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Foreword

In September 2015 the International School and Conference on Geometry and
Quantization (GEOQUANT) took place at the ICMAT (Instituto de Ciencias
Matemáticas). The scientific topics discussed in Madrid were

• concepts of differential and complex geometry arising in quantization

• relations between quantization and the geometry of moduli spaces,
in particular of the moduli space of Higgs bundles

• algebraic aspects of quantization, in particular, infinite-dimensional
Lie algebras and groups and their representations

• asymptotic geometric analysis

• relations with modern theoretical physics

• non-commutative quantum field theory.

The activity lasted for two weeks. The first week was a school consisting of
four lecture courses aiming at the newcomer to the field. The second week was a
scientific conference.

This volume of the Travaux Mathématiques is mainly based on the school. The
focus on the 2015 Geoquant school was on the quantization of moduli spaces of
bundles, Higgs bundles, Hitchin systems, wall crossing, hyperKähler geometry,
quantum gravity, cluster algebras, and quantum Hall effect. Those topics are
clearly in the center of the current interest in the field. The aim of this volume is
to give an introduction to some of the hot topics of ongoing research in the field.
Furthermore, it was the desire of the participants to have some written material
of the courses available. We asked the lecturers whether they would be able to
produce such a write-up of their lectures. We are happy that most of them could
manage to contribute. In addition, we ask for additional contribution related
to the topics of the school and complementing them. For a first orientation on
the content of the lectures we recommend the collection of their summaries given
further down.

There were further solicited articles related to the topics. They will appear
in a forthcoming volume of the Travaux Mathématiques. It will be dedicated
to contributions originating from the Centre for Quantum Geometry of Moduli
Spaces (QGM), Aarhus, Denmark (director Jørgen Ellegaard Andersen).
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The organizers thank all lecturers contributing to the success of the school
and conference in an essential manner. Furthermore, we thank the participants
for their active role and for their very positive feedback. We thank very much
the ICMAT under its former director Manuel de Leon for its hospitality. All
participants enjoyed very much the place, the surrounding, and the facilities. Last,
but not least, we thank the following institutions for generous financial support:
ICMAT, University of Luxembourg, Foundation Compositio Mathematica, and
the EU COST research network QSPACE (Quantum Structure of Space Time).

The Geoquant activity is an international scientific event, highly respected
and well-known in the community. The current event was the 6th in a biannual
series. The previous school/conferences were held in: (1) Japan (Tokyo, Nagoya)
(2005), (2) Russia (Moscow) (2007), (3) Luxembourg (Luxembourg City) (2009),
(4) China (Beijing, Tianjin) (2011), and (5) Austria (Vienna) (2013).

Martin Schlichenmaier (for the organisers)
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Collection of Summaries

Mario Garcia-Fernandez: Lectures on the Strominger system

These notes give an introduction to the Strominger system of partial dif-
ferential equations, and are based on lectures given in September 2015 at the
GEOQUANT School, held at the Institute of Mathematical Sciences (ICMAT) in
Madrid. We describe the links with the theory of balanced metrics in hermitian
geometry, the Hermite-Yang-Mills equations, and its origins in physics, that we
illustrate with many examples. We also cover some recent developments in the
moduli problem and the interrelation of the Strominger system with generalized
geometry, via the cohomological notion of string class.

Semyon Klevtsov: Geometry and large N limits in Laughlin states

In these notes I survey geometric aspects of the lowest Landau level wave func-
tions, integer quantum Hall state and Laughlin states on compact Riemann sur-
faces. In particular, I review geometric adiabatic transport on the moduli spaces,
derivation of the electromagnetic and gravitational anomalies, Chern-Simons the-
ory and adiabatic phase, and the relation to holomorphic line bundles, Quillen
metric, regularized spectral determinants, bosonisation formulas on Riemann sur-
faces and asymptotic expansion of the Bergman kernel.

Tomoki Nakanishi and Dylan Rupel: Companion cluster algebras to a
generalized cluster algebra

We study the c-vectors, g-vectors, and F -polynomials for generalized cluster
algebras satisfying a normalization condition and a power condition recovering
classical recursions and separation of additions formulas. We establish a relation-
ship between the c-vectors, g-vectors, and F -polynomials of such a generalized
cluster algebra and its (left- and right-) companion cluster algebras. Our main
result states that the cluster variables and coefficients of the (left- and right-) com-
panion cluster algebras can be recovered via a specialization of the F -polynomials.

David Alfaya and Tomas L. Gómez: On the Torelli theorem for Deligne-
Hitchin moduli spaces

We prove a Torelli theorem for the parabolic Deligne-Hitchin moduli space,
and compare it with previous Torelli theorems for non-parabolic Deligne-Hitchin
moduli spaces.
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Indranil Biswas, Ugo Bruzzo, Beatriz Graña Otero, and Alessio Lo Giudice:
Yang–Mills–Higgs connections on Calabi–Yau manifolds, II

In this paper we study Higgs and co–Higgs G–bundles on compact Kähler
manifolds X. Our main results are:

1. If X is Calabi–Yau (i.e., it has vanishing first Chern class), and (E, θ) is a
semistable Higgs or co–Higgs G–bundle on X, then the principal G–bundle
E is semistable. In particular, there is a deformation retract ofMH(G) onto
M(G), whereM(G) is the moduli space of semistable principal G–bundles
with vanishing rational Chern classes on X, and analogously, MH(G) is
the moduli space of semistable principal Higgs G–bundles with vanishing
rational Chern classes.

2. Calabi–Yau manifolds are characterized as those compact Kähler manifolds
whose tangent bundle is semistable for every Kähler class, and have the
following property: if (E, θ) is a semistable Higgs or co–Higgs vector bundle,
then E is semistable.

Peter B. Gothen: Hitchin Pairs for non-compact real Lie groups

Hitchin pairs on Riemann surfaces are generalizations of Higgs bundles, allow-
ing the Higgs field to be twisted by an arbitrary line bundle. We consider this
generalization in the context of G-Higgs bundles for a real reductive Lie group G.
We outline the basic theory and review some selected results, including recent re-
sults by Nozad and the author on Hitchin pairs for the unitary group of indefinite
signature U(p, q).

André Oliveira: Quadric bundles applied to non-maximal Higgs bundles

We present a survey on the moduli spaces of rank 2 quadric bundles over a
compact Riemann surface X. These are objects which generalise orthogonal bun-
dles and which naturally occur through the study of the connected components of
the moduli spaces of Higgs bundles over X for the real symplectic group Sp(4,R),
with non-maximal Toledo invariant. Hence they are also related with the moduli
space of representations of π1(X) in Sp(4,R). We explain this motivation in some
detail.
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Lectures on the Strominger system

by Mario Garcia-Fernandez

Abstract

These notes give an introduction to the Strominger system of partial
differential equations, and are based on lectures given in September 2015
at the GEOQUANT School, held at the Institute of Mathematical Sciences
(ICMAT) in Madrid. We describe the links with the theory of balanced
metrics in hermitian geometry, the Hermite-Yang-Mills equations, and its
origins in physics, that we illustrate with many examples. We also cover
some recent developments in the moduli problem and the interrelation of
the Strominger system with generalized geometry, via the cohomological
notion of string class.

1 Introduction

The Strominger system of partial differential equations has its origins in super-
gravity in physics [64, 93], and it was first considered in the mathematics literature
in a seminal paper by Li and Yau [76]. The mathematical study of this PDE has
been proposed by Yau as a natural generalization of the Calabi problem for non-
kählerian complex manifolds [104], and also in relation to Reid’s fantasy on the
moduli space of projective Calabi-Yau threefolds [88]. There is a conjectural re-
lation between the Strominger system and conformal field theory, which arises in
a certain physical limit in compactifications of the heterotic string theory.

In complex dimensions one and two, solutions of the Strominger system are
given (after conformal re-scaling) by polystable holomorphic vector bundles and
Kähler Ricci flat metrics. In dimension three, the existence and uniqueness prob-
lem for the Strominger system is still open, and it is the object of much current
investigation (see Section 5.2). The existence of solutions has been conjectured
by Yau under natural assumptions [105] (see Conjecture 5.10).

The main obstacle to prove the existence of solutions in complex dimension
three and higher is an intricate equation for 4-forms

(1.1) ddcω = trR∇ ∧R∇ − trFA ∧ FA,

coupling the Kähler form ω of a (conformally) balanced hermitian metric on a
complex manifold X with a pair of Hermite-Yang-Mills connections ∇ and A.



8 Mario Garcia-Fernandez

This subtle condition – which arises in the quantization of the sigma model for
the heterotic string – was studied by Freed [38] and Witten [101] in the context
of index theory for Dirac operators, and more recently it has appeared in the
topological theory of string structures [15, 87, 91] and in generalized geometry
[12, 47, 48]. Despite these important topological and geometric insights, to the
present day we have a very poor understanding of equation (1.1) from an analytical
point of view.

In close relation to the existence problem, an important object in the theory
of the Strominger system is the moduli space of solutions. The moduli problem
for the Strominger system is largely unexplored, and only in recent years there
has been progress in the understanding of its geometry [6, 24, 48, 49]. From a
physical perspective, it can be regarded as a first approximation to the moduli
space of 2-dimensional (0,2)-superconformal field theories, and is expected to host
a generalization of mirror symmetry [104].

Organization:

These lecture notes intend to give an introduction to the theory of the Strominger
system, going from classical hermitian geometry to the physical origins of the
equations, and its many legs in geometric analysis, algebraic geometry, topology,
and generalized geometry. Hopefully, this manuscript also serves as a guide to the
vast literature in the topic.

In Section 2 we give an introduction to the theory of balanced metrics in her-
mitian geometry (in the sense of Michelson [79]). In Section 3 we study balanced
metrics in non-kählerian Calabi-Yau manifolds and introduce the dilatino equa-
tion, one of the building blocks of the Strominger system. In Section 4 we go
through the theory of Hermite-Einstein metrics on balanced manifolds, and its re-
lation with slope stability. Section 5 is devoted to the definition of the Strominger
system and the existence of solutions. In Section 5.2 we discuss several methods
to find solutions of the equations, that we illustrate with examples, and comment
on Yau’s Conjecture for the Strominger system (Conjecture 5.10).

In Section 6 we review the physical origins of the Strominger system in string
theory. This provides an important motivation for its study, and reveals the links
of the Strominger system with conformal field theory, and the theory of string
structures. For the physical jargon, we refer to the Glossary in [26]. Finally,
in Section 7 we consider recent developments in the geometry of the Strominger
system, based on joint work of the author with Rubio and Tipler [48]. As we
will see, the interplay of the Strominger system with the notion of string class
[87] leads naturally to an interesting relation with Hitchin’s theory of generalized
geometry [63], that we discuss in the context of the moduli problem in Section 7.2.

Acknowledgements: I would like to thank Bjorn Andreas – who introduced
me to this topic –, Luis Álvarez-Cónsul, Xenia de la Ossa, Antonio Otal, Roberto
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Rubio, Eirik Svanes, Carl Tipler, and Luis Ugarte for useful discussions and com-
ments about the manuscript. I thank the organizers of GEOQUANT 2015 for the
invitation to give this lecture course, and for their patience with the final version
of this manuscript.

2 Special metrics in hermitian geometry

2.1 Kähler, balanced, and Gauduchon metrics

Let X be a compact complex manifold of dimension n, with underlying smooth
manifold M . A hermitian metric on X is a riemannian metric g on M such
that g(J ·, J ·) = g, where J : TM → TM denotes the almost complex structure
determined by X. Denote by Ωk (resp. Ωk

C) the space of real (resp. complex)
smooth k-forms on M . Denote by Ωp,q ⊂ Ωp+q

C the space of smooth complex
(p+q)-forms on X of type (p, q). Note that Ωp,q belongs to the eigenspace of Ωp+q

C
with eigenvalue iq−p with respect to the endomorphism

α→ (−1)p+qα(J ·, . . . , J ·).

Associated to g there is a canonical non-degenerate (1, 1)-form ω ∈ Ω1,1, defined
by

ω(V,W ) = g(JV,W )

for any pair of vector fields V,W on M . The 2-form ω is called the Kähler form
of the hermitian manifold (X, g).

By integrability of the almost complex structure, we have the decomposition
of the exterior differential d = ∂ + ∂̄ acting on Ωp,q, where ∂ and ∂̄ are given by
projection

∂ : Ωp,q → Ωp+1,q, ∂̄ : Ωp,q → Ωp,q+1.

Consider the operator dc = i(∂̄ − ∂) acting on forms Ωk
C. We have the following

special types of hermitian structures.

Definition 2.1. A hermitian metric g on X is

1. Kähler if dω = 0,

2. balanced if dωn−1 = 0,

3. Gauduchon if ddc(ωn−1) = 0.

Remark 2.2. There are other important notions of special hermitian metrics
(see e.g. [37, 86]), such as pluriclosed metrics or astheno-Kähler metrics (given by
the conditions ddcω = 0 and ddc(ωn−2) = 0, respectively), but their study goes
beyond the scope of the present notes.
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The Kähler condition for g is equivalent to ∇gJ = 0, where ∇g denotes the
Levi-Civita connection of the riemannian metric g (see [54, Section 1.1]). Using
that ddc = −dcd, we have a simple chain of implications:

Kähler ⇒ balanced ⇒ Gauduchon.

We say that a complex manifold is kählerian (respectively balanced) if it admits
a Kähler (respectively balanced) metric. The existence of Kähler and balanced
metrics in a compact complex manifold is a delicate question [60, 79]. In complex
dimension two, the conditions of being balanced and kählerian are both equivalent
to the first Betti number of X being even (see e.g. [77, Th. 1.2.3]). Thus, there are
complex surfaces — such as the Hopf surfaces — which carry no Kähler metric (see
Example 2.10). However, in all dimensions n > 3 there exist compact balanced
manifolds which are not kählerian. This is true, for example, for certain complex
nilmanifolds (see Example 2.5). In contrast, due to a theorem of Gauduchon [50]
every compact complex manifold admits a Gauduchon metric.

Theorem 2.3 ([50]). Every hermitian metric on X is conformal to a Gauduchon
metric, uniquely up to scaling when n > 1.

A large class of kählerian complex manifolds is given by the projective alge-
braic manifolds. This follows from the basic fact that the kählerian property is
inherited by holomorphic immersions, that is, if X is kählerian and there exists a
holomorphic immersion f : Y → X, then Y is kählerian (by pull-back of a Kähler
metric on X).

Example 2.4. Any closed complex submanifold of CPN is kählerian. Recall that
any closed analytic submanifold X ⊂ CPN is algebraic, by Chow’s Theorem.

Basic examples of balanced manifolds which are not kählerian can be found
among complex parallelizable manifolds. Compact complex parallelizable mani-
folds were characterized by Wang [100], who proved that all arise as a quotient
of a complex unimodular Lie group G by a discrete subgroup Γ. They are, in
general, non-kählerian: such a manifold is kählerian if and only if it is a torus
[100, p.776]. Using Wang’s characterization, Abbena and Grassi [1] showed that
all parallelizable complex manifolds are balanced. In fact, any right invariant her-
mitian metric on G is balanced and this induces a balanced metric on the manifold
G/Γ [1, Theorem 3.5]. We discuss a concrete example on the Iwasawa manifold,
due to Gray (see e.g. [51, p. 120]).

Example 2.5. Let G ⊂ SL(3,C) be the non-abelian group given by elements of
the form

(2.1)




1 z1 z2

0 1 z3

0 0 1


 ∈ SL(3,C),
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for z1, z2, z3 arbitrary complex numbers. Let Γ ⊂ G be the subgroup whose entries
are given by Gaussian numbers

Γ = G ∩ SL(3,Z[i]).

The quotient X = G/Γ is a compact complex parallelizable manifold of dimension
3. The holomorphic cotangent bundle T ∗X can be trivialized explicitly in terms
of three holomorphic 1-forms θ1, θ2, θ3, locally given by

θ1 = dz1, θ2 = dz2 − z3dz1, θ3 = dz3,

satisfying the relations

dθ1 = dθ3 = 0, dθ2 = θ1 ∧ θ3.

Since dθ2 = ∂θ2 is a non-vanishing exact holomorphic (2, 0)-form, X is not
kählerian (by the ∂∂̄-lemma, any such form vanishes in a Kähler manifold). To
show that X is balanced, we can take the positive (1, 1)-form

(2.2) ω = i(θ1 ∧ θ1 + θ2 ∧ θ2 + θ3 ∧ θ3),

which defines a hermitian metric g = ω(·, J ·) on X. It can be readily checked that
dω ∧ ω = 0.

We introduce next an important 1-form canonically associated to any hermi-
tian structure, that we use to give a characterization of the balanced and Gaudu-
chon conditions..

Definition 2.6. The Lee form of a hermitian metric g on X is the 1-form θω ∈ Ω1

defined by

(2.3) θω = Jd∗ω.

Here, d∗ = − ∗ d∗ is the adjoint of the exterior differential d for the hermitian
metric g, where ∗ denotes the (riemannian) Hodge star operator of g. Alterna-
tively, using the operator

(2.4) Λω : Ωk −→ Ωk−2 : ψ 7−→ ιω](ψ),

where ] is the operator acting on k-forms induced by the symplectic duality
] : T ∗X → TX and ι denotes the contraction operator, we have

θω = Λωdω.

A different way of defining the Lee form is via the equation

dωn−1 = θω ∧ ωn−1,
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which in particular implies Λωdθω = 0. From the previous formula we can deduce
the change of the Lee form under conformal transformations: if ω̃ = eφω for a
smooth function φ ∈ C∞(X) then

(2.5) θω̃ = θω + (n− 1)dφ.

Note that dθω is a conformal invariant (when θω is closed, so is [θω] ∈ H1(X,R)).

Proposition 2.7. A hermitian metric g on X is

1. balanced if and only if θω = 0,

2. Gauduchon if and only if d∗θω = 0.

Proof. The first part follows from the equality ∗ω = ωn−1

(n−1)!
, since by definition

d∗ = − ∗ d∗. As for the second part, the statement follows from

d∗θω = − ∗ dJd ∗ ω = − ∗ Jdcd ∗ ω,

where we have used that dc = JdJ−1, and the algebraic identities ∗J = J∗,
∗2αk = (−1)kαk for any αk ∈ Ωk.

2.2 Balanced manifolds

In this section we study general properties of balanced manifolds, which enable
to construct a large class of examples, and also to identify complex manifolds
which are not balanced. The guiding principle is that the balanced property for
a complex manifold is, in a sense, dual to the kählerian property. This can be
readily observed from Proposition 2.7, which implies that the balanced condition
for a hermitian metric is equivalent to the Kähler form being co-closed

d∗ω = 0.

As mentioned in Example 2.4, the kählerian property of complex manifolds is
inherited by holomorphic immersions. Balanced manifolds satisfy a dual ‘func-
torial property’, in terms of proper holomorphic submersions. Thus, the Kähler
property is induced on sub-objects and the balanced property projects to quotient
objects.

Proposition 2.8 ([79]). Let X and Y be compact complex manifolds. Then

1. If X and Y are balanced, then X × Y is balanced.

2. Let f : X → Y be a proper holomorphic submersion. If X is balanced then
Y is balanced.
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Proof. Let n and m denote the complex dimensions of X and Y , respectively. To
prove part 1, we simply note that if ωX and ωY are (the Kähler forms of) balanced
metrics on X and Y , respectively, then

(ωX + ωY )n+m−1 =

(
n− 1

m+ n− 1

)
ωn−1
X ∧ ωmY +

(
m− 1

m+ n− 1

)
ωnX ∧ ωm−1

Y ,

for the product hermitian structure on X × Y .
As for part 2, let ωX be a balanced metric on X and consider the closed

(n−1, n−1)-form τX = ωn−1
X . Since f is proper, there exists a closed 2m−2-form

τY = f∗τX on Y , given by integration along the fibres. The fibres are complex,
and hence τY is actually a form of type (m − 1,m − 1). Furthermore, it can be
checked that it is positive, in the sense that it induces a positive form on every
complex hyperplane in TY . A linear algebra argument (see [79, p. 280]) shows
now that τY admits an (m− 1)-th positive root, that is, a positive (1, 1)-form ωY
on Y , such that ωm−1

Y = τY .

The converse of part 2 of Proposition 2.8 is not true. To see a counterexample,
we need a basic cohomological property of balanced manifolds. This shall be
compared with the fact that, on a kälerian manifold, no compact complex curve
can be trivial in homology.

Proposition 2.9 ([79]). Let X be a compact complex balanced manifold of di-
mension n. Then every compact complex subvariety of codimension 1 represents
a non-zero class in H2n−2(X,R).

The proof of Proposition 2.9 follows easily by integration of the closed form
ωn−1 along the subvariety, for any balanced metric on X. This property of codi-
mension 1 subvarieties of a balanced manifold was strengthened by Michelson in
terms of currents, whereby he provided a cohomological characterization of those
compact complex manifolds which admit balanced metrics [79, Th. A]. We will
not comment further on this more sophisticated notion, since Proposition 2.9 is
enough to give first examples of complex manifolds which are not balanced.

Example 2.10 ([18]). Consider X̂ = Cp+1\{0}×Cq+1\{0} and the abelian group
C acting on X̂ by

t · (x, y) = (etx, eαty),

for α ∈ C\R. The Calabi-Eckmann manifold X = X̂/C, is diffeomorphic to
S2p+1 × S2q+1, and admits a natural holomorphic fibration structure

f : X → CPp × CPq

induced by the product of the Hopf mappings S2k+1 → CPk, for k = p, q. Hence,
X admits plenty of compact complex submanifolds of codimension-one. Since the
homology is zero in dimension 2p + 2q, we see that these manifolds support no
balanced metrics if p+ q > 0. Note that p is proper and CPp × CPq is kählerian,
and hence the converse of part 2 in Proposition 2.8 does not hold.
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The next result, also due to Michelson, provides a weak converse of part 2 in
Proposition 2.8.

Theorem 2.11 ([79]). Let X be a compact complex connected manifold. Suppose
that X admits a holomorphic map f : X → C onto a complex curve C, with a
cross section. If the non-singular fibres of f are balanced, then X is balanced.

Note that the existence of the cross section implies that the pull-back f ∗[C] of
the fundamental class [C] of C is non-trivial in H2(X,R), and therefore no regular
fibre can be homologous to zero (since its class in homology is the Poincare dual
of [C]). To illustrate this result, consider the Hopf surface S1×S3 – regarded as a
Calabi-Eckmann manifold in Example 2.10 –. This manifold admits a holomorphic
submersion S1 × S3 → CP1 with Kähler fibres (given by elliptic curves) but it is
not balanced, because the fibres are homologically trivial.

The following example, which fulfils the hypothesis of Theorem 2.11, is due to
Calabi.

Example 2.12 ([17]). Let C be a compact Riemann surface and ι : C̃ → R3 a con-
formal minimal immersion, where C̃ denotes the universal cover of C. Considering
the product immersion

ι× Id : C̃ × R4 → R3 ⊕ R4 = R7,

the 6-dimensional submanifold ι(C̃×R4) inherits an integrable complex structure
induced by Cayley multiplication (where R7 is regarded as the imaginary octo-
nions). This complex structure is invariant under covering transformations on C̃
and translations on R4, and satisfies that the natural inclusions C̃×{x} → C̃×R4

are holomorphic for any x ∈ R4. Hence for any lattice Λ ⊂ R4 we can pro-
duce a compact quotient manifold XΛ which admits a holomorphic projection
f : XΛ → C. The fibres of this map are complex tori and the map f has holomor-
phic cross sections (induced by the inclusions C̃ × {x} → C̃ × R4). By Theorem
2.11, XΛ is a balanced manifold. Calabi proved in [17] that the manifolds XΛ are
not kählerian.

Further examples of balanced holomorphic fibrations (which do not satisfy
the hypothesis of Theorem 2.11) are given by twistor spaces of four-dimensional
riemannian manifolds. Given an oriented riemannian 4-manifold N , there is asso-
ciated twistor space T , given by an S2-bundle over N . The fibre of T over a point
x in N is the sphere of all orthogonal almost complex structure on TxN compat-
ible with the orientation. The twistor space T has a canonical almost complex
structure, which is integrable if and only if N is self-dual [11]. Furthermore, there
is a natural balanced metric on T . As shown by Hitchin [62], the only compact
twistor spaces which are Kähler are those associated S4 and CP2.

The next result is due to Alessandrini and Bassanelli, and proves that the
property of being balanced is a birational invariant. Due to a counterexample
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of Hironaka [61], this is not true for Kähler manifolds, and thus the existence of
balanced metrics is a more robust property than the kählerian condition for a
compact complex manifold.

Theorem 2.13 ([3, 4]). Suppose X and Y are compact complex manifolds. Let
f : X → Y be a modification. Then X is balanced if and only if Y is balanced.

A modification f : X → Y is a holomorphic map such that there exists a
complex submanifold N ⊂ Y of codimension at least two and a biholomorphism
f : X\f−1(N)→ Y \N given by restriction. As a corollary of the previous result,
any compact complex manifold of Fujiki class C is balanced, since, by definition,
it is bimeromorphic to a Kähler manifold.

We finish this section with some comments on the behaviour of the kählerian
and balanced properties under deformations of complex structure. Kodaira and
Spencer proved that any small deformation of a compact Kähler manifold is again
a Kähler manifold [73, Th. 15]. Unlike for kählerian manifolds, the existence
of balanced metrics on a compact complex manifold is not an open condition
under small deformations of the complex structure. This was shown explicitly in
[2, Proposition 4.1], for the Iwasawa manifold endowed with the holomorphically
parallelizable complex structure (see Example 2.5). As shown in [9, 46, 102], a
balanced analogue of the stability result of Kodaira and Spencer requires a further
assumption on the variation of Bott-Chern cohomology of the complex manifold.
In particular, Wu proved in [102, Th. 5.13] that small deformations of compact
balanced manifolds satisfying the ∂∂̄-lemma still admit balanced metrics.

Hironaka’s Example [61] mentioned above shows in particular that the Kähler
property is not closed under deformations of complex structure. Recently, Ce-
ballos, Otal, Ugarte and Villacampa [20] proved the analogue result for balanced
manifolds, that is, that the balanced property is not closed under holomorphic
deformations. This result has been strengthened in [36], via the construction of
a family over a disk whose generic element is a balanced manifold satisfying the
∂∂̄-lemma and whose central fibre is not balanced.

3 Balanced metrics on Calabi-Yau manifolds

3.1 The dilatino equation

We introduce next an equation – for a hermitian metric on a complex manifold
with trivial canonical bundle – which is closely related to the balanced condition,
and constitutes one of the building blocks of the Strominger system. We will use
the following notation throughout.

Definition 3.1. A Calabi-Yau n-fold is a pair (X,Ω), given by a complex man-
ifold X of dimension n and a non-vanishing holomorphic global section Ω of the
canonical bundle KX = ΛnT ∗X.
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We should stress that in the previous definition we do not require X to be
kählerian. To introduce the dilatino equation, given a hermitian metric g on X
we will denote by ‖Ω‖ω the norm of Ω, given explicitly by

(3.1) ‖Ω‖2
ω

ωn

n!
= (−1)

n(n−1)
2 inΩ ∧ Ω.

Definition 3.2. The dilatino equation, for a hermitian metric g on (X,Ω), is

(3.2) d∗ω = dc log ‖Ω‖ω.

When n = 1, g is necessarily Kähler and the Calabi-Yau assumption implies
that X is an elliptic curve. Then, (3.2) reduces to d log ‖Ω‖ω = 0, which is
equivalent to ω being Ricci-flat. We assume n > 1 in the sequel.

The next result shows that the existence of solutions of (3.2) is equivalent to
the existence of a Kähler Ricci-flat metric, if n = 2, and to the existence of a
balanced metric when n > 3. The proof relies on the observation by Li and Yau
[76] that the dilatino equation is equivalent to the conformally balanced equation

(3.3) d(‖Ω‖ωωn−1) = 0.

Proposition 3.3. Let σ be a hermitian conformal class on (X,Ω). Then

1. if n = 2, then σ admits a solution of (3.2) if and only if all g ∈ σ is a
solution, if and only there exists a Kähler Ricci-flat metric on σ.

2. if n > 3 then σ admits a solution of (3.2) if and only if σ admits a balanced
metric.

If X is compact, then there exists at most one balanced metric on σ up to homo-
thety.

Proof. We sketch the proof and leave the details for the reader. First we use that
(3.2) is equivalent to

θω = −d log ‖Ω‖ω,
(in particular θω needs to be exact if there exists a solution). Thus, using (2.5) the

dilatino equation is equivalent to (3.3), which holds if and only if ω̃ = ‖Ω‖
1

n−1
ω ω

is balanced. Conversely, for n > 3, ω̃ is balanced if and only if ω = ‖Ω‖
−2
n−2

ω̃ ω̃
solves the dilatino equation. The existence part of the statement follows from
the change of the (n− 1, n− 1)-form ‖Ω‖ωωn−1 under a conformal transformation
of the metric. The uniqueness part follows by direct application of Gauduchon’s
Theorem [52, Th. I.14].
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The equivalence between (3.2) and (3.3) implies that any solution of the di-
latino equation has an associated class in cohomology. To be more precise, con-
sider the Bott-Chern cohomology of X, defined by

Hp,q
BC(X) =

Ker(d : Ωp,q → Ωp+1,q ⊕ Ωp,q+1)

Im(ddc : Ωp−1,q−1 → Ωp,q)
.

Since d and ddc are real operators, the cohomology groups of bi-degree (p, p) have
a natural real structure

Hp,p
BC(X,R) ⊂ Hp,p

BC(X).

Definition 3.4. Given a solution ω of the dilatino equation (3.2), its balanced
class is defined by

(3.4) [‖Ω‖ωωn−1] ∈ Hn−1,n−1
BC (X,R).

Remark 3.5. Given a balanced metric ω̃, there are infinitely many such metrics
with the same balanced class [ω̃n−1], as we can always take a real form ϕ ∈ Ωn−2,n−2

and deform ω̃n−1 by
Ψ = ω̃n−1 + ddcϕ.

For ϕ small we have that Ψ is positive, and thus its (n− 1)-th root is a balanced
metric [79].

A solution of the dilatino equation has an alternative interpretation, in terms
of a connection with skew-torsion and restricted holonomy. Let X be a complex
manifold, with underlying smooth manifold M . A hermitian connection on (X, g)
is a linear connection on TM such that ∇J = 0 and ∇g = 0, where J is the
almost complex on M determined by X. Gauduchon observed in [53] that the
Bismut connection [13]

(3.5) ∇B = ∇g − 1

2
g−1dcω.

is the unique hermitian connection on X with skew-symmetric torsion. Here we
regard the metric as an isomorphism g : TM → T ∗M and g−1dcω as 1-form with
values on the endomorphisms of TM . Note that the torsion of ∇B is given by

gT∇B = −dcω ∈ Ω3.

Proposition 3.6. Let (X,Ω) be a Calabi-Yau manifold endowed with a hermi-
tian metric g. If g is a solution of the dilatino equation (3.2), then the Bismut
connection ∇B has restricted holonomy in the special unitary group

(3.6) hol(∇B) ⊂ SU(n).

The converse is true if X is compact.



18 Mario Garcia-Fernandez

For the proof, we need a formula for the unitary connection induced by ∇B

on KX due to Gauduchon [53, Eq. (2.7.6)]. Let ∇C be the Chern connection of
the hermitian metric on KX induced by g. Then,

(3.7) ∇B = ∇C − id∗ω ⊗ Id.

Recall that ∇C is uniquely determined by the property (∇C)0,1 = ∂̄, where ∂̄ is
the canonical Dolbeault operator on the holomorphic line bundle KX . Since X
is Calabi-Yau, we have an explicit formula for ∇C in (3.7) in the holomorphic
trivialization of KX given by Ω, namely,

∇C = d+ 2∂ log ‖Ω‖ω.

Proof of Proposition 3.6. Let ψ be a smooth section of KX . Then, there exists
f ∈ C∞(X,C) a smooth complex-valued function on X such that ψ = efΩ.
Applying (3.7) we have

(3.8) ∇B(ψ) = (df + 2∂ log ‖Ω‖ω − id∗ω)⊗ ψ.

Assume that ω is a solution of (3.2). Then, by the previous equation

∇B(ψ) = (df + d log ‖Ω‖ω)⊗ ψ

and we can set f = − log ‖Ω‖ω to obtain a parallel section ψ = ‖Ω‖−1
ω Ω.

For the converse, if ψ is parallel with respect to ∇B, applying (3.8) we obtain

df = id∗ω − 2∂ log ‖Ω‖ω.

Further, ψ must have constant norm ‖ψ‖ω = t ∈ R>0 and it follows from (3.1)
that

f + f = 2 log t− 2 log ‖Ω‖ω.
Hence, setting φ = f − f we obtain

dφ = d∗ω − dc log ‖Ω‖ω.

It suffices to prove that φ is constant. For this, we define ω̃ = ‖Ω‖
1

n−1
ω ω and note

that
dφ = −Jθω̃ = d∗̃ω̃,

by the behaviour of the Lee under conformal rescaling (2.5). Applying now the
operator d∗̃ on both sides of the equation ∆ω̃φ = d∗̃dφ = 0, and therefore dφ = 0
since by assumption X is compact.
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As we have just seen, the restriction of the holonomy of the Bismut connection
to the special unitary group on a Calabi-Yau manifold is essentially equivalent to
the existence of solutions of the dilatino equation (3.2). This equation for the
Kähler form of the hermitian structure is strongly reminiscent of the complex
Monge-Ampère equation in Kähler geometry. To see this, assume for a moment
that X is a domain in Cn, Ω = dz1 ∧ . . . ∧ dzn and that g is Kähler, with

ω = ddcϕ

for a smooth function ϕ. Then d∗ω = 0 and the dilatino equation reduces to the
complex Monge-Ampère equation

log det ∂i∂jϕ = t,

for a choice of constant t. Relying on Yau’s solution of the Calabi Conjecture [103],
the previous observation gives a hint that Calabi-Yau metrics, that is, Kähler
metrics with vanishing Ricci tensor, provide examples of solutions for the dilatino
equation.

