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General introduction 
 

Following the discovery of ferroelectric perovskites[1], a tremendous amount of work was 

performed to understand the nucleation and growth of ferroelectric domains[2–4]. One key 

parameter lies within the kinetics of the domain walls: when does a domain wall start moving? 

How fast does it move? Answers to these questions were obtained with experimental setups 

using liquid electrodes to apply an external electric field to the sample while taking optical 

images. They led to a comprehensive picture of the velocity of the domain walls under an 

electric field[5].  

The interest for domain walls was renewed later when it was realized that the irreversible 

displacement of ferroelectric-ferroelastic domain walls increases the piezoelectric coefficients of 

ceramics, even at low driving electric fields. For example, in barium titanate, up to 35% of the 

total longitudinal piezoelectric coefficient d33 comes from domain wall motion[6]. Since this 

motion depends on the microstructure of the ceramic, the influence of the crystal structure, the 

crystallographic orientation and the domain size were investigated. Several strategies were then 

developed to engineer the ferroelectric domain structure in order to enhance the piezoelectric 

response of ceramics[7]. This field has been coined “domain engineering”. 

The examples mentioned above utilize the properties of the ferroelectric domains solely and 

domain walls appear only as interfaces that can influence the domain structure. However, the 

discovery of superconductivity localized at the ferroelastic domain walls of tungsten oxide 

(WO3‐x) has opened a new path of research[8]. For the first time, domain walls were not simply 

seen as interfaces between domains but as distinct elements with their own functional 

properties. Almost ten years later, conduction at ferroelectric domain walls was reported in the 

insulator bismuth ferrite (BiFeO3)
[9] and led to the research of conductive domain walls in other 

materials[10–16]. Conduction under illumination[13] and free-electron gas[14] localized at domain 

walls were part of the intriguing discoveries. In the meantime, experimental evidences of 

polarity at ferroelastic domain walls in non-polar materials were given[17–19] and the idea to 

switch the polarization of the domain walls germinated[20]. 

The overall frame of applications arising from this research has been thought as “domain 

walls nanoelectronics”[21] or “domain boundary engineering”[22] where the domain walls carry 

information and act as memory devices. Three characteristics guarantee the interest of 

ferroelectric and ferroelastic domain walls for device applications: they are thin[21], their position 

can be controlled[23,24] and they exhibit functional properties[21,22]. 
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However, some fundamental questions remain: what are the mechanisms behind the 

conduction of ferroelectric domain walls? In particular, what is the role of defects? What are the 

characteristics of the polarization in the ferroelastic domain walls? Is it possible to control this 

polarization? 

Answering these questions requires studying the electrical properties of domain walls and 

therefore experimental techniques sensitive to structural changes, defects, polarization and also 

techniques with a high spatial resolution. This thesis presents measurements performed on the 

bulk with dielectric spectroscopy and resonant piezoelectric spectroscopy, at a microscopic scale 

with Raman micro-spectroscopy, and at a sub-micrometric scale with low energy electron 

microscopy. Two materials have been investigated: the ferroelectric lithium niobate, known to 

present conductive domain walls under illumination[13,25], and the ferroelastic calcium titanate, 

where polar domain walls have been characterized[18,19].  

This manuscript is organized as follows. In Chapter I, the basics of the physics of ferroic 

domains and domain walls are presented, with a focus on the functional properties of domain 

walls. The main methods used in this thesis are detailed in Chapter II. In Chapter III, we 

investigate the influence of ferroelectric domain walls on the dielectric response of single 

crystals of lithium niobate and report resonance features related to the presence of defect-

decorated domain walls. The evolution of the Raman modes at domain walls for a large series of 

magnesium-doped lithium niobate samples sheds more light on the interaction between polar 

defects and domain walls. In Chapter IV, we analyze contrast formation in low energy electron 

microscopy applied to domains and domain walls in lithium niobate. In particular, we show that 

the intensity profile at domain walls provides experimental evidence for a local, stray electric 

field. Chapter V is dedicated to the investigations of the electric response of the polarization in 

the domain walls of calcium titanate by resonant piezoelectric spectroscopy and low energy 

electron microscopy and gives a way toward the usability of polar domain walls.  
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1. Ferroic materials and domain structures 

 

Ferroic materials display a spontaneous symmetry breaking and posses an order parameter, 

such as spontaneous strain, spontaneous polarization, spontaneous magnetization or 

ferrotoroidic moment, that can point in two or more directions and be switched between them 

by application of an external field[21]. Here, we define the ferroic materials through their phase 

transitions and present the notions of ferroelectric hysteresis and surface screening. 

1.1. Ferroic phase transitions 

We consider distortive phase transitions between two different crystal structures, by 

opposition to reconstructive phase transitions. In the latter, chemical bonds between the atoms 

are broken, as for example in the transition between the structures of Fig. 1.1(a) and (b). In 

contrast, the distortive transition between the structures in Fig. 1.1(c) and (d) requires only a 

distortion of the chemical bonds without breaking them. 

 

Figure 1.1| Models of possible distortions of crystal structure. Reproduced from [26]. 

However, it is clear that between the structures of Fig. 1.1(c) and (d) the crystal symmetry 

changes. In order to characterize the relationship between the two structures, we consider their 



1. Ferroic materials and domain structures 5 

 

  

point groups, G and F. We define a high-symmetry phase (G) and a low-symmetry phase (F), such 

that F is a proper subgroup of G (F ⊂ G). This leads to the definition of a ferroic phase transition: 

if the point group of the low-symmetry phase (F) is a proper subgroup of the point group of the 

high-symmetry phase (G), the transition from F to G is classified as ferroic[27]. 

During the transition, a new physical quantity appears in the ferroic phase, characteristic of 

the symmetry change, called the order parameter. It is common to classify the order parameters 

according to their behavior under space and time reversal, as shown in Fig. 1.2. This leads to the 

definition of four order parameters (and the corresponding ferroic phases): spontaneous strain 

(ferroelastic), spontaneous polarization (ferroelectric), spontaneous magnetization 

(ferromagnetic) and ferrotoroidic moment (ferrotoroidic)[28]. 

 

Figure 1.2| Ferroic orders under the parity operations of space and time. Reproduced from [28]. 

It is important to notice that the order parameter can have different orientations in the 

ferroic phase. When applying to the ferroic phase the symmetry operations of the high-

symmetry phase, the operations that are in common with those of the ferroic phase leave the 

orientation unchanged while the others induce a change of orientation of the order parameter. 

Since all the possible orientations are energetically equivalent, during the phase transition, the 

ferroic phase spontaneously split in regions of different orientation of the order parameter. The 

different regions of the crystals where the orientation of the order parameter is uniform are 

called ferroic domains. They are related by the symmetry operations of the high-symmetry 

phase which are not present in the ferroic phase. 
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1.2. Ferroelastics: spontaneous strain 

When the temperature of a crystal is changed, directionally dependent expansion and 

contraction of different magnitudes occur. The relation between the induced strain and the 

change in temperature is given by a symmetric second-rank tensor called the thermal expansion 

tensor α[29]. The constraints on the non-zero components of the tensors and on the relations 

between them are the same for crystallographic classes belonging to the same family. For 

example, in all tetragonal systems αxx = αyy and αzz are two independent non-zero components 

while off-diagonal coefficients are null. 

A transition is called ferroelastic if it results in a low-symmetry phase in which the thermal 

expansion tensor changes the number of its independent components with respect to those in 

the high-symmetry phase. Given that this tensor is characteristic of a crystal family, the phase 

transition is said to be ferroelastic if the high-symmetry phase and the low-symmetry phase 

belong to different crystal families[26].  

During a ferroelastic phase transition, the shape and size of the unit cell change. This change 

can be expressed as a spontaneous strain exerted on the high-symmetry phase. The 

spontaneous strain is therefore an order parameter of a ferroelastic material. 

1.3. Ferroelectrics: spontaneous polarization 

When the temperature T of a crystal is changed, the charge density at the surface can 

change: this is the pyroelectric effect. The components of the pyroelectric coefficent    are: 

    
   

  
                           

where     is the electric polarization. The pyroelectric coefficient is non-zero only in polar 

crystals[29].  

A phase transition is ferroelectric if it results in a lower symmetry phase for which the 

pyroelectric coefficient acquires new components which where zero, by symmetry, in the high-

symmetry phase[26]. 

The spontaneous polarization is the order parameter of a ferroelectric material. 

1.4. Ferroelectric hysteresis loop 

A ferroelectric material is usually composed of randomly distributed ferroelectric domains 

where the spontaneous polarization is uniform. Under application of a strong enough electric 
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field, the direction of the polarization changes. This process, called poling, reorients the 

polarization of the domains in directions allowed by the crystal symmetry and that lie as close as 

possible to the direction of the electric field. The polarization reversal by an electric field is the 

signature of a ferroelectric material and appears as a hysteresis loop[30]. 

A schematic of a hysteresis loop is shown in Fig. 1.3. We start from a random structure of 

domains with an average polarization     equal to zero (point A). An electric field     is applied to 

the ferroelectric material. Usually the field is applied along one of the polar axes. As the value of 

the field is increased, above the coercive field value Ec, domains with an unfavorable direction of 

polarization switch, leading to an abrupt increase of the polarization. Once the domains are all 

aligned, a monodomain state is obtained, and the ferroelectric behaves as a normal linear 

dielectric (points B). When the field is decreased to zero, some domains switch but the overall 

polarization is non null. This is the remanent polarization Pr. A further increase of the field in the 

negative direction leads to another monodomain state (point C). The spontaneous polarization 

Ps can be estimated by taking the intercept of the polarization axis with the extrapolated linear 

segment in the monodomain state, as shown in Fig. 1.3. 

 

 

Figure 1.3| Ferroelectric hysteresis loop. Squares with blue and white regions represent schematically the 

repartition of domains with two different polarization orientations. The arrows indicate the direction of 

the polarization. The symbols are explained in the text. Adapted from [30]. 
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1.5. Screening of ferroelectric surfaces 

As shown schematically in Fig. 1.4, in a ferroelectric material, the polar discontinuity at the 

bulk-terminated surface gives rise to a net fixed surface charge defined by   
         , where   

     is the 

spontaneous polarization and     is the surface normal. These charges induce an electric field, 

called the depolarization field Ed, opposite to the spontaneous polarization. As in the case of a 

two-plate capacitor, the depolarization field has an electrostatic energy proportional to the 

square of the surface charge. A monodomain state is therefore unfavorable due to the high 

depolarization field whereas if two domains of opposite polarizations are adjacent, the 

depolarization fields compensate each other and reduce the total electrostatic energy. In 

Fig. 1.4, we label “Pup” a domain that has a polarization pointing upward at the surface and 

“Pdown” a domain that has a polarization in the opposite direction. 

 

Figure 1.4| Schematic of a ferroelectric domain structure in thin film. Polarization (black arrows) gives 

rise to a surface charge depicted by the plus and minus symbols. The depolarization field (Ed) induced by 

the charges is drawn with a blue arrow. 

The depolarization field can also be reduced by electric field arising from charges. Such 

screening is (i) external if the charges arise from adsorbates and (ii) internal if the screening 

charges arise from defects/doping.  

In the case of free surfaces, external screening can be performed by the adsorption of 

molecules, such as water. Kalinin et al. have quantified the amount of screening charges ςs with 

respect to the polarization charges ςpol
[31]. In Fig. 1.5, three cases are distinguished: the surface is 

(a) unscreened ςs = 0, (b) partially screened ςpol > - ςs, and (c) completely screened ςpol = - ςs. The 

unscreened case is energetically unfavourable. The partially screened is very often observed in 

air[32,33] and may occur in ultra-high vacuum as well[34,35].  
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Figure 1.5| Screening mechanisms. Schematics of polarization charges and screening charges for (a) 

unscreened, (b) partially screened and (c) completely screened surfaces. In this schematic, polarization 

charges and screening charges are depicted by the plus and minus symbols, respectively. 

Internal screening is the charge compensation arising from defects in the material: vacancies 

and dopants can lead to an excess of free charges in the sample that are available to screen the 

polarization charges[36]. In order to be efficient, internal screening requires the migration of the 

internal charges toward the surface. Therefore, it is more efficient when annealing the sample 

since temperature increases the mobility of free charges and also of ions in the material[37].   
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2. Ferroelectric and ferroelastic domain walls 

 

The interfaces between ferroic domains are called domain walls. Here, we present criteria to 

classify ferroelectric domain walls based on the profile of their order parameter or their 

inclination with respect to the ferroelectric axis. Then, we explain how ferroelectric and 

ferroelastic domain walls are observed by optical techniques. We also give estimations of their 

thickness. Finally, we present two intriguing and specific properties of domain walls: conductivity 

in ferroelectric domain walls and polarity in ferroelastic domain walls. 

While these results are more general, most of the experiments described here have been 

performed on perovskites structures, which have a chemical formula ABO3 where A and B are 

cations. 

2.1. Classical approach: domain walls as interfaces 

2.1.1. Types of ferroelectric domain walls 

In ferroelectric materials, due to the piezoelectric coupling between the ferroelectric 

polarization and the strain, rotating the polarization away from the symmetry-allowed direction 

is energetically costly. Thus a 180°-ferroelectric domain wall between a Pdown and a Pup domain 

can be considered as Ising-like, i.e. with no-in plane polarization associated with polarization 

rotation, as shown in Fig. 1.6(a)[38]. 

 

Figure 1.6| Different types of ferroelectric domain walls. (a) Ising type, (b) Néel type and (c) Bloch type. 

Arrows represent the polarization. θN and θB are the maximum rotation angles of the polarization in the 

plane and perpendicular to it, respectively. Adapted from [39]. 
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The typical profile of the polarization across a domain wall is derived from Landau theory as 

a hyperbolic tangent: 

             
  

 
                          

where P is the amplitude of the polarization, P0 the equilibrium value of the polarization far from 

the domain wall, xn the spatial coordinate perpendicular to the domain wall and 2W the domain 

wall thickness[40]. 

Magnetic domain walls present other types of profiles. Indeed, in magnetism, the spin is 

quantized and cannot change his magnitude across a domain wall. Instead, it rotates within the 

plane of the domain wall (Néel walls) or perpendicular to it (Bloch walls)[41], as shown in 

Fig. 1.6(b) and 1.6(c), respectively.  

By analogy with magnetism, Bloch and Néel profiles have also been discussed for 

ferroelectrics. Recent Density Functional Theory (DFT) calculations have shown that the 

structure of 180°-ferroelectric domain walls can have a mixed Bloch-Néel-Ising character. For 

example, minimization of the energy of a 180° domain walls in lithium niobate by DFT leads to 

the maximum polarization components (Pn, Pt, Pz)max=(0.56, 1.99, 62.4) μC/cm2 where Pn and Pt 

are the polarizations normal and transverse to the domain wall, respectively. Pn and Pt lead to 

Néel (Fig. 1.6(b)) and Bloch-like (Fig. 1.6(c)) rotations by maximum rotation angles of θN = 0.55° 

and θB = 1.52°[39], respectively. 

2.1.2. Neutral and charged ferroelectric domain walls 

A criterion to differentiate ferroelectric domain walls is their net charge. We illustrate this 

criterion on the case of 180°-domain walls.  

An ideal 180°-domain wall is perfectly aligned with the direction of the ferroelectric axis and 

is therefore neutral (Fig. 1.7(a)). Fig. 1.7(b) shows the case where a head-to-head configuration 

of the polarization leads to a maximum positive charge at domain wall. A tail-to-tail 

configuration, as shown in Fig. 1.7(c) leads to a maximum negative charge at domain wall. 

Fig. 1.7(d) illustrates one case of a domain wall slightly inclined with respect to the ferroelectric 

axis, which has a partial positive charge. 
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Figure 1.7| Charges at domain walls (side view). (a) Neutral, (b) charged head-to-head, (c) charged tail-

to-tail and (d) partially charged, inclined domain wall. Polarization is depicted by black arrows and domain 

walls are indicated by black lines. 

Domain walls can be classified by the angle between the polarization directions of the 

neighboring domains. We discussed above the case of 180° domain walls, but other orientations 

are possible, such as 109° and 71° domain walls in bismuth ferrite[42]. 

2.1.3. Mechanical compatibility at ferroelastic domain walls 

The orientation of the ferroelastic domain walls is usually determined by the requirement of 

mechanical compatibility between the two adjacent domains. Indeed, a randomly oriented 

domain wall can induce a large increase of the elastic strain in the material. This is energetically 

unfavorable. 

Let the spontaneous strain in the adjacent domains A and B, be ε(A) and ε(B). Then, the 

orientation of the domain wall is such that the transformation of any geometrical figure, which 

lies in the plane of the domain wall, due to deformations ε(A) and ε(B), should be identical. This 

domain wall is said to be stress-free, since no additional elastic strain is involved[26]. 

Mathematically, the condition is satisfied if any vector         in the domain wall fulfills the 

condition: 

                                                

where εij(A) - εij(B) is a symmetric tensor with up to six independent components, xi and xj are 

the components of the vector        [43]. Sapriel solved Eq. 1.3 by considering the spontaneous strain 
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tensors in all the possible orientation states of the domains, and obtained the complete set of 

equations of the permissible domain walls for all ferroelastic transitions[43]. 

Some of the equations of the permissible domain walls are derived from symmetry 

considerations only and have fixed orientations. This is the case for every mirror plane W which 

transform domain A into domain B. The precise orientation of the other domain walls, labeled 

W’, depends on the relative values of the coefficients of the spontaneous strain tensor[43]. 

2.1.4. Optical identification of domain walls 

We will show in section 2.1.5 that ferroelectric and ferroelastic domain walls are of 

nanometer scale thickness. This makes challenging the localization of domain walls in a sample. 

At first sight, it requires experimental techniques with nanometric spatial resolutions such as 

atomic force microscopy[44,45] or transmission electron microscopy[18,46]. However, optical 

techniques, which have a spatial resolution restricted by the optical diffraction limit (about 

0.5 μm at best), can still be used to localize domain walls. 

Ferroelastic domains are visible with polarized light microscopy because the refractive index 

ellipsoid depends on the macroscopic spontaneous strain. Therefore, ferroelastic domain walls 

are easily localized and usually appear as small lines in an optical image[47]. However, non-

ferroelastic ferroelectric 180°-domains are not visible with an optical microscope because the 

ellipsoid of the refractive indices is centrosymmetric. Therefore, other optical techniques, such 

as second harmonic generation (SHG) and Raman spectroscopy, are used. 

SHG is observed in non-centrosymmetric materials and depends on the second-order 

electrical susceptibility. Due to the nonlinearity of the second-order electrical susceptibility, the 

incident light of frequency w generates a nonlinear polarization wave in the material that 

oscillates at twice the frequency (2w). This nonlinear polarization wave radiates light at 2w[48]. 

These photons form the SHG signal. At domain walls, the SHG signal is enhanced and is used to 

perform 3D profiles[49–51], as shown in Fig. 1.8. This could be the signature of local strain that 

could enhance the second-order electrical susceptibility at domain walls[51]. Since the spatial 

resolution of SGH is restricted by the optical diffraction limit, the signal observed at domain 

walls is always mixed with the signals of the surrounding domains. 
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Figure 1.8| SHG on domain walls. Three dimensional visualization of inverted ferroelectric domains inside 

LiNbO3 crystal by Čerenkov-type second harmonic generation laser scanning microscopy. Domain walls 

appear in green. Domains have a too low intensity to appear on this image. Reproduced from [51]. 

Raman micro-spectroscopy is also used to visualize 180°-domain walls. The mechanisms at 

the origin of the contrast are complex and will be discussed in details in Chap. III. They involve a 

combination of effects resulting from the defect structure and the electric (strain) field in the 

vicinity of the domain walls. Here, we only mention that maps of the intensity of the Raman 

modes across ferroelectric domains clearly reveal domain walls (Fig. 1.9). They appear as thin 

black lines separating domains of identical intensity. 

 

Figure 1.9| Raman micro-spectroscopy on domain walls. Map of the intensity of E(TO8) Raman mode. 

Black lines are domain walls and grey contrast domains. Reproduced from [52]. No scale was given in the 

original figure but the domains are about 2 μm wide. 

If an external electric field is applied to the crystal, the 180° domains can also be observed 

thanks to the electro-optic effect. The electro-optic effect produces a change of the refractive 

indexes nij in response to an electric field Ek: 

  
 

   
                                     

with rijk the tensor of the electro-optic coefficients. 
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In the case of an uniaxial ferroelectric, under an external electric field applied along the 

polarization axis, the refractive index n0 changes to n0 + Δn0 in one domain and to n0 - Δn0 in the 

other, as sketched in Fig. 1.10(a). Under an optical microscope, this difference leads to a 

detectable light scattering, as shown in Fig. 1.10(b) where small hexagonal domains are 

visible[53,54]. At domain walls, the index changes by 2Δn0. Domain walls appear then as thin dark 

or white lines at the border of the hexagonal domains. If the sample contains polar defects, such 

as in LiNbO3, the resulting internal electric field leads to a weak electro-effect and allows seeing 

domain walls without applying an external electric field[55].  

 

Figure 1.10| Electro-optic imaging. (a) Schematic showing the principle of electro-optic imaging at a 180° 

domain wall. The refractive index increases when the applied electric field     is antiparallel to the 

spontaneous polarisation and decreases when it is parallel. (b) Polarized light microscopy image taken in 

LiNbO3 under an external electric field of 21.6 kV/mm. Adapted from [53,54]. 

2.1.5. Domain wall thickness 

The thickness of domain walls influences the physical properties of ferroelectric and 

ferroelastic materials. For example, it has been shown that the domain wall thickness affects the 

dielectric and piezoelectric responses of ferroelectric thin films[56]. It is also known that the width 

of 180° stripe domains in thin films is proportional to the square root of the crystal thickness[57,58] 

with a constant of proportionality expressed as a function of the domain walls thickness[59]. Thus, 

a measurement of the domain wall thickness is important. Most of the studies so far have relied 

on X-ray diffraction (XRD) or transmission electron microscopy (TEM). 
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Figure 1.11| Diffraction on ferroelastic domains. (a) General principle of an X-Ray diffraction rocking 

curve. In adjacent ferroelastic domains, atomic planes are not parallel. The crystal is rotated by an angle ω 

about an axis perpendicular to the plane of incidence in order to bring each atomic plane into Bragg’s 

condition. (b) A plot of integrated intensity as a function of angle ω, showing two peaks corresponding to 

domains in a single crystal of LaAlO3. Adapted from [60]. 

In a ferroelastic material, the diffracting planes are not aligned along the same directions in 

adjacent domains. For example, in Fig. 1.11(a), there is an angle of 0.25° between the crystal 

planes of two adjacent domains. If the sample is aligned such that the first domain is in Bragg 

condition, a rotation of ω = 0.25° about an axis perpendicular to the plane of incidence brings 

the second domain into Bragg condition. A plot of diffracted intensity as a function of ω shows 

two peaks corresponding to each domain (Fig. 1.11(b)).  

In a ferroelastic sample with a high density of domains, a weak additional intensity is 

observed between the two domain-related peaks, as shown in Fig. 1.12. This intensity arises 

from the scattering of X-rays by atoms located in domain walls. The displacement of the atoms 

in domain walls is modeled by a hyperbolic tangent and the corresponding scattered intensity as 

a function of the incident angle is calculated for different thickness of the domain wall. A direct 
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comparison between the results of the calculation and the experimental profiles gives an 

estimation the thickness of the domain walls[61–64]. 

 

Figure 1.12| X-Rays diffraction on domain walls: low intensity part of the rocking curve in lead phosphate 

(Pb3(PO4)2). The weak additional intensity (indicated by the blue arrow) between the two peaks is due to 

domain walls. Reproduced from [61]. 

TEM provides a direct measure of the thickness of domain walls. In this technique, an 

electron beam of electrons is transmitted through an ultra-thin sample, interacting with the 

sample as it passes through it. For a crystal, electrons are elastically scattered and an aperture in 

the back focal plane is used to image only electrons following the desired Bragg’s conditions. The 

domain wall appears as a region of width a few interatomic spacing with a slightly different 

contrast due to the small misorientation of the crystallographic planes in the domain wall[65]. If 

the domain wall thickness is less than the spatial resolution of the instrument, only a step is 

observed at the interface between domains. Recent experiments using high resolution TEM have 

revealed the domain wall profile to be in fair agreement with the accepted tangent hyperbolic 

profile[18,46].  

The domain wall widths determined by XRD and TEM on several ferroelastic materials 

(CaTiO3, PbTiO3, Pb(Zr,Ti)O3, Pb3(PO4)2, YBa2Cu3O7-δ) lie in the range 0.2 to 5 nm[18,46,61–66]. 

The thickness of non-ferroelastic ferroelectric 180°-domain walls has also been determined 

with high-resolution TEM and found to be of the order of one unit-cell only[66]. 
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2.2. Renewed interest: domain wall engineering 

The discovery of superconductivity localized at the ferroelastic domain walls of tungsten 

oxide has opened a new path of research[8]. For the first time, domain walls were seen as distinct 

elements with their own functional properties. The overall framework of applications arising 

from this research has been thought as “domain walls nanoelectronics”[21] or “domain boundary 

engineering”[22]. Within this vision, domain walls carry information and act as memory devices. 

In particular, Catalan et al. have proposed to reproduce the electronic logic circuits with domain 

walls[21]. A first success was obtained with a ferroelectric domain-wall diode, which allows a 

single direction of motion for all domain walls irrespective of their polarity, thanks to a thickness 

gradient in the sample[67]. 

