams, Use Case Diagrams, and Package Diagrams as-is from UML 2. Activity Dia-
grams, Block Definition Diagrams, and Internal Block Diagrams are the modified versions of existing
UML 2 diagrams. Further, SysML introduces two new diagrams, i.e., the Requirement Diagram and
the Parametric Diagram.

Chapters 5 and 7 of this dissertation use UML and SysML, respectively. Specifically, UML Class
Diagrams are used in Chapter 5 for representing the domain models that we extract from NL require-
ments; SysML Requirement Diagrams, Internal Block Diagrams and Activity Diagrams are used in
Chapter 7 for representing requirements, system design and the links between the two. A short in-
troduction to these diagram types follows below. For more information about UML and SysML,
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2.3. UML and SysML

the reader can consult standard textbooks, e.g., [Larman, 2005, Stevens, 2006, Friedenthal et al.,
2008, Holt and Perry, 2008]

Class Diagrams provide a structural view of an (object-oriented) software system. In particular,
Class Diagrams visualize a system’s classes, objects, interfaces, attributes and operations, and the
relationships between the classes. Class diagrams are also commonly used for representing domain
models, although there may be no immediate link between the domain and the software classes and
responsibilities [Larman, 2005].

Requirement Diagrams visualize the requirements, both functional and non-functional, that the
system must satisfy. The individual requirements are written in NL and mapped to a unique identifier
(id). Requirements Diagrams also provide means for capturing the relationships between require-
ments and from requirements to other artifacts such as design models. The standard relationship
types in SysML are contain, satisfy, derive, trace, verify, refine, and copy. Figure 2.3 provides a brief
description of these relationship types. The Requirement Diagram type is new in SysML and without
a precedent in UML 2. This diagram type was introduced due to the inability of a single UML di-
agram type to represent all classes of requirements, especially non-functional ones [Martorell et al.,
2014].

Table 2.3. SysML Requirement Diagram relationship types.

Copy Depicts a link between a requirement and its exact copy. It is primarily useful for 
requirement reuse across product families and projects.  

Depicts a link between a requirement and other SysML elements, such as, an activity 
diagram that further refine the NL requirement.  Refine

Depicts a link between a test case and a requirement to show the possibility of requirement 
verification by a SysML element.Verify

Depicts a trace link between a requirement and SysML elements .Trace

Depicts a link between a requirement derived from another requirement. Generally 
correspond to the requirements at the different levels of system hierarchy.Derive

Depicts a link between a requirement and a SysML element, where the design model 
element satisfies the requirement.Satisfy

Depicts a requirement split into multiple simpler requirements, with the contained 
requirements not adding or deleting any additional information to the original requirement. Containment

DescriptionRelationship Type

Internal Block Diagrams describe the internal structure of a block. Internal Block Diagrams
further contain the ports (the interfaces of a block) and the connectors (the connections between the
ports of blocks). The ports capture the information about the offered and required services of a block.
The connectors describe the communication between blocks, signifying the flow of physical items or
information between the blocks. Internal Block Diagrams are based on the UML Composite Structure
Diagrams.
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Chapter 2. Background

Activity Diagrams model the behavior of a system or a component by showing the workflows
of activities in the system or component. Activity Diagrams can model the flow of data, control and
even physical items (e.g., water). Activities can be further decomposed into sub-activities. Atomic
activities are called actions. SysML Activity Diagrams are derived from UML Activity Diagrams.

2.4 Quality Attributes
The evaluations we perform over our proposed solutions aim at demonstrating that the solutions meet
certain quality attributes. Below, we provide general definitions for the two main attributes considered
in this dissertation: accuracy and usefulness. The exact meaning and the metrics we use to measure
these attributes differ across the solutions, and are elaborated alongside the individual solutions de-
scribed in the subsequent chapters.

• Accuracy refers to how close the actual results produced by a solution are to the desired results.
• Usefulness refers to the extent to which a solution helps practitioners for performing a certain

task.
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Chapter 3

Requirements Template Conformance
Checking

Templates, also known as boilerplates, molds, or patterns [Pohl, 2010, Berry et al., 2003] are effective
tools for increasing the precision of Natural Language (NL) requirements, for avoiding ambiguities
that may arise from the use of unrestricted NL, and for making requirements more amenable to au-
tomated analysis [Withall, 2007, Pohl and Rupp, 2011, Uusitalo et al., 2011]. When templates are
applied, it is important to verify that the requirements are indeed written according to the templates.
If done manually, checking conformance to templates is laborious, presenting a particular challenge
when the task has to be repeated multiple times in response to changes in the requirements.

In this chapter, using techniques from Natural Language Processing (NLP), we develop an au-
tomated approach for checking conformance to templates. Specifically, we present a generalizable
method for casting templates into NLP pattern matchers and reflect on our practical experience im-
plementing automated checkers for two well-known templates in the Requirements Engineering com-
munity, Rupp’s template [Pohl and Rupp, 2011] and Easy Approach to Requirements Syntax (EARS)
template [Mavin et al., 2009, Mavin and Wilkinson, 2010, Gregory, 2011].

We have implemented our approach in a tool named REquirements Template Analyzer (RETA).
We discuss the evaluation of our approach on four industrial case studies. Our results indicate that:
(1) our approach provides a robust and accurate basis for checking conformance to templates; and
(2) the effectiveness of our approach is not compromised even when the requirements glossary terms
are unknown. This makes our work particularly relevant to practice, as many industrial requirements
documents have incomplete glossaries.

Structure. The remainder of the chapter is structured as follows: Section 3.1 motivates and formu-
lates the problem we aim to address in this chapter. It further outlines the research contributions of
this chapter. Section 3.2 provides background information on requirements templates and NLP to
the extent needed in our approach. Section 3.3 describes our approach for automation of template
conformance checking. Section 3.4 discusses tool support. Sections 3.5 presents the case studies we
have conducted to evaluate our approach. Section 3.6 identifies the limitations and analyzes threats
to validity. Section 3.7 compares our approach with related work. Section 3.8 concludes the chapter
with a summary and directions for future work.
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<when?>
<under what 
conditions?>

<system name>

SHALL

SHOULD

WILL

PROVIDE <whom?> 
WITH THE ABILITY 

TO <process>

<process>

BE ABLE TO
<process>

<object>
<additional details 

about object>

optional optional

Figure 3.1. Rupp’s template [Pohl and Rupp, 2011].

3.1 Motivation and Contributions
Templates organize the syntactic structure of a requirements statement into a number of pre-defined
slots. Figure 3.1 shows one of the well-known requirements templates, due to Rupp [Pohl and Rupp,
2011]. The template envisages six slots: (1) an optional condition at the beginning; (2) the system
name; (3) a modal (shall/should/will) specifying how important the requirement is; (4) the required
processing functionality; this slot can admit three different forms based on the manner in which
the functionality is to be rendered (explained later in Section 3.2.1); (5) the object for which the
functionality is needed; and (6) optional additional details about the object.

We show in Figure 3.2 three example requirements: R1 and R2 conform to Rupp’s template;
whereas R3 does not. For R1 and R2, we show the different sentence segments and how they corre-
spond to the Rupp’s template slots. The fixed elements of the template are written in capital letters.

For each communication channel type, the system needs to maintain a configurable timeout parameter.R3:

The Surveillance and Tracking module SHALL PROVIDE the system administrator WITH THE ABILITY TO
monitor system configuration changes posted to the database.

R1:
<system name> <whom?>

<process> <object> <additional details>

AS SOON AS a power outage is detected, the Surveillance and Tracking module SHALL record 
a warning in the system alert log file.

R2:
<when?> <system name> <process>

<object> <additional details>

Figure 3.2. Example requirements: R1 and R2 conform to Rupp’s template but R3 does not. The fixed elements
of the template are written in capital letters.

When templates are used, an important quality assurance task is to verify that the requirements
conform to the templates. If done manually, this task can be time-consuming and tedious [Pohl
and Rupp, 2011]. Particularly, the task presents a challenge when it has to be repeated multiple
times in response to changes in the requirements. When the requirements glossary terms (domain
keywords) are known, checking conformance to templates can be automated with relative ease. For
example, consider R1 in Figure 3.2 and assume that “Surveillance and Tracking module” (system
component), “system administrator” (agent), “monitor” (domain verb), and “system configuration
change” (event) have been already declared as glossary terms. In this situation, an automated tool
can verify conformance by checking that R1 is composed of a subset of the glossary terms (or terms
with close syntactic resemblance to the glossary terms) and a subset of fixed template elements, put
together in a sequence that is admissible by the template. The fixed elements may be leveraged for
distinguishing different template slots. For example, whatever appears between PROVIDE and WITH

THE ABILITY TO in R1 has to correspond to the hwhom?i (sub)slot.
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This approach does not work when the glossary terms are unknown, because it can no longer dis-
tinguish sentence segments that correspond to the template slots. For example, in Rupp’s template,
hprocessi, hobjecti, and hadditional detailsi come in a sequence without any fixed elements in be-
tween. For an automated tool to deem R1 as conformant, it has to correctly distinguish these three
slots in the following: “monitor system configuration changes posted to the database”. A second im-
portant issue is that even when a slot falls in between fixed elements, e.g., hwhom?i, and is thus easy
to delineate, there is no way to distinguish an acceptable filler for the slot from an unacceptable one,
e.g., a grammatically-incorrect phrase. For instance, in R1, we may accept “system administrator” as
correctly filling hwhom?i, but we may be unwilling to accept a grammatically-incorrect phrase such
as “system administer” for the slot.

While building a glossary is an essential activity in any requirements project, the glossary is not
necessarily available at the time one wants to check conformance to templates. In fact, based on our
experience [Arora et al., 2014b], practitioners tend to identify and define the glossary terms after the
requirements have sufficiently matured and are thus less likely to change. This strategy avoids wasted
effort at the glossary construction stage, but it also means that the glossary will not be ready in time to
support activities such as template conformance checking, which often take place during requirements
writing. Furthermore, the literature suggests that glossaries may remain incomplete throughout the
entire development process [Zou et al., 2010], thus providing only partial coverage of the glossary
terms. This implies that automated techniques for checking conformance to templates would have
limited effectiveness if such techniques rely heavily on the glossary terms being known a priori.

This chapter is motivated by the need to provide an automated and generalizable solution for
Template Conformance Checking (hereafter, TCC) without reliance on a glossary. To this end, we
make the following three contributions:

• We propose an approach for the automation of TCC using NLP. The main enabling NLP tech-
nology used in our approach is text chunking, which identifies sentence segments (chunks)
without performing expensive analysis over the chunks’ internal structure, roles, or relation-
ships [Jurafsky and Martin, 2009]. These chunks, most notably Noun Phrases (NPs) and Verb
Phrases (VPs), provide a suitable level of abstraction over NL for characterizing template slots
and performing TCC (Section 3.3). Our approach further utilizes NLP parsing when text chunk-
ing alone cannot conclusively determine template compliance, e.g., when requirements analysts
elect to fill the template slots with complex NPs that include VPs in their makeup.

• We report on four case studies conducted in order to evaluate our approach. Two of these studies
involve Rupp’s template, discussed above, and the other two involve another well-known tem-
plate, called EARS, discussed further in Section 3.2.1. In both of the studies that use Rupp’s
template, the requirements were written directly by professionals. As for the two studies using
EARS, one – which is the largest case study reported in this chapter – was written directly by
professionals as well, while the remaining study uses transformed requirements from one of our
two case studies based on Rupp’s template. The results from our case studies indicate firstly,
that our approach provides an accurate basis for TCC; and secondly, that the effectiveness of
our approach is not compromised even when the glossary terms are unspecified.

• We provide tool support for TCC. Our tool, named RETA enables analysts to automatically
check conformance to both Rupp’s and the EARS templates, and to obtain diagnostics about
potentially problematic syntactic constructs in requirements statements.
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SHALL
<system 

response>
<system name>

<optional 
precondition>

<trigger>

<in a specific state>

<feature is included>

Then

WHEN

IF

WHILE

WHERE

<optional 
precondition>

<trigger>

optional

Figure 3.3. The EARS template [Mavin et al., 2009].

3.2 Background

3.2.1 Requirements Templates
When properly followed, templates serve as a simple and yet effective tool for increasing the quality
of requirements by avoiding complex structures, ambiguity, and inconsistency in requirements. Tem-
plates further facilitate automated analysis by making NL requirements more easily transformable
into analyzable artifacts, e.g., models [Pohl and Rupp, 2011].

Several templates have been proposed in the Requirements Engineering literature. While our
approach can be tailored to work with a variety of existing templates, we ground our work in this
chapter on two templates, namely Rupp’s and the EARS templates [Pohl and Rupp, 2011, Mavin et al.,
2009]. Our choice is motivated by the reported use of these templates in the industry [Rupp, 2009,
Gregory, 2011, Terzakis, 2013] and the availability of practitioner guidelines for the templates, e.g.,
[Pohl and Rupp, 2011, Mavin, 2012]. These guidelines present an advantage for training purposes
and introducing templates in production environments.

Rupp’s template, shown in Figure 3.1, was already introduced in Section 3.1 except for the differ-
ent forms that the processing functionality slot (i.e., the template’s fourth slot) can assume. Rupp’s
template distinguishes three types of processing functionality:

• Autonomous requirements, captured using the “hprocessi” form, state functionality that the
system offers independently of interactions with users.

• User interaction requirements, captured using the “PROVIDE hwhom?i WITH THE ABILITY TO

hprocessi” form, state functionality that the system provides to specific users.
• Interface requirements, captured using the “BE ABLE TO hprocessi” form, state functionality

that the system performs to react to trigger events from other systems.

The EARS template, shown in Figure 3.3, is made up of four slots: (1) an optional condition at the
beginning; (2) the system name; (3) a modal; and (4) the system response depicting the behavior of
the system. EARS distinguishes five requirements types using five alternative structures for its first
slot [Mavin et al., 2009]:

• Ubiquitous requirements have no pre-condition, and are used for requirements that are always
active.
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• Event-driven requirements begin with WHEN and are used for requirements that are initiated by
a trigger event.

• Unwanted behavior requirements begin with IF followed by THEN before the hsystem namei.
These requirements are usually used for expressing undesirable situations.

• State-driven requirements begin with WHILE and are used for requirements that are active in a
definite state.

• Optional feature requirements begin with WHERE and are used for requirements that need to be
fulfilled when certain optional features are present.

• Complex requirements use a combination of above patterns, i.e., more than one condition type.

Compared to Rupp’s, the EARS template offers more advanced features for specifying conditions.
In contrast, Rupp’s template enforces more structure than EARS over the non-conditional parts of
requirements sentences, particularly by requiring an object (the hobjecti slot) to always be present.

3.2.2 Text Chunking
Text chunking is the core NLP technology underlying our approach. As previously defined in Sec-
tion 2.2, text chunking is the process of decomposing a sentence into non-overlapping segments [Ju-
rafsky and Martin, 2009]. The main segments of interest are Noun Phrases and Verb Phrases. A Noun
Phrase (NP) is a segment that can be the subject or object of a verb. A Verb Phrase (VP), some-
times also called a verb group, is a segment that contains a verb with any associated modal, auxiliary,
and modifier (often an adverb). For example, a correct chunking of the requirements statement R in
Figure 3.4(a) would yield the segments shown in Figure 3.4(b). As seen from this figure, segments
generated by text chunking have a flat structure. This is in contrast to segments in a parse tree – gen-
erated by a natural language parser such as the Stanford Parser [Klein and Manning, 2016] – which
can have arbitrary depths, as shown in Figure 3.4(c).

When a parse tree is not required for analysis, chunking offers two major advantages over parsing
[Bird et al., 2009]: First, chunking is computationally less expensive, having a complexity of O(n),
with n denoting the length of a sentence, versus O(n3) for (rule-based) parsing. This lower complexity
makes text chunking more scalable. Scalability is an important consideration in our context where we
need to deal with large requirements documents. Second, text chunking is more robust than parsing
[Song et al., 2006], in the sense that it produces results in a large majority of cases; whereas parsing
may fail to generate a parse tree, particularly when faced with unfamiliar input. Similar to scalability,
robustness is an important consideration in our context, noting that requirements documents are highly
technical and can deviate from commonly-used texts for training parsers, e.g., news articles.

While the above considerations make text chunking better suited to our context, the lack of a parse
tree means that text chunking cannot reveal the complete semantics of requirements statements. In
particular, text chunking cannot identify complex phrases, and would instead find only the atomic
phrases that make up complex ones. For example, the sentence segment “The information technology
tools used in the design of systems performing safety functions” in the example of Figure 3.4 is a
complex noun phrase. The chunks in Figure 3.4(b) capture only the atomic phrases of this complex
noun phrase; whereas, the nodes in the parse tree of Figure 3.4(c) further capture the complex noun
phrase in its entirety, as marked on the figure. We discuss the implications of complex phrases for
TCC in Section 3.3.3. Below, we describe how a text chunker is implemented in an NLP environment.
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The information technology tools used in the design of systems performing
safety functions shall be assessed for safety implications on the end-product.
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The information technology tools used in the design of systems performing safety functions shall be assessed for safety implications on the end-product.
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Figure 3.4. (a) An example requirements statement, (b) its sentence chunks, and (c) its full parse tree.
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Figure 3.5. NLP pipeline for text chunking.

A text chunker is a pipeline of NLP modules running in a sequence over an input document.
The (generic) pipeline for chunking is shown in Figure 3.5. As we explain in Section 3.5.4, this
pipeline can be instantiated in many ways, as there are alternative implementations for each step in
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the pipeline. The first module, the Tokenizer, breaks up the input into tokens. A token can be a
word, a number or a symbol. The Sentence Splitter divides the text into sentences. The POS Tagger
annotates each token with a part-of-speech tag. These tags include among others, adjective, adverb,
noun, verb. Most POS Taggers use the Penn Treebank tagset [Marcus et al., 1993]. Next is the
Name Entity Recognizer, where an attempt is made to identify named entities, e.g., organizations
and locations. In a requirements document, the named entities can further include domain keywords
and component names. The main and final step is the actual Chunker. Typically, but not always,
NP and VP chunking are handled by separate modules, respectively tagging the noun phrases and
verb phrases in the input. When a glossary of terms is available, one can instruct the NP Chunker to
treat occurrences of the glossary terms in the input as named entities, thus reducing the likelihood of
mistakes by the NP Chunker. To what extent the glossary is useful for TCC is the subject of RQ2
(see Section 3.5.6). Once processed by the pipeline of Figure 3.5, a document will have annotations
for tokens, sentences, parts-of-speech, named entities, noun phrases, and verb phrases. We use these
annotations for automating TCC, as we explain in Section 3.3.

3.2.3 Pattern Matching in NLP
As we elaborate in Section 3.3, we represent templates as BNF grammars. This representation enables
the definition of pattern matching rules for checking template conformance. For implementing a BNF
grammar over NL statements, we use JAPE (Java Annotation Patterns Engine). JAPE is a regular-
expression-based pattern matching language, available as part of the GATE NLP workbench [GATE
User Guide, 2016]. Figure 3.6 shows an example JAPE script, which checks conformance to Rupp’s
Autonomous requirements type.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Phase: MarkConformantSegment
Input: Condition NP VP Token
Options: control = appelt
 
Rule: MarkConformantSegment_RuppAutonomous
 (
    (({Condition}({NP}):system_with_condition) |
     ({NP}): system_without_condition)
    ({VP, VP.startsWithValidMD == "true", 
     !VP contains {Token.string == "provide"}}):process
    ({NP}):object
 ):label 
-->
 :label.Conformant_Segment = 
{explanation = "Matched pattern: Autonomous"},
:system_with_condition.System_Name = {},
:system_without_condition.System_Name = {},
:process.Process = {},
:object.Object = {}

Figure 3.6. JAPE script for Rupp’s Autonomous type.

Each JAPE script consists of a set of phases, with each phase made up of a set of rules. In the
script of Figure 3.6, we have a single phase, named MarkConformantSegment (line 1), which in-
cludes a single rule, named MarkConformantSegment_RuppAutonomous (line 5). The phase could be
extended with rules for checking conformance to Rupp’s User Interaction and Interface requirements
types. Each rule in JAPE consists of a left hand side (LHS) and a right hand side (RHS), which are
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separated by -> (line 13). The LHS specifies the annotation pattern that needs to be matched (lines 6–
12), and the RHS – the action to be taken when a match is found (lines 14–19). The LHS in the rule of
Figure 3.6 matches the pattern for Rupp’s Autonomous requirements type. The corresponding action
in the RHS annotates as Conformant_Segment the entire segment matching the pattern (lines 14–
15). The RHS has further actions for delineating System_Name, Process, and Object (lines 16–19).
Note that System_Name needs to be recognized both in the presence and absence of a condition. Two
temporary annotations, namely system_with_condition (line 7) and system_without_condition

(line 8) have been defined in the LHS to enable detection of System_Name in both cases. The RHS
of a JAPE rule can optionally contain Java code for manipulating the annotations. An example of an
RHS with embedded Java code can be seen in Figure 3.10.

JAPE provides various options for controlling the results of annotations when multiple rules match
the same section in text, or for controlling the text segment that is annotated on a match. These options
are brill, appelt, all, first, and once [GATE User Guide, 2016]. In our work, we make use of brill,
appelt and first. Brill means that when more than one rule matches the same region of text, all of the
matching rules are fired, and the matching segment can have multiple annotations. This is useful, for
example, while detecting potential ambiguities in a requirements sentence: if multiple ambiguities
are present in a given text segment, all the ambiguities will be annotated. Appelt means that when
multiple rules match the same region, the one with the maximum coverage (i.e., longest text segment)
is fired. This can be used, for example, as shown in Figure 3.6, where we want to assign a unique type
to a requirement that is most appropriate. First means that when there is more than one rule matching,
the first one matching is fired without trying to get the longest sequence. This is useful, for example,
when delineating sentences. To delineate a sentence, we need to match a sequence of tokens followed
by a full stop. Using first enables us to correctly match individual sentences; whereas using appelt
would result in matching the longest possible sequence, i.e., entire paragraphs.

3.3 Approach
In this section, we describe how to use the annotations produced by (an instantiation of) the text
chunking pipeline in Figure 3.5 for automating TCC. Specifically, we show how Rupp’s and the EARS
templates can be represented as BNF grammars over the annotations resulting from text chunking and
then verified automatically in an NLP framework. Rupp’s and the EARS templates are the basis for
the case studies in Section 3.5.

3.3.1 Expressing Templates as Grammars
In Figures 3.7(a) and 3.7(b), we provide the BNF grammars for Rupp’s and the EARS templates in
terms of the annotations generated by the pipeline of Figure 3.5. For simplicity, in the grammars, we
abstract from nested tags. For example, on line R.2, we use hvp-starting-with-modali to denote a
verb phrase (hvpi) that contains a modal at its starting offset. Similarly hinfinitive-vpi denotes a
hvpi starting with “to”.

In both templates, requirements can start with an optional condition. Rupp’s template does not
provide any detailed syntax for the conditions, recommending only the use of the following condi-
tional key-phrases: IF for logical conditions; and AFTER, AS SOON AS, and AS LONG AS for temporal
conditions. EARS, in contrast, differentiates the types of requirements by the hopt-conditioni rule
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<template-conformant> ::=
   <opt-condition> <np> <vp-starting-with-modal> <np>
      <opt-details> |
   <opt-condition> <np> <modal> "PROVIDE" <np> 
      "WITH THE ABILITY" <infinitive-vp> <np> <opt-details> |
   <opt-condition> <np> <modal> "BE ABLE" <infinitive-vp>
      <np> <opt-details>
<opt-condition> ::=  "" |
   <conditional-keyword> <token-sequence>
<opt-details> ::=  "" | 
   <token-sequence-without-subordinate-conjunctions>
<modal> ::= "SHALL" | "SHOULD" | "WILL"
<conditional-keyword> ::= "IF" | "AFTER" | "AS SOON AS" |
   "AS LONG AS"

 <template-conformant> ::=
   <np> <vp-starting-with-modal> <system-response> |
   <opt-condition> <np> <vp-starting-with-modal> 
      <system-response> 
<opt-condition> ::=  "" |
   "WHEN" <opt-precondition> <token-sequence> |
   "IF"   <opt-precondition> <token-sequence> "THEN" |
   "WHILE" <token-sequence> |
   "WHERE" <token-sequence> |
   <opt-condition>
<opt-precondition> ::=  "" | <np> <vp> (<np>)? 
<system-response> ::=  
   <token-sequence-without-subordinate-conjunctions>
<modal> ::= "SHALL"

E.1.
E.2.
E.3.
E.4.
E.5.
E.6.
E.7.
E.8.
E.9.

E.10.
E.11.
E.12.
E.13.
E.14.

R.1.
R.2.
R.3.
R.4.
R.5.
R.6.
R.7.
R.8.
R.9.

R.10.
R.11.
R.12.
R.13.
R.14.

(a) (b)

Figure 3.7. BNF grammars for (a) Rupp’s template and (b) the EARS template.

in E.5 - E.10. E.10 captures the complex requirements type (Section 3.2.1) in EARS by the use of
recursion in the hopt-conditioni slot.

A restriction that can be made in both templates is for the conditional segment to always end
with a comma (“,”). This restriction may however be too constraining because commas can be eas-
ily forgotten or applied according to one’s personal preferences for punctuation. To avoid relying
exclusively on the presence of a comma, one can employ heuristics for identifying the conditional
segment in a requirement. In particular, one can use the system name (an NP) followed by a modal
(e.g., SHALL) as an anchor for identifying the conditional part. For example, consider the follow-
ing requirement R = “When a GSI component constraint changes STS SHALL deliver a warning
message to the system operator”. In Rupp’s template, the heuristic capturing the syntax of R is
hconditional-keywordihsequence-of-tokensi hnpihvp-starting-with-modalihnpihopt-detailsi.

Template-specific keywords, e.g., the modals and the conditional keywords, are grouped into
keyword lists, called gazetteers [GATE User Guide, 2016]. These lists decouple TCC rules from
template-specific keywords, thus avoiding the need to change the rules when the keywords change.

Lastly, for the optional details in Rupp’s and the system response in the EARS template, we
accept any sequence of tokens as long as the sequence does not include a subordinate conjunction
(e.g., after, before, unless). The rationale here is that a subordinate conjunction is very likely to
introduce additional conditions. Both Rupp’s and the EARS templates envisage that such conditions
must appear at the beginning and not the end of requirements statements. Checking conformance to
the rules in Figure 3.7 can be implemented using NLP pattern matching as we describe next.

3.3.2 Conformance Checking via Pattern Matching
TCC starts with the text chunking pipeline, shown and discussed in Section 3.2.2. Text chunking
identifies tokens (along with their parts of speech), NPs, VPs, and named entities. Following text
chunking, another text processing pipeline is executed. This second pipeline, shown in Figure 3.8,
is composed of pattern matchers for recognizing template grammars. We use the JAPE language,
introduced in Section 3.2.3, for implementing these pattern matchers.

Below, we outline each of the steps in the pipeline of Figure 3.8, showing the annotations gener-
ated by each step over the requirements of Figure 3.9. We further present the JAPE implementation
of selected steps to illustrate the NLP machinery behind the approach:
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Figure 3.8. Pipeline for Template Conformance Checking.

1. Mark Head marks the starting word in a requirements sentence, denoted Head in the examples
of Figure 3.9.

2. Mark Modal VP marks the VP that starts with a modal. A requirements statement typically has
only one modal. If more than one modal is found, the first modal is annotated and a warning
is generated to bring to the user’s attention the presence of multiple modals. The annotation
resulting from this step is denoted Modal_VP in Figure 3.9. Note that R3 contains no valid
modal VP, hence the requirement is not having a Modal_VP annotation.

3. Mark Anchor first tags as System_Name the NP that precedes the modal. Subsequently, the step
tags as Anchor the system name and the VP (including the modal) that follows System_Name.
The anchor is later used for delineating the conditional slot. In the examples of Figure 3.9, R3
has no Anchor marked in it because the Modal_VP annotation is absent from this requirement.

4. Mark Valid Sentence marks as Valid_Sentence all sentences containing the anchor described
above, subject to the constraint that the anchor is either at the beginning of a sentence or pre-
ceded by a segment starting with a conditional keyword. Sentences that do not have an anchor
or fail to meet the additional constraint are marked as Invalid_Sentence. In the examples of
Figure 3.9, R1 and R2 are valid sentences whereas R3 is an invalid one.

5. Mark Condition marks the optional condition in those valid sentences that start with a condi-
tional keyword. The text between the beginning of such a sentence up to the anchor is marked
as being a Condition. The scripts for marking conditions are different for Rupp’s and EARS,
as the syntactic structure of the conditions differs across these templates.

6. Mark Conformant Segment marks as Conformant_Segment the segment of a valid sentence
that complies with the template. Since conformance rules are different across the templates
(R.1–R.7 and E.1–E.4 in Rupp’s and EARS, respectively), the scripts for conformance checking
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are also different. Figure 3.6, discussed earlier, shows an excerpt of the JAPE script for marking
conformant segments for the Autonomous requirements type in Rupp’s template.

7. Mark Details annotates as Details both the optional details envisaged by Rupp’s template as
well as the system response envisaged by EARS. Naturally, this annotation is relevant for only
requirements sentences that contain a Conformant_Segment. The Details annotation applies
to R1 and R2, as depicted in Figure 3.9. Figure 3.10 shows the JAPE script for generating the
Details annotation. Lines 11–24 of the script are written directly in Java. The Java code
computes the beginning and ending offsets for the annotation, that is, from the end of the
Conformant_Segment to the end of the sentence.

For each communication channel type, the system needs to maintain a configurable timeout parameter.R3:

The Surveillance and Tracking module SHALL PROVIDE the system administrator WITH THE ABILITY TO
monitor system configuration changes    posted to the database.

R1:
Head

Anchor

Process Object Details

AS SOON AS a power outage is detected, the Surveillance and Tracking module SHALL record 
a warning    in the system alert log file.

R2:

Condition Anchor
Modal_VP

Object Details

Head

Modal_VP UserSystem_Name

System_Name

Head

〖
〗

〗

�
�

!
"

〖� !
"�

! "��

Template_Conformant:��Conformant_Segment:〖〗Valid_Sentence: "! Invalid_Sentence:

"!

Template_Non_Conformant:

��
Figure 3.9. Annotations generated by the pipeline of Figure 3.8 over the example requirements of Figure 3.2.

8. Mark Conditional Details checks the details for terms that may imply additional conditions,
notably, subordinate conjunctions, e.g., “whenever”, and “once”. If such terms are detected in
the details segment, the segment will be additionally marked as Conditional_Details. For
example, if a phrase such as “whenever logging is enabled” is appended at the end of R2 in
Figure 3.9, the requirement will be deemed as having conditional details. Both Rupp’s and the
EARS templates mandate that the conditional part should appear at the beginning of a require-
ment. Hence, conditional details should trigger non-conformance (see step 10). Figure 3.11
shows the JAPE script for marking conditional details. The script identifies any segment al-
ready marked as Details in which a conditional keyword, denoted Conditional is present.
The Conditional annotation is produced via a customizable list (gazetteer) of such keywords.

9. Mark Conditional Types, exclusive to the EARS template, distinguishes the different sub-
parts of the condition slot, e.g., trigger and specific states. The script subsequently infers the
requirements type based on the type of the condition used. Figure 3.12 shows an excerpt of the
script, concerned with marking the condition type for event-driven requirements. For example,
suppose that the conditional keyword of R2 (Figure 3.9) was WHEN instead of AS SOON AS. R2
would then be deemed conformant to EARS with its conditional type being event-driven.

10. Mark Template Conformance marks as Template_Conformant any valid sentence that con-
tains a conformant segment, excluding those that have conditional details (see step 8). Any re-
quirement without a Template_Conformant segment will be marked as Template_Non_Conformant.
For example, R1 and R2 in Figure 3.9 are deemed conformant and R3 is deemed non-conformant
to Rupp’s template.
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Phase: DoMarkDetails
Input: Sentence Conformant_Segment
Options: control = appelt
 
Rule: MarkTemplateDetails
 (
{Sentence contains Conformant_Segment}
):sentence
-->
{
  AnnotationSet sentenceAs = 
(gate.AnnotationSet)bindings.get("sentence");
  AnnotationSet compliantAs = 
inputAS.get("Conformant_Segment").getContained(
    sentenceAs.firstNode().getOffset(),
    sentenceAs.lastNode().getOffset());
  Node start = compliantAs.lastNode();
  Node end = sentenceAs.lastNode();
  
  if (start == null || end == null)
    return;
     
  FeatureMap features = Factory.newFeatureMap();
  outputAS.add(start, end, "Details", features);
}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Figure 3.10. JAPE script for marking details.

Phase: DoMarkConditionalDetails
Input: Conditional Details
Options: control = appelt
 
Rule: MarkConditionalDetails
(
{Details contains Conditional}
)
:label
-->
:label.Conditional_Details= {}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Figure 3.11. JAPE script for marking conditional details.

Phase: DoMarkConditionalType
Input: Condition
Options: control = appelt
 
Rule: MarkEventConditions
Priority: 20
(
  (
    {Condition.string ==~ "[Ww]hen(.)+" }
  )
):label
-->
:label.ConditionType = {Type="Event-driven"}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

Figure 3.12. JAPE script for marking the event-driven conditional type in EARS.
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Figure 3.13. Enhancing TCC with parsing.

3.3.3 Handling Complex Phrases
As we discussed in Section 3.2.2, text chunking cannot identify complex phrases. To illustrate how
this affects TCC, consider the requirements statement R in Figure 3.4(a). This statement conforms to
the EARS template if we elect to fill the hsystem namei slot of the template with the complex noun
phrase “The information technology tools used in the design of systems performing safety functions”.
When a parse tree such as the one shown in Figure 3.4(c) is available, we can, as we explain below,
deduce that the above phrase is indeed a noun phrase. Text chunking, in contrast, identifies only the
atomic noun phrases of this complex noun phrase. Consequently, the pipeline of Figure 3.8 will mark
R as non-conformant.

The absence of a parse tree seldom poses a problem for TCC. One of the main reasons why tem-
plates are used is to minimize the use of complex linguistic structures. Deeming as non-conformant
a complex requirements statement such as that in the example of Figure 3.4(a) may be desirable as
a way to bring the complexity to the attention of the analysts. If the analysts however decide that
such complexity does not warrant further investigation, they will need a mechanism for filtering non-
conformance warnings that are exclusively due to the use of complex structures, thus narrowing the
warnings to genuine deviations from the underlying template.

In Figure 3.13, we show how one can enhance TCC with such a mechanism using natural lan-
guage parsing. First, all non-conformant requirements statements from the pipeline of Figure 3.8 are
processed by a parser, with a parse tree such as the one in Figure 3.4(c) generated for each statement.
Equipped with a parse tree, we can recognize complex noun phrases, in turn enabling us to distinguish
between non-conformance due to the use of complex sentence structures from non-conformance due
to genuine deviations from the template of interest.
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Phase: DoMarkComplexNPs
Input: SyntaxTreeNode
Options: control = appelt
 
Rule: MarkComplexNPs
(
   {SyntaxTreeNode.cat ==~ "NP"}
)
:label
-->
:label.NP= {}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Figure 3.14. JAPE script for marking complex NPs using a parse tree.

Figure 3.14 shows a JAPE script that can recognize complex noun phrases. The script searches
for parse tree node annotations, denoted SyntaxTreeNode, that have NP as their category (line 7).
Using the appelt control option (line 3) ensures that when multiple noun phrases are detected in the
same text region, only the one that is the longest is marked.1 For instance, running this JAPE script
over the example of Figure 3.4(a) would mark the following two regions as NP: (1) “The information
technology tools used in the design of systems performing safety functions”, (2) “safety implications
on the end-product”.

Following the execution of the JAPE script in Figure 3.14, the requirements originally marked
as non-conformant are reprocessed by the pipeline of Figure 3.13, but this time accounting for any
new NP annotations generated for complex noun phrases. This second execution of the TCC pipeline
filters out any non-conformance annotations caused by the limitation of text chunking in detecting
complex phrases.

3.3.4 Checking NL Best Practices
In addition to checking template conformance, we use NLP for detecting and warning about several
potentially problematic constructs, also called requirements smells [Femmer et al., 2014], that may be
signs of vagueness or ambiguity in requirements statements. We build upon the requirements writing
best practices by Berry et al [Berry et al., 2003]. Table 3.1 lists and exemplifies several constructs that
we detect automatically. The automation is done through JAPE in a manner similar to how template
conformance is checked.

3.4 Tool Support
We have implemented our approach in a tool named RETA (REquirements Template Analyzer).
RETA has been developed as an application for the GATE workbench (http://gate.ac.uk/).

Figure 3.15 shows the overall architecture of RETA. Analysts may specify the requirements in
the requirements authoring and management environment of their choice, e.g., Enterprise Archi-
tect (http://www.sparxsystems.com.au) or IBM DOORS (www.ibm.com/software/products/
ca/en/ratidoor/). A glossary (if one exists) can optionally be provided to RETA to assist in the
detection of noun phrases during the text chunking phase. The rules for checking conformance to

1JAPE’s different control options including appelt were discussed in Section 3.2.3.
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Table 3.1. Potentially problematic constructs (from Berry et al [Berry et al., 2003]) detected through NLP.

Annotation Potential Ambiguities Example
Warn_AND The “and” conjunction can imply several

meanings, including temporal ordering of
events, need for several conditions to be
met, parallelism, etc.

The S&T module shall process the query data and
send a confirmation to the database.

A temporal order is implied by the use of
‘and’.

Warn_OR The “or” conjunction can imply “exclu-
sive or”, or “inclusive or”.

The S&T module shall command the database to
forward the configuration files or log the entries.

The inclusive or exclusive nature of ‘or’ is
unclear.

Warn_Quantifier Terms used for quantification such as all,
any, every can lead to ambiguity if not
used properly.

All lights in the room are connected to a switch.
(example borrowed from Berry et al. [Berry et al.,
2003])

Is there a single switch or multiple switches?
Warn_Pronoun Pronouns can lead to referential ambigu-

ity.
The trucks shall treat the roads before they freeze.
(example borrowed from Berry et al. [Berry et al.,
2003])

Does “they” refer to the trucks or the roads?
Warn_VagueTerms There are several vague terms that are

commonly used in requirements docu-
ments. Examples include userfriendly,
support, acceptable, up to, periodically.
These terms should be avoided in require-
ments.

The S&T module shall support up to five config-
urable status parameters.

“support” is a vague term.
It is unclear whether “up to” means “up to and
including”, or “up to and excluding”.

Warn_PassiveVoice Passive voice blurs the actor of the re-
quirement and must be avoided in re-
quirements.

If the S&T module needs a local configuration
file, it shall be created from the database system
configuration data.

It is unclear whether the actor is S&T mod-
ule, database, or another agent.

Warn_Complex_Sentence Using multiple conjunctions in the same
requirements sentence make the sentence
hard to read and are likely to cause ambi-
guity.

The S&T module shall notify the administrator
visually and audibly in case of alarms and events.

The statement may be interpreted as visual
notification only for alarms and audible notifica-
tion only for events.

Warn_Plural_Noun Plural Nouns can potentially lead to am-
biguous situations.

The S&T components shall be designed to allow
24/7 operation without interruption.

Does this mean that every individual compo-
nent shall be designed to be 24 / 7 or is this a
requirement to be satisfied by the S&T as a whole?

Warn_Adverb_in
_Verb_Phrase

Adverbial verb phrases are discouraged
due to vagueness and the chances of im-
portant details remaining tacit in the ad-
verb (e.g. frequencies, locations)

The S&T module shall periodically poll the
database for EDTM CSI information.

The frequency of the periodic activity is un-
specified.

Warn_Adj_followed_by
_Conjunction

The adjective followed by two nouns sep-
arated by a conjunction, can lead to am-
biguity due to the possible relation of ad-
jective with just first noun or both nouns.

compliant hardware and software

Whether only hardware or both hardware and
software have to be compliant is unclear.
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Figure 3.15. RETA tool architecture.

Figure 3.16. Snapshot of the annotations generated by RETA.
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templates and best practices are provided as scripts written in GATE’s pattern matching language,
JAPE. The various lists of terms used by these scripts, e.g., lists of template fixed terms, vague terms,
conjunctions, modals and conditional words, are provided as customizable lists in GATE (gazetteers).

RETA uses GATE’s user interface for showing diagnostics about template non-conformance and
deviations from requirements writing best practices. A snapshot of GATE’s interface after running
the RETA application is shown in Figure 3.16. The requirements in the snapshot are drawn from one
of our case studies (Case-A) discussed in Section 3.5. These requirements have been slightly altered
from their original form to protect confidentiality.

In this snapshot, the left panel displays the various GATE resources (applications, language re-
sources, and processing resources). The center panel displays the contents of the resource selected
– here, the exemplar requirements document. The right panel displays the annotation labels for the
current document. When an annotation is selected from the list, all its occurrences are highlighted
over the document.

RETA consists of 30 JAPE scripts, containing in total approximately 800 lines of code. Out
of these, 26 scripts are common between the implementation of Rupp’s and the EARS templates,
suggesting that a large fraction of our implementation can be reused from one template to another.
RETA further includes 10 lists (gazetteers) containing the keywords used by the scripts. Out of these,
eight are common between the Rupp’s and the EARS template implementations.

To enable using GATE in realistic requirements development settings, we have implemented plug-
ins to automatically export requirements written in IBM DOORS and Enterprise Architect. The IBM
DOORS plugin has been implemented using a simple script written in DOORS Extension Language
(DXL); the plugin for Enterprise Architect has been implemented in C# and is approximately 1000
lines of code. A demo version of RETA along with a screencast illustrating its use is available at:

http://sites.google.com/site/retanlp/

3.5 Evaluation
We have conducted four case studies for evaluating our approach. The case studies have been selected
to address and balance several considerations. Most notably, these considerations include: coverage
of different industrial domains, coverage of different templates, and ensuring realistic scale in terms
of the number of requirements statements. In the remainder of this section, we discuss the design,
execution, and results of our case studies.

3.5.1 Research Questions (RQs)
Our case studies aim to answer the following RQs:

RQ1. What are optimal configurations for the NLP pipeline? Text chunking uses several NLP
modules, executed in a sequence over an input document. For each stage in the sequence, one needs
to choose from a number of alternative implementations. The aim of RQ1 is to establish which
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Table 3.2. The case studies used for evaluation.

Case% Description% Domain% Number%of%
Requirements% Template%Used%

Case9A% Requirements+for+a+software+component+in+a+satellite+
ground+station+

Satellites+ 380+ Rupp’s+

Case9B% Requirements+for+a+safety+evidence+management+tool+
suite+

Safety+certification+of+
embedded+systems+

110+ Rupp’s+

Case9C% Requirements+from+Case?A+restated+in+the+EARS+
template.+

Satellites+ 380+ EARS+

Case9D% Regulatory+requirements+for+nuclear+safety+by+the+
Finnish+Radiation+and+Nuclear+Safety+Authority+

Nuclear+energy+ 890+ EARS+

+
combination of implementations produces the most accurate results. Precision, recall, and F-measure
are used as metrics for assessing accuracy.