Example 3.7. Assume that X is compact and kählerian. Then, by Yau’s The-
orem [103], X admits a unique Kähler Ricci-flat metric g on each Kähler class.
Since g is Kähler, the left hand side of (3.2) vanishes. Further, Ricci-flatness im-
plies that the holomorphic volume form Ω has to be parallel [54, Prop. 1.22.6], and
therefore g solves (3.2). Note that in this case dcω = 0 and hence ∇B = ∇C = ∇g.

To find non-Kähler examples of solutions of the dilatino equation we revisit
the complex parallelizable manifold in Example 2.5.

Example 3.8. The compact complex manifold X = G/Γ in Example 2.5 is
parallelizable, and hence admits a trivialization of the canonical bundle. Using
the frame θ1, θ2, θ3 of T ∗X we consider

Ω = θ1 ∧ θ2 ∧ θ3.

Then, it can be readily checked that ‖Ω‖ω is constant, and hence the balanced
metric (2.2) is a solution of the dilatino equation (3.2). We note that the same
exact argument works in an arbitrary complex parallelizable manifold.

3.2 Balanced metrics and conifold transitions

We describe next a more sophisticated construction of non-kählerian Calabi-Yau
threefolds due to Clemens [22] and Friedman [39] (for a review see [89]), which
provides a strong motivation for the study of the Strominger system. These three-
folds are typically not birational to kählerian manifolds (class C) as they may have
vanishing second Betti number. Thus, Alessandrini-Bassanelli Theorem 2.13 can-
not be applied to ensure the existence of balanced metrics. An interesting result
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due to Fu, Li and Yau [42] shows that the Calabi-Yau manifolds obtained via the
Clemens-Friedman construction are balanced.

LetX be a smooth kählerian Calabi-Yau threefold with a collection of mutually
disjoint smooth rational curves C1, . . . , Ck, with normal bundles isomorphic to

OCP1(−1)⊕OCP1(−1).

Contracting the k rational curves, we obtain a singular Calabi-Yau threefold X0

with k ordinary double-point singularities p1, . . . , pk. Away from the singularities,
we have a biholomorphism X\⋃k Ck

∼= X0\{p1, . . . , pk}, while a neighbourhood
of pj in X0 is isomorphic to a neighbourhood of 0 in

{z2
1 + z2

2 + z2
3 + z4

4 = 0} ⊂ C4.

By results of Friedman, Tian and Kawamata, if the fundamental classes [Cj] ∈
H2,2(X,Q) satisfy a relation ∑

j

nj[Cj] = 0,

with nj 6= 0 for every j, then there exists a family of complex manifolds Xt over
a disk ∆ ⊂ C, such that Xt is a smooth Calabi-Yau threefold for t 6= 0, and the
central fibre is isomorphic to X0. For small values of t, the local model for this
smoothing is isomorphic to a neighbourhood of 0 in

{z2
1 + z2

2 + z2
3 + z4

4 = t} ⊂ C4.

The construction of Xt from X, typically denoted by a diagram of the form

X → X0 99K Xt,

is known in physics as Clemens-Friedman conifold transition (see e.g. [89]). The
smooth manifolds Xt satisfy the ∂∂̄-lemma, but they are in general non-kählerian
[40]. Explicitly, Friedman observed that ]k(S

3× S3) for any k > 2 can be given a
complex structure in this way. The idea is to contract enough rational curves on
X so that H2(Xt,R) = 0 for t 6= 0.

Example 3.9. Consider the complete intersection X ⊂ CP4 × CP1 given by

(x2
2 + x2

4 − x2
5)y1 + (x2

1 + x4
3 + x4

5)y2 = 0,

x1y1 + x2y2 = 0,

where x1, . . . , x5 and y1, y2 are coordinates in CP4 and CP1, respectively. This is
a Calabi-Yau threefold with b2(X) = 2 (see e.g. [89]). Consider the blow up

ψ : ĈP4 → CP4



Lectures on the Strominger system 21

of CP4 along the plane {x1 = x2 = 0}, whose exceptional divisor is a CP1-bundle
over CP2. Then, X can be regarded as the proper transform of the singular
hypersurface X0 ⊂ CP4 containing the given plane, defined by

x2(x2
2 + x2

4 − x2
5)− x1(x2

1 + x4
3 + x4

5) = 0.

Note that X0 has 16 ordinary double points p1, . . . , p16, described by

x1 = x2 = 0, x4
3 + x4

5 = 0, x2
4 − x2

5 = 0,

and ψ−1(pj) ∼= CP1 for all j = 1, . . . , 16. Choosing now a small t ∈ C, we can
consider the smooth quintic hypersurface Xt ⊂ CP4 with equation

x2(x2
2 + x2

4 − x2
5)− x1(x2

1 + x4
3 + x4

5) = t

5∑

i=1

x2
i ,

which defines a smoothing of X0 (the so called generic quintic). Note that Xt is
also a Calabi-Yau threefold, and we have decreased the Betti number b2(Xt) = 1.

The main result in [42] states that the smoothing Xt in a conifold transition
admits a balanced metric, providing first examples of balanced metrics on the
complex manifolds ]k(S

3 × S3).

Theorem 3.10 ([42]). For sufficiently small t 6= 0, Xt admits a smooth balanced
metric.

Reid speculated [88] that all kählerian Calabi-Yau threefolds (that can be
deformed to Moishezon manifolds) are parametrized by a single universal moduli
space in which families of smooth Calabi-Yau threefolds of different homotopy
types are connected by conifold transitions. In order to develop a metric approach
to Reid’s fantasy, Yau has proposed to study special types of balanced metrics
which endow the Calabi-Yau threefolds with a preferred geometry [45, 76]. Note
here that, similarly as in Kähler geometry, balanced metrics arise in infinite-
dimensional families, each of them parametrized by a class in the balanced cone
in Bott-Chern cohomology [43] (see Remark 3.5). As we will see in Section 5, a
natural way to rigidify balanced metrics is imposing conditions on the torsion 3-
form of the Bismut connection dcω. An alternative (and in some sense orthogonal)
approach in the literature is to fix the volume form ωn/n! of the balanced metric
[94]. In particular, this gives special solutions of the dilatino equation, where the
left and right hand side of (3.2) vanish independently.
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4 Hermite-Einstein metrics on balanced mani-

folds

4.1 The Hermite-Einstein equation and stability

Let X be a compact complex manifold of dimension n endowed with a balanced
metric g. Let E be a holomorphic vector bundle over X of rank r, with underlying
smooth complex vector bundle E. We will denote by Ωp,q(E) the space of E-valued
(p, q)-forms on X. The holomorphic structure on E given by E is equivalent to a
Dolbeault operator

∂̄E : Ω0(E)→ Ω0,1(E)

satisfying the integrability condition ∂̄2
E = 0 (see e.g. [54]).

Given a hermitian metric h on E, there is an associated unitary Chern con-
nection A compatible with the holomorphic structure E , uniquely defined by the
properties

d0,1
A = ∂̄E ,

d(s, t)h = (dAs, t)h + (s, dAt)h,

for s, t ∈ Ω0(E). Here, dA : Ω0(E)→ Ω1(E) is the covariant derivative defined by
A. In a local holomorphic frame {ej}rj=1, the Chern connection is given by the
matrix-valued (1, 0)-form

h−1∂h,

where hij = (ej, ei)h. The curvature of the Chern connection is a (1, 1)-form with
values in the skew-hermitian endomorphisms End(E, h) of E, defined by

Fh = d2
A ∈ Ω1,1(End(E, h)).

In a local holomorphic frame, we have the formula

(4.1) Fh = ∂̄(h−1∂h)..

Definition 4.1. The Hermite-Einstein equation, for a hermitian metric h on E,
is

(4.2) iΛωFh = λId.

In equation (4.2), Λω is the contraction operator (2.4), Id denotes the identity
endomorphism on E, and λ ∈ R is a real constant. The Hermite-Einstein equation
is a non-linear second-order partial differential equation for the hermitian metric
h, as it follows from (4.1).

To understand the existence problem for the Hermite-Einstein equation, the
first basic observation is that, in order for a solution to exist, the constant λ ∈ R
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must take a specific value fixed by the topology of (X, g) and E, in the following
sense. Consider the balanced class of ωn−1 in de Rham cohomology

(4.3) τ := [ωn−1] ∈ H2n−2(X,R),

determined by the balanced metric g. Recall that the first Chern class c1(E) of
E is represented by

c1(E) = [i trFh/2π] ∈ H2(X,Z),

for any choice of hermitian metric h.

Definition 4.2. The τ -degree of E is

(4.4) degτ (E) = c1(E) · τ,

where c1(E) · τ ∈ H2n(X,R) ∼= R denotes the cup product in cohomology.

Taking the trace in (4.2) and integrating against ωn

n!
we obtain

(4.5) λ =
2π

(n− 1)!

degτ (E)

rVolω
,

where Volω =
∫
X

ωn

n!
is the volume. When E is a line bundle, the Hermite-Einstein

equation can always be solved for this value of λ.

Proposition 4.3. For a holomorphic line bundle E the Hermite-Einstein equation
(4.2) admits a unique solution h up to homothety, provided that λ is given by (4.5).

Proof. Fixing a reference hermitian metric h0 any other metric h on the line bundle
is given by h = efh0 and, using this, equation (4.2) is equivalent to

(4.6) iΛω∂̄∂f = λ− iΛωFh.

By [52, eq. (25)], the balanced condition can be alternatively written as an equal-
ity of differential operators on smooth functions on X

2iΛω∂̄∂ = ∆ω := dd∗ + d∗d,

and therefore iΛω∂̄∂ is self-adjoint, elliptic, with Kernel given by R ⊂ C∞(X).
By (4.5), ∫

X

(λ− iΛωFh)
ωn

n!
= 0,

so λ− iΛωFh is orthogonal to R in C∞(X). We conclude that (4.6) has a unique
smooth solution f with

∫
X
f ω

n

n!
= 0.
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For higher rank bundles, the existence of solutions of the Hermite-Einstein
equation relates to an algebraic numerical condition for E – originally related to
the theory of quotients of algebraic varieties by complex reductive Lie groups,
known as Geometric Invariant Theory [80]. To state the precise result, we need
to extend Definition 4.2 to arbitrary torsion-free coherent sheaves of OX-modules
(for the basic definitions we refer to [72, Section 5-6]). Given such a sheaf F of
rank rF , the determinant of F , defined by

detF := (ΛrFF)∗∗

is a holomorphic line bundle (such that F = detF when F is torsion-free of rank
1), and we can extend Definition 4.2 setting

degτ (F) := degτ (detF).

We define the τ -slope of a torsion-free coherent sheaf F of OX-modules by

(4.7) µτ (F) =
degτ (F)

rF
.

Definition 4.4. A torsion-free sheaf F over X is

1. τ -(semi)stable if for every subsheaf F ′ ⊂ F with 0 < rF ′ < rF one has

µτ (F ′) < (6)µτ (F),

2. τ -polystable if F =
⊕

j Fj with Fj stable and µτ (Fi) = µτ (Fj) for all i, j.

When X is projective and g is a Kähler Hodge metric, with Kähler class
associated to a hyperplane section of X, this definition coincides with the original
definition of slope stability due to Mumford and Takemoto (see e.g. [80]).

We can state now the characterization of the existence of solutions for the
Hermite-Einstein equation (4.2).

Theorem 4.5. There exists a Hermite-Einstein metric h on E if and only if E is
τ -polystable.

This result was first proved by Narasimhan and Seshadri in the case of curves
[82]. The ‘only if part’ was proved in higher dimensions by Kobayashi [71]. The ‘if
part’ was proved for algebraic surfaces by Donaldson [29], and for higher dimen-
sional compact Kähler manifolds by Uhlenbeck and Yau [98]. Buchdahl extended
Donaldson’s result to arbitrary compact complex surfaces in [14], and Li and
Yau generalized Uhlenbeck and Yau’s theorem to any compact complex hermitian
manifold in [75].
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Remark 4.6. The statement of Li-Yau Theorem [75] for an arbitrary hermitian
metric g uses that the existence of a Hermite-Einstein metric only depends on the
conformal class of g (see [77, Lem. 2.1.3]), and therefore g can be assumed to be
Gauduchon. As for the stability condition, when g is a Gauduchon metric one
defines the g-slope of E by µg(E) = degg(E)/r, where

degg(E) =
i

2π

∫

X

trFh ∧ ωn−1

for a choice of hermitian metric h. The g-degree degg(E) is independent of h
by Stokes Theorem, since ddcωn−1 = 0 and trFh = trFh0 + ∂̄∂f for h = efh0.
In general, degg is not topological, and depends on the holomorphic structure of
det E (e.g. for n = 2 the g-degree is topological if and only if X is kählerian [77,
Cor. 1.3.14]).

On general grounds, an effective check of any of the two equivalent conditions
in Theorem 4.5 is a difficult problem. We comment on a class of examples, given by
deformations of (essentially) tangent bundles of algebraic Calabi-Yau manifolds.
We postpone the examples of solutions of the Hermite-Einstein equations on non-
kählerian balanced manifolds to Section 5.2.

Example 4.7. Given a Kähler-Einstein metric g on X, it is easy to check that the
induced Chern connection on TX is Hermite-Einstein. In particular, by Yau’s so-
lution of the Calabi Conjecture [103], the tangent bundle of any kählerian Calabi-
Yau manifold is polystable with respect to any Kähler class, and it is stable if
b1(X) = 0. Since being stable is an open condition, any deformation of the tan-
gent bundle of a simply connected Calabi-Yau manifold is stable. As concrete
examples (see e.g. [67]): in dimension 2, the tangent bundle of a K3 surface has
unobstructed deformations and, in dimension 3, the tangent bundle of a simply
connected complete intersection Calabi-Yau threefold has unobstructed deforma-
tions. For a quintic hypersurface X ⊂ CP4, the space of deformations of TX is
224-dimensional. For X the generic quintic (see Example 3.9), Huybrechts has
proved that the polystable bundle TX ⊕OX admits stable holomorphic deforma-
tions [67], with the following property: they have non-trivial restriction to any
rational curve of degree one.

It is interesting to compare the previous example with a result by Chuan [21].
Let X → X0 99K Xt be a conifold transition between Calabi-Yau threefolds, as in
Section 3.2. Let E be a stable holomorphic vector bundle over X with c1(E) = 0,
and assume that E is trivial in a neighbourhood of the exceptional rational curves.
Assume further the exists a stable bundle Et over Xt, given by a deformation of the
push-forward of E along X → X0. Then, Chuan has proved under this hypothesis
that Et is stable with respect to the balanced metric constructed by Fu, Li and
Yau [42].
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4.2 Gauge theory, Kähler reduction and the necessity of
stability

In this section we give a (lengthy) geometric proof of the ‘only if part’ of Theorem
4.5, following [81]. This method of proof is based on the correspondence between
symplectic quotients and GIT quotients, given by the Kemp-Ness Theorem [70]
and uses some of the ingredients required for the ‘if part’ of Theorem 4.5. We note
that the standard proof of the ‘only if part’ (see e.g. [77]) – which turns on the
principle that “curvature decreases in holomorphic sub-bundles and increases in
holomorphic quotients” [10] – is shorter, and does not use any gauge-theoretical
methods. Nonetheless, we find the proof of [81] more pedagogical, and better
suited for the purposes of these notes. By the end, we discuss briefly the im-
plications of this method for the geometry of the moduli space of stable vector
bundles.

Let E be a smooth complex vector bundle of rank r over X. Let Gc be the
gauge group of E, that is, the group of diffeomorphisms of E projecting to the
identity on X and C-linear on the fibres. Consider the space C of Dolbeault
operators

∂̄E : Ω0(E)→ Ω0,1(E)

on E, which is a complex affine space modelled on Ω0,1(EndE). Then, Gc acts on
C by

g · ∂̄E = g∂̄Eg
−1,

and preserves the (constant) complex structure on C.
Fix now a hermitian metric h on E. Consider the space A of unitary connec-

tions on (E, h), which is an affine space modelled on Ω1(End(E, h)). The unitary
gauge group G ⊂ Gc, given by automorphisms of E preserving h, acts on A by

g · dA = gdAg
−1,

preserving the symplectic structure

(4.8) ωA(a, b) = −
∫

X

tr(a ∧ b) ∧ ωn−1

for a, b ∈ TAA = Ω1(End(E, h)), with A ∈ A.
There is a real affine bijection between the two infinite-dimensional spaces A

and C, defined by

(4.9) A → C : A→ ∂̄A = (dA)0,1,

with inverse given by the Chern connection of h in E = (E, ∂̄E). Under this
bijection, the integrability condition ∂̄2

A = 0 is equivalent to

(4.10) F 0,2
A = 0,
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and the complex structure on C translates to a → Ja, for J the almost com-
plex structure on X. The symplectic form (4.8) is compatible with this complex
structure, and induces a Kähler structure on C.

Using the bijection (4.9) and the Kähler form (4.8), we can now give a geo-
metric interpretation to the Hermite-Einstein equation (4.2). The following ob-
servation is due to Atiyah and Bott [10] when X is a Riemann surface, and was
generalized by Donaldson [29] to higher dimensional Kähler manifolds. As pointed
out by Lübke and Teleman [77, Sec. 5.3], remarkably the construction only needs
that g is balanced.

Proposition 4.8. The G-action on A is Hamiltonian, with equivariant moment
map µ : A → (LieG)∗ given by

(4.11) 〈µ(A), ζ〉 = −
∫

X

tr ζ(ΛωFA + iλId)
ωn

n
,

where ζ ∈ Ω0(End(E, h)) ∼= LieG.

Proof. The G-equivariance follows from Fg·A = gFAg
−1 for any g ∈ G. Thus, given

a ∈ Ω1(End(E, h)) we need to prove that

〈dµ(a), ζ〉 = ωA(Yζ , a)

where Yζ denotes the infinitesimal action of ζ, given by

Yζ(A) = −dAζ.

Using δaFA = dAa and dωn−1 = 0, integration by parts gives

〈dµ(a), ζ〉 = −
∫

X

tr ζdAa ∧ ωn−1

=

∫

X

tr dAζ ∧ a ∧ ωn−1 = ωA(Yζ , a).

Definition 4.9. A unitary connection A ∈ A is called a Hermite-Yang-Mills
connection if it satisfies A ∈ µ−1(0) and ∂̄2

A = 0, that is,

iΛωFA = λId, F 0,2
A = 0.

For a Hermite-Yang-Mills connection A, the metric h on E = (E, ∂̄A) is
Hermite-Einstein. Using this fact, we can now prove the following.

Theorem 4.10. If there exists a Hermite-Einstein metric h on E, then E is τ -
polystable.
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Proof. Let h be a Hermite-Einstein metric on E and F ⊂ E a coherent subsheaf
with 0 < rF < r. We can assume that F is reflexive [77, Prop. 1.4.5]. Using
a characterization of reflexive sheaves in terms weakly holomorphic subbundles
[92, 98] (see also [77, p. 81]), there exists an analytic subset S ⊂ X of codimension
> 2 and π ∈ L2

1(EndE) such that

(4.12) π∗ = π = π2, (Id− π)∂̄Eπ = 0

on L1(EndE), π|X\S is smooth and satisfies (4.12), and

F ′ = F|X\S = Imπ|X\S

is a holomorphic subbundle of E ′ = E|X\S . Furthermore, the curvature of h|X\S
on F ′ defines a closed current on X which represents −i2πc1(F) ∈ H2(X,C).

Using the orthogonal projection π, we can define a weak element in the Lie
algebra of G by

ζ = i(π − ν(Id− π)).

Associated to ζ, there is a 1-parameter family of (singular) Dolbeault operators

∂̄Et = eitζ · ∂̄E ,
and, since C∗Id ⊂ Gc acts trivially on C, we can assume the normalization

ν =
rF

r − rF
.

We want to calculate the maximal weight

(4.13) w(∂̄E , ζ) := lim
t→+∞

〈µ(∂̄Et), ζ〉 = lim
t→+∞

−
∫

X

tr(ζFh,∂̄Et )ω
n/n.

Note that we can do the calculation in the smooth locus of π, since S is codimen-
sion 2. Away from the singularities of π, we have

∂̄Et = π∂̄Eπ + (Id− π)∂̄E(Id− π) + e−t(1+ν)π∂̄E(Id− π)

and therefore

∂̄E∞ := lim
t→+∞

∂̄Et = π∂̄Eπ + (Id− π)∂̄E(Id− π),

which corresponds to the direct sum

(E, ∂̄E∞)|X\S ∼= F ′ ⊕ E ′/F ′.
Using this, we have

w(∂̄E , ζ) = −
∫

X

(i tr ΛωFh,∂̄F′ )ω
n/n+ ν

∫

X

(i tr ΛωFh,∂̄E′/F′ )ω
n/n

= 2π(n− 1)!

(
− degτ (F) +

rF
r − rF

(degτ (E)− degτ (F))

)

= 2π(n− 1)!
rrF
r − rF

(µτ (E)− µτ (F)).

(4.14)
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The key point of the proof is the monotonicity of 〈µ(∂̄Et), ζ〉, which follows from
the positivity of the Kähler form (4.8),

d

dt
〈µ(∂̄Et), ζ〉 = |Yζ|∂̄Et |

2 = (1 + ν)2e−2t(1+ν)‖π∂̄E(Id− π)‖2
L2

combined with the Hermite-Einstein condition, which gives 〈µ(∂̄E), ζ〉 = 0. Com-
bining these two facts,

(4.15) w(∂̄E), ζ) =

∫ ∞

0

|Yζ|eitζus|2dt =
1

2
(1 + ν)‖π∂̄E(Id− π)‖2

L2
≥ 0,

and therefore µτ (E) > µτ (F) by (4.14). We conclude that E is semistable.
Suppose now that E is not stable and that we have an equality in (4.15). Then,

π∂̄E(Id− π) = 0 and

∂̄E(π) := ∂̄Eπ − π∂̄E = ∂̄Eπ − π∂̄E(π + (Id− π)) = 0,

and therefore π∗ is in the Kernel of the elliptic operator iΛω∂̄E∂E (see [77, Lem.
7.2.3]) and hence it is smooth on X. We conclude that F and E/F are holomorphic
vector bundles, and we have an orthogonal decomposition

E ∼= F ⊕ E/F

with µτ (E) = µτ (F) = µτ (E/F). In addition, F and E/F inherit Hermite-Einstein
metrics by restriction. Induction on the rank of E completes the argument.

To conclude, we discuss briefly the implications of the existence of the previous
infinite-dimensional Kähler structure, for the geometry of the moduli space of
stable vector bundles and Hermite-Yang-Mills connections. Let

Cs ⊂ C

be the subset of integrable Dolbeault operators ∂̄E which define τ -stable holo-
morphic vector bundles E . Two integrable Dolbeault operators are in the same
Gc-orbit if and only if define isomorphic vector bundles, and therefore the Gc-
action preserves Cs. We define the moduli space of τ -stable vector bundles by the
quotient

Cs/Gc.
This quotient has a natural Hausdorff topology, and can be endowed with a finite
dimensional complex analytic structure (which may be non-reduced) [77, Cor.
4.4.4].

Let A∗ ⊂ A be the G-invariant subset of irreducible connections which satisfy
the integrability condition (4.10). Recall that a connection A is irreducible if
the Kernel of the induced covariant derivative dA in End(E, h) equals iRId. For
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A ∈ µ−1(0) ∩ A∗, h is a Hermite-Einstein metric on E = (E, ∂̄A). We define the
moduli space of irreducible Hermite-Yang-Mills connections as the quotient

µ−1(0) ∩ A∗/G.

This set has a natural Hausdorff topology, and can be endowed with a finite di-
mensional real analytic structure (which may be non-reduced) [77, Prop. 4.2.7].
Furthermore, by Proposition 4.8 the moduli space inherits a real-analytic sym-
plectic structure away from its singularities [77, Cor. 5.3.9].

Building on the proof of Theorem 4.10, one can prove that for µ−1(0)∩A∗ one
has ∂̄A ∈ Cs (see [77, Remark 2.3.3]) and therefore there is a natural map

µ−1(0) ∩ A∗/G → Cs/Gc.

This map induces a real analytic isomorphism by Theorem (4.5), and a Kähler
structure on Cs/Gc away from its singularities (see [77, Cor. 4.4.4] and [77, Cor.
5.3.9]).

5 The Strominger system

5.1 Definition and first examples

Let (X,Ω) be a Calabi-Yau manifold of dimension n, with underlying smooth
manifold M and almost complex structure J . Let E be a holomorphic vector
bundle over X, with underlying smooth complex vector bundle E. To define
the Strominger system, we consider integrable Dolbeault operators ∂̄T , that is,
satisfying ∂̄2

T = 0, on the smooth complex vector bundle (TM, J).

Definition 5.1. The Strominger system, for a hermitian metric g on (X,Ω), a
hermitian metric h on E , and an integrable Dolbeault operator ∂̄T on (TM, J), is

ΛωFh = 0,

ΛωR = 0,

d∗ω − dc log ‖Ω‖ω = 0,

ddcω − α (trR ∧R− trFh ∧ Fh) = 0.

(5.1)

Here, α is non-vanishing real constant and R = Rg,∂̄T denotes the curvature
of the Chern connection of g, regarded as a hermitian metric on the holomorphic
vector bundle T = (TM, J, ∂̄T ). The first two equations in the system correspond
to the Hermite-Einstein condition for the curvatures Fh and R with vanishing
constant λ, with respect to the Kähler form ω (see Definition 4.1). The third
equation, involving the Kähler form ω and the holomorphic volume form Ω, is
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the dilatino equation (3.2). The new ingredient in the system is an equation for
4-forms, known as the Bianchi identity

(5.2) ddcω − α (trR ∧R− trFh ∧ Fh) = 0,

which intertwines the exterior differential of the torsion −dcω of the Bismut con-
nection of g, with the curvatures Fh and R.

Remark 5.2. The second equation in (5.1), that is, ΛωR = 0, is often neglected
in the literature. In this case, R is typically taken to be the Chern connection of g
on the holomorphic tangent bundle TX (see e.g. [76]). Motivation for considering
the Hermite-Einstein condition for R comes from physics, and it will be explained
in Section 6.1.

Fixing the holomorphic structure ∂̄T on the smooth complex vector bundle
(TM, J) essentially determines the hermitian metric which solves the Hermite-
Einstein equation on (TM, J, ∂̄T ) (see Section 4.2), and therefore lead us to an
overdetermined system of equations. To put the bundles E and (TM, J) on equal
footing, it is convenient to take a gauge-theoretical point of view, by fixing the
hermitian metric h on E and substitute the unknowns h and ∂̄T in Definition 5.1
by a unitary connection A on (E, h) and a unitary connection ∇ on (TM, J, g),
with curvature R∇ (cf. Section 4.2). This lead us to the following equivalent
definition of the Strominger system.

Definition 5.3. The Strominger system, for a hermitian metric g on (X,Ω), a
unitary connection A on (E, h) and a unitary connection ∇ on (TM, J, g), is

ΛωFA = 0, F 0,2
A = 0

ΛωR∇ = 0, R0,2
∇ = 0

d(‖Ω‖ωωn−1) = 0,

ddcω − α (trR∇ ∧R∇ − trFA ∧ FA) = 0.

(5.3)

From this alternative point of view, the Strominger system couples a pair of
Hermite-Yang-Mills connections A and ∇ (see Definition 4.9) with a conformally
balanced metric ω, by means of the Bianchi identity (5.2). For the equivalence
between (5.1) and (5.3), we use Li-Yau characterization of the dilatino equation
(3.2) in terms of the conformally balanced equation (3.3).

The system (5.3) makes more transparent three types of necessary conditions
for the existence of solutions of the Strominger system. Firstly, for (X,Ω, E) to
admit a solution of the Strominger system there are some evident cohomological
obstructions on the Chern classes

(5.4) degτ (E) = 0, c1(X) = 0,
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and also

(5.5) ch2(E) = ch2(X) ∈ H2,2
BC(X,R),

where ch2(E) and ch2(X) denote the second Chern character of E and X. On a
general complex manifold, the condition (5.5) depends on the complex structure
of X, since the natural map

H2,2
BC(X,R)→ H4(X,R)

may have a Kernel. Secondly, we have two further conditions on the complex
structure on X, that is, the complex manifold must have trivial canonical bundle
and it must be balanced. Recall that the balanced condition for X can be ex-
pressed as a positivity condition on the homology of X, which involves complex
currents (see Proposition 2.9 and [79]). Finally, if (g,∇, A) is a solution with
balanced class

τ = [‖Ω‖ωωn−1] ∈ Hn−1,n−1
BC (X,R),

Theorem 4.5 implies that the holomorphic bundle E = (E, ∂̄A) and the holomor-
phic bundle T = (TM, J, ∂̄∇) must be τ -polystable.

In the rest of this section we discuss some basic examples of solutions of the
Strominger system. We postpone more complicated existence results to Section
5.2. Let us start with complex dimension 1.

Example 5.4. When n = 1, X is forced to be an elliptic curve and the Bianchi
identity is an empty condition. Furthermore, the dilatino equation reduces to
the Kähler Ricci-flat condition on X (see Section 3.1). Hence, by Theorem 4.5
solutions of the Strominger system with a prescribed Kähler class are given by
degree-zero polystable holomorphic vector bundles over the elliptic curve X (see
e.g. [97]).

The next example shows that the system can always be solved for Calabi-
Yau surfaces, provided that (5.4) and (5.5) are satisfied. Note that a compact
Calabi-Yau surface must be a K3 surface or a complex torus, and therefore is
always kählerian. Hence, the condition (5.5) in this case is topological. We follow
an argument of Strominger in [93] and do not assume that the connection ∇ is
unitary (to the knowledge of the author, with the unitary assumption there is no
general existence result for n = 2).

Example 5.5. Let (X,Ω) be a compact Calabi-Yau manifold of dimension 2. Let
g be a Kähler Ricci-flat metric on X, with Kähler form ω. By Example 3.7, g
solves the dilatino equation. Let∇ be a unitary Hermite-Yang-Mills connection on
the smooth hermitian bundle (TM, J, g) (e.g. we can take the Chern connection
of g). Let (E, h) be a smooth complex hermitian vector bundle satisfying (5.4)
and (5.5), with a Hermite-Yang-Mills connections A. We want to show that we



Lectures on the Strominger system 33

can find a metric g̃ on the conformal class of g solving the Strominger system.
Consider g̃ = efg for f ∈ C∞(X). Using that n = 2 we have

‖Ω‖ω̃ω̃n−1 = ‖Ω‖ωωn−1,

and therefore ω̃ solves the dilatino equation. Furthermore, ∇ and A are Hermite-
Yang-Mills connections also for ω̃ (note that ∇ is no longer ω̃-unitary). Hence,
to solve the Strominger system (5.3) with this ansatz, we just need to solve the
Bianchi identity (5.2) for g̃. Now, using that g is Kähler, (5.2) is equivalent to

∆ω(ef ) = Λ2
ωα(trR∇ ∧R∇ − trFA ∧ FA).

The obstruction to solve this equation is ch2(E) = ch2(X) in H4(X,R), which
holds by assumption. Note that we can assume our solution to be positive, since
X is compact. As a concrete example, we can consider X to be a K3 surface and
take T = TX and E a small holomorphic deformation of TX or TX ⊕ OX [67],
and apply Theorem 4.5.

We discuss next the arguably most basic examples of solutions of the Stro-
minger system in dimension n ≥ 3.

Example 5.6. Let (X,Ω) be a compact kählerian Calabi-Yau manifold of dimen-
sion n. Let g be a Kähler Ricci-flat metric on X. By Example 3.7, g solves the
dilatino equation and by Example 4.7, the Levi-Civita connection ∇g is Hermite-
Einstein. Set ∇ = ∇g and denote by h0 a constant hermitian metric on the trivial
bundle ⊕r−ni=1OX over X. Define

E = TX
⊕

(⊕r−ni=1OX),

that we consider endowed with the hermitian metric g⊕h0, with Chern connection
A = ∇ ⊕ d. Then, it is immediate that g ⊕ h0 is Hermite-Einstein. Finally, the
Bianchi identity (5.2) is satisfied, because trR2 = trF 2

A and ddcω = 0, since g is
Kähler.

When n = r = 3, these are called standard embedding solutions in the physics
literature, based on the natural homomorphism of Lie groups

SU(3)→ E8.

5.2 Existence results

The Strominger system is a fully non-linear coupled system of partial differential
equations for the hermitian metric g, and the unitary connections ∇ and A. Note
that the system is of mixed order, since the Hermite-Yang-Mills equations are of
first order in ∇ and A, the dilatino equation is of order one in the Kähler form ω,
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while the Bianchi identity is of second order in ω. The most demanding and less
understood condition of the Strominger system is, indeed, the Bianchi identity
(5.2). In dimension n > 3, this condition is the ultimate responsible of the non-
Kähler nature of this PDE problem, as the non-vanishing of the Pontryagin term
trR2

∇ − trF 2
A prevents the hermitian form ω to be closed and hence allows the

complex manifold X to be non-kählerian. To the present day, we have a very poor
understanding of the Bianchi identity from an analytical point of view.

The first solutions of the system for E a stable holomorphic vector bundle with
rank r = 4, 5 over an algebraic Calabi-Yau threefold were found by Li and Yau [76]
(cf. Example 5.6). Solutions in non-kählerian threefolds were first obtained by
Fu and Yau [45], on suitable torus fibrations over a K3 surface. Further solutions
in non-kählerian homogeneous spaces, specially on nilmanifolds, have been found
over the last years (see [34, 32, 57, 83] and references therein). For examples in
non-compact threefolds we refer to [41, 30, 31, 33].