2.2.1. Conductive domain walls in ferroelectrics 

Higher conductivity at ferroelectric domain walls was reported in several ferroelectrics 

(Table 1.1). Investigations were performed with piezoelectric force microscopy (PFM) to identify 

the domain structure and with conductive-atomic force microscopy (c-AFM) to map the current.  

Material DW Model Form Ref. 

BiFeO3 109° 
180° 

Polarization discontinuity + reduction of 
the band gap 

Thin film [9] 

BiFeO3 71° Oxygen vacancies Thin film [11] 

La-doped 
BiFeO3 

109° Oxygen vacancies + reduction of the band 
gap 

Thin film [12] 

Pb(Zr,Ti)O3 180° Oxygen vacancies Thin film [10] 

HoMnO3    - Polarization discontinuity + hole carriers Single crystal [16] 

ErMnO3    - Polarization discontinuity + hole carriers Single crystal [15] 

BaTiO3 90° Quasi-two-dimensional electron gas Single crystal [14] 

LiNbO3 180° Inclined domain walls + UV illumination Single crystal [13] 
Table 1.1| Materials where conductive ferroelectric domain walls (DW) have been reported and the 

physical model used to explain the conduction. In HoMnO3 and ErMnO3, domain walls are curved and 

have all possible orientations with respect to the polar axis. 

Higher conductivity with respect to domains is observed at domain walls in BiFeO3 but 

explain in the literature by two distinct mechanisms that may happen at the domain wall: a local 

reduction of the band gap[9,12] or the presence of charge defects near the domain wall[11,12]. 

Current-voltage curves acquired at 109° and 180° domain walls reveal a Schottky-like 

behavior, as shown in Fig. 1.13, indicating that electrons have to overcome an energy barrier at 

the tip-sample interface[9]. In this case, this energy is reached for negative voltages below - 1.5 V. 



2. Ferroelectric and ferroelastic domain walls 19 

 

  

DFT calculations based on structural changes experimentally observed in TEM reveals a small 

change in the normal component of the polarization across the domain wall. Such a polarization 

discontinuity will be screened by free charges that will accumulate at the domain wall. This 

should enhance the conductivity. Other calculations also reveal a reduction of the electronic 

band gap in the domain wall that could lower the energy barrier at the tip-sample interface and 

facilitate the conduction[42]. 

 

Figure 1.13| Conduction at domain walls in BiFeO3. (a) (Top) Out-of-plane PFM image of a written 180° 

domain in BiFeO3 and (lower) c-AFM current maps for -1, -1.5 and -2 V sample bias. Domain walls appear 

as faint yellow lines. (b) I-V curves taken both on the domain wall (black) and inside the domain (red) 

reveal Schottky-like behavior in the domain wall. Reproduced from [9]. 

Current-voltage curves acquired at 71° domain walls also reveal a Schottky-like behavior[11]. 

If the voltage applied is below 3.5 V, the evolution of the current at the domain wall with 

temperature shows an Arrhenius behavior, current is increasing with temperature like in a 

semiconductor. The thermal activation energy deduced (0.7 eV) is too large for single electrons 

trap at oxygen vacancies but consistent with those at clusters of oxygen vacancies. Indeed, it 

was shown by first-principle calculations that oxygen vacancy clusters have an energy level 

located 0.6 eV below the conduction band while the energy level of single oxygen vacancies is 

located 0.11 eV below the conduction band (in SrTiO3)
[68]. At higher voltages, both domain walls 

and domains conduct. The low voltage regime is characterized by thermally activated electrons 

from oxygen vacancies states; the large voltage regime is regulated by the Schottky barrier 

between the tip and the sample. The barrier is lower at domain walls, probably due to an 

accumulation of oxygen vacancies. 
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Conductivity arising from free electrons originating from oxygen vacancies is also reported at 

109° domain walls in La-doped BiFeO3
[12]. The main experimental result is that the current at 

domain walls increases with increasing concentrations of oxygen vacancies. 

Domain wall conductivity is observed along 180° domain walls in Pb(Zr,Ti)O3 and proposed 

to be possible thanks to trap states, such as oxygen vacancies, within domain walls[10]. 

Higher conductivity with respect to domains is also reported in single crystals of HoMnO3
[16] 

and ErMnO3
[15]. In these materials, the spontaneous polarization is not the primary order-

parameter and the domain walls are curved, taking all possible orientations with respect to the 

polar axis[69,70]. Figure 1.14(a) is a PFM image of the domains in ErMnO3: the arrows indicate the 

orientation of the spontaneous polarization in the plane. Figure 1.14(b) shows the c-AFM image 

of the same area. Negatively-charged tail-to-tail domain walls show a higher conductivity than 

the domains, whereas at positively-charged head-to-head domain walls, the conductivity is 

suppressed. Since both materials are p-type semiconductors[71], the negative charges at tail-to-

tail domain walls are screened by readily available mobile holes carriers. Furthermore, DFT 

calculations show that the polarization discontinuity at domain walls shifts the Fermi level into 

the valence band, where the hole mobility is high[15]. An increase of the conductivity at domain 

walls is then observed due to an increase of the density and mobility of hole carriers. At head-to-

head domain walls, the hole density is lower than in the domains. Because free negative charges 

are scarce in p-type semiconductors, screening can only be achieved by cation vacancies that do 

not contribute to the conductivity[15]. The conductivity is then suppressed. 

 

Figure 1.14| Conduction at domain walls in ErMnO3. (a) PFM image obtained In the yz-plane of an 

ErMnO3 crystal. The inset shows a c-AFM image acquired at the same position. (b) c-AFM image of the 

same area with polarization directions in-plane as-indicated. Domain walls appear as lines of different 

brightness. Reproduced from [15]. 
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A metallic-type giant domain wall conductivity (109 times higher than in the domains) is 

observed at 90° head-to-head domain walls in BaTiO3. It is interpreted within the framework of a 

quasi-two-dimensional electron gas[14]. 

Higher conductivity is reported at 180° domain walls in single crystals of LiNbO3 but it 

requires illumination with UV light[13]. This measurement was performed with small diodes that 

shined light on the sample during c-AFM imaging. The current is observed only under above-

band gap illumination. It is higher when domain walls are slightly inclined with respect to the 

ferroelectric axis (angle < 0.25°). This inclination is controlled via doping with different 

concentrations of magnesium and all inclined domain walls are positively charged in this case. 

These positive carriers should increase the conductivity. UV-light seems to provide additional 

charges by creation of electron-hole pairs. 

2.2.2. Polar domain walls in ferroelastics 

By symmetry, all ferroelastic domain walls are polar, which will be briefly explained in the 

following. We consider a domain wall separating two ferroelastic domains constituting a so-

called twin. The symmetry of the domain wall, which is the same as the symmetry of the twin, is 

the group of symmetry operations which leave the twin invariant. This is illustrated in Fig. 1.15, 

where the two ferroelastic domains are pictured by trapezoidal shapes reflecting the orientation 

of their spontaneous strain, and separated by a domain wall as a vertical plane. In this 

illustration, it is quite clear that the twin (and therefore the domain wall), is not invariant by 

inversion symmetry, even though both domains are centrosymmetric. This, in fact, is very 

general and it has been shown that all compatible ferroelastic domain walls are polar, and 

therefore can carry an electric polarization[72]. 

 

Figure 1.15| Symmetry of a ferroelastic domain wall. Schematic of a twin structure: domains are pictured 

by trapezoidal shapes separated by a vertical mirror plane (the domain wall). 
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In order to give a microscopic description of the polarity in ferroelastic domain walls, we 

take the example of the perovskite structure. In the ideal cubic-cell represented in Fig. 1.16(a), 

atom A sits at cube corner positions (0, 0, 0), atom B at body-center positions (1/2, 1/2, 1/2) and 

oxygen atoms at face centre positions (1/2, 1/2, 0). The structure is centrosymmetric. 

In a ferroelectric material, within the displacive model[73], the central atom B and the O 

atoms undergo a displacement along the polar axis, as shown in Fig. 1.16(b). This induces an off-

centering of atom B with respect to the oxygen octahedron. The structure is not longer 

centrosymmetric and induces polarization.  

Some ferroelastic materials present a cooperative rotation of the oxygen octahedra, as 

shown in Fig. 1.16(c). 

  

Figure 1.16| Typical perovskite structures with chemical formula ABO3. (a) is centrosymmetric. (b) is 

characterized by an off-centering of the B atom within the oxygen octahedron. (c) is characterized by a 

rotation of the oxygen octahedron. 

In a perovskite, the rotation of the octahedra and the off-centering of the central atoms 

compete. Experiments tend to reveal an exclusion principle[47]: if an octahedron rotates, it does 

not show a ferroelectric displacement of its central atom. This is the case in SrTiO3 and CaTiO3. 

When the rotation of the octahedron is prevented, a ferroelectric displacement becomes 

possible. This is the case in BaTiO3 and PbTiO3. The case of BiFeO3, where ferroelectricity coexists 

with rotations of the octahedra is a noticeable exception[74]. 

We consider the example of adjacent ferroelastic domains characterized by rotations of the 

octahedra in opposite directions. At the intersection between the domains, i.e. at a domain wall, 

one way to obtain a stress-free interface is to suppress the octahedron rotation. Off-centering 

movements are then able to occur in domain walls, inducing polarization. 
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This expectation is confirmed by computer simulations on CaTiO3
[75]. Goncalves-Ferreira et 

al. simulated a sample with two ferroelastic domain walls. Fig. 1.17(a) shows the oxygen 

octahedra rotation across the domain walls. It follows the hyperbolic tangent profile expected 

from Landau theory, with a domain wall thickness of 80 Å (consistent with the experimental 

value[18]). At the centre of the domain walls, indicated by vertical lines, the rotation is 

suppressed. Fig. 1.17(b) shows the off-centering of the central Ti atom with respect to the 

oxygen octahedra, as a function of the angle of rotation Q (for sake of simplicity, only the 

displacement along one direction is shown). Far from the domain wall, the rotation is large and 

the off-center displacement is null. At the domain wall, the angle of rotation is null and the Ti 

atom is slightly displaced: this implies a polar domain wall. 

 

Figure 1.17| Competition between rotation of the octahedra and off-centering of Ti atoms. (a) 

Octahedra rotation Q as a function of the position perpendicular to the domain wall. The dashed line is a 

fit to the expected hyperbolic tangent profile. The vertical lines indicate the position of domain walls. (b) 

Off-centering of Ti atoms along the x-coordinates within their corresponding O octahedron as a function 

of the octahedral rotation Q. Reproduced from [75]. 

The first experimental evidence of polar domain walls in CaTiO3 was obtained by aberration-

corrected TEM[18]. Fig. 1.18(a) schematizes the domain wall geometry as imaged and Fig. 1.18(b) 

shows the TEM image obtained with a spatial resolution of 0.8 Å. Ca atoms appear as black 

features separated by Ti atoms. An angle of 181.2° (or equivalently 178.8°) is clearly identified 

between the two domains. 
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Figure 1.18| TEM experiment on polar domain walls in CaTiO3. (a) Schematic of a single domain wall, 

indicated as standing dark grey plane, with the chosen (x, y, z) reference system for the definitions of the 

measured displacements. (b) Amplitude of the reconstructed exit wave. The CaTiO3 crystal is imaged along 

the [001] zone axis orientation, the (110) domain wall is indicated by the horizontal white line. 

Reproduced from [18]. 

In order to determine the atomic positions, statistical parameter estimation theory was 

used. The interatomic distances between neighboring Ca-Ca and Ti-Ti columns were then 

calculated. It was found that the Ca-Ca distance is constant while the Ti-Ti distance changes near 

domain walls. Therefore, the analysis was focused on the off-centering of the Ti atomic position 

with respect to the neighboring four Ca atoms. Since these displacements were largely random 

and small, they were averaged in planes perpendicular to the domain wall. Next, the results in 

the planes above and below the domain wall were also averaged. The resulting displacements 

are shown in Fig. 1.19(a). Perpendicular to the domain wall, Ti atoms are shifted by 3.1 pm in the 

second closest layers pointing toward the twin wall (Fig. 1.19(b)). A larger displacement of 6.1 

pm is measured parallel to the domain wall in the layer adjacent (Fig. 1.19(c)). It corresponds to 

a polarization of 0.04-0.2 C/m2, comparable with for example the value of bulk spontaneous 

polarization in the prototypical ferroelectric barium titanate, at room temperature. 
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Figure 1.19| Atomic displacements at domain walls. (a) Phase of the reconstructed exit wave. Mean 

displacements of the Ti atomic columns from the center of the four neighboring Ca atomic columns are 

indicated by green arrows. The blue horizontal line shows the position of the domain wall. (b,c) 

Displacements of Ti atomic columns in the x- and y-directions averaged along and in mirror operation with 

respect to the domain wall together with their 90% confidence intervals. Reproduced from [18]. 

A second experimental evidence of polar domain walls has been provided by SHG[19]. Indeed, 

SHG occurs only if the second-order electrical susceptibility is not null, which is possible only in a 

non-centrosymmetric (and therefore polar) structure. Two single crystals with different 

orientations were investigated. They presented a high density of domains, as illustrated in 

Fig. 1.20(a). Figure 1.20(b) shows a SHG image obtained by 1-μm scanning step in the plane 

parallel to the surface. Domain walls appear as bright lines while domains remain black, as 

expected for non-polar structures. The fact that domain walls are visible is, in itself, an evidence 

that they are polar. Several scans performed at different depths in the sample are used to obtain 

the 3D image of the domain wall through the sample.  

 

 

Figure 1.20| SHG signal from domain walls. (a) Polarization microscope image taken in the crossed Nicol 

configuration. A zoom-in picture of the enclosed square region is shown in the inset. (b) SHG section 

image. The observed area is the enclosed square in (a). Here X and Y axes with capital letters indicate the 

scanning axes of the SHG microscope. Reproduced from [19]. 
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The direction of the polarization in the domain walls was determined with polar diagrams. 

The principle is to record the SHG intensity at different positions along the domain wall for 

different polarization directions of the incident light; the polarization of the second harmonic 

signal is kept parallel to it. As an example, Fig. 1.21(a) shows the signal of an area containing 

three domain walls (labeled “TB1”, “TB2” and “TB3”) and Fig. 1.21(b) the corresponding polar 

diagrams mapping: each circle represents a 360° rotation of the polarization. The domain walls 

exhibit a double-wing diagram with a twofold symmetry. The variations of intensity are fitted in 

order to determine the direction of the polar axis with respect to the domain wall plane. 

 

Figure 1.21| Orientation of the polarization in domain walls. (a) SHG image of an area that contains three 

domain walls, labeled TB1, TB2 and TB3. The corresponding polar diagrams mapping is shown in (b). 

Reproduced from [19]. 

In the domain walls labeled “TB1” and “TB2”, the direction of the polar axis is inclined 

toward the normal of the domain wall plane. On the other hand, the polar axis is located in the 

domain wall plane, when adjacent domain walls are far, such as in “TB3”. This seems to indicate 

an interaction between domain walls, even separated by several micrometers. The result of the 

analysis is in contradiction with theoretical expectations where the polarity always lies in the 

domain wall plane[75]. 

Polar domain walls have also been reported in the non-polar material strontium titanate 

(SrTiO3)
[76]. However, in SrTiO3 the domain wall polarity is thermally induced: on cooling, polarity 

appears at 80 K while the ferroelastic transition point is at 150 K[76]. Furthermore, SrTiO3 is an 

incipient ferroelectric, meaning that chemical[77] or isotopic substitution[78], as well as the 

application of stress[79] can easily induce ferroelectricity in the material. The mechanisms at the 

origin of the polarity in domain walls are therefore likely to be more complex than in CaTiO3.  
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3. Summary 

 

We have shown in this chapter that ferroic materials spontaneously organize into domains, 

each with their own direction of the order parameter. The interfaces between adjacent ferroic 

domains are called domain walls. These domain walls, especially ferroelastic and ferroelectric, 

turn out to be interesting objects because of their unique physical properties that do not exist in 

the adjacent domains. In particular, conductivity at ferroelectric domain walls and polarity at 

ferroelastic domain walls have attracted a lot of attention[21,22]. The models proposed for the 

conduction at ferroelectric domain walls in BiFeO3, Pb(Zr,Ti)O3, ErMnO3, HoMnO3, BaTiO3 and 

LiNbO3 are either based on (i) intrinsic properties[9,14–16], such as a local modification of the band-

gap or an accumulation of free charges due to a polarization discontinuity, or (ii) extrinsic 

properties[10–13], such as the interaction with defects. The same distinction is true for polar 

ferroelastic domain walls which are expected by symmetry in all ferroelastics but have been 

observed experimentally only in CaTiO3 and SrTiO3.  

One of the main challenges in accessing a deeper understanding of domain walls is the 

availability of appropriate techniques to investigate the local characteristics of such domain 

walls. 

The thesis stands at the crossroads between the development and use of appropriate 

techniques to study domain walls; and the research for fundamental understanding of domain 

walls properties. 

In term of fundamental understanding, we are interested in the role of defects and free 

charges at ferroelectric domain walls. We also aim at a better understanding of the photo-

conductivity observed at domain walls in LiNbO3. Finally it is our objective to investigate the 

characteristics of the polarization in ferroelastic domain walls and to find ways to control this 

polarization, in view of devices applications. 

Recognizing the difficulty in analyzing domain walls and aiming at extending the available 

breadth of techniques, we have laid emphasis on using techniques which have little or no 

previous applications on domain walls: we used Raman micro-spectroscopy to study the 

structural modifications near domain walls, dielectric spectroscopy to investigate the influence 

of defects, low energy electron microscopy and resonant piezoelectric spectroscopy to probe 

the electric response of domain walls. 
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II. Methods 
 

The investigation of domain walls was performed with Raman micro-spectroscopy, low 

energy electron microscopy, dielectric spectroscopy and resonant piezoelectric spectroscopy. 

We review in this chapter the main characteristics of these techniques. 

Dielectric spectroscopy and Raman micro-spectroscopy are complementary techniques used 

to probe the interaction between defects and ferroelectric non-ferroelastic domain walls. The 

former is a macroscopic, bulk measurement, while the latter gives a microscopic picture with a 

resolution limited by the optical diffraction limit. 

Resonant piezoelectric spectroscopy and low energy electron microscopy are used to 

investigate the electric response in ferroelastic domain walls. The former probes the 

piezoelectric response of domain walls, while the latter can identify polarization surface charges 

near domain walls and study the influence of electron injection. 
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1. Raman spectroscopy 

1.1. Harmonic theory of crystal vibrations 

We consider a crystal with N atoms in its unit cell. The dynamic of the system is described by 

the small displacements     of the atoms. The position of an atom at a given time is given by the 

sum of three vectors describing (1) the position of the unit-cell with respect to the one at the 

origin, (2) the position of the atom in the unit-cell and (3) the displacement of the atom with 

respect to its equilibrium position. The displacement of the jth atom in the mth unit-cell in the 

direction α with respect to its equilibrium position is written uα(mj). 

To determine the equation of motions of the atoms, the potential energy φ of the crystal is 

expanded in Taylor series around the equilibrium point[80]: 

                                       

with  

                 

   

                        

         
  

       
 

 

                        

and  

                                                            

         

 

                
   

                 
 

 

                          

φ0 is the potential energy at equilibrium; it is constant and not of interest if we consider 

vibrations: we set it to zero. φ1 is a linear combination of the small displacements and is null at 

equilibrium. In the harmonic approximation, terms of order higher than two are neglected and 

the equations of motion can be written: 

            
   

       
                                                   

      

 

where Mj is the mass of the atom j and         is the acceleration of the jth atom in the mth unit-

cell in the direction α. Therefore, the coefficient                 is the force applied on the jth 
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atom in the mth unit-cell along the direction α when the (j’)th atom in the (m’)th unit-cell is 

displaced by a unit distance in the direction α’. 

Because of the periodicity of the crystal, the coefficient                 does not depend 

on the absolute position of the unit cell but only on its relative position with respect to the other 

unit-cells. Therefore, we are looking for solutions periodic in time and space, i.e. in the form of 

harmonic waves: 

                                                            

where       is independent of the unit cell considered and         is the equilibrium position of 

the jth atom in the mth unit-cell. The vector     is the wave vector. It is normal to the wave front 

and its magnitude is equal to 2π/λ where λ is the wavelength of the wave. 

Substitution of this ansatz in the equations of motion yields 3N eigenvalues and 3N 

eigenvectors, corresponding to atomic vibrations in (x, y, z). The eigenvalues appear as the 

squares of the frequencies of the vibrations and the eigenvectors give the relative displacement 

of the atoms associated with each vibrational mode[81]. 

These vibrations are called normal modes, to which are associated normal coordinates Q. For 

example, among these solutions, for      , three have a frequency equal to zero and 

correspond to the translational movements of the full crystal. 

1.2. LO-TO splitting 

In ionic crystals, vibrations may carry a dipole moment. Such dipole moment change 

generates an electromagnetic field. Therefore, in order to determine the frequencies of these 

vibrations, it is necessary to solve the coupled equations of motion of the lattice and the 

electromagnetic field. One manifestation of this coupling is a frequency difference between the 

longitudinal and transverse optical modes near the Brillouin zone center, called LO-TO 

splitting[82]. 

Let us consider the case of a crystal of cubic symmetry. A vibration propagating in the y-

direction can involve motion of atoms along the y, x or z -directions. We label the corresponding 

modes LOy(y), TOx(y) and TOz(y), respectively. All these modes vibrate at the same frequency 

because of the crystal isotropy. However, if the motion of the atoms induces a dipole moment 

along the y-direction for LOy(y) and along the x or z-directions for TOx(y) and TOz(y), the 
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dipole‐dipole coupling is different for the LO mode and the two TO modes (Fig. 2.1). Therefore 

the LO mode and the two TO modes oscillate at two different frequencies. 

 

Figure 2.1| LO-TO splitting. (a) A longitudinal and (b) a transverse mode with their associated dipoles 

along the y and x-axis, respectively. The vibration propagates in the y-direction. The length of the blue 

arrows is proportional to the amplitude of the dipole moment. Adapted from [82]. 

1.3. Interaction of light and vibrational modes 

An electromagnetic radiation of frequency νr can couple with any atomic movement 

involving a variation in the electric polarization of the crystal. In particular, movements of the 

atoms can give rise to absorption in the infrared if the movements modify the dipole moment    

of the crystal. In other words, a vibration of normal coordinates Q can absorb infrared radiation 

if the derivative 
  

  
 is not null.  

If the frequency νr of the electromagnetic wave is much higher than the frequency νv of the 

vibration in the crystal, the phenomenon of scattering, related to the electric susceptibility χ of 

the crystal, dominates with respect to the absorption. Susceptibility indicates the degree of 

polarization     of a dielectric material in response to an applied electric field    . This property is 

written as:  

                                       

where χ is a symmetric second rank tensor and ε0 is the vacuum permittivity. 

The oscillating electric field is written: 
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with t the time. 

If this vibration of normal coordinates Q and frequency νv involves a variation of an element 

of the susceptibility tensor, we can write at first order: 

             
    

  
 

 

                                       

with        the electric susceptibility at equilibrium. 

The scattered electric field (          
                    ) is proportional to    . It is expressed as a linear 

combination of a term without change in frequency, called Rayleigh scattering (Fig. 2.2(a)), and a 

product of two sinusoidal terms of different frequencies    and   : 

                      
               

 

 
 
    

  
 

 

       

                                                          

The last two terms correspond to inelastic scattering, or Raman scattering, at frequencies 

      and        They are called Stokes (Fig. 2.2(b)) and anti-Stokes (Fig. 2.2(c)), respectively. 

Raman scattering is therefore possible only if the derivative  
    

  
 

 
 is not null, i.e. only for 

oscillations leading to a variation in the susceptibility of the crystal. 

 

Figure 2.2| Rayleigh and Raman scattering. (a) Rayleigh scattering, (b) Stokes scattering (scattered 

photon has less energy than the incident photon) and (c) anti-Stokes Raman scattering (scattered photon 

has more energy than the incident photon). hνr is the energy of the incoming photon. hvv is the energy of 

the vibration. 

A Raman scattering process obeys momentum conservation: the momentum of the 

scattered light (or scattered photons) is equal to the momentum of the incident light plus the 

momentum of the vibration (or phonon). Since the momentum of the photons is very small 
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compared to dimensions of the unit-cell in the reciprocal space, only small wave-vectors (close 

to the Brillouin-zone center) phonons are seen in first-order Raman scattering[83]. 

1.4. Selection rules 

The symmetric second-rank Raman tensor for a given mode described by a normal 

coordinate Q is defined as: 

    
    

  
 

 

                         

Assuming        and        to be the unit vectors of the polarization of the incident and analyzed 

light, respectively, the Raman scattering intensity is proportional to: 

                       
                         

Whether a Raman-active phonon can be observed under certain experimental conditions 

regarding the incoming and scattered light is determined by equation 2.13. Using the Raman 

selection rules, the symmetry of the Raman tensor and hence of the corresponding phonon can 

be identified by Raman experiments with different scattering geometries[84]. 

The Porto notation is used to describe the configuration of the Raman experiment[84]. This 

notation expresses the orientation of the crystal with respect to the polarization of the laser in 

the excitation and analyzing directions. It consists of four letters: 

a(bc)d   (2.14) 

where a is the direction of propagation of the incident light, b the direction of the 

polarization of the incident light, c the direction of the polarization of the analyzer and d the 

direction of propagation of the analyzed light. 