RQ2. Does the absence of a glossary have an impact on the accuracy of our approach? The glossary
terms may be unknown or incomplete at the time one needs to check conformance to a template. RQ2
aims to investigate how the absence of a glossary affects the accuracy of our approach.

RQ3. How effective is our approach at identifying non-conformance defects? Our ultimate goal is
to make it easier for practitioners to identify requirements that do not conform to a given template.
With RQ1 establishing the level of accuracy to be expected from our approach, RQ3 aims to determine
whether the accuracy is likely to be good enough from a practical standpoint.

RQ4. Is our approach scalable? In a realistic setting, one can be faced with hundreds and sometimes
thousands of requirements. RQ4 aims to establish whether our approach runs within reasonable time.

In Section 3.5.6, we answer these RQs based on the results of our case studies, and further provide
preliminary insights into the benefits of our approach from a practitioner’s perspective.

3.5.2 Description of Case Studies
The case studies in our evaluation are the following:

• Case-A concerns a software component in a satellite ground station. The requirements for
the component were written by professionals in the satellite industry using Rupp’s template.
This case study, a preliminary version of which was reported in [Arora et al., 2013a], was
conducted in collaboration with SES TechCom – a satellite service provider. Case-A contains
380 requirements statements.

• Case-B concerns a tool suite for managing the safety information (safety evidence) used during
the safety certification of embedded systems. The tool suite is currently under development in
a European project named OPENCOSS (http://www.opencoss-project.eu). This
case study was conducted in collaboration with requirements analysts from the OPENCOSS
project. Similar to Case-A, Rupp’s template was applied for writing the requirements. Case-B
has 110 requirements statements.

• Case-C is a variant of Case-A, whereby all the 380 requirements in Case-A were transformed
from Rupp’s to the EARS template. Examples and details about the transformation are provided
in Section 3.5.3.
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• Case-D concerns safety requirements for nuclear facilities developed by the Finnish Radiation
and Nuclear Safety Authority [STUK, 2016]. These requirements were written using the EARS
template by requirements experts in collaboration with nuclear safety engineers. The experi-
ence from applying EARS to these requirements has been documented by the requirements
authors [Uusitalo et al., 2011]. Case-D contains 890 requirements statements.

Table 3.2 summarizes key information about the case studies by providing for each case study a
brief description, the domain in which the study was conducted, the number of requirements involved,
and the requirements template used.

3.5.3 Data Collection Procedure
Data collection was performed in two phases: (1) documentation of requirements statements and
identification of glossary terms; and (2) inspection of the requirements resulting from the first phase
in order to determine which requirements are conformant and which ones are not. In Cases A, B,
and D, Phase 1 was carried out by industry experts, except that in Case-D the glossary terms were
not specified. In Case-C, the requirements were rephrased (from Case-A) by the researchers, with the
glossary terms from Case-A reused as is. Phase 2 in all case studies was carried out by the researchers
following the completion of Phase 1. We elaborate each of the two phases below:

Phase 1. The requirements in Case-A were written following two half-day training sessions, in which
the researchers familiarized the participating industry experts with Rupp’s template and how to use
it. The researchers had no control over how the requirements were specified after these training ses-
sions. In Case-B, the requirements originated from varied sources in the project’s consortium. These
requirements were documented using Rupp’s template by expert engineers within the consortium,
without involvement from the researchers.

Case-C requirements were derived from those in Case-A through a transformation. To this end,
a systematic process was followed: (1) All non-conformant requirements (to Rupp’s template) were
carried over verbatim without being rephrased; (2) From the conformant requirements, those that
did not have a conditional part were carried over verbatim as well and classified as ubiquitous re-
quirements under EARS. (3) Conditional requirements were mapped to different requirements types
in EARS based on the nature of the condition. For instance, requirements with temporal conditions
were rephrased so as to conform to the event-driven requirements type in EARS. As an example,
consider the following requirement in Rupp’s template: “As soon as an unplanned outage is detected
the S&T shall inform the SMP interface”. This requirement falls under the event-driven requirements
type in EARS and is thus rephrased as follows in Case-C: “When an unplanned outage is detected the
S&T shall inform the SMP interface”.

Note that the above transformation is not conformance-preserving. In particular, non-conformant
requirements under Rupp’s template may be deemed conformant under EARS. This happens due to
the fact that in Rupp’s template, it is mandatory to have an hobjecti slot following the hprocessi slot;
whereas, in EARS no specific constraint exists regarding the presence or the position of an object in
a requirements statement. For example, the requirement “The S&T shall present to the SOT operator
the EDTM anomalies.” is not conformant to Rupp’s template due to the object not being placed in the
expected slot. This requirement is nevertheless conformant to EARS.
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Finally, in Case-D, the requirements were written by experts with advanced training in the EARS
template [Uusitalo et al., 2011]. The researchers were not involved in requirements specification.

In Cases A and B, the glossary terms were provided by the experts. Two considerations about
glossary term identification were highlighted to the experts ahead of time: First, that for the purposes
of our study, we did not require the experts to define the glossary terms, but only to identify them.
Second, it was suggested to the experts that, when in doubt as to whether a particular term should be
in the glossary, to include rather than exclude the term. These measures are important for RQ2, as
the RQ aims to examine the effect of a glossary that is as complete as possible. Hence, we needed to
mitigate the risk that the set of glossary terms would have major omissions due to the time pressure
posed by having to define the terms. As noted earlier, for Case-C, we use the same glossary terms
as Case-A. For Case-D, no glossary was provided as part of the requirements document and the
researchers did not have access to the involved experts to elicit the glossary terms.

Phase 2. This phase is concerned with manually inspecting the requirements to determine which
requirements (from Phase 1) are conformant to the underlying template. The data collected in this
phase is used for calculating the effectiveness of automated conformance checking, as we discuss in
Section 3.5.4. To increase the validity of the results, this phase was independently conducted by two
different individuals. Subsequently, all discrepancies between the two inspectors were discussed and
an agreement about conformance vs. non-conformance was reached in all cases. To ensure that the
inspectors performed the inspection consistently with one another, an abstract inspection protocol,
shown in Listing 1, was drawn up and followed by both inspectors.

An important factor during the inspection is whether the experts who wrote the requirements
would like to admit only atomic noun phrases in the noun phrase slots (i.e., hsystem namei, hobjecti,
and hwhom?i for Rupp’s template and hsystem namei for the EARS template), or to further admit
complex noun phrases, as discussed in Section 3.3.3. In Cases A, B, and C, the inspection would
yield identical results irrespective of whether we admit complex noun phrases or not – an indication
that the experts used only atomic noun phrases in the relevant slots. In contrast, in Case-D, the experts
indicated that a conscious choice had been made to allow complex noun phrases in the hsystem namei
slot. Accordingly, during our inspection of the requirements in Case-D, we accepted (grammatically-
correct) complex noun phrases in the hsystem namei slot.

3.5.4 Analysis Procedure
Our analysis involves the execution of different configurations of NLP modules for text chunking
and measuring how effective each configuration is in distinguishing requirements that conform to a
template from those that do not.

3.5.4.1 NLP Pipeline Configuration

To instantiate the pipeline of Figure 3.5, one needs to choose, for each step in the pipeline, a specific
implementation from the set of existing alternative implementations. We narrow our investigation
to the set of implementations in GATE. This decision is based on two considerations: First, GATE
brings together a large collection of mature NLP technologies and provides a unified mechanism for
integrating them through a generic annotation infrastructure. These characteristics of GATE make it
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Listing 1 Manual inspection protocol for template conformance.
1: Let R be the requirement being inspected for conformance to template T (either Rupp’s or EARS).
2: Verify that R is a grammatically-correct sentence. Do not consider punctuation in determining correctness.
3: Verify that R uses an acceptable modal.
4: if R is conditional then
5: Verify that the conditions appear only at the beginning of R.
6: Verify that the conditions conform to the structure prescribed by T .
7: end if
8: if T is Rupp’s template then
9: Verify that hsystem namei, hobjecti, and hwhom?i (when applicable) are filled by noun phrases.

10: Verify that hprocessi is filled by a verb phrase.
11: else if T is EARS then
12: Verify that hsystem namei is filled by a noun phrase.
13: Verify that hsystem responsei starts with a verb phrase.
14: end if
15: if all criteria are fulfilled then
16: R is conformant to T ;
17: else
18: R is not conformant to T ;
19: end if

possible for us to experiment with several alternative solutions, beyond what would have been feasible
in other existing NLP frameworks. Second, an important conclusion we would like to reach from our
evaluation is how to build an accurate and at the same time practical tool. Focusing on a single
NLP framework like GATE enables us to come up with concrete recommendations, without having
to worry about the (likely) risk of interface incompatibilities between implementations that have not
been already adapted to work together.

While our approach depends mainly on the annotations produced by the text chunking modules,
i.e., Steps 5 and 6 in Figure 3.5, these two steps rely on the annotations produced in previous steps,
i.e., Steps 1-4; therefore, the performance of Steps 5 and 6 ultimately relates to that of their previous
steps. For this reason, we consider in our analysis not only different instantiations of Steps 5 and 6
but also different instantiations of Steps 1-4. Below, we list the different alternatives considered for
each of the steps in Figure 3.5:

Step 1 (2 alternatives): ANNIE English Tokenizer [ANNIE, 2016], OpenNLP Tokenizer [OpenNLP,
2016]

Step 2 (2 alternatives): ANNIE Sentence Splitter [ANNIE, 2016], OpenNLP Sentence Splitter
[OpenNLP, 2016]

Step 3 (3 alternatives): OpenNLP POS Tagger [OpenNLP, 2016], Stanford POS Tagger [StanPOS,
2016], ANNIE POS Tagger [Hepple, 2000]

Step 4 (2 alternatives): ANNIE Named Entity (NE) Transducer [ANNIE, 2016], OpenNLP Name
Finder [OpenNLP, 2016]

Step 5 (3 alternatives): OpenNLP (NP) Chunker [OpenNLP, 2016], Multilingual Noun Phrase Ex-
tractor (MuNPEx) [MuNPEx, 2016], ANNIE Noun Phrase Chunker (an extension of Ramshaw &
Marcus (RM) Noun Phrase Chunker [Ramshaw and Marcus, 1995])

Step 6 (2 alternatives): ANNIE Verb Group Chunker [ANNIE, 2016], OpenNLP (VP) Chunker
[OpenNLP, 2016]
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Figure 3.17. Confusion matrix for measuring accuracy.

Most of the above modules are based on machine learning. For all modules requiring training,
we use the default training data (for English) that is distributed with GATE Release 8.0 [GATE User
Guide, 2016].

The noun and verb phrase tags produced in Steps 5-6 are the basis for checking template con-
formance, as we described in Section 3.3. For Step 5, there is a choice to be made as to whether to
include the glossary terms as an input. Therefore, we have a total of 2⇥ (2⇥2⇥3⇥2⇥3⇥2) = 288
different configurations to compare for cases A through C. For Case-D, since the glossary terms are
unknown; we have only half the number of configurations, i.e., 144.

The annotations produced by each configuration is fed to the JAPE pipeline of Figure 3.8. For
Case-D, since we would like to further admit complex noun phrases into the slots of the underlying
template (as discussed in Section 3.5.3), the periphery pipeline of Figure 3.13 needs to be executed as
well. We use the Stanford Parser [Klein and Manning, 2016] that is integrated into GATE 8.0 for the
Parser step of the pipeline in Figure 3.13. The accuracy of TCC is subsequently analyzed using the
accuracy measures discussed next.

3.5.4.2 Metrics for Measuring Accuracy

Our analysis of accuracy is based on precision and recall. These classification accuracy metrics are
widely used in many areas, e.g., Information Retrieval (IR) [McGill and Salton, 1983], where one
needs to measure the ability of an approach to correctly classify a set of objects into classes with
certain properties. In our case, we are concerned with two classes: (1) template conformant and (2)
template non-conformant. The simple confusion matrix shown in Figure 3.17 captures the possible
errors that an automated conformance checker can make in the classification.

Precision is a metric for quality (low number of false positives) and is defined as TP/(TP +
FP). Recall is a metric for coverage (low number of false negatives) and is defined as TP/(TP +
FN). In most classification problems, including ours, an increase in precision comes at the cost of
a decrease in recall and vice versa [Buckland and Gey, 1994]. To compare different NLP pipeline
configurations while simultaneously accounting for both precision and recall, we use a metric, called
F-measure [McGill and Salton, 1983], which computes the weighted harmonic mean of precision and
recall. Depending on the context, one may want to place more emphasis on either precision or recall.
In our study, recall is the primary factor as it is easier for analysts to rule out a small number of false
positives than to go through a large document in search of false negatives. Hence, we use a definition
of F-measure, known as F2-measure, which gives more weight to recall than precision. F2-measure
is defined as: 3⇥Precision⇥Recall/(2⇥Precision+Recall).
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Table 3.3. General statistics for the case studies.

Case% Template%
Conformant%

Template%
Non0Conformant%

Number%of%
Glossary%Terms% Requirements%Types% Inter0rater%Agreement%(Cohen’s%Kappa)%

Case0A% 243$(64%)$ 137$(36%)$ 127$ Autonomous$ 206$ 0.943$$
(almost$perfect$
agreement)$

User$Interaction$ 35$
Interface$ 2$

Case0B% 98$(89%)$ 12$(11%)$ 51$ Autonomous$ 44$ 1.0$$
(perfect$agreement)$User$Interaction$ 43$

Interface$ 11$
Case0C% 297$(78%)$ 83$(22%)$ 127$(reused$

from$CaseDA)$
Ubiquitous$ 290$ 0.946$

$(almost$perfect$
agreement)$

EventDDriven$ 5$
Unwanted$
Behavior$

2$

StateDDriven$ 0$
Optional$Feature$ 0$
Complex$ 0$

Case0D% 857$(96%)$ 33$(4$%)$ 0$ Ubiquitous$ 546$ 0.786$$
(substantial$agreement)$EventDDriven$ 41$

Unwanted$
Behavior$

72$

StateDDriven$ 22$
Optional$Feature$ 150$
Complex$ 26$

$

We note that other metrics and weights could have been used for combining precision and recall.
Nevertheless, F2-measure is standard when recall needs to be weighted higher than precision. We
further note that we use classification accuracy metrics only for evaluation purposes. The end-users
of our approach are not exposed to these metrics and do not need to make decisions based on them.
The practical implications of these metrics for end-users are addressed in RQ3.

3.5.5 Results
This section describes the results of our case studies.

3.5.5.1 Requirements Inspection and Glossary Elicitation

In Table 3.3, we provide various statistics about the case studies: the level of template conformance as
established by the manual inspection protocol in Section 3.5.3, the number of glossary terms elicited
from the experts, and the distribution of conformant requirements across the different requirements
types in the underlying template. The table further shows the inter-rater agreement, expressed as
Cohen’s Kappa [Cohen, 1960], for the independent inspections conducted by two researchers. The
conformance statistics in Table 3.3 are based on the mutually agreed-upon inspection results, after the
differences between the two inspectors were discussed and resolved.

The requirements in Case-C, as mentioned previously, were derived from those in Case-A. The
significant majority of (conformant) requirements in Case-C fall under the ubiquitous category, which
is the simplest requirements type in EARS. This is because the requirements in Case-A were written
without considering the EARS template. Hence, no conscious effort was made in Case-A to use the
range of requirements types available in EARS. All cases, except Case-C, cover all the requirements
types in their underlying template. Further, Case-C, as shown in Table 3.3, has a higher percentage
of conformant requirements than Case-A (78% in Case-C versus 64% in Case-A). The reason for this
increase in the rate of conformance is the absence of a mandatory hobjecti slot in the EARS template.
Specifically, the requirements that are deemed non-conformant to Rupp’s template in Case-A because
of a missing or misplaced object are deemed conformant to EARS in Case-C.
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Table 3.4. Results from the analysis of non-conformant requirements.

Non$Conformance$
Type$

Explanation$ Example$ Case$ Percentage$of$$
Non$Conformances$

Minor$Deviations$ Requirement deviates only 
slightly from template’s 
prescribed structure, e.g., 
by missing some of the 
fixed elements. 

The S&T component shall provide 
the user with a function to view 
the network status. 

Case:A$ 2"/"137"="1.5%"
Case:B$ 0"
Case:C$ 0"
Case:D$ 0"

Enumerations$ Requirement concerns 
more than one object or 
functionality.  

The state of the S&T module can 
be standby, active, or degraded. 

Case:A$ 14"/"137"="10.2%"
Case:B$ 2"/"12"="16.7%"
Case:C$ 14"/"83"="16.9%"
Case:D$ 5"/"33"="15.2%"

Missing$or$
Misplaced$Object$

Exclusive to Rupp’s 
template: The object slot is 
missing or placed at a non-
prescribed position. 

The OPENCOSS platform shall 
provide users with the ability to 
use in an assurance project 
evidence types that have been 
defined in another project. 

Case:A$ 54"/"137"="39.4%"
Case:B$ 6"/"12"="50%"
Case:C$ 0"
Case:D$ 0"

Incorrect$
Conditional$
Keyword$

The conditional keyword is 
not among the ones 
prescribed by the template, 
e.g., WITHIN and AFTER. 

After underwriting1 is complete, if 
necessary the Insurance Officer 
shall perform underwriting2. 

Case:A$ 2"/"137"="1.5%"
Case:B$ 0"
Case:C$ 2"/"83"="2.4%"
Case:D$ 0"

Misplaced$
Conditions$

Conditions appear in 
positions other than 
prescribed (which is the 
requirement’s beginning). 

The S&T module shall load a new 
configuration from the database 
as soon as the module receives a 
reloading request. 

Case:A$ 61/137"="44.5%"
Case:B$ 4"/"12"="33.3%"
Case:C$ 61/"83"="73.5%"
Case:D$ 18"/"33"="54.5%"

Ill:formed$
Requirement$

Requirement is 
grammatically incorrect or 
has some ill-formed slot. 

The S&T shall periodically check 
the of the network elements by 
using the ping command.  

Case:A" 4""/"137"="3%"
Case:B" 0"
Case:C" 4"/"83"="4.8%"
Case:D" 2"/"33"="6.1%"

Incorrect$or$
missing$modal$

Requirement has an 
incorrect or missing modal 
in its verb phrase. 

The approval of the final safety 
analysis report is a precondition 
for the endorsement of the 
application for an operating 
license. 

Case:A$ 0"
Case:B$ 0"
Case:C$ 2"/"83"="2.4%"
Case:D$ 8"/"33"="24.2%"

"
With regards to reasons for non-conformance, the majority of issues are explained by the factors

listed in Table 3.4. As shown in the table, the most frequent reasons for non-conformance are mis-
placed or missing objects in Rupp’s template, and misplaced conditions in both Rupp’s and the EARS
templates. These two factors collectively account for approximately 80% of non-conformance issues.
The other factors are minor deviations, enumerations, incorrect conditional keywords, ill-formed sen-
tences, and incorrect or missing modals.

For requirements containing enumerated objects, e.g., the example given for enumerations in
Table 3.4, we did not advise the experts to take any remedial action to address non-conformance.
This is because enumerated objects appear to be more naturally expressed using a sentence structure
similar to our example, as opposed to the structure prescribed by the Rupp’s and the EARS templates.

In the case of misplaced conditions, a closer examination was conducted to determine if one could
naturally fit the affected requirements into the respective template, either by revising the sentence
structures or by decomposing the affected requirements into finer-grained ones. Here, we observed
what appears to be a limitation in the set of conditional keywords recommended by both Rupp’s and
the EARS template. Specifically, to be able to express a performance constraint, one often needs
to use WITHIN, e.g., “WITHIN 2 seconds after a critical failure is detected, the S&T module shall
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Table 3.5. Best pipelines in terms of F2-measure.

Case% Tokenizer% Splitter% POS%
Tagger%

Name%
Finder%

Glossary?% NP%
Chunker%

VP%
Chunker%

Time%
(secs)%

Precision% Recall% F2Cmeasure%

CaseCA%

!!" !!" Stanford" !!" YES" MUNPEX" ANNIE" 4"s"
(avg)"

0.91" 0.99" 0.96"

OpenNLP" !!" Stanford" !!" NO" MUNPEX" ANNIE" 3.5s"
(avg)"

0.91" 0.99" 0.96"

CaseCB%

!!" !!" OpenNLP" !!" !!" ANNIE" !!" 2s"
(avg)"

1" 1" 1"

!!" !!" OpenNLP" !!" !!" OpenNLP" !!" 2.5s"
(avg)"

1" 1" 1"

CaseCC% OpenNLP" !!" OpenNLP" !!" !!" ANNIE" ANNIE" 4.2s"
(avg)" 0.94" 0.98" 0.97"

CaseCD% OpenNLP" ANNIE" OpenNLP" !!" NO" OpenNLP" !!" 73.2s"
(avg)" 0.94" 1" 0.98"

"
Note: A "--" in the table means that the results are not sensitive to the choice of alternative used for that particular NLP module. See Section 5.4.1 for the set 
of alternatives for each module.

{
{

trigger the sound alarm on the main control panel”. During the inspection, a requirement like the
above would be deemed non-conformant because the conditional keyword is not among the ones
prescribed. We therefore propose that the conditional keywords in the two templates be extended with
WITHIN. Our accuracy results, presented next in Section 3.5.5.2, are nevertheless calculated based on
our original inspection results, i.e., as reported in Table 3.3, and irrespective of our own observation
about conditional keywords.

3.5.5.2 Accuracy and Execution Time

The NLP pipelines discussed in Section 3.5.4.1 were executed for Cases A through D. For each
pipeline, the classification accuracy metrics were computed as well as the time it took to execute the
pipeline. In Table 3.5, we show the most accurate pipelines (best F2-measure) for each case study.
Descriptive statistics for precision, recall, F2-measure, and execution time across all pipelines are
given in the form of box plots in Figure 3.18. For Case-D, the accuracy results and execution times
in Table 3.5 are inclusive of the periphery process for handling complex noun phrases. The accuracy
gain from this periphery process is shown in Figure 3.19, where we contrast, through box plots, the
accuracy with and without applying the periphery process. All experiments were conducted on a
2.3 GHz Intel Core i7 CPU with 8Gb of memory.

In Case-A and Case-C, there are 24 outliers in precision (< 0.7), leading to 24 outliers in F2-
measure. All outliers have three features in common: the use of ANNIE Tokenizer, MuNPEx NP
Chunker and the absence of a glossary. In 12 of the outliers, where precision is very low (in the 0.3–
0.4 range), the poor outcome is due to MuNPEx NP Chunker being misled by incorrect tokenization
produced by ANNIE Tokenizer. The result is that MuNPEx NP Chunker cannot correctly recognize
the hsystem namei slot. In the remaining 12 outliers, the problem remains the same, except that
OpenNLP NE Transducer corrects some of ANNIE Tokenizer’s mistakes, by recognizing the system
name as an (atomic) named entity. Despite this, precision remains fairly low (in the 0.5–0.7 range for
Case-A and 0.5–0.6 range in Case-C).

In Case-B and Case-D, there are no outliers, but there is significant variation in F2-measure,
brought about by the variation in precision. The variation in precision is largely explained by the
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Figure 3.18. Box plots for classification accuracy metrics and execution times.

low number of non-conformant requirements. In other words, even a small number of false positives
can have a considerable impact on precision and in turn on F2-measure.

3.5.6 Discussion

RQ1. The best (i.e., most accurate) text chunking pipelines for Cases A through D were shown earlier
in Table 3.5. Since the best choice differs across the case studies, one cannot recommend a single
pipeline per se for use over a new (and unknown) requirements document. The results in Table 3.5
thus do not allow us to draw conclusions about the optimal NLP pipeline for text chunking. To come
up with a general recommendation for the NLP pipeline, we need to pay attention to the impact that a
particular NLP module can have on the outcome across all the pipelines it appears in. For example, a
module that does not appear in the best pipeline but performs consistently well across all the pipelines
it appears in may be preferred over a module that does appear in the best pipeline but also appears in
some pipelines with poor results.
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Figure 3.19. Accuracy results for Case-D with and without considering complex noun phrases.

In more precise terms, we need to determine what modules cause the most variation in the accu-
racy metrics and avoid modules that cause a large degree of uncertainty. This analysis of variation is
best conducted using a regression tree [Breiman et al., 1984]. A regression tree is built by partitioning
a data set, e.g., NLP module combinations here, in a step-wise manner to obtain partitions that are as
consistent as possible with respect to a certain criterion, e.g., F2-measure in our context.

In Figure 3.20, we show the regression trees for F2-measure for our case studies. At each level
in the tree, one NLP module is picked out and the pipelines are partitioned according to whether
they use that module or not. The criterion for selection is to choose the module that would minimize
the standard deviation across the branches that result after partitioning. In other words, the module
that is most influential in explaining the variance in F2-measure is selected. In each node of the tree,
we show the count (number of pipelines), the mean and standard deviation for F2-measure, and the
difference between the smallest and largest F2-measure observed in the partition. We note that the
regression tree for Case-D has been constructed without applying the periphery process for handling
complex noun phrases (see Figure 3.13). This is because the regression tree is meant for analyzing the
sensitivity of accuracy to the text chunking NLP modules. The inclusion of the periphery process can
undesirably alter the sensitivity results, because the process not only identifies complex noun phrases
but also any atomic noun phrases that might have been missed by text chunking, thus masking text
chunking errors.

As shown by Figure 3.20, in three out of the four cases, namely Cases A through C, the most criti-
cal decision concerns the choice of the NP Chunker module. In these three case studies, MuNPEx NP
Chunker performs well when the glossary terms are provided but does poorly on average otherwise.
In Case-C (but not Case-A and Case-B), MuNPEx NP chunker performs well in the absence of glos-
sary terms, as long as OpenNLP Tokenizer is used for tokenization. Compared to MuNPEx Chunker,
ANNIE and OpenNLP NP Chunkers are less sensitive to the implementation choices for other NLP
modules and thus introduce less variation. Within the ANNIE / OpenNLP Chunker branch in Cases A
through C, the most critical decision concerns the POS Tagger, with Stanford and OpenNLP taggers
achieving higher means.

The accuracy in Case-D is most sensitive to the choice of the Tokenizer, with OpenNLP leading to
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Figure 3.21. Execution time growth for checking conformance (a) to Rupp’s template and (b) to the EARS
template.

more accurate results than the ANNIE tokenizer. At the next level in regression tree, the most critical
choice is that of the NP Chunker, with MuNPEx chunker yielding less accuracy than ANNIE and
OpenNLP chunkers – consistent with Cases A through C.

The change in the most critical component being the Tokenizer in Case-D, as opposed to the NP
Chunker in Cases A through C, is largely explained by the different tokenization behaviors of AN-
NIE and OpenNLP over certain patterns that were seen frequently in Case-D, most notably the use
of cross-references in the requirements statements. In the case of the ANNIE tokenizer, the compo-
nents of the numeric part of a cross-reference would be treated as separate tokens. For example, the
ANNIE tokenizer would tokenize the cross-reference “Article 3.3.2.1” into eight tokens, one for the
term “Article” and seven for the numeric part. OpenNLP would instead tokenize the cross-reference
into two tokens, one for “Article” and one for the numeric part. Thus, in our context, misleading
tokenization by the ANNIE tokenizer affects the behavior of the NP Chunker, making it the primary
reason for wrongly-identified NPs, and eventually an incorrect delineation of the hsystem namei slot
in the requirements statements. Subsequently, accuracy in Case-D is less affected by the choice of the
NP Chunker than the Tokenizer.

Despite the above discrepancy between Case-D and Cases A through C, there is no inconsistency
between the four case studies, in the sense that there are combinations of NLP modules that work well
across all the case studies. Based on our analysis of the full regression trees for Cases A through D,
we recommend the following modules for instantiating the text chunking pipeline:

• Tokenizer: OpenNLP Tokenizer
• Sentence Splitter: ANNIE Sentence Splitter OR OpenNLP Sentence Splitter
• POS Tagger: OpenNLP POS Tagger OR Stanford POS Tagger
• NE Transducer: ANNIE NE Transducer OR OpenNLP Name Finder
• NP Chunker: ANNIE (RM) NP Chunker OR OpenNLP NP Chunker

39



Chapter 3. Requirements Template Conformance Checking

• VP Chunker: ANNIE VG Chunker OR OpenNLP VP Chunker

The above choices lead to the best overall results with little variation. Other alternatives may
produce good results but may turn out to be too sensitive to the presence of certain other modules or
conditions. For example, the MuNPEx NP Chunker should be used only in the presence of a (good)
glossary.

Table 3.6. Average accuracy for recommended pipeline configurations.

Case% With%Glossary% Without%Glossary%
Precision) Recall) F2/measure) Precision) Recall) F2/measure)

Case0A% 0.94) 0.91) 0.92) 0.94) 0.91) 0.92)
Case0B% 0.93) 1) 0.98) 0.93) 1) 0.98)
Case0C% 0.91) 0.98) 0.96) 0.91) 0.98) 0.96)
Case0D% /) /) /) 0.85) 0.96) 0.92)

)

If we narrow the text chunking pipeline configurations to those made up of the modules rec-
ommended above, we obtain 32 configurations that can be executed with or without a glossary. In
Table 3.6, we show for each case study, the average accuracy of these 32 configurations. Comparing
these accuracy levels against the best possible accuracy levels shown earlier in Table 3.5, we see an
accuracy reduction of 4%, 2%, 1%, and 6%, respectively for Cases A through D.2 We believe this
reduction is small enough to be tolerated in exchange for the high stability of the results generated
by our recommended configurations. In RQ3, we discuss the practical implications of these accuracy
levels.

RQ2. As indicated by Table 3.6, as long as one uses the NLP modules recommended in RQ1, the
presence of a glossary does not lead to accuracy gains. We therefore expect our approach to work
with high accuracy even when the glossary terms are unknown.

RQ3. Table 3.7 shows for each of our case studies the expected number of false positives and false
negatives, based on the number of requirements statements in the study and the average accuracy
levels in Table 3.6 for our recommended pipelines.

The expected number of false positives is small across all case studies both in absolute numbers, as
suggested by Table 3.7, and also as a percentage of the total number of non-conformances (Table 3.3).
Specifically, this percentage is: 8/137 = 5.8% for Case-A, 1/12 = 8.3% for Case-B, 8/83 = 9.6%
for Case-C, and 6/33 = 18.2% for Case-D. We thus anticipate that excluding false positives would
comparatively take little effort.

The remaining question is how much of a quality problem false negatives pose. Ideally, one would
like to avoid false negatives completely; however, this is practically infeasible as doing so will come at
the expense of introducing a large number of false positives. Table 3.7 suggests that false negatives are
few in absolute numbers. Further, when viewed as a percentage of the total number of requirements in
each case study, false negatives constitute a small fraction: 12/380 = 3.2% for Case-A, 0/110 = 0%

2 As a technical remark, we note that the pipeline configurations in our study are deterministic, i.e., they produce the
same results across different runs over the same input. In other words, we obtain a single accuracy value, as opposed to
an accuracy distribution, for a given pipeline configuration over a given input. Due to the absence of random variation,
we do not need statistical significance testing for comparing the accuracy results.
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Table 3.7. Expected number of false positives and false negatives based on average accuracy levels (Table 3.6).!
!
Case% Number%of%

Requirements%
False%
Positives%

False%
Negatives%

Case7A% 380! 8! 12!
Case7B! 110! 1! 0!
Case7C% 380! 8! 2!
Case7D% 890! 6! 1!
!

for Case-B, 2/380 = 0.5% for Case-C, and 1/890 = 0.1% for Case-D. For a large set of requirements
in a real project, a manual inspection conducted under time pressure is unlikely to produce perfect
results. Hence, such small fractions of false negatives are unlikely to outweigh the automation benefits
of our approach, when compared to manual inspections.

RQ4. The main aspect of scalability that needs to be investigated in our context is whether our ap-
proach works within reasonable time over a large collection of requirements. Ideally, as the number
of requirements grows, we expect the execution time to grow linearly as well. To analyze how exe-
cution times grow, we first combined the requirements sets written using the same template, i.e., we
combined Case-A with Case-B requirements, and combined Case-C with Case-D requirements. The
combination of Case-A and Case-B (Rupp’s template) yields 380+110 = 490 requirements, and that
of Case-C and Case-D (the EARS template) – 380+890 = 1270 requirements. We then randomized
the order of the combined sets. Let Case-AB and Case-CD denote these sets after randomization.

From Case-AB, we built five requirements sets of increasing sizes: the first 98 (i.e., 490 / 5)
requirements of Case-AB, the first 2 ⇤ 98 requirements in Case-AB and so on. We built five similar
sets for Case-CD: the first 254 (i.e., 1270/5) requirements of Case-CD, the first 2⇤254 requirements
of Case-CD, and so on until the last one with 5 ⇤ 254 = 1270 requirements. We then examined
the execution time for TCC using different text chunking pipelines and against the growing number
of requirements. In Figure 3.21, we show the execution time plots for each template. The results
show a linear growth pattern in both plots, thus providing evidence that automatic TCC based on text
chunking will scale linearly. Given such linear relation and the fact that processing the entire set of
Case-AB and Case-CD requirements takes only a few seconds, we anticipate that our approach should
be practical for much larger sets of requirements.

We further evaluated the scalability of the additional process for handling complex noun phrases
in Case-D. To do so, we took the non-conformant requirements resulting from the execution of the
least precise (i.e., worst) text chunking pipeline, followed by the JAPE pipeline of Figure 3.8. The
rationale for using the least precise text chunking pipeline is to obtain the largest set of requirements
that contain either complex noun phrases or potentially confusing segments for text chunking.

From the above process, we obtained a total of 260 non-conformant requirements statements.
These statements were divided into 5 incremental sets, with cardinalities of 260/5 = 52, 2⇤260/5 =
104, . . . , and 260. We then subjected these sets to the process of Figure 3.13. In Figure 3.22, we
show the execution time growth for the Parser step of the process, implemented via the Stanford
Parser as discussed in Section 3.5.4.1. The “Mark Complex Noun Phrases” step of the process takes
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Figure 3.22. Execution time growth for the Parser step envisaged by the process of Figure 3.13.

negligible time; the execution time growth for the second run of the pipeline of Figure 3.8, i.e., after
the detection of complex noun phrases, is consistent with the execution times reported previously in
Figure 3.21 and hence not shown. As suggested by Figure 3.22, while the Parser is computationally
more expensive than text chunking, its execution time grows linearly as the number of requirements
statements increases.

Benefits from a practitioner’s perspective. Unless practitioners find our approach useful, they are
unlikely to adopt it. It is therefore important to investigate practitioners’ perceptions of the benefits
of our approach. To do so, we draw on the qualitative reflections of a group of software and systems
engineers at SES TechCom, with whom we have been collaborating on the research presented in this
chapter. The reflections are based on the observations the researchers made throughout their inter-
actions with the engineers and, in case of the expert in Case-A and Case-C, his hands-on experience
applying Rupp’s template and our tool.

The engineers’ primary reason for interest in requirements templates and requirements writing
best practices was to reduce ambiguity and vagueness as much as possible. They knew from expe-
rience that requirements containing vague terms or expressed using complex sentences were more
likely to be the subject of clarification requests during formal requirements reviews. They believed
that our tool would help reduce cost and overhead by enabling them to easily identify and address
a sizable fraction of readability and vagueness issues before formal reviews took place. In a similar
vein, the engineers found our tool to be useful as a training aid for requirements writing and, in the
longer term, for establishing harmonized and industry-accepted requirements writing guidelines for
their application domain.

Another important benefit the engineers noted with regards to templates is the flexibility that
templates provide for requirements clustering. For example, conformance to Rupp’s template would
enable one to cluster the requirements based on the system name, the process verb being used, the
object being processed, and so on. Such clustering facilitates the development of lower-stream arti-
facts, e.g., when one wants to orient the design or the test cases around requirements clusters. Since
our approach automatically delineates different template slots in requirements, it can further automat-
ically cluster the requirements based on the contents of different slots. In this respect, the engineers
saw opportunities for cost and effort savings by applying our approach.
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Given the limited scale to which our tool has been applied by our industry partner so far and
the fact that we have not yet undertaken rigorous user studies, the benefits highlighted above are
only suggestive but not conclusive. This being said, the positive experience reported by our industry
partner and the fact that our tool could be successfully applied in real projects is promising and makes
our approach worthy of future study.

3.6 Limitations and Threats to Validity

Limitations. Our approach tackles only structural conformance checking. This means that, as long as
the syntax of a requirements statement follows what is prescribed by a given template, the statement
will be deemed conformant. One cannot detect semantic mismatches using our approach, i. e. ,
the situation where the analyst’s choice of requirements type (and hence syntax) does not match the
analyst’s intent. For example, an analyst may incorrectly frame an interface requirement as a user
interaction requirement in Rupp’s template or confuse the event-driven and unwanted behavior types
in the EARS template. Our approach is unable to detect such problems.

Internal validity. We tried to mitigate all foreseeable factors that could cause confounding effects.
Particularly, learning effects from the tool were considered in the case study planning. The require-
ments experts had no exposure to the tool before finishing requirements specification and glossary
terms elicitation. The use of case study data as test data for tool development was strictly avoided.

Another potential threat to internal validity is that the gold standard for evaluation was developed
by the researchers. We took several mitigation actions to counter bias during the construction of
the gold standard. Our tool was not used during the development of the gold standard to minimize
influences on the reasoning of the researchers. A detailed protocol was drawn up and followed by
the researchers for classifying requirements into conformant and non-conformant (see Section 3.5.3).
Finally, the gold standard was constructed independently by two researchers, and the differences were
then reconciled. Our inter-rater agreement analysis shows substantial or better agreement across our
case studies (see Table 3.3), thus providing confidence about the quality of the gold standard that
underlies our evaluation.

Construct Validity. The main consideration about construct validity has to do with what it means to
conform to a template. The guidelines accompanying generic templates such as Rupp’s and EARS
are intentionally abstract to ensure wide applicability. Subsequently, a certain degree of interpretation
is required when one attempts to operationalize the process for conformance checking.

In our work, we opted for a relaxed definition of conformance, merely enforcing proper use of
noun phrases and verb phrases. This is the most fundamental and yet the most complex aspect to
handle for an automated tool. More restrictions can be considered for conformance, e. g. , ensuring
absence of vague terms in the requirements. Our tool indeed already reports many such issues in the
form of warnings (see Section 3.4). However, since such restrictions are easy to enforce automatically,
i. e. , with a precision and recall of 100%, incorporating the restrictions into the definition of confor-
mance provides “easy targets” for an automated tool to deem requirements as non-conformant. This
can potentially conceal the mistakes that a tool might make in more complex operations, notably the
detection of noun phrases and verb phrases. By having our definition of conformance focused on the
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most basic criteria, we thus provide conservative estimates about the effectiveness of our approach.
Therefore, even better results can be expected when the conformance is more constrained.

External Validity. We applied our approach to four case studies from different domains and using
two different templates. We have further tried to remain as generic as possible in our treatment of
template conformance. We believe that the consistency seen across the results of our case studies
provides reasonable confidence about the generalizability of our approach. Further experimentation
with requirements documents from other domains with even larger sizes would nevertheless be useful
for improving external validity.

With regards to the benefits of our approach for practitioners (Section 3.5.6), the reflections pre-
sented in this chapter are those of a small number of domain experts working in a single application
domain. Broader and more systematic user studies and surveys are necessary in the future for obtain-
ing a more generalizable picture of the benefits and potential drawbacks of our approach.

3.7 Related Work
In this section, we compare with several strands of related work on requirements templates and appli-
cations of NLP to requirements.

3.7.1 Requirements Templates
Numerous requirements templates have been proposed over the years, e.g., by Rolland and Proix
[Rolland and Proix, 1992], by Rupp [Pohl and Rupp, 2011], and by Mavin [Mavin et al., 2009]. These
templates have been used both in academia and in industrial settings for specifying the requirements
of complex systems [Daramola et al., 2012, Joseph et al., 2013, Slipper et al., 2013, Terzakis, 2013].
Our work in this chapter does not propose any new templates, but rather devises and empirically
validates a scalable, flexible solution for automated checking of conformance to existing templates.

To examine the level of support for templates in existing tools, we conducted a tool review, guided
by a recent requirements tool survey [de Gea et al., 2012] and a direct examination of the information
sources that this survey builds upon. Specifically, we selected tools whose publicly-available feature
descriptions include one or a combination of the following keywords: template, mold, template,
syntax checking, linguistic analysis, and Natural Language Processing. We found nine tools that
matched this criterion, namely, ARM [Wilson et al., 1997], Cradle [Cradle, 2016], DODT [Farfeleder
et al., 2011], LEXIOR [LEXIOR, 2016], QuARS [Fabbrini et al., 2001], RQA [RQA, 2016], TIGER
Pro [TigerPro, 2016], inteGREAT [inteGREAT, 2016], and visibleThread [Visible-Thread, 2016].

Upon closer examination of these tools, we identified two, DODT [Farfeleder et al., 2011] and
RQA [RQA, 2016], offering automated support for checking template conformance. Our work differs
from DODT in its focus: DODT concentrates on requirements transformation to achieve template
conformance, whereas we focus on non-conformance detection. Further, in contrast to our work,
DODT requires a high-quality domain ontology to be developed first, which as we argued earlier, is
not a realistic expectation in most industrial development contexts.

As for RQA, while an investigation of the underlying conformance checking algorithm was not
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possible due to the tool’s proprietary nature, we observed that the tool’s ability to identify sentence
segments was impacted when the glossary terms were left unspecified. Our overall conclusion from
the tool review is that although verifying template conformance is an important activity [Pohl and
Rupp, 2011], limited automated assistance exists for it. In particular, tool support is lacking for set-
tings where one has little control over the requirements authoring environments used by the analysts,
e.g., when multiple organizations are involved in requirements writing. Having multiple organizations
is also a factor that contributes to the difficulty of developing a glossary beforehand, thus making ex-
isting tools difficult to use. Our tool, in contrast, can be used in settings where little usable knowledge
exists about how the requirements were written, and where all that is available for analysis are the
requirements statements themselves.

3.7.2 NLP in Requirements Engineering
NLP has a long history of use in Requirements Engineering due to the prevalent use of natural lan-
guage in the specification of requirements [Yilmaz and Yilmaz, 2011].

Quality assurance processes such as consistency checking represent one of the earliest areas where
NLP has been applied to requirements. Gervasi and Nuseibeh [Gervasi and Nuseibeh, 2002] use
domain-based parsing to enable checking of various formal properties over requirements. Gervasi
and Zowghi [Gervasi and Zowghi, 2005] use part-of-speech tagging and parsing to automatically
transform requirements into propositional logic and identify inconsistencies through logical reason-
ing. Kof et al. [Kof et al., 2010] develop an ontology-based technique for requirements validation
using lemmatization and part-of-speech tagging.

