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ABSTRACT. In this article, we continue the discussion of Fang-Wu (2015) to estimate the spectral gap
of the Ornstein-Uhlenbeck operator on path space over a Riemannian manifold of pinched Ricci curva-
ture. Along with explicit estimates we study the short-time asymptotics of the spectral gap. The results
are then extended to the path space of Riemannian manifolds evolving under a geometric flow. Our
paper is strongly motivated by Naber’s recent work (2015) on characterizing bounded Ricci curvature
through stochastic analysis on path space.

1. INTRODUCTION

Let (M,g) be a d-dimensional complete smooth Riemannian manifold with ∇ and ∆ denoting
respectively the Levi-Civita connection and the Laplacian on M. Given a C1 vector field Z on M, we
consider the Bakry-Emery curvature

RicZ := Ric−∇Z

for the so-called Witten Laplacian L = ∆+Z where Ric is the Ricci curvature tensor with respect to g.
It is well known that the spectral gap of L can be estimated in terms of a lower curvature bound K,
i.e.,

RicZ ≥ K
for some constant K, see e.g. [4, 5, 10]. These results reveal the close relationship between spec-
tral gap, convergence to equilibrium and hypercontractivity of the corresponding semigroup. For
example, Poincaré inequalities and log-Sobolev inequalities which can be used to characterize the
convergence for the semigroup, imply certain lower bound for the spectral gap.

In this article, we extend this circle of ideas to the Riemannian path space over M and revisit
the problem of estimating the spectral gap of the Ornstein-Uhlenbeck operator under the following
general curvature condition: there exist constants k1 and k2 such that

k1 ≤ RicZ ≤ k2.

Before moving on, let us briefly summarize some background results on stochastic analysis on
path space over a Riemannian manifold. Stochastic analysis on path space attracted a lot of attention
since 1992 when B.K. Driver proved quasi-invariance of the Wiener measure on the path space over
a compact Riemannian manifold [11]. A milestone in the theory is the integration by parts formula
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(see e.g. [3, 15]) for the associated gradient operator induced by the quasi-invariant flow. This result
is a main tool in proving functional inequalities for the corresponding Dirichlet form, for instance,
the log-Sobolev inequality [1]; the constant in this inequality has been estimated in [19] in terms of
curvature bounds.

Very recently, A. Naber [24] proved that certain log-Sobolev inequalities and Lp-inequalities on
path space are equivalent to an upper bound for the norm of Ricci curvature on the base manifold M;
R. Haslhofer and A. Naber [17] extended these results to characterize solutions of the Ricci flow, see
also [18]. Inspired by this work, S. Fang and B. Wu [16] gave an estimate of the spectral gap under
the curvature condition that

k1 ≤ RicZ ≤ k2

for two constants k1 and k2 with k1 + k2 ≥ 0. However, as far as the case “k1 + k2 < 0” is concerned,
the same argument may lead to a loss of information concerning k2. We revisit this topic in this
article. Our aim is to remove the restriction k1 + k2 ≥ 0 in the curvature condition and to establish
sharper short-time asymptotics for the spectral gap.

Our methods rely strongly on suitable extensions and generalizations of recent estimates on Rie-
mannian path space, due to Naber [24], resp. Haslhofer and Naber [17, 18]. This work is crucial for
our arguments, as it allows to characterize bounded Ricci curvature in terms of stochastic analysis on
path space.

We start by briefly introducing the context. Let Xx
t be a diffusion process with generator L

starting from Xx
0 = x. We call Xx

t an L-diffusion process. We assume that Xx
t is non-explosive.

Let Bt = (B1
t , . . . ,B

d
t ) be a Rd-valued Brownian motion on a complete filtered probability space

(Ω,{Ft}t≥0,P) with the natural filtration {Ft}t≥0. It is well known that the L-diffusion process
Xx

t starting from x solves the equation

dXx
t =
√

2ux
t ◦dBt +Z(Xx

t )dt, Xx
0 = x, (1.1)

where ux
t is the horizontal process of Xx

t taking values in the orthonormal frame bundle O(M) over M
such that π(ux

0) = x. Furthermore

//s,t := ux
t ◦ (ux

s)
−1 : TXx

s
M→ TXx

t M, s≤ t,

defines parallel transport along the paths r 7→ Xx
r . As usual, orthonormal frames u ∈ O(M) are iden-

tified with isometries u : Rd → TxM where π(u) = x.
For fixed T > 0 define W T =C([0,T ];M) and let

FC∞
0,T =

{
W T 3 γ 7→ f (γt1 , . . . ,γtn) : n≥ 1, 0 < t1 < .. . < tn ≤ T, f ∈C∞

0 (M
n)
}

be the class of smooth cylindrical functions on W T . Let X[0,T ] = {Xt : 0 ≤ t ≤ T} for fixed T > 0.
Then, for F ∈FC∞

0,T with F(γ) = f (γt1 , . . . ,γtn), we define the intrinsic gradient as

DtF(Xx
[0,T ]) =

n

∑
i=1

1{t≤ti} //
−1
t,ti ∇i f (Xx

t1 , . . . ,X
x
tn), t ∈ [0,T ],

where ∇i denotes the gradient with respect to the i-th component. The generator L associated to the
Dirichlet form

E (F,F) = E
[∫ T

0
|DtF |2(X[0,T ])dt

]
= 〈L F,F〉

is called Ornstein-Uhlenbeck operator. Let gap(L ) be the spectral gap of the Ornstein-Uhlenbeck
operator L .

In this article, we continue the topic of estimating gap(L ) under general lower and upper bounds
of the Ricci curvature. For the sake of conciseness, let us first introduce some notation: for constants
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K1 and K2, define

C(T,K1,K2) =


1+K2T +

K2
2 T 2

2
, K1 = 0;

(1+β )2−β

√
(2+β )(2+2β −β e−K1T )e−K1T/2, K1 > 0;

1
2
+

1
2
(
1+β (1− e−K1T )

)2
, K1 < 0,

(1.2)

where β = K2/K1.

Theorem 1.1. Let (M,g) be a complete manifold. Assume that

k1 ≤ RicZ ≤ k2. (1.3)

The following estimate holds:

gap(L )−1 ≤C(T,k1, |k1|∨ |k2|)∧
[
C
(

T,k1,
k2− k1

2

)
×C

(
T,

k1 + k2

2
,
|k1 + k2|

2

)]
. (1.4)

Let us mention that the first bound in inequality (1.4), i.e.,

gap(L )−1 ≤C(T,k1, |k1|∨ |k2|),

is due to Fang and Wu [16].