In Fig. 2.3, we illustrate the two more common polarization measurement geometries in a 

backscattering setup, where the incident and analyzed lights both propagate along the z-axis: 

parallel configuration z(xx)   and crossed configuration z(xy)  .  
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Figure 2.3| Common polarization measurement geometries in Raman spectroscopy. Yellows arrows 

denote the direction of propagation of the light in backscattering geometry. Black arrows are the 

directions of the polarization of the incident light and the analyzer. 

1.5. Experimental setup 

The experiments were performed on a Renishaw inVia confocal Raman microscope[85]. As 

shown in Fig. 2.4, it consists of: (1) several monochromatic light sources. We used lasers with 

wavelengths of 442 nm, 532 nm and 633 nm; (2) waveplates to control the directions of 

polarization of the incident and analyzed light; (3) a microscope to shine the light on the sample 

and collect the scattered light; (4) a movable stage to move the sample in-situ and acquire maps; 

(5) dielectric “edge” filters to cut the Rayleigh part of the spectra; (6) a diffraction grating for 

dispersing the Raman scattered light; (7) a CCD camera for detecting this light. 

 

Figure 2.4| Layout of Renishaw inVia confocal Raman microscope. The key components are highlighted. 

Adapted from Renishaw’s documentation. 
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In this setup, the spectral resolution depends on the wavelength of the laser and the 

diffraction grating. Here, it is ~1 cm-1/pixel. The spatial resolution is defined by the diffraction 

limit and estimated from the spot-size at the surface of the sample. It is defined by the Rayleigh 

criterion: 

        
 

  
   (2.15) 

with d the diameter of the spot, λ the wavelength of the laser and NA the numerical 

aperture of the objective[86]. Measurements were mostly performed with an exciting laser line of 

532 nm, focused on the sample with an objective with a numerical aperture of 0.85, providing a 

theoretical spot size of 760 nm. 

In this thesis, the usual measurement consists of point-by-point mapping across a domain 

wall in steps of 0.1 μm. 

1.6. Principal Component Analysis 

The maps generated contain thousands of spectra. In order to analyze these data, we use a 

statistical approach based on principal component analysis (PCA). 

PCA is used to express the data in such a way as to highlight their similarities and 

differences. This can be used to identify specific spectral features otherwise hidden by the noise, 

or automatically identify characteristic signatures in a Raman map. These features are called 

principal components (PCs)[87]. Each spectrum S obtained from the mapping dataset, here a 3D 

matrix corresponding to a map of Raman spectra, can be described as a linear combination of a 

reduced number of PCs: 

               
 

                            

where Sa is the mean spectrum calculated as the normalized sum of all the spectra and tk is a 

scalar, called the score. The number of PCs is equal to the number of spectra in the dataset.  

These PCs are obtained from the singular value decomposition of the spectra in the mapping 

dataset X. Let us assume that X is centered, i.e. column means have been subtracted and are 

now equal to zero. X is expressed as the product of three matrices: 

                                   

where the columns of U are the left-singular vectors of X, the diagonal entries of the diagonal 

matrix D are the singular values of X and the column of V are the right-singular vectors of X (Vt is 
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the conjugate transpose matrix of V). In the vocabulary of the PCA, the columns of V are the PCs 

and the projections of the data on the PCs are the scores tk given by: 

                                           

The first PC is required to have the largest possible variance, in order to explain the larger 

changes in the spectra. The second PC is computed under the constraint of being orthogonal to 

the first PC and to have the largest possible variance. The other components are computed 

likewise[87]. 

The next stage of the analysis consists then in determining the number of components 

needed to reasonably describe the data: if too many PCs are retained, one might try to give a 

physical meaning to something that is only noise; if too few PCs are retained, one might miss 

important information. A key parameter to determine the number of PCs is the proportion of 

total variance accounted for by each PC. This proportion P is: 

        
      

      
                   (2.19) 

where V(S) and V(PCk) are the variances of each spectrum and each PC, respectively. The lower is 

P the less information is contained in the PC. 

PCA is mainly used in chemometrics. It gives spatial and structural information about a 

chemical system without any prior knowledge of the pure chemical products constituting it. As a 

reference example, we show in Fig. 2.5 the result of PCA on a Raman map obtained from an area 

of 62 x 62 pixels (pixels of 2 μm) on a contraceptive tablet[88]. It is known that the tablet contains 

API, lactose monohydrate, maize starch and magnesium stearate. Fig. 2.5(a) shows the 

comparison between the PCs and the pure spectra of the different chemical products. It is clear 

that there is a direct one to one correspondence between both. For example, PC2 resembles the 

API spectrum. Fig. 2.5(b) is a color map of the score of the different components. It is used to 

identify the spatial repartition of the chemical products. 
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Figure 2.5| PCA in chemometrics. (a) First six PCs compared to pure spectra. (b) Score maps of the PCs of 

a contraceptive tablet. Reproduced from [88]. 

PCA can also be used to map ferroelastic domains. Indeed, the rotation of the 

crystallographic axes between different ferroelastic domains induces variations of the Raman 

tensor and therefore the Raman intensity. PCA performed on a Raman mapping across several 

domains captures these variations of intensity and gives the spatial distribution of the domains.  

In the case of domain walls, and in particular 180°-domain walls, subtle changes in 

comparison with a reference spectrum (extracted from a domain, far from the domain wall) and 

localized on a small spatial area are studied. To a good approximation, every spectrum outside a 

180°-domain wall is equal to the mean spectrum. All the deviations that happen at the domain 

wall are then described by the second term of Eq. 2.16. In order to determine the physical 

signification of these deviations, we classify them as peak shifts, FWHM changes and peak 

intensity variations. 

The interpretation of the results of the PCA on domain walls is beyond the classical scope of 

the identification of different chemical species. The interpretation is therefore not 

straightforward. However, a parallel can be done with the automatic correction of peak shifts 
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and peak width variations in Raman spectra[89,90] where the idea is to use PCA to identify small 

peak variations due to instrumental perturbations and to automatically correct them[89,90]. 

In the case of domain walls, in order to understand the subtle changes and their signatures, 

we perform simulations with Python 2.7. We consider a series of 300 spectra containing each a 

single Lorentzian peak centered at 750 cm-1
, with a FWHM of 20 cm-1. The discrete spectral 

resolution is of 1 cm-1. The spectrum number is associated to a spatial position (in μm).  

Twenty spectra are subjected to a distribution of peak shift between 0 and - 0.5 cm-1, as 

shown in Fig. 2.6(a). PCA is applied to the series of simulated spectra: Fig. 2.6(d) shows the mean 

spectrum and the only PC obtained. This PC resembles the first derivative of the Lorentzian peak. 

Indeed, adding the derivative to the Lorentzian peak will increase the intensity on the left side of 

the peak and decrease the intensity on the right side, shifting the Lorentzian to lower 

frequencies. 

In another series, the FWHM of twenty Lorentzians is decreased down to 2.5% before PCA is 

applied, as shown in Fig. 2.6(b). Figure 2.6(e) shows the PC obtained: it is symmetric with an 

increase of intensity at the center. Adding the PC to the Lorentzian peak will decrease the 

intensity on its shoulders, reducing its FWHM.  

We consider now a series of spectra containing two Lorentzian peaks with the same 

intensity, centered at 400 cm-1 and 1200 cm-1. The intensity of the Lorentzian peak at higher 

frequency is progressively decreased by 0.5%, decreasing the intensity ratio between the second 

and the first Lorentzian, as shown in Fig. 2.6(c). Figure 2.6(f) shows the mean spectrum and the 

PC obtained which resemble a Lorentzian peak with a negative intensity.  
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Figure 2.6| PCA on simulated spectra. Changes applied on 20 Lorentzian: (a) peak shift, (b) FWHM change 

and (c) intensity variation. Lorentzian peak unmodified and PC obtained when performing PCA on (d) a 

peak shift, (e) a FWHM change, (f) and an intensity variation. (g-i) are the corresponding scores for every 

spectrum. 

Figures 2.6(g-i) are the score of the PCs. They reveal the spatial position of the twenty 

spectra affected by the changes. Qualitatively, the product between the PC and its score gives 

the “direction” of the changes. As an example, the negative peak shift is characterized by an 

increase of the intensity of the PC on the left side of the Lorentzian peak and a decrease on its 

right side – because the PC score is positive. 
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2. Low-energy electron microscopy 

 

2.1. Experimental setup 

Low Energy Electron Microscopy (LEEM) is an electron in – electron out – technique. It is 

based on the interaction between low energy incident electrons and the surface/near-surface 

region of the sample. The use of low energy electrons limits the probing depth to a few 

nanometers, optimizing the surface sensitivity, but also makes the technique extremely sensitive 

to surface contamination. For both reasons, an ultra-high vacuum environment is required (base 

pressure typically better than 1x10-9 mbar). 

The experiments are performed using an Elmitec LEEM III, schematized in Fig. 2.7[91]. The 

incident electron beam is emitted by (1) a thermionic LaB6 electron gun at an accelerating 

voltage of U0 = -20 kV.  The electrons are focused by (2) a set of magnetic condenser lenses. (3) A 

magnetic beam separator deviates the electrons toward (4) the objective lens and the sample. 

(5) The sample is at U0 + SV, where the Start Voltage (SV) defines the incident electron energy 

with respect to the sample surface. The low-energy reflected and backscattered electrons travel 

back through the objective lens, are reaccelerated to the gun voltage (because the objective lens 

is grounded), and pass through the beam separator again. In the imaging column, (6) a set of 

magneto-electric lenses are used to create a magnified image of the sample surface. (7) A 

double multi-channel plate, screen and camera record the electron intensity as a function of SV 

in a typical field of view of a few tens of microns. An angle limiting aperture in the back focal 

plane of the objective lens cut off highly deviated electrons and improves spatial resolution. 
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Figure 2.7| Schematic of the electron optics of the Elmitec LEEM III. 

The spatial resolution of a LEEM is better than 20 nm[92] (the ultimate resolution achieved is 

4 nm[93]). It is limited by the spherical and chromatic aberrations of the objective lens. The 

energy resolution is limited by the monochromaticity of the incident beam and typically below 

0.5 eV for a LaB6 electron gun[91]. 

2.2. MEM-LEEM transition 

At very low kinetic energy, the incident electrons have a kinetic energy below the surface 

potential of the sample. They interact only weakly with the surface. This is called Mirror Electron 

Microscopy (MEM). At higher kinetic energies (but < 10 V), electrons penetrate the first few 

nanometers of the sample and are backscattered without any energy transfer to the sample. 

This is Low Energy Electron Microscopy (LEEM). 

The electron intensity on the screen versus the kinetic energy (or Start Voltage) of the 

electrons is often referred as the reflectivity curve. At the transition between MEM and LEEM 

regimes, the reflectivity drops because the energy of the electrons becomes sufficiently high to 

overcome the surface potential barrier and penetrate the surface. The MEM-LEEM transition can 

therefore be used to measure the surface potential of the regions of interest on the sample. 

Figure 2.8(a-e) show five images acquired with the LEEM on a magnesium-doped lithium niobate 

sample at different SV (see chapter IV for details). Clear bands with different intensities are 

visible at different SV. They correspond to 180°-ferroelectric domains. Figure 2.8(f) plots the 

electron intensity recorded in two domains of opposite polarization (labeled Pup and Pdown) as a 
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function of SV. The resulting curves can be fitted by a complementary error function (erfc) which 

gives an accurate value of the inflection point: 

                    
      

   
                            

with I0 the background intensity, A the amplitude, ς the width of the fitting function and Vt the 

MEM-LEEM transition voltage. By convention, the inflection point is taken as the MEM-LEEM 

transition point. The domain for which the electron intensity falls at lower start voltage has a 

polarization pointing upward (Pup). The difference of energy (SV) between the two inflection 

points gives the difference of surface potential between domains. 

 

Figure 2.8| MEM-LEEM transition in magnesium-doped lithium niobate. MEM images at start voltages of 

(a) 1.15 V and (b) 1.75 V. Same area observed in the region close to the MEM-LEEM transition at start 

voltage of (c) 1.90 V and in LEEM at start voltages of (d) 2.10 V and (e) 2.70 V. (f) Electron intensity curves 

extracted from Pup and Pdown domains. 

An automated procedure is used to fit every pixels of the field of view and generate a map of 

the surface potential values for the whole field of view.  
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2.3. Imaging physical topography 

Any physical topography on a sample modifies the local electric fields and hence the 

electrons trajectories. In MEM, electrons interact with a geometrical relief during the approach 

to the surface and the acceleration away from it. As a result the electrons trajectories can be 

strongly distorted and the contrast changes. These effects are theoretically described by Nepijko 

et al.[94–96]. They studied the example of a protruding geometrical strip with height H. Fig. 2.9 

shows the curves of the current density on the screen in relation to the initial current density in 

the absence of object roughness. The calculation is performed for a LEEM setup without contrast 

aperture and without converging lens between the sample and the image. The stripe appears as 

a dark area. The steps look like a double line on the screen: wide weakly defined dark line and a 

narrower bright one[95].  

 

Figure 2.9| Contrast due to physical topography. Curves of the contrast distribution for protruding 

geometric stripes of increasing height H (from (1) to (3)). Adapted from [95]. 

2.4. Imaging charged surfaces 

In a ferroelectric material, the polar discontinuity at the bulk-terminated surface gives rise to 

a net fixed surface charge. This surface charge density modulates the electrostatic potential 

above the surface. In MEM, the incident electrons interact with the surface potential such that 

positively charge regions sweep electrons inwards while negatively charge regions sweep 

electrons outwards. Therefore, in MEM, without converging lens between the sample and the 
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image, positively charge regions, corresponding to Pup domains, gives rise to bright images on 

the screen. 

In a real microscope, the presence of (several) convergent lenses in the imaging column 

modifies this. As can be deduced from Fig. 2.10, for an odd number of lenses in the imaging 

system, a negatively charged region gives rises to a bright image. For an even number of lenses 

this will give a dark area. In this thesis, the imaging column is made of 5 lenses.  

 

Figure 2.10| Schematic explaining the image formation of a charged region on the screen. The electron 

beam is deviated by a negatively charged region on the surface of the sample. For an even number of 

lenses, the region would appear as a large dark spot on the screen. In the presence of a converging lens, 

the electron beam becomes narrower on the screen and the negatively charge region appears as a small 

bright spot. Adapted from [94]. 
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3. Other techniques 

 

3.1. Dielectric spectroscopy 

Dielectric spectroscopy measures the dielectric permittivity of a sample as a function of the 

frequency of an applied electric field. 

In a dielectric material, a small applied electric field      induces a dielectric displacement      

expressed by: 

                                         

where ε0 is the dielectric permittivity of vacuum and ε* is the complex dielectric permittivity. 

Because      and      are vectors, ε* is a tensor. In particular, for a periodic electric field oscillating at 

a frequency f,         
-     , ε* can be written: 

                                               

where ε’( ) and ε’’( ) are the real and imaginary part of the complex dielectric permittivity, 

respectively. 

The simplest analysis of the frequency response of a dielectric material is known as the 

Debye model. It describes the response of an ideal, non-interacting population of dipoles to the 

external periodic electric field. The dipoles follow the oscillations of the electric field up to a 

certain frequency. Above this frequency, the field reversal and the dipole reorientation become 

out-of-phase and dissipate energy[97]. 

In this model, the change of dielectric displacement is proportional to its actual value[98]: 

     

  
  

 

  
                              

where τD is a characteristic relaxation time. Within this hypothesis, the complex dielectric 

function is written: 

         
     

          
                           

where ε
∞

 is the permittivity at the high frequency limit and εs is the low frequency static 

permittivity. This relaxation process is characterized by a peak in the imaginary part ε’’ and a 
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step-like decrease of the real part ε’ of the complex dielectric permittivity, as schematized in 

Fig. 2.11. 

 

Figure 2.11| Debye relaxation. Frequency dependence for the real and imaginary part of the 

dielectric permittivity from the Debye’s model. Adapted from [97]. 

The temperature dependence of the characteristic relaxation time τD may follow the 

empirical Arrhenius dependence given as: 

          
   

  
                            

where     
 

  
 , k is the Boltzmann constant, T the temperature and Ea the activation energy 

of the relaxation process. The value of the activation energy is characteristic of the mechanisms 

at the origin of the relaxation. 

Often, the measured dielectric functions do not fit within the Debye’s model: they are much 

broader or asymmetric. Such a non-Debye relaxation can be expressed as a superposition of 

Debye-function with different relaxation times and described by the empirical function of 

Havriliak and Negami[99]. 

In this thesis, dielectric spectroscopy was performed as a function of temperature with a 

Novocontrol Concept 40 dielectric spectrometer. This is an impedance measurement where an 

ac-voltage is applied across the sample and the resulting current is monitored[100]. Silver paste 

was used for the electrodes of the samples. For comparison, single measurements were also 

performed with sputtered gold electrodes, but since no significant effect of the electrode 

preparation on the results was observed, the painted silver electrodes were preferred as the less 

complicated preparation method. The frequency range of the measurements was 1 Hz – 1 MHz 

with an ac-voltage of 1 V (rms). Each spectrum contained 240 points, logarithmically spaced. 
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3.2. Resonant piezoelectric spectroscopy 

Resonant piezoelectric spectroscopy measures the natural frequencies of mechanical 

resonances in a sample, through the piezoelectric effect. 

When an oscillating electric field is applied to a piezoelectric material, this material vibrates 

because of the inverse piezoelectric effect. If the frequency of the electric field matches with a 

natural frequency of the sample, the sample resonates and the amplitude of its vibrations is 

increased. The natural vibrations are characteristics of the sample, i.e. the material and its 

shape. Figure 2.12 gives examples of natural vibrations for a rectangular parallelepiped sample. 

 

Figure 2.12| Natural vibrations for a rectangular parallelepiped. Schematic representation of some of the 

natural modes of vibration of a rectangular parallelepiped with stress-free boundary conditions. 

Reproduced from [101]. 

Resonant piezoelectric spectroscopy (RPS) is used to measure these vibrations. Figure 2.13 

shows a schematic diagram of the RPS setup comprised of a sample held between two 

piezoelectric transducers, without bonding agents. Silver electrodes are painted on the sides of 

the sample and a small ac-voltage (1-20 V) is applied across the sample. The ac-voltage is driven 

between 0.05 and 2 MHz. One of the transducers records the mechanical oscillations of the 

sample.  
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Figure 2.13| Schematic diagram of the experimental arrangement for RPS. Adapted from [102]. 

Peaks in the spectrum occur at the resonance frequencies of each natural resonance 

(Fig. 2.14). Within the model of the driven harmonic oscillator, the resonance is fitted with a 

Lorentzian[103]. Based on an empirical approach, we prefer an asymmetric Lorentzian 

function[104]:  

         
 

      
   

                           

where a(f) is the amplitude, a0 is the baseline, f0 is the frequency at the peak maximum 

(frequency of the resonance), and A and B are constants with the ratio A/B equal to the 

maximum amplitude. Different Lorentzian profiles were fitted for the lower (f < f0) and higher 

(f > f0) frequency part of each resonance, but the baseline, the value of f0, and the ratio A/B were 

kept constant for both fits in order to maintain an asymmetric Lorentzian. 

  
  is proportional to the elastic constants associated with that mode[103]. In addition to the 

measurement of the frequencies, the mechanical quality factor Q of the resonance peaks is 

given by: 

  
  

  
                           

where    is the FWHM obtained from the square root of coefficient B. The inverse quality factor 

Q-1 is a measure of acoustic dissipation within the sample[103]. 
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Figure 2.14| Typical stack of RPS spectra. Measurements performed for a single crystal of barium titanate 

(BaTiO3). Spectra were vertically translated in proportions to the temperature at which they were 

collected so that although the y axis represents the amplitude it is labeled as temperature. Reproduced 

from [102]. 

It has been shown before in SrTiO3 that the applied ac-voltage can lead to the oscillation of 

polar domain walls through the piezoelectric effect, which create strain fields around domain 

walls[76]. The resulting elastic wave becomes resonant if its frequency corresponds to a natural 

frequency of the sample. This mechanical resonance condition enhances considerably the 

amplitude of the elastic wave and make RPS sensitive to domain walls, even if they represent 

only a small fraction of the sample. 
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III. Interaction between defects and 
domain walls in lithium niobate 

 

180°-domain walls in magnesium-doped lithium niobate (Mg:LiNbO3) are conductive under 

above-band gap illumination. It has been proposed that the conduction is possible because of (i) 

the inclination of the domain walls with respect to the polar axis that create local head-to-head 

polarizations and (ii) the creation of free carriers by UV light[13]. However, others mechanisms 

can also be involved. For example, conduction at domain walls reported in other ferroelectrics, 

such as bismuth ferrite or lead zirconate titanate, is thought to be due to the presence of 

defects, such as oxygen vacancies, at and near domain walls[10–12]. 

Conductivity could also be an effect of the local strain observed at domain walls[105,106]. This 

explanation is based on an analogy with experiments on perovskites under high pressure where 

it has been shown that a hydrostatic pressure, thus strong deformations, can induce a transition 

from insulator to metal. Indeed, the first effect of pressure is to reduce the inter-atomic 

distances, leading to strong modifications of the electronic band overlap and thus the electronic 

band structure. This insulator-metal transition has been reported in bismuth ferrite at 

~55 GPa[107] and in lead vanadate at ~2.5 GPa[108]. Similarly, the strain at domain walls could 

locally increase the conductivity. Also, illumination with UV light may increase the strain via the 

photostrictive effect[109] and allow conduction at domain walls. 

This chapter is structured as follows: in the first part, the general properties of lithium 

niobate are reviewed with a focus on defects and their influence on the polarization. Then, we 

present dielectric spectroscopy measurements performed on single crystals of lithium niobate 

with different densities of domain walls. The goal is to probe the interaction between defects 

and domain walls. In the last part, we show the Raman signature observed at domain walls in 

magnesium-doped lithium niobate and its evolution with poling, annealing and above-band gap 

illumination. This gives insights into the structure of defects at domain walls for different 

concentration of magnesium and allows us to investigate the influence of UV illumination on the 

structural properties of domain walls. 

The observations are then discussed in relation to the possible mechanisms at the origin of 

domain wall conductivity in lithium niobate. 
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1. Lithium niobate 

1.1. General properties 

Lithium niobate (LiNbO3) is trigonal, belonging to the R  c space group in the paraelectric phase. 

At the onset of ferroelectricity at Tc near 1210°C, the structure remains trigonal, but the 

inversion symmetry of the system is lifted, lowering the symmetry down to R3c[110]. This trigonal 

space group can be described by a rhombohedral lattice with three equivalent lattice vectors. 

However, it is more convenient to use hexagonal coordinates because it decouples the polar axis 

cH from the directions aH perpendicular to it. cH is the threefold axis (a 120° rotation around this 

axis maps each atom onto an atom of the same type) and aH are perpendicular to the mirror 

planes. The physical properties of lithium niobate, expressed with tensors, are described in an 

orthogonal system where the threefold axis is in the z-direction and the x-axis is along one of the 

aH hexagonal axes. The y-axis is then defined by the unit vector cross-product          and 

therefore lies in the mirror plane (Fig. 3.1)[111]. 

 

Figure 3.1| Schematic of the LiNbO3 crystal structure in the R3c phase. (a) Perpendicular to the z-axis. (b) 

Along the z axis. Adapted from [112]. 

Single crystals of lithium niobate are commercially available. They are usually grown by the 

Czochralski method, the easiest way to obtain large single crystals. The crucible contains Nb2O5 

and Li2CO3 as starting materials, at a temperature slightly above the melting point of lithium 
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niobate (1250°C). A rod-mounted seed crystal of lithium niobate is dipped into the crucible and 

slowly pulled upwards. Upon cooling, the melt crystallizes at the congruent point where the 

liquid and the solid that form have the same composition. In lithium niobate, this point 

corresponds to a Li/Nb ratio of about 48.6/51.4 mol%. Contrary to stoichiometric lithium niobate 

crystals where the Li/Nb ratio is equal to one, congruent lithium niobate single crystals have an 

excess of niobium. This excess induces the formation of several intrinsic defects. 

1.2. Intrinsic and extrinsic defects 

The formation of niobium antisites (    
  ), i.e. a niobium atom on a lithium site[113], is 

possible since a Nb5+ ion has a smaller ionic radius than a Li+: 64 pm and 74 pm, respectively 

(these values are given for a sixfold coordination, since the lithium site is coordinated with 6 

oxygens)[114]. The presence of a niobium atom on a lithium site creates a local excess of charges 

(+4). The mechanisms for charge compensation have been explained by two main models, based 

on: niobium vacancies (      
        

     )[115,116] or lithium vacancies (    
        

 )[117–120]. Here 

the bullet and the prime denote respectively positive and negative charge states of a defect with 

respect to the host, in the Kröger-Vink notation[121]. Historically, a third model of defects based 

on lithium vacancies and oxygen vacancies (2    
     

  ) was also proposed[122]. However, 

structure measurements[116,118,123] and electronic-structure calculations[124] have shown a low-

probability for the existence of oxygen vacancies in lithium niobate. 