NLP is further a cornerstone of automated requirements traceability, both for identifying inter-
dependencies between requirements and for tracing requirements to lower-stream development arti-
facts such as design and source code. For example, Zou et al. [Zou et al., 2010] use phrase detection
and similarity measures to enhance the requirements trace detection process. Duan and Huang [Duan
and Cleland-Huang, 2007] combine similarity measures with clustering-based techniques to group
candidate requirements trace results. Sundaram et al. [Sundaram et al., 2010] utilize similarity mea-
sures in a manner analogous to the above to improve requirements traceability detection. Sultanov
and Hayes [Sultanov and Hayes, 2010] use tokenization and stemming for establishing traceability be-
tween requirements specifications at different levels of abstraction. Torkar et al. [Torkar et al., 2012]
and Cleland-Huang et al. [Cleland-Huang et al., 2014] provide detailed reviews of the state-of-the-art
on requirements traceability, including the range of NLP-based techniques used in this area.

Another area where NLP is commonly used is requirements ambiguity detection. Chantree et
al. [Chantree et al., 2006] use morphological analysis for detecting nocuous requirements ambigui-
ties. Kiyavitskaya et al. [Kiyavitskaya et al., 2008b] use parsing for finding various potential syntac-
tic and semantic ambiguities in requirements. Yang et al. [Yang et al., 2011] focus specifically on
anaphoric ambiguities in requirements and develop a heuristics-based approach based on parsing for
detecting this class of ambiguities. Femmer et al. [Femmer et al., 2014] use part-of-speech tagging,
morphological analysis, and customized dictionaries for detecting patterns that are signs of potential
quality defects in requirements.

Transforming NL requirements to models constitutes yet another important application of NLP in
Requirements Engineering. Yue et al. [Yue et al., 2011] present a systematic literature review on the
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approaches for transforming NL requirements into analysis models, further providing insights about
how NLP is utilized in this context.

In addition to the general areas outlined above, where NLP is pervasive, there are various other
Requirements Engineering tasks in which the use of NLP has been explored. For example, Zachos
and Maiden [Zachos and Maiden, 2008] use text chunking for matching requirements to web-service
descriptions. Kiyavitskaya et al. [Kiyavitskaya et al., 2008a] use part-of-speech tagging and pars-
ing for generating various kinds of markup information over regulatory requirements. Holbrook et
al. [Holbrook et al., 2009] utilize text chunking for assessing requirements satisfaction against dif-
ferent artifacts, such as design. Güldali et al. [Güldali et al., 2009] detect redundancies and implicit
relationships between requirements using parsing and similarity measures. Falessi et al. [Falessi
et al., 2013] apply and empirically compare different NLP-based strategies for identifying equiva-
lent requirements. Guzman and Maalej [Guzman and Maalej, 2014] employ part-of-speech tagging,
stemming and sentiment analysis for synthesizing user opinions about the requirements of mobile ap-
plications. Adedjouma et al. [Adedjouma et al., 2014] use tokenization and NLP pattern matching for
detection and resolution of cross-references in legal texts. Arora et al. [Arora et al., 2014b] combine
text chunking, similarity measures and clustering for extracting and grouping together requirements
glossary terms.

None of the threads outlined above specifically address the problem that we tackle in this chapter,
namely automatic checking of conformance to requirements templates. In addition, text chunking,
which is the primary enabling technology for our approach has not yet been exploited widely in
Requirements Engineering. Subsequently, limited empirical evidence exists about the effectiveness
of text chunking over requirements documents. The empirical evaluation we report in this chapter
provides insights into the effectiveness of various alternative implementations of text chunking, thus
paving the way for the wider future application of text chunking in Requirements Engineering.

3.8 Conclusion
In this chapter, we presented an automated and tool-supported approach for checking conformance
to requirements templates. The approach builds on a mature Natural Language Processing technique,
known as text chunking. We reported on the application of the approach to four case studies from
different domains, using two different templates – Rupp’s [Pohl and Rupp, 2011] and EARS [Mavin
et al., 2009]. In this context, we evaluated and compared several text chunking solutions in terms
of effectiveness and scalability for checking template conformance. Our evaluation results indicate
that text chunking provides an accurate and scalable basis for template conformance checking. The
study further shows that, within the range of alternatives considered, there exist several text chunking
solutions with little sensitivity to the presence or absence of a requirements glossary. This makes it
possible to automatically check and enforce the correct use of templates even in the (common) case
where the glossary is partial or missing.

For future work, we plan to investigate whether it is feasible to automatically transform template
grammars to NLP conformance checking pipelines. Automating this transformation enables one to
directly derive a conformance checker from the design of a template, without the need to understand
the NLP technology that underlies conformance checking.
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Chapter 4

Glossary Terms Extraction and Clustering

Requirements glossaries provide an effective way to improve the accuracy and understandability of
requirements statements, and to mitigate ambiguity [Lauesen, 2002, van Lamsweerde, 2009, Pohl,
2010]. A glossary makes explicit and provides definitions for the technical terms in a domain. A
glossary may further provide information about the synonyms, related terms, and example usages of
the domain terms. The lack of a requirements glossary can hinder teamwork and potentially jeop-
ardize the success of a project [Young, 2004]. A key step in building a glossary is to decide upon
the terms to include in the glossary and to find any related terms. Doing so manually is laborious,
particularly for large requirements documents.

In this chapter, we develop an automated approach for extracting candidate glossary terms and
their related terms from natural language requirements documents. Our approach differs from ex-
isting work on term extraction mainly in that it clusters the extracted terms by relevance, instead of
providing a flat list of terms. We provide an automated, mathematically-based procedure for select-
ing the number of clusters. This procedure makes the underlying clustering algorithm transparent to
users, thus alleviating the need for any user-specified parameters.

To evaluate our approach, we report on three industrial case studies, as part of which we also
examine the perceptions of the involved subject matter experts about the usefulness of our approach.
Our evaluation notably suggests that: (1) Over requirements documents, our approach is more accu-
rate than major generic term extraction tools. Specifically, in our case studies, our approach leads
to gains of 20% or more in terms of recall when compared to existing tools, while at the same time
either improving precision or leaving it virtually unchanged. And, (2) the experts involved in our case
studies find the clusters generated by our approach useful as an aid for glossary construction.

Structure The rest of this chapter is structured as follows: Section 4.1 emphasizes on the motivation
for our work and presents our contributions. Section 4.2 provides background information and com-
pares our work with related work. Section 4.3 presents our term extraction and clustering techniques.
Section 4.4 describes our tool. Section 4.5 reports on the design and execution of our case studies.
Section 4.6 discusses threats to validity. Section 4.7 concludes the chapter.
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4.1 Motivation and Contributions
A glossary is an important part of any software requirements document. To ensure that requirements
are written using a precise and consistent terminology, it is beneficial to build a glossary at the same
time as when the requirements are being specified. This, however, is not always feasible due to
time pressures. Too much upfront investment into the glossary may also be an issue from a cost-
effectiveness standpoint, e.g., when the requirements are volatile and expected to change significantly
as they are refined and prioritized.

Consequently, requirements glossaries may be built after the fact and only when the requirements
have sufficiently stabilized. This situation is, for example, reflected in the industrial requirements that
are the subject of the case studies in this chapter (Section 4.5). To build a glossary after the fact,
the terms to include in the glossary need to be extracted from the underlying documents. For large
documents, a manual extraction of the terms may require a significant amount of effort, thus leaving
less human resources for more complex tasks, e.g., writing the definitions for the glossary terms.

Our objective in this chapter is to automatically extract candidate glossary terms from natural lan-
guage requirements and organize these terms into clusters of related terms. We illustrate the process
using the example of Figure 4.1. In Figure 4.1(a), we show the requirements for which a glossary
needs to be built. The requirements concern a satellite software component and represent a small
fraction of a larger requirements document. The full document is the subject of one of the case
studies in this chapter, as we discuss later. To protect confidentiality, the requirements have been
sanitized without affecting their substance or structure. The abbreviations “GSI”, “STS”, and “DB”
in the requirements stand for “Ground Station Interface”, “Surveillance and Tracking System”, and
“Database”, respectively.

Given the requirements in Figure 4.1(a), we would like to first obtain a set of candidate terms such
as those in Figure 4.1(b), and then group these terms into clusters such as those in Figure 4.1(c). By
bringing together the related terms, these clusters can provide assistance to the analysts in a number of
tasks, including deciding about the terms to include in the glossary, writing definitions for the glossary
terms, and identifying potential consistency issues such as the use of variant phrases for referring to
the same concept. An example of variant phrases in Figure 4.1 is “GSI component status” and “status
of GSI component”.

Our work fits most closely with existing work on term extraction, which deals with automatic
identification of the terminology in a given text corpus [Frantzi et al., 2000, Heylen and De Hertog,
2015]. Many strands of work exist on the subject, e.g., [Barker and Cornacchia, 2000, TOPIA, 2016,
TextRank, 2016, TermRaider, 2016], to note a few. Despite term extraction being widely studied,
existing tools are not tailored to requirements documents.

An important limitation that we have observed in generic term extraction tools is that these tools,
when applied to requirements documents, yield poor recall, i.e., they miss a considerable number
of glossary terms. This limitation is partly explained by filtering heuristics that are not suited to re-
quirements documents. An example filtering heuristic is the exclusion, from the candidate glossary
terms, of terms that are infrequent. While this heuristic is often necessary for extracting terms from
large heterogeneous corpora, e.g., collections of books or articles, the heuristic is likely to filter im-
portant terms that, despite having a low frequency of appearance, would warrant a precise definition
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(a)

   

   
  

(b)

(c)

R1 - When a GSI component constraint is violated, STS shall deliver a warning message to the system operator.

R2 - STS shall log the availability of GSI components in the DB server.

R3 - STS shall supply the GSI monitoring information (GSI anomalies, GSI input parameters and GSI output
        parameters) to the system operator.

R4 - STS subcontractors shall track the progress of development activities in the progress report.

R5 - When the status of a GSI component is changed, STS shall update the progress report with the status.

R6 - STS shall log the GSI component status in the DB server.
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Figure 4.1. (a) Example requirements from a satellite component, (b) candidate glossary terms extracted from
the requirements, (c) candidate terms organized into clusters.

when used in a requirements document. Poor recall is in another part due to the absence of heuristics
for combining adjacent phrases under certain conditions. For example, consider the variants “GSI
component status” and “status of GSI component”, mentioned earlier. One would expect that these
variants will be treated the same way by a term extractor. However, the tools we have investigated
(Section 4.2.4) would detect only the former because it is a single noun phrase, but not the latter,
because it is a combination of two noun phrases.

We take steps in this chapter to address the above limitation. More importantly, what contrasts
our work from the existing work on term extraction is that, instead of producing a flat list of candidate
terms, our approach produces clusters of related terms. As we argue more precisely later in the chapter
based on our empirical results, we believe that clusters provide a more suitable basis than flat lists for
performing the tasks related to glossary construction.

We propose an automated solution for extracting and clustering candidate glossary terms in re-
quirements documents. Specifically, we make the following contributions:

(1) We develop a term extraction technique using a well-known natural language processing (NLP)
task called text chunking [Ramshaw and Marcus, 1995]. In particular, we are interested in noun phrase
(NP) chunks in requirements documents. NPs correspond closely to candidate glossary terms. We
propose complementary heuristics to address limitations in a naive application of chunking.

(2) We develop a technique to cluster candidate glossary terms based on syntactic and semantic simi-
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larity measures for natural language. An important consideration with regard to clustering is selecting
an appropriate number of clusters. To avoid the need for users to specify this number in an arbitrary
manner, we provide automated guidelines for estimating the optimal number of clusters.

(3) We report on the design and execution of three industrial case studies, as part of which we also
analyze the perceptions of the industry experts involved in the case studies about the usefulness of our
approach. Our evaluation results notably suggest that: (1) Our term extraction technique outperforms,
by a factor of 20% or more, all the generic term extraction tools compared with in terms of recall,
while at the same time also outperforming all but one of these tools in terms of precision. Our term
extraction technique, when compared to the best generic alternative, has lower precision in two of our
case studies. Nevertheless, the precision loss is negligible (-0.9% in one case study and -1.2% in the
other) and significantly outweighed by gains in recall. And, (2) the experts find the clusters computed
by our clustering technique useful as an aid for defining the glossary terms, for identifying the related
terms, and for detecting potential terminological inconsistencies.

(4) We develop a tool, named REGICE, implementing our term extraction and clustering techniques.
The tool is available at https://sites.google.com/site/svvregice/. To facilitate the
replication of our empirical results using REGICE or other tools, we provide on REGICE’s website
the material for one of our case studies, whose requirements document is public-domain.

4.2 Background
This section presents background on the key technologies used in the chapter. The section further
reviews and compares with related strands of work.

4.2.1 Text Chunking
Our approach builds on text chunking. In the previous chapter (Section 3.2.2), we already explained
the text chunking pipeline (Figure 3.5). This pipeline may be realized in many different ways as there
are alternative implementations available for each of the modules in the pipeline. In the previous
chapter, we further evaluated 144 possible combinations of module implementations for building the
text chunking pipeline.

In this current chapter, we employ one of the most accurate text chunking pipeline instantiations
identified in the previous chapter. The choice of module implementations used is given in Section 4.4.
Briefly, we recall that text chunking is aimed at recognizing the grammatical segments (phrases)
of sentences, including among others, Noun Phrases (NPs), Prepositional Phrases (PPs), and Verb
Phrases (VPs). For the purpose of this chapter, we are interested only in NPs. An NP is a segment
that can be the subject or object in a sentence. According to Justeson and Katz [Justeson and Katz,
1995], NPs account for 99% of the terms in technical glossaries. The remaining 1% are typically
VPs. Our term extraction technique does not return any VPs in its results, since the benefits of doing
so are significantly outweighed by the overhead of having to manually filter undesirable VPs from the
results.
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4.2.2 Computing Similarities between Terms
To cluster candidate terms, we need a degree of relatedness between term pairs. We define this degree
using syntactic and semantic similarity measures, as we describe next.

4.2.2.1 Syntactic Similarity Measures

Syntactic (similarity) measures calculate a score for a given pair of terms based on the terms’ string
content. These measures are usually normalized to a value between 0 and 1, with 0 indicating no
similarity at all, and 1 indicating perfect similarity, i.e., string equivalence. For example, syntactic
measures would normally yield a high score for the terms “GSI component” and “GSI component
status” because of the large textual overlap between the terms. In our empirical evaluation (Sec-
tion 4.5), we consider 12 syntactic measures: Block distance [Gomaa and Fahmy, 2013], Cosine [Go-
maa and Fahmy, 2013], Dice’s coefficient [Gomaa and Fahmy, 2013], Euclidean distance [Gomaa
and Fahmy, 2013], Jaccard [Cohen et al., 2003], Char-Jaccard [Cohen et al., 2003], Jaro [Cohen
et al., 2003], Jaro-Winkler [Cohen et al., 2003], Level Two (L2) Jaro-Winkler [Cohen et al., 2003],
Levenstein [Manning et al., 2008], Monge-Elkan [Monge and Elkan, 1997], and SoftTFIDF [Cohen
et al., 2003]. These measures are described in Table 4.1.

Syntactic measures can be classified into three categories: distance-based, token-based, and
corpus-based [Cohen et al., 2003]. Distance-based measures calculate a score for a given pair of
terms by finding the best sequence of edit operations to convert one term into the other. Levenstein is
an example of such measures. Token-based measures work by treating each term as a bag of tokens
and then matching the tokens of different terms. An example such measure is Cosine. Corpus-based
measures enhance either distance-based or token-based measures by accounting for the characteris-
tics of the corpus from which the terms are drawn. For example, to calculate a similarity score for a
pair of terms, SoftTFIDF considers the frequency of the terms’ constituent tokens in the corpus where
the terms appear. The standard implementation of SoftTFIDF uses Jaro-Winkler (a distance-based
measure) as a similarity predicate over tokens.

4.2.2.2 Semantic Similarity Measures

Given a pair of words, semantic (similarity) measures calculate a similarity score based on the mean-
ing of the words in a dictionary. Similar to syntactic measures, semantic measures are often normal-
ized. For example, most semantic measures would produce a non-zero score for the words “communi-
cation” and “transmission” because of the semantic affinity between these two words. In this chapter,
we experiment with eight semantic measures: HSO [Hirst and St-Onge, 1998], JCN [Jiang and Con-
rath, 1997], LCH [Leacock and Chodorow, 1998], LIN [Lin, 1998], LESK [Banerjee and Pedersen,
2003], PATH [Pedersen et al., 2004], RES [Resnik, 1995], and WUP [Wu and Palmer, 1994]. These
measures are described in Table 4.2.

To generalize semantic measures from single-word terms (i.e., tokens) to multi-word terms, one
must define a strategy for combining token-level similarity scores. To this end, we adopt the strategy
used by Nejati et al. [Nejati et al., 2012]: Given a pair of (multi-word) terms, we treat the terms as
bags of tokens. We then calculate similarity scores for all token pairs using the semantic measure
of choice. In the next step, we compute an optimal matching of the terms’ constituent tokens. A
matching is optimal if it maximizes the sum of token-level similarity scores. Finally, we calculate the
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Table 4.1. Description of the syntactic similarity measures considered in our empirical evaluation.

Measure Description
Block Distance Computes similarity between terms by considering them as vectors and calculating the

traversal distance between the vectors in a two-dimensional plane represented by the
vectors.

Cosine Computes similarity between terms by transforming the terms into vectors and then
calculating the angle between the vectors.

Dice’s coefficient Computes similarity between terms by finding the tokens that are in common and then
dividing the number of common tokens by the total number of tokens in the terms.

Euclidean Computes similarity between terms by transforming the terms into vectors and calcu-
lating the normalized difference between them.

Jaccard Computes similarity between terms by finding the common tokens and dividing the
number of common tokens by the number of tokens in the union of bags of words
between the terms.

CharJaccard A variation of Jaccard similarity that works at the level of characters rather than tokens.
Jaro Computes similarity between terms using the number of common characters in each

token of the terms.
Jaro-Winkler An extension of Jaro similarity which combines the Jaro score with the length of the

common prefix between terms.
Level-Two (L2)
Jaro-Winkler

A hybrid measure that computes a normalized score for all the possible substrings (at
the token level) of two terms using a secondary measure (Jaro-Winkler).

Levenstein Computes similarity between terms based on the minimum number of character edits
(insertions, deletions, and substitutions) required to transform one term into the other.

Monge-Elkan Computes similarity between terms by matching all the individual tokens of the terms
and normalizing the similarity score based on the similarity of tokens.

SoftTFIDF Computes similarity between terms based on a secondary measure, combined with
the frequency of the single-word constituents of the terms in a corpus. We use Jaro-
Winkler as the secondary measure. In our context, the corpus is the set of all candidate
terms. The intuition is that two terms are more similar if they share several single-word
constituents with comparable frequencies.

Table 4.2. Description of the semantic similarity measures considered in our empirical evaluation.

Measure Description
HSO Computes similarity between words by finding a short path in the is-a (vertical) and has-part

(horizontal) relation chains (as specified in WordNet) that does not change direction too often. An
example of an is-a relation is arm “is-a” limb. An example of a has-part relation is arm “has-part”
forearm.

RES Computes similarity between words based on the information content of the least common sub-
sumer (LCS) of the words in an is-a hierarchy. Information content is the degree of specificity of
words. For example, “car” is a more specific word than “vehicle”. Therefore, “car” has a higher
information content value than “vehicle”. The LCS is the most specific concept that two words
share as an ancestor in an is-a hierarchy. For example, the LCS of “car” and “boat” is “vehicle”.

JCN Computes similarity between words by augmenting RES (above) with the individual information
content of the words.

LIN Computes similarity between words in the same manner as JCN (above) but with a slightly modi-
fied similarity formula.

LESK Computes similarity between words by quantifying the overlap between the different dictionary
meanings of the words.

PATH Computes similarity between words based on the shortest path between them in an is-a hierarchy.
LCH Computes similarity between words based on the shortest path between all the meanings of the

words.
WUP Computes similarity between words based on the depth of the words and their LCS in an is-a

hierarchy.
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Figure 4.2. Example of semantic similarity calculation for multi-word terms.

normalized sum for the optimal matching and take the result as the similarity score for the given terms.
More precisely, given a pair (t1, t2) of terms, the (term-level) semantic similarity score, S(t1, t2), is:

S(t1, t2) = 2⇥ sum of token similarity scores in optimal match
N1 +N2

where N1 and N2 denote the number of tokens in t1 and t2.

Figure 4.2 illustrates the calculation of a similarity score for the terms “satellite outage alert” and
“link interruption warning”. Here, the token-level similarity scores, shown on the lines that connect
the tokens, were calculated using the PATH measure. The optimal matching between the tokens is
shown using solid lines. Based on this optimal matching, the similarity score for the terms in question
is: 2⇥ (0.17+0.2+0.5)/(3+3) = 0.29.

4.2.3 Clustering
Clustering refers to the task of grouping related objects in a manner that the objects in the same cluster
are more similar to one another than to the objects in other clusters [Aggarwal and Reddy, 2013].

To devise an accurate technique for clustering glossary terms, we need to address two important
factors. First, we need to select a suitable clustering algorithm from the alternatives available. Second,
we need to define a strategy for tuning the input parameters of the selected algorithm. Having such
a strategy is essential in order to avoid the end-user from having to make ad-hoc decisions about
the input parameters. In particular, virtually all clustering algorithms require the number of clusters
to be given a priori as an input parameter. Naturally, the value of this parameter varies from one
requirements document to another, depending on the document’s size and complexity. If a poor choice
is made about the number of clusters, the accuracy of clustering may be severely compromised.

Below, we review the clustering algorithms examined in this chapter as well as the criterion that
we use for estimating the optimal number of clusters for a given requirements document.
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4.2.3.1 Clustering Algorithms

We experiment with three well-known clustering algorithms, K-means, Agglomerative Hierarchical
and EM, to determine which one(s) are the most accurate in our application context. Our choice of
these algorithms is motivated by their prevalent use for clustering of natural-language content [Ag-
garwal and Reddy, 2013]. Below, we briefly outline these algorithms. Further details can be found in
clustering and data mining textbooks, e.g., see [Aggarwal and Reddy, 2013].

K-means partitions a given set of data points (in our context, candidate terms) into K clusters, where
K is an a-priori-given number. Briefly, K-means attempts to assign each data point to a cluster in a
way that maximizes the similarity between the individual data points in each cluster and the center
of that cluster, called a centroid. The centroids and the cluster membership functions are iteratively
improved until convergence, i.e., when a fixpoint is reached.

(Agglomerative) Hierarchical Clustering groups a set of data points by building a tree-shaped struc-
ture, called a dendrogram. The data points constitute the dendrogram’s leaf nodes. A dendrogram is
not one set of clusters, but rather a cluster hierarchy. Each non-leaf node in a dendrogram represents
a cluster made up of all leaf nodes (data points) that are descendants of the non-leaf node in question.
The algorithm starts by assigning each data point to its own cluster. It then finds the closest pair of
clusters, i.e., the pair with the largest similarity, or dually the shortest distance, and merges the cluster
pair into one cluster. This process is repeated until all the data points have been absorbed into a sin-
gle cluster, represented by the root node of the dendrogram. There are several alternatives ways for
computing the similarity, or dually, the distance, between two clusters during hierarchical clustering.
In this chapter, we consider eight alternatives: average link, centroid link, complete link, McQuitty’s
link, median link, single link, Ward.D link, and Ward.D2 link. A description of these alternatives is
provided in Table 4.3.

Table 4.3. Description of the alternative criteria considered in our empirical evaluation for computing cluster
distances when hierarchical clustering is applied.

Measure Description
Single link Computes the distance between two clusters as the least distance between any constituent terms.
Complete link Computes the distance between two clusters as the maximum distance between any constituent

terms.
Average link Computes the distance between two clusters as the average distance between all pairs of the

constituent terms of two clusters.
Centroid link Computes the distance between two clusters as the distance between their centroids.
Median link Computes the distance between two clusters as the distance between their medians.
Ward.D link Computes the distance between two clusters as the sum of squared deviations from terms to cen-

troids.
Ward.D2 link A variant of ward.D (above).
McQuitty’s link Computes the distance between a new cluster, resulting from the merge of two existing ones, and

other clusters by averaging the distances from both parts of the new cluster. The merge will take
effect when the two parts as a pair have the least average distance to other clusters.

Given a dendrogram, one can obtain a single set of clusters either by cutting the dendrogram at
a given height, H, or by splitting the dendrogram into a given number, K, of clusters. Either way,
the value of the respective parameter has to be specified by the user. We were unable to identify
generalizable guidelines to help decide the value of H in the first option above. In this chapter, we
therefore consider only the second option, i.e., splitting into a prespecified number of clusters.
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Expectation Maximization (EM) is a statistical clustering algorithm. In this chapter, we use a com-
mon variation of EM, where it is assumed that a set of observations –in our case, the similarity
degrees between candidate terms– is a combination of a given number, K, of multivariate normal
distributions [Fraley and Raftery, 2012]. Each distribution, characterized by its mean and covariance
matrix, represents one cluster. The EM algorithm attempts to approximate the K individual distri-
butions, so that their combination best fits the observations. Here, K corresponds to the number of
clusters. Initially, the EM algorithm chooses random values for the means and covariance matrices of
the distributions. The algorithm then iterates through the following two steps until convergence:

– Expectation step: Given the means and covariance matrices of the K distributions, estimate the
membership probability of each data point (candidate term) in each distribution.

– Maximization step: Estimate new values for the means and covariance matrices of the K distri-
butions, using maximum-likelihood estimation [Scholz, 1985].

Once the algorithm converges, each data point is assigned to the cluster in which it has the largest
membership probability.

4.2.3.2 Choosing the Number of Clusters

As we stated earlier, choosing an appropriate number of clusters, denoted K in Section 4.2.3.1, is
imperative for the accuracy of clustering. If K is too large, closely related terms will be scattered over
different clusters rather than being grouped together; if K is too small, we will be left with clusters in
which the terms have little or no relationship to one another.

Several metrics exist for estimating the optimal number of clusters. Among these, Bayesian Infor-
mation Criterion (BIC) [Schwarz et al., 1978] is one of the most reliable [Divakaran, 2009, Aggarwal
and Reddy, 2013]. BIC is computed as a byproduct of EM clustering. Nevertheless, the metric is also
commonly used for estimating K in both K-means and hierarchical clustering [Divakaran, 2009, Ag-
garwal and Reddy, 2013]. We use BIC as the basis for assigning a value to K in our approach.

Briefly, BIC is a measure for comparing statistical models with different parameterization meth-
ods, different numbers of components, or both [Fraley and Raftery, 2012]. When developing a sta-
tistical model to fit given data, one can improve the fit by adding additional parameters. This may
however result in overfitting. To avoid overfitting, BIC penalizes model complexity so that it may be
maximized for simpler parameterization methods and smaller numbers of components (clusters, in
our case) [Fraley and Raftery, 2012]. The larger the BIC value is, the better the fit and consequently
the better the selected number of clusters. Adapting BIC to our application context is the subject of
one of our research questions; see RQ3 in Section 4.5.6.3.

4.2.4 Related Work
In this section, we discuss and compare with several other strands of related work in the areas of term
extraction, clustering, and NLP.
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4.2.4.1 Term Extraction

We organize our review of term extraction into two parts: (1) general literature and tools, and (2)
relevant research in the subject field of this chapter, i.e., Requirements Engineering.

General literature and tools. Term extraction has been studied in many domains and under numerous
titles, including terminology identification, terminology mining, term recognition, term acquisition,
keyword extraction, and keyphrase detection [Heylen and De Hertog, 2015]. Term extraction ap-
proaches can be broadly classified into three categories [Pazienza et al., 2005]: linguistic, statistical,
and hybrid.

Linguistic approaches aim at specifying patterns for detecting terms based on their linguistic prop-
erties, e.g., their POS tags. For example, Bourigault [Bourigault, 1992] describes a linguistic approach
for extracting terms by eliminating certain grammatical patterns like pronouns and determiners, and
then using regular expressions based on POS tags to extract certain combinations of NPs. Aubin and
Hamon [Aubin and Hamon, 2006] use a combination of chunking and parsing to extract both simple
and complex NPs.

Statistical approaches select terms based on statistical measures such as frequency and length. For
example, Jones et al. [Jones et al., 1990] develop a statistical approach for identifying keywords by
assigning ranks to word sequences in a document in such a way that frequently-occurring sequences
which have many frequently-occurring words receive a high rank. In a similar vein, Matsuo and
Ishizuka [Matsuo and Ishizuka, 2004] use the co-occurrence frequency of words and of sequences of
words for identifying keywords.

Hybrid approaches are combinations of linguistic and statistical ones. For example, Barker et
al. [Barker and Cornacchia, 2000] first employ text chunking for identifying the NPs in a given text,
and subsequently filter out terms that are unlikely to be keywords based on frequency and length.

Our approach is a linguistic one. We do not use statistical measures because these measures
primarily serve as filters. Speaking in terms of classification accuracy metrics, filtering improves pre-
cision, i.e., it decreases false positives. However, improvements in precision may come at the cost of
losses in recall, i.e., increases in false negatives. For large and heterogeneous corpora, e.g., book and
article collections, online commentary and – in the case of software – repositories of development
artifacts, statistical measures, notably frequencies, provide a useful indicator for the importance of
terms. Over such corpora, filtering based on statistical measures is often essential in order to achieve
reasonable precision. In requirements documents, however, every individual statement is expected to
have a clear and non-redundant purpose. Therefore, terms in requirements documents, regardless of
their statistical characteristics such as frequencies, have the potential to bear important content. Con-
sequently, using statistical filters over requirements documents is likely to have a significant negative
impact on recall. In our work, we take a conservative approach towards filtering. In particular, we do
not filter any terms on statistical grounds. The only filter we apply is a linguistic one over common
nouns, as we explain in Section 4.3.

With regard to tool support for term extraction, several generic tools are already available, includ-
ing the following:
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• JATE (Java Automatic Term Extraction toolkit) [Zhang et al., 2008] implements several term
extraction techniques developed and used by the Information Retrieval (IR) community.

• TextRank [TextRank, 2016] is a general text processing tool, with term extraction being one of
its constituent parts. Extraction is performed based on POS tags, and an undirected graph
in which edges represent pairwise relationships between terms based on their level of co-
occurrence.

• TOPIA [TOPIA, 2016] is a widely-used Python library for term extraction based on POS tags
and simple statistical measures, e.g., frequencies.

• TermRaider [TermRaider, 2016] is a term extraction module implemented as a plugin for the
GATE NLP Workbench [GATE, 2016]. TermRaider uses advanced heuristics based on POS
tags, lemmatization, and statistical measures.

• TermoStat [Drouin, 2003] is a term extraction tool based on POS tags, regular expressions, and
frequency-based measures.

All the aforementioned tools are based on hybrid techniques. As we demonstrate in Section 4.5,
over requirements documents, our proposed term extraction technique yields better recall than these
tools without compromising precision. Our work is further distinguished from these tools in that it
clusters the extracted terms based on relatedness.

Term extraction in Requirements Engineering. Term extraction has been tackled previously in Re-
quirements Engineering. Aguilera and Berry [Aguilera and Berry, 1990] and Goldin and Berry [Goldin
and Berry, 1997] present frequency-based methods for identifying terms that appear repeatedly in re-
quirements. They refer to these terms as “abstractions” which are likely to convey important domain
concepts. Popescu et al. [Popescu et al., 2008] extract terms from restricted natural language require-
ments using parsing and parse relations. Zou et al. [Zou et al., 2010] use a POS tagger for extract-
ing single- and double-word noun phrases, and then filter the results based on frequency measures
and certain heuristics. Kof et al. [Kof et al., 2010] use POS tags, named-entity recognition, pars-
ing, and heuristics based on sentence structures for extracting domain-specific requirements terms.
Dwarakanath et al. [Dwarakanath et al., 2013] use parsing for extracting the phrases of requirements
documents and then filter the results based on heuristics and frequency-based statistics. And, Mé-
nard and Ratté [Ménard and Ratté, 2015] extract domain-specific concepts from business documents
(including requirements) using POS tag patterns and various heuristics.

These earlier threads have helped us in better tailoring our term extraction technique to require-
ments. The main technical novelties contrasting our work from the above are the following: (1)
We use text chunking for identifying candidate terms; text chunking is more accurate and general-
izable than pattern-based techniques based on POS tags, and more robust and scalable than parsing
for phrase detection [Song et al., 2006]. And, (2) we apply clustering for grouping candidate terms.
Furthermore, and for reasons discussed earlier, our term extraction technique does not make use of
statistical filters.

4.2.4.2 Clustering

Grouping together (clustering) related terms has been studied in the field of Information Retrieval. Ex-
isting approaches rely on pre-defined patterns of POS tags for identifying relatedness. Daille [Daille,
2005] uses the prefix POS tags of NPs for identifying adjectival and prepositional modifications.
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Figure 4.3. Approach overview.

For example, their approach would group the terms “package” and its adjectivally-modified form
“biodegradable package”. Similarly, Bourigault and Jacquemin [Bourigault and Jacquemin, 1999]
group related terms based on patterns of noun modifiers. For example, their approach would group
the terms “cylindrical cell” and “cylindrical bronchial cell”. The main difference between our ap-
proach and the above is that, instead of patterns, we use syntactic and semantic similarity measures
for detecting relevance. For unrestricted natural-language content, an exhaustive enumeration of all
patterns of interest is very difficult; pattern-based approaches are therefore prone to incompleteness.
Our approach does not suffer from this issue. Furthermore, our approach can systematically deal with
morphological and semantic relatedness, which existing pattern-based approaches do not address suf-
ficiently.

In the field of Requirements Engineering, clustering has been already applied for a variety of pur-
poses. Ferrari et al. [Ferrari et al., 2013] cluster requirements statements in order to organize them into
cohesive sections within requirements documents. Arafeen and Do [Arafeen and Do, 2013] use re-
quirements clustering as an enabler for test case prioritization. Chen at. al. [Chen et al., 2005] cluster
related requirements for building product-line feature models. Duan et al. [Duan and Cleland-Huang,
2007] apply and empirically evaluate the usefulness of different clustering techniques for grouping re-
lated development artifacts (requirements, test cases, classes, etc.) and supporting traceability. They
further provide guidelines for selecting the number of clusters in this application context. Finally,
Mahmoud [Mahmoud, 2015] uses clustering for classifying non-functional requirements and tracing
them to functional requirements.

Our application of clustering is guided by the same principles as in the above threads of work.
Nevertheless, these threads do not use clustering to achieve the same end goal as ours, which is
grouping together candidate glossary terms. A critical prerequisite for applying clustering effectively
is to identify, for a specific analytical task, a suitable combination of a clustering algorithm and
similarity measures. Doing so requires empirical studies that focus on the task at hand. To our
knowledge, an empirical study similar to the one in this chapter does not exist for the task of building
glossaries.

4.2.4.3 Natural Language Processing

In addition to term extraction, reviewed in Section 4.2.4.1, there are several other Requirements En-
gineering tasks in which NLP has been used for automation. These tasks include, among others,
identification of inconsistencies and ambiguities [Gervasi and Nuseibeh, 2002, Gervasi and Zowghi,
2005, Chantree et al., 2006, Kiyavitskaya et al., 2008b, Yang et al., 2011, Femmer et al., 2014, Misra,
2015], requirements tracing [Duan and Cleland-Huang, 2007, Sultanov and Hayes, 2010, Sundaram
et al., 2010, Torkar et al., 2012, Cleland-Huang et al., 2014, Pruski et al., 2015], requirements change
analysis [Arora et al., 2015b], detection of redundancies and implicit requirements relations [Güldali
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et al., 2009, Falessi et al., 2013], extraction of models from requirements [Yue et al., 2011, Vidya
Sagar and Abirami, 2014], identification of use cases [Holbrook et al., 2009], markup generation
for legal requirements [Adedjouma et al., 2014, Zeni et al., 2015], enforcement of requirements
templates [Arora et al., 2015a], synthesis of user opinions about features [Guzman and Maalej,
2014, Maalej and Nabil, 2015], and requirements identification [Riaz et al., 2014].

The NLP techniques we use in this chapter are not new to the Requirements Engineering commu-
nity. Nevertheless, the NLP techniques underlying our approach, notably text chunking and semantic
similarity measures, have not been systematically studied alongside clustering before. Furthermore,
empirical studies that investigate the effectiveness of NLP over industrial requirements remain scarce.
The case studies we report on in this chapter take a step towards addressing this gap.

4.3 Approach
Figure 4.3 shows an overview of our approach. Given a (natural-language) requirements document,
we first construct a list of candidate glossary terms. In the next step, we compute a similarity matrix
for the extracted terms. In the third and final step, we cluster the terms based on their similarity. The
rest of this section elaborates each of these steps.

4.3.1 Extracting Candidate Glossary Terms
Using text chunking, this step extracts a set of candidate glossary terms from a given requirements
document. As explained in Section 4.2.1, from the results of text chunking, we need only the
NPs. Following text chunking, all the extracted NPs are processed and cleared of determiners, pre-
determiners, cardinal numbers, and possessive pronouns. For example, “the system operator” is re-
duced to “system operator”. Furthermore, plural terms are transformed into singular terms using
lemmatization. For example, “GSI anomalies” is transformed into “GSI anomaly”.

Subsequently, we refine the list of terms by applying the heuristics listed in Table 4.4. The first
heuristic in the table aims at re-establishing the context that may have been lost for some NPs. Specif-
ically, text chunking decouples concepts from their attributes / subparts connected by “of” or a pos-
sessive ’s. For example, the phrase “status of GSI component” gives rise to two NPs: “status” and
“GSI component”. However, “status” is unlikely to be useful as a term outside its context. To capture
this intuition, we add to the list phrases of the form: NP of NP and NP’s NP.

The second heuristic adds to the list of terms: (1) any all-capital token appearing within some NP,
and (2) any continuous sequence of tokens marked as proper nouns (NNPs) by the POS tagger within
the boundary of an individual NP. For example, the token “GSI” in “GSI component” will be added
to the list as an independent term and so will “Ground Station Interface” if an NP such as “Ground
Station Interface component” is already on the list. This is despite the fact that “GSI” and “Ground
Station Interface” may never appear in the document as NPs. This heuristic is targeted at ensuring
that potential abbreviations and named entities will have dedicated entries in the list of terms.

The last heuristic in Table 4.4 is for filtering common nouns. By a common noun, we mean
a single-word noun, e.g. “status”, that is found in an (English) dictionary. We use the WordNet
dictionary [Fellbaum, 1999] for word lookup operations. The rationale for filtering common nouns
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Table 4.4. Heuristics applied to the results of text chunking.

Heuristic Description Example
NP of NP / NP’s NP The combination of two NPs sepa-

rated by “of” or a possessive ’s is
added to the list of terms.

“status of GSI component”

The second NP, i.e., “GSI Component” provides the
context for the first NP, i.e., “status”.

Special tokens and se-
quences of proper nouns

Abbreviations and sequences of
proper nouns (marked as NNP by the
POS tagger) within individual NPs are
added as independent entries to the
list of terms.

“GSI component” / “Ground Station Interface component”

The abbreviation “GSI” and the sequence of proper
nouns “Ground Station Interface” are extracted and added
as independent entries to the list of terms.

Common nouns Single-word phrases that have a
meaning in an English dictionary are
filtered out.

“status”

This NP is unlikely to contribute to the glossary un-
less coming alongside its context, e.g., as in “status of GSI
component”, or is capitalized to signify a probable proper
noun.

is that these nouns are often generic and polysemous, and thus, outside their context, unlikely to
contribute to the glossary [Bourigault and Jacquemin, 1999]. Single-word nouns that are not found in
a dictionary or are capitalized will be retained in the list of terms.

Finally, we remove any duplicates from the list of terms. Figure 4.1(b) shows the list of terms
derived from the requirements of Figure 4.1(a) through the process described above.

Measuring the accuracy of our term extraction technique and comparing the accuracy to that
of generic term extraction tools is the subject of one of our research questions; see RQ1 in Sec-
tion 4.5.6.1.

4.3.2 Computing Similarities between Terms
This step computes a similarity matrix to capture the degree of relatedness between every pair of
candidate terms extracted in the previous step. To compute this matrix, we consider three alternative
strategies [Arora et al., 2015b]:

1. syntactic only, where a similarity, Ssyn(t, t 0), is computed for every pair (t, t 0) of terms using a
syntactic measure, e.g., SoftTFIDF;

2. semantic only, where a similarity, Ssem(t, t 0), is computed for every pair (t, t 0) of terms using a
semantic measure, e.g., JCN;

3. combined syntactic and semantic, where, given a syntactic measure syn and a semantic mea-
sure sem, we take, for every pair (t, t 0) of terms, max(Ssyn(t, t 0),Ssem(t, t 0)). Using max. is
motivated by the complementary nature of syntactic and similarity measures [Nejati et al.,
2012, Achananuparp et al., 2008].

Choosing the best strategy from the above and the specific similarity measures to use are addressed
by RQ2 and RQ4; see Sections 4.5.6.2 and 4.5.6.4.

4.3.3 Clustering Terms
In this step, we cluster the candidate terms based on their degree of relatedness. The inputs to this
step are the similarity matrix (or dually, the distance matrix in the case of hierarchical clustering),
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Figure 4.4. Tool Overview.

the choice of clustering algorithm to use, and the number of clusters, K, to generate. As the result of
clustering, the terms are grouped into K partitions. For example, Figure 4.1 (c) shows a partitioning of
the terms in Figure 4.1 (b) with K = 8. The clustering algorithm applied here is EM and the similarity
measure used is SoftTFIDF alone (i.e., without an accompanying semantic measure).

In our empirical evaluation of Section 4.5, we investigate all the key questions related to tun-
ing clustering for use in our application context. Specifically, identifying the most accurate clus-
tering algorithm(s) is addressed in RQ2 and RQ4. Choosing a suitable K is tackled in RQ3; see
Section 4.5.6.3.

4.4 Tool Support
We implement our approach into a tool named REGICE (REquirements Glossary term Identification
and ClustEring tool). The components of REGICE are shown in Figure 4.4.

First, the requirements provided by the user are processed by a text chunker in the GATE NLP
Workbench [GATE, 2016]. GATE is an infrastructure built over a large collection of heterogeneous
NLP technologies, making it possible for these technologies to interact and work together. Within
GATE, there are several alternatives for implementing the text chunking pipeline discussed in Sec-
tion 4.2.1. Among the alternatives, we use OpenNLP [OpenNLP, 2016]. This choice is based on a
comparative study in our previous work [Arora et al., 2015a], where we found the OpenNLP chunk-
ing pipeline to be one of the most accurate and robust alternatives over requirements documents. The
heuristics we apply for refining the results of text chunking (Section 4.3.1) are implemented using
scripts written in GATE’s regular expression language, JAPE (Java Annotation Patterns Engine).