Remark 1.2. In explicit terms we may expand the upper bound as follows:

C(T ,k1, |k1|∨ |k2|)

=



1+ k2T +
k2

2 T 2

2
, k1 = 0;

(γ +1)2− γ

√
(2+ γ)(2γ +2− γ e−k1T )e−k1T/2, k1 > 0;

1
2
+

1
2

(
1+ γ− γ e−k1T

)2
, k1 + k2 ≥ 0 and k1 < 0;

1
2

(
1+ e−2k1T

)
, k1 + k2 < 0,

and

C
(

T,k1,
k2− k1

2

)
×C

(
T,

k1 + k2

2
,
|k1 + k2|

2

)

=



(
1+

k2T
2

+
k2

2 T 2

8

)(
4− (12−3e−

k2T
2 )1/2 e−

k2T
4

)
, k1 = 0;

1
4

{
(γ +1)2− (γ−1)(γ +3)1/2(2γ +2− (γ−1)e−k1T )1/2 e−

k1T
2

}
×
(

4− (12−3e−
k2T

2 )1/2 e−
(k1+k2)T

4

)
, k1 > 0;

1
2

{
1+

1
4

(
γ +1− (γ−1)e−k1T

)2
}

×
(

4− (12−3e−
k2T

2 )1/2 e−
(k1+k2)T

4

)
, k1 + k2 ≥ 0 and k1 < 0;

1
4

{
1+ 1

4

(
γ +1− (γ−1)e−k1T

)2
}(

1+ e−(k1+k2)T
)
, k1 + k2 < 0,

where γ := k2/k1.

By means of Theorem 1.1 we are now in position to determine the asymptotic behavior of gap(L )
as T tends to 0.
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Theorem 1.3. Assume k1 ≤ RicZ ≤ k2. Then, as T → 0, the following asymptotics hold:
(i) for k1 ≥ 0,

gap(L )−1 ≤ 1+ k2T +
1
2

(
k2

2−
(7k1 + k2)(k1 + k2)k2

6(3k1 + k2)

)
T 2 +o(T 2);

(ii) for k1 + k2 ≥ 0 and k1 < 0,

gap(L )−1 ≤ 1+ k2T +
1
2

(
k2

2 +
2k2

1− k2
2−5k1k2

6

)
T 2 +o(T 2);

(iii) for k1 + k2 < 0,

gap(L )−1 ≤ 1− k1T +
1
2

(
k2

1 +
3k2

1 + k2
2

4

)
T 2 +o(T 2).

Remark 1.4. Note that as T → 0, up to the first order, the two upper bounds in Theorem 1.1 have
the same short-time behaviour, however when considered up to second order, our estimates provide
sharper asymptotics (see the proof of Theorem 1.3). For instance, from [16, Proposition 3.6] we know
that if k1→ 0, then

gap(L )−1 ≤ 1+ k2T +
1
2

k2
2T 2 +o(T 2). (1.5)

In this case, from Theorem 1.3 we deduce that

gap(L )−1 ≤ 1+ k2T +
5
12

k2
2T 2 +o(T 2)

with a smaller coefficient of T 2 when compared to estimate (1.5).

In Section 3 below we shall extend these results to the path space of an evolving manifold (M,gt).
Stochastic analysis on evolving manifolds began with an appropriate notion of Brownian motion on
(M,gt) (called gt-Brownian motion), see [2]. Since then there has been a lot of subsequent work, see
for instance, [6, 7, 8, 21, 22, 23, 24]. Here, we deal with diffusions Xt generated by Lt = ∆t +Zt which
are assumed to be non-explosive. The first-named author [7] developed a Malliavin calculus on the
path space of Xt by means of an appropriate derivative formula and an integration by parts formula.
Recently, Haslhofer and Naber [17] characterized solutions to the Ricci flow in terms of functional
inequalities on path space. Inspired by this work, we consider in Section 3 an Ornstein-Uhlenbeck
type operator on path space and derive a family of log-Sobolev inequalities and Poincaré inequalities
on the path space to the Lt-diffusion under a generalized pinched curvature condition. This curvature
condition encodes information on the time derivative of the metric as well. In the particular case of
the Ricci flow the modified curvature tensor equals to zero.

The rest of the paper is organized as follows. In the next section we establish first a log-Sobolev
inequality and a Poincaré inequality on Riemannian path space; these inequalities are the tools to
establish our main results of Section 1. As already indicated, Section 3 is then devoted to the extension
of the results to evolving manifolds under a geometric flow.

2. PROOFS OF MAIN RESULTS

To prove the main results, we introduce a two-parameter family {Qr,t}0≤r<t of multiplicative func-
tionals as follows: the Qr,t are a random variable taking values in the linear automorphisms of TXx

r
M

satisfying for fixed r ≥ 0 the pathwise equation:

dQr,t

dt
=−Qr,t RicZ

//r,t
, Qr,r = id, (2.1)

where RicZ
//r,t

= //−1
r,t ◦RicZ

Xx
t
◦ //r,t , see [20] and [25, Theorem 4.1.1]. As usual, RicZ

x operates as a

linear homomorphism on TxM via RicZ
x v = RicZ(·,v)], v ∈ TxM.



SPECTRAL GAP ON RIEMANNIAN PATH SPACE 5

It is easy to see that if RicZ ≥ K for some constant K, then for any 0≤ r ≤ t < T ,

‖Qr,t‖ ≤ e−K(t−r), a.s.,

where ‖·‖ denotes the operator norm. The functionals Qr,t (or the “damped parallel transport” defined
as //r,t ◦Qr,t) are well-known ingredients in the stochastic representation of the heat flow on one-forms
and for Bismut-type derivative formulas for the diffusion semigroup {Pt}t≥0, see [3, 14].

On path space a canonical gradient operator is given in terms of Qr,t . For any F ∈FC∞
0,T with

F(γ) = f (γt1 , . . . ,γtn), the damped gradient D̃tF(Xx
[0,T ]) is defined as

D̃tF(Xx
[0,T ]) =

n

∑
i=1

1{t≤ti}Qt,ti //
−1
t,ti ∇i f (Xx

t1 , . . . ,X
x
tn), t ∈ [0,T ].