The determination of the defect structure is always difficult, both from an experimental and 

a theoretical point of view, which in turn explains contradictory literature results. However, 

today, arguments in favor of the model with lithium vacancies are numerous. In particular, 

structural refinements from X-rays and neutron diffraction show that 1% of the Li sites are 

occupied by Nb and about 4% of the Li sites are empty[118,123]. This ratio between     
   and    

  is 

in agreement with the chemical formula expected from the model with lithium vacancies: 

          
 

    
    

  
    

      where the brackets correspond to the Li site. Recent papers based 

on DFT all show that the energetically most stable defects are indeed (    
        

 )[125–127]. 

Another important result from DFT is that defects form clusters[125,126]. In particular, Kim et 

al. have proposed a defect structure in which the niobium antisite is surrounded by three lithium 

vacancies in the nearest neighborhood, plus one vacancy along the polar z-axis[128], as 

schematized in Fig. 3.2. This defect cluster carries a dipolar moment and has its own polarization 

Pd. 
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Figure 3.2| Schematic of a polar defect structure involving one     
   and four    

 . Pup denotes the 

spontaneous polarization. Pd denotes the defect polarization. The red triangles indicate the position of 

oxygen planes. Adapted from [128]. 

The incorporation of external defects (or dopants) competes with the internal defects 

already present in the congruent crystal. For doping with magnesium, the mechanism of 

incorporation has been investigated by nuclear magnetic resonance, Raman spectroscopy and 

optical absorption measurements[129–134]. It proceeds in two steps. For low doping levels, Mg2+ 

ions are localized on Li sites, decreasing the number of     
  . Above a threshold value, in the 

range 4.5-5.3 mol%, Mg2+ ions occupy both Li and NbNb positions.  

1.3. Polaronic states 

The defects structures mentioned above involve strong chemical modifications. However, 

electronic modifications such as polarons are also observed in lithium niobate[135]. 

When an electron is placed in an ionic crystal, the Coulomb interaction between the electron 

and the surrounding positive ions results in a strong coupling that can trap the electron[136]. The 

electron repels the negative ions and attracts the positive ions, as schematically shown in 

Fig. 3.3. These movements create a potential-well for the electron. They also induce a local 

polarization. The electron and the associated local polarization are called a polaron. 
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Figure 3.3| Schematic of a polaron. A trapped electron attracts positive ions and repulse negative ions. 

In many materials, the radius of the polaron is larger than the lattice constant. In this case 

the polaron is called a large polaron. In some materials, such as lithium niobate, the shape and 

strength of the potential well is such that the electron is confined to a volume of one unit cell or 

less. In this case, the polaron is called a small polaron[136]. 

The simplest polarons in lithium niobate are small free polarons. They correspond to 

electrons self-trapped at NbNb sites, leading to     
  . These electrons are stabilized only by the 

distortion they induce. They are therefore mobile and lead to polaronic conductivity[137]. 

Electrons are also trapped at     
  , leading to     

  . They are then localized on these defects 

and called bound small polarons. In this case, the additional trapping potential caused by the 

defect is so strong that the electrons cannot move without an external excitation. The nearest 

neighbor pairs     
   –     

   can bind two electrons, which are stabilized by moving the two ions 

towards each others. They form a bound bipolaron[138]. 

Experimentally, polarons are characterized by their optical absorption peaks. These peaks 

correspond to the photon energy needed for the transfer of the trapped electron to an 

equivalent site[138]. For example, in lithium niobate, the bound bipolarons and the small bound 

polarons give rise to a broad band near 500 nm and 760 nm, respectively[138,139]. Under the 

action of an ac-electric field, hopping of electrons between equivalent lattice sites can also be 

observed. This hopping is equivalent to the reorientation of a local dipole and leads to dielectric 

relaxations[140]. 
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1.4. Domain structure 

The ferroelectric domains of lithium niobate are characterized by (a) a small displacement of 

the Nb atoms to an asymmetric position along the z-axis within the same oxygen octahedron (b) 

a corresponding motion of Li atoms from one octahedron to the adjacent vacant octahedron 

(Fig. 3.4). Since the direction of the polarization is defined by the motion of these ions, only two 

opposite orientations are possible for domains[112]. We label “Pup” a domain that has a 

polarization pointing upward at the surface and “Pdown” a domain that has a polarization in the 

opposite direction. They are separated by non-ferroelastic 180°-domain walls. 

 

Figure 3.4| Ferroelectric domains in lithium niobate. Cation motion during domain reversal leading to 

unit cells with polarization Pup and Pdown. Adapted from [128]. 

Domains structures can be created at room temperature by applying an electric field above 

the coercive field (~21 kV/mm for congruent lithium niobate[55]). However, during this process, 

the polarization of the defect structures does not flip. Polar defect structures maintain their own 

polarization Pd, leading to the existence of a macroscopic internal electric field. The value of this 

field has been estimated from the asymmetry of the hysteresis loop to be of the order of 

3 kV/mm[55]. Upon annealing at > 150°C, the internal electric field vanishes, meaning that the 

polar defect structures align with the main polarization direction[112].  

An optical image of a sample with a regular pattern of ferroelectric domains is shown in 

Fig. 3.5: they fully cross the sample in the y-direction and are 9.3 μm wide. They are optically 

visible because the supplier performed a chemical etching with HF that induces a difference of 
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height between domains. These samples with regular patterns are called periodically poled 

lithium niobate (PPLN). 

 

Figure 3.5| Optical image of domains in a periodically poled lithium niobate (PPLN) sample. 
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2. Stabilization of electronic defects at domain walls as seen by 

dielectric spectroscopy 

 

We present dielectric spectroscopy measurements performed on congruent lithium niobate 

single crystals with different densities of domain walls. The goal is to probe the interaction 

between defects and domain walls. 

2.1. State of the art 

In a dielectric spectroscopy measurement, the permittivity strongly increases if the ac-

electric field applied on the dielectric material is strong enough to induce irreversible 

movements of domain walls. This extrinsic contribution of domain wall mobility has been 

investigated in lead zirconate titanate (Pb(Zr,Ti)O3) by measuring the temperature dependence 

of the dielectric constant with an applied ac-electric field: at low temperature, domain walls are 

frozen and the permittivity is low; at higher temperature, domain walls move and the 

permittivity increases, with a clear deviation from the Curie-Weiss law[141,142]. Many other 

experiments performed on lead zirconate titanate[141,143,144] confirm that dielectric spectroscopy 

is a powerful tool to study ferroelectric domain walls. 

Dielectric properties of congruent lithium niobate have been studied on thin films[145], 

polycrystalline[146–148], and single crystals samples[149,150]. In single crystals, investigations by 

Mansingh and Dhar[150] show the absence of dispersion of the real part of the permittivity below 

125°C while Chen et al.[149] observe a relaxation above 150°C. Since this relaxation is well 

described by the Debye model, they attribute it to the response of dipoles in the sample. 

The dielectric spectrum of iron and magnesium doped samples is characterized by new 

dielectric relaxations[151,152]. In iron-doped lithium niobate, the relaxation arises from clusters of 

Fe2+/Fe3+ that slowly relax as a unity with the ac-voltage. After a heating treatment around 

600°C, iron clusters are destroyed and iron ions are homogeneously distributed over the crystal, 

leading to the disappearance of the relaxation[151]. In magnesium-doped lithium niobate, it is 

proposed that the electrons from the     
  donor centers are usually trapped in (    

      
  ) 

defects complexes. High-temperature poling breaks these defect complexes. The transition of 

the liberated electrons between the     
  and the NbNb gives rise to the dielectric relaxation. 

Heating around 200°C activates the motion of    
   (already mobiles at 100°C[153]), re-forming the 

defect complexes and causing the relaxation to vanish[152]. 
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This short overview of the state of the art illustrates that dielectric spectroscopy can be used 

to study ferroelectric domain walls and defects. We therefore investigated congruent lithium 

niobate samples with intrinsic defects and different densities of domain walls. 

2.2. Experimental conditions 

Six samples of congruent single crystals have been studied. A periodically poled single 

crystal, commercially available from HC Photonics Corps, labeled as PPLNa, has a domain period 

of 20.4 μm (i.e. a domain wall density of 98 mm-1). A periodically poled single crystal with a 

domain period of 28 μm (i.e. a domain wall density of 71 mm-1), labeled as PPLNb, and a 

monodomain sample single crystal labeled as MLN1, were purchased from EQ Photonics GmbH. 

Samples MLN2a, MLN2b and MLN2c were purchased from PI-KEM Ltd and cut from a single 

domain wafer. All samples had platelet geometry with ~5 x 5 x 0.5 mm3 dimensions and short 

edges along the z direction. The monodomain wafers were poled by the manufacturer near the 

Curie temperature, without field-cooling. The characteristics of the samples are summarized in 

table 3.1. 

Name Domain period (μm) Supplier 

PPLNa 20.4 HC Photonics 

PPLNb 28 EQ Photonics 

MLN1 Monodomain EQ Photonics 

MLN2a Monodomain PI-KEM 

MLN2b Monodomain PI-KEM 

MLN2c Monodomain PI-KEM 
Table 3.1| Main characteristics of the samples. 

Dielectric spectroscopy was performed as a function of temperature to study the evolution 

of the dielectric permittivity and loss. These measurements were made between 273 K and 

473 K in 25 K steps. They were repeated after a high-temperature annealing (up to 860 K) 

between 143 K and 573 K in 15 K steps on heating and cooling. The frequency range of the 

measurement was 1 Hz – 1 MHz with an ac-voltage of 1 V (rms).  

2.3. Monodomain samples 

Monodomain samples are taken as references to understand the dielectric response of a 

single crystal without domain walls. In order to get a reliable comparison of monodomain and 

periodically poled samples, we defined the following criteria: (i) one monodomain sample 
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(MLN1) comes from the same supplier as a PPLN sample (PPLNb), (ii) at least two monodomain 

samples come from the same wafer (MLN2). 

Figure 3.6 details the temperature evolution of the permittivity in MLN1. Figure 3.6(a) shows 

the real part of the permittivity ε’ and Fig. 3.6(b) the imaginary part ε’’ at 323 K (blue), 398 K 

(green) and 448 K (red). ε’ remains flat between 1 Hz and 106 Hz. A piezoelectric resonance is 

observed at 400 kHz. ε’’ increases with decreasing frequencies. 

 

Figure 3.6| MLN1. (a) Real and (b) imaginary part of the permittivity as a function of the excitation 

frequency for temperatures between 323 K and 448 K. 

Dielectric spectroscopy of samples MLN2a, MLN2b and MLN2c reveals variable behavior 

even though these samples have been cut from the same wafer. Figure 3.7(a) displays the room 

temperature ε’’ for the three samples. The red curve is the data for MLN2a. It shows a relaxation 

peak with a maximum near 30 kHz and a large increase of ε’’ at low frequency. After annealing 

up to 860 K, the relaxation has disappeared and the increase at low frequency has diminished 

(empty squares in the figure). ε’’ for MLN2b is depicted in the blue curve. It shows a similar 

relaxation with a maximum near 30 kHz, even though the height of the peak is reduced. The 

black curve displays ε’’ for MLN2c without any relaxation peak. 

Figure 3.7(b) shows ε’’ for MLN2b at 273 K, 323 K and 373 K. The relaxation is shifted to high 

frequencies on heating. As shown in the inset, the temperature dependence of the relaxation 

frequency is well described by an Arrhenius law with an activation energy Ea = 0.18 eV. 
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Figure 3.7| MLN2. (a) Imaginary part of the permittivity at room temperature for MLN2a (before and after 

annealing), MLN2b and MLN2c. (b) Imaginary part of the permittivity at 273 K, 323 K and 373 K for 

MLN2b. (inset) Arrhenius fit with an activation energy of 0.18 eV. 

The dielectric spectrum of MLN1 is flat while MLN2a and MLN2b, which are also 

monodomain samples, show a relaxation near 30 kHz. This relaxation vanishes after high 

temperature treatment (Fig. 3.7(a)). In iron-doped[151] and magnesium-doped[152] lithium 

niobate, dielectric relaxations vanished because of a reorganization of the defect structure. 

Similarly, in MLN2a and MLN2b, the reorganization of local charged defects by annealing could 

lead to the disappearance of the relaxation. This could also explain the absence of dielectric 

relaxation in MLN2c: the chemical composition is identical to MLN2a and MLN2b, which have 

been cut from the same wafer. However, the fragile local defect structure that causes the 

dielectric relaxation may have been altered. 

2.4. Periodically poled lithium niobate 

Figure 3.8 details the temperature evolution of the permittivity in PPLNa and PPLNb. 

Figure 3.8(a) shows the real part of the permittivity at 323 K, 398 K, 443 K and 448 K. 

Figure 3.8(b) shows the imaginary part of the permittivity at the same temperatures. A peak 

with a maximum near 10 kHz is observed; its position is nearly temperature-independent. This 
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peak was observed in all measurements up to 473 K. At higher temperatures it was hidden by 

the increase of conductivity. The different domain wall densities in PPLNa and PPLNb did not 

have any apparent influence; the slightly higher permittivity for the sample with fewer domain 

walls is within the uncertainty of the experiment (± 1). The low frequency tail depends on 

electrodes and is not considered any further. Figure 3.8(c-e) shows the Cole-Cole plots 

(imaginary versus real part of the permittivity) for PPLNa. The relaxation is the same before and 

after annealing up to 860 K. The left end of the curves corresponds to high frequencies. The 

semicircles obtained were fitted with the Debye relaxation. As shown in Fig. 3.8(c-e), the fit are 

in agreement with the experimental data, meaning that the data can be interpreted within the 

framework of a non-interacting population of dipoles. 

The main result is that the permittivity of PPLN shows a Debye relaxation with a maximum 

near 10 kHz that does not change when the sample is annealed up to 860 K (Fig. 3.8). The 

relaxation is unlikely to stem from the motion of the domain walls themselves since the coercive 

field in lithium niobate is large (~21 kV/mm[55]) and domain walls are effectively pinned at the 

electric field strength employed in this study[105]. The dielectric relaxation in PPLN is therefore 

more likely related to defects of either electronic or ionic origin. 

The dielectric relaxations observed in PPLN and MLN2 are similar both in term of frequency 

and amplitude. Therefore we believe that they have the same origin. Since all the samples are of 

congruent composition, variations in the stoichiometry between the samples cannot account for 

the observed relaxations. Two observations confirm this point: (i) the relaxation is observed in 

two PPLN from different suppliers (ii) MLN1 has a relaxation-free spectrum, while it comes from 

the same supplier as PPLNb. 

We find that the activation energy related to the relaxation in MLN2 is very small, 0.18 eV. 

This value is smaller than the energies needed for a long range motion of ions in lithium niobate: 

ionic conductivity of lithium, hydrogen or oxygen vacancies is associated with much larger 

activation energies of 1-1.25 eV[112,153,154]. The origin of the relaxation is therefore likely to be 

electronic in nature. It would be compatible with the bi-polaron binding energy E = 0.27 eV 

discussed by Schirmer et al.[138] provided that the activation energy for thermally activated 

hopping is E/2, as usually assumed for polarons[155]. Indeed, the binding energy is the energy 

needed to transfer the electrons to an equivalent site while in a process of hopping between 

two equivalent sites the energy cost is shared by the two sites and therefore divided by two. 
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Figure 3.8| PPLNa and PPLNb. (a) Real 

part and (b) imaginary part of the 

permittivity as a function of the 

excitation frequency for temperatures 

between 323 K and 448 K (before and 

after annealing). (c-e) Cole-Cole 

representation for PPLNa at 323 K, 398 K 

and 443 K, respectively. Solid lines 

represent the Debye fit, assuming a non-

interacting population of dipoles. 

 

Clearly, the dielectric relaxation both in monodomain and periodically poled lithium niobate 

can arise from non-equilibrium charged polaronic states such as     
   –     

   bi-polarons. 

Annealing single domain samples leads to a rearrangement of the defect structure that causes 

the relaxation to vanish. In the PPLN sample, ferroelectric 180° domain walls stabilize the 

charged defect structures. The question is how the nominally uncharged and unstrained domain 

walls can stabilize the defect structure: the walls are not inclined[49] and do not share the high 

concentration of carriers as seen in transient domain states before thermal anneal. One answer 

could lie in the geometrical domain wall pattern. 
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It is known that the overall orientation of the wall is parallel to the z-axis[49]. However, local 

wall bending or kinks are possible, in particular if the domain walls are several unit cells wide. 

Similar geometries are observed on lithium niobate surfaces when domain walls are pinned at 

defects[156,157]. Such ‘wide’ walls could meander in the matrix whereby each kink would lead to a 

head-to-head or tail-to-tail configuration of the polarization at the domain walls. Such bends 

would be energetically favorable if the resulting bound charges can be locally compensated, i.e. 

at positions where charges already exist in the form of charged polaronic states. The polaronic 

state and the local deformation of the domain wall would mutually stabilize one another, as 

shown in the schematic in Fig. 3.9.  

 

Figure 3.9| Schematic of a domain wall with two 90° kinks. The first kink leads to a head-to-head 

configuration while the second kink leads to a tail-to-tail configuration. Black arrows indicate the direction 

of the polarization. Red “ʘ“ indicates electrons coming from polarons. z-axis is vertical, y-axis points out of 

the page. 
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3. Bent domain walls as seen by transmission electron microscopy 

 

The geometrical pattern of the ferroelectric domain wall in lithium niobate was investigated 

further by using high angle annular dark field scanning transmission electron microscopy 

(HAADF-STEM) on PPLNb. The TEM specimen was prepared using focused ion beam (FIB) with a 

dual-beam FEI Helios Nanolab 650 instrument. FIB lamellas were cut along the polar 

crystallographic direction and perpendicular to the domain wall. 

A representative fragment of the HAADF-STEM image is shown in Fig. 3.10. The position of 

the domain wall is marked with a white arrow, and can be seen as a strip with a slightly lower 

intensity. Also, it creates a weak ripple in the rows of white dots when looking at this image 

along a grazing incidence from left to right. In the HAADF-STEM images the signal is proportional 

to the chemical composition of the projected atomic columns and scales as I~Z1.6-1.9, where Z is 

an average atomic number[158]. Therefore, in the [1  00] HAADF-STEM images of LiNbO3, the 

projected Nb-Li (Z[Nb] = 41, Z[Li] = 3) columns appear as bright dots arranged into a square 

pattern, while the O (Z[O] = 8) columns are not visible.  

 

Figure 3.10| TEM image of a domain wall. The [1  00] HAADF-STEM image of the domain wall area in the 

LiNbO3 sample. The arrow indicates the domain wall (parallel to it). 

The main result is presented in Fig. 3.11. The arrows correspond to the measured 

displacements of the niobium along the ferroelectric axis with respect to an averaged baseline. 

Based on these displacement vectors, the location of the domain wall can be determined, 

corresponding to a transition of displacement vectors pointing upwards at the left side to 

vectors pointing downwards at the right side of the domain wall. The average shift between the 

Nb atoms across the domain wall is of 25 pm. The location of the domain wall is shown as nearly 

vertical red lines in Fig. 3.11. From this figure it can immediately be concluded that the interface 

between the two domains is not perfectly straight but jumps exist back and forth leading to a 

range of a few unit cells over which the interface can be located. As a result, various lengths for 

straight strips along the interface exist. The jumps seem to occur in either direction 



66 III. Interaction between defects and domain walls in lithium niobate 

 

 
  

perpendicular to the wall so that on average the interface wiggles around one central plane, 

yielding an effective wall width of 7 unit cells (deduced from a measurement on 90 lines crossing 

the domain wall), represented by the region between the blue full lines. 

 

Figure 3.11| A bent domain wall. The domain wall is indicated in red. Between the blue lines, an 

indication of the effective width of the domain wall is given taking into account the shifts in position due 

to bends and kinks in domain walls. The arrows indicate the displacement of the Nb atoms with respect to 

an averaged baseline. 
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4. Stabilization of polar defect structures at domain walls as seen  by 

Raman spectroscopy 

 

Dielectric spectroscopy is a macroscopic, bulk measurement. To get a microscopic picture of 

the interaction between defects and domain walls, Raman spectroscopy is a powerful tool. We 

present the Raman signature observed at domain walls in magnesium-doped lithium niobate 

and its evolution with poling and annealing. This allows us to study the interaction between 

polar defects and domain walls for different concentration of magnesium dopants. We also 

investigate the influence of UV illumination on the structural properties of domain walls in 

5 mol% magnesium-doped lithium niobate, known to present photo-conductive domain walls[13]. 

4.1. State of the art 

The number of articles reporting Raman spectroscopy investigations on 180° domain walls in 

lithium niobate is large[52,159–167]. Indeed, lithium niobate is a perfect system to study domain 

walls with Raman micro-spectroscopy: 1) from symmetry there is no contrast between domains 

of opposite polarization and therefore any change observed in the vicinity of domain walls can 

be attributed to the domain walls without ambiguity; 2) the Raman spectrum is well defined and 

does not require long acquisition times. These studies were performed in backscattering 

geometry with the incident light along the ferroelectric z-axis. They reveal intensity and 

frequency variations of the Raman modes in the vicinity of domain walls. 

Figure 3.12 shows a typical Raman spectrum in z(xx)    configuration where 13 modes are 

recognized according the work of Margueron et al.[168]. The three most studied modes in the 

literature on domain walls are indicated. 

Intensity changes in defect free samples. Stone et al. reported changes in the Raman 

spectra at domain walls in near-stoichiometric lithium niobate[159]. They observed an increase of 

intensity in spectral regions that correspond to phonons that propagate at an angle with respect 

to the incident light. But, in principle, Raman spectroscopy only probes phonons which 

propagate in the same direction as the incident light. This is the case in the bulk of lithium 

niobate. They argue that the intensity variations are an indication that domain walls absorb 

phonon momentum. 
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Figure 3.12| Typical Raman spectrum of congruent lithium niobate. Acquired in z(xx)   configuration. 

Therefore, in backscattering geometry, Raman spectroscopy only probes phonons with a 

momentum in the same direction as the incident light (Fig. 3.13(a)). At a domain wall, the 

phonon momentum absorbed by the domain wall (   
         ) has to be taken into account: 

  
         

        
          

            (3.2) 

Raman spectroscopy now also probes phonons that propagate at an angle with respect to 

the incident light (Fig. 3.13(b)). This lead to a decrease of intensity of the modes with a 

momentum in the same direction as the incident light and an increase of intensity in spectral 

regions that correspond to phonons propagating at an angle with respect to the incident light. 

 

Figure 3.13| Schematic of the propagation direction of the phonons probed by Raman 

spectroscopy. (a) In the bulk. (b) At the domain wall. The size of the vectors is exaggerated since in reality 

|ki| << |kp|. 
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Intensity changes in congruent samples. Zelenovskiy and al. studied a congruent PPLN 

sample[52]. At domain walls, intensity maxima were observed for transversal E modes (E(TO1) 

and E(TO8)), whereas intensity minima were observed for longitudinal mode A1(LO4). These 

results were confirmed by Fontana et al.[162,163]. They were interpreted as an effect of the 

strain/electric field arising at the domain wall. Indeed, the Raman intensity is proportional to the 

square of the derivative of the polarizability with respect to the normal vibration coordinates, 

which is influenced by mechanical stress and/or electric field acting on the lattice. Capek et al. 

also reported changes of intensity of A1(LO4) mode but they interpreted it as a pyroelectric 

effect[164]. They suggested that the Raman laser causes uneven charging across domain walls due 

to the pyroelectric effect, leading to birefringence in the xy plane via the electro-optic effect. 

This birefringence is supposed to modify the polarization of the incident and analyzed light, 

inducing small changes of intensity of the modes with respect to the domains[164]. 

Frequency changes in congruent samples. To identify and isolate the Raman changes due to 

defects, Stone et al. compared the results obtained for congruent lithium niobate with those 

obtained for near-stoichiometric lithium niobate[165]. They observed larger frequency shifts in the 

congruent sample than in the near-stoichiometric lithium niobate. Capek et al. confirmed these 

observations[164]. Zelenovskiy et al. observed frequency shifts of E(TO1) and E(TO8) modes at 

domain walls, while the other modes did not shift[166]. Contradictory results were presented by 

Kong et al. who observed an increase of A1(LO4) frequency as large as 1.5 cm-1[167]. All these 

shifts were interpreted as an effect of defects localized at domain walls. 

This short state of the art shows that the physical interpretation of subtle changes observed 

in the Raman spectra near domain walls is complex. Many explanations are plausible and require 

supplementary information given by the influence of external parameters. Therefore we 

investigated domain walls in samples for different levels of magnesium doping, before and after 

annealing, with and without UV illumination. 

4.2. Experimental conditions 

We investigated a congruent periodically poled lithium niobate from EQ Photonics GmbH. 

The others crystals under study were commercially available congruent lithium niobate doped 

with different amount of magnesium: 0 mol% Mg-doped from CrysTec GmbH; 1 mol%, 2 mol% 

and 3 mol% from Crystal Technology, 5 mol% from Yamaju Ceramics and 7 mol% from Union 
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Optics. Samples were cut into 0.5 mm-thick pieces, with short edges along the ferroelectric axis 

(z-axis). 

Ferroelectric domains were created by applying high voltage pulses (between 8 kV/mm and 

22 kV/mm) through liquid electrodes[169] resulting in a random pattern of hexagonal ferroelectric 

domains. 

Depending on the experiment, the exciting laser lines were 442 nm, 532 nm or 633 nm with 

a power of 58 mW, 40 mW and 3.2 mW, respectively. The choice of the wavelength changes the 

spatial and spectral resolution but no influence was observed on our results. Point-by-point 

Raman mapping across a domain wall was performed in steps of 0.1 μm (Fig. 3.14).  