We use SimPack [SimPack, 2016] for computing syntactic similarities and SEMILAR [Rus et al.,
2013] for computing semantic similarities between the extracted terms. Both libraries are Java-based.
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The default syntactic measure in REGICE is SoftTFIDF. No semantic measure is used by default,
although the user has the option to choose any of the semantic measures provided by SEMILAR. Our
default choices are based on our empirical observations (from RQ4) in Section 4.5.

For clustering and computing the BIC (Section 4.2.3.2), we use the R statistical toolkit [R, 2016].
The default clustering algorithm in REGICE is EM, again based on our empirical observations (from
RQ4). The R library used for clustering depends on the choice of the clustering algorithm. K-means
and all variants of hierarchical clustering are done using the stats package. EM clustering and BIC
computation are done using the mclust package [Fraley and Raftery, 2012].

The number of clusters to generate is determined automatically using R scripts that implement the
guidelines derived from our empirical results (RQ3). The user has the option to override the automatic
recommendation for the number of clusters and provide a different number of clusters.

Figure 4.5. Screenshot of REGICE (implemented in GATE [GATE, 2016]) with two computed clusters high-
lighted.

REGICE provides two alternative ways for presenting the computed clusters: (1) Writing the
clusters as labeled sets in a file, similar to what is shown in Figure 4.1 (c), or (2) visually highlighting
the clusters over the requirements through GATE’s user interface. We illustrate this user interface in
the screenshot of Figure 4.5. The requirements in this screenshot are from the example of Figure 4.1.
As shown by the right panel of the screenshot, each cluster is represented as an annotation type. When
a cluster (annotation type) is selected, all the terms in that cluster are highlighted in the document.
This visual representation has the advantage that it preserves the context where each term in a given
cluster appears.

The components of REGICE have been integrated together via glue code written in Java. REGICE,
including the R and JAPE scripts, is approximately 2000 lines of code excluding comments and third-
party libraries. The tool is available at: https://sites.google.com/site/svvregice/.
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Case Description Domain Number of 
Requirements 

Case-A Requirements for a software component in a 
satellite ground station 

Satellites 380 

Case-B* Requirements for a safety evidence management 
system 

Safety certification of 
embedded systems 

110 

Case-C Requirements from a data dissemination network 
solution for satellites. 

Satellites 138 

 

* The material for Case-B is available on our tool’s website (see Section 4).  

Figure 4.6. Description of case studies.

4.5 Evaluation
We evaluate our term extraction and clustering techniques over three industrial case studies. In this
section, we elaborate the research questions that motivate our evaluation and report on the design,
execution and results of the case studies.

4.5.1 Research Questions
Our evaluation aims to answer the following research questions (RQs):

RQ1. How accurate is our approach at extracting glossary terms? A set of candidate terms is
accurate if it neither includes too many unwanted terms (false positives) nor misses too many desired
terms (false negatives). The aim of RQ1 is to evaluate the accuracy of text chunking, enhanced with
our heuristics, at detecting glossary terms.

RQ2. Which similarity measure(s) and clustering algorithms(s) yield the most accurate clusters?
The choice of similarity measures and clustering algorithm can have a major impact on the quality of
the generated clusters. The aim of RQ2 is to examine alternative combinations of similarity measures
and clustering algorithms, and identify the best alternatives in terms of accuracy.

RQ3. How can one specify the number of clusters? A bad choice for the number of clusters can
compromise the accuracy of clustering and potentially render the resulting clusters useless. The aim
of RQ3 is to develop systematic guidelines for choosing an appropriate number of clusters for a
specific requirements document.

RQ4. Which of the alternatives identified in RQ2 are the most accurate when used with the guide-
lines from RQ3? RQ2 uses an averaging metric for identifying the most accurate clustering algo-
rithms and similarity measures. This metric is not a direct indication of accuracy at a fixed number of
clusters. From a practical standpoint, one needs to know which combinations of clustering algorithms
and similarity measures are best when the number of clusters is set as per the recommendation from
RQ3. The aim of RQ4 is to find the combinations that work best with the guidelines of RQ3.

RQ5. Does our approach run in practical time? One should be able to perform candidate term
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extraction and clustering reasonably quickly, even when faced with a large number of requirements.
The aim of RQ5 is to investigate whether our approach has a practical running time.

RQ6. How effective is our clustering technique at grouping related terms? Clustering can be a
useful assistance to analysts during glossary construction only if the generated clusters are sufficiently
accurate. Drawing on the clustering accuracy results from our case studies, RQ6 argues about the
overall effectiveness of our clustering technique.

RQ7. Do practitioners find the clusters generated by our approach useful? Ultimately, our clus-
tering technique is valuable only if practitioners faced with real Requirements Engineering tasks find
the generated clusters useful. RQ7 is aimed at assessing the perceptions of the experts involved in our
case studies about the usefulness of the generated clusters.

4.5.2 Description of Case Studies
Table 4.6 provides, for each of our case studies, a short description, the case study domain, and the
number of requirements statements in the respective requirements document.

The first case study, hereafter Case-A, concerns a software component developed by SES Techcom
– a satellite communication company – for a satellite ground station. Case-A has 380 requirements.
The second case study, hereafter Case-B, concerns a safety evidence management system built in
an EU project, OPENCOSS (http://www.opencoss-project.eu), with participation from
11 companies and 4 research institutes. Case-B has 110 requirements. The third case study, here-
after Case-C, concerns a satellite data dissemination network developed in a European Space Agency
(ESA) project with participation from several telecommunication companies. Case-C has 138 re-
quirements. Case-A and Case-C are proprietary; whereas Case-B is public. To facilitate replication,
we make the material for Case-B available on our tool’s website (see Section 4.4).

For each case study, we involve a subject matter expert with in-depth knowledge about the respec-
tive case. In Case-A and Case-B, the experts were requirements analysts who were closely involved
in drafting the requirements; and in Case-C, the expert was the project manager.

We have used the requirement documents in Case-A and Case-B as case study material be-
fore [Arora et al., 2015a]. In both cases, the requirements writers had made a conscious attempt
to structure the requirements sentences according to Rupp’s template [Pohl, 2010]. Specifically,
64% of the requirements in Case-A and 89% of the requirements in Case-B conform to Rupp’s tem-
plate [Arora et al., 2015a]. We are using Case-C as case study material for the first time. No particular
template was used in the requirements of Case-C. In Section 4.6, we argue why the use of a template
in Case-A and Case-B does not pose major validity threats. Except for the elicitation of glossary
terms for Case-A and Case-B (see Section 4.5.4.1), all the empirical work reported in this section was
conducted as part of our current research.

4.5.3 Case Selection Criteria
We had the following criteria in mind when selecting our case studies:
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• We were interested in requirements documents that are reasonably large (> 100 requirements),
first, because automated term extraction and clustering is unlikely to provide compelling ben-
efits over very small requirements documents, and second, because we would not be able to
adequately evaluate the execution time of our approach (RQ5) using small documents.

• We wanted to cover cases from different domains. In general, conducting multiple case studies
is useful for mitigating external validity threats. In our investigation, increasing external validity
is particularly important for RQ3, due to the impact that the choice of the number of clusters
has on the quality of the generated clusters.

• We wanted to work on cases where we could have direct access to subject matter experts. Par-
ticularly, to evaluate the accuracy of our approach, we need a gold standard, covering both
the ideal glossary terms and the ideal clusters of related terms. Building a trustworthy gold
standard requires deep knowledge about the problem domain and a significant level of commit-
ment. Consequently, ensuring the availability of experts throughout our investigation was an
important criteria.

• We were interested in requirements from recent or ongoing projects. Old requirements are
unsuitable for our evaluation, both due to the experts’ potential lack of interest to revisit these
requirements, and also due to the high likelihood that the experts would not be able to readily
remember all the details.

The cases we have selected satisfy the above criteria.

4.5.4 Data Collection Procedure
Data collection was targeted at building the ideal set of glossary terms and clusters. We elicited the
ideal glossary terms directly from the experts. As for the ideal clusters, they were elicited indirectly
and through the construction of a domain model. Below, we detail the process for glossary term
elicitation and domain model construction. The process for deriving ideal clusters from a domain
model is discussed as part of our analysis procedure (see Section 4.5.5.1). Note that the domain
model and ideal clusters are only for evaluation purposes and not a prerequisite for applying our
approach.

4.5.4.1 Glossary Term Elicitation

Despite the requirements in all our case studies having reached stability, no glossary was available for
the requirements yet. To identify the glossary terms, we held walkthrough sessions with the respective
expert in each case study. In these sessions, the expert would first read an individual requirements
statement and then identify the glossary terms in that particular statement. The expert was asked to
specify all the glossary terms in a given statement, irrespective of whether the terms had been already
seen in the previous statements. When the expert was doubtful as to whether a term belonged to the
glossary, they were instructed to include the term rather than leave it out, as recommended by glossary
construction best practices [Pohl, 2010].

The researchers’ role in the walkthrough sessions was limited to moderating the sessions and
keeping track of the experts’ choices about the glossary terms. Once the expert in each case study
reviewed all the requirements statements in the case study, a duplicate-free list of the terms chosen
by the expert for the glossary was created. For Case-A and Case-B, these lists were built as part of
our previous work [Arora et al., 2015a]. The experts were allowed to revise these lists during domain
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model construction (described next), which took place after glossary term elicitation. The final lists
of terms are used as the gold standard for answering RQ1.

4.5.4.2 Domain Model Construction

To evaluate the accuracy of our clustering technique, we need a set of ideal clusters. Rather than
eliciting the ideal clusters directly, we first build a domain model – a conceptual representation of a
domain – and then infer the ideal clusters from this domain model using the procedure described later.
Intuitively, we would like each ideal cluster to bring together some glossary term and its “related”
terms. The role of a domain model in this context is to specify what “related” means for every
glossary term.

We observe that behind every requirements document, there is a domain model. This domain
model may never be built explicitly, or may be partial when it is built. Nevertheless, the observation
has useful implications in terms of evaluating our approach. Particularly, given a domain model and a
mapping from each concept and attribute of this model onto the terms in the requirements document,
one can come up with a systematic procedure for inferring the ideal clusters (Section 4.5.5.1). Such a
procedure presents two key advantages: First, it alleviates the need for the domain experts to construct
the ideal clusters manually – a task that is very laborious for large requirements documents such as
those in our case studies. Second, although one can never entirely remove subjectivity from how a
domain model is constructed and how relatedness is defined, by building an explicit domain model
and formulating relatedness in a precise way, one can subject our evaluation process to scientific
experimentation.

For the purposes of our evaluation, the main property we seek in a domain model is the following:
Given a glossary term t, the domain model should be able to give us all the terms in the underly-
ing requirements document that are conceptually related to t. We limit conceptual relationships to
specializations, aggregations and compositions. Specializations represent is-a relationships. Aggre-
gations and compositions both denote containment relationships, with the difference being that, in
aggregations, the contained objects can exist independently of the container; whereas in composi-
tions, the contained objects are owned by the container and thus cannot exist independently of it.
Specializations, aggregations, and compositions constitute some of the most basic relationships be-
tween concepts and are thus instrumental for capturing relatedness between terms.

In Figure 4.7, we show a small (and sanitized) fragment of the domain model for Case-A. We use
UML class diagrams for expressing domain models, as is common in object-oriented analysis [Lar-
man, 2005]. In the figure, compositions are shown using a solid diamond shape and aggregations –
using a hollow diamond shape.

We note that a domain model is not merely a structured representation of the content of a require-
ments document. This model further has to account for the tacit information that is not reflected in
the requirements but is yet essential for properly relating the terms in the requirements. Examples of
such tacit information in the class diagram of Figure 4.7 are the composition associations from GSI

to GSI Monitoring Information and GSI Component.

We associate each element (concept or attribute) x in the domain model with a set, Var(x), of vari-
ant terms that are conceptually equivalent to x. For example, consider the availability attribute of
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Var(status):
- status
- status of GSI component
- GSI component status

Var(availability):
- availability
- availability of GSI component
- GSI component’s availability

Var(constraints):
- constraint
- GSI component constraint

Ground Station 
Interface

(GSI) status
availability
constraints

GSI Component

GSI Monitoring 
Information

GSI 
Anomaly

GSI Output 
Parameter

GSI Input 
Parameter

DB Server

Attributes:
status; availability

Figure 4.7. A fragment of the domain model for Case-A.

Ground Station

LOC-A-GS LOC-C-GSLOC-B-GS

GS Communication 
Protocol

SNMPv3 TCP/IP

(a) (b)
Figure 4.8. Domain model versus glossary: grayed-out model elements have no corresponding glossary term.

GSI Component in the model fragment of Figure 4.7. This attribute is referred to in the requirements
document using three variant terms: “availability” (where the link to GSI Component is implicit),
“availability of GSI Component” and “GSI component’s availability”. To avoid clutter in the figure,
we have not shown Var(x) when this set has only one term and that term coincides with the name
label of x.

We use the notion of Var to describe how we built the domain models. We first reviewed the
requirements document in each case study to identify all variants of the glossary terms elicited previ-
ously from the respective expert (Section 4.5.4.1).

Let T be the set of glossary terms and all variants thereof, discovered through the aforementioned
review. We built our domain model M for each case study in a way to ensure that all the terms in T
were represented by some element x in M, i.e., to ensure that T ✓ t

x2M Var(x). For our purposes, we
would have liked M to represent nothing but the terms in T , i.e. to have T =

t
x2M Var(x). However,

we found this constraint to be restrictive in that it could reduce the logical completeness of the domain
model. We illustrate this point using the domain model fragments (from Case-A) that are shown in
Figure 4.8.

In the model fragments of Figure 4.8, the grayed-out elements, Ground Station and TCP/IP,
have no corresponding terms in the glossary although both elements have corresponding terms in the
requirements document. In the model fragment of Figure 4.8(a), the expert decided that the specific

67



Chapter 4. Glossary Terms Extraction and Clustering

Statement 1. I find this cluster helpful for identifying the related terms for a glossary term.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Statement 2. As the result of seeing this cluster, I can define a glossary term more precisely than I originally had in mind.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Not Relevant❑

Statement 3. I find this cluster helpful for identifying the variations (synonyms) of a glossary term.
❑ Strongly Agree ❑ Agree Disagree Strongly DisagreeNeutral ❑ ❑❑

Figure 4.9. Statements for assessing the usefulness of a cluster.

ground stations built at locations A, B, and C (actual locations sanitized) would need to be defined in
the glossary; whereas, the abstract concept of ground station would not. A similar situation applies
to the model fragment of Figure 4.8(b): although it is important, for completeness reasons, to model
TCP/IP as a protocol alongside SNMPv3, the expert did not see a need to define TCP/IP in the glossary
because it is a widely-known and standard protocol.

In general, we attempted to closely orient the domain models in our case studies around the
glossary terms. Nevertheless, in situations like those illustrated in Figure 4.8, we opted to keep the
non-glossary-related elements in the domain model for completeness. The domain models were built
collaboratively with the involved experts. As noted in Section 4.5.4.1, the experts were allowed to
refine their choice of glossary terms based on insights gained during domain model construction.

Finally, to be able to properly handle requirements about data storage and transfer, we made a
modeling decision that we illustrate using requirements R2 and R6 of Figure 4.1(a). These require-
ments envisage that “DB server” shall store the status and availability of “GSI Component”. As
shown in Figure 4.7, we model the relationship between DB Server and GSI Component as an ag-
gregation, while keeping track of any specifically-named attributes, here, status and availability,
that participate in the relationship. For deriving ideal clusters from such an aggregation, as we ex-
plain in Section 4.5.5.1, we use the participating attributes rather than the contained concept itself.
This strategy helps make the ideal clusters more precise and better aligned with the requirements
document.

4.5.4.3 Expert Interview Survey

We conducted an interview survey with the experts in our case studies in order to assess the experts’
perceptions about the usefulness of our approach. Specifically, we chose a subset of the generated
clusters in each case study, and asked the expert in that case study to evaluate these clusters individ-
ually on the basis of the three statements shown in Figure 4.9. For Case-A and Case-C, the clusters
in the survey are a random selection of 20 from our tool’s output when executed with the default
settings presented in Section 4.4. For Case-B, the tool yields 27 clusters, all of which are covered in
the survey.

The statements in Figure 4.9 address three important tasks that analysts need to perform during
the construction of a glossary: Statement 1 concerns the identification of related terms. Statement 2
concerns writing definitions for the glossary terms. The rationale for including Statement 2 in our
survey is that the additional context provided by a cluster (when compared to disparate individual
terms) can help the analysts in writing more precise definitions for the glossary terms.
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Statement 3 addresses a specific type of related terms, namely variations (synonyms). Although
related terms are already covered by Statement 1, we elected to have a dedicated statement about
variations, since variations can potentially be undesirable: from our experience, we observe that
industrial requirements are prone to containing unintended variations, both due to the flexibility of
natural language and also due to differences in terminology and style across different individuals and
organizations. It is important to bring such variations to the attention of the analysts, so that they can
take appropriate action. Statement 3 specifically examines whether the generated clusters are good
means for identifying variations, which in many cases are unintended and potentially unknown.

The survey for each case study was conducted in a single session. To avoid interviewee fatigue,
we limited the sessions to a maximum duration of 1 hour each. At the beginning of a session, we
introduced to the (respective) expert the statements in Figure 4.9 along with examples clarifying the
motivation behind each statement. The relationship between Statement 1 and Statement 3 was further
highlighted to the expert.

In the next step, the expert was asked to review the selected clusters in succession, and for each
cluster, express their opinion about Statements 1, 2, and 3 on a five-point Likert scale [Likert, 1932].
For Statement 3, since not all clusters necessarily contain variations, the expert had an additional
choice, “Not Relevant”, to be used when they believed that a certain cluster did not contain any
variations. The expert was reminded that, for all three statements, the opinion should be based on the
glossary terms they saw in the cluster being reviewed. In particular, the expert was told that, if they
did not see any glossary terms in a cluster, they should refrain from choosing either “Strongly Agree”
or “Agree”, although they may still see some benefit in the information provided by the cluster.

To ensure that the experts had a correct understanding of the statements in Figure 4.9, we asked
each expert to verbalize their reasoning for the first five clusters that they reviewed.

We note that we conduct one interview per case study. Ideally, one should have interviews with
multiple experts in each case to enable comparison and increase the reliability of the results. In our
work, having more than one interview for each case study was infeasible because any respondent
would have to have full familiarity with the requirements before they could meaningfully answer the
interview questions. To mitigate the effect of potential expert errors, our interview covers a reasonably
large number of clusters (at least 20 clusters, as discussed earlier) for each case study.

4.5.5 Analysis Procedure
4.5.5.1 Inferring Ideal Clusters

Equipped with a domain model M and a function Var(x) for every concept and attribute x 2 M (as
defined in Section 4.5.4), we infer the ideal clusters as we describe next.

Ideal clusters are created around concepts, with the concept attributes contributing to some of the
clusters. For every concept c 2 M, we add to the set of ideal clusters one cluster, I, computed as
follows: Let a1, . . . ,ak denote c’s attributes, and let c1, . . . ,cn be the set of (parent) concepts that are
directly or indirectly specialized by c (via specialization).

I =Var(c) [
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t
1ikVar(ai) [

t
1inVar(ci) [

t{Var(a) |a is an attribute of some ci; 1  i  n} [
t{Var(s) |s is a sibling of c via some ci; 1  i  n}.

For example, let c be the GSI Anomaly concept in Figure 4.7. We create a cluster by grouping
together the following: c’s variant terms (only, “GSI Anomaly”); variant terms for c’s attributes
(none); variant terms for c’s parents (“GSI Monitoring Information”) and parents’ attributes (none);
and variant terms for c’s siblings (“GSI Input Parameter” and “GSI Output Parameter”).

The above process captures relatedness between each concept and its attributes as well as between
each concept and other concepts that immediately relate to it via the domain model’s inheritance hier-
archy. To deal with compositions and aggregations, we follow a separate process: let c1 and c2 denote
the two ends of a composition or aggregation association. We add one cluster J = Var(c1)[Var(c2)
to the set of ideal clusters for each such association. For example, consider the two composition as-
sociations in Figure 4.7. These induce the following clusters:
{“Ground Station Interface”,“GSI Monitoring Information”} and
{“Ground Station Interface”,“GSI Component”}.

The only exception to the above are aggregations in which explicitly-named attributes of the con-
tained concept participate (see Section 4.5.4.2). For such aggregations, we bypass the contained
concept and use the named attributes directly for the derivation of ideal clusters. For example, for the
aggregation between DB Server and GSI Component in Figure 4.7, we create one cluster for each
status and availability. This yields two ideal clusters: (1) Var(DB Server)[ Var(status), and
(2) Var(DB Server)[Var(availability).

Our treatment of composition and aggregation associations is motivated by the fact that while a
container concept (e.g., Ground Station Interface) is related to each of the contained concepts,
there is a weaker or no relationship between the contained concepts (e.g., GSI Component and GSI

Monitoring Information). Hence, putting the contained concepts together into the same cluster,
only because they happen to be contained by the same container concept, does not seem reasonable.

After creating the ideal clusters in the manner described above, we remove duplicates and any
ideal cluster I that is properly contained in some other ideal cluster I0 (i.e., if I ⇢ I0). We use the
resulting clusters as the gold standard for evaluation. The ovals in Figure 4.16 show the ideal clusters
for the example of Figure 4.1. We discuss Figure 4.16 further when addressing RQ6 (Section 4.5.6.6).

4.5.5.2 Evaluation Procedure

There are two main evaluation procedures underlying our empirical results: one is for assessing the
accuracy of candidate terms, and the other – for assessing the accuracy of clusters:

Accuracy of candidate terms. We use standard classification accuracy metrics, precision and re-
call [Manning et al., 2008], to evaluate the accuracy of candidate terms (step 1 of the approach in
Figure 4.3). The task at hand is to determine which extracted terms belong to the glossary and which
ones do not. The extracted terms that belong to the glossary are True Positives (TP), and the ones
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that do not belong are False Positives (FP). The glossary terms that are not extracted by our tool are
False Negatives (FN). Precision accounts for the quality of results, i.e., smaller number of FPs, and
is computed as TP / (TP+ FP). Recall accounts for the coverage, i.e., smaller number of FNs, and is
computed as TP / (TP + FN). We use F-measure [Manning et al., 2008] to combine precision and
recall into one metric. F-measure is computed as: 2 ⇥ Precision ⇥ Recall / (Precision + Recall).

Accuracy of clustering. The choice of metrics for evaluating the accuracy of clustering (step 3 of
the approach in Figure 4.3) is not as straightforward. A wide range of metrics exist to this end, each
with its own advantages and limitations. Clusters are typically evaluated across two dimensions: ho-
mogeneity and completeness [Rosenberg and Hirschberg, 2007]. Homogeneity captures the intuition
that the data points (in our case, candidate terms) in a generated cluster should be originating from a
single class (i.e., a single ideal cluster). Completeness captures the intuition that all the data points
in a class (i.e., an ideal cluster) should be grouped together in one generated cluster. A common lim-
itation of several clustering evaluation metrics, e.g., information-theoretic measures such as entropy,
is that they are not particularly suited for situations where the clusters are overlapping [Amigó et al.,
2009].

In our work, meaningful handling of overlaps is essential: while our clustering approach (Section
4.3.3) produces partitions, i.e., non-overlapping clusters, our ideal clusters (Section 4.5.5.1) are over-
lapping. To evaluate the accuracy of clustering, we use a simple set of accuracy metrics – a standard
generalization of precision, recall and F-measure for clusters [Zhao et al., 2002] – which is straight-
forward to interpret in the presence of overlaps. Below, we outline the procedure for calculating these
accuracy metrics for clusters. We discuss the implications of using partitioning clustering in RQ5;
see Section 4.5.6.5.

Let I1, . . . , It denote the set of ideal clusters, and let G1, . . . ,Gu denote the set of generated clusters.

• For every pair (Ii,G j) 1  i  t; 1  j  u:
– Let ni j be the number of common data points between Ii and G j.
– Precision(Ii,G j) =

ni j
|G j| .

– Recall(Ii,G j) =
ni j
|Ii| .

– F-measure(Ii,G j) =
2⇥Precision(Ii,G j)⇥Recall(Ii,G j)

Precision(Ii,G j)+Recall(Ii,G j)
.

• For every ideal cluster Ii 1  i  t:
– Let Gr be the best match for Ii among generated clusters, i.e., F-measure(Ii,Gr) � F-measure(Ii,G j)

for any 1  j  u. Let Pbest_match(i) denote Precision(Ii,Gr) and let Rbest_match(i) denote
Recall(Ii,Gr).

• Let n =
qt

i=1 |Ii|.
• Compute overall precision and recall as weighted-averages of the precisions and recalls of the

ideal clusters:
– Precision =

qt
i=1

|Ii|
n ⇥Pbest_match(i).

– Recall =
qt

i=1
|Ii|
n ⇥Rbest_match(i).

F-measure for clustering is computed as the harmonic means of Precision and Recall above. This
generalization of classification accuracy metrics for clusters is the basis for answering RQ2, RQ4 and
RQ6 in Section 4.5.6.
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Table 4.5. Information about the case studies.

Case No. of  
glossary 

terms 

No. of elements in  
domain model 

No. of 
ideal 

clusters 

Size distribution of  
ideal clusters 

No. of generated 
clusters covered 

in interview survey 
Case-A 140 Concepts (Classes) 238 119 

 

20 
Attributes * 37 

Specializations  143 
Associations 58 

Case-B 51 Concepts (Classes) 35 29 

 

27 
Attributes * 14 

Specializations 5 
Associations 29 

Case-C 200 Concepts (Classes) 274 142 

 

20 
Attributes * 35 

Specializations 110 
Associations 123 

	
 

* The number of domain model attributes in all three case studies is proportionally small. The reason is that, in line with 
best practices, when there was uncertainty as to whether an element should be a concept (class) or an attribute, we 
modeled it as a concept.  
 

0 5 10 15

0 2 6 104 8

0 5 10 15

4.5.6 Results and Discussion
In this section, we describe the results of our case studies and answer the RQs stated in Section 4.5.1.

Table 4.5 provides overall statistics about the outcomes of data collection, showing, for each
case study, the number of elicited glossary terms, the number of elements in the developed domain
model, the number and size distribution of ideal clusters, and the number of clusters reviewed by
the respective expert in the interview survey. For Case-A, a domain model existed beforehand. The
researchers elaborated this model to achieve the desired characteristics detailed in Section 4.5.4.2. In
Case-B and Case-C, no domain model existed a priori. The researchers built a domain model in each
of these two cases by following standard practices for domain modeling [Larman, 2005], and in a
way as to ensure the desired characteristics. In all three case studies, the resulting domain model was
thoroughly validated with the involved expert.

4.5.6.1 RQ1. How accurate is our approach at extracting glossary terms?

Our terms extraction tool, REGICE, yielded 604 candidate terms for Case-A, 91 terms for Case-B,
and 630 terms for Case-C. Figure 4.10 shows the classification accuracy results for our term extraction
technique and compares them against the results from five existing term extraction tools, outlined in
Section 4.2.4.1. We note that one of these tools, JATE, implements several alternative term extraction
techniques. The results in the chart of Figure 4.10 are for the technique by Frantzi et al. [Frantzi et al.,
2000], which, among the alternatives in JATE, has the best accuracy over our case studies.

As the chart indicates, our term extraction technique has better recall than the existing tools con-
sidered. Furthermore, and in terms of precision, our technique yields better results than all but Tex-
tRank in Case-A and Case-C. In both of these cases, the precision loss compared to TextRank is
small (0.9% in Case-A and 1.2% in Case-C); whereas the gain in recall is large (23.6% in Case-A
and 29.5% in Case-C). In other words, when compared to TextRank, our approach produces a small
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Figure 4.10. Accuracy of terms extraction.

number of additional unwanted terms (false positives) in Case-A and Case-C; but, at the same time,
our approach identifies a large number of desirable terms that TextRank misses.

For glossary term extraction, recall is a more important factor than precision. A low recall (i.e.,
a high number of false negatives) means that the analysts will miss many of the terms that should
be included in the glossary. Low precision is comparatively easier to address, as it entails only the
removal of undesired items (false positives) from a list of extracted candidate terms. Given that our
term extraction technique offers recall improvements of 20% or more over existing state-of-the-art
tools, and at the same time, maintains or improves precision, it is reasonable to conclude that our
technique is advantageous for the task of extracting glossary terms from requirements documents.

Our technique yields 8 false negatives in Case-A, 4 false negatives in Case-B, and 12 false neg-
atives in Case-C. Of these 24 false negatives in total, 13 are explained by the heuristic we apply for
filtering single-word common nouns (Table 4.4). From the remaining 11 false negatives, 4 are ex-
plained by our decision not to include VPs as candidate terms. The other 7 are due to limitations
in the underlying NLP technology (i.e., mistakes made by the text chunking pipeline). Including
single-word common nouns and VPs would address 17 out of the 24 false negatives. However, doing
so would have a substantial and non-negligible negative impact on precision by introducing many
additional false positives (precisely, 773 new false positives across the three case studies).
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We further observe that VPs account for only 0.01% of the glossary terms in our case studies. This
is consistent with the findings of Justeson and Katz [Justeson and Katz, 1995] and their conclusion
that VPs contribute  1% of the terms in technical glossaries.

The results in the chart of Figure 4.10 prompted an investigation as to why precision for Case-A
and Case-C is lower across all techniques, including ours. To identify the cause, we asked the experts
in Case-A and Case-C to explain the rationale in choosing the ideal glossary terms. We determined
that their choices exclusively reflected the terms for the glossary of the specific requirements docu-
ments being analyzed. In other words, terms that were deemed common knowledge or were known
to be already defined in the glossaries of related documents were excluded. In general, since such
contextual factors and working assumptions are often tacit and thus unavailable to an automated tool,
large variations may be seen in terms of precision across different projects. Nevertheless, recall,
which is the primary factor for glossary term extraction as we argued above, will not be affected.

4.5.6.2 RQ2. Which similarity measure(s) and clustering algorithms(s) yield the most
accurate clusters?

We assess the accuracy of clustering based on the F-measure metric for clusters, defined in Sec-
tion 4.5.5.2. As suggested by the discussion in RQ1, the set of candidate terms in a requirements
document can be wider than the ones that are of interest for glossary construction. However, the
generated clusters cover all candidate terms, not only those that are relevant to the glossary. To deter-
mine which similarity measure(s) and clustering algorithm(s) produce the best results relevant to the
glossary, we need to discard in our analysis of accuracy the terms that are not relevant. Specifically,
for the purpose of F-measure calculation, we prune from the generated clusters any term that is not
in at least one of the ideal clusters.

We note that outside an evaluation setting, one cannot distinguish terms that are relevant to the
glossary from those that are not. To preserve the realistic behavior of clustering, it is thus paramount
to compute the generated clusters for all the candidate terms first and then prune the results for evalu-
ation, as opposed to narrowing the set of candidate terms to those that are relevant and then clustering
only the relevant terms.

To answer RQ2, we considered pairwise combinations of the 12 syntactic and 8 semantic simi-
larity measures introduced in Section 4.2.2. Three semantic measures, HSO, LESK, and LCH, were
discarded during initial analysis due to scalability issues. The total number of remaining combina-
tions is (12+1)⇥ (5+1)�1 = 77. These combinations include configurations where an individual
syntactic or semantic measure is applied on its own.

For clustering, we considered K-means, Hierarchical and EM, as introduced in Section 4.2.3.1.
We experimented with 8 variant cluster distance functions (Table 4.3) for hierarchical clustering.
This brings the total number of clustering algorithms to 10. We evaluated each clustering algorithm in
conjunction with all the 77 possible combinations of similarity measures, i.e., a total of 10⇥77 = 770
alternative cluster computations per case study.

For a given cluster computation alternative, i.e., combination of a clustering algorithm and simi-
larity measures, plotting F-measure against the number of clusters results in curves similar to those
shown in Figure 4.11.
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Figure 4.11. F-measure curves for three different cluster computation alternatives.

The shape of these curves is explained as follows: When the selected number of clusters, K, on
the x-axis is small, the size of the generated clusters is large, since the average size of clusters is
inversely related to K. These large-sized clusters yield high recall but low precision, with an overall
low F-measure. As K increases, large clusters become smaller and more cohesive. This brings
about major increases in precision without a significant negative impact on recall, thus increasing
F-measure. The F-measure peaks at some K value. This is where the generated clusters are closest
to the ideal ones. Beyond this optimal K (the estimation of which is the subject of RQ3), increases in
K will reduce F-measure, as recall begins to drop rapidly and losses in recall are no longer offset but
gains in precision.

For a set of candidate glossary terms with a cardinality of n, increasing the value of K beyond
n/2 would have little practical meaning, as the average size of clusters would fall below 2 terms per
cluster. Generating clusters that are this small would defeat the purpose of clustering. To use curves
similar to those in Figure 4.11 as an evaluation instrument, we therefore restrict the upper range for
K to a maximum of n/2 (upper bound).

For each of the 770 alternatives in a given case study, we plot an F-measure curve for 10 points
on the x-axis at regular intervals, ranging from 1 to n/2. Note that n is the number of candidate
terms in the case study in question. The reason we limit ourselves to 10 observation points is that
a thorough analysis for all possible numbers of clusters is extremely expensive computationally.1
Knowing already that the F-measure curves follow a certain shape, as we explained earlier, and in
light of the fact that the analysis we perform over these curves, as will become clearer over the course
of our discussion, is a preliminary step for identifying the most promising alternatives, we deemed 10
observation points to be sufficient for approximating the curves.

We compare the curves by taking the average of F-measures over the entire value range for K.
The rationale for averaging is that, in lieu of knowledge about the optimal K, we would like to favor

1Such an analysis would have required us to execute clustering 770 ⇥ n/2 times per case study, i.e., 770 ⇥ (604/2 +
d91/2e+ 630/2) = 510510 times in total. Our approximate estimation of the execution time for such an experiment is
more than 60 days on a conventional computer.
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Table 4.6. Top-5 cluster computation alternatives.

Case Syntactic 
Measure 

Semantic 
Measure 

Clustering 
Algorithm  

Normalized 
AUC 

Case-A Levenstein JCN EM 0.485 
Levenstein PATH EM 0.484 
Levenstein LIN EM 0.482 
Levenstein PATH K-means 0.476 
Levenstein RES EM 0.476 

Case-B SoftTFIDF NONE EM 0.523 
SoftTFIDF NONE K-means 0.519 
Jaccard NONE EM 0.498 

Monge_Elkan JCN EM 0.498 
Euclidean NONE EM 0.493 

Case-C Levenstein LIN EM 0.559 
Levenstein RES EM 0.557 
Levenstein PATH EM 0.557 
Levenstein JCN EM 0.553 
SoftTFIDF LIN EM 0.547 

 
alternatives that yield the best overall accuracy across all K values. Naturally, an alternative fares
better than another if it has a higher average F-measure. We compute the average F-measure for each
curve by computing its Area Under the Curve (AUC) and normalizing the result.

In Table 4.6, we show for each case study the top-5 alternatives that yield the best average ac-
curacy, i.e., alternatives with the largest (normalized) AUC. As suggested by the table, there is no
alternative that is shared among all three case studies. We therefore cannot recommend a best alter-
native based on the information in this table alone.

To provide a general recommendation, we need to further consider the effect of individual syn-
tactic measures, semantic measures and clustering algorithms on accuracy across all the alternatives.
For example, a syntactic measure that is not employed in the absolute-best alternative but performs
consistently well in all the alternatives where it is employed may be advantageous over one that is
employed in the absolute-best alternative but also in some poor alternatives.

More precisely, we want to find similarity measures and clustering algorithms that yield good (but
not necessarily the absolute-best) results, and at the same time, cause little variation. A standard way
for performing such analysis is by building a regression tree [Breiman et al., 1984]. A regression tree
is a step-wise partitioning of a set of data points with the goal of minimizing, with respect to a certain
metric, variation within partitions. Here, the data points are the 770 (cluster computation) alternatives
and the metric of interest is the AUC. For each case study, the regression tree identifies at any level in
the tree the most influential factor that explains the variation between the data points. In our context,
there are three factors: (1) the syntactic measure, (2) the semantic measure, and (3) the clustering
algorithm. Once the most influential factor is identified, the regression tree partitions the data points
into two sets in a way as to minimize variations within the resulting sets.

Figure 4.12 shows the regression trees for our case studies. In each node of the tree, we show the
count (number of alternatives), and the mean and standard deviation for AUC. By convention, sibling
nodes in the tree are ordered from left to right based on their mean values. That is, the node on a right
branch has a larger mean than its sibling on the left. For every expanded (i.e., non-leaf) node, the node
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Figure 4.12. Regression trees for normalized AUCs.

shows the difference between the mean values of its right and left children. For each case study, we
iteratively expanded the regression tree until the difference (in means) between the right and the left
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Figure 4.13. Comparison between the K-means and EM clustering algorithms; both curves are for Case-C and
computed using the combination of Levenstein and PATH.

nodes fell below the threshold of 0.025, which we deemed to be the minimum difference of practical
relevance. Naturally, we expanded only the right branches, given the convention we noted above.

As the regression trees of Figure 4.12 suggest, the most influential factor in all three case studies
is the choice of clustering algorithm. Only EM and K-means perform consistently well across all
our case studies, thus ruling out all variants of hierarchical clustering. For Case-A, the choice of
similarity measures does not play a significant role. But, for Case-B and Case-C, the choice of
syntactic measure is the second most influential factor, as shown by the regression trees of these two
case studies. Taking the overlap between the best-performing syntactic measures in Case-B and Case-
C, we narrow the choices of syntactic measures to Levenstein, Monge-Elkan and SoftTFIDF. The
label NONE, appearing in the regression trees of Case-B and Case-C, denotes stand-alone applications
of semantic measures (i.e., without a syntactic measure). We observe that in Case-C, NONE appears
on a left branch. We thus conclude that individual semantic measures should not be applied on their
own.

Our regression tree analysis finds both EM and K-means to be good choices for the clustering
algorithm. To develop further insights into the behavior of EM and K-means, we plotted higher-
resolution F-measure curves for both algorithms when applied in combination with the best similarity
measures identified through our regression tree analysis. Specifically, we increased the number of
points on the x-axis from 10 (used for the charts of Figure 4.11) to 100.

Figure 4.13 illustrates the higher-resolution F-measure curves. The two curves in this figure differ
only in the choice of the clustering algorithm. We observe from the figure that the curve for EM is
relatively smooth; whereas the one for K-means has spikes, indicating that K-means is very sensitive
to the selected number of clusters. This trend of behavior was seen across all our case studies and
all the similarity measures considered. The high sensitivity of K-means to the number of clusters is
undesirable in our context, where we can never exactly pinpoint the optimal number of clusters and
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can only provide guidelines for coming up with a reasonable estimate (RQ3). Consequently, we rule
out K-means, thus narrowing the choice of clustering algorithm to EM.

To summarize our discussion of RQ2, we conclude that the following similarity measures and
clustering algorithm are good choices for further examination in RQ4:

Syntactic measures: One of the three syntactic measures: Levenstein, Monge-Elkan or SoftTFIDF.
Semantic measures: Semantic measures do not have a significant impact on clustering accuracy.
Clustering algorithm: EM.

Despite semantic measures not being influential in improving clustering accuracy, we do not dis-
courage the use of these measures. A potential reason why we did not find semantic measures useful
is that semantic synonyms are not prevalent in our case studies. Semantic measures, when combined
with syntactic ones, may be useful if the likelihood of (semantic) synonyms being present is high. As
indicated in Section 4.4, our tool already supports semantic measures.

4.5.6.3 RQ3. How can one specify the number of clusters?

Theoretically, the number of clusters, K, is a value between 1 and the total number of candidate terms.
However, as we argued in RQ2, considering a K value that is larger than half the number of candidate
terms is unreasonable from a practical standpoint. If K is too small, accuracy will be low due to large
clusters with low precision. If K is too large, accuracy will again be low but this time due to small
clusters with low recall. Obviously, one does not have access to a gold standard outside an evaluation
setting. Therefore, one cannot use the optimal point in F-measure curves such as those in Figure 4.11
for choosing K.

We use BIC, discussed in Section 4.3.3, to choose a value for K. As explained in this earlier
section, the intuition is that the larger the BIC, the better is the choice for the value of K. In other
words, our goal should be to choose K in a way that maximizes BIC. We apply an adaptation of this
general idea for choosing K, as we describe next.

For a specific cluster computation alternative, we first plot the BIC curve over the range [1,n/2]
of the number of clusters, where n is the number of candidate terms. To illustrate, Figure 4.14 shows
the BIC curves resulting from the application of EM using similarities calculated with SoftTFIDF
for each case study.

For performance reasons, when the number of candidate terms (and thus the number of values in
the range [1,n/2]) is large, we may elect not to compute the BIC at every value on the x-axis. Instead,
like in RQ2, we may divide the x-axis into a certain number of points. For example, in Figure 4.14, the
x-axis for Case-A and Case-B is divided in increments of 1% of the range (100 points). For Case-B,
the range is small (<100 points); therefore, all the values in the range are covered.

Let BICmax and BICmin be the maximum and minimum BIC values, respectively; and let margin =
(BICmax � BICmin)/10, i.e., 10% of the difference between BICmax and BICmin. Assuming that
BICmax occurs over a peak, we look to the right of the peak and choose the largest possible K
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Figure 4.14. Selecting the number of clusters using BIC.
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Figure 4.15. Accuracy of the alternatives identified in RQ2 when the number of clusters is set using the
guidelines of RQ3.

whose BIC is larger than or equal to BICmax � margin. In the (unlikely) case where the BIC curve
is monotonically-increasing, i.e., there is no peak, we set K to be n/2. The rationale for choosing a
K with a smaller BIC than the maximum is to obtain a larger number of clusters and hence a smaller
number of terms within individual clusters. As long as BIC remains uncompromised, i.e., stays within
a small margin from the maximum, clusters with a smaller number of terms are more desirable be-
cause they are more homogeneous and easier for analysts to inspect.

In the example curves of Figure 4.14, BICmax for Case-A occurs when there are 55 clusters. The
BIC value nonetheless stays within the 10% margin up to 99 clusters. Based on our argument above,
we select K = 99 for Case-A. In Case-B, BICmax occurs at 23 clusters. BIC stays within the specified
margin up to 27 clusters, followed by a steep decline. We therefore select K = 27 for Case-B. In
Case-C, BICmax occurs at 30 clusters but remains within the margin up to 84 clusters. Hence, in this
case, we select K = 84.

We note that our guidelines for selecting the number of clusters are automatable and have been
already implemented into our tool support (Section 4.4). Therefore, the computation of BIC and its
interpretation are transparent to the end-users of our approach.