By estimating the damped gradient, a log-Sobolev inequality and a Poincaré inequality on path space
can be obtained. Let us first introduce the following function: for any constants K1,K2 and c,

Λ
c(t,T,K1,K2) := β (t)+K2

∫ t

0
β (s)e−(K1+c)(t−s) ds,

where β (t) = 1+K2
∫ T

t e−(K1−c)(s−t) ds. Define

S(T,K1,K2) = inf
c∈R

sup
t∈[0,T ]

Λ
c(t,T,K1,K2).

Theorem 2.1. Assume k1 ≤ RicZ ≤ k2. Let

H(T,k1,k2) := S(T,k1, |k1|∨ |k2|)∧
[

S
(

T,k1,
k2− k1

2

)
S
(

T,
k2 + k1

2
,
|k2 + k1|

2

)]
. (2.2)

Then for F ∈FC∞
0,T , we have

(i) E[F2 logF2]−E[F2] logE[F2]≤ 2H(T,k1,k2)E
∫ T

0 |DtF |2 dt;
(ii) E

[
F−E[F ]

]2 ≤ H(T,k1,k2)E
∫ T

0 |DtF |2 dt.

First, let us introduce some functional inequalities on path space under pinched curvature con-
dition, which extend the estimates in [24]. For F ∈FC∞

0,T with F(γ) = f (γt1 , . . . ,γtn), we define a
modified gradient as

D̂tF(Xx
[0,T ]) =

n

∑
i=1

1{t≤ti} e−
k1+k2

2 (ti−t) //−1
t,ti ∇i f (Xx

t1 , . . . ,X
x
tn), t ∈ [0,T ].

In what follows, if there is no ambiguity, we write briefly DtF , D̃tF and D̂tF instead of DtF(X[0,T ]),
D̃tF(X[0,T ]) and D̂tF(X[0,T ]).

Proposition 2.2. Let (M,g) be a complete Riemannian manifold. Let k1,k2 be two real constants
such that k1 ≤ k2. The following conditions are equivalent:

(i) k1 ≤ RicZ ≤ k2;
(ii) for any F ∈FC∞

0,T ,

∣∣∇xEF(Xx
[0,T ])

∣∣≤ E|D̂0F |+ k2− k1

2

∫ T

0
e−k1sE|D̂sF |ds;

(iii) for any F ∈FC∞
0,T and constant c,

∣∣∇xEF(Xx
[0,T ])

∣∣2 ≤ (1+
k2− k1

2

∫ T

0
e−(k1−c)s ds

)(
E|D̂0F |2 + k2− k1

2

∫ T

0
e−(k1+c)sE|D̂sF |2ds

)
;
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(iv) for any F ∈FC∞
0,T , constant c and t1 < t2 in [0,T ],

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E
[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2

∫ t2

t1

(
1+

k2− k1

2

∫ T

t
e−(k1−c)(s−t) ds

)(
E|D̂tF |2 +

k2− k1

2

∫ T

t
e−(k1+c)(s−t)E|D̂sF |2ds

)
dt;

(v) for any F ∈FC∞
0,T , constant c and t1 < t2 in [0,T ],

E
[
E[F(X[0,T ])|Ft2 ]

2
]
−E
[
E[F(X[0,T ])|Ft1 ]

2
]

≤
∫ t2

t1

(
1+

k2− k1

2

∫ T

t
e−(k1−c)(s−t) ds

)(
E|D̂tF |2 +

k2− k1

2

∫ T

t
e−(k1+c)(s−t)E|D̂sF |2ds

)
dt.

Proof. (a) The following inequalities are well known (see [13] and [25, Chapter 4]). For convenience
of the reader we include them with precise statements.

1) for F ∈FC∞
0,T , one has

∇xE[F(Xx
[0,T ])] = E[D̃0F(Xx

[0,T ])];

2) for F ∈FC∞
0,T , one has

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E
[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2E

∫ t2

t1
|D̃tF(X[0,T ])|2 dt;

3) for F ∈FC∞
0,T , one has

E
[
E[F(X[0,T ])|Ft2 ]

2
]
−E
[
E[F(X[0,T ])|Ft1 ]

2
]
≤ E

∫ t2

t1
|D̃tF(X[0,T ])|2 dt.

Hence it suffices to estimate |D̃tF(X[0,T ])|. For the sake of brevity, let k = k1+k2
2 and k̃ = k2−k1

2 . It is
easy to see that

D̃tF = D̂tF +
N

∑
i=1

1{t≤ti}

(
ek(ti−t) Qt,ti− id

)
e−k(ti−t) //−1

t,ti ∇iF

= D̂tF +
∫ T

t
e−k(s−t) d

(
ek(s−t) Qt,s

)
ds

//−1
t,s D̂sF ds.

As

d
(
ek(s−t) Qt,s

)
ds

=−ek(s−t) Qt,s

(
RicZ

//t,s
− k id

)
,

we get ∣∣D̃tF
∣∣≤ ∣∣D̂tF

∣∣+∫ T

t
‖Qt,s‖ · ‖(RicZ)]− k id‖ · |D̂sF |ds

≤
∣∣D̂tF

∣∣+ k̃
∫ T

t
e−k1(s−t) |D̂sF |ds.

It follows that ∣∣D̃tF
∣∣2 ≤ e2ct

(
e−ct

∣∣D̂tF
∣∣+ k̃

∫ T

t
e−(k1−c)(s−t) e−cs |D̂sF |ds

)2

.
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Thus, by Cauchy’s inequality, we obtain∣∣D̃tF
∣∣2 ≤ e2ct

(
1+

∫ T

t
k̃ e−(k1−c)(s−t) ds

)(
e−2ct

∣∣D̂tF
∣∣2 +∫ T

t
k̃ e−(k1−c)(s−t)−2cs |D̂sF |2 ds

)
=

(
1+

∫ T

t
k̃ e−(k1−c)(s−t) ds

)(∣∣D̂tF
∣∣2 +∫ T

t
k̃ e−(k1+c)(s−t) |D̂sF |2 ds

)
.