 

Figure 3.14| Optical image in transmission of domain walls. The blue arrow indicates the line-scan. 

The c-AFM measurements under super-band gap illumination were performed with a conductive 

Cr/Pt-coated cantilever with a spring constant of 40 N/m (Tape300E from BudgetSensors). The 

UV light was provided by a small LED from Thorlabs Inc working at 300 nm with an intensity at 

the surface of the sample of 70 μW/mm2. In the literature, the highest currents were recorded 

for this wavelength[13]. 

4.3. Principal Component Analysis 

After each Raman mapping, prior to any fitting analysis, we used PCA to identify the main 

changes in the spectra near domain walls. As a test sample, we investigated the z-face of the 

5 mol% magnesium doped lithium niobate single crystal. The exciting laser line was 442 nm.  

Figures 3.15(a-c) show three principal components (PCs) obtained and Fig. 3.15(d-f) the 

corresponding scores. In Fig. 3.15(a), (b), and (c), the mean spectrum, corresponding to the sum 

of all the spectra in the data set, is also plotted for reference, being considered as the typical 

Raman spectrum of lithium niobate. The number of PCs studied is limited to three because they 
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account for 84.2% (66.5% + 13.5% + 4.2%) of the total variance, as shown in Fig. 3.16. The fourth 

component, which account for only 0.04% more, and all the others contain basically only noise. 

In Fig. 3.15(a), PC1 resembles the mean Raman spectrum. By direct comparison with the 

results of the simulation in chapter II (section 1.6), this PC describes changes of intensity of the 

global spectrum. These variations of intensity are usually referred as “noise” in Raman 

experiments: they are due to fluctuations of the laser intensity and drift of the sample holder 

during the measurement. This is why the score of this PC is not correlated with the domain 

structure (Fig. 3.15(d)). 

Figures 3.15(b,c) present many features centered at the same frequencies as the different 

Raman modes: they are similar to what was observed in the simulation of peak shifts or peak 

intensity variations in chapter II. In Fig. 3.15(b), the main features of the second PC are indicated 

by blue arrows. At 154 cm-1, the PC resembles the first derivative of a Lorentzian and by 

comparison with simulations, is interpreted as a shift of the E(TO1) mode centered at 154 cm-1. 

By comparison with simulations, the large change of intensity of the PC near 615 cm-1 is a 

growing peak. The third PC is dominated by two features indicated by blue arrows: a shift of 

E(TO1) at 154 cm-1 and a shift of A1(LO4) at 870 cm-1. Figures 3.15(d-f) show the score of the first, 

second and third PCs, respectively. The score of the second PC presents a high contrast in the 

position of the domain wall as determined by optical microscopy. The score of the third PC 

reveals a small contrast between both domains. This contrast is not expected for 180°-domains. 

It is in fact due to the internal field of lithium niobate and will be explained in details in 

section 4.6. 
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Figure 3.15| Result of the PCA analysis. Mean spectrum and (a) first PC, (b) second PC, (c) third PC. (d-f) 

are the corresponding scores for every spectrum. 

 

Figure 3.16| Percent of total variance accounted by the PCs. 
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The interpretation of the PCA is that (i) E(TO1) peak position is different in domains and 

shifts at the domain wall (ii) A1(LO4) peak position is different in domains. PCA has then been 

performed on selected frequency ranges to study individually these two modes: between 40 and 

200 cm-1 for E(TO1), between 750 and 1000 cm-1 for A1(LO4). The first two PCs obtained are 

shown in Fig. 3.17(a) for E(TO1) and (b) for A1(LO4). They are similar to the features observed in 

Fig. 3.15. For both modes, PC1 resembles the Raman mode and PC2 its derivative. PCA tells us 

that the sum of the two PCs describes well the modes. Thus, both modes can be seen as the sum 

of the mean spectrum and its derivative. In particular, this means that for these two modes 

spectra are expandable in a Taylor series: 

                
  

  
  (3.3) 

where b1 and b2 are the Taylor coefficients, L is the constant lineshape function and 
  

  
 is the 

derivative of the spectrum with respect to the frequency f. Within the hypothesis of Lorentzian 

(or Voigt) lineshape: 

      and          (3.4) 

where A is the peak maximum of the spectrum and Δf is the peak shift. Thus, once a 

reference spectrum is chosen and its first derivative calculated, the Taylor coefficients can be 

estimated by multiple linear regressions of the reference spectrum and its derivative on the 

complete series of spectra. Then, the calculated regression coefficients are used to determine 

the peak shift Δf. 

 

Figure 3.17| Result of the PCA analysis on individual modes. (a) E(TO1), (b) A1(LO4). 

 



74 III. Interaction between defects and domain walls in lithium niobate 

 

 
  

The full algorithm to determine the peak shift is the following: 

(1) The mean spectrum is chosen as the reference spectrum and is normalized. 

(2) Its first derivative is calculated numerically. 

(3) Taylor coefficients are estimated by multiple linear regression. In matrix notation:  

                  (3.5) 

where the two columns of X are the reference spectrum and its derivative, the columns 

of S are the measured spectra pixel by pixel, the two columns of B are the Taylor 

coefficients (b1, b2). 

(4) The frequency shifts are determined by:  

    
  

  
  (3.6) 

In order to compare the results of the calculation with the results of the standard fitting 

procedure, all spectra have also been fitted with Voigt functions. Figure 3.18(a) shows the 

calculated peak shifts and the value of the E(TO1) peak shifts obtained with various fit along a 

line across the domain wall. At the domain wall, a shift of ~0.25 cm-1 is observed. It extends over 

~1.5 μm. A shift of ~0.1 cm-1 is observed between both domains. The behavior of the calculated 

(PCA) and fitted (standard procedure) peak shifts are in good agreement. Figure 3.18(b) shows 

the same comparison for A1(LO4) mode. A negative shift of ~0.3 cm-1 is observed when going 

from the left to the right domain. The behavior of the calculated and fitted peak shifts are again 

in good agreement. 

Figure 3.18| Peak shifts deduced from calculations and fitting procedure. (a) E(TO1) and (b) A1(LO4). 

In conclusion, PCA can be used to quickly identify small peak variations at domain walls, 

prior to any fitting analysis. A quantitative value of the peak shift can also be estimated from a 

Taylor expansion of the spectra. The remaining questions are then: why is there a frequency 

shift of E(TO1) at the domain wall; a frequency shift of E(TO1) and A1(LO4) between domains? 
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4.4. Absence of signature of momentum absorption by domain walls 

Before studying in detail the influence of magnesium dopants on the Raman signature, let us 

first investigate the idea of Stone et al. who argued that domain walls absorb phonon 

momentum[159]. We performed Raman measurements on the z-face and y-face of the congruent 

periodically poled lithium niobate sample with the exciting laser lines at 532 nm and 633 nm.  

Lithium niobate is a polar uniaxial crystal. Due to the anisotropy of the crystal, the phonons 

in which atoms are displaced parallel to the ferroelectric axis z have a different frequency from 

that of phonons in which atoms are displaced perpendicular to the ferroelectric axis, i.e in the xy 

plane[83]. In particular, the frequency of the excited phonons depends on the angle θ between z 

and the direction of propagation of the incident light (Fig. 3.19(a))[170]. However, the phonons 

frequency is invariant in the xy plane, i.e the y-face (Fig. 3.19(b)).  

Therefore, if phonon momentum is absorbed perpendicularly to the domain wall plane, the 

frequency of the phonons will be shifted in Raman measurements performed on the z-face, but 

not on the y-face. Fig. 3.19 sketches the geometry of the measurements at domain walls, with 

two phonons: the first one propagates along the ferroelectric axis and has a frequency f1, the 

second one propagates at an angle θ and has a frequency f2. For measurements on the y-face, 

f1 = f2. 

 

Figure 3.19| Geometry of the measurements at domain walls. (a) On the z-face. (b) On the y-face. f1 and 

f2 denote the frequency of the phonons. 
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We worked in z(yx)   and y(zx)   configurations where only E(TO) modes are probed[168]. The 

frequency shifts observed at domain walls are summarized in table 3.2. Shifts are observed on 

both faces. On the y-face they cannot come from the absorption of phonon momentum by the 

domain wall. Since the shifts are of the same magnitude on both faces, except for E(TO3) and 

E(TO6) where the shifts are two times larger on the z-face, it is likely that an additional 

mechanism is also at the origin of the shifts on the z-face.  

 E(TO1) E(TO2) E(TO3) E(TO4) - E(TO5) E(TO6) E(TO7) E(TO8) E(TO9) 

(cm-1) 154 236 264 321 365 431 580 - 

Z-face -0.3 -0.3 -0.8 -0.2 +0.8 +0.2 -0.4 - 

Y-face -0.3 -0.2 -0.3 +0.2 +0.4 +0.2 -0.3 - 
Table 3.2| Raman shifts at domain walls. Raman modes of PPLN (name and position) with the 

corresponding shifts observed at domain walls. “-” indicates that the mode was not visible in the Raman 

spectra. E(TO4) and E(TO5) are too close to be resolved separately. 

Since the frequency shifts observed at domain walls cannot be explained only by the 

absorption of momentum by domain walls, we present the Raman signature observed at domain 

walls in magnesium-doped lithium niobate and its evolution with poling and annealing. This 

allows us to study the interaction between polar defects and domain walls for different 

concentration of magnesium dopants. 

4.5. Influence of magnesium concentration 

Raman spectra were collected in parallel z(xx)   polarization measurement geometry for 

which only E(TO) and A1(LO) modes are expected, and in crossed z(yx)    polarization 

measurement geometry for which only E(TO) modes are expected[168]. They were performed at 

532 nm. 

Detailed analysis is performed on E(TO1), E(TO8) and A1(LO4) modes because they are 

intense and well separated from each other. All bands are fitted with symmetric Lorentzian 

profiles. The vibrational pattern for those three modes are known from first-principle 

calculations[171,172]: A1(LO4) involves in-phase vibrations of lithium and niobium ions while they 

vibrate out of phase for the E(TO1) and E(TO8) modes. 

Figures 3.20(a-c) and (d-f) show the evolution of the peak frequency and FWHM, 

respectively, for different amount of magnesium. Spectra measured in z(xx)   and z(yx)   

configurations revealed the same trend. With increasing magnesium content, the FWHM of all 

modes increases linearly, which is consistent with an increase of the static disorder in the sample 
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due to the incorporation of magnesium. With increasing magnesium content, the frequency of 

E(TO1) increases while the frequency of E(TO8) decreases. The change of frequency of A1(LO4) is 

not monotonous. No obvious correlation appears, for these three particular modes, between the 

changes in the Raman modes and the changes in the defect structures with increasing 

magnesium content. 

 

Figure 3.20| Influence of magnesium concentration. Spectral evolutions with increasing Mg doping levels: 

(a) frequency and (d) FWHM of E(TO1); (b) frequency and (e) FWHM of E(TO8); (c) frequency and (f) 

FWHM of A1(LO4). Black lines are linear fits to the data. Error bars represent the standard deviation 

calculated from two successive measurements. All spectra were acquired after annealing at 200°C. 

4.6. Influence of the internal field 

Figures 3.21(a) and (b) shows the evolution of the frequency of E(TO1) and A1(LO4) modes 

for line-scans with 0.1 μm steps across a domain wall in z(xx)   configuration, with the laser 

polarization parallel to the domain wall (P // DW). Two contrasts are visible: a change of 

frequency between domains – the magnitude of the shift varies between 0.05 cm-1 and 0.3 cm-1 

– and a change of frequency at the domain wall. 
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We first consider the contrast between virgin and reversed domains. In the undoped sample, 

the frequency of E(TO1), E(TO8) and A1(LO4) is lower in reversed domains (R) – the Pdown surface 

– consistent with previous observations[173,174]. The frequency shifts have been explained by the 

presence of polar defects and the internal field they create; this is notably based on the 

observations that (i) frequency shifts are larger for the congruent composition than for the 

stoichiometric composition[173], and that (ii) the frequency shift and the amplitude of the internal 

field exhibit the same time dependence upon domain reversal[174]. 

 

Figure 3.21| Influence of the internal field. Peak position of (a) E(TO1) and (b) A1(LO4) for line-scan from 

reversed (R) to virgin (V) domains for different amounts of magnesium before annealing. The data are 

vertically shifted for clarity and the scale bar gives the amplitude of the frequency shift. 

As shown in Fig. 3.21, the frequency shifts of the Raman peaks do not change monotonically 

with Mg doping. In 1%, 2% and 3% Mg-doped lithium niobate the frequency of all modes is 

slightly higher in reversed domains. On the other hand, in 5% and 7% Mg-doped lithium niobate, 

the frequency of E(TO1) and E(TO8) is decreased while the frequency of A1(LO4) is increased in 

reversed domains. It is known from measurements of the transient current during switching that 

Mg-doped lithium niobate presents an internal field[175]. By analogy with undoped lithium 

niobate, the frequency shifts between domains in Mg-doped lithium niobate are attributed to 

this internal field. The non-monotonic behavior of the internal field can be understood by a 

change in the structure of polar defects: the studies of incorporation of Mg2+ ions into lithium 

niobate have shown that Mg ions first replace NbLi for MgO concentrations lower than 4.5-

5.3 mol%, and then replace Li and Nb ions on their own sites[115,129–134]. Therefore, the Raman 

contrast that we observe for samples doped with more than 5 mol% of magnesium results from 

the internal field due to (1) the disappearance of all     
  , (2) the appearance of     

   . 
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4.7. Raman-signatures at domain walls 

The contrast between domains is known to be sensitive to annealing: multiphoton 

photoluminescence measurements performed on samples doped with between 0% and 7% of 

magnesium have shown a contrast between virgin and reversed domains only in samples doped 

with more than 5 mol% of magnesium[176]. Upon annealing above 100°C the contrast follows an 

exponential decay with an activation energy of 1 eV, typical of lithium ions mobility[176]. In 

5 mol% Mg-doped lithium niobate, it has been shown that annealing around 200°C strongly 

reduces the internal field[175], probably as a result of reorganization of polar defects[152]. 

In order to confirm the role of the internal field on the Raman contrast, and focus on the 

domain wall signature, we annealed our samples at 200°C for 8h under oxygen flow. A shown in 

Fig. 3.22(a) for the E(TO1) mode, the contrast between domains indeed vanishes after annealing, 

but a change of frequency is still observed at domain walls. The results for all three modes are 

summarized in Fig. 3.22(b). The frequency shift for E(TO1) and E(TO8) at the domain wall is 

negative below 5% of magnesium but positive above 5%, while it is always positive for A1(LO4) 

and nearly independent on the amount of magnesium. In z(xx)   geometry the frequency shift of 

E(TO8) is always positive; this is due to a growing shoulder (see Stone et al.[159] for details) and it 

is not considered further as a “real” shift. The spatial extension of the frequency shifts varies 

between 0.6 μm and 6 μm, depending on the amount of magnesium. For samples doped with 

more than 5 mol% of magnesium, the spatial extension is always below 1.8 μm. 

 

Figure 3.22| Raman-signatures at domain walls. (a) Peak position of E(TO1) across a domain wall after 

annealing. (b) Peak shifts at the domain wall. Error bars represent the standard deviation calculated from 

measurements on three different domain walls. 
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4.8. Discussion 

Frequency shifts of Raman modes at domain walls in lithium niobate have already been 

reported and interpreted (i) as an effect of the strong electric and associated strain field 

accompanying smooth polarization reversal at the domain wall[164,166,167] or (ii) as a change in the 

defect cluster concentration and configurations at the domain wall[159,165]. Specifically, for 

undoped lithium niobate, our observation of decreasing frequency of E(TO1) and E(TO8) at the 

domain wall while increasing frequency of A1(LO4) is consistent with previous measurements, 

which were interpreted as an effect of defect clusters, involving     
  [165]. 

Here, the systematic study of the evolution of the Raman modes for the whole series of Mg 

concentrations and before and after annealing sheds more light on the origin of the frequency 

shifts. First, it is clear that the smooth polarization reversal at the domain wall and the resulting 

electric field alone cannot account for all the observations since it would not explain the doping-

dependence of the frequency shifts of the E modes. A reduction of the depolarization field at 

domain walls due to a better bulk screening could not explain the change of sign of peak shifts. 

Conversely, a simple picture where the dopants would segregate at the walls would not be 

consistent with the observations, notably because the FWHM of E(TO8) and A1(LO4) does not 

change at the domain wall, whereas they vary strongly in the bulk with variations of Mg content. 

We therefore propose that both polarization reversal and defects have to be taken into account. 

The correlation between the frequency shifts for the E modes and the change in defect 

structure for high Mg-doping points to the role of defects, and changes in defect structure. For 

samples doped with 5 mol% of magnesium and more, the new behavior observed at domain 

walls is a consequence of the change of configuration of polar defects described earlier. 

However, detailed examination shows that the frequency pattern at the domain wall differs 

from the signature of polar defects observed in the bulk, notably as seen by comparing Fig. 3.21 

and 3.22. This can be understood in two ways: (1) the frequency shifts observed involve a 

combination of effects resulting from the defect structure and the electric (strain) field in the 

vicinity of the wall or (2) new defect structure have been stabilized at domain walls. Since 

previous measurements based on defect-luminescence microscopy have shown that the defect 

structure remains similar at the domain wall[177,178], the second hypothesis is less plausible. In 

both cases, the contrast at domain walls still exists after annealing while it is no longer present in 

the domains, meaning that defects have been stabilized at the domain walls but annealed out of 

the bulk. 
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4.9. Influence of UV light 

One key condition to observe conductivity at domain walls in lithium niobate is to illuminate 

the sample with UV light with wavelengths between 260 nm and 300 nm[13]. We investigated the 

5 mol% magnesium-doped lithium niobate sample since the highest currents were previously 

recorded for this concentration[13]. 

We first checked with c-AFM that the domain walls were indeed conductive under 

illumination. We measured in the dark and did not observe significant conductivity. Under 

illumination with a diode working at 300 nm, a current of ~2 nA was measured at the domain 

walls (Fig. 3.23). This result was reproducible on the same domain walls although non-

conductive domain walls were also found in the sample. 

 

Figure 3.23| Conductive domain walls. c-AFM image recorded with illumination (λ = 300 nm). 

We then performed line-scans across domain walls with the Raman spectrometer, in the 

dark and with UV illumination. In order to illuminate properly the area investigated, a long focal 

working distance objective was used. With an objective numerical aperture of 0.4 and a laser 

working at 532 nm, the theoretical spot size was 1.62 μm. The schematic of the experiment is 

shown in Fig. 3.24.  
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Figure 3.24| Experimental setup for the Raman spectroscopy investigations under UV light. The green 

line symbolizes the laser. The black arrows indicate the direction of the polarization in the domains.  

Figure 3.25 shows the peak positions of E(TO1) and E(TO8) observed at domain walls, in the 

dark and with illumination. The two curves match perfectly and the same frequency shift is 

observed at the domain wall. The same observation is made on all the frequency shifts observed 

at domain walls. 

 

Figure 3.25| Peak shifts under illumination. Peak position of (a) E(TO1) and (b) E(TO8) across a domain 

wall with/without illumination at 300 nm. 

A straightforward conclusion is that the UV light does not influence the Raman signatures at 

domain walls while it induces a small current localized at domain walls. However, the conditions 

of illumination in the AFM and the Raman spectrometer are slightly different. In particular, the 

distance between the area investigated and the diode is larger in the Raman experiment due to 

the presence of the microscope objective lens. Experiments where c-AFM and Raman 

spectroscopy are performed on the same setup are in progress to guarantee that the domain 

wall investigated is indeed conductive. 
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5. Summary and conclusions on the conductive domain walls 

 

Monodomain and periodically poled congruent lithium niobate crystals were investigated by 

dielectric spectroscopy. A resonance was observed near 30 kHz. This resonance vanished under 

thermal annealing in monodomain samples while it remained stable in periodically poled 

samples where the domain walls density is high. The low activation energy of the resonance 

suggests an electronic origin. We therefore propose that domain walls stabilize polaronic states 

with (bi-)polarons located inside or near domain walls. This result demonstrates the benefit of 

studying ferroelectric domain walls using dielectric spectroscopy, even though the technique is 

sensible to a macroscopic scale. 

The domain structure of lithium niobate was also investigated by Raman spectroscopy 

mapping. We reported the evolution of E(TO1), E(TO8) and A1(LO4) Raman modes with 

increasing amount of magnesium in congruent lithium niobate. We observed contrasts between 

virgin and reversed domains, consistent with the literature and identified new frequency shifts 

of the Raman modes at the domain walls. The information gained from the study of the whole 

series of magnesium concentrations, before and after annealing, allows us to show differences 

between the signatures of polar defects in the bulk and at the domain walls. The domains walls 

appear then as regions where polar defects are stabilized.  

Most of the conductivity studies on domain walls are performed with c-AFM, since this is the 

easiest way to quantify a local current at domain walls. The transport behavior is then deduced 

from the variations of the current with applied bias or temperature[9–11]. Studying domain walls 

with dielectric and Raman spectroscopy give us new elements to understand the mechanism 

behind the conduction at domain walls. 

Following the discovery of conductive domain walls[9], two mechanisms have been proposed. 

In the first one, structural changes at domain walls lead to small band gap reduction[9]. In the 

second one, defects and specifically oxygen vacancies are proposed to play an important 

role[10‐12]. Nowadays, most of the experimental and theoretical investigations are in favor of the 

second model[10–12,74]. Our results prove that 180°-domain walls in lithium niobate are 

preferential locations for electronic and polar defects. We therefore believe that our result 

strengthen the interpretation in which the conductivity at domain walls in lithium niobate is due 

the extrinsic contributions of defects.  
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Since the frequency shifts at domain walls observed with Raman spectroscopy remain the 

same under illumination, we conclude that UV-light does not influence the strain at domain 

walls via the photostrictive effect. 
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IV. Low-energy electron imaging of 
domain walls in lithium niobate 

 

In the previous chapter, we investigated bulk macroscopic and microscopic properties of 

lithium niobate and the influence of domain walls on them. However, in ferroelectrics the 

surface is often more important. The polar discontinuity at the bulk-terminated surface gives rise 

to a net fixed surface charge. This charge, and the different mechanisms by which it may be 

screened, can play a crucial role in, for example, surface reactivity[179] or in the interface 

chemistry and electronic structure of ferroelectric capacitors[180]. Domain walls can also give rise 

to specific surface electronic and chemical properties, like a decrease of the band gap and an 

enhancement of the polarity at the intersection of domain walls and surfaces[181]. The influence 

of the surface on effective domain wall widths in ferroelectrics has also been investigated[182].  

A recently introduced technique for studying the surface of ferroelectric materials is low 

energy electron microscopy (LEEM). It provides full field, non-contact imaging of surface 

potentials with a spatial resolution typically better than 20 nm[92]. The transition between 

reflected and backscattered electrons provides a direct measure of the surface potential, which 

can be related to the surface polarization charge of ferroelectric domains[34,35,183]. Attempts to 

determine the surface polarization charge from a single image have also been made[184–186]. 

However, a detailed description of the relationships between the electron optics settings of the 

microscope, the intensity contrast and the measured surface potential maps is still required for 

in-depth studies of ferroelectric surfaces.  

In this chapter, we investigate domains and domain walls in the prototypical uniaxial 

ferroelectric, magnesium-doped lithium niobate, where only two domain orientations are 

permitted, providing a simple reference material for LEEM experiments. The aim is to clarify the 

contrast mechanisms arising in the presence of domain surface charges and domain walls. In the 

first part, we characterize the surface by PFM. In the second part, we show that a shift in the 

MEM-LEEM transition is a reliable way to identify the polarization of domains. Then we show 

that out-of-focus imaging conditions produce intensity contrast inversions. In the last part we 

experimentally evidence the presence of stray, lateral electric fields at domain walls. 
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1. State of the art 

 
Experiments performed on ferroelectric materials with LEEM focus on two topics: (1) 

measuring the polarization in ferroelectric domains and its evolution with temperature or film 

thickness; (2) identifying the screening mechanisms and their link with the domain structure[92]. 

Measure of the polarization. Ferroelectric domains are routinely investigated with PFM in 

order to determine the domain polarization[187]. Cherifi et al. compared the PFM and LEEM 

response of 180°-domains in thin films of BiFeO3, Pb(Zr,Ti)O3 and BaTiO3. They show a perfect 

agreement between both techniques down to sub-micron scale[186]. However, when one goes to 

ultrathin films (5 nm or less), direct electrical measurements of the hysteresis loop with PFM are 

a challenge because of the leakage current. Therefore, Rault et al. took advantage of the LEEM 

to measure the polarization of BiFeO3 films down to 3.6 nm. The measured polarization decays 

strongly below a critical thickness of 5-7 nm as predicted by continuum medium theory[183]. One 

advantage of using LEEM is also the ability to perform measurements in-situ, as a function of 

temperature[184], under an electric field[188] or under illumination[34]. For example, the 

ferroelectric to paraelectric transition has been investigated in single crystals of barium 

titanate[184]. It is characterized by the disappearance of several bright lines, signatures of the 

ferroelectric domains[184,185]. 