4.5.6.4 RQ4. Which of the alternatives identified in RQ2 are the most accurate when used
with the guidelines from RQ3?

The analysis of RQ2 narrows cluster computation alternatives to one clustering algorithm, namely
EM, and three syntactic measures, namely Levenstein, Monge-Elkan and SoftTFIDF. The analysis
further suggests that semantic measures do not influence clustering accuracy in a major way. Never-
theless, and as discussed in RQ2, we do not rule out the usefulness of semantic measures in general.
For answering RQ4, we therefore consider all the viable semantic measures from RQ2, namely LIN,
PATH, RES, JCN and WUP.
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Table 4.7. Execution times.

Case / strategy to increment # of clusters Phase Execution
Time

Case-A Term Extraction 15s
380 requirements statements, 604 terms Similarity Calculation

(Syntactic + Semantic)
32s + 58s = 90s

# clusters incremented by 1% of # of terms Clustering 20m
Total 21m 45s

Case-B Term Extraction 72s
110 requirements statements, 91 terms Similarity Calculation

(Syntactic + Semantic)
18s + 49s = 67s

# clusters incremented by 1 unit in each run Clustering 15s
Total 1m 55s

Case-C Term Extraction 13s
138 requirements statements, 630 terms Similarity Calculation

(Syntactic + Semantic)
33s + 61s = 94s

# clusters incremented by 1% of # of terms Clustering 23m
Total 24m 47s

Specifically, we answer RQ4 by investigating the 18 alternatives shown in Figure 4.15. We leave
the clustering algorithm (EM) implicit in the figure because it is the same across all these alternatives.
We represent a pairwise combination of a syntactic and a semantic measure by concatenating their
names separated by the “.” symbol. For example, we write SoftTFIDF.PATH to refer to the combi-
nation of SoftTFIDF (syntactic) and PATH (semantic). When a syntactic measure is used on its own,
we use NONE to indicate the absence of a semantic measure. For example, SoftTFIDF, when used
alone, is denoted SoftTFIDF.NONE.

For each alternative, we first compute the BIC curve and apply the guidelines of RQ3 to select the
number of clusters (according the BIC curve produced by that specific alternative). We then calculate
the accuracy (F-measure) of the alternative at the selected number of clusters. The results are shown
in Figure 4.15. For each case study, we indicate both the best alternative and also any other alternative
whose accuracy is within 2% of the accuracy of the best alternative.

Our results suggest that applying SoftTFIDF alone for computing similarities between terms
presents the best overall option. If the analyst elects to further use a semantic measure, the best
choice would be to combine SoftTFIDF with JCN: as shown by Figure 4.15, this combination closely
follows the stand-alone application of SoftTFIDF in terms of accuracy.

4.5.6.5 RQ5. Does our approach run in practical time?

Table 4.7 shows the execution times for the different steps of our approach. All execution times were
measured on a laptop with a 2.3 GHz Intel CPU and 8GB of memory. The execution times we report
for similarity calculation in Table 4.7 are based on the combined application of SoftTFIDF and JCN,
i.e., the best combination from RQ4 involving a semantic measure. This provides a more realistic
picture of execution times, should the application of semantic measures be warranted.

The running time of our approach is dominated by the clustering step and more specifically by
the construction of the BIC curve, outlined in Section 4.5.6.3. For calculating a BIC curve, as was
discussed earlier, we consider 1% intervals on the x-axis, instead of every possible number of clusters.
The implementation we use for generating BIC curves performs, for any point on the x-axis, 10 BIC
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Figure 4.16. Clustering example: ovals represent ideal clusters and background colors represent generated
clusters.

Table 4.8. (a) Upper bounds for the accuracy of partitioning clustering, (b) the actual accuracy of our approach.

(a) Best Possible (b) EM + SoftTFIDF

Case Precision Recall F-Measure Difference 
Case-A 49.4% 39.3% 43.7% 39.2% 
Case-B 57.7% 45.4% 50.8% 28% 
Case-C 62.9% 49.0% 55.1% 30.6% 
     
Case-A 46.9% 40.0% 43.1% 39.8% 
Case-B 71.5% 45.4% 55.5% 23.3% 
Case-C 63.3% 49.0% 55.2% 30.5% 
     
Case-A 57.8% 37.0% 45.1% 37.8% 
Case-B 53.3% 46.0% 49.4% 29.4% 
Case-C 67.6% 50.8% 58.2% 27.5 
     
Case-A 67.2% 36.3% 47.5% 35.4% 
Case-B 57.8% 45.4% 50.8% 28% 
Case-C 61.8% 52.7% 56.9% 28.8% 
!
Case Precision Recall F-Measure 
Case-A 90.8% 76.2% 82.9% 
Case-B 89.1% 70.7% 78.8% 
Case-C 93.5% 79.1% 85.7% 
!

Case Absolute Precision 
(Relative Precision) 

Absolute Recall 
(Relative Recall) 

Absolute F-Measure 
(Relative F-Measure) 

Case-A 66.8% (73.6%) 43.6% (57.2%) 52.8% (63.7%) 
Case-B 79.7% (89.5%) 51.9% (73.4%) 62.9% (79.8%) 
Case-C 77.4% (82.8%) 54.5% (68.9%) 64.0% (74.7%) 

	
Case Precision Recall F-Measure 
Case-A 90.8% 76.2% 82.9% 
Case-B 89.1% 70.7% 78.8% 
Case-C 93.5% 79.1% 85.7% 
	

* Relative = Absolute / Best Possible * 100

* * *
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Figure 4.17. Comparison with random partitioning; the optimal number of clusters for each case study is
further shown.

calculations corresponding to 10 different probabilistic models [Fraley and Raftery, 2012]. Each BIC
value in the curve is the maximum of these 10 calculations.

We believe that the overall execution times in Table 4.7 are practical, noting that glossary term
clustering does not need to be repeated frequently. However, handling requirements documents that
are much larger that those in our case studies may require a strategy to further reduce the time spent
on building BIC curves. This can be done by further limiting the number of points on the x-axis of
these curves (e.g., by using larger intervals), or by considering only a subset of the probabilistic model
alternatives.
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4.5.6.6 RQ6. How effective is our clustering technique at grouping related terms?

The ideal clusters in our evaluation are overlapping. The overlaps arise because individual candidate
terms may assume different roles in different requirements statements, and thus relate to potentially
different terms based on each role. For example, based on the model of Figure 4.7, the term “GSI
monitoring information” assumes two different roles, one as a parent concept for “GSI anomaly”,
“GSI input parameter”, and “GSI output parameter”, and another as a constituent part of “Ground
Station Interface”. As a result, there will be two ideal clusters containing “GSI monitoring infor-
mation”: one ideal cluster around “GSI monitoring information” and its child concepts (terms), and
another ideal cluster around the composition relationship between “Ground Station Interface” and
“GSI monitoring information”. By allowing overlaps in the ideal clusters, one can distinguish differ-
ent roles and orient each ideal cluster around one particular role. Having the roles separated from one
another is advantageous because it makes the clusters highly-focused and small.

The above said, generating clusters that are overlapping can pose an overhead for end-users, be-
cause individual candidate terms can appear multiple times in such clusters. This means that the
effort associated with manually reviewing overlapping clusters will be, potentially by several folds,
higher than the case where the generated clusters are non-overlapping. The clustering algorithms we
considered in our work are partitioning algorithms. Nevertheless, we evaluated the results of these
algorithms against overlapping ideal clusters to determine how close we can get to the (conceptually)
ideal situation, without actually making the generated clusters overlapping.

To illustrate, we show in Figure 4.16 both the ideal clusters and the generated ones (by EM and
SoftTFIDF) for the example of Figure 4.1. Here, there are 12 ideal clusters, represented as ovals,
and 8 generated clusters, represented using colors. The term “status” appears in the ideal clusters but
is struck out from the generated ones. This term, which is a variant of “GSI Component status” is
filtered due to being a single-word common noun (see Table 4.4).

The clustering precision and recall for this example are 73.7% and 75%, respectively. These
numbers mean that, on average, 73.7% of the terms an analyst sees in a generated cluster pertain to the
specific aspect of relatedness they are investigating. Further, 75% of the ideal terms for this specific
relatedness aspect have been retrieved. Despite the accuracy not being perfect, the generated clusters
provide reasonable cues about related terms. The extent to which practitioners find the generated
clusters useful is addressed in RQ7.

Given that achieving perfect accuracy is theoretically impossible (unless the ideal clusters have
no overlaps), we need to find an upper bound on the maximum possible accuracy that one can expect
from partitioning clustering in our context. This upper bound provides a reference point for evaluating
the effectiveness of clustering in our approach.

To compute such an upper bound, we follow a randomized procedure. Specifically, we impose a
random order on the ideal clusters and prune these clusters so that the following constraint holds for
any given term t: if t appears in a cluster C at position i in the ordering, then t cannot appear in any
cluster C0 at a position i0 such that i0 > i. This procedure derives non-overlapping clusters from the
ideal clusters. The accuracy of these non-overlapping clusters is a good indicator for what partitioning
clustering can achieve in the best case. We applied the above procedure to 1000 random orders of the
ideal clusters in our three case studies, and computed the average accuracy measures.
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Figure 4.18. Cluster size distributions.

Table 4.8(a) shows upper bounds for precision, recall, and F-measure when the overlaps have
been removed. For comparison, we provide in Table 4.8(b) the accuracy of the best alternative from
RQ4 (i.e., EM + SoftTFIDF), with the number of clusters chosen as discussed in RQ3. In addition,
Table 4.8(b) shows the accuracy scores relative to the upper bounds of Table 4.8(a). We believe that
these results, when complemented with the expert feedback discussed later in RQ7, provide positive
evidence for the effectiveness of our approach.

As a sanity check, we compare our best cluster computation alternative with random partitioning.
For this purpose, we use a 10-fold random partitioning of candidate terms into equal-sized clusters. In
Figure 4.17, we show the F-measure curve of the best alternative against that of random partitioning.
As can be seen from the figure, the best alternative significantly outperforms the random baseline.

Figure 4.18 shows, for each case study, the size distribution of the clusters computed using the
best alternative. To facilitate comparison, we show the distributions both for the situation where we
select the number of clusters based on the guidelines of RQ3, and also for the situation where the
number of clusters is chosen in a way as to maximize F-measure. The number of clusters maximizing
F-measure in Case-A, Case-B and Case-C are 134, 27 and 120, respectively, as marked on the charts
of Figure 4.17. We note that these optimal numbers of clusters are known only in an evaluation
setting, i.e., when the ideal clusters are known.

The results in Figure 4.18 provide confidence that: (1) the generated clusters are reasonably small
and thus easy for the analysts to review; and (2) the size distributions we obtain by following the
guidelines of RQ3 are not drastically different than those obtained from an optimal (but in a realistic
setting, unattainable) clustering.

A final remark we need to make about the distributions of Figure 4.18 is that these distributions
are not directly comparable to those of the ideal clusters, shown earlier in Figure 4.5. This is because
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Figure 4.19. Expert survey interview results.

the generated clusters cover all candidate terms; whereas the ideal clusters are concerned with only
the actual glossary terms.

4.5.6.7 RQ7. Do practitioners find the clusters generated by our approach useful?

Figure 4.19 shows the results of our survey study, obtained by following the procedure described in
Section 4.5.4.3. We recall that the number of clusters considered in our surveys for Case-A, Case-B
and Case-C are 20, 27 and 20, respectively. The surveys therefore collectively examine 67 clusters.

With regard to Statement 1 (see Figure 4.9), the experts strongly agreed or agreed in 89.6% of the
cases that the clusters were helpful in identifying related terms. The experts were neutral in 4.4% of
the cases (3 clusters, all in Case-B), and disagreed in 6% of the cases (4 clusters, two in Case-B and
two in Case-C).

With regard to Statement 2, in 88% of the cases, the experts strongly agreed or agreed that the
clusters were helpful for defining the glossary terms more precisely. In 6% of the cases (4 clusters, all
in Case-B), the experts were neutral; and in the remaining 6% of the cases (4 clusters, two in Case-B
and two in Case-C), the experts disagreed.

Finally and with regard to Statement 3, the experts deemed 19 out of the 67 clusters (28.4%) not
relevant, meaning that the experts did not see variants in these clusters. For the remaining 48 clusters
(71.6%), the experts either agreed or strongly agreed that the clusters where helpful for identifying
variant terms, except in 7 cases where the experts were neutral (one in Case-A and six in Case-B).

We compute the average of the expert responses by quantifying the agreement scale, from 0 for
“Strongly Disagree” to 4 for “Strongly Agree”. This would give us an average of 3.40 for Statement
1, an average of 3.42 for Statement 2, and an average of 3.15 for Statement 3, noting that we exclude
for Statement 3 the clusters that were deemed not relevant.

The above results indicate that the average scores for all the three statements in our survey are be-
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tween “Agree” and “Strongly Agree”. This suggests that the experts had a strong positive perception
of the quality of the generated clusters.

4.6 Threats to Validity
In this section, we discuss threats to the validity of our empirical results and the steps we have taken
to mitigate these threats.

Internal validity. The researchers were involved in the construction of the domain models from which
the ideal clusters were derived. This raises the potential problem that the domain models could be built
in a way that would favor our clustering results. To mitigate bias during domain model construction,
we adhered to standard guidelines for domain modeling, notably by Larman [Larman, 2005]. Further,
we subjected the domain models to a thorough review and revision process with close participation
from the experts, who were familiar with domain modeling but not with the exact analytical purpose
of a domain model in our evaluation.

A second potential threat to internal validity is that, as we stated in Section 4.5.2, in two of our
case studies, Case-A and Case-B, an attempt had been made by the requirements authors to conform
to a certain template. Applying a template often leads to simpler requirements sentences. This can
in turn potentially reduce the error rate of NLP, thus increasing the accuracy of term extraction over
template requirements when compared to non-template requirements.

We have seen no evidence of the above phenomenon happening in practice. As we discussed in
Section 4.5.6.1, the number of false negatives caused by NLP errors is very small. Of the seven such
errors across the three case studies, two occurred in Case-A, one in Case-B, and four in Case-C. When
normalized by the total number of extracted terms in each case study, the NLP error rate is at 0.33%
(2/604) in Case-A, 1.1% (1/91) in Case-B, and 0.63% (4/630) in Case-C. These fractions, irrespective
of whether templates have or have not been used, are too small to affect accuracy in a significant way.
We therefore do not anticipate the use of template requirements in our evaluation to pose a major
validity threat.

Construct validity. The definition of ideal clusters is a subjective procedure. To mitigate construct
validity threats, we applied an explicit and systematic process for defining the ideal clusters, building
on the notion of a domain model. This limits subjectivity in defining the ideal clusters and further
makes the process repeatable.

Conclusion validity. The choice of clustering accuracy metrics has an impact on the conclusions
drawn based on the metrics. To minimize threats to conclusion validity, we chose the metrics in a
way as to best match the overlapping nature of the ideal clusters in our problem. A complementary
measure for countering conclusion validity threats is the interview survey analysis we performed in
order to directly assess the usefulness of the generated clusters from a practitioner’s perspective. As
we explained in Section 4.5.4.3, we surveyed one expert per case study due to the special criteria that
potential respondents had to meet, but covered multiple clusters in each survey to mitigate potential
expert errors.
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External validity. We applied our approach to three case studies drawn from two industry sectors. The
consistency seen across the results of the case studies provides confidence about the generalizability
of our results. Further case studies are nonetheless necessary for improving external validity.

4.7 Conclusion
In this chapter, we presented a tool-supported approach for extracting candidate glossary terms from
natural language requirements and grouping these terms into clusters based on (syntactic and se-
mantic) similarity between terms. We reported on the application of our approach to three indus-
trial case studies. Our evaluation demonstrated that our approach is significantly more accurate than
generic term extraction tools, for glossary terms extraction from requirements documents. Further,
the interview surveys conducted with the subject experts in our case studies suggest that our clus-
tering technique offers practical benefits for the construction of requirements glossaries. Based on
our evaluation, we devised practical guidelines on tuning the number of clusters variable for a given
requirements document. This is important for a successful application of our approach in industry.

In the future, we plan to conduct empirical studies aimed at determining whether our approach
leads to compelling quality improvements and cost reductions in comparison with the situation where
no automated assistance is used during requirements glossary construction. Finally, we would like to
look into additional avenues for utilizing our approach. In particular, we intend to investigate whether
our approach can be a useful decision aid for exploring the relationships between the terminologies
of requirements documents that originate from different sources.
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Chapter 5

Extracting Domain Models from
Natural-Language Requirements

Domain modeling is an important step in the transition from natural-language requirements to precise
and analyzable specifications [Yue et al., 2011]. By capturing in an explicit manner the key concepts
of an application domain and the relations between these concepts, a domain model serves both as an
effective tool for improving communication between the stakeholders of a proposed application, and
further as a basis for detailed requirements and design elaboration [Larman, 2005, Schneider, 2009].

For large systems, building a domain model manually is a laborious task. Several approaches
exist to assist engineers with this task, whereby candidate domain model elements are automatically
extracted using Natural Language Processing (NLP). Despite the existing work on domain model
extraction, important facets remain under-explored: (1) there is limited empirical evidence about
the usefulness of existing extraction rules (heuristics) when applied in industrial settings; (2) existing
extraction rules do not adequately exploit the natural-language dependencies detected by modern NLP
technologies; and (3) an important class of rules developed by the information retrieval community
for information extraction remains unutilized for building domain models.

Motivated by addressing the above limitations, we develop a domain model extractor by bringing
together existing extraction rules in the software engineering literature, extending these rules with
complementary rules from the information retrieval literature, and proposing new rules to better ex-
ploit results obtained from modern NLP dependency parsers. We apply our model extractor to four
industrial requirements documents, reporting on the frequency of different extraction rules being ap-
plied. We conduct an expert study over one of these documents, investigating the accuracy and overall
effectiveness of our domain model extractor.

Structure. Section 5.1 discusses the motivation and our contributions for the work presented in this
chapter. Sections 5.2 and 5.3 review the state of the art and provide background. Section 5.4 presents
our domain model extraction approach. Section 5.5 reports on an empirical evaluation of the ap-
proach. Section 5.6 presents the summary of the chapter and the directions for future work.
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5.1 Motivation and Contributions
Natural language (NL) is used prevalently for expressing systems and software requirements [Pohl
and Rupp, 2011]. Depending on the development methodology being followed, requirements may be
written in different formats, e.g., declarative “shall” statements, use case scenarios, user stories, and
feature lists [Pohl and Rupp, 2011]. Certain restrictions, e.g., templates [Arora et al., 2015a, Yue et al.,
2015], may be enforced over NL requirements to mitigate ambiguity and vagueness, and to make the
requirements more amenable to analysis. In a similar vein, and based on the application context,
the engineers may choose among several alternative notations for domain modeling. These notations
include, among others, ontology languages such as OWL, entity-relationship (ER) diagrams, UML
class diagrams, and SysML block definition diagrams [Ambler, 2004, Holt et al., 2011].

Irrespective of the format in which the requirements are expressed and the notation used for do-
main modeling, the engineers need to make sure that the requirements and the domain model are
properly aligned. To this end, it is beneficial to build the domain model before or in tandem with
documenting the requirements. Doing so, however, may not be possible due to time and resource
constraints. Particularly, in many industry domains, e.g., aerospace which motivates our work in this
chapter, preparing the requirements presents a more immediate priority for the engineers. This is
because the requirements are a direct prerequisite for the contractual aspects of development, e.g.,
tendering and commissioning. Consequently, the engineers may postpone domain modeling to later
stages when the requirements have sufficiently stabilized and met the early contractual demands of
a project. Another obstacle to building a domain model early on in a complex project is the large
number of stakeholders that may be contributing to the requirements, and often the involvement of
different companies with different practices.

Building a domain model that is aligned with a given set of requirements necessitates that the
engineers examine the requirements and ensure that all the concepts and relationships relevant to the
requirements are included in the domain model. This is a laborious task for large applications, where
the requirements may constitute tens or hundreds of pages of text. Automated assistance for domain
model construction based on NL requirements is therefore important.

R1: The simulator shall maintain the 
scheduled sessions, the active session 
and also the list of sessions that have 
been already handled.

Simulator Session
maintain

Scheduled 
Session

Active 
Session

Archived 
Session

(a) (b)
Figure 5.1. (a) Example requirements statement and (b) corresponding domain model fragment.

This chapter is concerned with developing an automated solution for extracting domain models
from unrestricted NL requirements, focusing on the situation where one cannot make strong assump-
tions about either the requirements’ syntax and structure, or the process by which the requirements
were elicited. We use UML class diagrams for representing the extracted models. To illustrate, con-
sider requirements statement R1 in Figure 5.1(a). This requirement originates from the requirements
document of a real simulator application in the satellite domain. Upon manually examining R1, a
domain expert sketched the domain model fragment shown in Figure 5.1(b). Using heuristic rules
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IP Address Networkspecified
for

R2: The simulator shall connect only to 
those networks for which the IP addresses 
have been specified.

(a) (b)
Figure 5.2. (a) Example relative clause modifier (rcmod) dependency and (b) corresponding relation.

implemented via Natural Language Processing (NLP) [Indurkhya and Damerau, 2010], a tool could
automatically identify several of the elements in this model fragment. Indeed, generalizable rules can
be provided to extract all the elements, except for Archived Session and its relation to Session,
whose identification would require human input.

Automated extraction of models from NL requirements has been studied for a long time, with a
large body of literature already existing in the area, e.g., [Deeptimahanti and Sanyal, 2011, Elbendak
et al., 2011, Ibrahim and Ahmad, 2010, Popescu et al., 2008, Vidya Sagar and Abirami, 2014, Yue
et al., 2015], to note some. Nevertheless, important aspects and opportunities that are crucial for the
application of model extraction in industry remain under-explored. Notably:

• There is limited empirical evidence about how well existing model extraction approaches perform
when applied over industrial requirements. Existing approaches often assume restrictions on the
syntax and structure of NL requirements [Yue et al., 2011]. In many industrial situations, e.g., when
there are time pressures or little control over the requirements authoring process, these restrictions
may not be met [Arora et al., 2015a]. There is therefore a need to empirically study the usefulness of
model extraction over unrestricted NL requirements.

• Modern NLP parsers provide detailed information about the dependencies between different seg-
ments of sentences. Our examination of existing model extraction rules indicates that there are impor-
tant dependency types which are detectable via NLP, but which are not currently being exploited for
model extraction. To illustrate, consider requirements statement R2, shown in Figure 5.2(a), from the
simulator application mentioned earlier. In R2, there is a dependency, called a relative clause modifier
(rcmod) dependency [De Marneffe and Manning, 2008], between the phrases “network” and “speci-
fied”. Based on this dependency, which is detected by parsers such as the Stanford Parser [Klein and
Manning, 2016], one can extract the relation in Figure 5.2(b). Existing model extraction approaches
do not utilize rcmod and thus do not find this relation. Similar gaps exist for some other dependency
types.

• An important generic class of information extraction rules from the information retrieval literature is
yet to be explored for model extraction. This class of rules, referred to as link paths [Akbik and Broß,
2009] (or syntactic constraints [Fader et al., 2011]), enables extracting relations between concepts that
are only indirectly related. To illustrate, consider requirements statement R3, shown in Figure 5.3(a),
again from the simulator application mentioned earlier. Existing model extraction approaches can
detect the relation shown in Figure 5.3(b), as “simulator” and “log message” are directly related to
each other by being the subject and the object of the verb “send”, respectively. Nevertheless, existing
approaches miss the indirect relations of Figure. 5.3(c),(d), which are induced by link paths.

Link path relations can have different depths, where the depth represents the number of additional
concepts linked to the direct relation. For example, in the relation of Figure 5.3(c), one additional
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Simulator Log Message
*

send
1

Simulator Database1
send log

message to1 Simulator Monitoring 
Interface1

send log message
to database via1

R3: The simulator shall send log messages 
to the database via the monitoring interface.

(a) (b)

(c) (d)
Figure 5.3. (a) Example requirements statement, (b) direct relation, (c-d) link path (indirect) relations.

concept, namely “database”, has been linked to the direct relation, i.e., Figure 5.3(b). The depth of
the link path relation is therefore one. Using a similar reasoning, the depth of the link path relation in
Figure 5.3(d) is two.

As suggested by our example, the direct relation of Figure 5.3(b) is not the only plausible choice to
consider for inclusion in the domain model; the indirect relations of Figure. 5.3(c),(d) present mean-
ingful alternative (or complementary) relations. Indeed, among the three relations in Figure. 5.3(b)-
(d), the domain expert found the one in Figure 5.3(c), i.e., the link path of depth one, useful for the
domain model and excluded the other two relations. Using link paths in model extraction is therefore
an important avenue to explore.

Contributions. Motivated by addressing the limitations outlined above, we make the following con-
tributions:

(1) We develop an automated domain model extractor for unrestricted NL requirements. We use
UML class diagrams for representing the results of extraction. Our model extractor combines existing
extraction rules from the software engineering literature with link paths from the information retrieval
literature. We further propose new rules aimed at better exploiting the dependency information ob-
tained from NLP dependency parsers.

(2) Using four industrial requirements documents, we examine the number of times each of the
extraction rules implemented by our model extractor is triggered, providing insights about whether
and to what extent each rule is capable of deriving structured information from NL requirements in
realistic settings. The four documents that we consider collectively contain 786 “shall” requirements
statements.

(3) We report on an expert review of the output of our model extractor over 50 randomly-selected
requirements
statements from one of the four industrial documents mentioned above. The results of this review
suggest that ⇡90% of the conceptual relations identified by our model extractor are either correct
or partially correct, i.e., having only minor inaccuracies. Such level of correctness, noting that no
particular assumptions were made about the syntax and structure of the requirements statements, is
promising. At the same time, we observe that, from the set of relations identified, only ⇡36% are
relevant, i.e., deemed useful for inclusion in the domain model. Our results imply that low relevance
is not a shortcoming in our model extractor per se, but rather a broader challenge to which other rule-
based model extractors are also prone. In this sense, our expert review reveals an important area for
future improvement in automated model extraction.
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5.2 State of the Art
We synthesize the literature on domain model extraction and compile a set of extraction rules (heuris-
tics) in order to establish the state of the art. The rules identified through our synthesis are shown
in Table 5.1. These rules are organized into four categories, based on the nature of the information
they extract (concepts, associations and generalizations, cardinalities, and attributes). We illustrate
each rule in the table with an example. We note that the literature provides rules for extracting (class)
operations as well. However, and in line with best practice [Larman, 2005], we deem operations to be
outside the scope of domain models. Furthermore, since operations typically become known only dur-
ing the design stages, there is usually little information to be found about operations in requirements
documents.

Our focus being on unrestricted NL requirements, we have excluded from Table 5.1 rules that rely
on specific sentence patterns. We do nevertheless include in the table five pattern-based rules (B3 to
B5 and D1 to D2) due to the generic nature of these rules. The criterion we applied for the inclusion
of a pattern-based rule was that the rule must have been considered in at least two distinct previous
publications. We further exclude from Table 5.1 rules rooted in programming conventions, e.g., the
convention of separating concepts and attributes by an underscore, e.g., Bank_Id.

Next, we describe the sources from which the rules of Table 5.1 originate: The pioneering studies
by Abbott [Abbott, 1983] and Chen [Chen, 1983] laid the foundation for the subsequent work on
model extraction from textual descriptions. Yue et al. [Yue et al., 2011] survey 20 approaches aimed
at transforming textual requirements into early analysis models. Of these, five [Ambriola and Ger-
vasi, 2006, Harmain and Gaizauskas, 2003, Liu et al., 2004, Liu et al., 2003, Mich, 1996] provide
automated support for extracting domain models, or models closely related to domain models, e.g.,
object models. Yue et al. [Yue et al., 2011] bring together the rules from the above approaches, further
accounting for the extensions proposed to Abbott’s original set of rules [Abbott, 1983] in other related
studies. Rules A1 to A4, B1, B4, B5, C1 to C4, and D1 to D3 in Table 5.1 come from Yue et al. [Yue
et al., 2011].

To identify more recent strands of related research, we examined all the citations to Yue et al. [Yue
et al., 2011] based on Google Scholar. Our objective was to identify any new extraction rules in the
recent literature not already covered by Yue et al. [Yue et al., 2011]. We found two publications con-
taining new rules: Vidya Sagar and Abirami [Vidya Sagar and Abirami, 2014], and Ben Abdessalem
Karaa et. al. [Ben Abdessalem Karaa et al., 2015]. Our study of Vidya Sagar and Abirami [Vidya
Sagar and Abirami, 2014] and a closely-related publication by Elbendak et. al. [Elbendak et al., 2011]
upon which Vidya Sagar and Abirami build yielded four new rules. These are A5, B2, B3, and D4
in Table 5.1. As for Ben Abdessalem Karaa et. al. [Ben Abdessalem Karaa et al., 2015], all the new
rules proposed therein are pattern-based. These rules do not match our inclusion criterion mentioned
above, as no other publication we know of has used these (pattern-based) rules.

A limitation in the rules of Table 5.1 is that these rules do not cover link paths, as we already
explained in Section 5.1. Link-path rules have been used in the information retrieval domain for
mining structured information from various natural-language sources, e.g., Wikipedia pages [Akbik
and Broß, 2009, Fader et al., 2011] and the biomedical literature [Yang et al., 2010]. However, this
class of rules has not been used for model extraction to date. Another limitation, again explained in
Section 5.1, is that existing model extraction rules do not fully exploit the results from NLP tools.
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Table 5.1. Existing domain model extraction rules.
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* NP stands for noun phrase; a definition is provided in Section 3.

"The train arrives in the morning at 10 
AM." :: Arrival time is an attribute of Train.D4 An intransitive verb with an 

adverb suggests an attribute.

"large library" :: Size is an attribute of 
Library.D3

The adjective of an 
adjectivally modified NP 
suggests an attribute.

"Book's title" :: Title is an attribute of Book.D2 Genitive cases, e.g., NP's 
NP, suggest attributes.

D1
"identified by", "recognized 
by", "has" [...] suggest 
attributes.

"An employee is identified by the employee 
id." :: Employee Id is an attribute of 

Employee.

An explicit number before a 
concept suggests a 
cardinality. 

Student Exam
pass

“The student passed 3 exams.” ::

31
C4

C3 Student Exam
pass

“The student passed the exam.” ::

11

If the source concept of an 
association is singular and 
the target concept is singular 
as well, then the association 
is one-to-one.

C2

If the source concept of an 
association is singular and 
the target concept is plural / 
quantified by a definite 
article, then the association 
is one-to-many.

Student Exam
pass

“The student passed the exams.” ::

*1

If the source concept of an 
association is plural / has a 
universal quantifier  and the 
target concept has a unique 
existential quantifier, then the 
association is many-to-one.

C1 Arriving 
Airplane Control Tower

contact

“All arriving airplanes shall contact the 
control tower.” ::

* 1

Premium Service
Service

“Service may be premium service or 
normal service.” ::

Normal Service

B5
"is a", "type of", "kind of", 
"may be", [...] suggest 
generalizations.

"contain", "is made up of", 
"include", [...] suggest 
aggregations / compositions.

B4 Book Library

“The library contains books.” ::

Customer BLUX
bank

“The bank of the customer is BLUX.” ::<R> in a requirement of the 
form "<R> of <A> is <B>" is 
likely to be an association.

B3

Cheque Banksent 
to

“The cheque is sent to the bank.” ::
B2 A verb with a preposition is 

an association.

Simulator Log Message
send

R3 in Figure 3 ::Transitive verbs are 
associations. B1

Description

R3 in Figure 3 :: Log Message

R3 in Figure 3 :: Simulator (if it is recurring)

A1

"Borrowing is processed by the staff." :: 
Borrowing

A4

Example

Objects in the requirements  
are concepts.

A5

R3 in Figure 3 :: Simulator 

Gerunds in the requirements 
are concepts.

All NPs* in the requirements 
are candidate concepts. 

R3 in Figure 3 :: Simulator, Log Message, 
Database, and Monitoring Interface

Rule

A3

Recurring NPs are concepts. 
Subjects in the requirements 
are concepts.

A2
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Our approach, described in Section 5.4, proposes extensions in order to address these limitations.
Our empirical evaluation, described in Section 5.5, demonstrates that our extensions are of practical
significance.

Further, the large majority of existing work on model extraction is evaluated over exemplars and in
artificial settings. Empirical studies on model extraction in real settings remain scarce. Our empirical
evaluation, which is conducted in an industrial context, takes a step towards addressing this gap.

(ROOT
  (S
    (NP (DT The) (NN simulator))
    (VP (MD shall)
      (ADVP (RB continuously))
      (VP (VB monitor)
        (NP (PRP$ its) (NN connection))
        (PP (TO to)
          (NP
            (NP (DT the) (NNP SNMP) (NN manager))
            (CC and)
            (NP (DT any) (VBN linked) (NNS devices))))))
    (. .)))

R4: The simulator shall continuously monitor its connection to 
the SNMP manager and any linked devices.

(b)

(a)

Figure 5.4. (a) A requirement and (b) its parse tree.

The simulator shall continuously monitor  its connection to the SNMP manager and any linked devices.
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Figure 5.5. Results of dependency parsing for requirement R4 of Figure 5.4(a).

5.3 Syntactic Parsing
In this section, we provide background on syntactic parsing, also known as syntactic analysis, which is
the key enabling NLP technology for our model extraction approach. Syntactic parsing encompasses
two tasks: phrase structure parsing and dependency parsing. Our model extractor uses both. We
briefly introduce these tasks below.

Phrase structure parsing [Indurkhya and Damerau, 2010] is aimed at inferring the structural units
of sentences. We already discussed phrase structure parsing (NLP parsing) in Chapter 3 (see Sec-
tion 3.3.3). In this chapter, we are interested in the noun phrases and verbs identified via phrase
structure parsing. Recall that a noun phrase (NP) is a unit that can be the subject or the object of
a verb. A verb (VB) appears in a verb phrase (VP) alongside any direct or indirect objects, but not
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the subject. Verbs can have auxiliaries and modifiers (typically adverbs) associated with them. To
illustrate, consider requirements statement R4 in Figure 5.4(a). The structure of R4 is depicted in
Figure 5.4(b) as a parse tree. Here, we do not visualize the tree, and instead show it in a nested-list
representation commonly used for parse trees.

Dependency parsing [Smith, 2011] is aimed at finding grammatical dependencies between the
individual words in a sentence. In contrast to phrase structure parsing, which identifies the structural
constituents of a sentence, dependency parsing identifies the functional constituents, e.g., the subject
and the object. The output of dependency parsing is represented as a directed acyclic graph, with
labeled (typed) dependency relations between words. The top part of the graph of Figure 5.5 shows the
output of dependency parsing over requirements statement R4. An example typed dependency here
is nsubj(monitor{5},simulator{2}), stating that “simulator” is the subject of the verb “monitor”.

Tokenizer

Sentence
Splitter

POS Tagger

Parser
(Phrase Structure 

+ Dependency)

NL
Requirements

1

2

3

5

Named Entity 
Recognizer 4

Structure
Parse Tree 
NP NPVP

Typed
Dependencies

nsubjnn dobj

Annotations

Coreference
Resolver 6

Figure 5.6. Parsing pipeline.

Syntactic parsing is commonly done using the pipeline of NLP modules shown in Figure 5.6.
We note that the first four modules in this pipeline are the same as those in the text chunking pipeline
discussed in Chapter 3. To maintain the flow, we describe, in the explanation that follows, the pipeline
in its entirety, including the first four modules. For the work reported in this chapter, we use the
pipeline implementation provided by the Stanford Parser [Klein and Manning, 2016].

The first module in the pipeline is the Tokenizer, which splits the input text, in our context a
requirements document, into tokens. A token can be a word, a number, or a symbol. The second
module, the Sentence Splitter, breaks the text into sentences. The third module, the POS Tagger,
attaches a part-of-speech (POS) tag to each token. POS tags represent the syntactic categories of
tokens, e.g., nouns, adjectives and verbs. The fourth module, the Named-Entity Recognizer, identifies
entities belonging to pre-defined categories, e.g., proper nouns, dates and locations. The fifth and
main module is the Parser, encompassing both phrase structure parsing and dependency parsing.
The final module is the Coreference Resolver. This (optional) module finds expressions that refer
to the same entity. We concern ourselves with pronominal coreference resolution only, which is the
task of identifying, for a given pronoun such as “its” and “their”, the NP that the pronoun refers to.
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Figure 5.7. Approach Overview.

Figure 5.5 shows an example of pronominal coreference resolution, where the pronoun “its” is linked
to the referenced NP, namely “the simulator”, via a ref_to dependency.

5.4 Approach
Figure 5.7 presents an overview of our domain model extraction approach. The input to the approach
is an NL requirements document and the output is a UML class diagram. Below, we elaborate the
three main steps of our approach, marked 1-3 in Figure 5.7.

5.4.1 Processing the Requirements Statements
The requirements processing step includes the following activities: (1) detecting the phrasal structure
of the requirements, (2) identifying the dependencies between the words in the requirements, (3)
resolving pronominal coreferences, and (4) performing stopword removal and lemmatization; these
are common NLP tasks, respectively for pruning words that are unlikely to contribute to text analysis,
and for transforming words into their base morphological form.

Activities (1), (2), and (3) are carried out by the pipeline of Figure 5.6. From the parse tree gener-
ated by this pipeline for each requirements statement, we extract the atomic NPs and the VBs. Atomic
NPs are those that cannot be further decomposed. For example, from the parse tree of Figure 5.4(b),
we extract: “The simulator” (NP), “monitor” (VB), “its connection” (NP), “the SNMP manager”
(NP) and “any linked devices” (NP). We do not extract “the SNMP manager and any linked devices”
because this NP is not atomic.

We then subject the NPs to stopword removal. Stopwords are words that appear so frequently
in the text that they no longer serve an analytical purpose [Manning and Schütze, 1999]. Stopwords
include, among other things, determiners and predeterminers. In our example, stopword removal
strips the extracted NPs of the determiners “the” and “any”. The VBs and the tail words of the NPs
are further subject to lemmatization. In our example, “linked devices” is transformed into “linked
device”. Had the VB been, say, “monitoring”, it would have been transformed into “monitor”. VBs
in passive form are an exception and not lemmatized, e.g., see the example of Figure 5.2.

The NPs and VBs obtained by following the process above provide the initial basis for labeling
the concepts, attributes, and associations of the domain model that will be constructed in Step 3 of
our approach (see Figure 5.7). The dependencies obtained from executing the pipeline of Figure 5.6
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need to undergo further processing and be combined with the results of coreference resolution before
they can be used for domain model construction. This additional processing is addressed by Step 2 of
our approach, as we explain next in Section 5.4.2.

5.4.2 Deriving Dependencies at a Semantic Level
As seen from Figure 5.5, the results of dependency parsing (top of the figure) are at the level of words.
Many of these dependencies are meaningful for model extraction only at the level of NPs, which,
along with verbs, are the main semantic (meaning-bearing) units of sentences. For example, consider
the dependency prep_to(connection{7}, manager{11}), stating that “manager” is a prepositional
complement to “connection”. To derive from this dependency a meaningful relation for the domain
model, we need to raise the dependency to the level of the involved NPs, i.e., prep_to(NP2, NP3) in
Figure 5.5. We do so using the algorithm of Figure 5.8.

The algorithm takes as input a set P composed of the atomic NPs and the VBs, and the results of
dependency parsing and coreference resolution, all from Step 1 of our approach (Section 5.4.1). The
algorithm initializes the output (i.e., the semantic-unit dependencies) with the ref_to dependencies
(L.1), noting that the targets of ref_to dependencies are already at the level of NPs. Next, the algo-
rithm identifies, for each word dependency, the element(s) in P to which the source and the target of
the dependency belong (L.3–12). If either the source or target words fall outside the boundaries of the
elements in P, the words themselves are treated as being members of P (L.6,11). This behavior serves
two purposes: (1) to link the VBs to their adverbial modifiers, illustrated in the example of Figure 5.5,
and (2) to partially compensate for mistakes made by phrase structure parsers, which are typically
only ⇡90% accurate in phrase detection [Attardi and Dell‘Orletta, 2008, Zhu et al., 2013]. Depen-
dencies between the constituent words of the same NP are ignored (L.13), except for the adjectival
modifier (amod) dependency (L.16–18) which is used by rule D3 of Table 5.1. When the algorithm of
Figure 5.8 is executed over our example requirements statement R4, it yields the dependencies shown
on the bottom of Figure 5.5. These dependencies are used in Step 3 of our approach, described next,
for extracting associations, aggregations, generalizations and also for linking attributes to concepts.

5.4.3 Domain Model Construction
The third and final step of our approach is constructing a domain model. This step uses the NPs and
VBs identified in Step 1 (after stopword removal and lemmatization), along with the semantic-unit
dependencies derived in Step 2. The extraction rules we apply for model construction are: (1) the
rules of Table 5.1 gleaned from the state of the art, (2) three new rules, described and exemplified
in Table 5.2, which we propose in order to exploit dependency types that have not been used for
model extraction before, and (3) link paths [Akbik and Broß, 2009], which we elaborate further later
in this section. In Table 5.3, we show all the model elements that our approach extracts from our
example requirements statement R4. In the rest of this section, we outline the main technical factors
in our domain model construction process. We organize our discussion under five headings: domain
concepts, associations, generalizations, cardinalities, and attributes.

Domain concepts. All the extracted NPs (from Step 1) are initially considered as candidate concepts.
If a candidate concept appears as either the source or the target of some dependency (from Step
2), the candidate concept will be marked as a domain concept. If either the source or the target
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Input: A set P of all (atomic) NPs and VBs in a sentence S;
Input: A set DWord of word dependencies in S;
Input: A set R of ref to dependencies for the pronouns in S;
Output: A set DSem of semantic-unit dependencies for S;
1: DSem � R; /*Initialize DSem with the results of coref resolution.*/
2: for all dep 2 DWord do
3: if (there exists some p 2 P to which dep.source belongs) then
4: psource � p;
5: else
6: psource � dep.source;
7: end if
8: if (there exists some p 2 P to which dep.target belongs) then
9: ptarget � p;

10: else
11: ptarget � dep.target;
12: end if
13: if (psource �= ptarget) then
14: Add to DSem a new dependency with source psource,

target ptarget and type dep.type;
15: else
16: if (dep.type is amod) then
17: Add dep to DSem;
18: end if
19: end if
20: end for
21: return DSem

Figure 1: Algorithm for lifting word dependencies to semantic-unit dependen-
cies.
0.1 Introduction

Figure 5.8. Algorithm for lifting word dependencies to semantic-unit dependencies.

Table 5.2. New extraction rules in our approach.

“The simulator shall provide a function to 
edit the existing system configuration.”

Simulator Existing System 
Configuration 

provide function 
to edit

N3
Non-finite verbal modifiers 
(vmod dependencies)
suggest associations.