There are essentially three known methods to solve the Strominger system in a
compact complex threefold: by perturbation in kählerian manifolds, by reduction
in a non-kählerian fibration over a Kähler manifold, and the method of invariant
solutions in homogeneous spaces. The aim of this section is to illustrate these
three methods with concrete results and examples. By the end, we will comment
on a conjecture by Yau, which is one of the main open problems in this topic.

We start with a general result on kählerian manifolds [7], that builds in the
seminal work of Li and Yau in [76].

Theorem 5.7 ([7]). Let (X,Ω) be a compact Calabi-Yau threefold endowed with a
Kähler Ricci-flat metric ω∞ with holonomy SU(3). Let E be a holomorphic vector
bundle over X satisfying (5.4) and (5.5). If E is stable with respect to [ω2

∞], then
there exists a 1-parameter family of solutions (hδ, ωδ, ∂̄δ) of the Strominger system
(5.1) such that ωδ

δ
converges to ω∞ as δ →∞.

To explain the main idea, we note that the Strominger system is invariant
under rescaling of the hermitian form ω, except for the Bianchi identity. Given
a positive real constant δ, if we change ω → δω and define ε := α/δ we obtain
a new system, with all the equations unchanged except for the Bianchi identity,
which reads

ddcω − ε(tr(R∇ ∧R∇)− tr(FA ∧ FA)) = 0.

In the large volume limit δ →∞, a solution of the system is given by prescribing
degree zero stable holomorphic vector bundles E and T over a Calabi-Yau threefold
with hermitian metric ω∞ satisfying

d(‖Ω‖ω∞ω2
∞) = 0, ddcω∞ = 0.

The combination of these two conditions implies that ω∞ is actually Kähler Ricci-
flat, and by the Hermite-Yang-Mills condition for ∇ we also have that T ∼= TX
(see [7, Lem. 4.1]). The final step is to perturb a given solution with ε = 0 to a
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solution with small ε > 0, that is, with large δ, provided that (5.5) is satisfied. This
is done via the Implicit Function Theorem in Banach spaces. The perturbation
leaves the holomorphic structure of E unchanged while the one on TX is shifted
by a complex gauge transformation and so remains isomorphic to the initial one.

We give a concrete example where the hypothesis of Theorem 5.7 are satis-
fied. For further examples of stable bundles on algebraic Calabi-Yau threefolds
satisfying (5.4) and (5.5) we refer to [7, 8, 69].

Example 5.8. For X a generic quintic in CP4 (see Example 3.9), any Kähler
Ricci-flat metric has holonomy SU(3). Then, by a result of Huybrechts [67], the
bundle TX⊕OX admits stable holomorphic deformations E , which therefore have
the same Chern classes as TX. The application of Theorem 5.7 in this example
recovers [76, Th. 5.1].

We recall next the reduction method of Fu and Yau [45], based on the non
kählerian fibred threefolds constructed by Goldstein and Prokushkin [55]. This
result does not impose the Hermite-Yang-Mills condition on ∇, that is taken to
be the Chern connection of the hermitian metric on X. Let (S,ΩS) be a K3
surface with a Kähler Ricci-flat metric gS and Kähler form ωS. Let ω1 and ω2 be
anti-self-dual (1, 1)-forms on S such that

[ωi/2π] ∈ H2(S,Z).

Let X be the total space of the fibred product of the U(1) line bundles determined
by [ω1/2π] and [ω2/2π]. Given a function u on S, consider the hermitian form

(5.6) ωu = p∗(euωS) +
i

2
θ ∧ θ,

where θ is a connection on X such that iFθ = ω1 +ω2, and the complex threeform

Ω = ΩS ∧ θ.

Then, using that ω1 and ω2 are anti-self-dual, it is easy to check that ωu satisfies
the dilatino equation (3.2) and dΩ = 0. Let ES be a degree zero [ωS]-stable
holomorphic vector bundle over S. Define E = p∗ES and h = p∗hS, where hS is the
Hermite-Einstein metric on ES. Then, h is a Hermite-Einstein metric for ωu and
hence with this ansatz the Strominger system reduces to the Bianchi identity. This
identity is actually equivalent to the following complex Monge-Ampère equation
on S

ddc(euω − αe−uρ) +
1

2
ddcu ∧ ddcu = µω2

S/2,

where ρ is a smooth real (1, 1)-form on S independent of u and

µω2
S = (|ω1|2 + |ω2|2)ω2

S + α(trFh ∧ Fh −RωS ∧RωS).

Here, RωS denotes the curvature of the Chern connection of ωS on S.
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Theorem 5.9 ([45]). The equation (5.6) admits a solution for α > 0, provided
that

0 =

∫

S

µω2
S =

∫

S

(|ω1|2 + |ω2|2)ω2
S − 8π2α(24− c2(ES)).

The case α < 0 was proved in [44], and more recently in [85] with different
methods.

We consider now the method of invariant solutions in homogeneous spaces.
Following [32, 83], we describe an explicit solution of the form X = SL(2,C)/Γ,
for Γ a cocompact lattice in SL(2,C). The group SL(2,C) is unimodular and
therefore it admits a biinvariant holomorphic volume form. Furthermore, any
right invariant metric on SL(2,C) is balanced, and solves the dilatino equation
(cf. Example 3.8). With the ansatz FA = 0 for the connection A, the Strominger
system (5.3) reduces to the conditions

ΛωR∇ = 0, R0,2
∇ = 0

ddcω − α (trR∇ ∧R∇) = 0.
(5.7)

We want to check that the system is satisfied for ∇ = ∇g − 1
2
g−1dcω the Bismut

connection of ω. To see this, consider a right invariant basis {σ1, σ2, σ3} of (1, 0)-
forms satisfying

dσ1 = σ2 ∧ σ3, dσ2 = −σ1 ∧ σ3, dσ3 = σ1 ∧ σ2.

Consider the biinvariant holomorphic volume form

Ω = σ1 ∧ σ2 ∧ σ3

and the right invariant hermitian metric

ωt =
i

2
t2(σ1 ∧ σ1 + σ2 ∧ σ2 + σ3 ∧ σ3)

for t ∈ R\{0}. Define a real basis of right invariant 1-forms by

e1 + ie2 = tσ1, e3 + ie4 = tσ2, e5 + ie6 = tσ3.

Then, a direct calculation shows that (see [83, Th. 4.3] and [32, eq. (8)]

ddcωt = − 4

t2
(e1234 + e1256 + e3456),

and for ∇ the Bismut connection

α trR∇ ∧R∇ = −α16

t4
(e1234 + e1256 + e3456).
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Therefore, for α > 0 taking t such that α = t2/4 we obtain a solution of the
Bianchi identity. Furthermore, by [83, Prop. 4.1] the Bismut connection is also a
solution of the Hermite-Yang-Mills equations.

Although the three methods we have just explained provide a large class of
solutions of the Strominger system in complex dimension 3, the existence problem
is widely open. The following conjecture by Yau is one of the main open problems
in this topic.

Conjecture 5.10 (Yau [105]). Let (X,Ω) be a compact Calabi-Yau threefold en-
dowed with a balanced class τ . Let E be a holomorphic vector bundle over X
satisfying (5.4) and (5.5). If E is stable with respect to τ , then (X,Ω, E) admits
a solution of the Strominger system.

Even for kählerian manifolds, Conjecture 5.10 is not completely understood.
In this setup, Theorem 5.7 provides a solution of Conjecture 5.10 for balanced
classes of the form τ = [ω]2, where [ω] is a Kähler class on X. We note however
that Fu and Xiao [43] have proved that for projective Calabi-Yau n-folds the
cohomology classes

[β] ∈ H1,1(X,R)

such that [β]n > 0 – known as big classes – satisfy that [β]n−1 is a balanced class.
An interesting example of a big class which is not Kähler is provided by Example
3.9 on conifold transitions. With the notation stated there, if L is the pull-back
of any ample divisor on X0, then c1(L) is a big (and nef) class on X. By a result
of Tosatti [95], the smooth Ricci-flat metrics on X with classes approaching c1(L)
have a well-defined limit, given by the pull-back of the unique singular Ricci-flat
metric on X0. It is plausible that this result combined with Theorem 5.7 can be
used to prove Conjecture 5.10 for algebraic Calabi-Yau threefolds. We should also
note that the method of Theorem 5.7 does not have any control on the balanced
class of the final solution. On general grounds, it is expected that the solution
predicted by Conjecture 5.10 has balanced class τ .

For non-kählerian manifolds, Yau’s Conjecture is widely open. To illustrate
this, we state a basic question that should be addressed before dealing with the
more general Conjecture 5.10.

Question 5.11. Let X be a compact complex manifold with balanced class τ ∈
Hn−1,n−1
BC (X,R). Let ρ ∈ Ωn−1,n−1 be a real ddc-exact form on X. Is there a

balanced metric g on X with balanced class τ solving the following equation?

(5.8) ddcω = ρ.

A promising approach to Conjecture 5.10 using geometric flows – which in
particular treats a question closely related to Question 5.11 – has been recently
proposed in [84].
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Setting Question 5.11 in the affirmative in the case of Clemens-Friedman non-
kählerian complex manifolds would provide important support for Yau’s proposal
of a metric approach to Reid’s Fantasy (see Section 3.2). Equation (5.8) (as well
as the Strominger system) pins down a particular solution of the dilatino equation
(3.2) in a given balanced class, via a condition on the torsion −dcω of the Bismut
connection. As we have pointed out earlier in this section, when ρ = 0 the
combination of (5.8) with the dilatino equation (3.2) is equivalent to the metric
being Calabi-Yau. The mechanism whereby a conifold transition creates a 4-form
ρ which couples to the metric is still unknown (in physics, ρ can be interpreted
as the Poincaré dual four-current of a holomorphic submanifold wrapped by a
NS5-brane [96]).

6 Physical origins and string classes

6.1 The Strominger system in heterotic supergravity

The Strominger system arises in the low-energy limit of the heterotic string theory.
This theory is described by a σ-model, a quantum field theory with fields given by
smooth maps C∞(S,N), from a smooth surface S – the worldsheet of the string
– into a target manifold N . From the point of view of the worldsheet, the theory
leads to a superconformal field theory. In the low-energy limit, the heterotic string
can be described from the point of view of N , yielding a supergravity theory. We
start with a discussion of classical heterotic supergravity, which allows a rigorous
derivation of the Strominger system (and completely omits perturbation theory).
We postpone a conceptual explanation of the Bianchi identity to the next section,
where we adopt the worldsheet approach.

Heterotic supergravity is a ten-dimensional supergravity theory coupled with
super Yang-Mills theory (see e.g. [27, p. 1101]). It is formulated on a 10-
dimensional spin manifold N , i.e. oriented, with vanishing second Stiefel-Whitney
class

w2(N) = 0,

and with a choice of element in H1(N,Z2). The manifold is endowed with a
principal bundle PK , with compact structure group K, contained in SO(32) or
E8 × E8. We will assume K = SU(r).

The (bosonic) field content of the theory is given by a metric g0 of signature
(1, 9) (in the string frame), a (dilaton) function φ ∈ C∞(N), a 3-form H ∈ Ω3 and
a (gauge) connection A on PK . We ignore the fermionic fields in our discussion.
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The equations of motion can be written as

Ricg0 −2∇g0(dφ)− 1

4
H ◦H + α trF ◦ F − α trR ◦R = 0,

d∗(e2φH) = 0,

d∗A(e2φF ) +
e2φ

2
∗ (F ∧ ∗H) = 0,

Sg0 − 4∆φ− 4|dφ|2 − 1

2
|H|2 + α(|R|2 − |F |2) = 0,

(6.1)

where α as positive real constant – the slope string parameter –, F is the curvature
of A, and R is the curvature of an auxiliary connection ∇0 on TN . Here, H ◦H
is a symmetric 2-tensor constructed by contraction with the metric (and similarly
for trF ◦ F − trR ◦R)

(H ◦H)mn = gij0 g
kl
0 HikmHjln.

The introduction of the connection ∇0 – which is not considered as a physical
field – is due to the cancellation of anomalies (this is the failure of a classical sym-
metry to be a symmetry of the quantum theory). The Green-Schwarz mechanism
of anomaly cancellation [58] sets a particular local ansatz for the three-form

(6.2) H = db− α(CS(∇0)− CS(A)),

in terms of a 2-form b ∈ Ω2 and the Chern-Simons 3-forms of A and ∇0. We use
the convention dCS(A) = − trFA ∧FA. Up to the Chern-Simons term, H can be
regarded as the field strength of the locally-defined B-field b. Although (6.2) fails
to be globally well-defined on N , it imposes the global Bianchi identity constraint

(6.3) dH = α(trR ∧R− trF ∧ F ).

We postpone the conceptual explanation of this equation to the worldsheet ap-
proach.

We note that the equations (6.1) do not arise as critical points of any func-
tional, e.g. due to the term ∗(F ∧ ∗H) in the third equation. Rather, physicists
consider the pseudo-action

∫

N

e−2φ(Sg0 + 4|dφ|2 − 1

12
|H|2 +

α′

2
(|R|2 − |F |2)) Volg0 ,

where the norm squared of F and R is taken with respect to the Killing form − tr.
Remarkably, calculating the critical points of this functional and taking the local
form (6.2) of H into account, yields the equations of motion (6.1).

In supergravity theories, supersymmetry distinguishes special solutions of the
equations of motion which are fixed by the action of a (super) Lie algebra on the
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space of fields. Generators for this action are typically given in terms of spinors. In
the case of heterotic supergravity, (N = 1) supersymmetry requires the existence
of a non-vanishing Majorana-Weyl spinor ε with positive chirality (see [35, p. 9]),
satisfying the Killing spinor equations

F · ε = 0

∇−ε = 0,

(H + 2dφ) · ε = 0,

(6.4)

Here ∇− is the metric connection with skew torsion −H obtained from the Levi-
Civita connection ∇g0

(6.5) ∇− = ∇g0 − 1

2
g−1

0 H.

The relation between the heterotic supergravity equations and the Strominger
system arises via a mechanism called compactification, whereby the 10-dimensional
theory is related to a theory in 4-dimensions. Strominger [93] and Hull [64] char-
acterized the geometry of a very general class of compactifications of heterotic
supergravity, inducing a 4-dimensional supergravity theory with N = 1 supersym-
metry. The geometric conditions that they found in the so called internal space is
what is known today as the Strominger system. Mathematically, Strominger-Hull
compactifications amount to the following ansatz: the space-time manifold is a
product

N = R4 ×M,

where M is a compact smooth oriented spin 6-dimensional manifold – the internal
space –, with metric given by

g0 = e2(f−φ)(g1,3 × g)

for g1,3 a flat Lorentz metric, g a riemannian metric on M and f ∈ C∞(M) a
smooth function on M . The fields H and A are pull-back from M , and ∇0 is
the product of the Levi-Civita connection of g1,3 with a connection ∇ on TM
compatible with g. The condition of N = 1 supersymmetry in 4-dimensions
imposes that f = φ and also

ε = ζ ⊗ η + ζ∗ ⊗ η∗,

where ζ is a positive chirality spinor for g1,3 and η is a positive chirality spinor for g
(living in complex representations of the corresponding real Spin group), while ζ∗

and η∗ denote their respective conjugates. With this ansatz, the equations (6.1),
(6.4) and (6.3) are equivalent, respectively, to equations for (g, φ,H,∇, A, η) on
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M :

Ricg−2∇g(dφ)− 1

4
H ◦H − αFA ◦ FA + αR∇ ◦R∇ = 0,

d∗(e2φH) = 0,

d∗A(e2φFA) +
e2φ

2
∗ (FA ∧ ∗H) = 0,

Sg − 4∆φ− 4|dφ|2 − 1

2
|H|2 + α(|R∇|2 − |FA|2) = 0

(6.6)

∇−η = 0,

(dφ+
1

2
H) · η = 0,

FA · η = 0,

(6.7)

(6.8) dH − α(trR∇ ∧R∇ − trFA ∧ FA) = 0.

The following characterization of (6.7) and (6.8) in terms of SU(3)-structures
is due to Strominger and Hull.

Theorem 6.1 ([64, 93]). A solution (g, φ,H,∇, A, η) of (6.7) and (6.8) is equiv-
alent to a Calabi-Yau structure (X,Ω) on M , with hermitian metric g and con-
nection A on PK solving

ΛωFA = 0, F 0,2
A = 0,

d∗ω − dc log ‖Ω‖ω = 0,

ddcω − α (trR∇ ∧R∇ − trFA ∧ FA) = 0.

(6.9)

where

H = dcω, dφ = −1

2
d log ‖Ω‖ω.

For the proof, one can use that the stabilizer of η in Spin(6) is SU(3), and
write the equations in terms of the corresponding SU(3)-structure. The key point
is that, since ∇− is unitary and has totally skew-torsion −H, by [53, Eq. (2.5.2)],

H = −N + (dcω)2,1+1,2,

where N denotes the Nijenhuis tensor of the almost complex structure determined
by η. We refer to [48, Th. 6.10] for a detailed proof of this result. We note that
the same result holds on an arbitrary even-dimensional manifold M , provided that
the spinor η is pure (see [74, Lem. 9.15] and [74, Rem. 9.12]).

Supersymmetric vacuum of heterotic supergravity compactified on M – with
the Strominger-Hull ansatz – correspond to solutions of the system of equations
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formed by (6.6), (6.7) and (6.8). Therefore, finding a solution of (6.9) is a priori not
enough to find a supersymmetric classical solution of the theory. This problem was
understood by Fernandez, Ivanov, Ugarte and Villacampa [34, 68], who provided
a characterization of the solutions of the Killing spinor equations (6.7) and the
Bianchi identity (6.8) which also solve the equations of motion (6.6).

Theorem 6.2 ([34, 68]). A solution of the Killing spinor equations (6.7) and the
Bianchi identity (6.8) is a solution of the equations of motion (6.6) if and only if

(6.10) R∇ · ε = 0.

The instanton condition (6.10) is equivalent to ∇ being a Hermite-Yang-Mills
connection, that is,

(6.11) R0,2
∇ = 0, R∇ ∧ ω2 = 0.

Combined with Theorem 6.1, Theorem 6.2 establishes the link between the equa-
tions in heterotic supergravity and the Strominger system (5.3). To state a precise
result, which summarizes the previous discussion, we observe that it follows from
the proof of Theorem 6.2 that the instanton condition R∇ ·ε = 0 jointly with (6.7)
and (6.8) implies the following equation of motion for ∇

d∗∇(e2φR∇) +
e2φ

2
∗ (R∇ ∧ ∗H) = 0.

Theorem 6.3. A solution (g, φ,H,∇, A, η) of the system

∇−η = 0,

(dφ+
1

2
H) · η = 0,

FA · η = 0,

R∇ · η = 0,

dH − α(trR∇ ∧R∇ − trFA ∧ FA) = 0.

(6.12)

is equivalent to a Calabi-Yau structure (X,Ω) on M , with hermitian metric g and
connection A on PK solving the Strominger system (5.3), where

H = dcω, dφ = −1

2
d log ‖Ω‖ω.
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Furthermore, any solution of (6.12) solves the equations of motion

Ricg−2∇g(dφ)− 1

4
H ◦H − αFA ◦ FA + αR∇ ◦R∇ = 0,

d∗(e2φH) = 0,

d∗A(e2φFA) +
e2φ

2
∗ (FA ∧ ∗H) = 0,

d∗∇(e2φR∇) +
e2φ

2
∗ (R∇ ∧ ∗H) = 0,

Sg − 4∆φ− 4|dφ|2 − 1

2
|H|2 + α(|R∇|2 − |FA|2) = 0.

(6.13)

The formal symmetry of the equations (6.12) in the connections ∇ and A
(which flips a sign in the Bianchi identity), seems to be crucial for the under-
standing of the geometry and the moduli problem for the Strominger system,
that we review in Section 7.

Remark 6.4. We note that in the formulation of the Strominger system in [93]
the condition (6.11) was not included, probably relying on the general principle
that supersymmetry implies the equations of motion of the theory (which is not
valid for the heterotic string even in perturbation theory [25]). The analysis
in [64, 65] takes this fact into account and proposes ∇ = ∇+ (given by changing
H → −H in (6.5)) as the preferred connection to solve (6.8). From a mathematical
perspective, this last statement has to be taken rather formally. It can be regarded
as a perturbative version of Theorem 6.2, in the following sense: expanding g and
H in a formal power series in the parameter α it follows that

R∇+ · η = O(α),

provided that ∇−η = 0 is satisfied (see e.g. [25, App. C]).

6.2 The worldsheet approach and string classes

A more fundamental approach to heterotic string theory is provided by the (non-
linear) σ-model. We start with a brief (and rather naive) description of this theory,
in order to explain the Bianchi identity in heterotic supergravity and its relation
with the notion of string class.

The heterotic non-linear σ-model is a two-dimensional quantum field theory
with (bosonic) fields given by smooth maps f ∈ C∞(S,N) from an oriented surface
S into a target manifold N . To describe the classical action, we fix a metric γ on
S – with volume Volγ and scalar curvature Rγ – and background fields (g0, φ, b, A)
on N . Here, (g0, φ, A) are as in the previous section, and b is a B-field, that by
now we treat as a (local) two-form on N (more invariantly, it will correspond to
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a trivialization of a bundle 2-gerbe with connection [99]). The action is

(6.14)
1

4πα

∫

S

|df |2Volγ + f ∗b− α

2
φRγVolγ + . . .

where |df |2 denotes the norm square of df with respect to γ and g. The terms
denoted . . . correspond to the fermionic part of the action – depending on the
connections A and ∇− = ∇g − 1

2
g−1db, and a choice of spin structure on S – that

we omit for simplicity (see e.g. [93]).
The constant α in (6.14) is 2`2, where ` is the Planck length scale (and hence

positive). The background fields in the σ-model appear as coupling functions
(generalizing the notion of coupling constant). The value of the dilaton φ at a
point determines the string coupling constant, i.e. the strength with which strings
interact with each other. The dilaton is a special field, as the term

∫

S

φRγVolγ

destroys the conformal invariance of the action (6.14) (classical Weyl invariance).
Nonetheless, the inclusion of this term is crucial for the conformal invariance of
the theory at the quantum level [19].

The quantum theory constructed from the action (6.14) is defined perturba-
tively, in an expansion in powers of α. Conformal invariance of the effective action
corresponds to the vanishing of the β-functions, which in the critical dimension
dimN = 10 are given by

βG = Ricg0 −2∇g0(dφ)− 1

4
H ◦H + α trF ◦ F − α trR ◦R +O(α2),

βB = d∗(e2φH) +O(α2),

βA = d∗A(e2φF ) +
e2φ

2
∗ (F ∧ ∗H) +O(α2),

βφ = Sg0 − 4∆φ− 4|dφ|2 − 1

2
|H|2 + α(|R|2 − |F |2) +O(α2),

(6.15)

where H is a three-form on N and R is the curvature of an auxiliary connection
∇0 on TN , locally related with b and A by the Green-Schwarz ansatz (6.2). The
sudden appearance of the extra connection ∇0 is explained by the way the fields
are treated in perturbation theory, as formal expansions in the parameter α: even
though the connection in (6.2) in the perturbation theory analysis is ∇+ [66], the
truncation to second order in α-expansion enables to remove its dependence from
the rest of fields (cf. Remark 6.4).

We observe that the classical equations of motion of the heterotic supergravity
in the target (6.1) are given by first-order conditions for conformal invariance (in
α-expansion) of the quantum theory in the worldsheet of the string. Similarly, the
killing spinor equations (6.4) are obtained as first order conditions in α-expansion
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in order to define a supersymmetric theory [65, 93]. When the β-functions vanish
for a choice of background fields, the heterotic σ-model is expected to yield a
two-dimensional superconformal field theory (with (0, 2)-supersymmetry, when
the killing spinor equations are satisfied). Unfortunately, to the present day a
closed form of (6.15) to all orders in α-expansion is unknown. Despite of this
fact, several rigorous attempts to construct this theory by indirect methods can
be found in the literature (see e.g. [28, 56, 78]).

Aside from the disturbing perturbation theory, the (fermionic) terms omitted
in the classical action (6.14) provide a conceptual explanation of the Bianchi
identity (6.3), that we have ignored so far. The path integral quantization of the
σ-model yields a (determinant) line bundle L over a space of Bose fields

B = Conf(S)× C∞(S,N)/Diff0(S),

where Conf(S) is the space of conformal structures on S and Diff0(S) is the iden-
tity component of the diffeomorphism group of S. There is a canonical section s0

of L – determined by the fermionic terms in the action – that should be integrated
over B, and hence one tries to find a trivialization of L, so as to express s0 as a
function on B. The obstruction to finding a trivialization is called the anomaly.
This connection between anomalies and determinant line bundles was pioneered
by Atiyah and Singer, in close relation to the Index Theorem. Here we follow
closely a refined geometric version by Witten [101] and Freed [38].

The construction of the line bundle L in [38] assumes the compactification
ansatz N = R4 × M6, discussed in the previous section. Further, M is en-
dowed with an integrable almost complex structure J compatible with g, such
that c1(TM, J) = 0. Let (E, h) be a smooth hermitian vector bundle over M . We
assume in this section that c1(E) = 0 and that E has rank 16. The aim is to give
an explanation of the topological Bianchi identity

(6.16) dH = α (trR∇ ∧R∇ − trFA ∧ FA) ,

as an equation for an arbitrary three-form H ∈ Ω3 on M and a pair of special
unitary connections ∇ on (TM, J) and A on (E, h). Observe that (6.16) implies
a condition in the real first Pontryagin class p1(M) of M , namely

(6.17) p1(E) = p1(M) ∈ H4(M,R).

Given the data (g,∇, A), Freed constructs in [38] a (Pfaffian) complex line
bundle

L → B,

which is trivializable provided that

(6.18)
1

2
p1(E) =

1

2
p1(M) ∈ H4(M,Z).
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Furthermore, this line bundle is endowed with a natural connection A0 on L whose
curvature FA0 can be identified with

4πiFA0 ≡ trR∇ ∧R∇ − trFA ∧ FA.

Note here that a 4-form ρ on Y can be regarded as a 2-form ψ on C∞(S,N), by

ψ(V1, V2) =

∫

S

f ∗ιV1ιV 2ρ,

where f ∈ C∞(S,N) and V1, V2 ∈ TfC∞(S,N), where the tangent space at f is
identified with C∞(S, f ∗TN).

Assuming that (6.18) is satisfied, we try to parametrize flat connections with
trivial holonomy on L. This is an important question from a physical perspective,
as different trivializations of L correspond to different partition functions of the
heterotic string theory. The answer is closely related to the notion of string class
[87], that we introduce next. Let Pg be the bundle of special unitary frames of
the hermitian metric g on (TM, J), with structure group SU(3), and let Ph be the
bundle of special unitary frames of the hermitian metric g, with structure group
SU(r). Consider the principal bundle p : P →M given by

P = Pg ×M Ph,

with structure group G = SU(3)× SU(r). Let σ denote the (left) Maurer-Cartan
1-form on G. We fix a biinvariant pairing on g

c = α(trsu(3)− tru(r)).

We assume that c is suitably normalized so that the [σ3] ∈ H3(G,Z), where

σ3 =
1

6
c(σ, [σ, σ]).

Definition 6.5 ([87]). A string class on P is a class [Ĥ] ∈ H3(P,Z) such that
the restriction of [Ĥ] to any fibre of P yields the class [σ3] ∈ H3(G,Z).

String classes form a torsor over H3(M,Z), where the action is defined by
pull-back and addition [87, Prop. 2.16]:

[Ĥ]→ [Ĥ] + p∗[H],

where p : P → M is the canonical projection on the principal bundle P and
[H] ∈ H3(M,Z).

Flat connections with trivial holonomy on the line bundle L were interpreted
by Bunke in [15] as (very roughly) enriched representatives of a string class in
P . Here we give a simple-minded version of his construction, by choosing special



Lectures on the Strominger system 47

3-form representatives. Let [Ĥ] ∈ H3(P,Z) be a string class. For our choice of
connection θ = ∇×A on P we can take a G-invariant representative Ĥ ∈ Ω3(P )
of the form (see Section 7.1)

(6.19) Ĥ = p∗H − CS(θ)

for a choice of 3-form H ∈ Ω3(M), determined up to addition of an exact three-
form, where

CS(θ) = −1

6
c(θ ∧ [θ, θ]) + c(Fθ ∧ θ).

Using that dĤ = 0, we obtain that (H,∇, A) solves the topological Bianchi iden-
tity (6.16), since dCS(θ) = c(Fθ ∧ Fθ). In conclusion, up to addition of an exact
three-form, a string class determines a preferred solution of the topological Bianchi
identity for a fixed connection θ.

We construct now a flat connection AH on L using this fact. The connection
AH is defined by modification of A0 as follows

dAH log s = dA0 log s− α−1

4πi

∫

S

f ∗H,

where the left hand side is evaluated at the point [(x, f)] ∈ B for f ∈ C∞(S,N).
The curvature of AH can be identified with

4πiFAH ≡ trR∇ ∧R∇ − trFA ∧ FA − α−1dH,

and therefore AH is flat. In [15, Th. 4.14], it is proved that AH admits a parallel
unit norm section s, therefore providing a trivialization of L. Note here that if we
chose a different three-form H + db on M to represent [Ĥ], then this corresponds
to a gauge transformation

s→ e
α−1

4πi

∫
S f
∗bs

of the section s.
String classes were introduced in [87] to parametrize string structures up to

homotopy. String structures emerged from two-dimensional supersymmetric field
theories in work by Killingback and Witten, and several definitions have been pro-
posed so far. Given a spin bundle P over M , McLaughlin defines a string structure
on P as a lift of the structure group of the looped bundle LP = C∞(S1, P ) over
the loop space

LM = C∞(S1,M)

from LSpin(k) = C∞(S1, Spin(k)) to its universal Kac-Moody central extension.
Stolz and Teichner interpreted a string structure as a lift of the structure group
of P from Spin(k) to a certain three-connected extension, the topological group
String(k). For recent developments on this topic, in relation to the topological
Bianchi identity (6.16), we refer the reader to [90, 91].
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7 Generalized geometry and the moduli prob-

lem

7.1 The Strominger system and generalized geometry

In this section we review on recent developments on the geometry of the Stro-
minger system, based on joint work of the author with Rubio and Tipler [48]. As
we will see, the interplay of the Strominger system with the notion of string class
(see Definition 6.5) leads naturally to an interesting relation with Hitchin’s theory
of generalized geometry [63], proposed in [47].

To start the discussion, we draw a parallel between the Strominger system and
Maxwell equations in electromagnetism (cf. [96]). The Maxwell equations in a
4-manifold Y take the form

dF = 0

d ∗ F = je

where F is a two-form – the electromagnetic field strength – and je is the three-
form electric current. The cohomology class [F ] ∈ H2(Y,R) is known as the mag-
netic flux of the solution. Whereas in classical electromagnetism the magnetic flux
is allowed to take an arbitrary value in H2(Y,R), in the quantum theory Dirac’s
law of charge/flux quantization implies that magnetic fluxes are constrained to
live in a full lattice inside H2(Y,R), namely

[F/2π] ∈ H2(Y,Z).

This changes the geometric nature of the problem. A geometric model which
implements flux quantization takes the electromagnetic field to be the i/2π times
the curvature of a connection A on a U(1) line bundle over Y . More generally,
fixing the class [F/2π] ∈ H2(Y,R) amounts to fix the isomorphism class of a Lie
algebroid over Y , and we can regard A as a ‘global splitting’ of the sequence
defining the Lie algebroid.

Given a solution of the Strominger system (5.3), the three-form dcω and the
connections ∇ and A determine a solution of the Bianchi identity (6.16). Relying
on the discussion in Section (6.2), this data determines a real string class (the
analogue of Definition 6.5 in real cohomology). The aim here is to understand
how the global nature of the geometric objects involved in the Strominger system
changes, upon fixing the real string class of the solutions.

We will consider a simplified setup, where the principal bundle considered in
Definition 6.5 is not necessarily related to the tangent bundle of the manifold. Let
M be a compact spin manifold M of dimension 2n. Let P be a principal bundle,
with structure group G. We assume that there exists a non-degenerate pairing c
on the Lie algebra g of G such that the corresponding first Pontryagin class of P
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vanishes

(7.1) p1(P ) = 0 ∈ H4(M,R).

Let A denote the space of connections θ on P . We denote by Ω3
0 ⊂ Ω3

C the space
of complex 3-forms Ω such that

T 0,1 := {V ∈ TM ⊗ C | ιV Ω = 0}

determines an almost complex structure JΩ on M , that we assume to be non-
empty. Consider the parameter space

P ⊂ Ω3
0 ×A× Ω2,

defined by
P = {(Ω, θ, ω) | ω is JΩ − compatible}.

The points in P are regarded as unknowns for the system of equations

dΩ = 0, d(||Ω||ωω2) = 0,

F 0,2
θ = 0, Fθ ∧ ω2 = 0,

ddcω − c(Fθ ∧ Fθ) = 0,

(7.2)

where Fθ denotes the curvature of θ, given explicitly by

Fθ = dθ +
1

2
[θ, θ] ∈ Ω2(adP ),

where θ is regarded as a G-invariant 1-form in P with values in g and the bracket
is the one on the Lie algebra. The induced covariant derivative on the bundle of
Lie algebras adP = P ×G g is

ιV dθr = [θ⊥V, r],

which satisfies dθ ◦ dθ = [Fθ, ·].
To see the relation with the Strominger system, consider the particular case

that P is the fibred product of the bundle of oriented frames of M and an SU(r)-
bundle, with

(7.3) c = α(− tr−cgl).