This allows to complete the proof of (i) implies (ii)–(v).
(b) Conversely, to prove (ii)–(v)⇒ (i), by a similar argument as in [24, 26], it suffices to prove

that (iii) implies (i). Following [24], we first take F(Xx
[0,T ]) = f (Xx

t ) as test functional. In this case,
(iii) reduces to

|∇Pt f |2(x)≤
[(

1+ k̃
∫ t

0
e−(k1−c)r dr

)(
1+ k̃

∫ t

0
e−(k1+c−k)r dr

)
e−2kt

]
Pt |∇ f |2(x). (2.3)

By means of the formula from [25, Theorem 2.2.4]:

RicZ(∇ f , ∇ f )(x) = lim
t→0

Pt |∇ f |2(x)−|∇Pt f |2(x)
2t

, f ∈C∞
0 (M),

we obtain the inequality RicZ ≥ k1. Taking however F(Xx
[0,T ]) = f (x)− 1

2 f (Xx
t ) as test functional,

then (iii) reduces to the inequality:∣∣∣∣∇ f (x)− 1
2

∇Pt f (x)
∣∣∣∣2 ≤ (1+

k2− k1

2

∫ t

0
e−(k1−c)s ds

)
×
(
E
∣∣∇ f (x)− 1

2
e−kt //−1

0,t ∇ f (Xx
t )
∣∣2 + k2− k1

8

(∫ t

0
e−(c−k2)s ds

)
e−2kt Pt |∇ f |2(x)

)
.

Expanding the last inequality, we arrive at

|∇Pt f (x)|2−
[(

1+ k̃
∫ t

0
e−(k1−c)r dr

)(
1+ k̃

∫ t

0
e−(c−k2)r dr

)
e−2kt

]
Pt |∇ f |2(x)

≤ 2(k2− k1)
∫ t

0
e−(k1−c)s ds |∇ f (x)|2 +4〈∇ f (x),∇Pt f (x)〉

−4
(

1+
k2− k1

2

∫ t

0
e−(k1−c)s ds

)
e−kt 〈

∇ f (x),E//−1
0,t ∇ f (Xx

t )
〉
. (2.4)

Then by [9, Lemma 2.5] it is straightforward to derive the upper bound RicZ ≤ k2. �

Remark 2.3. In our paper [9] we use a direct method which does not need to use the advanced theory
on path space, to prove the result that the pinched curvature condition is equivalent to the coupled
conditions (2.3) and (2.4) when c = (k1 + k2)/2.

Proof of Theorem 2.1. The following inequalities are well known (see [13] and [25, Chapter 4 ]). For
convenience of the reader we include them here, as we have done in the proof of Proposition 2.2.
1) for F ∈FC∞

0,T , one has

E[F2 logF2]−E[F2] logE[F2]≤ 2E
∫ T

0
|D̃tF(X[0,T ])|2 dt;

2) for F ∈FC∞
0,T , one has

E
[
F−E[F ]

]2 ≤ E
∫ T

0
|D̃tF(X[0,T ])|2 dt.

Hence, it suffices to estimate E
∫ T

0 |D̃tF |2 dt where D̃tF = D̃tF(X[0,T ]). By [24], we know that

|D̃tF | ≤
∣∣DtF

∣∣+(|k1|∨ |k2|)
∫ T

t
e−k1(s−t) |DsF |ds.
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It follows that for any constant c, we have∣∣D̃tF
∣∣2 ≤ e2ct

(
e−ct

∣∣DtF
∣∣+(|k1|∨ |k2|)

∫ T

t
e−(k1−c)(s−t) e−cs |DsF |ds

)2

.

Thus, by Cauchy’s inequality, we obtain∣∣D̃tF
∣∣2 ≤ (1+(|k1|∨ |k2|)

∫ T

t
e−(k1−c)(s−t) ds

)(
|DtF |2 +(|k1|∨ |k2|)

∫ T

t
e−(k1+c)(s−t) |DsF |2 ds

)
.

(2.5)

Let

α1(t) = 1+(|k1|∨ |k2|)
∫ T

t
e−(k1−c)(s−t) ds.

Then, integrating both sides of Eq. (2.5) from 0 to T yields∫ T

0

∣∣D̃tF
∣∣2 dt ≤

∫ T

0
α1(t)

(
|DtF |2 +(|k1|∨ |k2|)

∫ T

t
e−(k1+c)(s−t) |DsF |2 ds

)
dt

=
∫ T

0

(
α1(t)+(|k1|∨ |k2|)

∫ t

0
α1(s)e−(k1+c)(t−s) ds

)
|DtF |2 dt

=
∫ T

0
Λ

c(t,T,k1, |k1|∨ |k2|)|DtF |2 dt

≤ S(T,k1, |k1|∨ |k2|)
∫ T

0
|DtF |2 dt.

We are now going to prove

E
∫ T

0
|D̃tF(X[0,T ])|2 dt ≤ S

(
T,k1,

k2− k1

2

)
S
(

T,
k1 + k2

2
,
|k2 + k1|

2

)∫ T

0
E|DtF(X[0,T ])|2 dt.

Our first step is to show that

E
∫ T

0
|D̃tF(X[0,T ])|2 dt ≤ S

(
T,k1,

k2− k1

2

)∫ T

0
E|D̂tF(X[0,T ])|2 dt.

Recall the notations introduced above

D̂tF(X[0,T ]) :=
n

∑
i=1

1{t≤ti} e−
k1+k2

2 (ti−t) //−1
t,ti ∇i f (Xt1 , . . . ,Xtn)

and k := k1+k2
2 , k̃ := k2−k1

2 . By Proposition 2.2, for any constant c, we have∣∣D̃tF
∣∣2 ≤ (1+

∫ T

t
k̃ e−(k1−c)(s−t) ds

)(∣∣D̂tF
∣∣2 +∫ T

t
k̃ e−(k1+c)(s−t) |D̂sF |2 ds

)
.

Integrating both sides from 0 to T yields∫ T

0

∣∣D̃tF
∣∣2 dt ≤

∫ T

0

(
1+

∫ T

t
k̃ e−(k1−c)(s−t) ds

)(∣∣D̂tF
∣∣2 +∫ T

t
k̃ e−(k1+c)(s−t) |D̂sF |2 ds

)
dt.