Influence of screening. The surface potential does not depend only on the polarization but 

also on the screening charges. Krug et al. have measured the surface potential of domains in a 

Pb(Zr,Ti)O3 film before and after cleaning of the surface by in-situ annealing in oxygen. They 

show that the surface potential difference between domains increases after cleaning and 

attribute it to a reduction of the carbon surface contamination. They argue that the carbon 

contamination is higher in Pdown domains[35]. Wang et al. have observed photo-carrier and water 

adsorbate screening effect on a clean, vacuum annealed BaTiO3 surface. In particular they show 

that the surface potential difference between domains is reduced under UV-illumination by 

photo-generated carrier screening (electrons for Pup domains and holes for Pdown domains)[34]. 

All these investigations focused on domain imaging. In order to study domain walls which 

are clearly at the limit of the spatial resolution of LEEM, a good understanding of the 

relationships between the electron optics settings of the microscope, the intensity contrast and 

the measured surface potential maps is required. Therefore, we investigated the variation of the 

MEM-LEEM transition and the influence of out-of-focus imaging conditions before measuring 

the intensity profile at domain walls. 
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2. Surface preparation 

 
The sample was a (10x10) mm2 5 mol% Mg-doped single crystal of lithium niobate (z-cut) 

supplied by HC Photonics Corp. It was poled by the manufacturer with a regular pattern of 

ferroelectric domains: they cross the entire sample in the y-direction and are 9.3 μm wide. The 

sample was then chemically polished with hydrofluoric acid (HF). Immediately prior to insertion 

in the ultra-high vacuum LEEM system (base pressure better than 1x10-9 mbar), the surface was 

cleaned via 5 minutes ozone exposure. This ultraviolet/ozone cleaning is an effective method to 

remove organic surface contamination[189]. 

Since the band gap of lithium niobate is large (3.8 eV[190]), electrons penetrating the sample 

can easily induce charging, distorting the LEEM images. Heating the sample up to 300°C during 

the measurement increases the electron mobility and avoids these charging effects. The Curie 

temperature of Mg:LNO is 1200°C[133], therefore the sample remains at all times in the 

ferroelectric phase and conserve the same domain structure state. 

3. Characterization of the surface by piezoelectric force microscopy 

 
PFM images were obtained using an Innova (Bruker) microscope, after the LEEM 

experiments. PFM image acquisition occurs via contact mode using a 4V AC bias voltage applied 

to a Cr/Pt-coated cantilever with a spring constant of 40 N/m (Tape300E from BudgetSensors). In 

order to locally reverse the polarization, -200 V were applied with a home-made setup using a 

Keithley 2410. Silver paste on the rear of the sample provides a back electrode. 

The domain structure of the sample was measured by PFM. Figures 4.1(a) and (b) show the 

sample topography and PFM phase signal, respectively. The 180°-phase difference measured in 

PFM identifies domains of antiparallel polarization. Adjacent antiparallel ferroelectric domains 

have a height difference of 50 +/- 20 nm, due to the preferential etching of Pup surfaces. The 

profile extracted from the topography image, as indicated by the red line in Fig 4.1(a) and 

displayed in Fig. 4.1(c), indicates smooth variation of height between domains with a slope 

always less than 2.25%. The rms roughness in the domains is lower than 0.3 nm. Neither the 

height variation nor the roughness are expected to contribute to contrast in the low energy 

electron images. 
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Figure 4.1| PFM characterization of the surface. (a) PFM-topography image of the sample. (b) PFM-phase 

image of the same area. (c) Height profile along the red line on the topography image, and the 

corresponding local slope. 

In order to confirm the assignment of up/down polarization, we applied -200 V to the PFM 

tip to locally reverse the polarization of the surface. A negative bias on the tip creates positive 

charges below the surface and thus a Pup state. Figure 4.2(a) shows the PFM-phase image after 

poling. The dark domain does not change, whereas poling reverses part of the initially bright 

domain. Hence, in Fig. 4.2(a) the bright areas correspond to Pdown and the darker areas to Pup. 

Figure 4.2(b) plots the phase profile going from Pdown – Pup – Pdown, showing the characteristic 

PFM-phase of each domain. Figure 4.2(c) shows the out of plane component of the PFM-

amplitude signal, proportional to the piezo-response. Furthermore, it can be seen that at each 

domain wall the amplitude is minimum, as expected for a 180° domain wall separating Pup and 

Pdown domains where at a single point the PFM signal is averaged over about 20 nm[45]. Given the 

typical nanometric domain wall width, the amplitude measurement at the domain wall will 

include equal contributions from both domains. 
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Figure 4.2| Domain writing with PFM. (a) PFM-phase image of the sample where -200 V was applied. (b) 

PFM-phase profile extracted along the blue line on Fig. 4.2(a). (c) PFM-amplitude image of the same area. 

(d) PFM-amplitude profile extracted along the blue line of Fig. 4.2(c). The position of the domain walls are 

indicated by dotted lines. 

4. Evaluation of the surface potential 

4.1. MEM-LEEM transition 

Figures 4.3(a,b) display MEM images at start voltages of 1.15 V and 1.75 V. In Fig. 4.3(a,b), 

Pup and Pdown domains appear as bright and dark stripes, respectively. Figures 4.3(d) and (e) 

display the LEEM images in the same area, at start voltages of 2.10 V and 2.70 V, respectively. 

Figure 4.3(c) shows the electron image acquired in the region close to the MEM-LEEM transition: 

the image sharpness and the intensity decrease with respect to the MEM images while both 

remain higher than the LEEM images. The electron images in LEEM are less sharp than in MEM. 

In LEEM, electrons penetrate the sample surface and although the measurements are carried 

out at 300°C, some charging in the near surface region remains a possibility. 

At 1.75 V, the contrast between domains reverses with respect to that at 1.15 V. Similarly, in 

LEEM at 2.70 V, the contrast is inverted with respect to that at 2.10 V. These contrast inversions 

are the signature of a shift in the MEM-LEEM transition between Pup and Pdown domains, as can 

be seen from Fig. 4.3(f) which plots the electron intensity recorded in Pup and Pdown domains as a 

function of SV. At low SV, the reflectivity is maximized; hence all electrons are reflected before 

reaching the sample surface. For SV above 1.20 V the intensity starts to decrease as incident 
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electrons start to have enough energy to overcome the surface potential barrier and penetrate 

the sample surface. The domain for which the intensity decreases at lower start voltage has a 

lower surface potential, corresponding to the presence of positive surface charge, i.e. an 

upwards pointing polarization (Pup)[34,35,92,183]. We can therefore identify the polarization of the 

domains, as shown in Fig. 4.3(b). The LEEM and PFM experiments occur in the same area (thanks 

to surface defects constituting physical markers) and confirm the polarization deduced from the 

two experiments. At SV = 1.60 V, the intensity curves of the Pup and Pdown domains cross giving 

rise to contrast inversion in the electron image. The MEM-LEEM transition for Pup (Pdown) is at 1.8 

V (1.9 V). The shift in the MEM-LEEM transition between Pup and Pdown domains, and therefore 

the difference in surface potential, is ~100 mV. 

 

Figure 4.3| MEM-LEEM transition. MEM images at start voltages of (a) 1.15 V and (b) 1.75 V. Same area 

observed in the region close to the MEM-LEEM transition at start voltage of (c) 1.90 V and in LEEM at start 

voltages of (d) 2.10 V and (e) 2.70 V. (f) Electron intensity curves extracted from Pup and Pdown domains. 

The difference in surface potential can be compared with work functions and surface 

potential values obtained on lithium niobate by photoelectron emission microscopy (PEEM) and 

electrostatic force microscopy (EFM), respectively. 
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The work function (Wf) and surface potential (Sp) contrast should be of the same order but 

of opposite sign, as illustrated in Fig. 4.4. Due to Coulomb interactions, electrons are attracted 

by positive polarization charges. Thus, electrons from the LEEM gun penetrate in Pup domains 

(Fig. 4.4(a)) while photo-electrons generated in PEEM are blocked below the surface (Fig. 4.4(b)). 

Respectively, electrons from the LEEM gun are reflected above the surface of Pdown domains 

while photo-electrons generated in PEEM overcome the work function barrier of Pdown domains. 

This statement has been confirmed experimentally on a BiFeO3 thin film where a work function 

difference between Pup and Pdown domains of - 300 mV was found in PEEM and a surface 

potential difference of + 450 mV in LEEM[183]. 

 

Figure 4.4| Influence of polarization charges on LEEM and PEEM contrasts. Schematic of the interaction 

between electrons and ferroelectric domains in (a) LEEM and (b) PEEM. 

PEEM measurements on congruent lithium niobate[191] have yielded a work function of 

~4.6 V for Pdown domains while that of Pup domains was greater than ~6.2 V, i.e. a work function 

contrast difference above 1.6 V, one order of magnitude larger than our value. The surface 

potential difference can also be extracted from EFM studies. EFM measurements performed on 

stoichiometric lithium niobate in high vacuum were used to study the influence of external 

screening charges on the evolution of the surface potential[192]. The contrast was shown to 

linearly decrease - and even inverse - with time due the accumulation of screening charges. The 

same variations were observed with increasing temperature due to a reduction of polarization 

charges through the pyroelectric effect.  
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4.2. Influence of screening 

The difficulty in comparing experimental values of surface potentials underlines the key role 

of screening, even in ultra-high vacuum experiments[31], as previously shown in BaTiO3
[34]. 

However, it is worth noting that a difference of ~100 mV between domains is of the same order 

of magnitude as observed in LEEM experiments on BiFeO3
[183], Pb(Zr,Ti)O3

[35] and BaTiO3
[34]. 

In order to discuss the screening mechanisms (internal or external) involved at the surface of 

lithium niobate, we perform simple calculations based on Maxwell’s equations, as derived by 

Kalinin et al.[31]. The surface with periodic 180°-domain structure is approximated by a double-

layer of charges with a height h: a layer of screening charges and a layer of polarization charges, 

as shown in Fig. 4.5. The dielectric constant is ε0 above the surface, ε1 between z = 0 and z = -h, 

ε2 in the material. In the case of complete screening by adsorbates, ε1 = 80 (permittivity of 

water). For internal screening ε1 = ε2. 

 

Figure 4.5| Screening charges for a periodic 180°-domain structure. In the unscreened case, only 

polarization charges are at the surface. In the screened case, a double-layer of polarization and screening 

charges occupy a height h near the surface. 

The potential above the surface, in the double-layer and in the bulk can be written as a 

Fourier series, since the domain structure is periodic[31]. 

In the unscreened case, the surface potential difference between Pup and Pdown domains is: 

    
    

             (4.1) 

with    
     

       
 
           , L = 9.3 μm the domain size, ς = 80 μC/cm2 the surface 

charge[175], ε0 the vacuum permittivity,           = 31 the average permittivity of lithium 

niobate (εe and ε0 are the extraordinary and ordinary permittivity, respectively)[168]. The 

calculation gives a surface potential difference of 9748 V, five orders of magnitudes above our 
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experimental value! As this is clearly not possible, the surface charge must be at least partially 

screening or the depolarizing field resulting from the surface charge must be compensated. 

In the case of a completely screened surface: 

    
    

           
  (4.2) 

where h denotes the height of the double-layer, corresponding to polarization charges and (i) 

polar adsorbates above the surface (such as H2O with   = 80) or (ii) a depletion layer below the 

surface (  =    = 31). Using Eq. 4.2, a potential difference of 100 mV between domains is 

equivalent to a layer of adsorbates of 0.9 nm or a “skin” depletion layer of 0.4 nm. The former 

estimate is reasonable for a molecular adsorbate layer. The latter is also reasonable for a “skin” 

layer in a ferroelectric. As order of magnitudes, a “skin” layer of 1-2 nm was found in bismuth 

ferrite[193,194]. The main result of the calculation is hence that the surface can be completely 

screened. However the main mechanism of screening cannot be identified in this case. 

Furthermore, the calculation does not take into account surface and near-surface structural 

changes, such as rumpling (height difference between cations and oxygen anions), relaxation 

and reconstruction, while it is well known that they occur at virtually all oxide surfaces[195–198]. 

For example, in BaTiO3, the first four surface atomic layers present rearrangement that reduces 

the surface polarization[196]. This rearrangement also change in the presence of adsorbates at the 

surface, such as water[197]. Thus, several screening mechanisms can combine to stabilize the 

surface. 

5. Out-of-focus imaging of charged regions 

 
Usually, MEM-LEEM images are only taken at one focus value. Here, we will show that a 

systematic out-of-focus imaging can provide additional information, especially for large band 

gap samples. For this, we investigated the intensity contrast further by changing the focus value 

of the objective lens at a constant SV = 1.50 V. The results are presented in Fig. 4.6. In LEEM 

setup the electron lens are magnetic, the lens setting is therefore measured by the coil current 

(mA). The higher the coil current, the stronger the focusing (and the shorter the lens focal 

length). In under-focusing conditions, Pdown domains are bright while Pup domains are dark 

(Fig. 4.6(a)). If the focus value increases, Pdown domains become darker and increase in size, while 

Pup domains become brighter and decrease in size (Fig. 4.6(b) and (c)). At over-focus values, Pup 

domains are bright while Pdown domains are dark (Fig. 4.6(c)). The best focus is defined at the coil 
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current where the defects appear as white dots surrounded by black circles. This is also the 

image with the lowest contrast between domains. 

 

Figure 4.6| Out-of-focus imaging. (a) Under-focus (b) best-focus and (c) over-focus images of the same 

area taken at 450°C. (d) Evolution of the domain sizes with focus values expressed in coil current (mA). 

Solid lines are linear fit of slope +0.08 μm/mA and -0.07 μm/mA. 

Nepijko et al. demonstrated that if the surface potential difference between a negatively 

(positively) charged area and a substrate increases, the image size of the charged area increases 

(decreases) and its intensity decreases (increases)[94]. This is because the lateral field near the 

edge of the charged regions sweeps electrons outwards or inwards, respectively, making the 

pattern appear bigger or smaller in the image and as a consequence changing the image 

intensity. Varying the objective from under to over focus is similar to varying the surface 

potential difference between regions with different surface charge: the higher the surface 

potential difference or the further out of focus, the stronger the distortion of the image. The 

focusing/defocusing is also responsible for a contrast inversion between Pup and Pdown domains 

because the same number of electrons is imaged in a smaller or larger area, changing the 

intensities. Note that this does not represent a shift in the MEM-LEEM transition. Simulations 
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show that over-focusing, for an odd number of converging lenses[94], a negatively charged area 

(such as Pdown) is dark on the screen[199,200]. Fig. 4.6(c) concurs with simulations. 

Figure 4.6(d) shows the evolution of the imaged domain sizes with focusing expressed as 

current in the coil of the magnetic lens. The size of the field of view decreases with increasing 

focus values; we have therefore calibrated the scale for each focus value by using the distance 

between two defects. The domain size in the image changes linearly (straight lines in Fig. 4.6(d)) 

for the modest changes in focus of a few percent: it decreases for Pup and increases for Pdown. As 

a result, the intensity of Pdown decreases with increasing domain size because the same number 

of electrons is now spread over a larger area in the image.  

Since the variation of domain size depends on the surface charge, it can be used to identify 

the domain polarization. This method can therefore be useful to characterize samples with a 

large band gap where it is impossible to reach the MEM-LEEM transition because of charging 

even at low start voltage. It could also be used to identify the polarization of, for example, 

kinetic structures appearing across a phase transition using just two focus values. 

Although the focus value changes the intensity contrast between domains, it qualitatively 

does not change the MEM-LEEM transition. This can be checked by recording image series as a 

function of SV in both under-focusing and over-focusing conditions. The value of the surface 

potential for each pixel is then determined by a fit of a complementary error function to the 

MEM-LEEM curve. The maps of the surface potential over the full area are shown in Fig. 4.7. The 

value found for the surface potential is always lower in Pup domains with respect to Pdown by 

~80‐100 mV, irrespective of the focus value, although the absolute values may shift. This makes 

the measurement of the surface potential difference between Pup and Pdown robust against slight 

(here about 1%) defocusing. 
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Figure 4.7| Surface potential maps. Two focus values: (a) 1308 mA (b) 1321 mA. 

6. Signature of domain walls 

 
In MEM, domain walls appear as successive bright and dark lines extending over 2 μm in 

width. The intensity profiles extracted across a domain wall within the blue rectangles on Fig. 

4.3(a) and (c) are shown in Fig. 4.8(a). The maxima of the intensity correspond to the bright lines 

in the image while the minima correspond to the dark lines. The latter are on the Pdown side of 

the domain wall while the bright lines are on the Pup side. In LEEM (Fig. 4.3(c)), the dark/bright 

order across the domain wall is the same as in MEM whereas the domain contrast inverts with 

SV.  

 

Figure 4.8| Signature of domain walls. (a) Intensity profile in MEM (SV = 1.15 V) and LEEM (SV = 1.90 V). 

(b) Surface potential profile across a domain wall determined from the MEM-LEEM curves for over- and 

under-focus values. 
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The difference in surface charge between domains gives rise to stray fields, located at 

domain walls, as shown in Fig. 4.9. If the stray field is strong enough compared to the extractor 

field (6.67 kV/mm) there will be a significant lateral component to the electric field at the point 

of electrons take-off and electrons will be deviated from Pdown towards Pup domains, as in Fig. 

4.8(a). As a result, near the vicinity of the domain wall, there are fewer electrons in Pdown than in 

Pup domains, consistent with the successive changes of intensity where dark lines are near the 

Pdown domains.  

The deviated electron intensity is represented by the areas below the “bright” peak and the 

“dark” peak in green on Fig. 4.8(a). They are approximately equal, consistent with a deviation of 

the electrons from the dark to the bright area in a direction parallel to the surface. The fact that 

the total number of electrons is conserved shows that at SV = 1.15 V, both areas are still in the 

MEM regime. 

 

Figure 4.9| Influence of the lateral electric field. A schematic showing the lateral electric fields developing 

at the surface in the vicinity of domain walls and the deviation of the electron beam. 

We have also tested the effect of under- and over-focusing on the surface potential contrast 

at domain walls. Surface potential inversion occurs when changing from under- to over- focus 

conditions, as shown in Fig. 4.7(b) whereas the contrast between Pup and Pdown domains is 

qualitatively unchanged far from the domain walls. We believe that the surface potential 

contrast inversion at the domain walls is an example of caustic effects. It is due to sharp 

variations in electron turning distance from the surface: depending on the local surface 

potential, electrons are reflected at a different height above the surface. The rapidly varying 

local surface potential changes the z motion of the electrons and therefore the image intensity 

in MEM. In particular, if the electron trajectories are strongly modified, electron rays cross and 

give rise to very bright features in MEM images known as caustics[199,201]. These changes of 

intensity do not have the same magnitude for every SV. Therefore, at domain walls, the 
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complementary error function returns a different value for the MEM-LEEM transition as a 

function of focusing. 

The quantitative difference in surface potential between under- and over-focusing far from 

the domain walls is due to the fact that we image charged regions and as discussed with respect 

to Fig. 4.6 the intensity changes as a function of focusing and hence the surface potential values. 

However, far from the domain wall, there is no rapidly changing value of the local surface 

potential and therefore no surface potential contrast inversion with focusing. 

LEEM is sensitive to surface physical topography, since it gives rise to local electric fields that 

modify the electron trajectories. For example, height differences resulting from differential 

etching in ferroelectrics[202] might give rise to intensity contrasts on the screen. Following 

Nepijko et al.[94–96] both the aspect ratio and the absolute height difference are important in 

determining image intensity. Comparison between Fig. 4.2 (a) and Fig. 4.3(a) already shows that 

the smooth variation of height between domains is not observed on the LEEM images where the 

domains appears as sharp rectangles with uniform intensity. This ensures that topography plays 

a negligible role in contrast formation in the particular case of chemically etched, Mg-doped 

lithium niobate.   
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7. Conclusion 

 
We used mirror and low energy electron microscopy to carry out a sub-microscopic 

characterization of the domains and domain walls at the surface of magnesium-doped lithium 

niobate. We showed that the MEM-LEEM transition is a robust way to identify the polarization 

of ferroelectric domains and we demonstrated that out of focus settings can be used to 

determine the domain polarization. 

At domain walls, a local stray, lateral electric field arising from different surface charge 

states was observed. This field is measurable as soon as it is strong enough compared to the 

extractor field, meaning that LEEM is currently the best technique to study this field. We also 

showed that the surface potential contrast at domain walls can be inverted by changing from 

under- to over-focusing conditions. We suggest that this is the signature of variations in electron 

turning distance due to rapidly varying local surface potential and is an example of caustic 

effects. 
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V. Polar domain walls in calcium titanate 
 

By symmetry, ferroelastic domain walls in calcium titanate are polar. The polarity has been 

confirmed by several simulations[75,203,204] and experiments[18,19]. However, these are evidences of 

a static polarization at domain walls. Only Salje et al. simulated the dynamics of polarization 

when an electric field is applied[20]. They show that the polarization rotates if an electric field 

E > 5 kV/mm is applied perpendicular to the initial polarization direction of the domain wall. 

Weaker ac-electric fields could lead to mechanical responses of the polar domain walls 

through the (inverse) piezoelectric effect. A similar behavior was reported for polar domain walls 

in strontium titanate (SrTiO3)
[76]. A small ac-voltage was applied across the sample. It induced 

oscillations of domain walls, which in turn created local strain fields. These variations of strain 

were detected with a piezoelectric transducer. 

We have discussed in the previous chapter the surface charge states of ferroelectric domains 

and the possible screening mechanisms. Similarly, it is important to identify the surface charge 

for different domain walls and to see if it can be externally screened[205]. 

This chapter is structured as follows: in the first part, the general properties of calcium 

titanate are reviewed. In particular, we show how domain walls can be identified by their angle 

with respect to specific crystallographic directions. Then, we present a resonant piezoelectric 

spectroscopy investigation of a single crystal of calcium titanate with a high density of domain 

walls. The goal is to probe the piezoelectric response of polar domain walls. In the last part, we 

show the MEM signature of polar domain walls in calcium titanate and its evolution (i) when low 

energy electrons are injected into the surface regions and (ii) after annealing. This allows us to 

identify the direction of the polarization at domain walls and to investigate the influence of 

screening charges. 
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1. Calcium titanate 

1.1. Structure 

Calcium titanate (CaTiO3) undergoes a series of phase transitions from cubic (Pm  m) to 

tetragonal (I4/mcm) at 1523 K followed by an orthorhombic (Pnma) structure below 1373 – 

1423 K[206]. In the high-temperature cubic structure, Ca sits at cube corners positions, Ti at body-

centered positions and O at face-centered positions. The TiO6 octahedra are regular with 90° 

angles and six equal Ti-O bonds[206].  

At room temperature, the orthorhombic parameters are a = 5.45 Å, b = 7.65 Å and c = 5. 39 

Å[206]. The oxygen octahedra are tilted along the three directions of the cubic unit cell, with a tilt 

system a-b+a- using Glazer’s notation[207]. This notation traduces equal tilts about [100] and [001] 

directions with a different tilt about [010+. The superscript “-” indicates that successive 

octahedra along *100+ and *001+ have tilts of opposite signs whereas the superscript “+” 

indicates that successive octahedra along [010] have the same tilt. The tilting of the octahedra is 

illustrated in Fig. 5.1(a,b). φx
- stands for the tilt angle of the octahedron along *100+ and φy

+ for 

the tilt angle along [010]. 

 

Figure 5.1| Tilt system in calcium titanate. Projections of the crystal structure viewing tilt angles along (a) 

the [100] and (b) [010] directions. The blue circles represent Ca atoms. The Ti and O atoms are located at 

the center and at each corner of the TiO6 octahedra, respectively. Adapted from [208]. 

The space group Pnma is centrosymmetric and therefore CaTiO3 is not polar[209]. The 

transition from Pm  m to Pnma is ferroelastic since it induces a change of crystal family[26]. 
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Therefore, the transition allows the formation of ferroelastic domains in the orthorhombic phase 

of CaTiO3, as experimentally observed[210]. 

1.2. Spontaneous strain tensor 

It is convenient to characterize CaTiO3 in the ferroelastic state by the symmetric second-rank 

spontaneous strain tensor[26]. The coefficients of this tensor for the transition from Pm  m to 

Pnma are given by[211]: 
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where a, b, c are the orthorhombic lattice constants at room temperature. The lattice constant 

of the high-symmetry cubic phase a0 is approximated as the average values of the lattice 

parameters in the orthorhombic phase[72], i.e.  
   

 
 

 

 
. Extracting the lattice constants from XRD 

data[206], we obtain e11 = -1.2 x 10-3, e22 = 5.8 x 10-4 and e23 = 5.5 x 10-3. 

 

Figure 5.2| Orthorombic and pseudocubic axes. Relationship between unit-cell orientation for Pnma 

(black) and the reference axes (X,Y,Z) of the Pm  m structure (blue). Adapted from [211]. 

Here spontaneous strains are expressed in the pseudocubic axes. Figure 5.2 shows the 

relationships between the orthorhombic axes (x, y, z) and the pseudocubic axes (X, Y, Z). The 
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orthorhombic axis y is set parallel to pseudocubic axis X. The orthorhombic axes x and z are at 

45° from Y and Z in the YZ plane. 

1.3. Orientation of ferroelastic domain walls 

Ferroelastic domain walls are oriented in such a way as to maintain strain compatibility 

between two adjacent domains. Based on this definition, the allowed orientations of the domain 

walls for the transition Pm  m - Pnma are given by the equations in table 5.1. Some of them 

depend on the coefficients of the spontaneous strain tensor[43]. 