Here, cgl is a non-degenerate invariant metric on gl(2n,R), which extends the non-
degenerate Killing form − tr on sl(2n,R) ⊂ gl(2n,R). Then, solutions (Ω, ω, θ)
of the system (7.2) correspond to solutions of (5.3), provided that θ is a product
connection ∇× A and ∇ is compatible with the hermitian structure (Ω, ω). The
compatibility between ∇ and (Ω, ω) leads to some difficulties in the construction,
that we shall ignore here.
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Going back to the general case, following Definition 6.5 we denote

H3
str(P,R) ⊂ H3(P,R)

the set of real string classes in P . By condition (7.1) this set is non-empty, and it
is actually a torsor over H3(M,R). We note that any solution x = (Ω, ω, θ) ∈ P
of (7.2) satisfies

ddcω − c(Fθ ∧ Fθ) = 0,

and therefore x induces a string class

[Ĥx] ∈ H3
str(P,R),

where
Ĥx = p∗dcω − CS(θ).

To understand the geometric meaning of the set of solutions with fixed string
class, we note that a choice [Ĥ] ∈ H3

str(P,R) determines an isomorphism class
of exact Courant algebroids over P (see e.g. [59]). More explicitly, for a choice
of representative Ĥ ∈ [Ĥ], the isomorphism class of exact Courant algebroids is
represented by

Ê = TP ⊕ T ∗P,
with (Dorfman) bracket

[X̂ + ξ̂, Ŷ + η̂] = [X̂, Ŷ ] + LX̂ η̂ − ιŶ dξ̂ + ιŶ ιX̂Ĥ,

and pairing
〈X̂ + ξ̂, X̂ + ξ̂〉 = ξ̂(X̂),

for vector fields X̂, Ŷ and 1-forms ξ̂, η̂ on P .
The exact Courant algebroid Ê comes equipped with additional structure,

corresponding to the string class condition for [Ĥ]. Firstly, we note that [Ĥ] is
fixed by the G-action on P – as it always admits a G-invariant representative of
the form (6.19) – and therefore Ê is G-equivariant. Secondly, Ê admits a lifted
G-action [16], given by an algebra morphism ρ : g→ Ω0(Ê) making commutative
the diagram

(7.4)

g
ρ //

ψ
""

Ω0(Ê)

π

��
Ω0(TP )

and such that the infinitesimal g-action on Ω0(Ê) induced by the Courant bracket
integrates to a (right) G-action on Ê lifting the action on P . The previous data
is determined up to isomorphism by the choice of real string class (see [12, Prop.
3.7]).



Lectures on the Strominger system 51

To be more explicit, writing ρ(z) = Yz + ξz for z ∈ g we have

dξz = iYzĤ

Then, for a choice of connection θ on P there exists a 2-form b̂ on P such that

ρ(z) = eb̂(Yz − c(z, θ·)),
and

Ĥ = p∗H − CS(θ) + db̂,

where eb̂(X̂ + ξ̂) = X̂ + ιX̂ b̂+ ξ̂.

Applying the general theory in [16], the exact Courant algebroid Ê can be
reduced, by means of the lifted action ρ, to a (transitive) Courant algebroid E
over the base manifold M , whose isomorphism class only depends on the choice
of string class [Ĥ]. Any choice of connection θ on P determines an isomorphism

E ∼= TP/G⊕ T ∗

and a 3-formH onM , uniquely up to exact 3-forms onM , such that the symmetric
pairing on E is given by

〈X̂ + ξ, Ŷ + η〉 =
1

2
(iXη + iY ξ) + c(θX̂, θŶ ),

where pX̂ = X, and pŶ = Y , and the Dorfman Bracket is given by

[X̂ + ξ, Ŷ + η] = [X̂, Ŷ ] + LXη − ιY dξ + ιY ιXH

+ 2c(dθ(θX̂), θŶ ) + 2c(Fθ(X, ·), θŶ )− 2c(Fθ(Y, ·), θX̂).
(7.5)

In [48] it is proved that solutions of the system (7.2) (and hence of the Stro-
minger system (5.3)) with fixed string class [Ĥ], can be recasted in terms of natural
geometry in the Courant algebroid E over M . This implies a drastic change in
the symmetries of the problem: the system (7.2), with natural symmetries given
by the automorphism group AutP of P , is preserved by the automorphism group
of the Courant algebroid E (see [48, Prop. 4.7]) once we fix the string class. In
particular, this includes B-field transformations for any closed 2-form b ∈ Ω2 on
M , given by

X̂ → X̂ + ιXb.

To give the main idea, we have to go back to the physical origins of the Strominger
system in supergravity, as explained in Section 6.1. By Theorem 6.3, the system
(7.2) is equivalent to the Killing spinor equations

∇−η = 0,

(dφ+
1

2
H) · η = 0,

Fθ · η = 0,

dH − c(Fθ ∧ Fθ) = 0,

(7.6)
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for a tuple (g, φ,H, θ, η), given by a riemannian metric g on M , a function φ,
a three-form H, a connection θ on P , and a non-vanishing pure spinor η with
positive chirality.

Theorem 7.1 ([48]). Solutions of the Killing spinor equations (7.6) with fixed
string class [Ĥ] are preserved by the automorphism group of E.

The proof is based on the fact that a tuple (g,H, θ) satisfying the Bianchi iden-
tity dH = c(Fθ∧Fθ) is equivalent to a generalized metric on E, while the function
φ determines a specific choice of torsion-free compatible connection (which in gen-
eralized geometry is not unique). Furthermore, in [23, 47] it was proved in that
the equations of motion (6.13) correspond to the Ricci and scalar flat conditions
for the metric connection determined by (g, φ,H, θ).

7.2 The moduli problem

In this section we review on the recent progress made in the study of the moduli
space of solutions for the Strominger, following [48] (see also [6, 24]).

The moduli problem for the Strominger system (5.3) in dimension n = 1
reduces to the study of moduli space of pairs (X, E), where X is an elliptic curve
and E is a polystable vector bundle over X, with rank r and degree 0 (see Section
5.1). Due to results of Atiyah and Tu (see [97] and references therein), this moduli
space corresponds to the fibred r-th symmetric product of the universal curve over
the moduli space of elliptic curves

H/ SL(2,Z),

where H ⊂ C denotes the upper half-plane.
For n = 2, Example 5.5 shows that the moduli problem corresponds essentially

to the study of tuples (X, [ω], E , T ), where X is a complex surface with trivial
canonical bundle (a K3 surface or a complex torus), [ω] is a Kähler class on
X, E is a degree zero polystable holomorphic vector bundle over X satisfying
(5.5), and T is a polystable holomorphic vector bundle with the same underlying
smooth bundle as TX. Although the moduli problem for such tuples is not fully
understood even in the algebraic case, it can be tackled with classical methods of
algebraic geometry and Kähler geometry (see [5] and references therein).

As observed earlier in this work, the critical dimension for the study of the
Strominger system is n = 3. This is the lowest dimension for which the Calabi-Yau
manifold (X,Ω) may be non-kählerian, and therefore new phenomena is expected
to occur. To see this explicitly, we review the construction of the local moduli
for the Strominger system in [48, 49]. For simplicity, we will follow the setup
introduced in the previous section, and deal with the system (7.2), for a six-
dimensional compact spin manifold M . We start defining the symmetries that we
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will use to construct the infinitesimal moduli for (7.2). These are given by the
group

Aut0 P ⊂ AutP

where AutP is the group of automorphism of P , that is, the group ofG-equivariant
diffeomorphisms of P , and Aut0 P denotes the connected component of the iden-
tity. Given g ∈ AutP we denote by ǧ ∈ Diff(M) the diffeomorphism in the base
that it covers. Then, Aut0 P acts on P by

g · (Ω, ω, θ) = (ǧ∗Ω, ǧ∗ω, g · θ),

preserving the subspace of solutions of (7.2). We define the moduli space of
solutions of (7.2) as the following set

M = Aut0 P\{x ∈ P : x is a solution of (7.2)}

Theorem 7.2 ([48]). The system (7.2) is elliptic.

Relying on this result, the moduli spaceM is finite-dimensional, provided that
it can be endowed with a natural differentiable structure. In order to do this, a
finite dimensional vector space H1(S∗) parametrizing infinitesimal variations of a
solution of (7.2) modulo the infinitesimal action of Aut0 P is constructed in [48],
using elliptic operator theory. Further, in [49] the Kuranishi method is applied to
build a local slice to the Aut0 P -orbits in P through a point x ∈ P solving (7.2).
By general theory, the local moduli space of solutions around x is defined by a
(typically singular) analytic subset of the slice, quotiented by the action of the
isotropy group of x.

The construction in Section 7.1 induces a well-defined map from the moduli
space to the set of string classes

(7.7) ϑ : M→ H3
str(P,R).

Relying on the parallel with Maxwell theory, we call this the flux map. We note
that H3

str(P,R) is in bijection with H3(M,R), which corresponds to the space of
infinitesimal variations of the Calabi-Yau structure Ω on M . Thus, potentially,
restricting to the level sets of ϑ on should obtain a manifold of lower dimension
(in relation to the physical problem of moduli stabilitization). By Theorem 7.1,
each level set

ϑ−1([Ĥ]) ⊂M
can be interpreted as a moduli space of solutions of the Killing spinor equations
(7.6) on the transitive Courant algebroid E[Ĥ]. On general grounds, it is expected

that the moduli space ϑ−1([Ĥ]) is related to a Kähler manifold, generalizing the
special Kähler geometry in the moduli problem for polarised kählerian Calabi-
Yau manifolds. Note here that ϑ−1([Ĥ]) contains a family of moduli spaces of τ -
stable holomorphic vector bundles – with varying complex structure and balanced
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class on M –, each of them carrying a natural Kähler structure away from its
singularities (see Section 4.2).

Based on the relation with string structures, it is natural to ask which enhanced
geometry can be constructed in the moduli space ϑ−1([Ĥ]) using an integral string
class

[Ĥ] ∈ H3
str(P,Z).

This integrality condition appears naturally in the theory of T -duality for transi-
tive Courant algebroids, as defined by Baraglia and Hekmati [12], and it should
be important for the definition of a Strominger-Yau-Zaslow version of mirror sym-
metry for the Strominger system [104].
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Geometry and large N limits in Laughlin states

Semyon Klevtsov

Abstract

In these notes I survey geometric aspects of the lowest Landau level wave
functions, integer quantum Hall state and Laughlin states on compact Rie-
mann surfaces. In particular, I review geometric adiabatic transport on the
moduli spaces, derivation of the electromagnetic and gravitational anoma-
lies, Chern-Simons theory and adiabatic phase, and the relation to holo-
morphic line bundles, Quillen metric, regularized spectral determinants,
bosonisation formulas on Riemann surfaces and asymptotic expansion of
the Bergman kernel.

Based on lectures given at the School on Geometry and Quantization,
held at ICMAT, Madrid, September 7–11, 2015.
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1 Introduction

Quantum Hall effect is observed in certain two-dimensional electron systems, such
as GaAs heterostructures [100] and more recently in graphene [82], at large mag-
netic fields and low temperatures. In the most basic setup, the current Ix is
forced through a 2d sample in direction x and the voltage Vy is measured across
the sample in y direction, as shown on Fig. 1. The outcome of the measurement is
that the Hall conductance σH = Ix/Vy (Hall resistance shown on Fig. 1 is inverse
Hall conductance, Rxy = 1/σH) as a function of magnetic field strength at a fixed
chemical potential undergoes a series of plateaux. There it takes on fractional val-
ues σH ∈ Q, with small denominators, as measured in units of e2/h. This effect is
referred to as the ”quantization” of Hall conductance. Even more remarkable, tak-
ing into account impurities of the samples, is the fact that quantization happens
to a very high degree of accuracy, of the order 10−8.

Quantum Hall effect comes in two varieties: integer QHE, where σH ∈ Z+,
and fractional QHE with σH rational and non-integer. On Fig. 1 the integer QHE
plateaux are labelled as 1, 2, 3, 4 and all other plateaux corresponds the fractional
QHE. The physics of integer and fractional QHE is very different: the former
corresponds to non-interacting fermions, while the latter is a strongly interact-
ing system (we refer to the classical survey Ref. [42] for the introduction to the
physics of QHE). However, there is a degree of similarity in that in both cases the
mechanism behind the quantisation of Hall conductance alludes to Chern classes
of certain vector bundles.

The standard approach to the theory of QHE is to assign a collective multi-
particle electron wave function, or ”state” Ψ(z1, ..., zN) to each plateaux, and then
test its various properties against the experiment or numerics. In the integer QHE
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Figure 1. Hall resistance Rxy and longitudinal resistance Rxx vs. magnetic field B

(borrowed with permission from Ref. [100])

one could argue that the physics is captured by the first several energy levels in
the tower of Landau levels of an electron in a strong magnetic field. The lowest
Landau level (LLL) becomes highly degenerate at strong magnetic fields and is
gapped due to the scale set by the cyclotron energy ωc = eB/mc. To satisfy the
Pauli principle, the exact collective wave function of N fermions on the fully filled
LLL is completely antisymmetric and thus is given by the Slater determinant
of one-particle wave functions, see Eq. (3.4). One-particle wave functions are
holomorphic functions on C and so is the integer QH state, apart from the overall
non-holomorphic gaussian factor.

In the fractional QHE the many-body Hamiltonian contains interaction terms
and thus it is hard to find an exact ground state analytically. Usually one proceeds
by making educated guesses for the trial states. The most successful choice is the
celebrated Laughlin state [74], corresponding to the values of Hall conductance
given by simple fractions σH = 1/β, β ∈ Z+, see e.g. plateau labelled 1/3 on Fig.
1. This wave function is not made out of one-particle states, although one could
look at it as corresponding to a partially filled LLL (notation ν = 1/β is also
widely used, where ν is the ”filling fraction” for the LLL). In particular, it is also
a holomorphic function of coordinates times the gaussian factor, see Eq. (4.1).

Another well-known state is Pfaffian state [79], corresponding to σH = 5/2
plateau, which is not pictured on Fig. 1. Other states were proposed to describe
various other plateaux, as an incomplete list of best known examples we refer
to the hierarchy states of Refs. [49, 52], composite fermion states [57], Read-
Rezayi states [90], but our main focus here is on Laughlin states. Interestingly,
the Laughlin states are also widely used in the contexts other than the FQHE,
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in particular we shall mention d + id-wave superconductors [88] and chiral spin
liquids [59].

The standard approach to the explanation of the quantization of Hall conduc-
tance, put forward in Ref. [97], is inherently geometric (the first explanation of
the quantization is Laughlin’s transport of charge argument, which also invokes
non-trivial geometry of annulus [73]). There the integer QH effect was considered
for a 2d electron gas in a periodic potential. Then the Hall conductance was es-
sentially described as the first Chern number of the line bundle over the Brillouin
zone, which is a torus in the momentum space, see Ref. [5] for this interpretation.
We shall mention that this approach can be generalized to include impurities in
the framework of Chern classes in non-commutative geometry [12].

In these notes we follow a closely related, but not equivalent line of thought,
known as the geometric adiabatic transport, see e.g. Ref. [9] for introduction. One
considers a model 2d electron system either with periodic boundary conditions
or on a compact Riemann surface Σ [6, 7]. In the latter case the magnetic field
is created by a configuration of k magnetic monopoles inside the surface and is
described by the line bundle Lk of degree k over Σ. When the Riemann surface
has nontrivial topology, i.e., for genus g > 0, one can create magnetic field flux
thought the holes of the surface using solenoids wrapped around the nontrivial
one-cycles of Σ. On the surface this leads to the magnetic field acquiring flat
gauge connection part, characterized by Aharonov-Bohm phases, e.g. in the case
of torus, the phases are real numbers ϕ1, ϕ2 ∈ [0, 1]2. The space of solenoid
phases is itself a 2g-dimensional torus T 2g, which is known to mathematicians as
the moduli space of flat connections, or the Jacobian variety Jac(Σ). The non-zero
time derivative of phases ϕ̇ gives rise to the electric current along the surface.

The integer QH state is a section of the line bundle, called determinant line
bundle, over Jac(Σ). With the help of the Kubo’s formulas Hall conductance can
be expressed as the first Chern class of this line bundle, see e.g. [6, 7] for details. In
particular, when the integer QH wave function is transported adiabatically along
a smooth closed contour C ∈ Jac(Σ), it acquires an adiabatic Berry phase [14].
For contractible contours it is equal to the integral of the Chern curvature of the
canonical Berry connection, known in this context as adiabatic connection and
curvature, over the area enclosed by the process. This argument can be extended
to the Hall conductance in the fractional case [95, 81], where the novel feature
is topological degeneracy of the fractional QH states on the Riemann surfaces of
genus g > 0.

Studying QH states on a Riemann surface can also help uncover hidden proper-
ties of the QH states, such as e.g. the Hall viscosity. Apart from the moduli space
of flat connections, complex structure moduli of Riemann surfaces Mg provide
another parameter space as a new arena for the geometric adiabatic transport.
Avron-Seiler-Zograf [8] (see also [76]) considered the integer QH state as a sec-
tion of the line bundle over the moduli space of complex structures of the torus
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M1. The latter is the fundamental domain of the action of PSL(2,Z) on the
complex upper half plane, pictured on Fig. 4. They computed the curvature of
the adiabatic connection on this line bundle over M1, which is proportional to
the Poincaré metric on the upper half plane. The coefficient of proportionality
was interpreted as the non-dissipative (anomalous, Hall) viscosity of the quantum
Hall ”electronic liquid”, we refer to [54] for the recent review.

Geometric adiabatic transport was subsequently generalized to integer QH
state on higher genus Riemann surfaces [77]. The Hall viscosity for various frac-
tional QH states was derived Refs. [98, 99, 89, 91, 39], see especially Ref. [89] for
the comprehensive study. In general, the coefficients entering the adiabatic curva-
ture are called adiabatic transport coefficients. In this sense the Hall conductance
σH is a transport coefficient for the adiabatic transport on the moduli space of
flat line bundles. To sum up, mathematically one would like to construct various
QHE states a Riemann surface and describe the vector bundles arising on the
moduli space of Riemann surface, for a large number of particles.

QH states can be also constructed on surfaces with curved metric and inho-
mogeneous magnetic field. This allows to determine the effect of gravitational
anomaly in QHE starting directly from the wave functions. In Ref. [65] the in-
teger QH state was defined on a compact Riemann surface of any genus with an
arbitrary metric gzz̄ and for the constant magnetic field with the integer flux k
through the surface. The main task is to compute the asymptotics for large num-
ber of particles N of the normalization factor of the integer QH state on curved
backgrounds, which also has the meaning of the generating functional for the
density-density correlation functions. The tool for the derivation of the asymp-
totics is the Bergman kernel expansion for large powers of the holomorphic line
bundle Lk. Since the number of particles N is of order k, this asymptotics is
equivalent to large N limit in the number of electrons. The gravitational anomaly
appears as the order O(1) term in the 1/k expansion of the generating functional
[65]. This calculation was generalized to the case of inhomogeneous magnetic field
in [66].

The advantage of the Bergman kernel method is that it is mathematically
rigorous, and that its large k expansion is very well understood, see [112, 25, 78,
102]. However, this method does not appear to be generalizable to the fractional
QH case. There exists several physics methods to compute the asymptotics of the
generating functional in this case. In Refs. [21, 22, 71] the generating functional
and the gravitational anomaly for the Laughlin states was derived using the Ward
identity method, developed in the important Ref. [110]. In Ref. [37] an alternative
derivation was given, based on the vertex operator construction of Laughlin states
[79] adapted to curved backgrounds. This derivation, which we review here relies
on path-integral arguments and does not directly refers to the standard ”plasma
screening” argument for large N scaling limit in QH states [74], see also [48, 18].
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Asymptotic expansion of the generating functional for QH states consists of
two parts: the anomalous part, where non-local functionals of the metric and
magnetic field enter, and exact part, which includes an infinite series of local
invariants of scalar curvature and its derivatives. The anomalous part consists of
three terms corresponding to electromagnetic, mixed and gravitational anomalies,
with three independent coefficients, see e.g. Eq. (5.13). The coefficient in front of
the electromagnetic anomaly is the Hall conductance σH = 1/β and the coefficient
ςH in front of the mixed gravitational-electromagnetic anomaly is related to Hall
viscosity (for the Laughlin states on torus the Hall viscosity is ηH = Nφ/4).
Gravitational anomaly gives rise to a new adiabatic transport coefficient which
was dubbed cH , for ”Hall central charge” in [67], and ”apparent central charge”
in Ref. [20]. For Laughlin states the Hall central charge is cH = 1 − 3q2, where
q is background charge, see Eq. (4.22). We shall stress that the theory is not
conformally invariant, since there is a scale associated with the magnetic field
l2B = 1/B, and cH is one of infinitely many coefficients appearing in the asymptotic
expansion (in lB) of the generating functional. For a closely related point of view
on the gravitational anomaly in QH states we refer to Ref. [20].

In parallel to these developments the gravitational anomaly in QHE was de-
rived from the 2 + 1d picture where 2 stand for the space and 1 for the time
dimensions. Description of the 2 + 1d long distance effective action in QHE in
terms of Chern-Simons action goes back to Refs. [40, 41, 106]. There the non-
relativistic Chern-Simons theory was constructed using 2 + 1d gauge A and spin
ω connections and has schematic form

∫
AdA+ Adω, where the first term repre-

sents the electromagnetic anomaly and the second term corresponds to the mixed
anomaly. Recently the gravitational anomaly contribution

∫
ωdω to this effective

was computed starting from 2 + 1d non-relativistic fermions in the integer QHE
[1], see [46] for the fractional case, and also Refs. [94, 44, 45, 19, 24]. These
results are in complete agreement with the 2d generating functional Eq. (5.13),
although the exact meaning of the matching between the terms in 2d and 2 + 1d
actions is not immediately clear. It was understood in Ref. [66] that the geo-
metric part of the adiabatic phase for the integer QH state can be expressed in
Chern-Simons form equivalent to that of Ref. [1], thus connecting 2d and 2 + 1d
approaches to QHE effective action in the integer QHE case. The derivation of
the Chern-Simons action as adiabatic phase is based on Quillen theory [87] and
on the Bismut-Gillet-Soulé formula [17] for the curvature of the Quillen metric
for the holomorphic section of the determinant line bundle, i.e. integer QH state
(Bismut-Gillet-Soulé formula was also invoked in QHE context in Ref. [96]).

In these notes we review these developments and make an attempt to put them
into a broader mathematical physics context. In particular, in the QHE context
we cover such topics as holomorphic line bundles and ∂̄-operator, asymptotic ex-
pansion of the Bergman kernel, regularized spectral determinants and the Quillen
metric, bosonisation formulas on Riemann surfaces, Bismut-Gillet-Soulé anomaly
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formula and Chern-Simons action. In this regard the lectures are aimed at both
theoretical physicists working on QHE and mathematicians interested in learning
about the subject.

We begin in Section 2 with the one-particle states on Riemann surfaces, where
we introduce the holomorphic line bundle, ∂̄-operator and describe the one-particle
wave functions on the lowest Landau level as holomorphic sections of the magnetic
monopole line bundle. Our main working example is the torus, where we construct
the wave functions and study geometric adiabatic transport on the moduli space in
detail. In section 3 we introduce the integer QHE wave function and the generat-
ing functional on Riemann surfaces with arbitrary magnetic field and Riemannian
metric. We then use Bergman kernel expansion to compute the generating func-
tional to all orders in 1/k. We relate the non-local terms in the expansion to the
gauge, mixed and gravitational anomalies and the local part of the expansion to
the regularized determinant of the spectral laplacian for the line bundle.

In Section 4 we define the Laughlin states, review their construction on the
round sphere and flat torus. We then review in detail the vertex operator con-
struction of the Laughlin states and explain how it reduces to the bosonisation
formulas on higher genus Riemann surfaces in the integer QHE case. We work
out vertex operator construction on the torus, paying particular attention to the
role of the spin structures and modular transformations. In Section 5 we proceed
to the definition of the generating functional for the Laughlin states and review
its asymptotic expansion for large number of particles. Then we study geometric
adiabatic transport and derive adiabatic curvature for the integer QH and for the
Laughlin states. Finally we review the relation between the geometric part of the
adiabatic phase and Chern-Simons action.

These lectures reflect the point of view on the geometry of Laughlin states
taken in Refs. [65, 34, 37, 67, 66]. In addition to the work already mentioned here,
a number of exciting recent developments in geometry of QHE appeared in recent
years, which regrettably are not surveyed here. These include emergent geometry
approach to Laughlin states [51, 58], Newton-Cartan approach to the geometry
of QHE [94], recently experimentally realized QH states on singular surfaces [92]
and emergent conformal symmetry [72], genons [10, 47], Dehn twist process on
the torus [62, 111], quantum Hall effect on Kähler manifolds [60, 34, 13, 61, 55],
to mention just a few. We also plan to provide a more detailed account of higher
genus Laughlin states in a separate publication [68]. Apart form that, we do
not discuss a vast topic of quasi-hole excitations above the Laughlin states and
their non-abelian statistics, although this is something which can be treated by
methods reviewed here. We hope to address some of the aforementioned topics
elsewhere.
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2 Lowest Landau level on Riemann surface

2.1 Background

We consider a compact connected Riemann surface Σ of genus g, a positive Hermi-
tian holomorphic line bundle (L, h) of degree degL = 1 and the kth tensor power
(Lk, hk), where h(z, z̄) is a Hermitian metric. Given some complex structure J
there exist local complex coordinates z, z̄ where the Riemannian metric on Σ is
diagonal ds2 = 2gzz̄|dz|2, and the area of Σ is normalized as

∫
Σ

√
gd2z = 2π. The

curvature two-form of the Hermitian metric hk(z, z̄),

F := Fzz̄idz ∧ dz̄ = −(∂z∂z̄ log hk)idz ∧ dz̄,(2.1)

where i =
√
−1, defines the magnetic field strength two-form on Σ. We will

mainly work with the scalar magnetic field density B, defined as follows

B = gzz̄Fzz̄.(2.2)

The total flux Nφ of the magnetic field through the surface is an integer

(2.3) Nφ =
1

2π

∫

Σ

F =
1

2π

∫

Σ

B
√
gd2z,

and it is equal to the degree degLk = k of the line bundle Lk,

Nφ = k.

In this section and in Sec. 3 we will use k for the degree/flux of magnetic field,
and reserve the notation Nφ for Sec. 4.

The scalar curvature R of the metric is given by

R = 2gzz̄Rzz̄ = −2gzz̄∂z∂z̄ log
√
g = −∆g log

√
g,
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where
√
g = 2gzz̄ and the scalar Laplacian is ∆g = 2gzz̄∂z∂z̄. The Euler charac-

teristic of Σ is the integral of the scalar curvature over the surface

χ(Σ) =
1

4π

∫

Σ

R
√
gd2z = 2− 2g.

We will also introduce the gauge connection for the magnetic field F = dA and
spin connection for the curvature written in components as follows

Fzz̄idz ∧ dz̄ = (∂zAz̄ − ∂z̄Az)dz ∧ dz̄,
Rzz̄ idz ∧ dz̄ = (∂zωz̄ − ∂z̄ωz)dz ∧ dz̄.

Sometimes it will be convenient to use the symmetric gauge, where

Az =
1

2
i∂z log hk, Az̄ = −1

2
i∂z̄ log hk,(2.4)

ωz =
1

2
i∂z log gzz̄, ωz̄ = −1

2
i∂z̄ log gzz̄.

Here Az and Az̄ (id. ωz and ωz̄) are complex conjugate and the components of
the connections Ax, Ay in real coordinates defined as Azdz+Az̄dz̄ = Axdx+Aydy
are real-valued.

We will consider a more general choice of the line bundle which is the tensor
product L = Lk⊗Ks⊗Lϕ, where K is the canonical line bundle and Lϕ is the flat
line bundle, which has degree zero. This choice is motivated by different physical
meaning of the components of L. As we already mentioned, the line bundle Lk

corresponds to the magnetic field, created by a distribution of monopole charges
inside the compact surface, with the total flux k through Σ, Eq. (2.3). If s > 0,
the sections of Ks correspond to tensors of weight (s, 0), i.e. invariant objects
of the form tzz...z(dz)s with s holomorphic indices z (for s < 0 one considers
holomorphic vector fields of weight −s), see e.g. [28, §II.E]. The Hermitian norm-
squared ||t(z, z̄)||2 of a section t(z, z̄) of Lk ⊗Ks reads

‖t(z, z̄)‖2 = |t(z, z̄)|2hk(z, z̄)g−szz̄ (z, z̄).

Physically this means that parameter s is the gravitational (or conformal) spin of
the wave function. The curvature of the Hermitian metric on Ks is thus isRzz̄dz∧
dz̄ and degKs = 1

2π

∫
Σ
isRzz̄dz ∧ dz̄ = −sχ(Σ). Since χ(Σ) is even this allows for

half-integer values of the spin s.
Finally, the flat line bundle Lϕ takes into account the flat connection part of

the gauge field of total flux zero (line bundle of degree zero), which nonetheless
can have non-trivial monodromy around the 1-cycles of the Riemann surface.
Physically this corresponds to the magnetic field, created by the solenoid coils
wrapped around the 1-cycles of the surface and ϕ labels the solenoid phases.
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Namely, let (Aa, Bb) ∈ H1(Σ,Z), a, b = 1, ..., g be a canonical basis of one-cycles
in Σ and αa, βb ∈ H1(Σ,Z) be the dual basis of harmonic one-forms

∫

Aa

αb = δab,

∫

Aa

βb = 0

∫

Ba

αb = 0,

∫

Ba

βb = δab.

The space of phases (ϕ1a, ϕ2b) ∈ [0, 1]2g span 2g dimensional torus T 2g
[ϕ], also known

as the Jacobian variety Jac(Σ). The flat connections can be explicitly parame-
terized as follows

(2.5) Aϕ = 2π

g∑

a=1

(ϕ1aαa − ϕ2aβa).

This gauge connection has the monodromy e2πiϕ1a around the cycle Aa and e−2πiϕ2b

around Bb and so do the wave functions, which we will define in a moment.
It will be useful to write the flat connection (2.5) in terms of the basis of

holomorphic differentials ωa, normalized as

∫

Aa

ωb = δab,

∫

Ba

ωb = Ωab,

where Ω is the period matrix of Riemann surface, which is a g × g complex sym-
metric matrix with Im Ω > 0, see e.g. [80, Ch. 2,§2] and [2]. Then the harmonic
one-forms are related to the holomorphic differentials by the following linear trans-
formation

α = −Ω̄(Ω− Ω̄)−1ω + Ω(Ω− Ω̄)−1ω̄,

β = (Ω− Ω̄)−1ω − (Ω− Ω̄)−1ω̄,

where summation over matrix and vector indices is understood. We can now write
the connection (2.5) as

(2.6) Aϕ = 2πϕ(Ω− Ω̄)−1ω̄ − 2πϕ̄(Ω− Ω̄)−1ω,

where

(2.7) ϕa = ϕ2a + Ωabϕ1b

is the complex coordinate on Jac(Σ).
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2.2 Lowest Landau level, ∂̄-equation and holomorphic sec-
tions

The Hamiltonian for a particle with gravitational spin s on surface (Σ, g) in the
magnetic field B can be written in complex coordinates as

(2.8) H =
1

m
DzDz̄ +

2− gs
4

e~B − s

4
R + cR,

where gs is the Landé g-factor and in our conventions mass, charge and Planck’s

constant will be set to one. The derivative operator here is Dz̄ = g
− 1

2
zz̄ (i∂z̄ − sωz̄ +

Az̄). The additional term cR, where c is a numerical constant, is sometimes added
to the Hamiltonian depending on the quantization scheme, see e.g. [63] for review.
For the large flux k of the magnetic field, the lowest energy level (lowest Landau
level, LLL) for this hamiltonian is highly degenerate, provided the sum of the last
three terms in (2.8) is constant

(2.9) E0 =
2− gs

4
B − s

4
R + cR =

2− gs
4

k +
(
c− s

4

) χ(Σ)

2
,

and this constant is equal to the ground state energy E0. Note that the constant
magnetic field B = const corresponds to Fzz̄ = kgzz̄, where gzz̄ is not necessarily
a constant scalar curvature metric. There exist various choices of constants when
Eq. (2.9) holds for inhomogeneous magnetic field and/or non-constant scalar cur-
vature metrics. Since we are interested in the case when LLL is highly degenerate,
we will ignore the curvature and magnetic field terms in (2.8) in what follows. In
this case the LLL wave functions solve the first order PDE:

(2.10) Dz̄Ψ = 0.

As we will see in a moment, equation (2.10) is a local version of a globally
defined (on Σ) ∂̄-equation,

(2.11) ∂̄Ls(z) = 0,

for a line bundle L = Lk ⊗Ks ⊗ Lϕ. Here the ∂̄-operator acts from C∞ sections
of L to (0,1) forms with coefficients in C∞ sections,

∂̄L : C∞(Σ,L)→ Ω0,1(Σ,L).

The global solutions to Eq. (2.11) are called the holomorphic sections of L, and
these will be our LLL wave functions. The vector space of holomorphic sections
of L is usually denoted as H0(Σ,L).

By the Riemann-Roch theorem, the dimension of the space of holomorphic
sections dimH0(Σ,L) satisfies the relation

dimH0(Σ,L)− dimH1(Σ,L) = deg(L) + 1− g,
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see e.g. [43, p. 245-6]. Here H1(Σ,L) is the first Dolbeaux cohomology group,
which by the Kodaira vanishing theorem [43, p. 154] vanishes H1(Σ,L) = 0 for k
large enough, and the latter is exactly the large magnetic flux condition relevant
for applications to QHE. The precise technical condition for vanishing is degLk⊗
Ks > degK, i.e., k + 2(g − 1)(s − 1) > 0 (using degLϕ = 0 and deg L =
degLk + degKs = k + 2s(g − 1)), see [43, p. 215]. Hence, we have for the total
number of LLL wave functions

(2.12) N ≡ Nk,s = dimH0(Σ,L) = k + (1− g)(1− 2s) .