Let α2(t) = 1+
∫ T

t k̃ e−(k1−c)(s−t) ds. Then∫ T

0

∣∣D̃tF
∣∣2 dt ≤

∫ T

0
α2(t)

(∣∣D̂tF
∣∣2 +∫ T

t
k̃ e−(k1+c)(s−t) |D̂sF |2 ds

)
dt

=
∫ T

0
α2(t)

∣∣D̂tF
∣∣2 dt +

∫ T

0
α2(t)

∫ T

t
k̃ e−(k1+c)(s−t) |D̂sF |2 dsdt

=
∫ T

0

(
α2(t)+ k̃

∫ t

0
α2(s)e−(k1+c)(t−s) ds

)∣∣D̂tF
∣∣2 dt

=
∫ T

0
Λ

c(t,T,k1, k̃)
∣∣D̂tF

∣∣2 dt.



SPECTRAL GAP ON RIEMANNIAN PATH SPACE 9

Therefore, we have ∫ T

0

∣∣D̃tF
∣∣2 dt ≤ inf

c∈R
sup

t∈[0,T ]
Λ

c(t,T,k1, k̃)
∫ T

0

∣∣D̂tF
∣∣2 dt.

Our second step is to prove ∫ T

0
E
∣∣D̂tF

∣∣2 dt ≤ S(T,k, |k|)
∫ T

0
E|DtF |2 dt.

To this end, we first observe that∣∣D̂tF
∣∣= ∣∣∣∣∣ N

∑
i=1

1{t≤ti} e−k(ti−t) //−1
t,ti ∇iF

∣∣∣∣∣≤ |DtF |+ |k|
∫ T

t
e−k(s−t) |DsF |ds.

Let α3(t) = 1+ |k|
∫ T

t e−(k−c)(s−t) ds for some constant c. We have∫ T

0

∣∣D̂tF
∣∣2 dt ≤

∫ T

0

(
|DtF |+ |k|

∫ T

t
e−k(s−t) |DsF |ds

)2

dt

≤
∫ T

0

(
α3(t)+ |k|

∫ t

0
α3(s)e−(k+c)(t−s) ds

)
|DtF |2 ds.

It is easy to see that

Λ
c(t,T,k, |k|) = α3(t)+ |k|

∫ t

0
α3(s)e−(k+c)(t−s) ds.

Hence, we arrive at ∫ T

0
E
∣∣D̃tF

∣∣2 dt ≤ S(T,k1, k̃)S(T,k, |k|)
∫ T

0
E|DtF |2 dt, �

which completes the proof of Theorem 2.1.

In the proof of Theorem 1.1 the function Λ := Λ0 will play an important role. More precisely, for
constants K1 and K2, we have

Λ(t,T,K1,K2)

=


(1+β )2− (β +β

2)e−K1t−2β +β 2

2
e−K1(T−t)+

β 2

2
e−K1(T+t), if K1 6= 0,

1+K2T +
K2

2
2
(2Tt− t2), if K1 = 0

where β = K2/K1. We choose here the value c = 0, which seems to give the best asymptotics as
T → 0.

Proposition 2.4. Let K1 and K2 be two constants such that K2 ≥ 0. Then

C(T,K1,K2) = sup
t∈[0,T ]

Λ(t,T,K1,K2),

where C(T,K1,K2) is defined as in (1.2).

Proof. For the case K1+K2 ≥ 0, the reader is referred to [16, Proposition 3.3]. It suffices to deal with
the remaining case K1 +K2 < 0. The idea is similar to the proof of [16, Proposition 3.3].

When K1 +K2 < 0 and K2 ≥ 0, we must have K1 < 0. Taking derivative of Λ with respect to t, we
obtain

Λ
′(t,T,K1,K2) =

K1

2
e−K1t [2(β +β

2)−β
2 e−K1T −(2β +β

2)e−K1T e2K1t] ,
where β = K2/K1. From this it is easy to see that there exists at most one point t such that

Λ
′(t,T,K1,K2) = 0.
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In addition, for the boundary values t = 0,T , we have

Λ
′(0,T,K1,K2) = β (K1 +K2)

(
1− e−K1T )< 0;

Λ
′(T,T,K1,K2) =−K2

(
1− e−K1T )− K2

2
2K1

(
1− e−K1T )2

> 0.

Thus, we obtain that the maximal value of Λ over the interval [0,T ] is reached either at t = 0 or
at t = T . Moreover, by inspection it is easy to see that Λ(0,T,K1,K2) ≤ 1

2 +
1
2 Λ2(0,T,K1,K2) =

Λ(T,T,K1,K2). All this taken together, we may conclude that

sup
t∈[0,T ]

Λ(t,T,K1,K2) = Λ(T,T,K1,K2). �

Proof of Theorem 1.1. From Theorem 2.1 we conclude that

gap(L )−1 ≤ H(T,k1,k2). (2.6)

Moreover, it is easy to be observed that

S (T,K1,K2)≤ sup
t∈[0,T ]

Λ(t,T,K1,K2) =C (T,K1,K2) ,

which allows to complete the proof of Theorem 1.1. �

Proof of Theorem 1.3. We check the short-time behavior of C(T,K1,K2) for K2 ≥ 0 first. If K1 > 0,
then

C(T,K1,K2) = (1+β )2−β

√
(2+β )(2+2β −β e−K1T )e−K1T/2

= (1+β )2−β (2+β )e−K1T/2

√
1+

β

2+β
(1− e−K1T ).

Note that√
1+

β

2+β
(1− e−K1T ) = 1+

β

2(2+β )
(1− e−K1T )− β 2

8(2+β )2 (1− e−K1T )2 +o(T 2)

= 1+
β

2(2+β )

(
K1T − 1

2
(K1T )2

)
− β 2

8(2+β )2 (K1T )2 +o(T 2)

= 1+
β

2(2+β )
K1T − β (4+3β )

8(2+β )2 (K1T )2 +o(T 2).

Thus,

C(T,K1,K2) = (1+β )2−β (2+β )

(
1− 1

2
K1T +

1
8
(K1T )2 +o(T 2)

)
×
(

1+
β

2(2+β )
K1T − β (4+3β )

8(2+β )2 (K1T )2 +o(T 2)

)
= 1+K2T +

(
1− (K1 +K2)K1

(2K1 +K2)K2

)
K2

2 T 2

2
+o(T 2).