System 
Operator

System 
Configuration 

initialize

“The system operator shall be able to initialize 
the  system configuration, and to edit the 
existing system configuration.”

System 
Operator

Existing System 
Configuration 

edit

Verbal clausal complements 
(ccomp/xcomp dependencies) 
suggest associations.

N2

Latest Warning 
Message

System 
Configuration 

belong 
to

“The system operator shall display the system 
configuration, to which the latest warning 
message belongs.”

(Another example for rcmod was given in Fig. 2)

Rule

Relative clause modifiers of 
nouns (rcmod dependency) 
suggest associations.

N1

ExampleDescription

end of a dependency is a pronoun, that end is treated as being the concept to which the pronoun
refers. Table 5.1 lists a total of five rules, A1–A5, for identifying domain concepts. Our approach
implements A1, which subsumes A2–A5. We enhance A1 with the following procedure for NPs that
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Table 5.3. Extraction results for R4 of Figure 5.4(a).

6 Linked 
Device DeviceGeneralization D3

5 D2† (+ coreference                                 
resolution)

Aggregation Connection SImulator

Simulator  Linked 
Device*

continuously monitor
connection to1

Link Path Depth 1, 
C2 (for cardinalities)4 Association

Link Path Depth 1, 
C3 (for cardinalities)3 Association Simulator SNMP 

Manager1
continuously monitor

connection to1

Association2 B1,
C3 (for cardinalities)Simulator Connection

1
continuously

monitor1

1 A1Simulator, Connection, SNMP Manager, Linked 
Device, Device

Candidate 
Concept

Extraction rule(s) 
triggered 

Extracted element(s)
Type of 

element(s) 
extracted

#

As we explain in Section 4.3, in contrast to some existing approaches, we use 
D2 and D3 (from Table 1) for extracting aggregations and generalizations, 
respectively, rather than attributes.

*

A1 in this table is an enhanced version of A1 in Table 1, as discussed in Section 4.3.

†

†
*

Table 5.4. Different subject types.

“The operator of the ground station shall initialize the 
system configuration.” operatorGenetive 

Subject

Passive 
Subject

"The system configuration shall be initialized by the 
operator." operator

Simple 
Subject operator"The operator shall initialize the system configuration." 

SubjectExampleSubject Type

have an adjectival modifier (amod dependency), as long as the adjective appears at the beginning of
an NP after stopword removal: we remove the adjective from the NP and add the remaining segment
of the NP as a domain concept. For example, consider row 1 of Table 5.3. The concept of Device
here was derived from Linked Device by removing the adjectival modifier. The relation between
Device and Linked Device is established via rule D3 discussed later (see Generalizations).

Associations. The VBs (from Step 1) that have subjects or objects or both give rise to associations.
The manifestation of the subject part may vary in different sentences. Table 5.4 lists and exemplifies
the subject types that we handle in our approach. Our treatment unifies and generalizes rules B1 and
B2 of Table 5.1. We further implement rule B3, but as we observe in our evaluation (Section 5.5), this
rule is not useful for the requirements in our case studies.

For extracting associations, we further propose three new rules, N1–N3, shown in Table 5.2. Rule
N1 utilizes relative clause modifier (rcmod) dependencies. In the example provided for this rule in
Table 5.2, “system configuration” is modified by a relative clause, “to which the latest warning mes-
sage belongs”. From this, N1 extracts an association between System Configuration and Latest

Warning Message.
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Rule N2 utilizes verbal clausal complement (ccomp and xcomp) dependencies. In the example
given in Table 5.2, “initialize” and “edit” are clausal complements to “able”. Here, the subject,
“system operator”, is linked to “able”, and the two objects, “system configuration” and “existing
system configuration”, are linked to “initialize” and “edit”, respectively. What N2 does here is to
infer that “system operator” (conceptually) serves as a subject to “initialize” and “edit”, extracting the
two associations shown in Table 5.2.

As for Rule N3, the purpose is to utilize non-finite verbal modifier (vmod) dependencies. In the
example we show in Table 5.2, “edit” is a verbal modifier of “function”. We use this information
for enhancing the direct subject-object relation between “simulator” and “function”. Specifically, we
link the object of the verbal modifier, “existing system configuration”, to the subject, “simulator”,
extracting an association between Simulator and Existing System Configuration.

The associations resulting from our generalization of B1 and B2, explained earlier, and from our
new rules, N1 to N3, are all subject to a secondary process, aimed at identifying link paths [Akbik
and Broß, 2009]. Intuitively, a link path is a combination of two or more direct links. To illustrate,
consider rows 3 and 4 in Table 5.3. The basis for both of the associations shown in these rows is the
direct association in row 2 of the table. The direct association comes from the subject-object relation
between NP1 and NP2 in the dependency graph of Figure 5.5. The association in row 3 of Table 5.3
is induced by combining this direct association with the dependency prep_to(NP2, NP3) from the
dependency graph. The association of row 4 is the result of combining the direct association with
another dependency, prep_to(NP2, NP4). In our approach, we consider all possible ways in which
a direct association can be combined with paths of prepositional dependencies (prep_⇤ dependencies
in the dependency graph).

For extracting aggregations, which are special associations denoting containment relationships,
we use rules B4 and D2 from Table 5.1. With regard to D2, we point out that a number of previous
approaches, e.g., [Elbendak et al., 2011, Yue et al., 2011, Vidya Sagar and Abirami, 2014], have used
this rule for identifying attributes. Larman [Larman, 2005] notes the difficulty in choosing between
aggregations and attributes, recommending that any entity that represents in the real world something
other than a number or a string of text should be treated as a domain concept, rather than an attribute.
Following this recommendation, we elect to use D2 for extracting aggregations. Ultimately, the user
will need to decide which representation, an aggregation or an attribute, is most suitable on a case-
by-case basis.

An important remark about D2 is that this rule can be combined with coreference resolution, which
to our knowledge, has not been done before for model extraction. An example of this combination
is given in row 5 of Table 5.3. Specifically, the aggregation in this row is induced by the possessive
pronoun “its”, which is linked to “simulator” via coreference resolution (see the ref_to dependency
in Figure 5.5).

Generalization. From our experience, we surmise that generalizations are typically left tacit in NL
requirements and are thus hard to identify automatically. The main rule targeted at generalizations is
B5 in Table 5.1. This rule, as evidenced by our evaluation (Section 5.5), has limited usefulness when
no conscious attempt has been made by the requirements authors to use the patterns in the rule.
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We nevertheless observe that certain generalizations manifest through adjectival modifiers. These
generalizations can be detected by rule D3 in Table 5.1. For example, row 6 of Table 5.3 is extracted
by D3. Like rule D2 discussed earlier, D3 has been used previously for attributes. However, without
user intervention, identifying attributes using D3 poses a challenge. To illustrate, consider the exam-
ple we gave in Table 5.1 for D3. There, the user would need to provide the attribute name, size. For
simple cases, e.g., sizes, colors, shapes and quantities, one can come up with a taxonomy of adjective
types and use the type names as attribute names [Vidya Sagar and Abirami, 2014]. We observed
though that generic adjective types are unlikely to be helpful for real and complex requirements. We
therefore elect to use D3 for extracting generalizations. Similar to the argument we gave for D2, we
leave it to the user to decide when an attribute is more suitable and to provide an attribute name when
this is the case.

Cardinalities. We use rules C1 to C4 of Table 5.1 for determining the cardinalities of associations.
These rules are based on the quantifiers appearing alongside the terms that represent domain concepts,
and the singular versus plural usage of these terms. For example, the cardinalities shown in rows 2 to
4 of Table 5.3 were determined using these rules.

Attributes. We use rules D1 and D4 of Table 5.1 for extracting attributes. As we discussed above, we
have chosen to use rules D2 and D3 of Table 5.1 for extracting aggregations and generalizations, re-
spectively. With regard to rule D4, we note that one cannot exactly pinpoint the name of the attribute
using this rule. Nevertheless, unlike rule D3 which is not applicable without user intervention or an
adjective taxonomy, D4 can reasonably guess the attribute name. For instance, if we apply our imple-
mentation of D4 to the requirement exemplifying this rule in Table 5.1, we obtain arrive (instead of
arrival time) as the attribute name.

5.5 Empirical Evaluation
In this section, we evaluate our approach by addressing the following Research Questions (RQs):

RQ1. How frequently are different extraction rules triggered? One cannot expect large gains from
rules that are triggered only rarely. A rule being triggered frequently is thus an important prerequisite
for the rule being useful. RQ1 aims to measure the number of times different extraction rules are
triggered over industrial requirements.

RQ2. How useful is our approach? The usefulness of our approach ultimately depends on whether
practitioners find the approach helpful in real settings. RQ2 aims to assess through a user study the
correctness and relevance of the results produced by our approach.

RQ3. Does our approach run in practical time? Requirements documents may be large. One should
thus be able to perform model extraction quickly. RQ3 aims to study whether our approach has a
practical running time.
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Table 5.5. Description of case study documents.

Simulator application for satellite systems N.A.

N.A.

Satellite ground station control system

Description

Safety evidence information management 
system for safety certification

No

Yes 
(Rupp's)Case B

Template 
used?

% of reqs. complying 
with template 

158

Case

Yes 
(Rupp's)

380

Case C
89%110Case D

# of
reqs.

Case A

138Satellite data dissemination network

64%

No

Table 5.6. Number of times extraction rules were triggered and number of extracted elements (per document).

Case C
Case D

Case A
Case B

# of 
generalizations

90

35
132

77
90

# of
aggregations

43
90

71
730
405

# of (regular)
associations

274

526
# of attributes

15
21
26
4

541

# of concepts

620
370

85

370

85

620
541

2 2341274 1250 150 680 35 1140 7
6 2011304050 5 7717 0 852 3668 21

251 58 32781 471 8990 730 69210 19
20 4824 47 246526 760 310139 1 424

LPN3N2N1B2 D4B4 C1-4B5B1 D3B3 D1 D2A1*

*
 A1 in this table is an enhanced version of A1 in Table 1, as discussed in Section 4.3. A1 subsumes A2 to A5 ( of Table 1), as noted in the same section.

†

The small number of attributes is explained by our decision to use D2 and D3 (resp.) for extracting aggregations and generalizations instead of attributes, as noted in Section 4.3.†

5.5.1 Implementation
For syntactic parsing and coreference resolution, we use Stanford Parser [Klein and Manning, 2016].
For lemmatization and stopword removal, we use existing modules in the GATE NLP Workbench [GATE,
2016]. We implemented the model extraction rules using GATE’s scripting language, JAPE, and
GATE’s embedded Java environment. The extracted class diagrams are represented using logical
predicates (Prolog-style facts). Our implementation is approximately 3,500 lines of code, excluding
comments and third-party libraries. Our implementation is available at: https://bitbucket.org/carora03/redomex.

5.5.2 Results and Discussion
Our evaluation is based on four industrial requirements documents, all of which are collections of
“shall” requirements written in English. Table 5.5 briefly describes these documents, denoted Case
A–D, and summarizes their main characteristics. We use all four documents for RQ1 and RQ3. For
RQ2, we use selected requirements from Case A.

Cases A–C concern software systems in the satellite domain. These three documents were written
by different teams in different projects. In Cases B and D, the requirements authors had made an
effort to comply with Rupp’s template [Pohl and Rupp, 2011], which organizes the structure of re-
quirements sentences into certain pre-defined slots. The number of template-compliant requirements
in these two documents is presented in Table 5.5 as a percentage of the total number of requirements.
These percentages were computed in our previous work [Arora et al., 2015a], where Cases B and
D were also used as case studies. Our motivation to use template requirements in our evaluation of
model extraction is to investigate whether restricting the structure of requirements would impact the
applicability of generic extraction rules, which assume no particular structure for the requirements.

RQ1. Table 5.6 presents the results of executing our model extractor on Cases A–D. Specifically, the
table shows the number of times each of the rules employed in our approach has been triggered over
our case study documents. The rule IDs correspond to those in Tables 5.1 and 5.2; LP denotes link
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Table 5.7. Correctness and relevance results obtained from our expert interview, organized by extraction rules.
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paths. The table further shows the number of extracted elements for each case study, organized by
element types.

As indicated by Table 5.6, rules B1, C1 to C4, D2, D3, and LP are the most frequently triggered.
B1 is a generic rule that applies to all transitive verbs. D2 and D3 address genitive cases and the use
of adjectives in noun phrases. These constructs are common in English, thus explaining the frequent
application of D2 and D3. We note that, as we explained in Section 5.4.3, we use D2 and D3 for
identifying aggregations and generalizations, respectively.

Link paths, as stated earlier, identify indirect associations. Specifically, link paths build upon
the direct associations identified by B1, B2, and N1 to N3. To illustrate, consider the example in
Figure 5.3. Here, B1 retrieves the direct association in Figure 5.3(b), and link paths retrieve the
indirect ones in Figure. 5.3(c),(d). In this example, we count B1 as being triggered once and link
paths as being triggered twice.

Rules C1 to C4 apply to all associations, except aggregations. More precisely, C1 to C4 are
considered only alongside B1 to B3, N1 to N3, and link paths. For instance, C2 is triggered once and
C3 twice for the associations of Figure. 5.3(b-d).

Our results in Table 5.6 indicate that B3, B5, and D1 were triggered either rarely or not at all in our
case study documents. These rules are based on fixed textual patterns. While the patterns underlying
these rules seem intuitive, our results suggest that, unless the requirements authors have been trained a
priori to use the patterns (not the case for the documents in our evaluation), such patterns are unlikely
to contribute significantly to model extraction.

With regard to link paths and our proposed rules, N1 to N3, in Table 5.2, we make the following
observations: Link paths extracted 47% of the (non-aggregation) associations in Case A, 45% in
Case B, 50% in Case C, and 46% in Case D. And, rules N1 to N3 extracted 23% of the associations
in Case A, 24% in Case B, 29% in Case C, and 37% in Case D. These percentages indicate that link
paths and our new rules contribute significantly to model extraction. Assessing the quality of the
extracted results is the subject of RQ2.

With regard to whether the use of templates has an impact on the applicability of the generic rules
considered in this chapter, the results in Table 5.6 do not suggest an advantage or a disadvantage
for templates, as far as the frequency of the application of the extraction rules is concerned. We
therefore anticipate that the generic rules considered in this chapter should remain useful for restricted
requirements too. Placing restrictions on requirements may nevertheless provide opportunities for
developing additional extraction rules [Yue et al., 2015]. Such rules would naturally be tied to the
specific restrictions enforced and are thus outside the scope of this chapter.
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❑ Yes ❑ Partially No❑

❑ Yes ❑ Maybe No❑

Q3 (asked per requirements statement). Are there any other relations 
that this requirements statement implies? If yes, please elaborate.

Q2 (asked per relation). Should this relation be in the domain model?

Q1 (asked per relation). Is this relation correct?

Figure 5.9. Interview survey questionnaire.

RQ2. RQ2 aims at assessing practitioners’ perceptions about the correctness and relevance of the re-
sults produced by our approach. Our basis for answering RQ2 is an interview survey conducted with
the lead requirements analyst in Case A. Specifically, we selected at random 50 requirements state-
ments (out of a total of 158) in Case A and solicited the expert’s feedback about the model elements
that were automatically extracted from the selected requirements. Choosing Case A was dictated by
the criteria we had to meet: To conduct the interview, we needed expert(s) who had UML domain
modeling experience and who were further fully familiar with the requirements. This restricted our
choice to Cases A and B. Our interview would further require a significant time commitment from the
expert(s). Making such a commitment was justified by the expert for Case A only, due to the project
still being ongoing.

We collected the expert’s feedback using the questionnaire shown in Figure 5.9. This question-
naire has three questions, Q1 to Q3, all oriented around the notion of “relation”. We define relations
to include (regular) associations, aggregations, generalizations, and attributes. The rationale for
treating attributes as relations is the conceptual link that exists between an attribute and the concept
to which the attribute belongs. The notion of relation was clearly conveyed to the expert using a
series of examples prior to the interview. Our questionnaire does not include questions dedicated to
domain concepts, since, as we explain below, the correctness and relevance of the domain concepts
at either end of a given relation are considered while that relation is being examined. During the
interview, the expert was asked to evaluate, through Q1 and Q2 in the questionnaire, the individual
relations extracted from a given requirements statement. The expert was further asked to verbalize
his rationale for the responses he gave to these questions. Once all the relations extracted from a re-
quirements statement had been examined, the expert was asked, through Q3, whether there were any
other relations implied by that requirements statement which were missing from the extracted results.

The relations extracted from each requirements statement were presented to the expert in the same
visual format as depicted by the third column of Table 5.3. The extraction rules involved were not
shown to the expert. To avoid decontextualizing the relations, we did not present to the expert the
extracted relations in isolation. Instead, a given requirements statement and all the relations extracted
from it were visible to the expert on a single sheet as we traversed the relations one by one and asking
Q1 and Q2 for each of them.

Q1 addresses correctness. A relation is deemed correct if the expert can infer the relation by
reading the underlying requirements statement. We instructed the expert to respond to Q1 by “Yes”
for a given relation, if all the following criteria were met: (1) the concept (or attribute) at each end
of the relation is correct, (2) the type assigned to the extracted relation (e.g., association or general-
ization) is correct, and (3) if the relation represents an association, the label and the cardinalities of
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Correctness(%) Relevance(%)
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Figure 5.10. (a) Raw and (b) bootstrapping results for Q1 and Q2.

the association are correct. The expert was instructed to answer by “Partially” when he saw some
inaccuracy with respect to the correctness criteria above, but he found the inaccuracy to be minor and
not compromising the meaningfulness of the relation; otherwise, the expert was asked to respond by
“No”.

The correctness of a relation per se does not automatically warrant its inclusion in the domain
model. Among other reasons, the relation might be too obvious or too detailed for the domain model.
Q2 addresses relevance, i.e., whether a relation is appropriate for inclusion in the domain model.
The expert was asked Q2 for a given relation only upon a “Yes” or “Partially” response to Q1. If the
expert’s answer to Q1 was “No”, the answer to Q2 was an automatic “No”. If the expert had answered
Q1 by “Partially”, we asked him to answer Q2 assuming that the inaccuracy in the relation had been
already resolved.

Finally, Q3 addresses missing relations. A relation is missing if it is identifiable by a domain
expert upon manually examining a given requirements statement R, but which is absent from the
relations that have been automatically extracted from R. A missing relation indicates one or a combi-
nation of the following situations: (1) information that is not extracted due to technical limitations in
automation, (2) information that is tacit in a requirements statement and thus inferable only by a hu-
man expert, (3) information that is implied by the extracted relations, but which the expert decides to
represent differently, i.e., using modeling constructs different than the extracted relations. The expert
answered Q3 after having reviewed all the relations extracted from a given requirements statement.

Our interview was split into three sessions, with a period of at least one week in between the
sessions. The duration of each session was limited to a maximum of two hours to avoid fatigue
effects. At the beginning of each session, we explained and exemplified to the expert the interview
procedure, including the questionnaire.

Our approach extracted a total of 213 relations from the 50 randomly-selected requirements of
Case A. All these 213 relations were examined by the expert. Figure 5.10(a) shows the interview
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results for Q1 and Q2. As shown by the figure: First, ⇡90% of the relations were deemed correct or
partially correct, and the remaining 10% incorrect; and second, ⇡36% of the relations were deemed
relevant or maybe relevant for inclusion in the domain model. The remaining 64% of the relations
were deemed not relevant (inclusive of the 10% of the relations that were deemed incorrect).

Due to the expert’s limited availability, we covered only ⇡32% (50/158) of the requirements state-
ments in Case A. The 213 relations extracted from these requirements constitute ⇡31% (213/678) of
the total number of relations obtained from Case A by our model extractor. To provide a measure
of correctness and relevance which further accounts for the uncertainty that results from our ran-
dom sampling of the requirements statements, we provide confidence intervals for correctness and
relevance using a statistical technique, known as bootstrapping [Efron and Tibshirani, 1994]. Specif-
ically, we built 1000 resamples with replacement of the 50 requirements that were examined in our
interview. We then computed as a percentage the correctness and relevance of the relations extracted
from each resample. For a given resample, the correctness percentage is the ratio of correct and par-
tially correct relations over the total number of relations. The relevance percentage is the ratio of
relevant and maybe relevant relations over the total number of relations. Figure 5.10(b) shows, using
box plots, the distributions of the correctness and relevance percentages for the 1000 resamples. These
results yield a 95% confidence interval of 83%–96% for correctness and a 95% confidence interval
of 29%–43% for relevance.

The practical implication of the above findings is that, when reviewing the extracted relations,
analysts will have to filter 57%–71% of the relations, despite the large majority of them being correct
or partially correct. While we anticipate that filtering the unwanted relations would be more cost-
effective than forgoing automation and manually extracting the desired relations from scratch, the
required level of filtering needs to be reduced. As we discuss in Section 5.6, improving relevance and
minimizing such filtering is an important direction for future work.

In Table 5.7, we provide a breakdown of our interview survey results, organized according to
the rules that were triggered over our requirements sample and showing the correctness and relevance
percentages for each rule. As seen from these percentages, all triggered rules except B4 and D4 proved
useful in our study. In particular, the results of Table 5.7 indicate that our proposed extensions, i.e.,
rules N1 to N3 and link paths, are useful in practice.

An observation emerging from the relevance percentages in Table 5.7 (green-shaded cells) is that
relevance is low across all the extraction rules and not only for our proposed extensions (N1 to N3
and link paths). This implies that other existing rule-based approaches for domain model extraction
are also susceptible to the relevance challenge. This observation further underscores the need for
addressing the relevance challenge in future work.

As noted earlier, we asked the expert to verbalize his rationale for his responses to Q1 and Q2.
This rationale contained a wealth of information as to what made a relation incorrect or only partially
correct, and what made a relation not relevant. In Table 5.8, we provide a classification of the reasons
the expert gave for partial correctness and for incorrectness (Q1) and for non-relevance (Q2). The
number of relations falling under each category in the classification is provided in the column labeled
“Count”. For each category, we provide an example of a problematic relation and, where applicable,
the relation desired by the expert. The table is self-explanatory. The only remark to be made is that
the reasons given by the expert for partial correctness and for incorrectness have one area of overlap,
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Table 5.8. Reasons for inaccuracies and non-relevance.
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80% 90% 100%
Figure 5.11. % of relevant relations retrieved.

namely wrong relation type, as seen from rows 3 and 5 of Table 5.8. For instance, in the example of
row 3, an aggregation was extracted, but the desired relation was an attribute. The expert viewed this
inaccuracy as minor. In contrast, in the example of row 5, the expert found the extracted aggregation
conceptually wrong, since the desired relation was a generalization.

In response to Q3 (from the questionnaire of Figure 5.9), the expert identified 13 missing rela-
tions. In six out of these 13 cases, we could automatically extract the missing relation from other
requirements statements in our random sample. From the column chart provided for relevance in
Figure 5.10(a), we see that we have a total of 76 (71+5) relevant and maybe relevant relations that are
automatically extracted. This means that our approach automatically retrieved 76/(76+7) ⇡ 92% of
the relevant relations.

Using bootstrapping, similar to that done for Q1 and Q2 in Figure 5.10(b), we obtain the percent-
age distribution of Figure 5.11 for the retrieved relevant relations. From this distribution, we obtain a
95% confidence interval of 82%–100% for the percentage of relevant relations that are automatically
extracted by our approach.

RQ3. The execution times for our model extraction approach are in the order of minutes over our case
study documents (maximum of ⇡4 min for Case B). Given the small execution times observed, we
expect our approach to scale to larger requirements documents. Execution times were measured on a
laptop with a 2.3 GHz CPU and 8GB of memory.

5.5.3 Limitations and Validity Considerations
Internal, construct, and external validity are the validity factors most pertinent to our empirical eval-
uation. With regard to internal validity, we note that our interview considered the correctness and
relevance of extracted relations only in the context of individual requirements statements. We did not
present to the expert the entire extracted model during the interview. This raises the possibility that
the expert might have made different decisions, e.g., regarding the level of abstraction of the domain
model, had he been presented with the entire extracted model. We chose to base our evaluation on
individual requirements statements, because using the entire extracted model would have introduced
confounding factors, primarily due to layout and information overload issues. Addressing these is-
sues, while important, is outside the scope of our current evaluation, whose primary goal was to
develop insights about the effectiveness of NLP for domain model extraction. To ascertain the quality
of the feedback obtained from the expert, we covered a reasonably large number of requirements (50
requirements, representing nearly a third of Case A) in our interview, and cross-checked the expert’s
responses for consistency based on the similarities and analogies that existed between the different
relations examined.

With regard to construct validity, we note that our evaluation did not include metrics for measuring
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the amount of tacit expert knowledge which is necessary for building a domain model, but which is
absent from the textual content of the requirements. This limitation does not pose a threat to construct
validity, but is important to point out in order to clarify the scope of our current evaluation. Building
insights about the amount of tacit information that needs to be manually added to the domain model
and is inherently impossible to obtain automatically requires further studies.

Finally, with regard to external validity, while our evaluation was performed in a representative
industrial setting, additional case studies will be essential in the future.

5.6 Conclusion
We presented an automated approach based on Natural Language Processing for extracting domain
models from unrestricted requirements. As a part of our contributions, we extend the existing set of
model extraction heuristics and employ techniques from Information Retrieval domain for domain
model extraction. We provided an evaluation of our approach, contributing insights to the as yet
limited knowledge about the effectiveness of model extraction in industrial settings.

A key finding from our evaluation is that a substantial proportion of the extracted relations are not
relevant to the domain model, although most of these relations are meaningful. Improving relevance
is a challenge that needs to be tackled in future work. In particular, additional studies are necessary to
examine whether our observations about relevance are replicable. If so, technical improvements need
to be made for increasing relevance. To this end, a key factor to consider is that what is relevant and
what is not ultimately depends on the context, e.g., what is the intended level of abstraction, and on
the working assumptions, e.g., what is considered to be in the scope of a system and what is not. This
information is often tacit and not automatically inferable. Increasing relevance therefore requires a
human-in-the-loop strategy, enabling experts to explicate their tacit knowledge. We believe that such
a strategy would work best if it is incremental, meaning that the experts can provide their input in a
series of steps and in tandem with reviewing the automatically-extracted results. In this way, once a
piece of tacit knowledge has been made explicit, it can be used not only for resolving incompleteness
in the domain model but also for guiding the future actions of the model extractor.
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Inter-Requirements Change Impact Analysis

Handling change is an essential part of Requirements Engineering (RE). In early requirements stages,
the functions and characteristics of a proposed system may not be adequately known. Early require-
ments may thus change rapidly as knowledge about the system grows. Once the requirements mature,
various other triggers for requirements change may take hold, such as new and evolving user needs.

When a requirement undergoes some change, it is important to be able to analyze how this change
impacts other requirements. We refer to this activity as inter-requirement change impact analysis.
This type of analysis is necessary for maintaining the correctness and consistency of requirements, and
is further a prerequisite for analyzing the impact of requirements changes on lower-stream artifacts
that are traceable to the requirements, e.g., system design and source code [Jönsson and Lindvall,
2005]. A manual analysis of how a change to one requirement impacts other requirements is time-
consuming and presents a challenge for large requirements specifications.

In this chapter, we propose an automated approach based on Natural Language Processing (NLP)
for analyzing the impact of change in Natural Language (NL) requirements. Our focus on NL require-
ments is motivated by the prevalent use of these requirements, particularly in industry. Our approach
automatically detects and takes into account the phrasal structure of requirements statements. We
argue about the importance of capturing the conditions under which change should propagate to en-
able more accurate change impact analysis. We propose a quantitative measure for calculating how
likely a requirements statement is to be impacted by a change under given conditions. We conduct an
evaluation of our approach by applying it to 14 change scenarios from two industrial case studies.

Structure. Section 6.1 motivates the study of inter-requirements change impact analysis problem and
outlines our contributions in this respect. Section 6.2 presents an approach overview. Section 6.3
provides background information. Sections 6.4 through 6.7 describe the technical components of our
approach. Section 6.8 outlines tool support. Sections 6.9 discusses the evaluation of our approach.
Section 6.10 compares the approach with related work. Section 6.11 concludes the chapter with a
summary and directions for future work.
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R1: The mission operation controller shall transmit satellite status 
reports to the user help desk document repository.
R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the user 
help desk via FTP.
R3: The mission operation controller shall transmit any detected 
anomalies to the user help desk.
R4: The mission operation controller shall implement a 
configuration management database.
R5: The satellite management system shall provide a mechanism 
for updating user-defined parameters in the configuration 
database.
R6: The satellite management system shall authorise all updates 
to the telemetry configuration of a satellite before applying the 
changes to the satellite telemetry database.

Figure 6.1. Example requirements from a satellite control system (with changes). Added text is green and
underlined. Removed text is red and struck through.

6.1 Motivation and Contributions
We use the example of Figure 6.1 to illustrate how change propagates in NL requirements. The
requirements in this example have been drawn from a larger requirements specification for a satellite
system, and altered to preserve confidentiality and facilitate illustration.

Suppose R1 is modified as shown, i.e., by replacing “help desk” with “document repository”.
The modification is merely a syntactic manifestation of the change. To properly analyze this change,
one needs to consider the semantic unit(s) – primarily the phrase(s) in the statement – affected by
the modification. Specifically, the change in R1 may not be meant at replacing “help desk” with
“document repository”, but rather to replace the noun phrase “user help desk” with “user

document repository”.

Another important factor to consider is that a change per se may be inadequate for determining
the impact of that change. For example, the change in R1 may be explained in various ways, with
each explanation leading to a different impact result. Some possible explanations are: (1) We want to
globally rename “user help desk”; in this case the change in R1 affects R2 and R3. (2) We want to
avoid communication between “mission operation controller” and “user help desk”; in this
case, R3 is affected (the system agent being “mission operation controller”), but not R2.
(3) We no longer want to “transmit satellite status reports” to “user help desk” but in-
stead to “user document repository”; in this case, the change in R1 does not affect other require-
ments. To meaningfully analyze the impact of a change, we need to be able to describe in a precise
and yet practical way the conditions under which the change should propagate.

For the above change to R1 and the explanations considered, one can determine the change impact
by finding, in other requirements, exact matches for the phrases involved in the change and its possible
explanations. Change may further propagate through semantically-related phrases that are not exact
matches or close syntactic variations. To illustrate, consider the change in R2, i.e., the addition of

112



6.2. Overview of the Approach

“via FTP”. If this change is meant to indicate that all transfers to the user help desk shall be done via
FTP, then the change is very likely to propagate to R1 (in its original unchanged form). Although the
process verb used in R1 is “transmit” and not “transfer”, the semantic relatedness between the
two verbs needs to be taken into consideration for identifying the impact of change.

To increase the precision of change impact analysis, one further needs to account for the phrasal
structure of requirements statements when defining relatedness. To illustrate, suppose that R4 is
being removed, the explanation being that a configuration management database is unnecessary.
The phrase “configuration management database” only appears in R4. However, the individ-
ual words that make up this phrase have matches in R5 and R6. In R5, “configuration” and
“database” both appear in the phrase “configuration database”; and “management” appears in
“satellite management system”. In R6, “configuration” appears in “telemetry configuration”;
“management” appears in “satellite management system”; and “database” appears in “satellite

telemetry database”. If one applies a mechanism based on individual words to determine how the
removal of R4 impacts other requirements statements, R5 and R6 would be equally likely to be im-
pacted. However, at the phrase level, R5 has a closer match, namely “configuration database”,
for the phrase of interest (“configuration management database”). To differentiate R5 and R6 in
terms of the likelihood of impact, we need a relatedness measure that takes phrases into consideration.

Contributions. We propose an approach for inter-requirement change impact analysis over NL re-
quirements. In so doing, we address several questions highlighted through the example of Figure 6.1:
How can we (automatically) identify the phrases in a set of requirements statements? How can we
capture change at the level of phrases (and not words)? How can we express the conditions for
change propagation? How can we utilize the phrasal structure of requirements to predict the impact
of change? And, how can we quantify the likelihood of a requirements statement being impacted by
a change?

The core enabling technology for our approach is Natural Language Processing (NLP). We apply
a scalable NLP technique, called text chunking [Jurafsky and Martin, 2009], for extracting phrases
from requirements. We use the resulting phrases as a basis for detecting change, specifying how
change should propagate, and calculating likelihoods for change impact. We implement our approach
in a prototype tool. We evaluate our approach using 14 change scenarios from two industrial case
studies. The results suggest that our approach is accurate and practical.

While our approach can be applied wherever NL is used for expressing the requirements, the
approach is strongly motivated by the situation where one has access to no reliable information
other then the requirements’ textual content. This situation occurs, for example, when time and
cost pressures prevent the development team from building requirements models, specifying the glos-
sary terms, or capturing the requirements dependencies in a precise manner. Our approach works
directly on the text of the requirements and can thus be applied in the situation described above. The
main novelty of our work is in using the phrasal structure of requirements to compensate as much as
possible for the absence of models, glossaries, and dependency links.
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Figure 6.2. Approach overview.

6.2 Overview of the Approach
The process in Figure 6.2 presents an overview of our approach. The process takes as input a re-
quirements document comprised of NL requirements statements. In Step 1, Process requirements
statements, we apply NLP to automatically (1) identify the constituent phrases of the requirements
statements and (2) compute pairwise similarity scores for all tokens (words) that appear in the iden-
tified phrases. The outputs from Step 1 are annotations delineating the phrases in the statements,
and similarity functions capturing the syntactic and semantic similarities between the tokens. In Sec-
tion 6.4, we elaborate how phrase detection and similarity calculation is performed.

In Step 2, Apply change, the user makes a change to the requirements document. We discuss
this step in Section 6.5. Our approach lifts proposed changes from the level of tokens to the level of
phrases. This is performed in Step 3, Identify differences, discussed alongside Step 2 in Section 6.5.
If the change introduces phrases with words that did not exist in the requirements document before,
the similarity functions produced in Step 1 will be accordingly updated.

As we argued earlier, a change by itself may not provide enough information to accurately analyze
the impact of the change. In Step 4, Specify propagation condition, the user captures the desired
condition under which the change should propagate. The propagation condition is specified in terms
of phrases, using a boolean expression. When specifying the propagation condition, the user has
access to all the (automatically-detected) phrases in the original requirements document as well as
any added or deleted phrases detected by Step 3. We discuss propagation conditions in Section 6.6.
Further and as part of our tool support (Section 6.8), we provide a user interface to facilitate writing
these conditions.

In Step 5, Sort requirements based on relevance to change, the requirements statements are or-
dered based on the likelihood of being impacted by the change. The ordering is derived from a
quantitative matching of the change propagation condition (from Step 4) against the statements. The
matching is computed using the outputs of Step 1. As we elaborate in Section 6.7, we consider the
phrasal structure of requirements statements when computing a matching.
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The output from Step 5 is displayed to the user. Ideally, we would like the ordering to partition
the requirements statements, with all impacted statements appearing at the beginning and all not-
impacted ones at the end of the ordered set. This would help users focus on top-ranked statements
with a higher likelihood of undergoing change. In Section 6.9, we evaluate how close our approach is
to the ideal case.

We note three considerations about the process of Figure 6.2: First, the process is iterative; the
user can apply and analyze changes in a consecutive manner by returning to Step 2 (Apply change).
Second, the process is interactive. This in particular requires the flexibility to make changes in real-
time and obtain impact results with no, or only short, delays. Subsequently, computationally-intensive
tasks, such as the calculation of similarity scores, need to be minimized over the interactive path in
the process, i.e., Steps 2 through 5. The aim of Step 1 in the process is to factor out as much of these
computations as possible from the interaction path. Specifically, one can run Step 1 offline and prior
to change impact analysis. If a change warrants updating the outputs of Step 1, the updates are made
incrementally in Step 3, as already discussed. Third, the approach allows the user to skip Steps 2–3,
and start directly with articulating the change propagation condition in Step 4. This is useful when
one wants to hypothesize and analyze the impact of a proposed change, say, deleting all requirements
statements concerned with processing a specific object, before deciding whether or not to make the
change.

6.3 Background
In this section, we introduce the NLP techniques that are used in this chapter: (1) detection of phrases
in sentences and (2) calculation of similarity measures.

Phrase detection. We use text chunking for automatic detection of phrases. We provided the necessary
background on text chunking in Chapter 3 (see Section 3.2.2). As we discussed in this previous
chapter, several alternative chunkers are available within existing NLP toolkits. We evaluated the
accuracy of some of these alternatives over requirements documents in Chapter 3. In this current
chapter, we use the OpenNLP chunker [OpenNLP, 2016], which, based on the evaluation of Chapter 3,
is one of the most robust alternatives.

For change impact analysis, we are interested in the Noun Phrases (NPs) and Verb Phrases (VPs)
as the main meaning-bearing elements of sentences. We enhance the results of text chunking with
heuristics that merge adjacent NPs under certain conditions. These heuristics, as discussed pre-
viously in Chapter 4 (see Table 4.4), are aimed at maintaining the semantic link between closely
related NPs. For example, chunking would decompose “configuration of a satellite” into
two NPs: “configuration” and “a satellite”. If we treat these NPs separately, the context for
“configuration” will be lost. To address this issue, we merge into a single NP any pair of adjacent
NPs that match one of the following patterns: NP of NP, NP’s NP, and NP in NP.

Similarity measures. Similarity measures for NL can be syntactic or semantic. Syntactic measures
compute similarity scores based on the string content of text segments, sometimes combined with
frequencies. An example syntactic similarity measure is Levenstein similarity [Manning et al., 2008],
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Figure 6.3. Details of the requirements processing step.

which computes a similarity between two strings based on the minimum number of character edits
required to transform one string into the other.

Semantic measures are calculated based on correlations captured in dictionaries. An example
semantic similarity measure is the Path measure [Rus et al., 2013], which computes a similarity score
between two words based on the shortest path between them in an is-a hierarchy (e.g., a “car” is-a
“vehicle” and so is a “scooter”).

Most similarity measures, both syntactic and semantic, are normalized to produce a value between
0 and 1, with 0 signifying no similarity and 1 signifying a perfect match. Since there are numerous
similarity measures to choose from, it is important to investigate through empirical means which
measures yield the best results for a specific task.

Syntactic measures are generally best-suited for matching variations of the same word or phrase,
e.g., “components of the system” and “system components”, and for dealing with words that
are misspelled or not in dictionaries. Semantic measures are most suitable for matching words that
are syntactically different but have closely-related meanings, e.g., “message” and “communication”.
Semantic measures further provide an accurate basis for dealing with language morphology, for
instance, nominalizations, e.g., “handling” versus “handle”. Due to the complementary char-
acteristics of syntactic and semantic measures, these two classes of measures may be combined
to produce higher-quality similarity scores [Nejati et al., 2012].

We note that semantic measures are typically more expensive than syntactic measures to compute.
Therefore, when using semantic measures, one needs to consider the level of scalability required
for the task at hand. Recent advances in NLP address many of the scalability challenges associ-
ated with semantic measures. In particular, the newly-developed SEMILAR (SEMantic simILARity)
toolkit [Rus et al., 2013] provides efficient implementations for a number of semantic measures.

In this chapter, we experiment with several syntactic and semantic measures, and their combina-
tions for change impact analysis. The best measures for our application context are discussed in our
empirical evaluation (Section 6.9).

6.4 Processing of Requirements
The requirements processing step, the details of which are depicted in the diagram of Figure 6.4,
detects the phrases in the requirements statements, extracts the tokens of these phrases, and computes
similarity scores for the extracted tokens.

Requirements phrases are identified using text chunking, as we described in Section 6.3. From
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the annotation produced by text chunking, we use only the noun and verb phrases (NPs and VPs).
As noted earlier, these phrases are the most important to the meaning of sentences. Following text
chunking, the identified NPs and VPs are broken down into their tokens to create a global, non-
redundant set of tokens. We discard stopwords from this set. Stopwords are tokens that appear
so frequently in the text that they lose their usefulness for text processing [Manning and Schütze,
1999]. Stopwords include but are not limited to determiners, predeterminers, pronouns, conjunc-
tions, and prepositions. We adapt the stopwords from the Brown corpus [Francis and Kucera, 1982].
For example, “the user help desk” in R1 (Figure 6.1) would be reduced to the following tokens:
“user”, “help”, “desk”; “maintenance and service plans” in R2 (Figure 6.1) would be reduced
to: “maintenance”, “service”, and “plans”.

Let T denote the union of all tokens extracted from the NPs and VPs of a requirements document,
with the stopwords removed. We subject T to similarity calculation, as shown in Figure 6.4. A (token-
level) similarity function is a total function T ⇥T ! [0..1], assigning a normalized value to every pair
(t, t 0) 2 T ⇥ T of tokens. The closer the similarity score is to 1, the more similar a pair of tokens are
with respect to the similarity measure being used. We consider three alternative strategies for building
a similarity function:

1. syntactic only, where a similarity function, Ssyn, is calculated using a syntactic measure, e.g., Lev-
enstein similarity;

2. semantic only, where a similarity function, Ssem, is calculated using a semantic measure, e.g., the
path measure;

3. combined, where, for every pair (t, t 0) of tokens, we take max(Ssyn(t, t 0),Ssem(t, t 0)). Using max. is
motivated by the complementarity of syntactic and similarity measures [Nejati et al., 2012].

We zero out token similarity scores smaller than 0.3 to exclude poor token matches from further
analysis. Applying this threshold is common practice when two bags of tokens are being compared
based on their pairwise token similarities, e.g., see [Rus et al., 2013]. In Section 6.7, we use token
similarities alongside phrasal information for predicting change impact. We discuss in Section 6.9
which strategy from the three above and which similarity measures yield the most accurate results.

6.5 Change Application and Differencing
Applying a change (Step 2 of the process of Figure 6.2) is an interactive step where the user adds,
deletes or updates a requirements statement. To enable phrase-level analysis of changes, we cast these
change operations as additions and deletions of phrases (NPs and VPs). Specifically:

• Adding (resp., deleting) a requirement amounts to adding (resp., deleting) a collection of phrases.
For example, deleting R4 shown in Figure 6.1 is treated as deleting the VP “shall implement”

and deleting the NPs “the mission operation controller” and “a configuration management

database”.
• Updating a requirement amounts to a combination of phrase additions and deletions. For exam-

ple, consider the requirement in Figure 6.4, which is a slight extension of R1 in Figure 6.1. The
textual change here is deleting “help desk” and adding “document repository at a local

server”. This update is treated as deleting “the user help desk”, and adding “the user

document repository” and “a local server”.
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Figure 6.4. Differencing example.