This formula again reminds us that we can allow for half-integer spins s, in which
case the wave function is a spinor on Σ.

In quantum mechanics the wave functions are always normalized with respect
to the L2 norm. The L2 inner product of sections reads

(2.13) 〈s1, s2〉L2 =
1

2π

∫

Σ

s̄1s2 h
kg−szz̄
√
gd2z.

One could also formally write the wave function in some local coordinate system
as

Ψl(z, z̄) = sl(z)hk/2(z, z̄)g−s/2(z, z̄),

although other inequivalent choices for Ψ will be considered in what follows. Then
the inner product looks like the standard quantum-mechanical one

〈Ψ1|Ψ2〉L2 =
1

2π

∫

Σ

Ψ∗1Ψ2
√
gd2z.

Now, in the symmetric gauge (2.4), the ∂̄-equation for the locally defined wave
functions Ψl(z, z̄) reduces to the local form Eq. (2.10) that we started with,
Dz̄Ψ = 0. The operator D̄ is a twisted version of the global operator ∂̄L in (2.11),
namely

(2.14) Dz̄ = h
k
2 g
− s+1

2
zz̄ ◦ i∂̄L

(
h−

k
2 g

s
2
zz̄ ◦
)

= g
− 1

2
zz̄ (i∂z̄ − sωz̄ + Az̄),

where spin s couples to the spin-connection.
Note that in the discussion above we did not impose any conditions on B

and R, and we can consider holomorphic sections on Σ with an arbitrary metric
and with inhomogeneous magnetic field. Suppose g0 is constant scalar curvature
metric and B0 = gzz̄0 F0zz̄ is constant magnetic field. Integrating magnetic field
over Σ we conclude that the constant equals the total flux B0 = k. A natural
way to parameterize an arbitrary curved Riemannian metric g and inhomogeneous
magnetic field B is via the Kähler potential φ(z, z̄) and magnetic potential ψ(z, z̄),

gzz̄ = g0zz̄ + ∂z∂z̄φ,(2.15)
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Fzz̄ = F0zz̄ + k∂z∂z̄ψ, hk = hk0e
−kψ.(2.16)

Here φ is a scalar function, satisfying ∂z∂z̄φ > −g0zz̄, so that the metric gzz̄ is
everywhere positive on Σ. In other words, the (1,1) forms F and F0 (2.1) (cf.
gzz̄idz∧dz̄ and g0zz̄idz∧dz̄) are in the same Kähler class. We use lower-case ψ for
the magnetic potential and and upper-case Ψ for the wave functions throughout
the paper, which shall not be confused.

The area of the surface computed with the metrics g0 and g is the same, which
is a natural parameterization in view of incompressibility of QH electronic liquid.
It follows from the formulas above and from the definition of magnetic field Eq.
(2.2), that constant magnetic field implies magnetic and Kähler potentials being
equal up to an irrelevant constant and vice versa,

(2.17) B = k ⇐⇒ φ = ψ + const.

We will now consider examples where we explicitly construct some reference or-
thonormal bases of the LLL states, for constant scalar curvature metric and con-
stant magnetic field. We start here with the sphere, and in the next subsections
review LLL on the torus.

Lowest Landau level on sphere. In the complex coordinate z induced from C
by stereographic projection, the round metric on the sphere reads

(2.18) g0zz̄ =
1

(1 + |z|2)2
.

It has constant scalar curvature R(g0) = 4 (the subscript 0 will mostly be reserved
for the metric of constant scalar curvature on the surface). For the constant
magnetic field F0zz̄ = kg0zz̄, and thus one can choose the Hermitian metric (2.1)
as

(2.19) hk0(z, z̄) =
1

(1 + |z|2)k
.

There are no flat connections with nontrivial monodromy since there are no
non-contractible cycles (H1(S2,Z) is trivial) and basis of holomorphic sections
of Lk ⊗ Ks can be constructed from the polynomial-valued (s, 0)-forms (dz)s,
z(dz)s, z2(dz)s,... of the maximal degree N − 1 = k − 2s constrained by the
condition of finiteness of the L2-norm Eq. (2.13). Denoting the orthogonal ba-
sis as sl(z) = clz

l−1(dz)s, we can derive the normalization coefficients cl from
orthogonality condition on the basis

〈sl, sm〉L2 = δlmc
2
l

1

2π

∫

C

|z|2l−2

(1 + |z|2)k−2s+2
2d2z =

c2
l

(k − 2s+ 1)C l−1
k−2s

δlm,

where C l−1
k−2s is the binomial coefficient. The integral above converges for j 6 k−2s.

Thus the reference orthonormal basis of sections of Lk ⊗Ks on sphere reads

(2.20) sl(z) =
√
k − 2s+ 1

√
C l−1
k−2s z

l−1(dz)s, l = 1, ..., k − 2s+ 1.
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The basis is non-empty when k > 2s. For spin zero particles there are k+1 states
on LLL, one extra normalizable state compared to the Landau problem in the
planar domain.

2.3 Moduli spaces and adiabatic curvature

Torus is the first nontrivial example where moduli parameters appear. The flat
torus can be represented as a quotient T 2 = C/Λ of the complex plane by a
lattice Λ = m + nτ, m, n ∈ Z and τ ∈ H (H is the complex upper-half-plane) is
the complex structure modulus, see picture on Fig. 2 (left).

In addition to τ there are moduli parameters associated with the moduli space
of flat connections Jac(T 2) = T[ϕ] (moduli of the flat line bundle Lϕ). These are
two ”solenoid phases” (ϕ1, ϕ2) ∈ [0, 1]2 = T[ϕ]. The corresponding flat connec-
tions, defined in Eq. (2.5), read in this case

Aϕ = 2π(ϕ1α1 − ϕ2β1), α1 =
τdz̄ − τ̄ dz
τ − τ̄ , β1 =

dz − dz̄
τ − τ̄ .(2.21)

The normalization is such that
∫
A1
Aϕ = 2πϕ1,

∫
B1
Aϕ = −2πϕ2 for the 1-

cycles A1 = [0, 1], B1 = [0, τ ]. We can give the Jacobian torus T[ϕ] a natural
complex structure, defining the complex coordinate on T[ϕ] according to Eq. (2.7),

(2.22) ϕ = ϕ2 + ϕ1τ.

In this complex coordinate T[ϕ] looks exactly like the coordinate space torus, see
the picture on the right on Fig. 2. Of course, one should remember that these are
two different spaces – one is the physical space where particles live and the other
one is the parameter space.

z
τ

10

ϕ
τ

10

Figure 2. Coordinate space torus T 2 (left) and Jacobian torus T[ϕ] = Jac(T 2) (right).

Our wave functions on T 2 will also depend on the moduli space coordinates,
i.e., on two complex parameters (τ, ϕ), while the energy of the ground state is
independent of (τ, ϕ). This situation falls into the broader context of Berry phases
[14] and, when the parameter space is the moduli space, this is also known as
geometric adiabatic transport. Before constructing the wave functions on the torus
explicitly, we briefly review adiabatic (Berry) connection and curvature on moduli
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spaces. Suppose the wave functions depend on a point in the moduli space, which
is a complex space Y of complex dimension dimY . In our case the parameter
space will be

(2.23) Y =Mg × Jac(Σ),

where Mg is the moduli space of complex structures of genus-g Riemann surface
and Jac(Σ) is the moduli space of flat connections (2.5). To be more precise, Eq.
(2.23) is not exactly a direct product, but a fibration, since Jac(Σ) as a complex
manifold varies over Mg due to the choice of complex structure (2.22). This will
not be important for us here, but should be kept in mind. We consider some local
coordinates (yµ, ȳµ̄), µ = 1, .., dimY , and we will usually suppress the index µ for
simplicity. All wave functions we will encounter here have the following schematic
form

(2.24) Ψl(x|y, ȳ) =
Fl(x|y)√
Z(y, ȳ)

,

where Fl(x|y), l = 1, .., n are locally holomorphic functions of y. The wave func-
tions can be one-particle wave functions or multi-particle states, so x schematically
denotes coordinates of one or several particles on Σ. The normalization factor
Z is fixed by the condition that the wave functions are canonically normalized
〈Ψl|Ψm〉 = δlm, and crucially Z is independent of the index r. The basis of wave
functions on Σ varies over Y as a frame of certain Hermitian vector bundle E of
rank n over Y . Moreover, in quantum mechanics there is a canonical Hermitian
connection A on E, called Berry, or adiabatic connection [14], given by

(Ay)lm = i〈Ψl|∂yΨm〉L2 ,(2.25)

Rlm = dAlm + (A ∧A)lm.(2.26)

This is a Chern connection [93] since its curvature is a (1, 1)-form on Y . Specif-
ically for the wave functions of the form (2.24) the formulas above simplify and
the connection and curvature can be expressed via the normalization factor as

(Ay)lm = i∂y〈Ψl|Ψm〉L2 − i〈∂yΨl|Ψm〉L2 = δlm
i

2
∂y logZ,(2.27)

Rlm = −δlm(∂y∂ȳ logZ) idy ∧ dȳ.(2.28)

Adiabatic connection and curvature in Eq. (2.28) are scalar matrices, i.e., A is
the projectively flat connection, and normalization factor Z plays the role of the
Hermitian metric on E. The vector bundle E appears to be very close to being
a direct sum of line bundles for each degenerate state. However this will only
be the case for the integer QH state (which is non degenerate), but not for the
LLL states on the torus and not for the Laughlin states, because these states have
non-abelian monodromy around 1-cycles of Y , as we will see later.
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2.4 Lowest Landau level on the torus

For the discussion of various aspects of quantum mechanics of an electron in the
magnetic field on the torus we refer to [35, 9, 76].

The metric on the flat torus reads

(2.29) g0zz̄ =
2πi

τ − τ̄ ,

and its area is normalized to be 2π. The Hermitian metric on Lk, corresponding
to the constant magnetic field can be chosen as

(2.30) h̃k0(z, z̄) = exp

(
πik

τ − τ̄ (z − z̄)2

)
,

so that F0 = kg0. The canonical bundle K is a trivial holomorphic line bundle on
the torus, so we set gravitational spin s = 0 in this case.

The transformation rules for the holomorphic parts of the wave functions under
the lattice shifts can be derived from the condition that ¯̃s(z)s̃(z)h̃k0(z, z̄) transforms
as a scalar. Then the lattice shifts act on s(z) via the automorphy factor

s̃(z + t1 + t2τ) = (−1)2t2δ+2t1εe−πikt
2
2τ−2πikt2z+2πi(t1ϕ1−t2ϕ2)s̃(z), t1, t2 ∈ Z.

(2.31)

Here in addition to the solenoid phases ϕ1, ϕ2 we introduced the spin structure pa-
rameters ε, δ ∈ {0, 1

2
}. These label periodic or anti-periodic boundary conditions

for the wave function around the 1-cycles of the torus. The four spin structures
are divided into two classes: (0, 0), (0, 1

2
), ( 1

2
, 0) are called even and ( 1

2
, 1

2
) is odd.

At first glance introducing spin structures appears to be a redundancy since ε, δ
correspond to points in the space of phases ϕ1, ϕ2, but as we will see later spin
structures and phases transform in a different fashion under modular transforma-
tions, so it is instructive to keep track of the spin structure.

The transformation rules (2.31) are holomorphic in τ , but not in ϕ. In order
to stay in accordance with Eq. (2.24) we slightly change the Hermitian metric
(2.30) and consequently the automorphy factors as follows

hk0(z, z̄) = exp

(
πik

τ − τ̄ (z − z̄)2 +
2πi

τ − τ̄ (z − z̄)(ϕ− ϕ̄)

)
,(2.32)

s(z + t1 + t2τ) = (−1)2t2δ+2t1εe−πikt
2
2τ−2πikt2z−2πit2ϕs(z),(2.33)

so that the transformations are holomorphic in ϕ. These are the transformation
properties satisfied by theta functions with characteristics, see Eq. (6.1) in the Ap-
pendix and Ref. [80] for their definition and properties. A particularly convenient
choice of the basis of theta functions is

(2.34) sε,δl (z) = ϑ

[
ε+l
k

δ

]
(kz + ϕ, kτ), l = 1, ..., k.
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Here we explicitly indicated the choice of spin-structure ε, δ. We stress that l labels
the degenerate LLL states while ε, δ are treated as external quantum numbers, la-
belling the choice of boundary conditions. Thus we have constructed k LLL states,
and in accordance with the Riemann-Roch theorem (2.12), dimH0(T 2, Lk) = k.

Taking into account that the complex coordinate depends on the complex
structure as z = x1 + τx2, in the basis Eq. (2.34) we can write the wave functions
on the torus as

(2.35) Ψε,δ
l (x|τ, ϕ) =

1√
Z(τ, τ̄ , ϕ, ϕ̄)

· e2πiϕx2+πikx2
2τ ϑ

[
ε+l
k

δ

]
(kz + ϕ, kτ),

which is consistent with the generic abstract form given in Eq. (2.24) since ϕ now
enters holomorphically in the numerator. Computing the L2 inner product (2.13)
for the basis (2.34)

(2.36) 〈sl, sm〉L2 =

√
i

k(τ − τ̄)
· e−πik

(ϕ−ϕ̄)2

τ−τ̄ δlm

allows us to determine the normalization Z-factor

(2.37) Z(τ, τ̄ , ϕ, ϕ̄) =

√
i

k(τ − τ̄)
· e−πik

(ϕ−ϕ̄)2

τ−τ̄ ,

cf. Eq. (2.24).

2.5 Modular group and geometric adiabatic transport

In addition to the adiabatic connection and curvature (2.28), which will be deter-
mined momentarily from (2.37), the vector bundle over Y of ground states (2.34)
on Σ is characterized by the monodromies around non-trivial one-cycles in the
moduli space. The flat connection moduli ϕ belong to the torus T[ϕ] = C/Λ, Λ =
t1 + t2τ, t1, t2 ∈ Z and the group Z + Z of lattice shifts ϕ→ ϕ+ t1 + t2τ acts on
the holomorphic wave functions (2.34), Hermitian metric (2.32) and the Z-factor
(2.37). We have

sε,δl (z|ϕ+ t1 + t2τ, τ) = e−
πi
k
t22τ− 2πi

k
t2(kz+ϕ) ·

k∑

m=1

Ulms
ε,δ
m (z|ϕ, τ),

where Ulm = e
2πi
k

(t1l+t1ε−t2δ)δl,m−t2 ,

hk0(z, z̄|ϕ+ t1 + t2τ, τ) = e2πit2(z−z̄)hk0(z, z̄|ϕ, τ),

Z(ϕ+ t1 + t2τ, ϕ̄+ t1 + t2τ̄ , τ, τ̄) = e−
πi
k
t22(τ−τ̄)− 2πi

k
t2(ϕ−ϕ̄) · Z(ϕ, ϕ̄, τ, τ̄).
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We see that group group of lattice transformations on T[ϕ] acts on the basis of
states in a unitary representation, given by the unitary matrix U , and preserves
the spin structure. Note that while shifts by t1 act diagonally on the basis, the
action of shift in t2 is non-diagonal and amounts to relabelling the basis l→ l+t2.
We will see shortly that the adiabatic curvature is given by scalar matrix (2.43),
yet due to the non-diagonal action of ϕ1 shifts the vector bundle of LLL states is
not a direct sum of one-dimensional bundles for each wave function.

Next we discuss the monodromies on the complex structure moduli space. The
symmetry group of the lattice Λ is the modular group PSL(2,Z), which preserves
the torus. It consists of matrices

(
a b
c d

)
, a, b, c, d ∈ Z, ad− bc = 1,

defined up to an overall sign a, b, c, d → −a,−b,−c,−d. Its action (modular
transformation) on τ , has to be accompanied by the action on z = x + yτ and
ϕ = ϕ2 + ϕ2τ , since the latter depend on τ . The full action is given by

(τ, ϕ, z)→
(
aτ + b

cτ + d
,

ϕ

cτ + d
,

z

cτ + d

)
,

while ε and δ do not transform (that is why their role is slightly different from
solenoid phases ϕ, as was mentioned after Eq. (2.31)). The group PSL(2,Z) is
generated by two elements T : τ → τ + 1 and S : τ → −1/τ , subject to relations
S2 = 1 and (ST )3 = 1.

The action of the modular group on the wave functions (2.34) can be derived
using Eqns. (6.5, 6.6) in the Appendix. We obtain

T ◦ sε,δl (z|ϕ, τ) =
N∑

m=1

UT
lms

ε,δ+ε−λ
m (z|ϕ, τ), UT

lm = e
πi
k

(l+ε)(l−ε+2λ)δlm,(2.38)

T ◦ hk0(z, z̄) = hk0(z, z̄),

T ◦ Z(ϕ, ϕ̄, τ, τ̄) = Z(ϕ, ϕ̄, τ, τ̄),

S ◦ sε,δl (z|ϕ, τ) =
√
−iτ · eπik (kz+ϕ)2

τ

k∑

m=1

US
lms

δ,ε
m (z|ϕ, τ),(2.39)

where US
lm =

1√
k
e−

2πi
k

(εδ+l(m+2ε)),

S ◦ hk0(z, z̄) = e−πik
z2

τ
+πik z̄

2

τ̄
−2πi zϕ

τ
+2πi z̄ϕ̄

τ̄ hk0(z, z̄),

S ◦ Z(ϕ, ϕ̄, τ, τ̄) =
√
τ τ̄ · eπik ϕ2

τ
−πi
k
ϕ̄2

τ̄ · Z(ϕ, ϕ̄, τ, τ̄).

Here we introduced the parity indicator constant for the degeneracy of LLL states

λ =
k

2
−
[
k

2

]
=

{
0, for k ∈ even
1
2
, for k ∈ odd.

(2.40)
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2

)
	 	 	

Figure 3. Modular group action on the states changes their spin-structure.

We see that the action of the modular group is given essentially by the unitary
matrices US and UT , and all other factors appearing in transformation formulas
cancel out between s(z), h0 and Z.

Note that the modular transformations in general mix between different spin
structures, according to the table Fig. 3. While S transformation preserves the
parity of the spin structure (it maps states with odd spin structure to odd, and
even to even), the T transformation in general does not. According to Fig. 3
there exist several possibilities. For even number of particles λ = 0 the (0, 0)
spin structure is preserved by the full modular group, and for odd number of
particles λ = 1

2
the odd (1

2
, 1

2
) spin structure is preserved by full modular group.

For the choices λ = 0, (1
2
, 1

2
) and λ = 1

2
, (0, 0), the invariant subgroup of the

modular group is Γθ, generated by (T 2, S), which appeared before in Refs. [76]
and [67, 23] for Laughlin states, where the situation is completely equivalent, see
§4.5. Finally, if we take into account (0, 1

2
) and (1

2
, 0) spin structures, then the

minimal subgroup is the normal subgroup Γ(2) generated by (T 2, ST 2S), see e.g.
Ref. [70]. This subgroup is also called the modular group Λ, see Ref. [104] and its
fundamental domain is pictured in Fig. 4 (right).

Let us focus on the states invariant under the full modular group: (0, 0) at
λ = 0 and (1

2
, 1

2
) at λ = 1

2
. In order to check that the action of PSL(2,Z) is

unitary for these two choices of spin structure, we need to check the action of S2

and (ST )3 on the basis. In both cases we obtain

(2.41) (USUT )3 = e2πiθC, (US)2 = C,

where the constant θ = 1
8
. Matrix C satisfies C2 = 1, and for λ = 0 it has

a particularly simple form Clm = δl,k−m. Thus the basis of states transform by
the projective unitary representation of SL(2,Z). For more details on projective
unitary representations and modular tensor categories we refer to [64].

The fundamental domain for the action of PSL(2,Z) on the upper-half plane
is the complex structure moduli space M1 = H/PSL(2,Z), see Fig. 4 (left). It
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Figure 4. Fundamental domains: M1 of PSL(2,Z) (left) and RΓ(2) of Γ(2) (right).

has a cusp (at τ = i∞) and two orbifold points (at τ = i and τ = eπi/3 ∼ e2πi/3).
The fundamental domain RΓ(2) of Γ(2) has three cusps at i∞, 0 and 1 ∼ −1.

Now we recall basic setup of the geometric adiabatic transport on the moduli
space [7, 8]. We choose a smooth closed contour C[t], [0 6 t 6 1] in the moduli
space Y = T[ϕ] ×M1, or Y = T[ϕ] ×RΓ(2). We consider first the transport on T[ϕ]

with the phases ϕ̇a(t) varying along the contour. This creates the electric field
and thus the current Ib along the cycle b on the torus, according to

(2.42) Ib = iϕ̇aσab,

where σab is the conductance matrix. This is the coefficient matrix of the adiabatic
curvature 2-form, traced over all LLL states TrR (2.28). Here we take the trace
because we would like to consider k fermionic particles on the LLL, i.e., completely
filled lowest Landau level (this point will become obvious in §5.3, where we make
the same calculation for the integer QH state). On the torus using (2.37) we
immediately obtain

Rlm =
2π

k
δlm

dϕ ∧ dϕ̄
τ − τ̄ =

2π

k
δlm dϕ1 ∧ dϕ2,(2.43)

TrR = 2πσ12 dϕ1 ∧ dϕ2 = 2πσ12 dϕ1 ∧ dϕ2.

Recall that the latter is actually the first Chern class of the ground state vector
bundle E, defined as c1(E) = 1

2π
TrR. Therefore the quantization of the Hall

conductance
σH = σ12 = 1

in the integer QHE follows from the integrality of c1(E). Indeed, we have

(2.44) σH =

∫

T[ϕ]

c1(E|T[ϕ]
) = 1,

where notation E|T[ϕ]
means that we restrict the vector bundle to the Jacobian

torus T[ϕ].
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Using Eq. (2.37) we can derive the adiabatic curvature for the full moduli
space. We obtain,

1

2π
TrR = − i

τ − τ̄ idϕ ∧ dϕ̄+
k

4π(τ − τ̄)2
idτ ∧ dτ̄ ,(2.45)

and the mixed terms dϕ∧ dτ̄ vanish. The second term in the adiabatic curvature
was related in Ref. [8] to the non-dissipative component of the viscosity tensor,
and gives rise to a new adiabatic transport coefficient ηH = k

4
, called anomalous

or Hall viscosity. By analogy with the Hall conductance calculation above (2.44),
we can identify the coefficient ηH computing the integral of the first Chern class
c1(E) restricting to the moduli space M1,

∫

M1

c1(E|M1) =
k

8π

∫

M1

dτ1dτ2

τ 2
2

=
k

24
=
ηH
6
,

since the volume of M1 in Poincaré metric equals π/3. This Chern number is
a fraction, since M1 is an orbifold, but this is still a topological invariant of
the vector bundle of LLL states. Finally, we note that one can get rid of 1/6
by replacing the moduli space M1 by RΓ(2), which seems appropriate in view of
action of the modular group. Since Γ(2) is a congruence subgroup of index 6, the
volume of RΓ(2) in Poincaré metric is six times bigger than the volume ofM1 and
thus

∫
RΓ(2)

c1(E|RΓ(2)
) = ηH .

3 Integer quantum Hall state

3.1 Free fermions on a Riemann surface

We consider Hermitian line bundle (Lk, hk0) on a compact Riemann surface (Σ, g0).
The basis of the states on the LLL is given by the holomorphic sections {sl}, l =
1, .., N = dimH0(Σ,L) of L = Lk ⊗ Ks ⊗ Lϕ. In the integer QHE we have a
system of N free fermions, occupying the lowest Landau level. Such a system is
described by a multi-particle wave function, which is a completely antisymmetric
combination of the one-particle ground states. Thus the (holomorphic part of)
integer quantum Hall wave function on ΣN (more precisely on ΣN/SN since the
particles are identical) is given by the Slater determinant

(3.1) S(z1, ..., zN) =
1√
N !

det[sl(zm)]|Nl,m=1.

Similar to the one-particle case, the mod squared of the actual wave function is
given by point-wise Hermitian norm of (3.1),

|Ψ(z1, ..., zN)|2 = ||S(z1, ..., zN)||2 =
1

N !
| det[sl(zm)]|2

N∏

l=1

hk0(zl, z̄l)g
−s
0zz̄.
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Now, if the basis {sl} is chosen to be orthonormal with respect to L2 norm,

(3.2)
1

2π

∫

Σ

s̄l(z̄)sm(z)hk0(z, z̄)g−s0zz̄

√
gd2z = δlm,

then the integer quantum Hall state is automatically normalized (with respect to
the L2 norm on ΣN)

1

(2π)N

∫

ΣN
|Ψ(z1, ..., zN)|2

N∏

j=1

√
gd2zj =(3.3)

=
1

(2π)NN !

∫

ΣN
| det[sl(zm)]|2

N∏

l=1

hk0(zl, z̄l)g
−s
0zz̄

√
g0d

2zl = det〈sl, sm〉L2 = 1,

where in the last line we used a straightforward combinatorial identity, expressing
the multiple integral as the determinant of one-particle L2 norms (2.13).

Plane. On the complex plane C and for the constant perpendicular magnetic
field B the number of states on the LLL is infinite, so we take the firstN states sl =
zl−1, l = 1, ..., N , imposing a cut-off on the angular momentum rme2πimφ, m < N .
Since the metric is flat, we can set the gravitational spin s to zero. Using the
Vandermonde determinant formula det zm−1

l =
∏

l<m(zl − zm), the integer QH
state can be written as

Ψ(z1, ..., zN) =
N√
N !

det[sl(zm)]
N∏

l=1

h
B/2
0 (zl, z̄l) =

N√
N !

N∏

l<m

(zl − zm) · e− 1
4
B
∑
l |zl|2 ,

(3.4)

up to an overall normalization constant N .
Sphere. On the sphere with uniform constant magnetic field we can write the

wave function (3.1) explicitly, using the basis (2.20) and the Vandermonde identity

1√
N !

det[sl(zm)] =
1√
N !

N∏

l=1

cl ·
N∏

l<m

(zl − zm) · (dz1)s ⊗ (dz2)s ⊗ · · · ⊗ (dzN)s,

where number of particles N = k−2s+1 and normalization constants cl are given
in Eq. (2.20).

Torus. On the torus the analog of the Vandermonde formula above is known
as the ”bosonisation formula”, see e.g. [36, Eq. 5.33]. For the constant magnetic
field and flat metric the orthonormal basis of sections was constructed in (2.34)
and the number of particles is N = k. The following identity holds,

S(z1, .., zk) = det[sε,δl (zm)]

= eπiε η(τ)k−1ϑ

[
ε−λ+ 1

2

δ−λ+ 1
2

]
(zcm + ϕ, τ)

k∏

l<m

ϑ1(zl − zm, τ)

η(τ)
,(3.5)
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where ε is a constant depending only on ε, δ and k, λ is the parity indicator for
k Eq. (2.40), and η(τ) is the Dedekind eta function. Also we introduced the
following notation

(3.6) zcm =
k∑

l=1

zl,

for the so called center-of-mass coordinate. For the proof of this identity we first
note that both sides are sections of Lk for each coordinate zm. This can be checked
by comparing automorphy factors under lattice shifts, which on the lhs can be
read off immediately from Eq. (2.33), and on the rhs can be worked out from Eqns.
(6.2, 6.3) in the Appendix. Then we check that the zeroes on both sides coincide.
For each zm there are manifestly k − 1 zeroes at zm = z1, .., zm−1, zm+1, ..zk on
both sides: on the lhs because determinant vanishes due to coincident rows, and
on the rhs because θ1(0) = 0. Since lhs is a section of Lk ⊗ Lϕ for zm, there is an
extra hidden zero, which is located exactly where the center-of-mass piece on the
rhs vanishes. The indirect argument for the extra zero on the lhs relies upon the
general correspondence between the line bundles and divisors [43, 36]. After that
the overall z-independent factor can be fixed by computing the PSL(2,Z) action
on both sides with the help of Eqns. (6.5-6.10) and concluding that it must be a
modular form with a prescribed behavior at infinity, i.e., a certain power of the
Dedekind eta function.

The action of the T and S transformation preserves the spin structure, when
ε = δ = λ = 0 or ε = δ = λ = 1

2
, according to the table Fig. 3. Since the integer

QH state is not degenerate, in both cases the action is given by the phase factors,

T ◦ S = e
πi
12

(k2+2)S, S ◦ S = e−
πi
4

(k2−k+2)S,

which follows immediately from (2.38, 2.39).

3.2 Generating functional

In quantum mechanics the main objects are wave functions, which have to be
L2 normalized. Usually one can explicitly find normalization constants for one-
particle LLL states and for the IQHE state on the surface with constant scalar
curvature metric, like e.g. in the examples of plane, sphere and torus above. How-
ever our goal is to define IQHE state for an arbitrary metric g and inhomogeneous
magnetic field B. Thus we have two sets of geometric data: background metric g0

and Hermitian metric hk0 on Lk defining background magnetic field B0 (e.g. con-
stant scalar curvature metric and constant magnetic field) and an arbitrary metric
g = g0 + ∂∂̄φ and Hermitian metric hk = hk0e

−kψ, related to the background data
exactly as in (2.15) and (2.16), so that g0 and g and F0 and F are in the same
Kähler class. The surface Σ and the line bundle Lk is the same in both cases,
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only the corresponding metrics are changed, so the number of LLL states does
not change.

Now, in order to construct the IQHE state for arbitrary g and B we start with
a basis of one-particle states, normalized with respect to the background metrics,
as in (3.2). Then we write the norm-squared of the IQHE state as

(3.7) |Ψ[g,B](z1, ..., zN)|2 =
1

Zk

1

N !
| det[sl(zm)]|2

N∏

l=1

hk(zl, z̄l)g
−s
zz̄

√
gd2zl,

where the point-wise Hermitian norm of Slater determinant is taken with respect
to the curved metric (2.15) and the potential (2.16). In order to make this state
L2 normalized 〈Ψ,Ψ〉L2 = 1, we included the normalization factor Zk, given by
the following integral

(3.8) Zk =
1

(2π)NN !

∫

ΣN
| det[sl(zm)]|2

N∏

l=1

hk(zl, z̄l)g
−s
zz̄

√
gd2zl,

which we will call the partition function. This is a functional of Zk = Zk[h0, g0, ψ, φ],
or equivalently Zk = Zk[B0, g0, B, g]. However we note that the normalized IQHE
state |Ψ[g,B](z1, ..., zN)|2 depends only on the metrics g and inhomogeneous B
and not on g0 and B0. Indeed, under the change of the background metric g0 → g′0
the basis of sections transforms linearly s → s′ = As, where A ∈ GL(N,C). It
follows immediately that dependence on A cancels out between the numerator
and denominator in (3.7), hence the normalized IQHE state is independent of the
choice of background metrics and of the choice of the basis of sections.

The logarithm of partition function logZk is called the generating functional
and is the main object of our interest, since it contains a wealth of information.
For example, it generates the density-density connected correlation functions, pro-
duced by variations wrt ψ,

(3.9)
δ

δψ(w1, w̄1)
· · · δ

δψ(wm, w̄m)
logZk = (−k)m

〈
ρ(w1, w̄1)...ρ(wm, w̄m)

〉
conn

,

where the density of states operator reads ρ(z, z̄) =
∑N

l=1 δ(z, zl).
The remarkable property of the generating functional is the existence of the

asymptotic expansion for large magnetic field, i.e., large k expansion. This expan-
sion can be derived as follows [65, 66]. First, we write (3.8) in the determinant
form

(3.10) Zk = det

∫

Σ

s̄l(z̄)sm(z)hk(z, z̄)g−szz̄
√
gd2z,

by the same combinatorial identity used previously in Eq. (3.3). Next, we use
the following variational method (suggested in Ref. [33] in a different context).
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Denoting the matrix inside det in (3.10) as Glm, we can write for the variational
derivative of logZk with respect to δφ and δψ,

δ logZk = δTr logGlm(3.11)

= − 1

2π

∑

l,m

(G−1)ml

∫

Σ

(
s− 1

2
(∆gδφ) + kδψ

)
s̄lsmh

kg−szz̄
√
gd2z

= − 1

2π

∫

Σ

(
s− 1

2
(∆gBk(z, z̄)) δφ+ kBk(z, z̄) δψ

)√
gd2z.

The function Bk(z, z̄) here

(3.12) Bk(z, z̄) =
∑

l,m

(G−1)mls̄l(z̄)sm(z)hk(z, z̄)g−szz̄ (z, z̄),

is called the Bergman kernel, which is a well known object in the theory of holo-
morphic line bundles. Its physical meaning becomes apparent when with the help
of (3.9),(3.11) we obtain

〈ρ(z, z̄)〉 =
1

2π
Bk(z, z̄).

Hence the Bergman kernel is the average density of particles. The asymptotic
expansion of logZk will follow from the asymptotic expansion of the Bergman
kernel. Thus we now review the Bergman kernel expansion and then resume from
Eq. (3.11) the derivation of the asymptotic expansion of logZk in §3.4.

3.3 Bergman kernel and density of states

Bergman kernel on the diagonal for the line bundle Lk⊗Ks has a straightforward
interpretation as the density of states function on the LLL. Indeed, we write
the Hermitian matrix in Eq. (3.12) as G−1 = AA+ for A ∈ GL(N,C), the basis
s′l = Amlsm (up to U(N) rotation) becomes orthonormal with respect to hk, g, and
we can write the Bergman kernel as the sum over the orthonormal LLL ground
states

Bk(z, z̄) =
N∑

l=1

s̄′l(z̄)s′l(z)hk(z, z̄)g−szz̄ (z, z̄).

They key fact about the Bergman kernel is the existence of the complete asymp-
totic expansion for large degree of the line bundle k on Kähler manifold of any
dimension, which was proven in [112, 25]. In complex dimension, i.e. for the
Riemann surfaces, the first few terms in the expansion can be read off from [66,
Eq. (44)],

Bk(z, z̄) =B +
1− 2s

4
R +

1

4
∆g logB +

2− 3s

24
∆g(B

−1R)(3.13)
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+
1

24
∆g(B

−1∆g logB) +O(1/k2) .