If K1 < 0, then

C(T,K1,K2) =
1
2
+

1
2
(
1+β (1− e−K1T )

)2

=
1
2
+

1
2

(
1+βK1T −β

(K1T )2

2
+o(T 2)

)2

= 1+K2T +

(
1− K1

K2

)
(K2T )2

2
+o(T 2).
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Hence, for C(T,k1, |k1|∨ |k2|), we obtain

C(T,k1, |k1|∨ |k2|) =



1+ k2T +
k2

2
2

T 2− k1k2(k1 + k2)

2(2k1 + k2)
T 2 +o(T 2), k1 ≥ 0,

1+ k2T +
k2

2
2

T 2− k1k2

2
T 2 +o(T 2), k1 + k2 ≥ 0 and k1 < 0,

1− k1T +
k2

1
2

T 2 +
k2

1
2

T 2 +o(T 2), k1 + k2 < 0.

We now turn to estimate C
(
T,k1,

k2− k1

2
)

C
(
T,

k1 + k2

2
,
|k2 + k1|

2
)
.

(i) When k1 + k2 < 0, we have

C
(

T,k1,
k2− k1

2

)
C
(

T,
k2 + k1

2
,−k2 + k1

2

)
= 1+ k2T +

k2
2

2
T 2 +

3k2
1 + k2

2
8

T 2 +o(T 2);

(ii) when k1 + k2 ≥ 0 and k1 ≤ 0,

C
(

T,k1,
k2− k1

2

)
C
(

T,
k2 + k1

2
,
k2 + k1

2

)
= 1+ k2T +

k2
2

2
T 2 +

2k2
1− k2

2−5k1k2

12
T 2 +o(T 2);

(iii) when k1 > 0,

C
(

T,k1,
k2− k1

2

)
C
(

T,
k2 + k1

2
,
k2 + k1

2

)
= 1− k1T +

k2
1

2
T 2− (7k1k2 + k2

2)(k1 + k2)

12(3k1 + k2)
T 2 +o(T 2).

Summarizing the estimates above, we conclude that as T → 0,

C(T,k1, |k1|∨ |k2|) and C
(

T,k1,
k2− k1

2

)
C
(

T,
k1 + k2

2
,
|k2 + k1|

2

)
have the same first order term, i.e. coefficient of T , and we only need to compare the coefficients
of T 2.

(i) If k1 ≥ 0, then

−(7k1k2 + k2
2)(k1 + k2)

12(3k1 + k2)
+

k1k2(k1 + k2)

2(2k1 + k2)
=− (k2

2− k2
1)(4k1 + k2)k2

12(3k1 + k2)(2k1 + k2)
≤ 0.

(ii) If k1 + k2 ≥ 0 and k1 < 0, then

2k2
1− k2

2−5k1k2

12
+

k1k2

2
=

(2k1− k2)(k1 + k2)

12
≤ 0.

(iii) If k1 + k2 < 0, then
3k2

1 + k2
2

8
− k2

1
2

=
k2

2− k2
1

8
< 0.

From this we conclude that

C
(

T,k1,
k2− k1

2

)
C
(

T,
k1 + k2

2
,
|k2 + k1|

2

)
has a smaller coefficient in T 2. The proof is then completed by using Theorem 1.1. �
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3. EXTENSION TO THE PATH SPACE OF EVOLVING MANIFOLDS

In this section, our base space is a differentiable manifold carrying a geometric flow of complete
Riemannian metrics, more precisely, a d-dimensional differential manifold M equipped with a family
of complete Riemannian metrics (gt)t∈[0,Tc) for some Tc ∈ (0,∞], which is C1 in t.

Let ∇t and ∆t be the Levi-Civita connection and the Laplace-Beltrami operator associated with
the metric gt , respectively. Let (Zt)t∈[0,Tc) be a C1,∞-family of vector fields. Consider the diffusion
process Xx

t generated by Lt = ∆t +Zt (called Lt-diffusion process) starting from x at time 0, which is
assumed to be non-explosive before Tc (see [22] for sufficient conditions).

It is well known (e.g. [2, 12]) that Xx
t solves the equation

dXx
t =
√

2ux
t ◦dBt +Zt(Xx

t )dt, Xx
0 = x = π(ux

0),

where Bt is an Rd-valued Brownian motion on a filtered probability space (Ω,{Ft}t≥0,P) satisfying
the usual conditions. Here ux

t is a horizontal process above Xx
t taking values in the frame bundle

over M, constructed in such a way that the parallel transports

//s,t := ux
t ◦ (ux

s)
−1 : (TXx

s
M,gs)→ (TXx

t M,gt), s≤ t,

along the paths of X are isometries, see [2] for the construction, as well as Section 3 in [9] for some
details.

By Itô’s formula, for any f ∈C2
0(M) and t ∈ [0,Tc), the process

f (Xx
t )− f (x)−

∫ t

0
(Lr f )(Xx

r )dr =
√

2
∫ t

0

〈
//−1

0,r ∇
r f (Xx

r ),u
x
0 dBr

〉
0

is a martingale up to Tc, where 〈·, ·〉0 is the inner product on TxM given by the initial metric g0. In
other words, Xx

t is a diffusion generated by Lt .
For the sake of brevity, we introduce the following notation: for X ,Y ∈ T M such that π(X) = π(Y )

let

RZ
t (X ,Y ) := Rict(X ,Y )−

〈
∇

t
X Zt ,Y

〉
t −

1
2

∂tgt(X ,Y )

where Rict is the Ricci curvature tensor with respect to the metric gt and 〈·, ·〉t = gt(·, ·). In what
follows, given functions φ ,ψ on [0,Tc)×M, we write ψ ≤RZ

t ≤ φ if

ψ|X |2t ≤RZ
t (X ,X)≤ φ |X |2t

holds for all X ∈ T M, where |X |t :=
√

gt(X ,X).
Similarly to Eq. (2.1) we define a two-parameter family of multiplicative functionals {Qr,t}r≤t as

solution to the following equation: for 0≤ r ≤ t < Tc let

dQr,t

dt
=−Qr,t R

Z
//r,t

, Qr,r = id, (3.1)

where by definition
RZ

//r,t
:= //−1

r,t ◦RZ
t (X

x
t )◦//r,t .