Once the equations of the domain wall planes are known, it is possible to calculate the angle 

between the domain walls and (i) the surface (h’k’l’) of a sample and (ii) a crystallographic 

direction [hkl] in the surface (h’k’l’). Hereafter, we refer to these angles as inclination and 

azimuthal angles, respectively, as shown in Fig. 5.3. 

Figure 5.3| 3D schematic of a domain wall. αa and αI stand for azimuthal and inclination angles, 

respectively. 

The inclination angle is given by: 
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The intersection of the domain wall with the surface (h’k’l’) is a line defined by the system of 

equations: 

 
                

                       
   (5.6) 

The azimuthal angle is then the angle between this line and the crystallographic direction 

[hkl]. 
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1.4. Twin angle 

During the phase transition from the cubic to the orthorhombic phase, the spontaneous 

deformation induces a deformation of the unit-cell, as shown in Fig. 5.4(a). The high-symmetry 

cubic cell is deformed to a parallelepiped in the orthorhombic phase. We focus on the shear 

deformation, characterized by the angle φ/2, which is equal to the off-diagonal coefficient e23 of 

the spontaneous strain tensor in the approximation of small angles. In order to minimize the 

elastic energy at the intersection between two adjacent ferroelastic domains, domains are 

rotated by an angle φ, called the disorientation angle. If the surface of the cubic phase is flat, this 

angle induces a factory roof-like deformation of the surface in the orthorhombic phase. The 

angle between two adjacent domains is therefore equal to π + 2φ, as shown in Fig. 5.4(b), which 

is also equal to π + 4e23. 

 

Figure 5.4| Angle between adjacent domains. (a) Projection of the cubic and the orthorhombic unit cells 

on the YZ plane. φ is  the disorientation angle. (b) Disoriented domain states joining in a stress-free plane. 

The yellow line symbolizes the surface in the cubic phase. 

In the case of an initially flat surface (001) in the cubic phase, e23 = 5.5 x 10-3 and the angle 

between adjacent domains in the orthorhombic phase is equal to 181.2°. The angles for other 

surfaces are obtained by expressing the spontaneous strain tensor in the new set of axes. 

  



106 V. Polar domain walls in calcium titanate 

 

 
  

2. Piezoelectric response as seen by resonant piezoelectric 

spectroscopy 

 

We present a resonant piezoelectric spectroscopy (RPS) investigation of a single crystal of 

calcium titanate with a high density of domain walls. The goal is to probe the piezoelectric 

response of polar domain walls. 

2.1. Experimental conditions 

The single crystal of calcium titanate was grown by the floating-zone technique with 

powders of CaCO3 and TiO2 as starting materials. The RPS measurement was performed by 

exciting the sample between 100 kHz and 1200 kHz by an ac-voltage of 25 V. Spectra were 

acquired on heating between: 10 K and 100 K in steps of 3 K, 100 K and 155 K in steps of 5 K, 

155 K and 250 K in steps of 3 K, 250 K and 310 K in steps of 5 K. 

 

Figure 5.5| Mechanical resonances induced by the piezoelectric effect. (a) All resonances (in blue during 

cooling, in red during heating). (b) Resonance near 870 kHz. The y axis is amplitude. The individual spectra 

have been displaced in proportion to the temperature at which they were collected, and the axis label is 

shown as temperature. 
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2.2. Natural frequencies of the sample 

Several mechanical resonances are observed (Fig. 5.5(a)). We focus our analysis on well 

defined resonances around 870 kHz (Fig. 5.5(b)). They shift to lower frequencies and show 

variations of amplitude with increasing temperatures. Since they are induced by an ac-voltage, 

they correspond to a piezoelectric response of the sample. 

In order to get a better understanding of the nature of the mechanical resonances, we fit the 

resonances with an asymmetric Lorentzian and extract the square frequency f2 (proportional to 

the elastic moduli) and the inverse mechanical factor Q-1 (proportional to the elastic losses). 

Both parameters are plotted as a function of temperature in Fig. 5.6. The square frequency 

decreases almost linearly with increasing temperature. The elastic losses are low between 10 K 

and 100 K but show a rapid increase above, before reaching a maximum around 3.0 x 10-3 

between 225 K and 300 K. 

 

Figure 5.6| Temperature evolution of a resonance near 870 kHz. Frequency square is indicated by filled 

circles and the inverse mechanical factor by empty circles. 

We compare these results with previous studies on mechanically induced resonances in 

CaTiO3. A polycrystalline sample was studied by Resonant Ultrasound Spectroscopy[212]. The 

elastic moduli decrease almost linearly with increasing temperature and a clear increase of the 

inverse mechanical factor is observed around 300 K. We observe the same trends in RPS. The 

low-temperature elastic behavior of a polycrystalline sample was also studied by pulse-echo 
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ultrasonic technique[213]. Longitudinal and transverse ultrasound velocities are proportional to 

the frequency of RPS resonances: they decrease almost linearly with increasing temperature. 

The attenuation coefficient is proportional to the inverse mechanical factor of the RPS 

resonances: they both increase above 100 K. The mechanical resonances excited by the 

piezoelectric effect in RPS are therefore similar to the mechanically induced resonances. This is a 

strong indication of the reproducibility of the measurements. However, since CaTiO3 is not 

piezoelectric[75] the natural frequencies of the sample cannot be directly excited by the ac-

voltage. 

2.3. Oscillation of polar domain walls 

Piezoelectric excitations of the natural frequencies of ferroelastic or non-ferroelectric 

samples have been already explained by several mechanisms: 

(i) In SrTiO3, the applied ac-voltage leads to the oscillation of polar domain walls 

through the piezoelectric effect, which creates strain fields around domain walls[76]. 

The resulting elastic wave becomes resonant if its frequency corresponds to a 

natural frequency of the sample. This mechanical resonance condition enhances 

considerably the amplitude of the elastic wave and explains why RPS is sensitive to 

domain walls, even if they represent only a small fraction of the sample. 

(ii) In the incipient ferroelectric (non-ferroelastic) KTaO3, defects are polars. At high 

temperatures they are randomly oriented and not detected with RPS[214]. With 

decreasing temperature, switchable defect dipoles freeze in parallel arrangements 

and induce macroscopic polarity. This polarity is accompanied by an increase of the 

piezoelectricity. The ac-voltage applied induces a coherent movement of these 

dipoles and gives rise to a RPS signal. 

(iii) In the cubic phase of BaTiO3, the applied voltage interacts with piezoelectric regions 

inside a precursor structure and generates mechanical resonances[102]. This 

microstructure corresponds to dynamic tweed. The same mechanism is used to 

explain the presence of RPS resonances in the cubic phase of Pb(Sc,Ta)O3
[102]. 

Tweed and polar defect structures have not been reported in the literature on CaTiO3. 

Therefore, given the experimental evidences for polar domain walls in CaTiO3
[18,19], it is likely 

that the RPS resonances are induced by polar - and hence piezoelectric - domain walls, as 

described in mechanism (i). However, the exact domain walls response to the electric field 

cannot be deduced from our experiment. It can correspond to a lateral movement of the 



2. Piezoelectric response as seen by resonant piezoelectric spectroscopy 109 

 

 

domain walls, a tilting out of their normal crystallographic plane, an advance/retraction of a 

needle domain or local bowing, as previously discussed in LaAlO3
[215]. 
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3. Surface investigation by low energy electron microscopy 

 

We use LEEM to investigate domains and domain walls in a single crystal of calcium titanate. 

The aim is to identify polarization surface charges near domain walls and to study the interaction 

of polar domain walls with low energy electrons. 

3.1. Surface preparation 

The surface was polished at room temperature with diamond paste and colloidal silica in 

order to reach a RMS roughness of 0.45 nm. The sample was then annealed under oxygen at 

1350°C during 32h. After this treatment, a clear ferroelastic domain structure was optically 

observed in the sample (Fig. 5.7). The orientation of the sample was determined by Laue 

diffraction. Before the LEEM experiment, the sample was annealed in ultra high-vacuum at 

about 300°C during 2 hours. 

 

Figure 5.7| Optical micrograph of the surface, after annealing. 

3.2. Surface orientation and stoichiometry 

The Laue photographs were recorded in backscattering geometry using molybdenum source 

radiations (0.4 Å < λ < 2 Å). Fig. 5.8 shows the Laue pattern recorded at 8° off from the surface 

observed in LEEM. The [111]pc and [112]pc axes in pseudocubic coordinates (pc) are clearly 

identified, meaning that the surface observed in LEEM is perpendicular to the [111]pc axis with a 

miscut of 8°. 
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Figure 5.8| Laue photograph. The sample is observed along the [111]pc axis. 

The chemistry of the surface was studied by X-ray photoelectron spectroscopy (XPS). The 

experiment was carried out using an ARGUS spectrometer designed by Scienta Omicron with 

monochromatic Al Kα (hν = 1486.7 eV). The analyzer pass energy of 20 eV gave an overall energy 

resolution (photons and spectrometer) of 0.35 eV. The base pressure was 2 x 10-10 mbar. 

Figure 5.9(a) shows the XPS survey with the Ca 2s, Ca 2p and Ti 2p peaks from the sample. 

Peaks of Mo 3p are from the sample holder. The peak corresponding to the carbon is within the 

noise, meaning that the surface carbonate contamination is very low. Figure 5.9(b) shows the 

Ti 2p XPS spectrum: a doublet is observed because of the spin-orbit coupling[216]. It is used to 

monitor the concentration of oxygen vacancies[217]. A single, symmetric component is observed 

for the Ti 2p3/2 at 458.6 eV (FWHM of 0.65 eV) showing that all Ti is present in a fully oxidized Ti4+ 

state. We can therefore exclude a significant presence of oxygen vacancies which would donate 

electrons, reducing Ti4+ to Ti3+, characterized by a low binding energy shoulder. The sample is 

therefore close to stoichiometric. 
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Figure 5.9| XPS spectra of CaTiO3 (111). (a) XPS survey. (b) The purple peak is the best, single component 

fit to the Ti 2p3/2 peak. 

3.3. Domain surface topography 

The domain structure of the sample has been first characterized with an optical microscope 

working in reflection, as shown in Fig. 5.10. Since the orientation of the sample is known, we 

measure the azimuthal angle between the domain walls and the [1-10] axis. Four angles are 

observed: 13°, 40°, 63° and 133°. Given the spatial resolution of the optical imaging, the angular 

precision is of ± 1°. 

 

Figure 5.10| Optical micrograph of the surface. Angles between domain walls and the [1-10] axis are 

indicated. 
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Figure 5.11 shows a 3D landscape acquired by atomic force microscopy (AFM). The valleys 

(V) and ridges (R) of the domain structure appear clearly. The dots are surface contamination 

which are usefull for alignment but have no influence on the domain wall polarity. We identify 

five domain walls that are studied further with MEM and LEEM: ridges R1 and R2 and valleys V1, 

V2 and V3. The left and right hand insets show height profiles along the red (R2) and blue (V3) 

horizontal lines on the main image, respectively. The red (ridge) profile shows a 180.4° twin 

angle, whereas the valley is at 179.7°. Other angles are found in the range 179.4° to 180.5°. 

These values differ slightly from the theoretical angles calculated for a (111) surface: 179.9° (or 

180.1°) and 179.2° (or 180.8°). This calculation is based on the equations of section 1.4 for the 

set of axes [111], [1-10] and [11-2], as indicated in Fig. 5.10. The calculation assumes that the 

high-temperature cubic surface is flat. However, since we performed the polishing at room 

temperature, in the orthorhombic phase, this is probably not the case. 

 

Figure 5.11| AFM topography of the sample surface. The valleys and ridges of the domain walls are 

labeled “V” and “R”, respectively. The left-hand inset shows the height profile perpendicular to the R2 

ridge, the right-hand inset the V3 height profile. 

3.4. Electron imaging of domain walls 

Figure 5.12 shows typical MEM images of the same area as the AFM landscape, taken at 

start voltages of (a) - 0.8 V and (b) + 0.3 V. There are three main features in both images. First, 

the electron intensity on either side of the domain walls is the same, indicating identical surface 

potentials. Second, the surface contamination in the form of nanoparticles appears as white 

dots. These particles actually provide an internal benchmark allowing distinguishing the best 
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conditions of focus. Finally, the domain walls R2-V1-V2-V3 appear as dark lines whereas R1 is a 

more diffuse bright line. This is a first evidence for a specific electron surface contrast due to the 

domain wall polarity. At - 0.8 V, electrons are almost completely reflected by the surface 

potential and the contrast between the domain walls and domains is low (Fig. 5.12(a)). With 

increasing SV, incident electrons approach the surface and are more sensitive to local, 

charge‐induced variations in the surface potential as shown in Fig. 5.12(b). 

 

Figure 5.12| MEM images of the domain structure. Domain walls at SV (a) – 0.8 V (b) + 0.3 V.(c)  Electron 

intensity measured in domains and in domain walls showing a 100 mV shift in the MEM-LEEM transition to 

lower SV at R2 and V2. 

The measured angles of R1, R2, V1, V2 and V3 with respect to the [1-10] axis are 13°, 133°, 13°, 

35° and 133° (+/- 1°), respectively. We compare these values with the azimuthal angles 

calculated through equation 5.6 and shown in table 5.1. Azimuthal angles of 15°, 30°, 60° and 

135° are close to the experimental values, with an error of 5° at maximum. This error may be 

due to the miscut angle of 8°. It could also traduce local changes of strain induced by the 

interactions between domain walls[218]. Therefore, within the error-bar, we identify possible 

equations of the domain wall planes corresponding to R1, R2, V1, V2 and V3. They are indicated in 

bold in table 5.1. The inclination angle is also calculated for every domain wall with equation 5.5. 

It is of 77.5°, 54.4°, 77.5°, 60° and 54.4° for R1, R2, V1, V2 and V3, respectively. 
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Name Equation Azimuthal angle (°) Inclination angle (°) 

 x = 0 120 35.3 

 y = 0 120 35.3 

 z = 0 0 35.3 

 x = y 90 0 

 x = -y 0 54.7 

V2 y = z 150 0 

 y  = -z 60 54.7 

V2 z = x 150 0 

 z = -x 60 54.7 

 3e11(z+x ) + e12y = 0 120 47.7 

 3e11(z+x) - e12y = 0 60 22.9 

 3e11(z-x) + e12y = 0 104.9 34.3 

R2, V3 3e11(z-x) - e12y = 0 44.9 34.3 

 3e11(x+y) + e12z = 0 0 47.7 

 3e11(x+y) - e12z = 0 0 22.9 

R1, V1 3e11(x-y) - e12z = 0 164.9 34.3 

R1, V1 3e11(x-y) + e12z = 0 15.1 34.3 

 3e11(y+z) + e12x = 0 120 47.7 

 3e11(y+z) - e12x = 0 60 22.9 

R2, V3 3e11(y-z) + e12x = 0 135.1 34.3 

 3e11(y-z) - e12x = 0 75.1 34.3 
Table 5.1| Calculated parameters of domain walls. Domain walls equations, azimuthal angles with 

respect to the [1-10] direction and inclination angles with respect to the (111) surface. 

The contrast at domain walls is defined as: 

  
                        

       
   (5.7) 

where Idomain wall and Idomain are the intensities at DWs and inside domains, respectively. The 

magnitude,    , is different for each domain walls. In particular it is three times higher at R2, V2 

and V3 (             ) than at R1 and V1 (               . Correlation with, for example, the 

inclination angle is not, however, straightforward, as shown in table 5.2. 

Figure 5.12(c) plots the electron intensity from the domains and from the domain walls as a 

function of SV. The MEM-LEEM transition occurs at exactly the same SV value in both domains 

(green and mauve dots) showing that they have the same surface potential. At the R2-V2-V3 

domain walls the MEM-LEEM transition occurs at lower (about 100 mV) SV which is a signature 

of a positive surface charge. 
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Name Type Azimuthal 
angle (°) 

Calculated inclination 
angle (°) 

Factory-roof 
angle (°) 

Contrast 

R1 Ridge 13 34.3 180.5 + 3.6 ∙ 10-2 

R2 Ridge 133 34.3 180.4 - 7.6 ∙ 10-2 

V1 Valley 13 34.3 179.4 - 2.2 ∙ 10-2 

V2 Valley 35 0 179.5 - 1.1 ∙ 10-1 

V3 Valley 133 34.3 179.7 - 7.4 ∙ 10-2 
Table 5.2| Main results obtained on R1, R2, V1, V2 and V3. Azimuthal angles measured on the MEM image, 

calculated inclination angles, factory-roof angles measured with AFM, contrast in MEM. 

3.6. Under and over-focusing 

We now study in details the high contrast observed at R2 and V2. Figure 5.13(a) shows a 

MEM image obtained at SV = 0.3 V with a Field of View of 14 μm. Two domain walls are easily 

visible: R2 and V2. We have shown in chapter IV (section 5) that the sign of a charged surface can 

be quickly identified by out-of-focus imaging. Figures 5.13(a,b,c) are MEM images obtained at 

SV = 0.3 V for three different focusing conditions. The best focus is defined as the focus where 

the dots due to surface contamination are faint and appear as white dots inside black disks 

(Fig. 5.13(b)). Going from under-focus to over-focus conditions, the contrast at domain walls 

goes from negative to positive values and the bright dots become dark. This is the signature of a 

positive surface charge. 

 

Figure 5.13| MEM images of R2 and V2. Images at (a) under-focus (b) best-focus and (c) over-focus. 

(d)-(f) Profiles across R2 for different focus conditions. (g)-(i) Profiles across V2 for different focus 

conditions. The profiles have been averaged on the rectangles indicated in (a). 
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Profiles along domain walls for different focus plotted in Fig.5.13(d-i) help to clarify the 

contrast. When the image is under-focus, R2 appears as a thin dark lines 500 nm wide, with two 

weaker bright lines (Fig. 5.13(a,d)). A third bright line is visible on the right, 700 nm away from 

the main feature (at about 2.6 μm position). In the best focus conditions the domain wall is 

much fainter but still visible. It appears as a single dark line (Fig. 5.13(b,e)). In under-focus 

conditions, V2 also appears as a thin dark 500 nm wide, but surrounded by a single bright line on 

its right (Fig. 5.13(a,d)). In the best focus conditions V2 is not visible. When the image is over-

focus, the contrast at domain walls is opposite to that observed under-focus (Fig. 5.13(c,f,i)). 

Electrons image series acquired as a function of SV going from MEM to LEEM are used to 

determine the surface potential for each pixel of the field of view. The result is shown as maps in 

Fig. 5.14(a,e). The surface potential is the same for domains on both sides of the domain walls, 

as expected for the non-polar surface of CaTiO3. R2 and V2 show clear surface potential contrast 

with respect to the domains. Surface potential inversion occurs at domain walls when changing 

from under to over focusing conditions. Similar results are presented in Fig. 5.14(b,f). The MEM-

LEEM transition occurs at exactly the same SV value in both domains showing that they have the 

same surface potential. At the R2 and V2 domain walls the MEM-LEEM transition occurs at a 

lower SV in under-focus conditions but at a higher SV in over-focus conditions. 
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Figure 5.14| Surface potential maps. For under-focus conditions: (a) surface potential map; (b) MEM-

LEEM curve; profiles at (c) R2 and (d) V2. For over-focus conditions: (e) surface potential map; (f) MEM-

LEEM curve; profiles at (g) R2 and (h) V2. 

Figure 5.14(c) shows a profile across R2 in under-focus conditions. The main feature has a 

surface potential lower by 140 mV with respect to the domains. As shown in Fig. 5.14(e,f) 

surface potential inversion occurs at domain walls when changing from under- to over- focusing 

conditions. This is confirmed by the profiles in Fig. 5.14(c,d) and 5.14(g,h), for under and over-

focus conditions, respectively. 

The shift in the MEM-LEEM transition with focus conditions is an indication that the surface 

potential variation at domain walls is sharp. We believe that the shift is due to sharp variations 

in electron turning distance from the surface: depending on the local surface potential, electrons 
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are reflected at a different height above the surface. The rapidly varying local surface potential 

changes the z motion of the electrons and therefore the image intensity in MEM as a function of 

SV. In particular, if the electron trajectories are strongly modified, electron rays cross and give 

rise to very bright features in MEM images known as caustics[199,201], similar to the domain wall 

contrast presented and discussed in chapter IV (section 6) in lithium niobate. 

3.7. Electron injection and polarity screening 

We now consider the interaction between domain walls and incident low energy electrons. 

In order to inject electrons in the sample, the start voltage is increased well beyond the MEM-

LEEM transition that occurs around 0.5 V, as shown in Fig. 5.12(c). We exposed the sample to 

electrons at SV = 8 V for 0.33, 1, 2, 3, 12, 32 and 62 minutes and come back to the initial SV for 

imaging between each exposure. In Fig. 5.15(a-c) we show three MEM images acquired at SV = 

0.3 V after exposure to electrons for 0, 1 and 32 minutes. After 1 minute of electron irradiation 

the contrast magnitude at valleys and at R2 has diminished but has not changed at R1. After 32 

minutes of irradiation, the contrast at R2 is zero, at valleys it is weaker but R1 remains 

unchanged. Fig. 5.15(d) plots the evolution of the contrast at DWs with irradiation time. It is 

clear that the contrast at R1 is constant, that at R2 it decreases to zero whereas contrast at V1, V2 

and V3 it is attenuated by 15-30% after 1-2 minutes exposure to the electron-beam but then 

remain almost constant for longer exposure times. 

 

Figure 5.15| Electron injection. MEM images taken at SV = 0.3 V after exposure to 8 V electrons during (a) 

0 (b) 1 and (c) 32 minutes. (d) Intensity contrast at domain walls as a function of exposure time. 
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We can estimate the number of electrons (Ne) injected in the sample through the beam spot 

by assuming Ne is the difference between the number of incident and detected electrons and 

that the reflectivity at very negative SV is unity. At the MEM-LEEM transition electrons penetrate 

the sample surface and the reflectivity R decreases since electrons can be absorbed and/or 

scattered. For an electron gun current Ie of 20 nA, an irradiation time t, the number of electrons 

is: 

    
  

   
          (5.8) 

where e is the charge of the electron. After 1 minute of irradiation at SV = 8 V, we estimate 

that 3.5 x 1012 electrons have been injected. After 32 minutes, 1.1 x 1014 electrons have been 

injected. However, in the absence of an accurate drain current measurement this is only an 

estimate. Indeed, above SV = 3.75 V the reflectivity increases linearly, as shown in Fig. 5.16. This 

is an indication that the sample is charging. Indeed, in contrast to keV electrons, the inelastic 

mean free path (λ) of very low energy electrons (< 10 eV) decreases with increasing kinetic 

energies[219]: thus as SV increases but remains very low in energy, the electron mean free path 

decreases, the electrons accumulate at the surface, and hence reflectivity increases. For the 

calculation, we consider that the true reflectivity above SV = 3.75 V is constant. 

Figure 5.16| MEM-LEEM curve in a domain. Above 3.75 V, the reflectivity increases linearly. 

Following Cazaux[219] and Ziaja[220], we estimate the inelastic mean free path of the electrons 

at 8 V to be 5-10 nm. For a circular beam spot of diameter d = 90 μm, if the electrons 

penetration depth is 3λ, the charge density (ρ) is given by: 

   
  

          
 

 
 
   (5.9) 

The electron injection at SV = 8 V during 32 minutes corresponds then to a charge density of 

5.8 x 1029 e/m3. This figure is actually 6 orders of magnitude higher than the injected charged 
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used to switch ferroelectric and ferroelastic domains in BaTiO3 in a transmission electron 

microscope[221]. 

In Fig. 5.17(a-c) we show images acquired at SV = 0.3 V after exposure to electrons during 10 

minutes with different start voltages. At higher SV more electrons are expected to penetrate 

into the sample, at the same time the inelastic mean free path decreases, increasing the injected 

charge density. After a 6 V irradiation, the absolute contrast at V1, V2, V3 and R2 has diminished 

but has not changed at R1. After a 10 V irradiation, the contrast at V1, V2, V3 and R2 is almost null, 

whereas the contrast at R1 has not changed. The spots due to surface contamination are 

brighter, probably due to slight charging under the electron-beam.  

 

Figure 5.17| Electron injection at different SV. MEM images (a) before electron injection, after exposure 

to electrons at (b) SV = 6 V and (c) SV = 10 V during 10 minutes. 

3.8. Reversibility of polarity screening 

It is possible to recover the initial state of Fig. 5.15(a), i.e. the one before charge injection, by 

annealing the sample in-situ above 250°C. The electron images after 10 minutes exposure to 

20 V electrons are shown in Figure 5.18(a-c) for the intersections R1-R2, R2-V1-V2 and V2-V3. The 

contrast at all positive polarity domain walls is weak after electron injection, only R1 is clearly 

distinguishable. Fig 5.18(d-f) shows the same regions after annealing at 330°C. Contrast at R2, V1, 

V2 and V3 has been fully recovered and the contrast at R1 is still present. The temperature 

dependence of the contrast recovery is shown in Fig 5.18(g). Up to 100°C there is no change, and 

then above 100°C the contrast slowly reappears. It then stays even after the sample is cooled 

down to room temperature. This is strong evidence that screening of the domain wall contrast is 

achieved by injected electrons forming a space charge region around positive polarity domain 

walls. Charge dissipation must be thermally activated. Importantly, annealing up to 330°C not 

only leaves the domain walls in the same position it also does not change their polarity. The wall 

memory is therefore robust at least up to 330°C. We note that the double, nearly vertical lines in 

Fig. 5.18(c) and (f) are scratches, not domain walls. 
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Figure 5.18| Influence of temperature. MEM images acquired at SV = 0.3 V after 10 minutes exposure to 

20 V electron-beam: the intersections (a) R1-R2,(b) R2-V1-V2 and (c) V2-V3. (d-f) Same regions imaged at 

room temperature after annealing at 330°C. (g) Intensity contrast at R2 and V3 as a function of 

temperature. 