Input: The original requirement, Rold , and the changed one, Rnew;
Output: Set of phrase additions and deletions;
1: Let Pold be the set of phrases in Rold , and Pnew that in Rnew;
2: if Pold = /0 then return {(p,Added) | p 2 Pnew};
3: else if Pnew = /0 then return {(p,Deleted) | p 2 Pold};
4: end if
5: Let ` = /0; /* Initialize the set of phrases to be returned. */
6: for all region 2 diff-match-patch(Rold ,Rnew) do
7: if region.type = Equal then do nothing;
8: else if region.type = Deleted then
9: ` := ` [{(p,Deleted) | (p 2 Pold)^ (p overlaps with region)};

10: else if region.type = Inserted then
11: ` := ` [{(p,Added) | (p 2 Pnew)^ (p overlaps with region)};
12: end if
13: end for
14: return `

Figure 6.5.Algorithm for detecting added & deleted phrases (phrasal differencing).

The algorithm of Figure 6.5 outlines the procedure we apply for automatically detecting added
and deleted phrases. The algorithm superimposes the NP and VP annotations obtained from text
chunking over differencing annotations obtained from a standard text differencing tool, e.g., diff-
match-patch [Fraser, 2012]. Text differencing partitions a given text (in our case, a requirements
statement) into regions annotated with Equal, Deleted, and Inserted. These annotations, illustrated
in Figure 6.4, denote unchanged, deleted, and inserted text segments, respectively. Given the text
chunking and differencing annotations, the algorithm analyzes the overlaps between the phrases and
the changed text regions, returning a set of tuples of the form (p,Op) where p is a phrase and Op is
either Added or Deleted.

For example, the output from the algorithm of Figure 6.5 over the requirements change shown in
Figure 6.4 is the following set: {(“the user help desk”,Deleted),

(“the user document repository”,Added),(“a local server”,Added)}. These added and deleted
phrases can be used by requirements analysts for specifying the change propagation condition, dis-
cussed next.

6.6 Specification of Propagation Condition
The algorithm of Figure 6.5 identifies what has changed but does not explain the context and circum-
stances around the change. As we illustrated in Section 6.1, an accurate analysis of the impact of a
change may not be possible based solely on the change itself. To obtain meaningful results through
automation, the analyst needs to make explicit any known criteria that the impacted requirements are
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hexpressioni ::= hcomposite-expri | hatomic-expri
hcomposite-expri ::= “(” hexpressioni “AND” hexpressioni “)” |

“(” hexpressioni “OR” hexpressioni “)”
hatomic-expri ::= hphrasei | hverbatim-texti
hphrasei ::= hpos-phrasei | hneg-phrasei
hverbatim-texti ::= hpos-verbatim-texti | hneg-verbatim-texti
hpos-phrasei ::= hPHRASEi
hneg-phrasei ::= “NOT” hpos-phrasei
hpos-verbatim-texti ::= “[” hTEXTi “]”
hneg-verbatim-texti ::= “NOT” hpos-verbatim-texti

1

9

7
8

6
5
4
3

2

Figure 6.6. Grammar for propagation conditions.

Table 6.1. Example propagation conditions and their explanation.

Req. (from
Figure 6.1)

Explanation Propagation Condition

1
Replace user help desk in subsystems X and
Y only.

user help desk AND
([X] OR [Y])

2
Replace user help desk unless it is for sub-
system X.

user help desk AND
(NOT [X])

3 R1
Avoid communication between mission op-
eration controller and user help desk.

mission operation controller
AND user help desk AND
transmit

4
Do not transmit satellite status reports to user
help desk.

satellite status report AND
user help desk AND transmit

5 R2
We want to do all transfers to the user help
desk via FTP.

transfer AND user help desk

6 R4
Configuration database management must
be removed.

configuration database
management

expected to meet. Stated otherwise, for a given change, the analyst must provide a condition charac-
terizing the requirements that the change is likely to propagate to. We refer to this condition as the
propagation condition. Essentially, the propagation condition is the analyst’s answer to the following:
What phrases do you expect to see or not to see in the requirements impacted by the change?

We use a restricted form of boolean expressions, shown in the grammar of Figure 6.6, for capturing
propagation conditions. An expression is either composite or atomic (L. 1). Composite expressions
are built recursively using AND and OR (L. 2). Atomic expressions can be phrases or verbatim text
(L. 3). The verbatim text option is provided to support exact string search, as implemented in text
editors. When phrases are indicated, a quantitative measure is applied for search to account for the
syntactic and semantic variations of phrases and how the constituent words of the phrases appear in
the requirements (Section 6.7). Phrases and verbatim text can both be negated to state they must be
absent (L. 4-5). The symbols hPHRASEi and hTEXTi (L. 6, 8) are terminals. Verbatim text is enclosed
in brackets (L. 8) to distinguish it from phrases (L. 6).

Table 6.1 provides examples of propagation conditions, based on the changes made to R1, R2, and
R4 in the requirements of Figure 6.1. In each case, we show the requirements statement number, a
possible explanation for the change, and the propagation condition. In rows 1-4 and 6 of Table 6.1, the
change, as detected by the algorithm of Figure 6.5, plays a role in defining the propagation condition;
whereas in row 5, the newly-added phrase (“FTP”) does not appear in the propagation condition. This
is because the propagation condition is meant to characterize what is likely to be seen in the impacted
requirements, hence “FTP” not being part of the condition in row 5.
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Figure 6.7. Matching a propagation condition phrase against a requirement.

Since one cannot in general assume that analysts are comfortable with writing logical expressions,
it is important to provide a more intuitive layer over logical expressions for specifying propagation
conditions. To this end, we draw on findings in the Information Retrieval community, where it has
been observed that people often conceptualize search queries in terms of Conjunctive Normal Form
(CNF) expressions [Pirkola et al., 1999]. While our approach supports the grammar of Figure 6.6
without restrictions, our tool support (Section 6.8) limits propagation conditions to CNF expressions.
This enables us to shield the user from logical expressions through a user interface. All the propaga-
tion conditions in Table 6.1 are in CNF.

As the examples in Table 6.1 show, propagation conditions are associated closely with why a cer-
tain change is being made. In our approach, we elicit propagation conditions directly from the analyst,
rather than having the analyst first fully conceptualize why they made a change and then attempting
to derive the propagation condition from their answer. Our decision is motivated by our experience,
indicating that practitioners find it more difficult to answer why they made a change than to provide
clues about how they would propagate it. This observation relates to known cognitive limitations of
answering “why” questions about requirements and design rationale [Dutoit et al., 2006].

6.7 Calculation of Impact Likelihoods
Given a propagation condition j , we calculate for every requirements statement R a normalized
matching score M(j,R). The score is a measure of how likely R is to be impacted by the change
associated with j . The higher the score, the more likely R is to be impacted. The matching score
is computed for all requirements statements in a specification. The statements are then sorted in de-
scending order of the score and presented to the analyst. Below, we explain how the matching scores
are computed. We discuss how to use the resulting sorted list in Section 6.9 (RQ2 and RQ3).

The matching score is computed bottom-up, as per the grammar of Figure 6.6, from atomic to
composite expressions. For positive verbatim text v, we evaluate M(v,R) to 1 if R contains v; and
0, otherwise. The core part of the matching is calculating scores for positive phrases. For positive
phrase p, we calculate M(p,R) according to the following process:

(1) Let [[t1, · · · , tn]] be the bag of p’s tokens. Let p1, · · · , pk be the phrases in R; and let [[t 01, · · · , t 0m]] be
the bag of the tokens of these phrases. Note that stopwords are removed from both bags. Con-
struct a bipartite graph G, where the nodes of the first and the second parts are [[t1, · · · , tn]] and
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[[t 01, · · · , t 0m]], respectively. To illustrate, suppose p is “the satellite matching service” and R is
“The satellite network server shall notify the communication monitoring component

after each satellite ping.” The phrases in R are “The satellite network server”, “shall
notify”, “the communication monitoring component”, and “each satellite ping”. In Fig-
ure 6.7, we show the nodes of G. The phrases of R (and thus their constituent tokens) are ordered in
a certain manner. We discuss this ordering and its use in step (2) below.

(2) We connect every pair (t, t 0) 2 [[t1, · · · , tn]] ⇥ [[t 01, · · · , t 0m]] with a weighted edge. The weight is
assigned by one of the token similarity calculation strategies discussed in Section 6.4. Which strategy
is the most accurate is discussed in Section 6.9 (RQ1). With the edges added to G, we obtain a full
weighted bipartite graph [Cormen et al., 2009]. We use this graph for finding an optimal matching
between the tokens of p and those of R. The optimization is cast into the assignment problem [Cormen
et al., 2009]. Solving the assignment problem yields a set of edges such that no two edges share
the same token as an endpoint, while maximizing the sum of the weights of the selected edges. In
Figure 6.7, the edges of the optimal matching are shown using solid lines. The number next to each
edge denotes the edge’s weight. For readability reasons, we do not show G’s entire edge set.

Before attempting to find an optimal match, we adjust the weights of the edges in G to nudge
matching towards using the smallest possible number of phrases from R. To illustrate, consider the
term “satellite” in p (Figure 6.7), for which there are two exact matches in R, i.e., in phrases p1 and
p4. Despite both p1 and p4 containing matches, picking “satellite” from p1 is more sensible be-
cause at the phrase level, p1 is a closer match to p than p4 is. To guide matching to pick “satellite”

from p1, we rank the phrases in R according to their phrase-level similarity with p. We then levy a
small penalty for picking tokens from phrases with a higher rank. More precisely, the weight of an
edge between tokens t and t 0 is adjusted as follows: adjusted weight=(1�(r�1)/100)⇥original weight,
where r is the rank of the phrase in which t 0 is located. We use a syntactic similarity measure applied to
phrases to compute the ranking. Finding the best such measure for ranking is addressed in Section 6.9
(RQ1). For instance, with Levenstein similarity applied for ranking, the phrases of R (Figure 6.7) in
descending order of similarity with p are p1, p4, p3, and p2. The dashed edge in Figure 6.7, which is
not part of the optimal matching, has an adjusted weight of 0.99 = (1� (2�1)/100), noting that the
rank of p4 is 2.

(3) We calculate the matching score for p as follows:

M(p,R) = 2⇥ sum of the weights of edges in optimal matching
N1 +N2 +0.5⇥ (N3 �1)

where N1 is the number of tokens in p, N2 is the number of matched tokens from R, and N3 is the
number of phrases from R involved in the optimal matching. For the example of Figure 6.7, the
calculations are as follows: sum of weights = 1.0 + 0.56 + 0.57 = 2.13, N1 = 3, N2 = 3, and N3 = 2
because two phrases (p1 and p3) contribute tokens to the optimal matching. Hence, M(p,R) =
(2⇥2.13)/(3+3+0.5(2�1)) = 0.66.

The above formula is a modification of a commonly-used formula for comparing name labels [Ne-
jati et al., 2012]. In our modified formula, N2 accounts for only the matched tokens of R rather than
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Figure 6.8. NARCIA’s user interface for (a) specifying propagation conditions, and (b) reviewing change
impact analysis results (tool’s output has been truncated).

all its tokens. This modification prevents the matching scores from being affected by the length of re-
quirements statements. Our modified formula further introduces an additional factor of 0.5⇥(N3 �1)
in the denominator. This additional factor is motivated by the intuition that a smaller number of par-
ticipating phrases from R in the optimal match makes R likely to have a stronger relationship to p.
For instance, had p1 in Figure 6.7 been “satellite communication server”, the optimal match
would have used only p1 from R. This would have been rewarded by increasing the matching score
from 0.66 to (2⇥2.13)/(3+3+0.5(1�1)) = 0.71.

For negated atomic and composite expressions in the grammar of Figure 6.6, we calculate the
matching scores as follows:

• M(NOTz,R) = 1�M(z,R); z is a phrase or verbatim text
• M(j1 ANDj2,R) = M(j1,R)⇥M(j2,R)
• M(j1 ORj2,R) = max(M(j1,R),M(j2,R))

6.8 Tool Support
We have implemented our approach in a prototype tool, NARCIA (NAtural language Requirements
Change Impact Analyzer). In Figure 6.8, we present two screenshots of the tool. Figure 6.8(a) shows
the interface for specifying propagation conditions. The tool restricts these conditions to CNFs, as
discussed in Section 6.6. Each box marked with a ? on the screenshot of Figure 6.8(a) is a CNF
clause, i.e., a disjunction of phrases and possibly verbatim text items. The user can define as many
clauses as necessary using the “Add” button.

122



6.9. Evaluation

To assist users in writing propagation conditions, the tool presents the original and changed re-
quirements statements alongside the added and deleted phrases detected via phrasal differencing. The
user can drag and drop any phrase from this information into the clause boxes, as illustrated in Fig-
ure 6.8(a). For convenience, the tool automatically removes determiners and predeterminers from
phrases. The drop-down lists in the clause boxes are populated with the phrases of the underlying
requirements document to allow easier access to these phrases. In addition, the user has the option
of directly typing in phrases or verbatim text into the clause boxes. Once the propagation condition
has been provided and the “Analyze” button pressed, the tool produces a sorted list of requirements
statements based on how well the statements match the provided condition. Figure 6.8(b) shows a
(truncated) example of the tool’s output. The propagation condition is shown on the top of the result
page as a logical expression.

NARCIA is implemented in Java and is approximately 8K lines of code, excluding comments and
third-party libraries. For more details, see: https://sites.google.com/site/svvnarcia/.

6.9 Evaluation
In this section, we investigate, through two industrial case studies, the following Research Questions
(RQs):

RQ1. Which similarity measures are best suited to our approach? The choice of similarity measures
used for calculating impact likelihoods has a direct bearing on the quality of the results. RQ1 aims to
identify the syntactic and semantic similarity measures that lead to the most accurate results.

RQ2. How should analysts use the sorted requirements list produced by our approach? For our
approach to be useful, analysts need to determine how much of the sorted list is worthwhile inspecting.
In other words, they need to determine a point in the list beyond which the remainder of the list is
unlikely to contain impacted requirements. The aim of RQ2 is to develop systematic guidelines on
how to choose this point.

RQ3. How effective is our approach? Assuming that the guidelines resulting from RQ2 are followed,
RQ3 aims to determine if our approach can reliably identify the impact set and at the same time save
substantial inspection effort.

RQ4. How scalable is our approach? RQ4 aims to establish if our approach has a reasonable
execution time.

Table 6.2 outlines key information about our case studies. The first case, hereafter called Case-A,
concerns a proprietary requirements document for a satellite software component that is under devel-
opment by our industry partner, SES TechCom. The second case, hereafter called Case-B, is based
on a public requirements document for a context-aware mobile service platform [Ebben, 2002]. Both
documents represent real systems and were written by practitioners. Data collection for Case-A was
performed as part of our current work; whereas, Case-B is drawn from the evaluation material of a pre-
vious, and different, impact analysis technique [Goknil et al., 2014a, Goknil et al., 2014b]. For each
case, we provide in Table 6.2 a brief description, the number of requirements statements, the number
of phrases and distinct tokens, and the number of change scenarios considered. The source material
for Case-B is available on our tool’s website at http://sites.google.com/site/svvnarcia/.
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Table 6.2. Case studies used in the evaluation.

Case% Description% #%of%
requirements%

#%of%
phrases%

#%of%distinct%
tokens%

#%of%change%
scenarios%%

Case7A% Simulator*module*for*a*
satellite*ground*station*

160* 673* 648* 9*

Case7B% 3G*mobile*service*
platform*

72* 267* 263* 5*

*
Table 6.3. Shapes of propagation conditions and sizes of impact sets.

Ca
se
-A

Ca
se
-B

!
Scenario) Propagation)Condition)

Pattern)
Size)of)

Impact)Set)
A.1) ⟨NP⟩!AND!⟨NP⟩! 4!
A.2) ⟨NP⟩!OR!⟨NP⟩! 8!
A.3) ⟨NP⟩! 39!
A.4) (⟨NP⟩!OR!⟨NP⟩)!AND!⟨NP⟩! 5!
A.5) ⟨NP⟩!OR!⟨NP⟩! 10!
A.6) ⟨NP⟩!AND!⟨NP⟩! 3!
A.7) ⟨NP⟩!AND!⟨NP⟩! 7!
A.8) ⟨NP⟩!OR!⟨NP⟩! 5!

A.9) ⟨verbatim=text⟩!AND!⟨NP⟩! 3!
B.1! ⟨NP⟩!AND!⟨NP⟩ 2!
B.2! ⟨NP⟩ 9!
B.3! ⟨NP⟩!AND!⟨NP⟩AND!⟨NP⟩ 1!
B.4! ⟨NP⟩!AND!⟨NP⟩ 1!

B.5! (⟨NP⟩!OR!⟨NP⟩)!AND!
!(⟨NP⟩!OR!⟨NP⟩) 

9!

!
Scenario) Propagation!Condition!

Pattern)
Size!of!

Impact!Set)
B.1) ⟨NP⟩!AND!⟨NP⟩! 2!

B.2) ⟨NP⟩! 9!
B.3) ⟨NP⟩!AND!⟨NP⟩AND!⟨NP⟩! 1!
B.4) ⟨NP⟩!AND!⟨NP⟩! 1!
B.5) (⟨NP⟩!OR!⟨NP⟩)!AND!(⟨NP⟩!

OR!⟨NP⟩)!
9!

!

The change scenarios in Case-A are real and based on the change history of the underlying docu-
ment. We identified 14 scenarios, of which we use only 9 in our evaluation due to reasons described
in the next paragraph. In Case-B, there are 5 scenarios, which are hypothetical but validated with the

experts in Case-B in terms of being meaningful [Goknil et al., 2014b]. In both cases, the impact
sets for the changes were provided by the experts involved in writing the requirements. Table 6.3
shows the size of the impact set for each change scenario along with the shape of the propagation
condition.

In Case-A, the propagation conditions were specified directly by the lead engineer. Phrasal search
was used in only 9 (out of the 14) scenarios. The other 5 scenarios involved only verbatim text
search and were consequently excluded due to their limited usefulness in our evaluation. In Case-B,
we did not have access to the experts for specifying the propagation conditions. Three researchers
independently wrote the conditions and then reached consensus on them. To avoid validity threats,
the phrases in the propagation conditions of Case-B were limited to the phrases that appeared in the
changed requirements statements (pre- and post-change) as well as the brief description of change
rationale available in the existing documentation [Goknil et al., 2014b].

Next, we discuss our RQs based on Case-A and Case-B:
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Figure 6.9. Accuracy of lists produced by two combinations of similarity measures.

RQ1. To answer this RQ, we define a notion of accuracy for the sorted lists produced as described
in Section 6.7. We do so using charts that show the percentage of impacted requirements identi-
fied (Y-axis) against the percentage of requirements traversed in the list (X-axis). In Figure 6.9,
we provide charts for two sorted lists (of the same requirements set), computed by two different
combinations of similarity measures.

A simple accuracy metric would be the percentage of requirements traversed in a sorted list to
identify all impacted requirements. While intuitive, this metric cannot distinguish the combinations
in Figure6.9. In both combinations, all the impacted requirements are identified after traversing 24%
of the lists. Nevertheless, Combination 1 is a better alternative as it produces better results earlier.
To reward earlier detection of impacted requirements, we use the Area Under the Curve (AUC) for
evaluating accuracy. AUC can tell apart the combinations in Figure 6.9, as the metric is larger for
Combination 1.

We instantiated our approach using pairwise combinations of 10 syntactic measures from Sim-
Pack [SimPack, 2016] and 9 semantic measures from SEMILAR, including alternatives where only a
syntactic or only a semantic measure is applied (i.e., where a constant zero function is used for either
semantic or syntactic similarity). This yields (10 + 1) ⇥ (9 + 1) � 1 = 109 combinations. For the
phrase ranking stage in the process described in Section 6.7, we used the syntactic similarity measure
in a given combination, or Levenstein similarity when only a semantic measure was being applied
for tokens. We ran these combinations on all our change scenarios, calculating the AUCs. Let S be
the sum of the AUCs for the change scenarios in either Case-A or Case-B, resulting from a particular
combination. The combination that maximizes S is deemed the best for the respective case study.

We obtain the best result for Case-A when Levenstein similarity –a syntactic measure– is applied
alone, and for Case-B when Path –a semantic measure– is applied alone. This discrepancy is ex-
plained as follows: In Case-A, the requirements were written by a small group of engineers, and the
propagation conditions were specified directly by one of these engineers. In contrast, the requirements
in Case-B were written by a consortium of companies and the propagation conditions were written
by people other than those involved in writing the requirements. Our analysis indicates that using
semantic similarities is important for handling the heterogeneity seen in Case-B. The absolute bests
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Figure 6.10. Delta chart for identifying the cutoff (r).

in Case-A and Case-B are followed closely by the combination of Levenstein and Path. In Case-A,
this combination is distinguished by only 1% from when Levenstein is applied alone (in terms of the
sum of the AUCs); and, in Case-B, the difference between the combination of Levenstein and Path
versus Path alone is only 2%. Given these negligible differences and the complimentary nature of
syntactic and semantic measures, we recommend the combined use of Levenstein similarity and Path.
These measures were briefly introduced in Section 6.3.

Overall, our recommended combination yields results that, when compared to results from other
combinations, are better (in terms of AUC) by an average of 11% in Case-A and 4% in Case-B. The
largest accuracy difference between our recommended combination and other combinations was over
a change scenario (A.9) in Case-A, where our recommended combination outperformed another by
33%. The remaining RQs are answered based on our recommended combination.

RQ2. Outside an evaluation setting, one cannot know a priori how much of a sorted list needs to
be inspected before all the impacted requirements statements have been seen. To decide how much
of a sorted list is worthwhile inspecting, we define a notion of cutoff. This notion is defined based
on a delta chart, an example of which is shown in Figure 6.10 for one of the change scenarios of
Case-A. In the chart, at any position i on the X-axis, the Y-axis is the difference between the matching
scores (impact likelihoods) at positions i and i�1. For easier understanding, we further show, on the
top of the figure, the matching scores. We set the cutoff to be the point on the X-axis after which
there are no significant peaks in the delta chart. Intuitively, the cutoff is the point beyond which the
matching scores no longer adequately distinguish the requirements in terms of being impacted. What
constitutes a significant peak is relative. Based on our experimental experience, a peak is significant
if it is larger than one-third of the highest peak in the delta chart, denoted hmax in Figure 6.10. The
only exception is the peak caused by zeroing out token similarities smaller than 0.3 (see Section 6.4).
This peak, if it exists, is always the last one and hence denoted hlast. Since hlast is a mathematical
artifact, it is discarded when the cutoff is being determined.

More precisely, we define the cutoff r to be at the end of the right slope of the last significant
peak (excluding hlast). In the example of Figure 6.10, hmax = 0.21. Hence, r is at the end of the last
peak with a height > hmax/3 = 0.07. We recommend that analysts should inspect the requirements
statements up to the cutoff and no further. In the example of Figure 6.10, the cutoff is at 11% of the
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sorted list. It is important to note that the cutoff is automatically computable. Hence, the delta chart
and its interpretation are transparent to the users.

RQ3. We answer this RQ based on the cutoff from RQ2. To be effective, our approach must produce
a small number of False Positives (FP) and False Negatives (FN). An FP is a non-impacted require-
ments statement that appears before the cutoff and is thus subject to manual inspection. Formally, the
set of all FPs is given by Rinspected \Rimpacted, where Rinspected is the set of inspected requirements
(for a specific change) and Rimpacted is the set of impacted requirements (by that change). An FN is
an impacted requirements statement that appears after the cutoff and is thus missed. The set of all
FNs for a given change is Rimpacted \Rinspected.

Figure 6.11 shows, for each change scenario in Case-A and Case-B, the percentage of FPs in terms
of the total number of requirements in the respective case. In Case-A, the FP rate is between 1% and
7%, and in Case-B – between 6% and 8%, except for an outlier (scenario B.2) with an FP rate of
⇡45%. Upon further investigation, we concluded that the propagation condition associated with the
outlier was too unspecific, resulting in the condition to match a large number of (irrelevant) require-
ments. As stated earlier, due to lack of access to the experts in Case-B, we followed a conservative
approach when writing the propagation conditions, using phrases only from the changed requirement
and the documented change rationale. In the case of the outlier, the rationale that was available to us
was not precise enough, limiting us to use a single phrase as the propagation condition. An expert
would most likely have refined the propagation condition upon seeing the sorted list; however, we did
not consider such a feedback loop.

With regards to FNs, we detected all the impacted requirements in Case-A, and thus an FN rate
of 0 for the change scenarios in this case. The domain expert involved in the case found the impact
analysis results to be very useful, considering the low FP rates (Figure 6.11). For Case-B, the FN rate
is 0 for all scenarios, but one (scenario B.5), where we miss 1 out of the 9 impacted requirements.
The missed requirement was due to a relationship that our approach cannot identify. Specifically,
the relationship is between the phrase “touristic attraction” in the missed requirement and the
phrase “point of interest” in the propagation condition. The syntactic and semantic similarity
measures that our approach is built upon cannot detect the tacit is-a relationship between the former
and latter phrase. This is a limitation in our approach and needs to be addressed through further user
input, e.g., a domain model.
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Table 6.4. Execution Times.

Case Task Execution
Time

Case-A Phrase detection (full document) 15s
160 requirements Syntactic similarity calculation 22s
673 distinct phrases Semantic similarity calculation 208s
648 distinct tokens Sorted list generation (avgerage) 13s

Sorted list generation (worst case) 16s
Case-B Phrase detection (full document) 12s
72 requirements Syntactic similarity calculation 8s
267 distinct phrases Semantic similarity calculation 74s
263 distinct tokens Sorted list generation (avgerage) 9s

Sorted list generation (worst case) 11s

RQ4. Table 6.4 shows the execution times for the main computational tasks in our approach. All tasks
except sorted list generation are one-offs and performed in Step 1 of the process of Figure 6.2. Given
the small execution times, particularly for sorted list generation, we expect our approach to scale to
larger requirements documents. Execution times were measured on a laptop with a 2.3 GHz CPU and
8GB of memory.

Threats to validity. The lack of access to experts for specifying the change propagation conditions
in Case-B poses a threat to internal validity. As discussed earlier, we mitigated this threat by having
three researchers independently write the propagation conditions and limiting the choice of phrases
that could be used in the conditions.

We have evaluated our approach using two case studies in different domains. The consistency
of the results across these two case studies makes us optimistic about the generalizability of our ap-
proach. Nonetheless, further case studies remain essential for minimizing threats to external validity.

6.10 Related Work
Below, we compare our approach with related work on change impact analysis and on the application
of NLP in RE.

Change Impact Analysis (CIA). Our work focuses on inter-requirement CIA, i.e., how requirements
changes affect other requirements. We thus narrow our discussion to work strands that address this
specific facet of CIA. Inter-requirement CIA requires some notion of dependency between require-
ments for change propagation. Zhang et al. [Zhang et al., 2014] study two requirements dependency
models, the D-model [Dahlstedt and Persson, 2005] and the P-model [Pohl, 1996], in terms of suit-
ability for inter-requirement CIA. They propose an enhanced model with generic dependency types
such as “refines”, “conflicts”, and “constrains”. Goknil et al. [Goknil et al., 2014a] propose a similar
dependency model, augmenting it with formal semantics and using it for impact analysis over NL
requirements. When the requirements are expressed as models, more specialized dependency types
may be used. Amyot [Amyot, 2003] uses operationalization dependencies between use cases and
goals to propagate change between intentional and behavioral requirements; and Cleland-Huang et
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al. [Cleland-Huang et al., 2005b] use soft goal dependencies to analyze how changes in functional
requirements impact non-functional requirements.

Our work differs from the above in that it does not need the requirements dependencies to be
specified ahead of time. In our context, whether there is a dependency between a changed requirement
and another requirement is determined by the propagation condition. Since one cannot enumerate all
possible conditions, building an explicit dependency graph is infeasible. Another difference in our
approach is that it does not attempt to characterize the dependencies using a dependency model. The
high expressiveness and implicit semantics of NL often make it difficult to classify dependencies
using predefined types. Instead of using typed dependencies, we use similarity scores to assess the
impact of changes.

A large body of work exists on automated retrieval of requirements trace links [Cleland-Huang
et al., 2007, Torkar et al., 2012, Cleland-Huang et al., 2014]. Our work takes inspiration from and
follows a similar process to Just-In-Time (JIT) techniques for trace retrieval [Cleland-Huang, 2012].
The main contribution of our work over existing JIT trace retrieval techniques is that we take the
phrasal structure of requirements into consideration.

NLP in RE. NLP techniques such as tokenization, part-of-speech tagging, and similarity measure-
ment that are used in our approach are also commonly used in, among other tasks, inconsistency
and ambiguity handling, e.g., [Gervasi and Zowghi, 2005, Yang et al., 2011], requirements tracing,
e.g., [Torkar et al., 2012, Cleland-Huang et al., 2014], and requirements overlap detection, e.g., [Fa-
lessi et al., 2013]. Text chunking too has been applied in RE before, albeit to a limited extent, e.g.,
for matching requirements to web-service descriptions [Zachos and Maiden, 2008], assessing re-
quirements satisfaction [Holbrook et al., 2009], ambiguity resolution [Yang et al., 2011], checking
conformance to templates [Arora et al., 2015a], and extracting requirements glossary terms [Arora
et al., 2014a]. We use NLP to address a different problem than those addressed by the above work.

6.11 Conclusion
In this chapter, we presented an approach based on Natural Language Processing for analyzing the
impact of changes in natural language requirements specifications. We surmised that a large majority
of requirements dependencies manifest themselves within the phrasal structure of the requirements
sentences. We further argued about the importance of explicitly capturing the conditions under which
change should propagate between requirements. Our evaluation, over two industrial case studies, con-
firms our surmise, and suggests that our approach is accurate. Across the 14 change scenarios in our
case studies, we could detect 99% (105 / 106) of the impacted requirements using our approach. Nev-
ertheless, certain dependencies, an example of which was reported in our evaluation, are inherently
tacit and detectable only through explicit guidance.

In the future, we plan to extend our approach with a cost-effective mechanism for explicating
such dependencies through a domain model. We further plan to enhance our approach with means
for handling simultaneous changes. Finally, we plan to conduct usability studies to better validate
our approach. The primary focus of these future studies will be on determining whether the change
propagation conditions in our approach can be elicited effectively from practitioners.
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Chapter 7

Change Impact Analysis between SysML
Models of Requirements and Design

Change impact analysis is an important activity in software maintenance and evolution, both for prop-
erly implementing a set of requested changes, and also for estimating the risks and costs associated
with the change implementation [Bohner and Arnold, 1996, Pfleeger and Atlee, 2009]. In addition to
being a general best practice, change impact analysis is often mandatory for safety-critical applica-
tions and meeting the compliance provisions of safety standards such as IEC 61508 [IEC, 2005] and
ISO 26262 [ISO26262, 2009].

Performing this analysis manually is expensive, particularly for complex systems. In this chapter,
we propose an approach to automatically identify the impact of requirements changes on system
design, when the requirements and design elements are expressed using models. We ground our
approach on the Systems Modeling Language (SysML) due to SysML’s increasing use in industrial
applications.

The approach proposed in this chapter has two steps: For a given change, we first apply a static
slicing algorithm to extract an estimated set of impacted model elements. Next, we rank the elements
of the resulting set according to a quantitative measure designed to predict how likely it is for each
element to be impacted. The measure is computed using Natural Language Processing (NLP) applied
to the textual content of the elements. Engineers can then inspect the ranked list of elements and
identify those that are actually impacted. We evaluate our approach on an industrial case study with
16 real-world requirements changes. Our results suggest that, using our approach, engineers need to
inspect on average only 4.8% of the entire design in order to identify the actually-impacted elements.
We further show that our results consistently improve when our analysis takes into account both
structural and behavioral diagrams rather than only structural ones, and the natural-language content
of the diagrams in addition to only their structural and behavioral content.

Structure. Section 7.1 motivates the problem addressed in this chapter and provides an insight
into our contributions for this chapter. Section 7.2 describes our approach. Section 7.3 presents our
empirical evaluation. Section 7.4 compares with related strands of work. Section 7.5 summarizes the
chapter.
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7.1 Motivation and Contributions
In this chapter, we concern ourselves with analyzing the impact of requirements changes on system
design. Changes in requirements may occur due to a variety of reasons, including, for example,
evolving user needs and budget constraints. Irrespective of the cause, it is important to be able to
assess how a requirements change affects the design. Doing so requires engineers to identify, for each
requirements change, the system blocks and behaviors that will be impacted. If done manually, this
task can be extremely laborious for complex systems, thus making it important to support the task
through automation.

text = "The CP controller shall 
provide temperature diagnostics."
id = "R1"

«requirement»
Temperature Diagnostics

text = "The CP controller shall 
detect temperatures exceeding 
110 ºC."
id = "R11"

«requirement»
Over-Temperature Detection

text = "The CP controller shall be 
able to measure temperatures 
between -20 ºC and 120 ºC."
id= "R12"

«requirement»
Operational Temperature Range

Figure 7.1. Requirements diagram fragment for CP.

Motivating Example. We motivate our work using a cam phaser (CP) system, developed by Delphi
Automotive. This system, which includes mechanical, electronic and software components, enables
adjusting the timing of cam lobes with respect to that of the crank shaft in an engine, while the
engine is running. CP is safety-critical and subject to ISO 26262 – a functional safety standard for
automobiles. To protect confidentiality and facilitate illustration, we have, in the description that
follows, altered some of CP’s details without affecting CP’s core architecture and behavior.

The system requirements and the design of CP are expressed using the Systems Modeling Lan-
guage (SysML) [INCOSE, 2016]. Figure 7.1 shows a small requirements diagram adapted from
CP’s original SysML models. The requirement on the top, Temperature Diagnostics (R1), is
decomposed into two sub-requirements: Over-Temperature Detection (R11) and Operational

Temperature Range (R12). The over-temperature threshold specified by R11 and the operational
temperature range specified by R12 depend on the specific devices that interact with CP and may
vary from one engine configuration to another. Hence, it is common for systems engineers to receive
change requests regarding these requirements. Examples of change requests coming from customers
(typically, car manufacturers) and concerning these requirements are: (1) Ch-R11: Over-temperature
threshold shall change from 110 degC to 147 degC, and (2) Ch-R12: Temperature range shall be
extended to -40 – 150 degC from -20 – 120 degC.

Figures 7.2 and 7.3 present parts of CP’s design: Figure 7.2 shows a fragment of CP’s architecture
expressed as a SysML internal block diagram. In this diagram, there are two traceability links to
requirements, one from the Over-Temperature Monitor block (labeled B2) to requirement R11, and
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Figure 7.2. Fragment of CP’s block diagram.
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Figure 7.3. (Simplified) activity diagram for the Diagnostics Manager block ( B3) of Figure 7.2.

the other from the Temperature Processor block (B1) to requirement R12. Figure 7.3 shows an
activity diagram describing the behavior of the Diagnostics Manager block (B3). For succinctness,
we take the term “block” to represent instances of SysML block types. This choice does not cause
ambiguity in our presentation, as our motivating example does not have multiple instances of the same
block type.

A simple intuition that systems engineers apply for scoping the impact of requirements changes
is to follow the flow of data between the design blocks, starting from the blocks that are directly
traceable to the changed requirements. For example, for Ch-R11, one would start from block B2,
which is directly traced to R11, and mark as potentially-impacted any block that is reachable from
B2 via the inter-block connectors. Using this kind of reasoning, we obtain the following estimated
impact sets for Ch-R11 and Ch-R12, respectively: {B2,B3,B4,B5,B6} and {B1,B2,B3,B4,B5,B6}.
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Estimating the impact sets in the manner described above, i.e., by reachability analysis over the
inter-block connectors, often yields too many false positives, i.e., too many blocks that are not actu-
ally impacted by the change under investigation. For example, we know from a manual inspection
conducted by the systems engineers involved that the actual impact sets for Ch-R11 and Ch-R12 are
{B2} and {B1,B4,B6}, respectively. This means that B3, B4, B5 and B6 in the estimated impact set for
Ch-R11, and B2, B3 and B5 in the estimated impact set for Ch-R12 are false positives.

Some of these false positives can be pruned by considering the block behaviors. To illustrate, con-
sider the activity diagram of Figure 7.3. By following the control and data flows in this diagram, we
can infer that (1) the Motor position input may influence both the Error and Motor drive mode

outputs, and (2) the Over-Temperature input may influence only the Motor drive mode output. We
can therefore conclude that B5 is unlikely to be impacted by Ch-R11 and Ch-R12, and thus remove
B5 from the estimated impact sets above.

Despite the analysis of block behaviors being helpful for pruning the estimated impact sets, such
analysis alone does not adequately address imprecision, still leaving the engineers with a large number
of false positives and hence a large amount of wasted inspection effort. To further improve precision,
we recognize that there is a wealth of textual content in the models, e.g., the labels of blocks, ports and
actions. This raises the possibility that text analysis can be a useful aid for making change analysis
more precise.

To this end, we use insights from our previous work on the propagation of change in natural-
language content [Arora et al., 2015a]. In particular, we have observed that, alongside the change
description, one can further obtain cues from the engineers about how they expect a given change to
propagate. For example, the engineers of CP could provide the following intuition about the impact of
Ch-R12 on the design, before actually inspecting the design: “Temperature lookup tables and voltage
converters need to be adjusted”.

From the description of Ch-R12 and the intuition above given by the engineers, it is reasonable
to expect that a block containing one or more of the keyphrases “temperature range”, “temperature
lookup table”, and “voltage converter” (or similar phrases) should have a higher likelihood of being
impacted by Ch-R12 than a block that contains none of these keyphrases. Indeed, the keyphrase
“temperature lookup table” appears in the action nodes of the activity diagrams that describe the
block behaviors of B1 and B4 (not shown), thus making B1 and B4 more likely to be impacted than
other blocks, say B2 and B3, whose activity diagrams do not contain this keyphrase. In a similar vein,
the keyphrase “voltage converter" mentioned by the engineers will increase the likelihood of impact
on B6 as compared to B2 and B3.

Contributions. We propose an automated approach for identifying the impact of requirement changes
on system design. Our approach takes into account all the intuitions illustrated on the motivating
example described above, utilizing the inter-block connectors, the block behaviors, and the textual
content of the models for increasing the precision of change impact analysis. Our approach has two
steps: For a given change, we first compute an estimated impact set by identifying the design elements
that are reachable from the changed requirement. The basis for this step are the inter-block connectors
and block behaviors. The main novelty of this step is in providing a rigorous adaptation of dependency
graphs – commonly used in program slicing [Tip, 1995] – for reachability analysis over the activity
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diagrams that describe the block behaviors. In the second step, we automatically rank the elements of
the estimated impact set. The ranking is aimed at predicting how likely it is for each element in this
set to be affected by the given change. The basis for the ranking is a quantitative measure computed
using Natural Language Processing (NLP) [Jurafsky and Martin, 2009]. Specifically, the measure
reflects the similarity between the textual content of the elements in the estimated impact set and the
keyphrases in the engineers’ statement about the change. We provide guidelines for deciding about
the cutoff point in the ranked list; this is the point beyond which the elements in the list would not be
worthwhile inspecting because their likelihood of being impacted is low. The novelty of the second
step of our approach is in applying NLP for change analysis between modeling artifacts (as opposed
to textual artifacts).

While the ideas behind our work are general, we ground our approach on SysML. This choice is
motivated primarily by two factors: First, SysML is representing a significant and increasing segment
of the embedded software industry, particularly in safety-critical domains. Given the importance of
change impact analysis for complying with safety standards, we believe that building on SysML is
advantageous as a way to facilitate the integration of our approach into safety certification activities.
Second, SysML provides a built-in mechanism, via requirements diagrams, for connecting design
models to natural-language requirements. This allows us to capitalize as much as possible on the
standard requirements-to-design trace link in SysML.

We implement our approach as a plugin for Enterprise Architect [EA, 2016]. We report on an
industrial case study conducted in collaboration with Delphi Automotive, which is an international
supplier of vehicle technology. The case study includes 16 real-world requirements changes.

Our results indicate that the number of elements engineers need to inspect decreases as we com-
bine different sources of information. In particular, on average, this number is 21.6% of the entire
design (80 / 370 design elements) when we consider only inter-block connectors. This average re-
duces to 9.7% (36 / 370) when we consider both inter-block connectors and block behaviors. The
average further reduces to 4.8% (18 / 370) when we also take into account the natural-language in-
formation in the models and the engineers’ change statements. The precision of our approach when
all the above three sources of information are used is 29.4%. That is, on average, 29.4% of a set
consisting of 18 elements is actually impacted. Given that the approach narrows potentially-impacted
elements to a small set (4.8% of the design), excluding false positives from the results can be done
without substantial effort. Our analysis misses one impacted element for only one out of the total of
16 changes. The recall is 85% for that particular change and 100% for the other 15 changes, giving
an average recall of 99%.

7.2 Approach
Figure 7.4 shows an overview of our change impact analysis approach. In this section, we first de-
scribe the modeling prerequisites for our approach. We then elaborate the steps of our approach,
marked 1 and 2 in Figure 7.4.
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Figure 7.4. Approach overview.

7.2.1 Building SysML Models
Our approach concentrates on models built along three dimensions: (1) requirements, (2) structure
(architecture), and (3) behavior. We use SysML requirements diagrams, illustrated in Figure 7.1,
for expressing requirements. We model the system structure using SysML internal block diagrams,
illustrated in Figure 7.2. Finally, we use SysML activity diagrams, illustrated in Figure 7.3, for
capturing behaviors. Our focus on these three model types is in line with SysML’s core modeling
practices [Friedenthal et al., 2008, Holt and Perry, 2008] and further with the modeling choices made
by Delphi Automotive.

Our change impact analysis approach is agnostic to the particular modeling methodology used to
build the above model types, as long as the methodology provides the traceability information required
by our approach. We characterize the required traceability information via the traceability information
model (TIM) of Figure 7.5. TIMs are a common way of specifying how different development artifacts
(and the elements thereof) should be traced to one another in order to support specific analytical
tasks [Cleland-Huang et al., 2014, Rempel et al., 2014, Mäder et al., 2013].

Our TIM is organized into three packages, representing the three modeling dimensions covered.
This TIM is consistent with both the existing literature on systems engineering modeling [MBSE,
2008], and also the SysML/UML metamodel [Friedenthal et al., 2008, Holt and Perry, 2008]. We note
that providing the information envisaged by our TIM does not require significant additional manual
work. Specifically, all the elements and associations in our TIM, except for the satisfy association
from blocks to requirements, are implied by the natural process of model construction in SysML. As
for the links between requirements and system blocks prescribed by our TIM, establishing these links,
irrespective of whether our change impact analysis technique is used or not, is one of the most basic
best practices in SysML and, in the case of safety-critical applications, an essential prerequisite for
complying with safety standards [Nejati et al., 2012, Briand et al., 2014, Sabetzadeh et al., 2011].

The requirements package in Figure 7.5 defines the requirements types, namely, software and
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Figure 7.5. The traceability information required by our change impact analysis approach.

hardware. Due to lack of space, Figure 7.5 does not show all the possible relations between the
requirements (e.g., decomposition and derivation). Requirements may be connected to blocks via the
satisfy relation. A satisfy link between a block B and a requirement R indicates that the function
implemented by B contributes to the satisfaction of R. Blocks belong to the structure package, and
can be either software or hardware. Each block, irrespective of its type, contains a number of ports.
Ports are connected via the connector relation.