The expansion involves only magnetic field and curvature invariants and their
covariant derivatives. It goes in the inverse powers of the magnetic field B. For
this reason we formally should require B > 0 everywhere on Σ and also that B is
of order k. Also the potentials φ, ψ here are C∞(Σ) functions on Σ. In particular,
the expansion in the form of Eq. (3.13) in general breaks down near singularities
of the curvature and the magnetic field.

The asymptotic expansion Eq. (3.13) can be derived by quantum mechanical
methods [34]. The density of states on the LLL can be represented as the path
integral

Bk(z, z̄) = lim
T→∞

∫ x(T )=z

x(0)=z

e−
1
~
∫ T
0 (gab̄ẋ

a ˙̄xb̄+Aaẋa+Ab̄ ˙̄xb̄)dtDx(t)

for a particle in the magnetic field F = dA on Σ (more generally, on a Kähler
manifold of complex dimension n > 1), here at spin s = 0. The T → ∞ limit
projects the density of states to the lowest Landau level. The large k expansion
can be derived via perturbation theory techniques [34], and the Planck constant
~ enters as the order-counting parameter in (3.13).

There exists a closed formula for the coefficients of the Bergman kernel to
all orders in k in any complex dimension n, see Ref. [102]. Let us illustrate this
formula for the case when s = 0 and magnetic field is constant B = k. We consider
a local normal coordinate system around a point z0, where

gij̄(z0) = δij̄, gij̄1...j̄m = gi1j̄i2...im = 0.

The mth term am in the expansion of the Bergman kernel

Bk(z, z̄) = a0(z)kn + a1(z)kn−1 + ...am(z)kn−m + ...

involves exactly 2m derivatives of the metric gij̄ in the local coordinate system. For

example the order 4 term will involve the structures as e.g. gi1j̄2gi2j̄1gk1 l̄2gk2 l̄1gi1j̄1k1 l̄1

gi2j̄2k2 l̄2 . In general one can associate a directed graph G to the structures of this
kind, where the positions of gi1j̄1k1 l̄1 and gi2j̄2k2 l̄2 are represented by vertices and

contractions with respect to gi1j̄2 , etc., are represented by directed arrows between
the vertices. At each vertex the number of incoming and outgoing vertices is at
least 2. The local coefficient am is then given by the sum

am(z) =
∑

G∈G(m)

z(G) ·G

over the set of all such not necessarily connected graphs G(m) at level m. The
remarkable fact is that coefficients z(G) are given by easily computable formulas.
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For strongly connected graphs (when there exists a directed path from each vertex
in G to every other vertex)

z(G) = −det(A− I)

Aut(G)
,

where A is the adjacency matrix of the graph. For connected but not strongly
connected graphs z(G) = 0 and for disconnected sum of p subgraphs Gj the
coefficient is given by

z(G) =

p∏

j=1

z(Gj)/|Sym(G1, ..., Gp)|,

where Sym(G1, ..., Gp) is the permutation group of these subgraphs. The hard
part of the calculation (at high orders of m) is to transfer the expressions of the
type gi1j̄2gi2j̄1gk1 l̄2gk2 l̄1gi1j̄1k1 l̄1gi2j̄2k2 l̄2 in the normal coordinate system back to the
invariant form involving scalar curvature, Ricci and Riemann tensors and their
derivatives, see Ref. [103] for the state of the art.

3.4 Anomalies and geometric functionals

Going back to the variational formula (3.11) and plugging the expansion Eq. (3.13)
we can now integrate it, imposing the boundary condition logZk[φ = 0, ψ = 0] =
0. The calculation was performed for the constant magnetic field in Ref. [65] and
generalized to inhomogeneous magnetic fields in Ref. [66, Thm. 1]. We refer to
these papers for more details and here we only state the result. The asymptotic
expansion has the following general form

(3.14) logZk = log
ZH
ZH0

+ F − F0,

where logZH is the ”anomalous part” of the expansion and F is the ”exact part”.
The former consists of only three terms

logZH − logZH0 =− k2S2(g0, B0, φ) + k
1− 2s

2
S1(g0, B0, φ, ψ)(3.15)

−
(

1

12
− (1− 2s)2

4

)
SL(g0, φ),

where the following functionals appear

S2(g0, B0, ψ) =
1

2π

∫

Σ

(
1

4
ψ∆0ψ +

1

k
B0ψ

)√
g0d

2z,(3.16)

S1(g0, B0, φ, ψ) =
1

2π

∫

Σ

(
−1

2
ψR0(3.17)
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+
(1

k
B0 +

1

2
∆0ψ

)
log
(
1 +

1

2
∆0φ

))√
g0d

2z,

SL(g0, φ) =
1

2π

∫

Σ

(
−1

4
log
(
1 +

1

2
∆0φ

)
∆0 log

(
1 +

1

2
∆0φ

)
(3.18)

+
1

2
R0 log

(
1 +

1

2
∆0φ

))√
g0d

2z.

These are geometric functionals, which do not have a local expression in terms of
the metric and magnetic field, and thus physically they correspond to anomaly
terms, as we explain below. The last functional is the Liouville action SL, and the
first two are certain energy functionals well-known in Kähler geometry, see below.

The exact part F = F [g,B] and F0 = F [g0, B0] consists of infinitely many
terms, which are local integrals of the magnetic field and curvature and their
derivatives. Terms up to the order O(1) in 1/k read

F [g,B] = − 1

2π

∫

Σ

[
1

2
B log

B

2π
+

2− 3s

12
R log

B

2π

+
1

24
(logB)∆g(logB)

]√
gd2z +O(1/k).(3.19)

Written in the form (3.16-3.18) the meaning of the anomalous action is not
completely manifest. In order to make it transparent we now rewrite it in two
equivalent forms. First, as the following double integral

logZH =− 1

2π

∫

Σ×Σ

(
B +

1− 2s

4
R

) ∣∣
z
∆−1
g (z, y)

(
B +

1− 2s

4
R

) ∣∣
y

√
gd2z
√
gd2y

+
1

96π

∫

Σ×Σ

R(z)∆−1
g (z, y)R(y)

√
gd2z
√
gd2y,(3.20)

where the operator ∆−1
g is formally defined as the inverse Laplacian ∆z

g∆
−1
g (z, y) =

δ(z, y). The second term here is the gravitational anomaly in the form of the
Polyakov effective action

∫
Σ×Σ

R∆−1R, see Ref. [86].
Yet another form uses the symmetric gauge (2.4), where by integration by

parts we can rewrite logZH as

logZH =
2

π

∫

Σ

[
AzAz̄ +

1− 2s

2
(Azωz̄ + ωzAz̄)−

(
1

12
− (1− 2s)2

4

)
ωzωz̄

]
d2z.

(3.21)

Here we see, that the first term corresponds to 2d U(1) gauge anomaly, the last
term is the gravitational anomaly and the middle term is the mixed anomaly,
known as Wen-Zee term [106], see also [26]. This form of the generating functional
is a 2d avatar of the Chern-Simons action which will appear later §5.5.
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Two interesting special cases of Eq. (3.14) correspond to the two natural
choices of magnetic field B on Σ: B =const and B = const ·R.

Conformal regime. For any Σ of genus g 6= 1 we can choose magnetic field
to be proportional to the scalar curvature B = k

4(1−g)
R. For non-constant R, in

order to keep B positive we should require R > 0 everywhere on Σ for the Σ = S2

and R < 0 everywhere on Σ for higher genus surfaces g > 1. In this case the
anomalous part combines into one term

logZH =
1

96π
(1− 3Q2)

∫

Σ×Σ

R(z)∆−1
g (z, y)R(y)

√
gd2z
√
gd2y.

This formally corresponds to gravitational anomaly in a CFT with central charge
c = 1− 3Q2 with a very large background charge Q = k

1−g
+ 1− 2s.

Kähler regime. This is the case of constant magnetic field B = k and arbitrary
metric g. As was pointed out in Eq. (2.17) this means the Kähler and magnetic
potentials are equal φ = ψ, possibly up to an irrelevant constant. This case was
considered in Ref. [65]. In this case the first two terms in the expansion of the
anomalous part

logZH − logZH0 =(3.22)

− kNSAY (g0, φ) + k
1− 2s

2
SM(g0, φ)−

(
1

12
− (1− 2s)2

4

)
SL(g0, φ),

reduce to the Aubin-Yau and Mabuchi functionals, ubiquitous in Kähler geometry
see e.g. [84] for review. These are defined by their variational formulas

δSAY (g0, φ) =
1

2π

∫
δφ
√
gd2z,(3.23)

δSM(g0, φ) =
1

4π

∫
δφ (2χ(Σ)−R)

√
gd2z,

and explicit formulas can be given

SAY (g0, φ) = S2(g0, kg0, φ),(3.24)

SM(g0, φ) = χ(Σ)S2(g0, kg0, φ, φ) + S1(g0, kg0, φ, φ),

in terms of functionals defined in Eq. (3.16) and (3.17).

3.5 Regularized spectral determinant

Breaking up the generating functional into the anomalous and exact parts (3.14)
has an interesting interpretation in terms of regularized determinants of spectral
laplacian and Quillen metric, which we now recall following [66].
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We consider the ∂̄L operator (2.11) and its adjoint ∂̄∗L : Ω0,1(Σ,L)→ C∞(Σ,L)
under the L2 inner product (2.13). Thus we can define the laplacian acting on
sections of the line bundle L (Dolbeault laplacian):

(3.25) ∆L = ∂̄∗L∂̄L : C∞(Σ,L)→ C∞(Σ,L).

This operator, which is just the kinetic term in the one-particle hamiltonian (2.8),
is sometimes called the ”magnetic laplacian”. The regularized spectral determi-
nant of this laplacian can be defined in the usual way. We consider the non-
zero eigenvalues λ of ∆L taken with multiplicities and define the zeta-function
ζ(u) =

∑
λ λ
−u. Then det′∆L = exp(−ζ ′(0)).

The relation to our setup is as follows. The holomorphic part of the integer
QH state (3.1) is a section S of the determinant line bundle L = detH0(Σ, Lk ⊗
Ks) over the parameter space Y = Mg × Jac(Σ), Eq. (2.23). Quillen defined a
Hermitian metric on sections S of L as follows

(3.26) ||S||2 =
Zk

det′∆L

.

Using the determinantal formula Eq. (3.10) the previous formula can also be
written as

||S||2 =
det〈sl, sm〉L2

det′∆L

.

Note that the Quillen metric (3.26) is defined with respect to a choice of hk and
g. Now we ask how ||S||2 varies under the variations (2.15) and (2.16) of these
metrics. The following exact formula holds

(3.27) log
||S||2
||S||20

= log
ZH
ZH0

,

where ||S||20 is defined for (hk0, g0). In other words, the anomalous part (3.15) of
the transformation formula for the partition function (3.14) is entirely due to the
ratio of Zk and determinant of laplacian that enters the Quillen metric (3.26). As
an immediate consequence we see that the exact part F (3.19) corresponds to the
regularized determinant of laplacian

(3.28) F − F0 = log
det′∆L

det′∆L0

,

where ∆L is defined wrt (hk, g) and ∆L0 wrt (hk0, g0). The proof of (3.27) and
(3.28) is a standard heat kernel calculation, see [66, Thm. 2] for details. On the
compact Riemann surfaces the regularized determinants are known explicitly. On
the round sphere with the metric (2.18) and magnetic potential (2.19) we have an
exact formula,

log det′∆Lk = 2
k∑

j=1

(k − j) log(j + 1)− (k + 1) log(k + 1)!(3.29)
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− 4ζ ′(−1) +
(k + 1)2

2
= −k

2
log

k

2π
− 2

3
log k +O(1),

see [66, §4] and references therein. This is in perfect agreement with Eq. (3.19)
at s = 0. On the flat torus with constant magnetic field we have

log det′∆Lk = −k
2

log
k

2π
,(3.30)

valid for any k > 0, see [15]. This is also consistent with Eq. (3.19). In §5.3 we
will consider the case of higher-genus surfaces, and the Quillen metric will turn
out to be a useful tool for the study of the geometric adiabatic transport on the
moduli space.

4 Laughlin states on Riemann surfaces

4.1 Definition of the Laughlin state

We consider N particles, labelled by their positions z1, ..., zN , confined to the plane
in the perpendicular constant magnetic field B. The Laughlin state in this setup
was introduced in Ref. [74],

(4.1) Ψ(z1, ..., zN) ∼
∏

l<m

(zl − zm)β · e− 1
4
B
∑N
l=1 |zl|2 , β ∈ Z+,

up to a normalization factor. These states are associated with the Quantum Hall
plateaux with the values of the Hall conductance σH = 1/Rxy = 1/β. The graph
Fig. 1 includes only one such state, labelled 1/3. In this section we will define and
construct the Laughlin state (4.1) on Riemann surfaces, and in the next section
we come back to the relation between the Hall conductance and β via geometric
adiabatic transport.

At β = 1 the Laughlin state (4.1) reduces to the integer QH state (3.4),
which corresponds to free fermions. For β > 1 the Laughlin state takes into
account Coulomb interactions between the electrons. However, it is not an exact
ground state of the full interacting Hamiltonian. Nevertheless, there exists a
model Hamiltonian with the short-range interaction potential, see e.g. Refs. [49]
and [42, 107], for which the state (4.1) is an exact ground state with zero energy,

(4.2) H =
N∑

l=1

DlD̄l +
∑

l,m

Vβ(zl − zm), Vβ(z) =

β−1∑

p=1

(−1)pvp∂
p
z̄δ

2(z)∂pz ,

where vp are arbitrary positive constants and kinetic term is the sum over one
particle operators (2.8).

In order to define the Laughlin state on a compact Riemann surface, we first
note that (4.2) is already written in a covariant fashion, applicable to Riemann
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surfaces with arbitrary metric and magnetic field. The most important features
of (4.1) is that it consists of the holomorphic function of coordinates F (z1, ..., zN)
and overall gaussian factor, depending on magnetic field. In order to minimize the
kinetic energy in (4.2) written on a compact Riemann surface, for each coordinate
zm the function F (..., zm, ...) should transform as a holomorphic section of the line
bundle LNφ of degree Nφ on Σ, where Nφ is the total flux of the magnetic field,
as follows from Eq. (2.10) and discussion in §2.2. Also due to compactness the
number of particles and total flux are related,

(4.3) Nφ ≈ βN.

Indeed, on a compact surface Nφ is integer and the allowed number of LLL states
(dimH0(Σ, LNφ)) is of order Nφ (2.12). Therefore the number of points in Eq.
(4.1) equals to 1/β times the number of allowed LLL states, while in the integer
QH state (3.4) the number N of particles was exactly equal to the number of
LLL states. Thus one could say that only a 1/β fraction of all available LLL
states is activated in the Laughlin state (”fractional” Quantum Hall effect). This
interpretation is not a precise statement, but only an analogy, since in general the
Laughlin state cannot be constructed from one-particle LLL states.

The magnetic field flux on a compact surface is quantized Nφ ∈ Z (2.3), and
without loss of generality we can write Nφ = βk + p, k ∈ Z+, p = 0, ..., β − 1,
where p is the remainder of division of Nφ by β. The Laughlin state will be
defined specifically at p = 0. The wave functions corresponding to p > 0 describe
quasi-hole excitations over the Laughlin state [74], which are extremely important
in physics of QHE, but we here we will focus only on Laughlin states p = 0.

Now we have to choose the number of particles N (of order ∼ Nφ/β), thus
fixing the exact relation between k and N . At this point in the discussion we can
also turn on the power of canonical line bundle K j, which we take to be quantized
as j = βs, s ∈ 1

2
Z. To make the formulas consistent with the integer QH case we

will choose the number of particles exactly as before (2.12) at β = 1 (and q = 0),

(4.4) N = dimH0(Σ, Lk ⊗Ks) = k + (1− g)(1− 2s), s =
j

β
.

Thus on the Riemann surface the relation between the flux and number of particles
is

(4.5) Nφ = βN − S, where S = (1− g)(β − 2j),

generalizing the planar relation (4.3). Here S is usually called the shift in the
QHE literature [106].

Given this data we can now define a Laughlin state on a compact Riemann
surface Σ.
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Definition 4.1. Consider the holomorphic line bundle L = LNφ ⊗K j ⊗ Lϕ on a
compact Riemann surface Σ. Let Nφ = βk and j = βs as in Eq. (4.4). Take N
points z1, ..., zN on Σ, where N is given by Eq. (4.4) and Nφ and N are related
as in Eq. (4.5). Then the (holomorphic part of the) Laughlin state on ΣN is
F (z1, ..., zN), satisfying the following conditions

1. F (..., zm, ...) with all coordinates, except zm, fixed, transforms as a holomor-
phic section of LNφ ⊗K j ⊗ Lϕ.

2. When all zl’s are near the diagonal in ΣN at a generic point on Σ, F (z1, ..., zN)
satisfies the vanishing condition

(4.6) F (z1, ..., zN) ∼
N∏

l<m

(zl − zm)β.

As we have already mentioned, the first condition ensures the vanishing of the
kinetic term, while the second condition guarantees minimization of the short-
range pseudopotential in (4.2). The Laughlin states on Σ are degenerate for
g > 0. This fact is usually referred to as the topological degeneracy.

So far Def. 4.1 defines only the holomorphic part of the wave function. Thus
we need to define the Hermitian norm, which is induced from the choice of the
Hermitian metric on the line bundle. As in Eq. (2.1), let hNφ(z, z̄) be an Hermitian
metric on LNφ so that the magnetic field is given by

Fzz̄ = −(∂z∂z̄ log hNφ), B = gzz̄Fzz̄, Nφ =
1

2π

∫

Σ

B
√
gd2z.

The natural Hermitian metric for the holomorphic part of the Laughlin state is
the point-wise product of hNφ(z, z̄) on ΣN ,

(4.7) ||F (z1, ..., zN)||2 = |F (z1, ..., zN)|2
N∏

l=1

hNφ(zl, z̄l)g
−j
zz̄ (zl, z̄l).

This is a scalar function on ΣN and we can thus compute the L2 norm and write
the normalized Laughlin state Ψ as follows

|Ψ(z1, ..., zN)|2 =
1

N ||F (z1, ..., zN)||2,

〈Ψ|Ψ〉L2 =
1

N
1

(2π)N

∫

ΣN
||F (z1, ..., zN)||2

N∏

l=1

√
gd2zl = 1.(4.8)

The normalization factor N is a functional of the geometric data: the metric
g, magnetic field B, complex structure moduli J of Σ and line bundle moduli
ϕ ∈ Jac(Σ), N = N [g,B, J, ϕ].
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4.2 Examples

Sphere. The spherical Laughlin state was constructed in Ref. [49]. On the sphere
the Laughlin state is unique. This is easy to see since,

∏
l<m(zl − zm)β is the

only combination, which meets both conditions in Def. 4.1. As we have already
emphasized, the definition of the Laughlin state does not make any reference to
the lowest Landau level wave functions. However, specifically for the sphere we
can express the Laughlin state as a power of the Slater determinant, for the basis
of LLL states Eq. (2.20), as

F (z1, ..., zN) = (det sl(zm))β,

|Ψ(z1, ..., zN)|2 =
1

N0

· | det sl(zm)|2β
N∏

l=1

h
Nφ
0 (zl, z̄l)g

−j
0 (zl, z̄l)(4.9)

=
1

N0

N∏

l=1

c2β
l ·

N∏

l<m

|zl − zm|2β
N∏

l=1

1

(1 + |zl|2)Nφ−2j
,

where the number of particles is N = k + 1 − 2s, cl is given in Eq. (2.20) and
constant N0 is such that the L2 norm is one: 〈Ψ|Ψ〉L2 = 1.

Torus. Laughlin states on the torus were constructed in Ref. [50]. We also
refer to [75, 62, 89, 107] for other excellent accounts. On the torus the canonical
line bundle is trivial and for this reason we set j = 0. The first condition in Def.
4.1 implies that under the lattice shifts the wave function transforms with the
same factors of automorphy as in Eq. (2.33) for each coordinate zm,

F (z1, ..., zm + t1 + t2τ, ..., zN)(4.10)

= (−1)2t2δ+2t1εe−2πiNφt2zm−πiNφt22τ−2πit2ϕ · F (z1, ..., zm, ..., zN).

Here ε, δ ∈ {0, 1
2
} label the choice of spin structures, which are independent of m

since the particles are identical. To fulfil the second condition Eq. (4.6), without
any loss of generality we can assume the ansatz

F (z1, ..., zN) ∼ f(z1, ..., zN)
N∏

l<m

(ϑ1(zl − zm, τ))β ,

since ϑ1(z) has only one simple zero at z = 0. From the lattice shift transformation
formula Eq. (6.3) for the product of theta functions in the previous equation
it follows that in order to be consistent with Eq. (4.10), the function f should
transform as

f(z1, ..., zm + t1 + t2τ, zN)(4.11)

= (−1)t2(2δ−Nφ+β)+t1(2ε−Nφ+β)e−iπβτt
2
2−2πit2βzcm−2πit2ϕ · f(z1, ..., zN).
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Comparing with Eq. (2.33) this condition essentially means that f(z1, ..., zN) =
f(zcm). Moreover, with respect to the center-of-mass coordinate zcm the function
f transforms as a section of the line bundle Lβ. Since dimH0(Σ, Lβ) = β the
degeneracy of the center-of-mass factor equals β. Thus we can write down the
basis of solutions fr, r = 1, .., β to (4.11) explicitly using e.g. the basis of sections
in Eq. (2.34). We consider first odd values of β and, by analogy with (2.40), we
shall introduce the parity indicator parameter for the number of particles:

λ =
N

2
−
[
N

2

]
=

{
0, for N ∈ even
1
2
, for N ∈ odd.

(4.12)

Then the following basis solves the condition (4.11)

β ∈ odd : fr(zcm) = ϑ

[
r+ε
β
−λ+ 1

2

δ−βλ+β
2

]
(βzcm + ϕ, βτ), r = 1, ..., β.

Then the basis of Laughlin states reads

F ε,δ
r (z1, ..., zN) =ϑ

[
r+ε
β
−λ+ 1

2

δ−βλ+β
2

]
(βzcm + ϕ, βτ)

N∏

l<m

(ϑ1(zl − zm, τ))β ,(4.13)

where β ∈ odd.

Here index r = 1, ..., β labels the topological degeneracy and ε, δ label the spin
structure constants, i.e., the choice of boundary conditions Eq. (4.10). As a con-
sistency check, note that for β = 1 we recover the integer QH state on the torus
Eq. (3.5), up to a normalization constant, to which we will come back further
down the road.

For β ∈ even (and thus Nφ ∈ even) the state is bosonic, i.e., completely
symmetric under exchange of the coordinates, and spin structures are redundant.
In this case we set

β ∈ even : fr(zcm) = ϑ

[
r
β

0

]
(βzcm + ϕ, βτ), r = 1, ..., β.

We will mostly focus here on odd values of β. In order to see that the states
Eq. (4.13) indeed form an orthogonal basis we consider flat torus and constant
magnetic field, and rewrite the point-wise Hermitian norm on Fr (4.7) as follows

||Fr||2 = |Fr(z1, ..., zN)|2
N∏

l=1

h
Nφ
0 (zl, z̄l)(4.14)

= |fr(zcm)|2hβ0 (zcm, z̄cm) ·
N∏

l<m

|ϑ1(zl − zm, τ)|2β · e πiβτ−τ̄ (zl−zm−(z̄l−z̄m))2

,
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where we used the Hermitian metric h0 corresponding to the constant magnetic
field (2.32). The L2 inner product for the flat metric g0 (2.29) then reads

〈Fr, Fr′〉 =
1

(2π)Nφ

∫

ΣN
f̄r(z̄cm)fr′(zcm)hβ0 (zcm, z̄cm)

·
N∏

l<m

|ϑ1(zl − zm, τ)|2β · e πiβτ−τ̄ (zl−zm−(z̄l−z̄m))2
N∏

l=1

√
g0d

2zl.

Note that the dependence on the center-of-mass coordinate in the integrand de-
couples from the relative distances zl− zm between the points. Thus, we can pass
to the integration over zcm and z1 − zm, m = 2, ..., N , and note that the latter
is independent of zcm. Now, as we already noticed, fr(zcm) is an orthonormal
basis of holomorphic sections of the line bundle Lβ over the center-of-mass, as can
be seen from (2.34), formally replacing k → β and z → zcm. Since this basis is
orthogonal (2.36), we conclude that the overlap matrix of L2 norms

〈Fr, Fr′〉 = N0(τ, τ̄ , ϕ, ϕ̄)δrr′ ,(4.15)

is a scalar matrix, where the constant N0 is independent of the index r and is a
function of only τ and ϕ. This is the normalization factor in Eq. (4.8) specified
to the flat torus with the constant magnetic field N0 = N [g0, B0, τ, ϕ].

Higher genus. The number of degenerate Laughlin states on a higher genus
surface is nβ,g = βg [105]. For more details on higher genus states we refer to
[27, 56] and [68].

4.3 Vertex operator construction

Vertex operator construction of Laughlin states was originally proposed in Ref.
[79]. Here we review the construction of Laughlin states on a Riemann surface
(Σ, g) of genus g following Refs. [37, 67], and consider the example on sphere and
torus in full detail. We start with the gaussian free field σ(z, z̄), compactified on
a circle σ ∼ σ + 2πRc, with radius Rc =

√
β (“compactified boson”). The action

functional has the form

(4.16) S(g,B, σ) =
1

2π

∫

Σ

(
∂zσ∂z̄σ +

iq

4
σR
√
g
)
d2z +

i

2π
√
β

∫

Σ

A ∧ dσ,

where we will specify the constant q later in Eq. (4.22). The second term here
is the coupling of the field to the Riemannian metric on Σ and the last term is
the coupling to the magnetic field. The latter is written in this form to take into
account a possible contribution from nontrivial flat connection part Aϕ, see Eq.
(2.5), of the gauge connection on surfaces of genus g > 0. We can write this
contribution explicitly, writing the gauge connection as A+Aϕ and using product
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rule for derivative
(4.17)

S(g,B, σ) =
1

2π

∫

Σ

(
∂zσ∂z̄σ +

iq

4
σR
√
g +

i√
β
σB
√
g
)
d2z +

i

2π
√
β

∫

Σ

Aϕ ∧ dσ.

For inhomogeneous magnetic field and curved metric this action was proposed in
QHE context in Refs. [69, 37, 67]. We emphasize that, while at the zero magnetic
field this theory is a conformal field theory with background charge q and central
charge c = 1−3q2, the coupling to the magnetic field breaks conformal invariance,
since it introduces the magnetic length scale l2B ∼ 1/B to the theory.

We consider now the (unnormalized) correlation function of a N vertex oper-
ators at points z1, ..., zN .

(4.18) V
(
g,B, {zl}

)
=

∫
ei
√
βσ(z1) · · · ei

√
βσ(zN )e−S(g,B,σ)Dgσ.

Its integral over the coordinates will be denoted as
(4.19)

eFβ(g,B) =
1

(2π)N

∫ ∫

Σ

ei
√
βσ(z1)√gd2z1 · · ·

∫

Σ

ei
√
βσ(zN )√gd2zN e−S(g,B,σ)Dgσ.

The key observation is that the correlation function (4.18) gives the sum over
all normalized degenerate Laughlin states Ψε,δ

r , r = 1, ..., nβ,g and over all 22g

choices of spin structures ~ε, ~δ ∈ {0, 1
2
}g on the Riemann surface Σ,

(4.20)
1

2g · nβ,g
∑

~ε,~δ

cε,δ

nβ,g∑

r=1

|Ψε,δ
r (z1, ..., zN)|2 = e−Fβ(g,B)V

(
g,B, {zl}

)
,

where the constant cε,δ = ±1 depending on the parity of spin structure1

cε,δ = e4πi~ε·~δ =

{
+1, for (~ε, ~δ) ∈ even

−1, for (~ε, ~δ) ∈ odd.

The number of even spin structures 2g−1(2g + 1) minus the number of odd spin
structures 2g−1(2g − 1) equals 2g, which explains the overall normalization factor
in (4.20). The formula above also holds on the sphere where nβ,g = 1 and spin
structures are absent.

We now follow the standard prescription for computing bosonic path integrals,
see e.g. [101, 28]. The field σ has a constant zero mode σ0, defined as

σ(z, z̄) = σ0 + σ̃(z, z̄),

∫
σ̃
√
gd2z = 0.

1This holds for odd number of particles, for even number of particles the constant is slightly
different, see Eq. (4.35)
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Then integration over the zero mode yields the relation between the number of
particles N and the coefficients in the action

(4.21) N =
1

β
Nφ +

q

2
√
β
χ(Σ).

Hence to be in accordance with (4.5) we fix the parameter q as

(4.22) q =
√
β − 2j√

β
.

Since the number of particles is always an integer, it follows that 1
β
(Nφ − jχ(Σ))

should be an integer. Therefore we assume 1
β
Nφ ∈ Z and j ∈ β

2
Z.

We consider now the path integral (4.18) on the sphere, where we can drop the
flat connection part and compactification of the field does not play any role since
all 1-cycles are contractible and there are no non-trivial winding configurations
of the field. Then the integral over σ̃ can be computed according to standard
rules for gaussian integrals. We introduce the standard Green function for scalar
laplacian

∆gG
g(z, y) = −2πδ(z, y) + 1,(4.23) ∫

M

Gg(z, y)
√
gd2y = 0,(4.24)

and the regularized Green function at coincident point,

(4.25) Gg
reg(z) = lim

z→y

(
Gg(z, y) + log dg(z, y)

)
,

where dg(z, y) is the geodesic distance between the points in the metric g.
Next, we can make a linear shift of σ̃ without changing the measure of inte-

gration

σ̃(z)→ σ̃(z) +

∫

M

Gg(z, z′)j(z′)
√
gd2z′,

j(z) = 2i
√
β

N∑

j=1

δ(z, zj)−
iq

4π
R(z)− i√

β
B(z).

Then the integral (4.18) becomes purely gaussian and can be written as

V
(
g,B, {zj}

)
=

[
det′∆g

2π

]−1/2

(4.26)

· exp

(
− 1

4π2

∫

Σ×Σ

(
q

4
R +

1√
β
B

) ∣∣
z
Gg(z, z′)

(
q

4
R +

1√
β
B

) ∣∣
z′
√
gd2z

√
gd2z′

)
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· exp

(√
β

π

N∑

l=1

∫

Σ

Gg(zl, z)

(
q

4
R +

1√
β
B

) ∣∣
z

√
gd2z

−β
N∑

l 6=m
Gg(zl, zm)− β

N∑

l=1

Gg
reg(zl)

)
.

Here the regularized Green function Gg
reg(zl) replaces Gg(zl, zl) on the diagonal,

where the latter is infinite.
Let us consider now the round sphere R0 = 4 and constant magnetic field

B0 = Nφ. The round metric is given by Eq. (2.18) and the corresponding Green
function reads

Gg0(z, z′) = − log
|z − z′|√

(1 + |z|2)(1 + |z′|2)
− 1

2
.

The regularized Green function is just a constant Gg0
reg(z) = −1

2
. Due to the

property Eq. (4.24) the integrals over Σ in Eq. (4.26) vanish and we arrive at

V
(
g0, B0, {zl}

)
= e2ζ′(−1)− 1

4
− 1

2
βN2

N∏

l<m

|zl − zm|2β
N∏

l=1

1

(1 + |zl|2)Nφ−2j
,

where we used the value of the regularized determinant of the laplacian on the
round sphere det′∆0/2π = e

1
2
−4ζ′(−1) [83]. Comparing this equation to (4.9), we

conclude that the normalized Laughlin state can be expressed as

|Ψ(z1, ..., zN)|2 = e−Fβ(g0,B0)V
(
g0, B0, {zl}

)

and it has norm one by definition (4.19). We also see that the normalization
constant in Eq. (4.9) is controlled by eFβ(g0,B0) up to numerical factors.

Finally, let us comment on the β = 1 case of the formula (4.20). At β = 1 this
construction reduces to the bosonisation formula on Riemann surfaces [3, 101].
Bosonisation formula is the statement that the correlation function (4.18) equals
to the correlator of N insertions of bb̄-operators in the theory of free fermions
b, c with spins j, 1 − j, see Eq. [3, Eq. (3.1)′]. The construction of Refs. [3, 101]
applies to the case of the canonical line bundle and no magnetic field, but it can
be straightforwardly generalized to the case of line bundle L = Lk ⊗ Ks (recall
that at β = 1, j = s, Nφ = k). The main statement is that

Vβ=1

(
g,B, {zj}

)
= 〈b(z1)b̄(z1)...b(zN)b̄(zN)〉 =

det′∆L

Zk
|| det sl(zm)||2,

cf. [3, Eq. (4.15)], where on the right hand side we recognize the Hermitian norm
of the integer QH state (3.1) and the Quillen metric (3.26). Then from (4.20) we
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it follows that Fβ at β = 1 reduces to the logarithm of the spectral determinant
of laplacian (3.25) for the line bundle L,

(4.27) Fβ=1 = log det′∆L.

In this sense, the formula (4.20) for the Laughlin states can be thought of as a
β-deformation of bosonisation formulas on Riemann surfaces.

4.4 Laughlin states on the torus from free fields

The computation of the correlation function Eq. (4.18) on the torus is a version
of the standard computation in CFT [30, Ch. 10], slightly modified to include
the magnetic field. We go over this calculation here in order to account for non-
homogeneous magnetic field and curved metric. For CFT-type calculation for the
Laughlin states on the flat torus and in constant magnetic field, we also refer to
[27, 23] and excellent recent accounts [53, 39, 32], where also QH hierarchy states
are constructed.