3.9. Discussion 

As shown in Fig. 5.12(a), all domain walls are visible in MEM. For ridges, two contrasts with 

surrounding domains are observed: positive for R1 and negative for R2. If the contrast at domain 

walls were due to the ridge topography it should have the same sign for all ridges. Indeed, in 

MEM, an asperity on the surface causes a local electric field perturbation that deviates incident 

and reflected electrons. The direction of the deviation depends on the geometry of the asperity: 
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a dimple focuses the electrons, giving a bright feature in direct imaging whereas a protrusion on 

the surface scatters and defocuses electrons[95]. Since this is not the case, the contrast observed 

cannot be explained by only physical topography.  

We suggest that electrons injected form a negatively charged space region at the junction 

between the positive polarity domain walls and the surface. They screen the positive surface 

charges but do not affect the charge at the junction of a negative polarity domain walls and the 

surface[205]. This process is sketched in Fig. 5.19. The contrast at R2, V1, V2 and V3 decreases upon 

electron irradiation. The net surface charge is therefore positive and progressively screened by 

injected electrons. This is also a direct evidence for the existence of the same polarity for 

opposite chevron directions of the domain wall.  

 

Figure 5.19| Screening mechanism at domain walls. Schematic of the surface charge at domain walls 

before and after charge injection. 

We also observe that the contrast at R2 changes sign with electron injection (from negative 

to positive). This is an indication that another mechanism competes with the influence of surface 

charges in the formation of MEM images. We believe that the ridge topography could be at the 

origin of the positive contrast. In the same way, the valley topography could give rise to a 

negative contrast and explain the remaining contrast observed V1, V2 and V3. 

The recovery of contrast on annealing indicates that the space charge around positive 

polarity domain walls is dissipated by thermal activation, similar to the thermally stimulated 

currents measured in the nominally centric Ba1-xSrxTiO3, one component of which was ascribed 

to the built-in polarization whereas the other was shown to be due to trapped charge[222]. 
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4. Conclusions on polar domain walls 

 

We first investigated the polarity of domain walls in calcium titanate by resonant 

piezoelectric spectroscopy. We reported mechanical excitations induced by an ac-electric field, 

i.e a piezoelectric effect. Since the space group of calcium titanate does not allow 

piezoelectricity, we attributed this effect to polar domain walls. This would be then a first 

experimental evidence for an electric (here rather electromechanical) response of the domain 

walls. 

A direct image of the polar domain walls was obtained by LEEM. As expected, adjacent 

domains presented the same surface potential because the material is non-polar. On the other 

hand, the domain walls showed a clear surface potential contrast with respect to the domains. 

This result strengthens the previous observations of polar domain walls and shows that the 

polarity is still measurable at the surface. We also observed that the contrast between domains 

and domain walls changes upon electron irradiation. Electrons injected form a negatively 

charged space region at the surface. They screen the positive surface charges without affecting 

the negative ones, both arising from the polarization of the domain walls. It is possible to 

recover the initial state, i.e. before charge injection, by annealing above 250°C. 
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Conclusion 

Summary 

 

The structural and electronic properties of domain walls were investigated to achieve a 

better understanding of the mechanisms behind the conduction within domain walls of lithium 

niobate and the polarity of domain walls in calcium titanate. 

The first part of this thesis discusses the interaction between defects and domain walls in 

lithium niobate. Monodomain and periodically poled congruent lithium niobate crystals were 

investigated by dielectric spectroscopy. A resonance was observed near 30 kHz. This resonance 

vanished under thermal anneal in monodomain samples while it remained stable in periodically 

poled samples where the density of domain walls is high. The low activation energy of the 

resonance suggests its electronic origin. We therefore propose that domain walls stabilize 

polaronic states with (bi-)polarons located inside or near domain walls. 

This result proves the benefit of studying ferroelectric non-ferroelastic domain walls using 

dielectric spectroscopy, even though it is a macroscopic technique. 

The domain structure of lithium niobate was also investigated by Raman spectroscopy 

mapping. We reported the evolution of E(TO1), E(TO8) and A1(LO4) Raman modes with 

increasing amount of magnesium in congruent lithium niobate. We observed contrasts between 

virgin and reversed domains, consistent with the literature and identified other frequency shifts 

of the Raman modes at the domain walls. The information gained from the systematic study of 

the role of magnesium concentrations, before and after annealing, allows us to probe 

differences between the signatures of polar defects in the bulk and at the domain walls. The 

domains walls appear then as regions where polar defects are stabilized. Since the frequency 

shifts at domain walls remain the same under illumination, we conclude that UV-light does not, 

significantly, influence the structure of the polar defects and the strain around domain walls. 

All our results indicate that 180°-domain walls in lithium niobate are preferential locations 

for electronic and polar defects. It is highly likely that these defects influence the conductivity at 

domain walls and is consistent with the known influence of oxygen vacancies on the domain wall 

conductivity in other perovskites[10–12]. We therefore propose that one of the main mechanisms 

behind the conduction at domain walls in lithium niobate is the extrinsic defect contribution. 
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In the second part of this thesis, we used mirror and low energy electron microscopy to carry 

out a sub-microscopic characterization of the domains and domain walls at the surface of 

magnesium-doped lithium niobate. We showed that the MEM-LEEM transition is a robust way to 

identify the polarization of ferroelectric domains and we demonstrated that out of focus settings 

can be used to determine the domain polarization. At domain walls, a local stray, lateral electric 

field arising from different surface charge states was observed. This field is measurable as soon 

as it is strong enough compared to the extractor field. We also showed that the surface potential 

contrast at domain walls can be inverted by changing from under- to over-focusing conditions. 

We suggest that this is the signature of variations in electron turning distance due to rapidly 

varying local surface potential and is an example of caustic effects. All these observations are 

key elements to perform a reliable characterization of complex charge states at ferroelectric 

surfaces. 

Finally, we investigated the polarity of domain walls in calcium titanate in the bulk and at the 

surface. 

We used resonant piezoelectric spectroscopy to detect standing elastic waves induced by 

piezoelectricity. Since calcium titanate is not piezoelectric, it is likely that these waves are 

induced by polar domain walls. 

A direct image of the domain walls at the surface of calcium titanate was obtained by LEEM. 

As expected, adjacent domains presented the same contrast, while domain walls showed a clear 

contrast with respect to the domains. This result strengthens the previous observations of polar 

domain walls and shows that the polarity is still measurable at the surface. Valleys and ridges 

may adopt both wall polarities. We also observed that the contrast between domains and 

domain walls change upon electron irradiation. Electrons injected form a negatively charged 

space region at the surface. They screen the positive surface charges without affecting the 

negative ones, both arising from the polarization of the domain walls. It is possible to recover 

the initial state, i.e. before charge injection, by annealing above 250°C. The ability to manipulate 

the surface charge at domain walls upon electron injection provides perspectives toward 

functionalization of polar domain walls in calcium titanate. 

Our investigations confirm that the ferroelastic domain walls of calcium titanate are polar, 

including at the surface. We demonstrate the electronic response of polar domain walls, i.e their 

behavior upon irradiation with electrons or under an electric-field. Since this response can be 

modified with external parameters, we believe that it can be considered for memory devices. 
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Perspectives 

 

This thesis shows that the investigation of ferroelectric non-ferroelastic domain walls with 

dielectric spectroscopy provides valuable insights into the interaction between defects and 

domain walls. In lithium niobate, the investigation of doped-sample with a high density of 

domain walls would be the next step. Magnesium-doped and iron-doped samples are good 

candidates since they already show dielectric relaxations in monodomain samples[151,152]. It 

would be interesting to study how this relaxation is modified by the presence of domain walls. 

Furthermore, measurements under illumination would give more insights on the influence of 

light on the dielectric relaxation in order to understand the interaction between polarons and 

domain walls. 

The investigation of strain at domain walls with Raman spectroscopy could be extended to 

ferroelastic materials, including materials where conductive domain walls have been 

reported[9‐12]. The main difficulty is that ferroelastic domains already show different Raman 

spectra. Therefore, at their border, the signal measured is the sum of the contribution of the 

domain wall and the two adjacent domains. The challenge is to separate these contributions. 

One approach is to use the PCA method to isolate the contribution of the domain wall. Another 

potential solution is to work at a better spatial resolution by using Tip-enhanced Raman 

spectroscopy. 

Raman measurement under illumination is a full topic in itself. At domain walls, it would 

help to identify a possible contribution of photostriction to the photo-conductivity. It could also 

be used to probe photo-excited defects. 

Concerning the polar domain walls, one has to notice that they have been observed only in 

two materials: calcium titanate and strontium titanate[18,76]. Both materials contain titanium, 

known to easily shift within the oxygen octahedra, inducing disorder and sometimes polar 

anomalies[223]. Since RPS and LEEM have been shown to be suitable techniques to study polar 

domain walls, one could investigate calcium zirconate and calcium stannate with them. Both 

materials have the same space group as calcium titanate but without titanium. This study could 

allow identifying the origin of the measurable polarization in ferroelastic domain walls: is it only 

due to the symmetry of the domain walls or rather to the influence of the chemical disorder? 

The possibility to modify the surface potential of the domain walls should be explored 

further for trajectories toward functional memory devices based on domain walls.  
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Résumé en français 

 
Suite à la découverte des pérovskites ferroélectriques, de nombreuses recherches ont été 

entreprises pour comprendre la nucléation et la croissance des domaines ferroélectriques dans 

ces matériaux. L’un des paramètres clés est la cinétique des parois de domaines : quand est-ce 

qu’une paroi de domaine commence à bouger ? A quelle vitesse bouge-t-elle ? Des mesures 

expérimentales utilisant des électrodes liquides pour appliquer un champ électrique à 

l’échantillon tout en l’observant avec un microscope optique ont apporté de nombreuses 

réponses et ont permis une meilleure compréhension de la dynamique des parois de domaines. 

Le fait que le déplacement irréversible des parois de domaines ferroélastiques et 

ferroélectriques accroisse les coefficients piézoélectriques des céramiques, même pour des 

faibles champs électriques appliqués, a entrainé un regain d’intérêt pour les parois de domaines. 

Comme ce déplacement dépend de la micro-structure de la céramique, l’influence de la 

structure cristalline, de l’orientation cristallographique et de la taille des domaines a été étudiée. 

Plusieurs stratégies ont ensuite été développées pour optimiser la structure en domaines afin 

d’augmenter la réponse piézoélectrique des céramiques. Ce champ de recherche a été appelé 

« l’ingénierie des domaines ». 

Les exemples mentionnés précédemment utilisent les propriétés des domaines 

ferroélectriques uniquement et les parois de domaines apparaissent seulement comme des 

interfaces qui peuvent influencer la structure en domaines. Cependant, la découverte d’un 

comportement supraconducteur limité aux parois de domaines ferroélastiques de l’oxyde de 

tungstène a ouvert un nouveau champ d’étude. Pour la première fois les parois de domaines 

n’étaient plus perçues uniquement comme des interfaces mais comme des éléments distincts 

possédant leurs propres propriétés fonctionnelles. Pratiquement dix ans plus tard, la découverte 

d’un comportement conducteur limité aux parois de domaines du ferrite de bismuth, pourtant 

isolant, a conduit à la recherche de parois de domaines conductrices dans d’autres matériaux. En 

parallèle, des résultats expérimentaux ont prouvé que les parois de domaines ferroélastiques de 

certains matériaux non-polaires sont polaires, et l’idée de modifier la polarisation des parois de 

domaines a germé. 

Les applications qui pourraient découler de ces découvertes ont été classées sous les termes 

« nanoélectronique des parois de domaines » ou « ingénierie des parois de domaines ». Dans ces 

dispositifs, les parois de domaines transporteraient de l’information et agiraient comme des 

dispositifs de mémoire. En effet, trois caractéristiques garantissent l’intérêt des parois de 
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domaines ferroélectriques et ferroélastiques pour des applications : elles sont très fines, leur 

position peut-être contrôlée et elles présentent des propriétés fonctionnelles. 

Cependant, des questions fondamentales demeurent : quels sont les mécanismes à l’origine 

de la conduction dans les parois de domaines ferroélectriques ? En particulier, quel est le rôle 

des défauts ? Quelles sont les caractéristiques de la polarisation des parois de domaines 

ferroélastiques ? Est-il possible de contrôler cette polarisation ? 

Pour répondre à ces questions, il est nécessaire d’étudier les propriétés électriques des 

parois de domaines et il faut donc utiliser des techniques expérimentales sensibles aux 

changements structuraux, aux défauts, à la polarisation, et aussi des techniques avec une haute 

résolution spatiale. Cette thèse présente des mesures macroscopiques effectuées par 

spectroscopie diélectrique et spectroscopie piézoélectrique résonante (RPS), des mesures 

microscopiques effectuée par micro-spectroscopie Raman, et des mesures à l’échelle 

inframicroscopique effectuées par microscopie électronique de faible énergie. Deux matériaux 

ont été étudiés : le niobate de lithium (ferroélectrique) où des parois de domaines conductrices 

ont été observées sous illumination UV, et le titanate de calcium (ferroélastique) où des parois 

de domaines polaires ont été identifiées. 

Le manuscrit est organisé comme suit. Dans le Chapitre I, les bases de la physique des 

domaines et des parois de domaines ferroïques sont présentées, en mettant l’accent sur les 

propriétés fonctionnelles des parois de domaines. Les principales méthodes expérimentales 

utilisées dans cette thèse sont présentées dans le Chapitre II. Dans le Chapitre III, nous étudions 

l’influence des parois de domaines ferroélectriques sur la réponse diélectrique de monocristaux 

de niobate de lithium et nous mettons en évidence des relaxations diélectriques liées à la 

présence de défauts près des parois de domaines. L’évolution des modes Raman aux parois de 

domaines pour une série d’échantillons de niobate de lithium dopés en magnésium donne des 

indications sur l’interaction entre les défauts polaires et les parois de domaines. Dans le 

Chapitre IV, nous analysons les mécanismes à l’origine du contraste dans la microscopie 

électronique de faible énergie lorsque nous observons des domaines et des parois de domaines 

dans le niobate de lithium. En particulier nous montrons que les variations d’intensité au niveau 

des parois de domaines sont une preuve expérimentale de l’existence d’un champ électrique 

latéral. Le Chapitre V est dédié à l’étude de la réponse électrique de la polarisation dans les 

parois de domaines du titanate de calcium par spectroscopie piézoélectrique résonante et 

microscopie électronique de faible énergie. 
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Dans le Chapitre I nous expliquons que les matériaux ferroïques s’organisent spontanément 

en domaines qui possèdent des directions différentes du paramètre d’ordre. Les interfaces entre 

des domaines ferroïques adjacents sont appelées des parois de domaines. Ces parois de 

domaines, en particulier les parois de domaines ferroélastiques et ferroélectriques, sont des 

objets intéressants de part leurs propriétés physiques uniques qui n’existent pas dans les 

domaines adjacents. En particulier, la conductivité des parois de domaines ferroélectriques et la 

polarité des parois de domaines ferroélastiques ont attiré beaucoup d’attention. Les modèles 

proposés pour expliquer la conductivité des parois de domaines ferroélectriques dans BiFeO3, 

Pb(Zr,Ti)O3, ErMnO3, HoMnO3, BaTiO3 et LiNbO3 sont basés soit sur (i) des propriétés 

intrinsèques, comme une modification locale de la bande interdite ou une accumulation de 

charges libres provoquée par une discontinuité de la polarisation, ou (ii) des propriétés 

extrinsèques, comme l’interaction avec des défauts. La même distinction est vraie pour la 

polarité des parois de domaines ferroélastiques qui est attendue par symétrie dans tous les 

matériaux ferroélastiques mais qui n’a été observée expérimentalement que dans CaTiO3 et 

SrTiO3. L’un de principaux défis à relever pour mieux comprendre les parois de domaines réside 

dans la capacité à utiliser les techniques expérimentales appropriées pour étudier les 

caractéristiques locales de ces parois de domaines. 

Le Chapitre II présente les techniques expérimentales choisies pour cette thèse. La 

spectroscopie diélectrique et la micro-spectroscopie Raman ont été utilisées pour étudier les 

interactions entre les défauts et les parois de domaines ferroélectriques non-ferroélastiques. La 

première technique est une technique macroscopique alors que la deuxième fournit une image 

microscopique avec une résolution limitée par la diffraction. La spectroscopie piezoélectrique 

résonante et la microscopie électronique de faible énergie ont été utilisées pour étudier la 

réponse électrique des parois de domaines ferroélastiques. La première technique mesure la 

réponse piezoélectrique des parois de domaines alors que la deuxième peut mesurer les charges 

de polarisation en surface, près des parois de domaines, et étudier l’influence de l’injection 

d’électrons. 

Dans le Chapitre III, nous avons utilisé la spectroscopie diélectrique pour étudier des cristaux 

congruents de niobate de lithium avec et sans parois de domaines. Une relaxation diélectrique a 

été observée vers 30 kHz. Cette relaxation disparait après un recuit dans les échantillons sans 

parois de domaines mais reste stable dans les échantillons avec une forte densité de parois de 

domaines. La faible énergie d’activation de cette relaxation suggère qu’elle est liée à des états 

polaroniques. Nous proposons donc que les parois de domaines stabilisent des états 

polaroniques. Ce résultat montre l’intérêt d’étudier les parois de domaines ferroélectriques avec 
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la spectroscopie diélectrique, même si cette technique est sensible à une échelle 

macroscopique. 

Nous avons ensuite utilisé des images obtenues à l’aide d’un microscope électronique en 

transmission à haute résolution pour montrer que les parois de domaines du niobate de lithium 

ne sont pas strictement parallèles à l’axe ferroélectrique de l’échantillon mais présentent des 

variations locales, qui impliquent la formation de configurations « tête-à-tête » ou « queue-à-

queue » de la polarisation. Ces configurations induisent localement des charges de polarisation 

qui peuvent être stabilisées par des défauts. 

Nous rapportons aussi l'évolution de modes Raman dans des échantillons congruents de 

niobate de lithium dopés de manière croissante en magnésium. Nous identifions des décalages 

en fréquence entre les domaines ferroélectriques initialement présents dans l’échantillon et 

ceux induits par l’application d’un champ électrique, en accord avec la littérature ; et des 

décalages en fréquences aux parois de domaines. L’étude d’une large gamme d’échantillons 

dopés, avant et après recuit, nous permettent de montrer des différences entre les décalages en 

fréquence caractéristiques des défauts polaires et ceux caractéristiques des parois de domaines. 

Les parois de domaines apparaissent alors comme des lieux de stabilisation des défauts polaires. 

Dans le Chapitre IV, nous utilisons la microscopie électronique miroir (MEM) et la 

microscopie électronique de faible énergie (LEEM) pour caractériser les domaines et les parois 

de domaines à la surface du niobate de lithium dopé en magnésium. Nous montrons que la 

transition MEM-LEEM peut-être utilisée sans ambiguïté pour identifier la polarisation des 

domaines ferroélectriques et nous démontrons que les réglages de la distance focale peuvent 

eux-aussi être utilisés pour déterminer cette polarisation. 

Aux parois de domaines, un champ électrique latéral, provenant de différents états de 

charge de surface, est mis en évidence. Ce champ est mesurable dès lors qu’il est suffisamment 

grand par rapport au champ d’extraction de l’instrument, suggérant que la microscopie 

électronique de faible énergie est actuellement la meilleure technique pour l’étudier. Nous 

montrons aussi que le profil de potentiel de surface mesuré aux parois de domaines peut être 

inversé en modifiant la distance focale de travail. Nous suggérons que cette inversion est la 

signature d’un changement rapide du potentiel de surface au niveau des parois de domaines et 

un exemple d’effet caustique. 

Dans le Chapitre V, nous étudions la polarité des parois de domaine dans le titanate de 

calcium. Nous utilisons dans un premier temps la spectroscopie piézoélectrique résonante pour 

mettre en évidence l’excitation de résonances élastiques par un signal électrique, c’est à dire 
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une réponse piézoélectrique. Comme le groupe d’espace du titanate de calcium n’autorise pas la 

piezoélectricité, nous attribuons cet effet aux parois de domaines polaires. C’est donc la 

première preuve expérimentale d’une réponse électrique (ou plutôt électromécanique) des 

parois de domaines. 

Dans un deuxième temps, une image directe des parois de domaine du titanate de calcium 

est obtenue par LEEM. Comme attendu, les domaines adjacents présentent le même potentiel 

de surface car le matériau est non-polaire. En revanche, les parois de domaines ont clairement 

un potentiel de surface différent des domaines. Ce résultat renforce les preuves expérimentales 

précédentes sur les parois de domaines polaires et montre que la polarité est toujours 

mesurable à la surface. Nous montrons aussi que ce contraste peut être modifié par l’injection 

d’électrons, via un effet d’écrantage des charges de polarisation aux parois de domaines. Les 

électrons injectés forment une charge d’espace négative à la surface. Ils écrantent les charges de 

polarisation positives sans affecter les charges de polarisation négatives, toutes deux étant dues 

à la polarité des parois de domaines. Il est possible de revenir à l’état initial, c'est-à-dire avant 

l’injection d’électrons, en faisant un recuit au dessus de 250°C. Nous pensons que la possibilité 

de modifier le potentiel de surface au niveau des parois de domaines polaires est une piste de 

recherche prometteuse en vue de créer des dispositifs de mémoire basés sur les parois de 

domaines. 
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Résumé : Ce travail de thèse porte sur les propriétés 

structurales et électroniques des parois de domaines 

ferroïques ; il a pour objectif une meilleure 

compréhension des mécanismes de conduction dans les 

p rois de dom ines du nio  te de lithium d’une p rt, et 

de la polarité des parois de domaine dans le titanate de 

  l ium d’ utre p rt  

La première partie est consacrée aux interactions entre 

les défauts et les parois de domaine dans le niobate de 

lithium   ’o serv tion d’une rel x tion di le trique de 

faible énergie d’  tiv tion et l’ n l se de son 

 omportement sous l’effet d’un re uit d ns des 

échantillons avec et sans parois nous conduisent à 

proposer que les parois de domaines stabilisent des 

états polaroniques. Nous rapportons aussi l'évolution 

de modes Raman dans des échantillons congruents de 

niobate de lithium dopés de manière croissante en 

magnésium. Nous identifions des décalages en 

fréquence spécifiques aux parois de domaines. Les 

parois de domaines apparaissent alors comme des lieux 

de stabilisation des défauts polaires.  

Nous utilisons la microscopie électronique miroir 

(MEM) et la microscopie électronique de faible énergie 

(LEEM) pour caractériser les domaines et parois de 

domaines à la surface du niobate de lithium dopé 

magnésium. Nous démontrons que les réglages de la 

distance focale peuvent être utilisés pour déterminer la 

polarisation du domaine. Aux parois de domaines, un 

champ électrique latéral, provenant de différents états 

de charge de surface, est mis en évidence. 

Dans une seconde partie, nous étudions la polarité des 

parois de domaine dans le titanate de calcium. Nous 

utilisons la spectroscopie piézoélectrique résonante 

pour mettre en  viden e l’ex it tion de r son n es 

élastiques par un signal électrique, ce qui est interprété 

comme une réponse piézoélectrique des parois de 

domaines. Une image directe des parois de domaine du 

titanate de calcium est obtenue par LEEM, et montre 

une différence de potentiel de surface entre domaines 

et p rois   e  ontr ste peut être modifi  sous l’effet 

d’inje tion d’ le trons, p r un effet d’  r nt ge des 

charges de polarisation aux parois. 
 

 

 

Title: New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy 
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Abstract: We investigate the structural and electronic 

properties of domain walls to achieve a better 

understanding of the conduction mechanisms in 

domain walls of lithium niobate and the polarity of 

domain walls in calcium titanate. 

In a first part, we discuss the interaction between 

defects and domain walls in lithium niobate. A 

dielectric resonance with a low activation energy is 

observed, which vanishes under thermal annealing in 

monodomain samples while it remains stable in 

periodically poled samples. Therefore we propose that 

domain walls stabilize polaronic states. We also report 

the evolution of Raman modes with increasing amount 

of magnesium in congruent lithium niobate. We 

identified specific frequency shifts of the modes at the 

domain walls. The domains walls appear then as spaces 

where polar defects are stabilized. 
 

In a second step, we use mirror electron microscopy 

(MEM) and low energy electron microscopy (LEEM) 

to characterize the domains and domain walls at the 

surface of magnesium-doped lithium niobate. We 

demonstrate that out of focus settings can be used to 

determine the domain polarization. At domain walls, a 

local stray, lateral electric field arising from different 

surface charge states is observed. 

In a second part, we investigate the polarity of domain 

walls in calcium titanate. We use resonant piezoelectric 

spectroscopy to detect elastic resonances induced by an 

electric field, which is interpreted as a piezoelectric 

response of the walls. A direct image of the domain 

walls in calcium titanate is also obtained by LEEM, 

showing a clear contrast in surface potential between 

domains and walls. This contrast is observed to change 

reversibly upon electron irradiation due to the 

screening of polarization charges at domain walls. 
 

 

 