For fixed T ∈ (0,Tc), recall that W T denotes the path space of M and

FC∞
0,T =

{
W T 3 γ 7→ f (γt1 , . . . ,γtn), n≥ 1, 0 < t1 < .. . < tn ≤ T, f ∈C∞

0 (M
n)
}

the space of smooth cylindrical functions on W T . For F ∈FC∞
0,T we consider again different types

of gradients:
(i) intrinsic gradient:

DtF(X[0,T ]) =
n

∑
i=1

1{t≤ti} //
−1
t,ti ∇

ti
i f (Xt1 , . . . ,Xtn), t ∈ [0,T ];
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(ii) damped gradient:

D̃tF(X[0,T ]) =
n

∑
i=1

1{t≤ti}Qt,ti //
−1
t,ti ∇

ti
i f (Xt1 , . . . ,Xtn), t ∈ [0,T ];

(iii) modified gradient:

D̂tF(X[0,T ]) =
n

∑
i=1

1{t≤ti} e−
1
2

∫ ti
t (k1+k2)(r)dr //−1

t,ti ∇
ti
i f (Xt1 , . . . ,Xtn), t ∈ [0,T ].

We again write briefly DtF , D̃tF and D̂tF instead of DtF(X[0,T ]), D̃tF(X[0,T ]) and D̂tF(X[0,T ]) if there
is no ambiguity.

In terms of the intrinsic gradient Dt , the Ornstein-Uhlenbeck operator is defined as

〈L F,F〉= E
∫ T

0
|DsF |2s ds.

Our aim is to give an estimate for the spectral gap of L , denoted by gap(L ). To this end, we use the
Poincaré inequality and log-Sobolev inequality of the next theorem. For the precise statement some
notation is required. Given three functions K1, K2 and c in C([0,T ];R), we define

Λ̃
c(t,T,K1,K2) = α(t)+K2(t)

∫ t

0
α(s)e−

∫ t
s (K1+c)(r)dr ds

where

α(t) = 1+
∫ T

t
K2(s)e−

∫ s
t (K1−c)(r)dr ds.

Furthermore let

S̃(T,K1,K2) = inf
c∈C([0,T ])

sup
t∈[0,T ]

Λ̃
c(t,T,K1,K2).

Note that if K1,K2,c are constants then

Λ̃
c(t,T,K1,K2) = Λ

c(t,T,K1,K2).

Analogously to Theorem 2.1 recall the following two inequalities.

Theorem 3.1. Assume that there exist continuous functions k1,k2 such that for every vector field X,

k1(t) |X |2t ≤RZ
t (X ,X)≤ k2(t) |X |2t , t ∈ [0,T ]. (3.2)

Then,
(i) for every cylindrical function F ∈FC∞

0,T ,

E[F2 logF2]−E[F2] logE[F2]≤ 2H̃(T,k1,k2)
∫ T

0
E|DsF |2s ds,

where

H̃(T,k1,k2) = S̃(T,k1, |k1|∨ |k2|)∧
[

S̃
(

T,k1,
k2− k1

2

)
S̃
(

T,
k1 + k2

2
,
|k1 + k2|

2

)]
;

(ii) for every cylindrical function F ∈FC∞
0,T ,

E
[
F−E[F ]

]2 ≤ H̃(T,k1,k2)
∫ T

0
E|DsF |2s ds.

Similarly to Section 2, we need the characterizations of modified pinched curvature condition on
path space to prove Theorem 3.1. In the following, we will use the notation:

E(x,t)[ · ] := E[ · |Ft , Xt = x].

Proposition 3.2. Let (M,gt)t∈[0,Tc) be a smooth manifold carrying a family of complete metrics gt .
Let k1,k2 be two continuous functions in C([0,Tc);R) such that k1 ≤ k2. For any T ∈ (0,Tc), the
following conditions are equivalent:
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(i) for any t ∈ [0,T ],
k1(t)≤RZ

t ≤ k2(t);
(ii) for any F ∈FC∞

0,T ,∣∣∇t
xE(x,t)(F(X[0,T ]))

∣∣
t ≤ E(x,t)(|D̂tF |t)+

∫ T

t
k̃(s)e−

∫ s
t k1(r)dr E(x,t)(|D̂sF |s)ds

where k̃ = (k2− k1)/2;
(iii) for any F ∈FC∞

0,T and any continuous function c on [0,T ],∣∣∇t
xE(x,t)(F(X[0,T ]))

∣∣2
t ≤

(
1+

∫ T

t
k̃(s)e−

∫ s
t (k1(r)−c(r))dr ds

)
×
(
E(x,t)(|D̂tF |2t )+

∫ T

t
k̃(s)e−

∫ s
t (k1(r)+c(r))dr E(x,t)(|D̂sF |2s )ds

)
;

(iv) for any F ∈FC∞
0,T , any continuous function c on [0,T ], and any t1 < t2 in [0,T ],

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E
[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2

∫ t2

t1

(
1+

∫ T

t
k̃(s)e−

∫ s
t (k1(r)−c(r))dr ds

)
×
(
E|D̂tF |2t +

∫ T

t
k̃(s)e−

∫ s
t (k1(r)+c(r))dr E|D̂sF |2s ds

)
dt;

(v) for any F ∈FC∞
0,T , any continuous function c on [0,T ], and any t1 < t2 in [0,T ],

E
[
E[F(X[0,T ])|Ft2 ]

2
]
−E
[
E[F(X[0,T ])|Ft1 ]

2
]

≤
∫ t2

t1

(
1+

∫ T

t
k̃(s)e−

∫ s
t (k1(r)−c(r))dr ds

)
×
(
E|D̂tF |2t +

∫ T

t
k̃(s)e−

∫ s
t (k1(r)+c(r))dr E|D̂sF |2s ds

)
dt.

Remark 3.3. In case where Zt = 0, and thus Lt = ∆t , it has been proved in [17] that the inequalities
(ii)–(v) in Proposition 3.2 with c ≡ 0 characterize solutions of the Ricci flow. More precisely, the
condition R0

t = 0, i.e.,
∂tgt = 2Rict , (3.3)

is equivalent to the inequalities of (ii)–(v) for k1 = k2 = c = 0 and D̂sF = DsF . Note that (3.3)
describes backward Ricci flow which corresponds to forward Ricci flow if one passes to the new
family of metrics g′t := gT−t where time is running backwards, as is done in [17].