There are two nontrivial 1-cycles on the torus, hence there exist classical con-
figurations σmm′ of the compactified boson, labelled by the integers m,m′ ∈ Z,

σ = σ0 + σmm′(z) + σ̃(z),(4.28)

σmm′(z + aτ + b) = σmm′(z) + 2πRc(mb+m′a),(4.29)

winding m,m′ times around each of the cycles, with σ̃(z) being a single-valued
scalar function. The last equation can be solved by

(4.30) σmm′(z) = 2πRc

(
m′ −mτ̄
τ − τ̄ (z − z0)− m′ −mτ

τ − τ̄ (z̄ − z̄0)

)
,

where z0 is so far an arbitrary point on the torus. After the zero-mode integra-
tion, which fixes the number of particles Eq. (4.21), the integral decomposes into
the product of the classical part Zcl due to σmm′ and quantum part Zqu due to
integration over σ̃

(4.31) V = ZclZqu.

Here Zcl is the sum over the sectors with different m,m′.
In order to define Zcl we need to compute the action Eq. (4.17) on the field

configuration (4.30). There is a certain subtlety arising from multi-valuedness of
the compactified boson, which manifests itself in ambiguity in the choice of base-
point z0 in Eq. (4.30). This has no effect on the first and the last terms in the
action (4.17), but the second and third term need to be defined more carefully.
Proper definition should ensure modular invariance of the correlation functions.
For our purposes it suffices to choose the base-point as z0 = (τ + 1)/2, for which



Geometry and large N limits in Laughlin states 103

the second and third terms in the action (4.17) vanish. However, we shall note
that various other prescriptions are possible for the terms of this type, on the torus
[31] and on higher-genus surfaces [101], that also preserve the modular invariance.

Then the value of the action Eq. (4.17) on the configuration (4.30) is easily
computed

S(g0, Nφ, σmm′) =
πiR2

c

(τ − τ̄)
|m′ −mτ |2 − 2πiRc√

β
(mϕ2 +m′ϕ1),

where the first term comes form the kinetic term and the second term is the con-
tribution of the flat connections Eq. (2.21). Taking into account the contribution
from the vertex operators ei

√
βσmm′ (zl), Zcl reads

Zcl =
Rc√

2

∑

m,m′∈Z
exp

(
− πiR2

c

(τ − τ̄)
|m′ −mτ |2 +

2πiRc√
β

(mϕ2 +m′ϕ1)

+2πiRc

√
β

(
m′ −mτ̄
τ − τ̄ zcm −

m′ −mτ
τ − τ̄ z̄cm

))
.

Now we apply Poisson summation formula Eq. (6.4) to the sum over m′

Zcl =
√

Im τ · e πiβτ−τ̄ (zϕcm−z̄ϕcm)
2 ∑

m,n∈Z
exp

(
iπτ

(
n

Rc

− mRc

2

)2

− iπτ̄
(
n

Rc

+
mRc

2

)2

−2πi
√
βτ

(
n

Rc

− mRc

2

)
zϕcm + 2πi

√
βτ̄

(
n

Rc

+
mRc

2

)
z̄ϕcm

)
,(4.32)

where we introduced the short-hand notation

zϕcm = zcm +
ϕ

β
, z̄ϕcm = z̄cm +

ϕ̄

β
.

Now we set Rc =
√
β and change the summation indices m,n→ p, r, ε according

to: n = βp + r, p ∈ Z, r = 1, .., β; m = 2(q + ε), q ∈ Z, ε = {0, 1
2
}. Then the

sum over m,n in Eq. (4.32) reads

∑

m,n∈Z
... =

∑

ε=0, 1
2

β∑

r=1

∑

p,q∈Z
exp

(
iπβτ

(
p− q +

r

β
− ε
)2

+ 2πi

(
p− q +

r

β
− ε
)
βzϕcm

+iπβτ̄

(
p+ q +

r

β
+ ε

)2

− 2πi

(
p+ q +

r

β
+ ε

)
βz̄ϕcm

)
.

Next we redefine the summation variables as follows, n = p−q, m = p+q, n,m ∈
Z, which implies the constraint on n+m being even,

∑

m,n∈Z
... =

∑

ε=0, 1
2

β∑

r=1

∑

m,n∈Z
exp

(
iπβτ

(
n+

r

β
− ε
)2

+ 2πi

(
n+

r

β
− ε
)
βzϕcm
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+iπβτ̄

(
m+

r

β
+ ε

)2

− 2πi

(
m+

r

β
+ ε

)
βz̄ϕcm

)(
1 + eπi(n+m)

2

)
,

where the last term enforces this constraint. Writing

(1 + eπi(n+m)) =
∑

δ={0, 1
2
}

e2πiδ(n+m),

we can finally recast Zcl in the form of the sum of absolute values squared of theta
functions

Zcl =
1

2

√
Im τ · e

πiβ
τ−τ̄ (zcm−z̄cm+ϕ−ϕ̄

β )
2 ∑

ε,δ={0, 1
2
}

β∑

r=1

e4πiεδ

∣∣∣∣ϑ
[

r
β

+ε

δ

] (
βzcm + ϕ, βτ

)∣∣∣∣
2

.

(4.33)

The sum over ε, δ is nothing but the sum over four different spin structures, by
analogy with Eq. (2.34). However, we note that for β even the sum over ε, δ
collapses into one term:

β ∈ even : Zcl =
√

Im τ · e
πiβ
τ−τ̄ (zcm−z̄cm+ϕ−ϕ̄

β )
2

β∑

r=1

∣∣∣∣ϑ
[

r
β

0

] (
βzcm + ϕ, βτ

)∣∣∣∣
2

.

From now on we will only consider odd values of β. In order to be consistent with
Eq. (4.13) we rewrite the expression Eq. (4.33) in the equivalent form, using the
parity indicator λ (4.12) for the number of particles,

Zcl =
1

2

√
Im τ · e

πiβ
τ−τ̄ (zcm−z̄cm+ϕ−ϕ̄

β )
2

·
∑

ε,δ={0, 1
2
}

β∑

r=1

e4πi(ε−λ+ 1
2

)(δ−λ+ 1
2

)

∣∣∣∣ϑ
[

r+ε
β
−λ+ 1

2

δ−βλ+β
2

] (
βzcm + ϕ, βτ

)∣∣∣∣
2

.

Next we compute the quantum part Zqu in Eq. (4.31). This is given by Eq. (4.26),
where the Green function (4.23) and regularized Green function (4.25) on the flat
torus read

Gg0(z, z′) =
1

2

πi

τ − τ̄
(
z − z − (z̄ − z̄′)

)2
+ log

∣∣∣∣
θ1(z − z′, τ)

η(τ)

∣∣∣∣ ,

Gg0
reg(z) = − log

(√
2πIm τ |η(τ)|2

)
.

Plugging this to (4.26), and observing that the integrals over Σ vanish due to
(4.24), we obtain

Zqu =

[
det′∆g0

2π

]−1/2

· exp

(
−β

N∑

l 6=m
Gg(zl, zm)− β

N∑

l=1

Gg
reg(zl)

)
(4.34)
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=
√

2π
(
2πIm τ |η(τ)|4

)Nφ−1

2

N∏

l<m

∣∣∣∣
θ1(zl − zm, τ)

η(τ)

∣∣∣∣
2β

· e
πiNφ
τ−τ̄

∑
l(zl−z̄l)2− πiβ

τ−τ̄ (zcm−z̄cm)2

,

where we used the formula for the regularized determinant of laplacian on the
torus

det′∆g0 = 2π|η(τ)|4 Im τ,

see e.g. Ref. [30]. Putting together Zcl and Zqu we arrive at

V =
1

2

(
2πIm τ |η(τ)|4

)Nφ
2 · e πi

β(τ−τ̄)
(ϕ−ϕ̄)2

· 1

|η(τ)|2
∑

ε,δ={0, 1
2
}

β∑

r=1

e4πi(ε−λ+ 1
2

)(δ−λ+ 1
2

)

∣∣∣∣ϑ
[

r+ε
β
−λ+ 1

2

δ−βλ+β
2

] (
βzcm + ϕ, βτ

)∣∣∣∣
2

·
N∏

l<m

∣∣∣∣
θ1(zl − zm, τ)

η(τ)

∣∣∣∣
2β

·
N∏

l=1

e
πiNφ
τ−τ̄ (zl−z̄l)2+ 2πi

τ−τ̄ (zl−z̄l)(ϕ−ϕ̄).

This is the final result for the correlation function of vertex operators Eqns. (4.18,
4.31) on the torus.

4.5 Holomorphic structure and modular group action

Comparing with the (holomorphic parts) of the Laughlin state given in Eq. (4.13),
and taking into account Eq. (4.14) we see that the sum above is in the form of
Eq. (4.20),

1

2β

∑

ε,δ={0, 1
2
}

cε,δ

β∑

r=1

|Ψε,δ
r |2 =

e−Fβ(g0,B0)

Zβ(τ, τ̄ , ϕ, ϕ̄)
(4.35)

·
∑

ε,δ={0, 1
2
}

β∑

r=1

cε,δ|F ε,δ
r |2

N∏

l=1

h
Nφ
0 (zl, z̄l),

with cε,δ = e4πi(ε−λ+ 1
2

)(δ−λ+ 1
2

). Here we introduced the the Z-factor and redefined
the holomorphic part of the Laughlin state to include the η functions exactly as
they appear from the path integral calculation

F ε,δ
r ({zl}) =η(τ)Nφ−1ϑ

[
r+ε
β
−λ+ 1

2

δ−βλ+β
2

] (
βzcm + ϕ, βτ

) N∏

l<m

(
θ1(zl − zm, τ)

η(τ)

)β
,

(4.36)

Zβ(τ, τ̄ , ϕ, ϕ̄) =
(
2πIm τ

)−Nφ
2 · e− πi

β(τ−τ̄)
(ϕ−ϕ̄)2

.(4.37)
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Comparing Eqns. (4.15) and (4.20) we can write the relation between the
normalization factors Zβ and N0 as follows

N0[g0, B0, τ, ϕ] = eFβ(g0,B0) · Zβ(τ, τ̄ , ϕ, ϕ̄).

Remark. There is some ambiguity in the choice of the holomorphic part and of
the Zβ-factor. Namely, one can redefine Zβ → |f(τ, ϕ)|2Zβ and correspondingly
Fr → f(τ, ϕ)Fr by a holomorphic function of the moduli. Since Jac(Σ) is compact
f is a function of τ only. We can also take f(τ) to be non-vanishing on an open set
ofM1. In particular, f(τ) can be a power of η(τ), since the latter is non-vanishing
in the upper half plane τ ∈ H with a zero as τ → i∞, where η(τ) ∼ q1/24, q = e2πiτ .
This will modify the adiabatic connection (2.27) and add the delta-function term,
localized at i∞, to the adiabatic curvature, but also modify the monodromies of
the Laughlin states on the moduli space (which we review below), while preserving
the adiabatic phases. In general, it should be possible to study the behavior of
the normalized Laughlin states near the boundary of the moduli space of complex
structures, by applying techniques of Ref. [11].

Next we note that the wave functions Ψε,δ
r have the same general form as

(2.24), so the relations (2.27) and (2.28) apply to the Laughlin states, with the
substitution Z(y, ȳ) = eFβ · Zβ. In particular, the adiabatic connection is projec-
tively flat and adiabatic curvature is a scalar matrix. The factor eFβ is given by
a nontrivial path integral expression Eq. (4.19) and we will study it in the next
section.

Let us now discuss the action of lattice shifts in the Jacobian T[ϕ] and the
modular transformations. This is completely analogous to the action on one-
particle states, worked out in §2.5. The group of lattice shifts ϕ → ϕ + t1 + ttτ
acts in the unitary representation

F ε,δ
r ({zl}|ϕ+ t1 + t2τ, τ) = e−

πi
β
t22τ− 2πi

β
t2(βzcm+ϕ) ·

β∑

r′=1

Urr′F
ε,δ
r′ ({zl}|ϕ, τ),

where Urr′ = e
2πi
β

(
t1r+t1(ε+β( 1

2
−λ))−t2(δ+( 1

2
−λ))
)
δr,r′−t2 ,

N∏

l=1

h
Nφ
0 (zl, z̄l|ϕ+ t1 + t2τ, τ) = e2πit2(zcm−z̄cm)

N∏

l=1

h
Nφ
0 (zl, z̄l|ϕ, τ),

Zβ(ϕ+ t1 + t2τ, ϕ̄+ t1 + t2τ̄ , τ, τ̄) = e−
πi
β
t22(τ−τ̄)− 2πi

β
t2(ϕ−ϕ̄) · Zβ(ϕ, ϕ̄, τ, τ̄),

and, as was already the case for the LLL states on the torus, t1-shifts act diagonally
and t2-shift action is non-diagonal.

The formulas for the action of the modular group, for β ∈ odd, are listed in
the Appendix. The action of the modular group on the basis of Laughlin states
is very similar the action on the basis of one particle states (2.38, 2.39), formally
interchanging β and k. In particular the action on spin-structures is the same as
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in Fig. 3. For even number of particles λ = 0 the (0, 0) spin structure is conserved
and for λ = 1

2
the (1

2
, 1

2
) spin structure is conserved. In these cases we have

(USUT )3 = e2πiθNφC, (US)2 = C,

where C2 = 1 and θ = 1
8
, and thus Laughlin states transform in projective unitary

representation of the modular group.

5 Geometric adiabatic transport and anomaly

formulas

5.1 Generating functional for Laughlin states

The generating functional, which was defined for integer QH state (3.8), can be
defined for the Laughlin states as well. The definition is analogous to the one

given in (3.8). We start with the background configuration (Σ, g0) and (LNφ , h
Nφ
0 )

and choose the corresponding L2 normalized basis of holomorphic states F ε,δ
0r (4.7),

(4.8),

||F ε,δ
0r (z1, ..., zN)||2 = |F ε,δ

0r (z1, ..., zN)|2
N∏

l=1

h
Nφ
0 (zl, z̄l)g

−j
0zz̄(zl, z̄l),(5.1)

〈Ψε,δ
0r |Ψε,δ

0r 〉L2 =
1

N0

1

(2π)N

∫

ΣN
||F ε,δ

0r (z1, ..., zN)||2
N∏

l=1

√
g0d

2zl = 1,

where the normalization factor N0 is r-independent, which is the case e.g., for
the flat torus with constant magnetic field (4.15). Next, we consider the curved
metric (Σ, g) and magnetic field (LNφ , hNφ), where the g and F are in the same
Kähler class

g = g0 + ∂z∂z̄φ,(5.2)

hNφ = h
Nφ
0 e−Nφψ,(5.3)

Fzz̄ = F0zz̄ +Nφ∂z∂̄z̄ψ.(5.4)

The partition function is then defined as

ZNφ [g0, B0, g, B] =
1

N0

1

(2π)N

∫

ΣN

1

2gnβ,g

∑

r,ε,δ

cε,δ||F ε,δ
0r (z1, ..., zN)||2(5.5)

·
N∏

l=1

hNφ(zl, z̄l)g
−j
zz̄ (zl, z̄l)

√
gd2zl.
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In other words, we change the Hermitian metric on the line bundle and the metric
on the surface, staying in the same Kähler class, and compute the sum of the
norms of the wave functions in the new metric. It follows that the partition
function is normalized as

ZNφ [g0, B0, g0, B0] = 1.

The expression (5.5) is written on the surface of genus g > 0 and includes
sum over all degenerate Laughlin states and also over the spin-structures. On
the sphere this formula simplifies, since there is only one Laughlin state. In the
notations of Eq. (4.9), we can write on the sphere
(5.6)

ZNφ [g0, B0, g, B] =
1

N0

1

(2π)N

∫

(S2)N
| det sl(zm)|2β

N∏

l=1

hNφ(zl, z̄l)g
−j
zz̄ (zl, z̄l)

√
gd2zl.

Taking into account (4.20), we can rewrite (5.5) via the correlator of vertex oper-
ators

ZNφ [g0, B0, g, B] =
1

(2π)N

∫

ΣN

1

2gnβ,g

∑

r,ε,δ

cε,δ
∣∣Ψε,δ

0r (z1, ..., zN)
∣∣2(5.7)

· e−
∑N
l=1

(
Nφψ(zl,z̄l)+j log

√
g√
g0
|zl
) N∏

l=1

√
gd2zl

=
1

eFβ(g0,B0)

1

(2π)N

∫

ΣN
V
(
g0, B0, {zl}

)
e
−∑N

l=1

(
Nφψ(zl,z̄l)+j log

√
g√
g0
|zl
) N∏

l=1

√
gd2zl.

As usual the logarithm of the partition function is called the generating functional.
In this section we show that logZNφ admits an expansion for large magnetic field,
which is analogous to the expansion of the generating functional for the integer
QH state

logZNφ [g0, B0, g, B] = log
ZH,β
ZH0,β

+ Fβ[g,B]−Fβ[g0, B0],

where Fβ is local functional of g and B and logZH,β is non-local functional rep-
resenting anomaly, where all the terms depend nontrivially on β.

In the integer QHE case we were able to compute the asymptotic expansion
of logZNφ due to the determinantal representation of partition function (3.10),
which allowed us to reduce the computation to the Bergman kernel expansion for
high powers of line bundle. However, the partition function (5.5) does not admit
the determinantal representation and novel methods are required. Here we review
the path integral derivation of the asymptotic expansion following [37]; another
derivation of this result can be found in [21, 22], where the Ward identity method
of Refs. [108, 110, 109] was employed.
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5.2 Effective action and gravitational anomaly

The calculation of asymptotic expansion of ZNφ is performed in two steps. At

the first step we start from the path integral expression for V
(
g,B, {zl}

)
in Eq.

(4.18) and compute its transformation formula under the change of metrics (g, h)
to (g0, h0) in the same Kähler class, Eqns. (5.2, 5.3). As we have seen in Eq. (4.31),
for the surfaces of genus g > 0 the path integral is the product of the classical
and quantum parts V = ZclZqu, where the classical part Zcl essentially depends
only on the Kähler class of the metric and not on a particular choice of the metric
in that class. Therefore it suffices to derive the transformation formulas for the
change of metrics in the quantum part of the path integral Zqu. The latter is given
by the same formal expression Eq. (4.26) for the surfaces of any genus, including
sphere. It remains to compute the transformation rules for different objects in
that expression. The scalar curvatures and magnetic fields in background and
curved metrics are related as

R
√
g = R0

√
g0 −

√
g0 ∆0 log

√
g

√
g0

,(5.8)

B
√
g = B0

√
g0 +

1

2
Nφ
√
g0 ∆0ψ.

For the metrics g = g0 + ∂∂̄φ in the same Kähler class the regularized determi-
nant of the laplacian transforms according to the Polyakov gravitational anomaly
formula [85],

(5.9)
det′∆g

det′∆0

= e−
1
6
SL(g0,φ),

where SL(g0, φ) is the Liouville action Eq. (3.18).
The transformation formulas for other terms in (4.26) can be found using the

identities for the transformation of Green functions and their integrals, derived in
[38, §3] and [37, §4]. After a tedious but straightforward calculation, we arrive at

log
V
(
g,B, {zl}

)

V
(
g0, B0, {zl}

) = −Nφ

N∑

l=1

ψ(zl, z̄l)− j
N∑

l=1

log

√
g

√
g0

∣∣
zl

(5.10)

+
1

β
N2
φS2(g0, B0, ψ)− q

2
√
β
NφS1(g0, B0, ψ, φ) +

1

12
(1− 3q2)SL(g0, φ).

Recall that the constant q =
√
β − 2j/

√
β here is defined in Eq. (4.22), and the

functionals S1 and S2 are defined exactly as in Eqns. (3.16), (3.17) with k → Nφ,
namely

S2(g0, B0, ψ) =
1

2π

∫

Σ

(
1

4
ψ∆0ψ +

1

Nφ

B0ψ

)√
g0d

2z,
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S1(g0, B0, φ, ψ) =
1

2π

∫

Σ

(
−1

2
ψR0 +

(
1

Nφ

B0 +
1

2
∆0ψ

)
log
(
1 +

1

2
∆0φ

))√
g0d

2z.

Using Eq. (5.10) we can express the generating functional Eq. (5.7) as follows

logZNφ [g0, B0, g, B] =− 1

β
N2
φS2(g0, B0, ψ) +

q

2
√
β
NφS1(g0, B0, ψ, φ)(5.11)

− 1

12
(1− 3q2)SL(g0, φ) + Fβ(g,B)−Fβ(g0, B0).

The exact terms Fβ are formally defined by the path integral Eq. (4.19) and we
will come back to them shortly. The first three terms on the rhs in Eq. (5.11)
contribute to the anomalous part of the generating functional logZH . By analogy
with Eqns. (3.20, 3.21) for the integer QH state, these can be written in two
equivalent forms: as a double integral,

logZH,β =(5.12)

− 1

2πβ

∫

Σ×Σ

(
B +

β − 2j

4
R

) ∣∣
z
∆−1
g (z, y)

(
B +

β − 2j

4
R

) ∣∣
y

√
gd2z
√
gd2y

+
1

96π

∫

Σ×Σ

R(z)∆−1
g (z, y)R(y)

√
gd2z
√
gd2y,

and as a quadratic form in gauge and spin connections,

(5.13) logZH,β =
2

π

∫

Σ

[
σHAzAz̄ + 2ςH(Azωz̄ + ωzAz̄)−

1

12
cHωzωz̄

]
d2z,

where we introduced the following constants

(5.14) σH =
1

β
, ςH =

q

4
√
β
, cH = 1− 3q2,

and q =
√
β − 2j/

√
β. Recall that Eq. (5.13) assumes symmetric gauge Eq. (2.4)

for the gauge and spin connections. As a consistency check, at β = 1 we have
j = s and q = 1− 2s and the expressions above agree with Eqns. (3.20, 3.21).

At the moment Eq. (5.11) is a formal expression, valid for any Nφ > 0. It
turns out that the terms Fβ (4.19) can be better understood for Nφ large. We
can already see that the first three terms in Eq. (5.11) are written in the form of
the large Nφ expansion, similar to anomalous terms (3.15) in the integer case. We
argue that Fβ admits asymptotic expansion for large Nφ with coefficients given
by local functional of the metric and the magnetic field, which is similar to Eq.
(3.19) in the integer case, but now β-deformed. The argument is as follows [37].
Starting from the representation (4.19) we can rewrite the remainder term in the
form

eFβ(g,B) =

∫
e−S(g,B,σ)+N log 1

2π

∫
Σ e

i
√
βσ(z)√gd2zDgσ.



Geometry and large N limits in Laughlin states 111

This is the path integral of the interacting scalar field, where the number of
particles N plays the role of a large parameter. Therefore one can apply the
stationary phase method. The standard analysis of perturbation theory in 1/N
reveals [37] that the contributions from the Feynman diagrams reduce to local
integrals of polynomials in curvature and magnetic field and their derivatives. In
particular, the leading term in the large magnetic field expansion of Fβ has the
form [68],

(5.15) Fβ =
β − 2

4πβ

∫

Σ

B

(
log

B

2π

)√
gd2z +O(logB).

At β = 1 this coincides with the integer QH result for F , cf. first term in Eq.
(3.19).

5.3 Quillen metric and geometric adiabatic transport

First we discuss the geometric adiabatic transport in the integer QH state and then
turn to the Laughlin states. We consider how the wave functions vary over the
parameter space Y =Mg×Jac(Σ). Following the discussion in §2.3 it is especially
convenient to put the wave function in the form Eq. (2.24), which emphasizes the
holomorphic structure. For the integer QH state we can always choose the basis
sl(z|y) in the space of holomorphic sections H0(Σ, Lk ⊗ Ks), so that it depends
holomorphically on local complex coordinate y ∈ Y . Then the integer QH state
S (3.1) transforms as a holomorphic section of the Quillen’s determinant line
bundle L = detH0(Σy, L

k ⊗Ks
y) over Y . The point-wise Hermitian norm of the

section det sl(zm) and the L2 norm is defined as before in Eq. (3.8). The adiabatic
connection and adiabatic curvature are then given by Eqns. (2.25), (2.26) and thus
the adiabatic curvature can be expressed in terms of the L2 norm of the IQHE
state as

(5.16) R = −(∂y∂ȳ logZk)idy ∧ dȳ.

Here R carries no indices, since the integer QH state is not degenerate and is
a section of the line bundle. We can now compute (5.16) using the following
observation originally due to Avron-Seiler-Zograf [7]. We rewrite R as

(5.17) R = −
(
∂y∂ȳ log

Zk
det′∆L

)
idy ∧ dȳ −

(
∂y∂ȳ log det′∆L

)
idy ∧ dȳ,

and note that the first term here is the curvature RL of the Quillen metric on
L, where the latter is defined in Eq. (3.26). The formula for the curvature of
the Quillen metric is known in physics literature as the Quillen anomaly formula,
and it was first computed as part of the proof of the holomorphic factorisation of
string theory integration measure in Ref. [11], see also [87, 113] for mathematical
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references. For the Riemann surfaces the curvature of Quillen metric can be
written explicitly,

(5.18) RL = 2πdϕ∧(Ω−Ω̄)−1dϕ̄−
(
k

4
(1− 2s)− 1

12

(
1− 3(1− 2s)2

)
χ(Σ)

)
ΩWP .

The first term here is the 2-form on Jac(Σ) written in complex coordinates (2.7)
and summation over indices labelling 1-cycles is understood. In real coordinates
on the Jacobian (2.5) the first term reads

2πdϕ ∧ (Ω− Ω̄)−1dϕ̄ = 2π

g∑

a=1

dϕa1 ∧ ϕa2,

and thus corresponds to the flat Euclidean metric on the 2g dimensional torus.
The Weil-Petersson form ΩWP on the moduli space of complex structuresMg, for
constant scalar curvature metrics on Σ, enters the second term in Eq. (5.18) and
is defined as follows. The deformations of the metric, preserving the area of Σ,
along the moduli space have the form

δ(gzz̄dzdz̄) =
1

1− |δµ|2 gzz̄|dz + δµ̄dz̄|2 − gzz̄dzdz̄,

where δµ = δµzz̄dz̄(dz)−1 is the Beltrami differential with the weight (−1, 1).
There exists [28] 3g − 3 independent holomorphic quadratic differentials η on
a surface of a genus g > 1 and the corresponding Beltrami differential δµ =
gzz̄
∑3g−3

ν=1 η̄νdyν is characterized by 3g − 3 local complex coordinates yν . The
Kähler (1, 1) form on Mg corresponding to the Weil-Petersson metric can be
written as

ΩWP =
1

2π

∫

Σ

(iδµ ∧ δµ̄)
√
gd2z =

1

π

∫

Σ

gzz̄η̄νηµd
2z idyν ∧ dȳµ.

We note that in the standard definition the scalar curvature R enters the inte-
grand, which is constant in our case R = 2χ(Σ), and the factor of χ(Σ) is already
present in the formula (5.18). On the sphere there are no solenoid phases and
the choice of complex structure is unique, so the corresponding moduli space is
just a point. On the torus Eq. (5.18) is still valid with the replacement of Weil-
Petersson form ΩWP by the Poincaré metric on M1, and setting s = 0. Indeed,
using the determinantal formula (3.10) we immediately obtain for the flat torus
and constant magnetic field,

Zk = (Z)k,

where Z = Z(τ, τ̄ , ϕ, ϕ̄) is the normalization Z-factor for one particle LLL states
on the torus Eq. (2.37). Next, the determinant of the laplacian for the line bun-
dle Lk is moduli-independent constant (3.30), so the adiabatic curvature R and
Quillen curvature (5.18) coincide. Hence in the case of torus we obtain

RT 2 = RLT 2 = (−∂y∂ȳ logZk) idy ∧ dȳ = 2π
dϕ ∧ dϕ̄
τ − τ̄ +

k

4

2idτ ∧ dτ̄
(τ − τ̄)2

,
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in complete agreement with (2.45).
On higher genus surfaces the determinant of the laplacian depends on the

moduli in a nontrivial way. Namely for the constant scalar curvature metric on
Σg with g > 1 and for canonical line bundle L = K we have, according to Refs.
[29, 7],

(5.19) det′∆Lk = e−ckχ(Σ)
∏

γ

∞∏

j=1

[
1− ei

∑2g
a=1 ϕana(γ)e−(j+k)l(γ)

]
.

Here the surface Σ is realized as an orbit space for a discrete subgroup Γ of
SL(2,R) acting on upper half plane and γ ∈ Γ are primitive hyperbolic elements
of Γ representing conjugacy classes corresponding to closed geodesics on Σ. Next,
na counts the number of times the closed geodesic goes around the ath funda-
mental loop, l(γ) is the length of geodesic, and ck is a constant. In the large k
limit the leading term (apart form the constant, irrelevant for the computation
of curvature) in log det′∆Lk decays exponentially as e−kl(γmin), where γmin is the
length of the shortest geodesic. When the latter is bounded from zero, i.e., away
from the boundary of the moduli space, the second term in (5.16) represents small
fluctuations and R ≈ RL+O(e−kl(γmin)) with exponential precision. However, the
exponential asymptotic of determinant changes to polynomial near the boundary
of the moduli space, see [28, §V.F], where the second term in (5.16) starts to
play a more prominent role. This regime, where the Riemann surface becomes
singular, deserves to be understood in more detail. For recent work in QH states
on singular surfaces we refer to [72, 47], see also [4].

The formula (5.18) is can be read off directly from the anomalous part of the
generating functional written as the quadratic form (3.21). We write the variation
of the gauge connection along the moduli space as

δ(Azdz) = 2πδϕ(Ω− Ω̄)−1ω̄, δ(Az̄dz̄) = −2πδϕ̄(Ω− Ω̄)−1ω,

and the second variation of the spin connection (the first variation vanishes) as

δ ∧ δ̄(ωzdz) =
1

2
∂z(δµ ∧ δµ̄), δ ∧ δ̄(ωz̄dz̄)dz = −1

2
∂z̄(δµ ∧ δµ̄)dz̄.

Computing the second variation of logZH and plugging the above result is another
way to obtain Eq. (5.18),

− (∂y∂ȳ logZH)idy ∧ dȳ(5.20)

=
1

π

∫

Σ

(
δ(Azdz) ∧ δ(Az̄dz̄) +

(1− 2s)

2

(
Azdz δ ∧ δ̄(ωz̄dz̄) + c.c.

)

− 1

12

(
1− 3(1− 2s)2

)
(ωzdz δ ∧ δ̄(ωz̄dz̄) + c.c.)

)
= RL.

Here in the second and third term we applied integration by parts and then
projected the result onto the constant magnetic field and constant scalar curvature
metric.
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5.4 Geometric adiabatic transport for Laughlin states

Now we turn to the adiabatic curvature for the Laughlin states. On a Riemann
surface Σ of genus g > 0 the number of Laughlin states is nβ,g = βg, as was
mentioned in §4.2. Thus Laughlin states transform as the sections of a vector
bundle of degree nβ,g over the parameter space Y . The adiabatic connection
on this vector bundle is projectively flat (2.27), which was demonstrated for the
Laughlin states on the torus in §4.2 (this is assumed to be the case for the higher-
genus surfaces as well). Then the adiabatic curvature can be determined from the
norm of the wave functions as in Eq. (2.28), or by analogy with the integer case,
from the generating functional

(5.21) Rrr′ = Rδrr′ = −δrr′(∂y∂ȳ logZNφ)idy ∧ dȳ.

Now we can determine adiabatic curvature R applying the variational method
of Eq. (5.20) to the anomalous part of the generating functional (5.13). We
immediately obtain

R = 2πσHdϕ ∧ (Ω− Ω̄)−1dϕ̄(5.22)

−
(
ςHNφ −

1

12
cHχ(Σ)

)
ΩWP − (∂y∂ȳFβ) idy ∧ dȳ,

where the constants σH , ςH , cH are given in Eq. (5.14). The first two terms here
differ from Eq. (5.18) only in overall coefficients. The last term in (5.22) reduces
to the logarithm of the regularized determinant Fβ=1 = log det′∆L due to the
bosonisation formula, as was discussed before Eq. (4.27). The quantization ar-
gument for the Hall conductance in the integer case Eq. (2.44) will go through
for the Laughlin states if we can show that the last term is an exact (1, 1) from,
corresponding to small fluctuations at large Nφ. We have already seen from the
1/N perturbation theory arguments [37] that Fβ admits asymptotic expansion in
large magnetic field with coefficients given by local curvature invariants (5.15).
Since local terms are moduli-independent, ∂y∂ȳFβ is zero perturbatively, i.e., for
all terms in asymptotic 1/Nφ expansion. However exponential corrections of the
form e−Nφf are possible, where f can be a nontrivial function of the moduli (in
fact they appear already at β = 1 in the log determinant on higher-genus sur-
faces(5.19)). Since f is a function ∂y∂ȳFβ is exact, and the exponential suppression
means that the last term in (5.22) represents exponentially small fluctuations of
the adiabatic curvature. It would be interesting to check this indirect argument,
e.g. by computing Fβ from its path integral representation (4.19).

We can now apply the general formula Eq. (5.22) to the torus, where we worked
out explicit expression for Zβ in Eq. (4.37). Plugging ZNφ = eFβZβ in (5.21) we
obtain

(5.23) R = 2πσH
dϕ ∧ dϕ̄
τ − τ̄ +

Nφ

4

2idτ ∧ dτ̄
(τ − τ̄)2

− (∂y∂ȳFβ) idy ∧ dȳ,
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in agreement with (5.22) at χ(Σ) = 0 and j = 0. Now, by analogy with (2.44) the
first Chern class of the vector bundle of Laughlin states restricted to the Jacobian
E|T[ϕ]

equals one,

(5.24)

∫

T[ϕ]

c1(E|T[ϕ]
) =

∫

T[ϕ]

1

2π
TrRrr′ = βσH = 1,

and thus the Hall conductance σH = 1/β is a fraction in this case. This argument
in the fractional QHE was suggested in [95, 81].