Blocks can be associated with multiple behaviors (use cases). Each behavior is specified using
one activity diagram. The behavior relation links blocks to their corresponding behaviors. Activity
diagrams include nodes and transitions. Nodes can be either objects or actions; transitions may be
of either the object or control kinds. Object transitions represent data flows (data dependencies), and
control transitions represent control flows (control dependencies). Action nodes may be of one of
the following three kinds: (1) assignment statements defined over parameters or local variables, (2)
decision statements (if-statements) defined over parameters or local variables, and (3) call statements
providing the behavior of function calls.

Object nodes can be designated as either parameter or local. Parameters represent the input/output
variables of activity diagrams and may be of type control or data. Local nodes are used to store local
variables. Control input/output variables and call action nodes are used for modeling the sending and
receiving of events between blocks with concurrent behaviors. Finally, the correspond relation in
Figure 7.5 indicates that each block port has some corresponding parameter in some activity diagram
related to that block. Each activity diagram parameter has to correspond to one port of the block
related to that activity diagram.

The diagrams in our motivating example of Section 7.1 conform to the TIM of Figure 7.5. Specifi-
cally, the internal block diagram of Figure 7.2 specifies the satisfy relations between the requirements
of Figure 7.1 and blocks B1 and B2. The activity diagram of Figure 7.3 captures one possible behavior
for block B3. This activity diagram contains two input and two output parameters, all of type data, as
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well as a local variable, Limit. The input/output parameter nodes of the diagram correspond to the
input and output ports of B3.
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Figure 7.6. Example activity diagram with control input/output and a call action node.

There are six action nodes in the activity diagram of Figure 7.3: four assignments and two de-
cisions. The call action node is illustrated in the activity diagram of Figure 7.6. In this figure, the
control input Sensor interrupt models interrupt calls that can be periodic or aperiodic. The call
action node call Position-Correction() produces a control output value, which is in turn used
as a control input by another block.

7.2.2 Computing Potentially Impacted Elements
In this section, we describe the first step of our change impact analysis approach (marked 1 in Fig-
ure 7.4). This step includes two algorithms: (1) computing reachability over inter-block structural
relations, and (2) slicing activity diagrams based on intra-block behavioral relations.

Reachability over inter-block structural relations. We denote the sets of all requirements, blocks,
ports and activity diagrams by R, B, P , and AD, respectively. Let r 2 R, b 2 B, and p 2 P . We write
satisfy(r) ✓ B to denote the set of blocks related to r by a satisfy relation. We denote the input ports
of b by in(b) ✓ P , and its output ports by out(b). We write connect(p) ✓ P to indicate the set of ports
related to p by connector links emanating from p. Finally, we denote by behavior(b) ✓ AD the set
of activity diagrams that specify the behaviors of b.

Figure 7.7 shows the algorithm for computing reachability over inter-block connectors (structural
relations). The algorithm receives as input the set R of requirements modified in response to a change
request. It then computes the initial sets iB of impacted blocks, iP of impacted ports, and iAD of
impacted activity diagrams (lines 1–3). The initial set iB is obtained by following the satisfy links
from the requirements in R. The set of output ports of the impacted blocks in iB are then stored in iP,
and the activity diagrams related to the blocks in iB are stored in the initial set iAD.

After obtaining the initial sets, a transitive closure is computed over these sets (lines 4–9). In
particular, by following the connector links originating from ports in iP, new input ports belonging
to new blocks are identified. The new input ports are added to iP (line 5), and the new blocks are
added to iB (line 6). We then identify the activity diagrams related by the behavior links to the
newly added blocks, and add them to iAD (line 7). We further add the output ports of the newly added
blocks to iP (line 9). Lines 5–8 are executed until we reach a fixed point. The result is an estimated
impact set EIS. Note that for any activity diagram in EIS, we consider all the activity and object nodes
in that diagram to be impacted.
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Algorithm Computeimpact [using only inter-block structural relations].

Input: - A set R of requirements modified in response to a change request.
- Sets B (blocks), P (ports) and AD (activity diagrams), together with
relations satisfy, connect, in, out, and behavior.

Output: - A set EIS of blocks, ports and activity diagrams impacted by R.

1. iB =
t

r2R satisfy(r)
2. iP =

t
b2iB out(b)

3. iAD =
t

b2iB behavior(b)
4. do
5. iP = iP[

t
p2iP connect(p)

6. iB = iB[
t

p2iP in�1(p)
7. iAD = iAD[

t
b2iB behavior(b)

8. iP = iP[
t

b2iB out(b)
9. until iB[ iP[ iAD reaches a fixed point
10. return EIS = iB[ iP[ iAD

Figure 7.7. Algorithm for computing an estimated impact set (EIS) using inter-block structural relations.

Given the example diagrams in Figures 7.1–7.3, if we execute the algorithm of Figure 7.7 for
change requests Ch-R11 and Ch-R12 (i.e., by setting the input set R to {R11} and {R12} respec-
tively), the algorithm will respectively return {B2,B3,B4,B5,B6} and {B1,B2,B3,B4,B5,B6} for iB.
Further, the algorithm returns the set of all the ports of the blocks in iB for iP and the activity and
object nodes in Figure 7.3 for iAD.

Slicing activity diagrams based on intra-block behavioral relations. Our slicing algorithm oper-
ates on data and control flow dependencies among object and action nodes of activity diagrams. We
first provide a formalization of activity diagrams’ syntax and specify the notions of data and control
dependency in our formalization. We then present our slicing technique for activity diagrams. An
activity diagram ad is a tuple hAN,V,ON,G,TC,TOi where:

- AN is a set of action nodes, partitioned into three subsets ANa, ANc, and ANd representing
assignment, call, and decision action nodes, respectively.

- V is a set of variable names, partitioned into V io and V l indicating input/output and local variable
names, respectively.

- ON is a set of object nodes, partitioned into two subsets ON p and ONl indicating parameter and
local object nodes, respectively. The set ON p of parameter nodes is partitioned into ON p,c and ON p,d

indicating call and data object nodes, respectively. The set ON p is also partitioned into ON p,i and
ON p,o denoting input and output object nodes, respectively. We thus have: ON p = ON p,i [ ON p,o =
ON p,c [ ON p,d . Each object node in ONl (resp. ON p) is labeled with a variable name in V l (resp.
V io).

- G is a set of Boolean expressions over the variables in V . These expressions capture transition
guards.

- TC is a set of control transitions defined as follows: TC ✓ ((ON p,c \ ON p,i) ⇥ AN) [ (ANc ⇥
(ON p,c \ ON p,o))[ ((ANa [ ANc)⇥ AN)[ (ANd ⇥ G ⇥ AN). That is, control transitions connect (1)
input control parameter nodes to action nodes, (2) call action nodes to output control parameter nodes,
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Algorithm Computeimpact [using both inter-block structural and intra-block
behavioral relations].

Input: - A set R of requirements modified in response to a change request.
- Sets B (blocks), P (ports), and AD (activity diagrams) together with
the relations satisfy, connect, in, out, and behavior.

Output: - A set EIS of blocks, ports and activity diagrams impacted by R.

1. iB =
t

r2R satisfy(r)
2. iP =

t
b2iB out(b)

3. iAD =
t

b2iB behavior(b)
4. do
5. iP = iP[

t
p2iP connect(p)

6. for b 2
t

p2iP in�1(p) do
7. iB = iB[{b}
8. for ad 2 behavior(b) do
9. iAD0

, iOut = FORWARDSLICE(ad,correspond�1(iP\ in(b)))
10. iAD = iAD [ iAD0

11. iP = iP [ correspond(iOut)
12. until iB[ iP[ iAD reaches a fixed point
13. return EIS = iB[ iP[ iAD

Figure 7.8. Algorithm for computing EIS using both structural and behavioral relations.

(3) assignment and call action nodes to action nodes, and (4) decision action nodes to action nodes.
The transitions between decision action nodes and action nodes (the fourth item) are guarded by
Boolean expressions in G.

- TO is a set of object transitions, defined as follows: TO ✓ (ONl ⇥(ANd [ANa))[(ANa ⇥ONl)[
((ON p,d \ON p,i)⇥ (ANd [ANa))[ (ANa ⇥ (ON p,d \ON p,o)). That is, object transitions connect (1)
local object nodes to decision and assignment action nodes, (2) assignment action nodes to local object
nodes, (3) input data parameter nodes to decision and assignment action nodes, and (4) assignment
action nodes to output data parameter nodes.

In our formalization of activity diagrams, we have excluded pseudo-nodes, namely the initial,
final, fork, join, and merge nodes. Since the activity nodes in our formalization can have multiple
incoming and outgoing transitions, pseudo-nodes do not lead to additional semantics. The semantics
of our activity diagrams is identical to that described in [Bock, 2006]. Action nodes are the basic
building blocks receiving inputs and producing outputs, called tokens. Tokens correspond to anything
that flows through transitions. Tokens can be either data or control. Data tokens transit through object
transitions (TO) and carry (partial) result values. Control tokens, however, transit through control
transitions (TC) and carry null values.

Control tokens are meant to be used as triggers (events). Data tokens are associated with data
parameter nodes and local object nodes, while control tokens are associated with control parameter
nodes. An action node can start its execution only when all its input tokens via its incoming control
or object transitions are provided. Upon its completion, an action node produces appropriate data and
control tokens on its outgoing control and object transitions.
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Algorithm. ForwardSlice.

Input: An activity diagram ad = hAN,V,ON,G,TC,TOi.
A set in of impacted input parameter nodes of ad (slicing criterion).

Output: A set iOut of impacted output parameter nodes of ad.
A set iAD of impacted object and action nodes of ad.

1. iOut = /0; iAD = /0;
2. R = TC [TO
2. for n 2 in\ONp,i do
3. X = {n}
4. do
5. X = X [{n0 | 9q 2 X ·R(q,n0)_9g 2 G ·R(q,g,n0)}
6. until X reaches a fixed point
7. iAD = iAD[X
8. iOut = iOut [ (X \ON p,o)
9. return iN, iOut

Figure 7.9. Algorithm for activity diagram slicing (used by the algorithm of Figure 7.8).

Assignment action nodes receive both control and data tokens as input and generate both data and
control tokens as output (e.g., see Figure 7.3). Values are passed from one assignment action node
to another via local object or parameter nodes. In other words, an assignment action node sends its
output to a local object or a parameter node that is connected to the input of another action node. Call
action nodes receive control tokens as input and produce control tokens as output (e.g., see Figure 7.6).
Function calls are modeled by a call action node generating a token on an output control parameter
node of the caller that is linked to some input control parameter node of the callee. Decision action
nodes receive both control and data tokens as input, but generate only control tokens as output (e.g.,
see Figure 7.3).

Having described our formalization of activity diagrams, we now explain, using this formalization,
how we account for block behaviors in the computation of estimated impact sets. The drawback of
the algorithm presented earlier in Figure 7.7 is that it naively identifies all the output ports of any
impacted block as impacted without regard to the intra-block dependencies between the impacted
input ports and the output ports of that block. To address this drawback, we improve our algorithm as
shown in Figure 7.8.

The modified algorithm of Figure 7.8 forward slices the activity diagrams related to the impacted
blocks, starting from their impacted input ports. Recall from Figure 7.5 that each activity parameter
node corresponds to some input port of a block related to that activity diagram. Our slicing criterion
(i.e., the starting point) is described in terms of impacted input parameter nodes. In Figure 7.8,
we use correspond(n) to denote the block ports related to an activity parameter node n, and use
correspond�1(iP) to denote the set of activity parameter nodes related to the ports in iP.

Our forward static slicing algorithm, shown in Figure 7.9, is similar to existing forward program
slicing approaches where slices are computed over program dependency graphs [Tip, 1995]. In these
graphs, nodes correspond to program statements and are connected by edges representing control and
data dependencies. The object transitions TO in our activity diagrams correspond to program def-
use chains, specifying data dependencies [Alomari et al., 2012]. The control transitions TC capture
control dependencies from decision nodes to sequences of action nodes in the if-then-else branches

141



Chapter 7. Change Impact Analysis between SysML Models of Requirements and Design

as well as control dependencies between call action nodes and input/output control parameter nodes.
The algorithm in Figure 7.9 computes, for any input parameter node n in the slicing criterion set
(in), all the action and object nodes reachable from n via sequences of object and control transitions
(TC [ TO). The algorithm then returns all the reachable nodes (iAD) and all the reachable output
parameter nodes (iOut).

For example, suppose that the slicing algorithm is called with ad set to the activity diagram
of Figure 7.3, and in set to the Over-Temperature input parameter node. The algorithm com-
putes for this activity diagram a forward slice such that: (1) the set iAD contains the decision node
Temperature check, the assignment nodes Motor drive mode = OFF and Motor drive mode=

ON, and the Motor drive mode output parameter node. And, (2) the set iOut contains the Motor

drive mode output parameter node which corresponds to an output port of block B3 with the same
label. Hence, the Motor drive mode output port of B3 is the only output port that is likely to be im-
pacted if a change is made to the Over-Temperature input port of B3. Therefore, using the modified
algorithm of Figure 7.8, we prune B5, its ports, and its related behaviors from the EISs computed for
change requests Ch-R11 and Ch-R12.

An important remark about the computation of EISs in our approach is that this process is meant
to be intertwined with the implementation of a given change request. This intertwining provides a
human feedback loop where the changes made to the models by the engineers at any given step is
used for improving the accuracy of the EIS computed in the next steps. In particular, if the engineers
modify the inter-block or intra-block dependencies in the SysML models during the implementation
of a change request, the EIS needs to be recomputed. If no changes are made to the inter-block or
intra-block paths, e.g., as is the case for Ch-R11 and Ch-R12 in our motivating example, the EIS will
remain unaffected.

7.2.3 Ranking Potentially Impacted Elements
In the second step of our approach (marked 2 in Figure 7.4), we rank the elements of the EIS com-
puted by the previous step. In addition to the EIS, this second step requires one or more natural-
language statements from the engineers. These statements, which we call change statements, include
the change description as well as any intuition that the engineers may have, based on their domain
knowledge, about how a certain requirements change would propagate to the design. We denote the
set of change statements by chStat.

Our ranking of the elements in the EIS is based on matching the natural-language labels of these
elements against the keyphrases that appear in the statements of chStat. The keyphrases are extracted
automatically using a keyphrase extractor. We use a tailored extractor that we developed in our previ-
ous work [Arora et al., 2015b] for supporting requirements tasks. For example, applying the extractor
over the statement “Temperature lookup tables and voltage converters need to be adjusted.” given
by the engineers for Ch-R11 (as discussed in Section 7.1) would identify the following keyphrases:
“temperature lookup table” and “voltage converter”.

With the keyphrases extracted, we use similarity measures to quantify how closely the text labels
of the EIS elements match the keyphrases. Similarity measures can be syntactic or semantic. Syntactic
measures are based on the string content of text segments (sometimes combined with frequencies). An
example syntactic measure is Levenshtein [Manning et al., 2008], which computes a similarity score
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between two strings based on the minimum number of character edits required to transform one string
into the other. Semantic measures are calculated based on relations between the meanings of words.
An example semantic measure is Path [Rus et al., 2013], which computes a similarity score between
two words based on the shortest path between them in an is-a hierarchy (e.g., an “automobile” is-a
“vehicle” and so is a “train”).

Similarity measures, both syntactic and semantic, are typically normalized to a value between
0 and 1, with 0 signifying no similarity and 1 signifying a perfect match. In line with common
practice [Rus et al., 2013], we zero-out similarity scores below a certain threshold, in this chapter
0.05, to minimize noise. In addition to individual similarity measures, we further consider pairwise
combinations of syntactic and semantic measures due to these measures having a complimentary
nature [Nejati et al., 2012]. For the combination, we take the maximum of the two computed scores.
Since there are several similarity measures to choose from, it is important to empirically investigate
which measures are most suited to a specific task. Finding the best measures for our application
context is addressed in our empirical evaluation (see Section 7.3).

Given an individual or a combined similarity measure, we compute for every e 2 EIS the similar-
ity between the text label of e and the keyphrases obtained from chStat. The score we assign to e is
the largest similarity score between e and any of the keyphrases. We then sort the elements of EIS in
descending order of the scores assigned to the elements. The assumption here is that these scores are
correlated with the likelihood of the elements being actually impacted by the change under analysis.
In other words, we take the elements ranked higher in the sorted EIS to be more likely to be impacted.
For example, for Ch-R12, we would obtain high scores for any block, port, activity node, or activ-
ity transition in the EIS that has a high degree of similarity to either “temperature lookup table” or
“voltage converter”.

7.3 Empirical Evaluation
In this section, we investigate through an industrial case study the following Research Questions
(RQs):

RQ1. (Usefulness of Slicing) How much reduction in the size of EIS does our slicing technique bring
about? Does slicing remove any actually-impacted elements (true positives) from the EIS computed
by inter-block structural analysis? With RQ1, we study the usefulness of our behavioral analysis by
comparing the EISs obtained from structural analysis only (i.e., the algorithm of Figure 7.7) versus
those obtained from both structural and behavioral analysis (i.e., the algorithm of Figure 7.8). In
particular, we are interested in the magnitude of reductions in the EIS size that our behavioral analysis
provides without compromising the recall, i.e., without removing actually-impacted elements from
the EIS.

RQ2. (Choice of Similarity Measures) Which similarity measures are best suited to our approach?
There are several syntactic and semantic similarity measures for textual content. The choice of sim-
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ilarity measures used for calculating impact rankings directly affects the quality of our results. With
RQ2, we identify the syntactic and semantic similarity measures that lead to the most accurate results.

RQ3. (Usability) How should engineers use the ranked EIS lists produced by our approach? For our
approach to be useful, engineers need to determine how much of a ranked EIS list is worth inspecting.
In other words, they need to determine a point in the list beyond which the remainder of the list
is unlikely to contain impacted elements. With RQ3, we aim to develop systematic guidelines for
inspecting the ranked EIS lists.

RQ4. (Effectiveness) How effective is our automated approach when compared to a manual analysis
performed by an engineer? Assuming that the guidelines resulting from RQ3 are followed, RQ4 aims
to determine whether our approach can reliably identify the set of actually impacted elements, and at
the same time, save substantial inspection effort.

RQ5. (Scalability) Does our approach have an acceptable execution time? With RQ5, we study
whether the execution time of our approach is practical.

Industrial Subject. Our case study is the cam phaser (CP) system introduced in Section 7.1. A
SysML model for CP had been developed by the Delphi engineers in the Enterprise Architect tool [EA,
2016]. This case study model consists of seven requirements diagrams containing 34 requirements,
nine internal block diagrams with 48 blocks, 19 activity diagrams, and 56 traceability links, all of type
satisfy. In total, the entire CP model contains 370 blocks, ports, and activity and object nodes. We
chose CP as our case study model since it is an industrial system. The SysML model of CP contains
a reasonable number of requirements and traceability links from requirements to blocks.

We were provided with 16 requirements change scenarios for CP. These scenarios are real and
drawn from change requests originating from the customers of CP. In each case, a high-level natural-
language statement was available which described the change as well as how the engineers expected
the change to affect the design. One of these statements, referred to in our approach as a change
statement, was illustrated in the motivating example of Section 7.1 (for Ch-R12). Five additional
examples of change statements are provided in Table 7.1. As seen from the table, the statements
are abstract and do not exactly pinpoint the impact of a change. Nevertheless, the keyphrases in the
statements provide a mechanism for ranking the estimated impact sets computed by our approach.
The actual impact set for each of the 16 change scenarios was further provided by the engineers
involved in the case study.

Implementation. We have implemented our approach as a plugin for the Enterprise Architect model-
ing environment [EA, 2016]. Our implementation enables users to automatically generate EISs using
the algorithms of Section 7.2.2, and compute ranked EISs based on NLP similarity measures as dis-
cussed in Section 7.2.3. Our plugin is available at:

https://bitbucket.org/carora03/cia_addin

Metrics. We use two well-known metrics, precision and recall, in our evaluation. Precision measures
quality (i.e., low number of false positives) and is the ratio of actually-impacted elements found in
an EIS to the size of the EIS. Recall measures coverage (i.e., low number of false negatives) and is
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Table 7.1. Additional examples of change statements

id Change Statements
1 Resolution of the battery voltage shall change from 0.1v to 0.01v. Battery voltage variables should be checked.
2 Input voltage divider of the battery voltage reading shall change from 0.2v to 0.3v. Measurement routines

should be adjusted.
3 The motor control routine shall be executed in the 1ms task instead of the 2ms task. Slow regulator tasks should

be revised.
4 Motor current shall increase from 45A to 50A. Shunt values and resolution of variables measuring the current

should be revised.
5 The current mirror for the motor current measurement shall be replaced by a differential amplifier. Resolution

settings should be revised.

the ratio of the actually-impacted elements found in an EIS to the number of all actually-impacted
elements.

Results. Next, we discuss our RQs:

RQ1. (Usefulness of Behavioral Analysis) To answer this RQ, we compare the EISs generated
by the two algorithms in Figures 7.7 and 7.8, using the CP SysML model and the 16 given change
scenarios. Recall that the algorithm in Figure 7.7 relies on structural inter-block relations only, and the
one in Figure 7.8 uses both structural inter-block and behavioral intra-block relations. We obtained
16 EISs via structural analysis and 16 other EISs via combined structural and behavioral analysis. We
compared the sizes of the EISs, and their recall and precision values. The recall for all the 16 changes
and for both the structural and the combined structural and behavioral approaches were 100%.

Figure 7.10 compares the EIS size and the EIS precision distributions for the 16 changes obtained
by structural analysis and by the combined structural and behavioral analysis. The average EIS size
and EIS precision based on structural analysis are, respectively, 80 and 8%, and based on the com-
bined analysis are 38 and 16%, respectively. That is, after applying the forward slicing used in our
behavioral analysis, on average, the EIS size is reduced by around 42 elements and the precision in-
creases by 8%. We note that the total number of elements in the entire SysML model is 370. Hence,
the EIS size generated by the structural analysis contains 21.6%, and the EIS size obtained by the
combined analysis contains 9.7% of all the design elements. In summary, our results show that apply-
ing the combined structural and behavioral analysis significantly reduces the EIS size and increases
precision without a negative effect on recall.

RQ2. (Choice of Similarity Measures for Ranking) To answer this RQ, we define a notion of
accuracy for the ranked EISs (obtained from the ranking step in Section 7.2.3). We conceptualize ac-
curacy using charts that show the percentage of actually-impacted elements identified (Y -axis) against
the percentage of EIS elements traversed in the ranked list (X-axis). Figure 7.11 shows charts for an
EIS, computed for one of the CP change scenarios, and ranked by two alternative applications of
similarity measures.

A simple way to compare the alternatives would be the following: A similarity measure A (po-
tentially, the combination of a syntactic and a semantic measure) is better than a measure B if the
engineers are able to identify all the impacted elements by inspecting fewer elements when they use
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Figure 7.10. Impact of behavioral analysis: Comparing (a) the size of EISs and (b) the precision of EISs
obtained by structural analysis alone and by combined behavioral and structural analysis.
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Figure 7.11. Two alternative applications of similarity measures for ranking the same EIS.

the list ranked by A than when they use the list ranked by B. This intuition however, cannot distinguish
the two alternatives in Figure 7.11, as both identify all the actually-impacted elements after traversing
61.9% of the elements.

Despite the above, Alternative 1 is better than Alternative 2 because it produces better results
earlier. Specifically, if the engineers choose to stop, say after inspecting 30% of the list, with Al-
ternative 1, they will find 87.7% of the actually-impacted elements. Identifying the same percentage
of actually-impacted elements with Alternative 2 would require the inspection of ⇡ 55% of the list.
To reward earlier identification of impacted elements, we use the Area Under the Curve (AUC) for
evaluating accuracy. AUC can tell apart the two alternatives in Figure 7.11, as the metric is larger for
Alternative 1.

We considered pairwise combinations of three syntactic measures, SoftTFIDF, Monge_Elkan and
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Levenshtein, from the SimPack library [SimPack, 2016] and four semantic measures, LIN, PATH,
RES and JCN, from the SEMILAR library [Rus et al., 2013]. We further considered alternatives
where only a syntactic or only a semantic measure is applied. Specifically, we considered 19, i.e.,
(4+1)⇥ (3+1)�1, alternatives. We ran these alternatives on our 16 changes, and obtained an AUC
for each alternative.

To identify the best alternative for similarity measures, we need to determine which alternatives
consistently result in the highest accuracy (i.e., AUC) when applied to the change scenarios. This
analysis is often done using a regression tree [Breiman et al., 1984], which is a hierarchical parti-
tioning of a set of data points aimed at minimizing, with respect to a given metric, variations across
partitions. In our context, each data point is a similarity measure alternative applied to an individual
change scenario. We therefore have a total of 19 * 16 = 304 data points. The metric of interest here is
AUC.

In Figure 7.12, we show the regression tree for our case study. In each node of the tree, we
show the count (number of AUC values), the mean and standard deviation for the AUC values, the
similarity measures generating the AUC values in that partition, and, for every non-leaf node, the
difference between the mean AUC values of its right and left children. At each level, the factor (either
syntactic measure or semantic measure) that best explains the variation in AUC values is selected. The
partitioning at the first level of the tree signifies the most influential factor explaining the variation
observed across the data points. In Figure 7.12, the most influential factor is the choice of syntactic
measure.

The nodes on the right are of particular interest, as they signify the alternatives that result in higher
AUC values on average than the alternatives of the left node. We iteratively partition the right-most
nodes until the difference between the mean AUC values in the resulting branches is insignificant.
We deem differences below 0.01 to be insignificant. At the first level, NONE and SoftTFIDF perform
better than Monge_Elkan and Levenshtein. Depending on whether NONE appears in a syntactic or
a semantic measure node, it indicates the stand-alone application of measures of the other type. For
example, the NONE appearing alongside SoftTFIDF at the first level indicates stand-alone applica-
tion of semantic measures. At the second level, the syntactic alternatives are further split suggesting
that SoftTFIDF produces better results on average than NONE (i.e., stand-alone application of any
semantic measure). The right-most node at the last level of the tree contains the most robust alterna-
tives that yield the highest AUC values. The reason why SoftTFIDF performs best is because it filters
noise: the measure assigns a zero (or very low) score to phrase pairs when their constituent tokens are
not closely matching (lower than a certain threshold), or when the matching tokens are very common
(e.g., stopwords).

In summary, and as suggested by the right-most leaf node in the tree of Figure 7.12, SoftTFIDF
(syntactic measure) combined with either RES or JCN (semantic measures) would be the most suit-
able alternative. We use these two alternatives to answer RQ3 and RQ4.

RQ3. (Usability) To answer RQ3, we aim to find the best trade-off between the number of elements
to inspect and the number of impacted elements found. We define a notion of cutoff indicating the
percentage of a ranked list which is worthwhile inspecting, and hence, should be recommended to
engineers. To define a cutoff, we use delta charts, as illustrated in Figure 7.13 for one of the change
scenarios in CP. In the chart, at any position i on the X-axis, the Y -axis is the difference between the
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Figure 7.13. Ranked similarity scores and delta chart for an example change scenario from CP. The delta chart
is used for computing the cutoff (r).

similarity scores at positions i and i � 1. For easier understanding, in Figure 7.13, we further show
the ranked similarity scores on the top of the delta chart. These similarity scores were computed
using SoftTFIDF (syntactic measure) and JCN (semantic measure). As described in Section 7.2.3,
the label of each EIS element e is compared against all keyphrases in the change statement using both
SoftTFIDF and JCN. The maximum value obtained from all these comparisons is assigned to e as its
similarity score. The chart on the top of Figure 7.13 plots the EIS elements in descending order of the
similarity scores.

For the cutoff, we pick the point on the X-axis after which there are no significant peaks in the delta
chart. Intuitively, the cutoff is the point beyond which the similarity scores can no longer adequately
tell apart the elements in terms of being impacted. What is a significant peak is relative. Based on our
experiments, a peak is significant if it is larger than one-tenth of the highest peak in the delta chart,
denoted hmax in Figure 7.13. The only exception is the peak caused by zeroing out similarity scores
smaller than 0.05 (see Section 7.2.3). This peak, if it exists, is always the last one and hence denoted
hlast. Since hlast is artificial in the sense that it is caused by zeroing out negligible similarity values,
we ignore hlast when deciding about the cutoff.

148



7.3. Empirical Evaluation

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

After NLP

Similarity Measure Combincations

Pr
ec

is
io

n(
%

)

●

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0
10

20
30

40
50

60

After NLP

Similarity Measure Combincations

EI
S 

Si
ze

 (#
)

(b) Precision

Pr
ec

is
io

n 
(%

)
0

10
20

30
40

50

(a) Size

EI
S 

Si
ze

 (#
)

0
10

20
30

40
50

Soft.RES

60
7060

Soft.JCN Soft.RES Soft.JCN

Figure 7.14. Size and precision of EISs that result from the application of the guidelines of RQ3 to the EISs
computed by the algorithm of Figure 7.8.

More precisely, we define the cutoff r to be at the end of the right slope of the last significant peak
(excluding hlast). In the example of Figure 7.13, hmax = 0.26. Hence, r is at the end of the last peak
with a height > hmax/10 = 0.026. We recommend that engineers should inspect the EIS elements up
to the cutoff and no further. In the example of Figure 7.13, the cutoff is at 49% of the ranked list.
We note that the cutoff can be computed automatically and without user involvement. Therefore, the
delta charts and their interpretation are transparent to the users of our approach.

In summary, for each change scenario, we automatically recommend, through the analysis of the
corresponding delta chart as explained above, the fraction of the ranked EIS that the engineers should
manually inspect for identifying actually-impacted elements.

RQ4. (Effectiveness) To answer RQ4, we report the results of applying the best similarity measure
alternatives from RQ2 for ranking the EISs computed by the algorithm of Figure 7.8 (i.e., combined
structural and behavioral analysis), and then considering only the ranked EIS fractions recommended
by the guidelines of RQ3. Note that in this RQ, by EIS we mean the fraction obtained after applying
the guidelines of RQ3. In Figure 7.14, we show for our 16 changes the size and precision distributions
of the recommended EISs. These distributions are provided separately for the best similarity alterna-
tives from RQ2, i.e., SoftTFIDF combined with RES (denoted Soft.RES) and SoftTFIDF combined
with JCN (denoted Soft.JCN).

The average EIS size is 30.2 for Soft.RES and 18.5 for Soft.JCN. The average precision for
Soft.RES and Soft.JCN are 19.5% and 29.4% respectively. As for recall, Soft.RES yields a recall of
100% for all 16 changes, while Soft.JCN misses one element for one change. That is, using Soft.JCN,
we have a recall of 100% for 15 changes, and a recall of 85% for one change (i.e., an average recall
of 99%). The results clearly show that Soft.JCN yields better overall accuracy.

In summary, after applying our best NLP-based similarity measure, Soft.JCN, the average preci-
sion of our analysis increases to 29.4% compared to 16% obtained by the combined behavioral and
structural analysis (discussed in RQ1). The average recall reduces to 99% compared to 100% ob-
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tained by the combined analysis. Finally, using NLP, the average number of elements to be inspected
by the engineers reduces to 18.5 (just 4.8% of the entire design model) compared to 38 (9.7% of the
design model) before applying NLP.

RQ5. (Execution Time) The execution time for both steps of our approach, i.e., computing the EISs
and ranking the EISs, was in the order of seconds for the 16 changes. Given the small execution times,
we expect our approach to scale to larger systems. Execution times were measured on a laptop with a
2.3 GHz CPU and 8GB of memory.

Validity considerations and threats. Internal and external validity are the most relevant dimensions
of validity for our case study. With regard to internal validity, an important consideration is that
the change statements must represent the understanding of the engineers about a change before the
engineers have determined the impact of that change; otherwise, the engineers may learn from the
analysis they have performed and provide more precise change statements than when they have not
examined the design yet. If this occurs, the accuracy results would not faithfully represent what one
can achieve in a non-evaluation setting. In our case study, the change statements were pre-existing
and written at the time that the change requests had been filed, i.e., before the impact of the changes
had been examined. The engineers in our case study were therefore required only to inspect the design
and provide the actual impact sets (gold standard). Consequently, learning is not a significant threat to
internal validity. With regard to external validity, while our case study is industrial and we anticipate
it to be representative of many embedded systems, particularly in safety-critical domains, additional
case studies will be essential in the future.

7.4 Related Work
There is a wide range of techniques for change impact analysis covering various development artifacts,
including requirements, design and code [Lehnert, 2011]. Our work is concerned with analyzing
how changes made to requirements will impact system design, in a context where the requirements
are expressed using natural language, and the design using models. This situation is common and
particularly relevant for embedded systems development. Below, we compare with the existing work
that is most pertinent to the context in which we studied change impact analysis in this chapter.

Any change impact analysis technique for requirements and design artifacts has to account for
the dependencies between requirements and design elements to properly propagate changes. Aryani
et al. [Aryani et al., 2010] use logical relationships between domain concepts described in terms
of weighted dependency graphs. van den Berg [van den Berg, 2006] augments traceability links
with dependency type information between software artifacts. Goknil et al. [Goknil et al., 2014a]
extend the approach of van den Berg [van den Berg, 2006] with formal semantics and apply it for
impact analysis over requirements. When the requirements are expressed as models, more specialized
dependency types may be defined. For example, Cleland-Huang et al. [Cleland-Huang et al., 2005a]
use soft goal dependencies to analyze how changes in functional requirements propagate to non-
functional requirements. Tang et. al. [Tang et al., 2007] capture dependencies using a special model,
called an architectural rationale and linkage model, and use this model alongside probabilistic expert
estimates for change impact analysis over system architectures.

Our work differs from the above in that we do not require dependency types, logical relationships
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between domain elements, architectural rationale, or probabilistic data for inferring or estimating
impact likelihoods. Instead, we utilize the textual content of the design models and simple natural-
language statements from engineers for impact likelihood prediction. The high expressiveness and
implicit semantics of textual data make it difficult to come up with a crisp classification of dependen-
cies or to obtain precise logical relations between the requirements and design. This is why we use
(quantitative) similarity measures for predicting impact likelihoods.

A number of approaches rely on pre-defined rules for change propagation. Briand et al. [Briand
et al., 2003] propose a taxonomy of model changes based on the UML metamodel, and use this
taxonomy in order to specify rules for identifying which parts of a UML model need to be updated
after each change so that the model will remain consistent with the UML metamodel. Müller and
Rumpe [Müller and Rumpe, 2014] propose a domain-specific language for the specification of impact
rules. These rules capture what kind of changes to models lead to what kind of impact. The main
goal of these rule-based approaches is to maintain the consistency of models after changes; these
approaches are not targeted at analyzing the impact of requirements changes. Our work has a different
focus, as it aims at analyzing the impact of requirements changes on design. We do not use pre-defined
impact rules in our approach.

Furthermore, there are approaches that rely on historical information obtained from software
repositories for change propagation. For example, Wong and Cai [Wong and Cai, 2009] combine
logical relationships between UML class diagrams and historical information obtained from software
repositories to predict the scope of the impact of a given change. This approach relies on the existence
of complete and consistent version histories. Such versioning is typically used for keeping track of
changes in implementation-level artifacts, e.g., code. Our approach does not rely on historical data
and can be used effectively in situations where no historical data is available, notably in early stages
of development, or where detailed versioning of models is not practiced.

Control flow analysis techniques (e.g., software method call dependencies) have been used before
to automatically identify traceability links [Dit et al., 2013], and further to facilitate code-level change
impact analysis [Li et al., 2013]. Kuang et al. [Kuang et al., 2012] demonstrate that combining control
flow and data dependencies improves automated retrieval of traceability links from requirements to
code. Our results in this chapter lead to a similar conclusion in the context of model-based devel-
opment, that is, leveraging both inter-block data flow dependencies and intra-block control and data
flow dependencies improves the accuracy of change impact analysis.

In our previous work [Arora et al., 2015b], we already used similarity measures as change impact
predictors. Nevertheless, this earlier work was focused on inter-requirement change impact analy-
sis, i.e., identifying the impact of requirements changes on other requirements, rather than on the
design. This earlier work focused exclusively on natural-language content. In our current work,
we generalize our previous work to a model-based development setting, where we exploit not only
the natural-language content of the development artifacts but also the structure and semantics of the
design models.
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7.5 Conclusion
In this chapter, we presented an approach to automatically identify the impact of requirements changes
on system design. Our approach has two main steps: First, for a given change, we obtain a set of
estimated impacted model elements by computing reachability over inter-block data flow and intra-
block control and data flow dependencies. Next, we rank the resulting set of elements according to
a quantitative measure obtained using NLP techniques. The measure reflects the similarity between
the textual content of the elements in the estimated impact set and the keyphrases in the engineers’
statements about the change.

Our evaluation on an industrial system shows that the accuracy of our approach consistently im-
proves when we consider both inter-block and intra-block dependencies rather than only the inter-
block ones, and the textual content of the diagrams in addition to only the elements’ dependencies.
Although not included in this chapter, we note that eliminating the analysis in the first step of our
approach and only applying the NLP technique in the second step reduces the accuracy considerably.
This is because many elements in parts of the design unreachable for a given change have some de-
gree of textual similarity with the change statements. In the future, we intend to make the change
statements more structured, e.g., by introducing a controlled natural language. This can make change
impact analysis more targeted and deal with more complex situations.
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Conclusion

This chapter summarizes the research contributions of this dissertation and discusses potential areas
for future work.

8.1 Summary
In this dissertation, we proposed several solutions for automating NL requirements analysis tasks
using NLP. Our solutions build around requirements written as IEEE-830 style “shall” statements.
Such requirements, in our experience, are very common in industry, including at our collaborating
industry partners. We anticipate our solutions to be largely generalizable to other NL requirements
formats, although a thorough investigation remains necessary. We have empirically evaluated all our
solutions using real case studies and in collaboration with industry partners. Where possible, we
have further employed interview surveys to assess the perceptions of practitioners about our proposed
solutions.

In short, this dissertation made the following contributions:

Chapter 3 described an approach for checking conformance to requirements templates and a tool,
named RETA, that we have built in support of the approach. We have evaluated our approach on four
industrial case studies from different domains. As a part of our evaluation, we assessed and compared
several text chunking solutions for their effectiveness in terms of accuracy for template conformance
checking. Our results indicate that text chunking, along with syntactic parsing (when required), form
an effective solution for conformance checking. The results further suggest that text chunking has
little sensitivity to the presence or absence of a requirements glossary. This characteristic makes our
solution applicable in early stages of requirements writing where a glossary may be unavailable.

Chapter 4 presented an approach for extracting candidate glossary terms and grouping these terms
into clusters based on relatedness. The approach is supported by a tool named REGICE. One of
the main advantages of our approach is that it provides guidelines on how to tune clustering for
a given requirements document; this is important for a successful application of our approach in
industry. We have applied our approach to three industrial case studies, in the context of which we
have evaluated the accuracy and usefulness of the approach. An important finding from our evaluation
is that, over requirements documents, our glossary term extraction technique is significantly more
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accurate than generic term extraction tools. Furthermore, the feedback we collected from subject
matter experts in our case studies suggests that our clustering technique offers practical benefits.
Particularly, the experts found the resulting clusters helpful for better handling of some important
tasks involved in the construction of requirements glossaries, including writing definitions for glossary
terms and identifying the related terms.

Chapter 5 presented an automated approach for extracting domain models from requirements
statements. The main technical contribution of our approach is in extending the existing set of model
extraction rules, addressing major incompleteness issues in existing extractors. We have evaluated
our approach over four industrial requirements documents, and have conducted a user interview sur-
vey with an expert from one of these case studies. Our evaluation contributes insights into the as yet
limited knowledge available about the effectiveness of model extraction in industrial settings. An im-
portant observation from our evaluation is that a sizable fraction of automatically-extracted relations,
despite being meaningful, are not relevant to the domain model. This observation can open avenues
for future investigations on automated model extraction.

Chapter 6 presented our approach for analyzing the impact of changes in requirements documents,
and our tool, named NARCIA, which we have developed to support this task. The key characteristic
of our approach is that it exploits the phrasal structure of requirements sentences for analysis. Our
evaluation indicates that our approach is accurate and practical over industrial requirements docu-
ments. An important hypothesis underlying our approach is that the large majority of requirements
dependencies manifest themselves within the constituent phrases of requirements sentences. Across
the change scenarios in our case studies, we could detect 99% (105 / 106) of the impacted require-
ments through phrasal analysis. Nevertheless, certain dependencies, as exemplified in our evaluation
of Chapter 6, are inherently tacit and detectable only through explicit guidance.

Chapter 7 presented our approach for automatically identifying the impact of requirements changes
on system designs expressed in Systems Modeling Language (SysML). For a given change, our ap-
proach computes a list of potentially impacted model elements by considering the reachability of
elements using inter-block data flow, and intra-block control and data flow dependencies. Further,
we rank the potentially impacted model elements based on the textual content of the model elements.
Our evaluation on an industrial system shows that the accuracy of our approach consistently improves
when we consider both inter-block and intra-block dependencies rather than only the inter-block ones,
and the textual content of the diagrams in addition to only the elements’ dependencies. Our approach
further provides guidelines for traversing only a small fraction of the ranked list to detect the impacted
model elements.

8.2 Future Work
In this dissertation, we focused on analyzing requirements written as “shall” statements. In the future,
it is important to tailor our solutions to other NL requirements formats, such as use case descriptions.
Furthermore, our solutions consider requirements statements one at a time when analyzing them.
Other potentially-useful information in requirements documents, e.g., the sectioning and the sequence
of the requirements statements, is not currently utilized. Considering such information might bring
about further improvements, particularly for domain model extraction and change impact analysis.
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Further user studies also remain necessary for better assessing the usefulness and applicability of our
solutions.

An interesting technical improvement that we would like to consider across all our solutions in
the future is the ability to dynamically adjust automatically-computed results in response to human
feedback. With the current advancements in machine learning, it is foreseeable that a human feedback
loop can be built into our solutions, with a machine learner learning from the experts’ decisions in
each step of an inspection and using the learned knowledge for improving the automation results. For
example, while reviewing the clusters of glossary terms produced by our approach in Chapter 4, a
machine learning algorithm can learn the characteristics of clusters that are rejected or significantly
modified by the experts, in order to avoid producing clusters with similar characteristics.

Finally, we plan to explore the possibility of combining all the solutions in this dissertation into a
commercial tool suite. Such a tool suite can, for example, be deployed as an add-in for commonly-
used requirements management platforms such as IBM DOORS [DOORS, 2016]. Our industry part-
ner, SES, has expressed interest in helping us pursue the commercialization of this dissertation’s
outcomes.
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