Proof of Propostion 3.2. By [7, Theorem 4.3] we know that for F ∈FC∞
0,T , one has∣∣∇t

xE(x,t)(F(X[0,T ]))
∣∣
t ≤ E(x,t)|D̃tF |t ,

and

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E

[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2

∫ t2

t1
E|D̃sF |2s ds.

Analogously, by a similar discussion as in the proof of [7, Theorem 4.3], we have

E
[
E[F(X[0,T ])|Ft2 ]

2]−E
[
E[F(X[0,T ])|Ft1 ]

2] ≤ ∫ t2

t1
E|D̃sF |2s ds.

Hence it suffices again to estimate |D̃tF |t .
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Defining

k̄ =
k1 + k2

2
and k̃ =

k2− k1

2
,

recall

D̂tF(X[0,T ]) =
n

∑
i=1

1{t≤ti} e−
∫ ti

t k̄(r)dr //−1
t,ti ∇

ti
i f (Xt1 , . . . ,Xtn).

Then, we have

D̃tF = D̂tF +
n

∑
i=1

1{t≤ti}
(
Q̃t,ti− id

)
e−
∫ ti

t k̄(r)dr //−1
t,ti ∇

ti
i f (Xt1 , . . . ,Xtn)

= D̂tF−
∫ T

t
Qt,s

(
RZ

//t,s
− k̄(s)id

)
//−1

t,s D̂sF ds (3.4)

where Q̃t,s = e
∫ s

t k̄(r)dr Qt,s. Using similar arguments as in the proof of Proposition 2.2, we obtain
“(i)⇒ (ii)–(v)”.

Conversely, to prove “(ii)–(v)⇒ (i)”, the essential part is to prove (iii)⇒ (i). The trick is again
to use the test functionals F(X[0,T ]) = f (Xt) and F(X[0,T ]) = f (Xs)− 1

2 f (Xt). We refer the reader to
[24, 9] for detailed calculations. �

Proof of Theorem 3.1. For convenience of the reader, we first recall that for F ∈FC∞
0,T , one has

E[F2 logF2]−E[F2] logE[F2]≤ 2
∫ T

0
E|D̃sF |2s ds

and

E
[
F−E[F ]

]2 ≤ ∫ T

0
E|D̃sF |2s ds.

Hence it suffices to estimate
∫ T

0 E|D̃sF |2s ds. Under condition (3.2), we obtain the bounds∣∣RZ
t (X ,X)

∣∣≤ (|k1|∨ |k2|
)
(t) |X |2t

and
RZ

t (X ,X)≥ k1(t)|X |2t
for all X ∈ T M. Then

D̃tF = DtF +
n

∑
i=1

(∫ ti

t

dQt,s

ds
ds
)
//−1

t,ti ∇
ti
i f (Xt1 , . . . ,Xtn)

= DtF−
∫ T

t
Qt,s R

Z
//t,s

//−1
t,s DsF ds

which implies that

|D̃tF |t ≤ |DtF |t +
∫ T

t
(|k1|∨ |k2|)(s)e−

∫ s
t k1(r)dr |DsF |s ds.

Using a similar argument as in the proof of Theorem 2.1, we arrive at∫ T

0
|D̃tF |2t dt ≤

∫ T

0
Λ̃

c(t,T,k1, |k1|∨ |k2|)|DtF |2t dt. (3.5)

On the other hand, by Proposition 3.2, we have

|D̃tF |2t ≤
(

1+
∫ T

t
k̃(s)e−

∫ s
t (k1−c)(r)dr ds

)(
|D̂tF |2t +

∫ T

t
k̃(s)e−

∫ s
t (k1+c)(r)dr |D̂sF |2s ds

)
. (3.6)
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Moreover, for |D̂tF |t , it is easy to see that

|D̂tF |t =
∣∣∣DtF +

n

∑
i=1

1{t≤ti}

(
e−
∫ ti

t k̄(r)dr−1
)
//−1

t,ti ∇
ti
i f
∣∣∣
t

≤ |DtF |t +
∫ T

t
|k̄(s)|e−

∫ s
t k̄(r)dr |DsF |s ds. (3.7)

Combining this with Eq. (3.6), and using similar arguments as in the proof of Theorem 2.1, we obtain∫ T

0
|D̃tF |2t dt ≤ S̃

(
T,k1,

k2− k1

2

)∫ T

0
Λ̃

c
(

t,T,
k2 + k1

2
,
|k2 + k1|

2

)
|DtF |2t dt.

From this and by means of Eq. (3.5), the proof is directly completed. �

The following result is a direct consequence of Theorem 3.1.

Theorem 3.4. Assume that there exist two continuous functions k1 and k2 such that

k1(t) |X |2t ≤RZ
t (X ,X)≤ k2(t) |X |2t , t ∈ [0,T ]

for any vector field X on M. Then

gap(L )−1 ≤ H̃(T,k1,k2).

For the special case that k1 and k2 are constants, the following asymptotics hold as T → 0:
(i) for k1 ≥ 0,

gap(L )−1 ≤ 1+ k2T +
1
2

(
k2

2−
(7k1 + k2)(k1 + k2)k2

6(3k1 + k2)

)
T 2 +o(T 2);

(ii) for k1 + k2 ≥ 0 and k1 < 0,

gap(L )−1 ≤ 1+ k2T +
1
2

(
k2

2 +
2k2

1− k2
2−5k1k2

6

)
T 2 +o(T 2);

(iii) for k1 + k2 < 0,

gap(L )−1 ≤ 1− k1T +
1
2

(
k2

1 +
3k2

1 + k2
2

4

)
T 2 +o(T 2).

Acknowledgements. This work has been supported by Fonds National de la Recherche Luxembourg
(Open project O14/7628746 GEOMREV). The first named author acknowledges support by NSFC
(Grant No. 11501508) and Zhejiang Provincial Natural Science Foundation of China (Grant No.
LQ16A010009).

REFERENCES

1. Shigeki Aida and David Elworthy, Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities
on path spaces, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 97–102. MR 1340091

2. Marc Arnaudon, Kolehe Abdoulaye Coulibaly, and Anton Thalmaier, Brownian motion with respect to a metric de-
pending on time: definition, existence and applications to Ricci flow, C. R. Math. Acad. Sci. Paris 346 (2008), no. 13-
14, 773–778. MR 2427080

3. Jean-Michel Bismut, Large deviations and the Malliavin calculus, Progress in Mathematics, vol. 45, Birkhäuser
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