As before in the integer case, the adiabatic transport on the moduli space
of complex structure of the torus gives rise to the anomalous viscosity and the
Hall viscosity coefficient is also proportional to the magnetic field flux ηH = Nφ/4
(5.23), see Refs. [98, 99] and [89]. On the surfaces of genus g > 1 the corresponding
coefficient acquires the finite-size correction (5.22), proportional to cH , for ”Hall
central charge”, since it appears also as the coefficient in front of the Liouville
action (5.11).

5.5 Adiabatic phase and Chern-Simons action

We have already noticed the resemblance of the generating functional for the in-
teger QH state in the form Eq. (3.21) to the 2+1d Chern-Simons action. Effective
long-distance description of the quantum Hall effect in terms of Chern-Simons
theory goes back to [106, 40, 41]. The gravitational Chern-Simons term in 2+1d,
corresponding to the 2d gravitational anomaly term in Eq. (3.21), was derived only
recently [1, 44, 46]. Following Ref. [66] we recall how Chern-Simons functional
arises from the adiabatic curvature (5.16), and more precisely from the Quillen
anomaly part of the adiabatic curvature RL (5.18).

We shall now consider the family of surfaces Σy parameterized by y ∈ Y and
the space M which is the union of all Σy over Y (sometimes M is called ”the
universal curve”). In particular, the dimension of M equals dimM = dimY + 2
where 2 is the dimension of the Riemann surface. We consider also the family of
line bundles Lky ⊗ Ks

y → Σy, y ∈ Y . The union of all such line bundles extends
to the holomorphic line bundle E over M , and Hermitian metric hk extends to
the Hermitian metric hE on E. We denote the curvature of the metric hE as FE.
We also consider the extension of the union of tangent bundles TΣy to the bundle
TM |Y , which is still a line bundle (as opposed to the usual tangent bundle TM).
Let gTM |Y be a smooth Hermitian metric on TM |Y and RTM |Y be its curvature
2-form.

The following formula for the curvature of the Quillen determinant line bundle
RL is due to Bismut-Gillet-Soulé [17, Thm. 1.27], see also [16],

(5.25) RL = −2πi

∫

M |Y

[
Ch(E)Td(TM |Y )

]
(4)
.



116 Semyon Klevtsov

The notation M |Y means that the integration goes over the fibers in the fibration
σ : M → Y , i.e., over the spaces Σy at y fixed. The expression in the brackets
is a form of mixed degree on M , Ch is the Chern character an Td is the Todd
class, see e.g. [43] for standard definitions. The subscript (4) means that only the
4-form component of the integrand is retained, and after the integration we end
up with the 2-form on Y . In order to apply the results of Ref. [17] in our context
we need to check that the fibration σ : M → Y is locally Kähler, which turns out
to be the case, as explained in Ref. [66].

Next, we choose an adiabatic process, which is a smooth closed contour C ∈ Y .
When the wave function (in this context we are talking only about the integer QH
state) is transported around the contour, we can compute the geometric part of
the adiabatic phase (corresponding to RL) as

∫
C AL, where the connection 1-form

AL on L can be computed using the formula (5.25) locally as RL = dA.
First, we need to write down the integrand in Eq. (5.25) explicitly in our case.

Since we are interested only in the 4-form part in the integrand, we expand the
Chern character form Ch(E) and the Todd form Td(TM |Y ) up to the 4-form
order and restrict to the line bundle case (i.e., setting c2(E) = c2(TM |Y ) = 0),

Ch(E) = 1 + c1(E) +
1

2
c2

1(E) + ...,

Td(TM |Y ) = 1 +
1

2
c1(TM |Y ) +

1

12
c2

1(TM |Y ) + ...,

where the forms representing first Chern classes read

c1(E) =
i

2π
Tr FE, c1(TM) =

i

2π
Tr RTM

Also we split the curvature 2-form of the bundle E as: FE = F − sRTM |Y where
F now refers to the part of the curvature 2-form corresponding to the line bundle
L̃k → M , which is the union of all bundles Lky → Σy. Using the composition
property Ch(E ⊗ E ′) = Ch(E) · Ch(E ′) for the product of two bundles E,E ′, we
obtain

Ch(Lk ⊗Ks) = 1 + c1(Lk)− sc1(TM |Y )− sc1(Lk)c1(TM |Y )

+
1

2

(
c2

1(Lk) + s2c2
1(TM |Y )

)
+ ...

Then the curvature formula (5.25) specified to our case reads

RL =
i

4π

∫

M |Y

[
F ∧ F + (1− 2s) F ∧ RTM |Y(5.26)

+

(
(1− 2s)2

4
− 1

12

)
RTM |Y ∧ RTM |Y

]
.
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Now we introduce notations for the one forms F = dA(M) and RTM |Y = dω(M)

on M . Locally we can write the integrand as the derivative of the Chern-Simons
term

RL =
i

4π

∫

M |Y
dMCS(A(M), ω(M)),

and use the formula for the commutation of the exterior derivative with the inte-
gral along the fiber [43, Eq. (1.17)], dY

∫
M |Y α = dMα, in order to show that

∫

C
AL =

1

4π

∫

σ−1(C)
CS(A(M), ω(M))(5.27)

=
1

4π

∫

σ−1(C)
A ∧ dA+

1− 2s

2
(A ∧ dω + dA ∧ ω) +

(
(1− 2s)2

4
− 1

12

)
ω ∧ dω .

The notation σ−1(C) means that the integration goes over the 2 + 1d space with
one dimension along the contour and two dimensions along the fiber Σy at the
point y ∈ Y . Here A and ω are 2 + 1d connection 1-forms with components
along the fiber retained and third component A0 is the projection on the contour
A0dt = Aydy + Aȳdȳ where t is a parameter along the contour.

Thus Eq. (5.27) is a formal derivation of the Chern-Simons action, which here
has the meaning of the adiabatic phase acquired upon the transport of integer
QH state along a contour C ∈ in the parameter space. We note that the full
formula for adiabatic curvature Eq. (5.17) has also the exact form contribution
due to determinant, which will also lead to a contribution to the phase, which is
not reflected in Eq. (5.27) (by analogy with the discussion around Eq. (5.19), we
can argue that this part is exponentially small for large magnetic fields).

6 Appendix

Out notations for theta functions follow Mumford [80]. Theta function with char-
acteristics

(6.1) ϑ

[
a
b

]
(z, τ) =

∑

n∈Z
exp

(
πi(n+ a)2τ + 2πi(n+ a)(z + b)

)
,

where a, b ∈ R. Their transformation property under the lattice shifts

(6.2) ϑ

[
a
b

]
(z+t1 +t2τ, τ) = e−iπt

2
2τ−2πit2z+2πi(at1−bt2)ϑ

[
a
b

]
(z, τ), t1, t2 ∈ Z.

We use the standard notation

ϑ1(z, τ) = ϑ

[
1
2

1
2

]
(z, τ).
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Another useful lattice shift formula

N∏

j<l

(
ϑ1(zj − zl, τ)

)β∣∣
zm→zm+t1+t2τ

= e−iπτt
2
2β(N−1)+πi(t1+t2)β(N+1)−2πit2βNzm+2πit2βzcm

N∏

j<l

(
ϑ1(zj − zl, τ)

)β
(6.3)

Poisson summation formula

(6.4)
1√
A

∑

m′∈Z
e−

π
A

(
m′+ B

2πi

)2

=
∑

n∈Z
e−πAn

2+Bn.

Modular transformation formulas:

ϑ

[
a
b

]
(mz,m(τ + 1)) = e−πima(a+1)ϑ

[
a

b+m(a+ 1
2
)

]
(mz,mτ),(6.5)

ϑ

[
a
b

](
m
z

τ
,−m1

τ

)
=

√
−iτ
m

eπim
z2

τ
+2πiab

m∑

c=1

ϑ

[
b+c−1
m

−ma

]
(mz,mτ),(6.6)

η(τ + 1) = e
πi
12η(τ),(6.7)

η(−1/τ) =
√
−iτ η(τ),(6.8)

N∏

j<l

(
ϑ1(zj − zl, τ + 1)

)β
= e

πi
8
βN(N−1)

N∏

j<l

(
ϑ1(zj − zl, τ)

)β
,(6.9)

N∏

j<l

(
ϑ1

(
zj − zl
τ

,−1

τ

))β
(6.10)

=
(√
−iτ

)βN(N−1)
2 e−

πi
4
βN(N−1)+

πiNφ
τ

∑
l z

2
l −

πiβ
τ
z2
cm

N∏

j<l

(ϑ1(zj − zl, τ))β .

Modular group action on Laughlin states (4.35-4.37),

T ◦ F ε,δ
r ({zl}|ϕ, τ) = UT

rr′F
ε,δ+ε−λ
r′ ({zl}|ϕ, τ),

where UT
rr′ = δrr′e

πi
12

(NNφ−1)+πi
β

(r+ε−βλ+β
2

)(r−ε+(2−β)λ+β
2

),

T ◦
N∏

l=1

h
Nφ
0 (zl, z̄l) =

N∏

l=1

h
Nφ
0 (zl, z̄l),

T ◦ Zβ(ϕ, ϕ̄, τ, τ̄) = Zβ(ϕ, ϕ̄, τ, τ̄),

S ◦ F ε,δ
r ({zl}|ϕ, τ) = (

√
−iτ)Nφ · e

πiNφ
τ

∑
l z

2
l + 2πi

τ
zzmϕ+πi

β
ϕ2

τ

β∑

r′=1

US
rr′F

δ,ε
r′ ({zl}|ϕ, τ),
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where US
rr′ =

1√
β
e−

πi
4
Nφ(N−1)− 2πi

β

(
ε+β( 1

2
−λ)
)(
δ+β( 1

2
−λ)
)
− 2πi

β
r′(r+2ε),

S ◦
N∏

l=1

h
Nφ
0 (zl, z̄l) = e−

πiNφ
τ

∑
l z

2
l +

πiNφ
τ̄

∑
l z̄

2
l − 2πi

τ
zcmϕ+ 2πi

τ̄
z̄cmϕ̄

N∏

l=1

h
Nφ
0 (zl, z̄l),

S ◦ Zβ(ϕ, ϕ̄, τ, τ̄) = (
√
τ τ̄)Nφ · eπiβ

ϕ2

τ
−πi
β
ϕ̄2

τ̄ · Zβ(ϕ, ϕ̄, τ, τ̄).
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Companion cluster algebras to

a generalized cluster algebra

by Tomoki Nakanishi and Dylan Rupel

Abstract

We study the c-vectors, g-vectors, and F -polynomials for generalized
cluster algebras satisfying a normalization condition and a power condition
recovering classical recursions and separation of additions formulas. We es-
tablish a relationship between the c-vectors, g-vectors, and F -polynomials
of such a generalized cluster algebra and its (left- and right-) companion
cluster algebras. Our main result states that the cluster variables and coef-
ficients of the (left- and right-) companion cluster algebras can be recovered
via a specialization of the F -polynomials.

1 Introduction

Cluster algebras have risen to prominence as the correct algebraic/combinatorial
language for describing a certain class of recursive calculations. These recursions
appear in many forms across various disciplines including Poisson geometry [GSV],
combinatorics [MP], hyperbolic geometry [FG, FST, MSW], representation theory
of associative algebras [CC, CK, BMRRT, R1, Q, R2], mathematical physics [EF],
and quantum groups [K, GLS, KQ, BR]. In the current standard theory a product
of cluster variables, one known and one unknown, is equal to a binomial in other
known quantities. Recently examples have emerged in the context of hyperbolic
orbifolds [CS], exact WKB analysis [IN], and quantum groups [G, BGR] that
require a more general setup: these binomial exchange relations should be replaced
by polynomial exchange relations.

The general study of such generalized cluster algebras was initiated by Chekhov
and Shapiro [CS] where an analogue of the classical Laurent Phenomenon was
established. Following these developments, the first author [N] studied the ana-
logues of c-vectors, g-vectors, and F -polynomials for a class of generalized cluster
algebras satisfying a normalization condition and a reciprocity condition. In that
work, relationships between these c- and g-vectors with the corresponding quan-
tities for certain companion cluster algebras were established. Our goal in the
present paper is to extend these results to the case when the reciprocity condition
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is replaced by a weaker power condition and to clarify the corresponding relation-
ships between F -polynomials, x-variables, and y-variables. The main message of
this note, continuing from [N], is as follows: the generalized cluster algebras are as
good and natural as ordinary cluster algebras. Also in this direction, analogues of
the classical greedy bases from [LLZ] have been constructed for rank 2 generalized
cluster algebras by the second author [R3].

In order to state our main theorem we will need to fix some notation. A
cluster algebra A(x,y, B) ⊂ F is defined recursively from the initial data of a
seed (x,y, B) where y = (y1, . . . , yn) is a collection of elements from a semifield P,
x = (x1, . . . , xn) is a collection of algebraically independent elements in a degree
n purely transcendental extension F of QP (in particular, we may identify F with
the rational function field QP(x)) where QP is the field of fractions of the group
ring ZP, and B = (bij) is a skew-symmetrizable n × n matrix. A generalized
cluster algebra A = A(x,y, B,Z) ⊂ F requires the additional data of a collection
of exchange polynomials Z = (Z1, . . . , Zn) where

Zi(u) = zi,0 + zi,1u+ · · ·+ zi,di−1u
di−1 + zi,diu

di

with each zi,s ∈ P and zi,0 = zi,di = 1. Write z = (zi,s) (1 ≤ i ≤ n, 0 ≤ s ≤ di).
Write D = (diδij) for the diagonal n×n matrix. Denote by x1/d the collection

(x
1/d1
1 , . . . , x

1/dn
n ) in the extension field QP(x1/d) of F . Define the left-companion

cluster algebra LA of A to be the cluster algebra A(x1/d,y, DB) ⊂ QP(x1/d).
Write (Lxt, Lyt, LBt) for the seed associated to vertex t ∈ Tn in the construction
of LA and denote by Lctj,

Lgtj, and LF t
j the c-vectors, g-vectors, and F -polynomials

of LA.
Let zbin = (zbini,s ) where zbini,s =

(
di
s

)
. Then we write xti

∣∣
z=zbin

∈ F and ytj
∣∣
z=zbin

∈
P for the variables obtained by applying equations (3.15) and (3.14) respec-
tively using the specialized F -polynomials F t

j (y, z
bin) in place of the generic F -

polynomials F t
j (y, z). Our first main result is the following.

Theorem 1.1. We have xti
∣∣
z=zbin

=
(
Lxti
)di and ytj

∣∣
z=zbin

= Lyti .

Denote by yd for the collection (yd11 , . . . , y
dn
n ) in P. Define the right-companion

cluster algebra RA of A to be the cluster algebra A(x,yd, BD) ⊂ QP(x). Write
(Rxt, Ryt, RBt) for the seed associated to vertex t ∈ Tn in the construction of RA
(see Section 2 for details).

Write xti
∣∣
z=0
∈ F and ytj

∣∣
z=0
∈ P for the variables obtained by applying equa-

tions (3.15) and (3.14) respectively using the specialized F -polynomials F t
j (y,0)

in place of the generic F -polynomials F t
j (y, z). Our second main result is the

following.

Theorem 1.2. We have xti
∣∣
z=0

= Rxti and
(
ytj
∣∣
z=0

)dj = Rytj.
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2 Cluster Algebras

A semifield is a multiplicative abelian group (P, ·) together with an auxiliary
addition ⊕ : P× P→ P which is associative, commutative and satisfies the usual
distributivity with the multiplication of P. Write ZP for the group ring of P.
Since P is necessarily torsion-free (see e.g. [FZ1, Sec. 5]), ZP is a domain [FZ1,
Sec. 2] and we write QP for its field of fractions. There are two main examples
of semifields that will be most relevant for our purposes.

Example 2.1.

1. The universal semifield Qsf(y1, . . . , yn) is the set of rational functions in the
variables y1, . . . , yn which can be written in a subtraction-free form. Addi-
tion and multiplication in the universal semifield are the ordinary operations
on rational functions. The semifield Qsf(y1, . . . , yn) is universal in the fol-
lowing sense. Each element of Qsf(y1, . . . , yn) can be written as a ratio of
positive polynomials in Z≥0[y1, . . . , yn] so that for any other semifield P there
is a specialization homomorphism Qsf(y1, . . . , yn)→ P, given by yi 7→ pi and
1 7→ 1, which respects the semifield structure for any choice of p1, . . . , pn ∈ P.

2. The tropical semifield Trop(y1, . . . , yn) is the free (multiplicative) abelian
group generated by y1, . . . , yn with auxiliary addition ⊕ defined by

n∏

j=1

y
aj
j ⊕

n∏

j=1

y
bj
j =

n∏

j=1

y
min(aj ,bj)
j .

The group ring of P = Trop(y1, . . . , yn) is the Laurent polynomial ring
Z[y±11 , . . . , y±1n ] while QP = Q(y1, . . . , yn).

Fix a semifield P and write F = QP(w1, . . . , wn) for the field of rational func-
tions in algebraically independent variables w1, . . . , wn. A (labeled) seed (x,y, B)
over P consists of the following data:

• an algebraically independent collection x = (x1, . . . , xn), called a cluster,
consisting of elements from F called cluster variables or x-variables ;

• a collection y = (y1, . . . , yn) of elements from P called coefficients or y-
variables ;

• an n× n skew-symmetrizable matrix B = (bij) called the exchange matrix.

The main ingredient in the definition of a cluster algebra is the notion of
mutation for seeds. For notational convenience we abbreviate [b]+ = max(b, 0).

Definition 2.2. For 1 ≤ k ≤ n we define the seed mutation in direction k by
µk(x,y, B) = (x′,y′, B′) where
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• the cluster x′ = (x′1, . . . , x
′
n) is given by x′i = xi for i 6= k and x′k is deter-

mined using the exchange relation:

(2.1) x′kxk =

( n∏

i=1

x
[−bik]+
i

)
1 + ŷk
1⊕ yk

, ŷk = yk

n∏

i=1

xbiki ;

• the coefficient tuple y′ = (y′1, . . . , y
′
n) is given by y′k = y−1k and for j 6= k we

set

(2.2) y′j = yjy
[bkj ]+
k

(
1⊕ yk

)−bkj ;

• the matrix B′ = (b′ij) is given by

(2.3) b′ij =

{
−bij if i = k or j = k;

bij + [bik]+bkj + bik[−bkj]+ otherwise.

Write Tn for the n-regular tree with edges labeled by the set {1, . . . , n} so that

the n edges emanating from each vertex receive different labels. We write t
k

— t′

to denote two vertices t and t′ of Tn connected by an edge labeled by k. A cluster
pattern Σ over P is an assignment of a seed Σt to each vertex t ∈ Tn such that

whenever t
k

— t′ we have µkΣ
t = Σt′ , that is Σt and Σt′ are related by the seed

mutation in direction k whenever t and t′ are adjoined by an edge labeled by k.
Fix a choice of initial vertex t0, we will write Σt0 = (x,y, B) while for an arbitrary
vertex t ∈ Tn we write Σt = (xt,yt, Bt) where

xt = (xt1, . . . , x
t
n), yt = (yt1, . . . , y

t
n), Bt = (btij).

Note that every seed Σt for t ∈ Tn is uniquely determined once we have spec-
ified Σt0 . Moreover, it is important to note that the exchange matrices Bt are
independent of the initial choice of x and y.

Definition 2.3. The cluster algebra A(x,y, B) is the ZP-subalgebra of F gener-
ated by all cluster variables from seeds appearing in the cluster pattern Σ, more
precisely

A(x,y, B) = ZP[xti : t ∈ Tn, 1 ≤ i ≤ n] ⊂ F .
A priori the most one can say about these constructions is that the cluster

variables xti admit a description as subtraction-free rational expressions in the
cluster variables of x with coefficients in ZP and that the coefficients ytj admit a
description as subtraction-free rational expressions in Qsf(y). More precisely, to
see this claim for xti we may, for each initial seed (x,y, B),

• replace the x- and y-variables by formal indeterminants (which by abuse of
notation we denote by the same symbols);
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• replace the semifield P by the tropical semifield Trop(y);

• replace F by Q(x,y) and opt to perform all calculations here.

Since no subtraction occurs in the recursions (2.1), we obtain in this way X-
functions X t

i ∈ Qsf(x,y). Alternatively performing the y-mutations (2.2) inside
Qsf(y) we obtain Y -functions Y t

j ∈ Qsf(y). By the universality of the semifield

Qsf(y) we may recover the original coefficient ytj by the specialization Y t
j

∣∣
P. Taking

this specialization where P = Trop(y) we obtain monomials Y t
j

∣∣
Trop(y)

=
n∏
i=1

y
ctij
i

where we write Ct for the resulting matrix whose columns ctj ∈ Zn are called
c-vectors. Note that the c-vectors only depend on the initial exchange matrix B
and not on the choice of initial cluster x.

Proposition 2.4. [FZ4, Eq. 5.9] The c-vectors satisfy the following recurrence

relation for t
k

— t′:

(2.4) ct
′
ij =

{
−ctik if j = k;

ctij + ctik[b
t
kj]+ + [−ctik]+btkj if j 6= k.

Obtaining the cluster variable xti from X t
i is more interesting and will be dis-

cussed further below. As a first step toward this goal, we note that the cluster
algebra A admits the following remarkable “Laurent Phenomenon”.

Theorem 2.5. [FZ1, Th. 3.1] Fix an initial seed (x,y, B) over a semifield P. For
any vertex t ∈ Tn each cluster variable xti can be expressed as a Laurent polynomial
in x with coefficients in ZP.

For a seed (x,y, B) over P = Trop(y) we may apply Theorem 2.5 to write
each X-function as an element of Z[x±1,y±1]. Moreover, y-variables never appear
in the denominators of the X-functions.

Proposition 2.6. [FZ4, Prop. 3.6] Each X-function X t
i is contained in Z[x±1,y].

In fact, the X-functions are homogeneous with respect to a certain Zn-grading
on Z[x±1,y]. Write bj ∈ Zn for the jth column of B.

Proposition 2.7. [FZ4, Prop. 6.1, Prop. 6.6] Under the Zn-grading

deg(xi) = ei and deg(yj) = −bj,

each X-function is homogeneous and we write deg
(
X t
j

)
= gtj =

n∑
i=1

gtijei. More-

over, these g-vectors satisfy the following recurrence relation for t
k

— t′:

(2.5) gt
′
ij =




gtij if j 6= k;

−gtik +
n∑
`=1

gti`[−bt`k]+ −
n∑
`=1

bti`[−ct`k]+ if j = k.
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Following Proposition 2.6 we may define F -polynomials F t
i (y) ∈ Z[y] via the

specialization F t
i (y) = X t

i (1,y), i.e. by setting all initial cluster variables xj to 1.
The F -polynomials satisfy a recurrence relation analogous to (2.1).

Proposition 2.8. [FZ4, Prop. 5.1] The F -polynomials satisfy the following re-

currence relation for t
k

— t′:

(2.6) F t′
j =





F t
j if j 6= k;

(
F t
k

)−1
( n∏

i=1

y
[−ctik]+
i

(
F t
i

)[−btik]+
)(

1+
n∏

i=1

y
ctik
i

(
F t
i

)btik
)

if j = k.

Notice that each F -polynomial admits an expression as a subtraction-free ra-
tional expression and thus may be considered as an element of Qsf(y), in particular
the specialization F t

i

∣∣
P makes sense for any semifield P. With this we may obtain

a description of the y-variables in terms of the c-vectors and the specializations
of the F -polynomials.

Theorem 2.9. [FZ4, Prop. 3.13] Fix an initial seed (x,y, B) over a semifield P.
For any vertex t ∈ Tn each coefficient ytj of A(x,y, B) can be computed as

ytj =

( n∏

i=1

y
ctij
i

) n∏

i=1

F t
i

∣∣
P(y)b

t
ij .

Finally, we obtain a “separation of additions” formula for the cluster variables
xti in terms of the g-vectors and the F -polynomials.

Theorem 2.10. [FZ4, Cor. 6.3] Fix an initial seed (x,y, B) over a semifield P.
For any vertex t ∈ Tn each cluster variable xtj of A(x,y, B) can be computed as

xtj =

( n∏

i=1

x
gtij
i

)
F t
j

∣∣
F(ŷ)

F t
j

∣∣
P(y)

.

3 Generalized Cluster Algebras

Let (x,y, B) be a seed over the semifield P. Fix a collection Z = (Z1, . . . , Zn) of
positive degree exchange polynomials

Zi(u) = zi,0 + zi,1u+ · · ·+ zi,di−1u
di−1 + zi,diu

di ∈ ZP[u]

such that zi,s ∈ P for 0 ≤ s ≤ di and zi,0 = zi,di = 1. It will often be convenient
to write z = (zi,s) with 1 ≤ i ≤ n and 0 ≤ s ≤ di for the coefficients of the
polynomials Zi. Write Zi(u) = udiZi(u

−1) for the exchange polynomial with
coefficients reversed. Together we call Σ = (x,y, B,Z) a generalized seed over
P. The additional data of the polynomials Z allows to generalize the notion of
seed mutation in such a way that all nice properties and constructions related to
cluster algebras in section 2 carry over to the new setting.
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Definition 3.1. For 1 ≤ k ≤ n we define the generalized seed mutation in direc-
tion k by µk(x,y, B,Z) = (x′,y′, B′,Z′) where

• the cluster x′ = (x′1, . . . , x
′
n) is given by x′i = xi for i 6= k and x′k is deter-

mined using the exchange relation:

(3.1) x′kxk =

( n∏

i=1

x
[−bik]+
i

)dk Zk
(
ŷk
)

Zk
∣∣
P(yk)

, ŷk = yk

n∏

i=1

xbiki ;

• the coefficient tuple y′ = (y′1, . . . , y
′
n) is given by y′k = y−1k and for j 6= k we

set

(3.2) y′j = yj
(
ydkk
)[bkj ]+Zk

∣∣
P(yk)

−bkj ;

• the matrix B′ = (b′ij) is given by

(3.3) b′ij =

{
−bij if i = k or j = k;

bij + [bik]+dkbkj + bikdk[−bkj]+ otherwise.

• the exchange polynomials Z′ = (Z ′1, . . . , Z
′
n) are given by Z ′i = Zi for i 6= k

and Z ′k = Zk, writing this relation purely in terms of coefficients gives
z′i,s = zi,s for i 6= k and z′k,s = zk,dk−s.

One may easily check that the ŷ-variables mutate in the same way as the
y-variables, namely ŷ′k = ŷ−1k and for j 6= k we have

(3.4) ŷ′j = ŷj
(
ŷdkk
)[bkj ]+Zk(ŷk)−bkj .

As a first indication that this definition is correct we verify that µ2
kΣ = Σ.

Proposition 3.2. The generalized seed mutation µk is involutive.

Proof. Consider the generalized seed mutations

(x′,y′, B′,Z′) = µk(x,y, B,Z) and (x′′,y′′, B′′,Z′′) = µk(x
′,y′, B′,Z′).

To begin note that x′′i = x′i = xi for i 6= k and
(
ŷ′k
)−1

= ŷk. Then x′′k is given by

x′′k =
1

x′k

( n∏

i=1

(x′i)
[−b′ik]+

)dk Zk

(
ŷ′k
)

Zk

∣∣
P(y′k)

=
1

x′k

( n∏

i=1

x
[bik]+
i

)dk ŷ−dkk Zk
(
ŷk
)

y−dkk Zk
∣∣
P(yk)

=
1

x′k

( n∏

i=1

x
[bik]+−bik
i

)dk Zk
(
ŷk
)

Zk
∣∣
P(yk)

=
1

x′k

( n∏

i=1

x
[−bik]+
i

)dk Zk
(
ŷk
)

Zk
∣∣
P(yk)

= xk.
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Also y′′k = (y′k)
−1 = yk, while for j 6= k we have

y′′j = y′j
(
(y′k)

dk
)[b′kj ]+Zk

∣∣
P(y′k)

−b′kj

= yj
(
ydkk
)[bkj ]+Zk

∣∣
P(yk)

−bkj(ydkk
)−[−bkj ]+(y−dkk Zk

∣∣
P(yk)

)bkj
= yj.

To see that the matrix mutation is involutive notice that we may apply the
classical matrix mutation (2.3) to obtain exchange matrices (DB)′ and (BD)′

where D = (diδij). Then it is immediate from (3.3) that we have DB′ = (DB)′

and B′D = (BD)′, the involutivity of matrix mutation (3.3) follows. Finally the
equality Z′′ = Z is immediate from the definitions.

The generalized seeds and their mutations we have defined here are a special-
ization of the setup in [CS]. There a generalized seed over P is a triple (x,p, B)
where x is a cluster, B is an exchange matrix, and p = (pi,s), where 1 ≤ i ≤ n and
0 ≤ s ≤ di, is a collection of elements of P. The mutation µk(x,p, B) = (x′,p′, B′)
is given by replacing (3.1) with

(3.5) x′kxk =

( n∏

i=1

x
[−bik]+
i

)dk dk∑

s=0

pk,sw
s
k, wk =

n∏

i=1

xbiki

and by replacing (3.2) with

p′k,s = pk,dk−s and
p′j,s
p′j,0

=
pj,s
pj,0

(
pk,dk
pk,0

)s[bkj ]+
p
sbkj
k,0 .

Our generalized seed mutations can be related to the more general setting of
[CS] by defining

(3.6) pi,s =
zi,sy

s
i

Zi
∣∣
P(yi)

where we note the identities

di⊕

s=0

pi,s = 1 and
pi,di
pi,0

= ydii .

Proposition 3.3. Generalized seeds of the form (x,y, B,Z) are in bijection with
generalized seeds of the form (x,p, B) satisfying

1. (normalization condition)
di⊕
s=0

pi,s = 1;

2. (power condition)
pi,di
pi,0

= ydii for some yi ∈ P.
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Moreover, this bijection is compatible with mutations.

Remark 3.4. Such yi as in (2) is unique since P is torsion-free, i.e. if (y′i)
di = ydii

then
(
y′i
yi

)di
= 1 and so

y′i
yi

= 1.

Proof. For a generalized seed (x,y, B,Z) define pi,s as in (3.6). Write (x′,y′, B′,Z′) =
µk(x,y, B,Z) and again use (3.6) to define p′i,s in terms of this seed. Then we
have

p′k,s =
z′k,s(y

′
k)
s

Zk

∣∣
P(y′k)

=
zk,dk−sy

−s
k

y−dkk Zk
∣∣
P(yk)

=
zk,dk−sy

dk−s
k

Zk
∣∣
P(yk)

= pk,dk−s

while for j 6= k we have

p′j,s
p′j,0

=
z′j,s(y

′
j)
s

Zj

∣∣
P(y′j)

Zj

∣∣
P(y′j)

z′j,0
= zj,s

(
yj
(
ydkk
)[bkj ]+Zk

∣∣
P(yk)

−bkj
)s

=
pj,s
pj,0

(
pk,dk
pk,0

)s[bkj ]+
p
sbkj
k,0

as desired.
Conversely, let (x,p, B) be a generalized seed satisfying (1) and (2) where we

define yi using (2). Set zi,s = y−si
pi,s
pi,0

. Notice that the definitions immediately

imply zi,0 = zi,di = 1. Since pi,s = zi,sy
s
i pi,0, by the normalization condition we

have p−1i,0 = Zi|P(yi) where we write Zi = zi,0 + zi,1u + · · · + zi,di−1u
di−1 + zi,diu

di .
Write (x′,p′, B′) = µk(x,p, B) so that we may define y′i and z′i,s as above using
this generalized seed. Then we have

(y′k)
dk =

p′k,dk
p′k,0

=
pk,0
pk,dk

= y−dkk

while for j 6= k we have

(y′j)
dj =

p′j,dj
p′j,0

=
pj,dj
pj,0

(
pk,dk
pk,0

)dj [bkj ]+
p
djbkj
k,0 =

(
yj
(
ydkk
)[bkj ]+Zk

∣∣
P(yk)

−bkj
)dj

,

so the coefficients mutate as desired. Similarly we have

z′k,s = (y′k)
−s p

′
k,s

p′k,0
= ysk

pk,dk−s
pk,dk

= ysk
pk,dk−s
pk,0

pk,0
pk,dk

= ysky
dk−s
k zk,dk−sy

−dk
k = zk,dk−s

and for j 6= k we have

z′j,s = (y′j)
−s p

′
j,s

p′j,0
=

(
yj
(
ydkk
)[bkj ]+Zk

∣∣
P(yk)

−bkj
)−s

pj,s
pj,0

(
pk,dk
pk,0

)s[bkj ]+
p
sbkj
k,0 = zj,s

as desired.
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A generalized cluster pattern Σ over P is in assignment of a generalized seed

Σt to each vertex t ∈ Tn such that whenever t
k

— t′ we have µkΣ
t = Σt′ . As for

cluster algebras, the entire generalized cluster pattern Σ is uniquely determined
from any choice of initial seed Σt0 = (x,y, B,Z). We maintain the notation
Σt = (xt,yt, Bt,Zt) from above where we write Zt = (Zt

1, . . . , Z
t
n).

Definition 3.5. The generalized cluster algebra A = A(x,y, B,Z) is the ZP-
subalgebra of F generated by all cluster variables from seeds appearing in the
generalized cluster pattern Σ, more precisely

A(x,y, B,Z) = ZP[xti : t ∈ Tn, 1 ≤ i ≤ n] ⊂ F .
The main feature of cluster algebras to which one might attribute their ubiq-

uity is the Laurent Phenomenon, a first indication that generalized cluster algebras
will find themselves as useful is the following consequence of Proposition 3.3 and
[CS, Th. 2.5].

Corollary 3.6. Fix an initial generalized seed (x,y, B,Z) over a semifield P. For
any vertex t ∈ Tn each cluster variable xti can be expressed as a Laurent polynomial
of x with coefficients in ZP.

Example 3.7. Consider the rank 2 generalized seed (x,y, B,Z) over P where

x = (x1, x2), y = (y1, y2), B =

[
0 −1
1 0

]
, and Z = (Z1, Z2) where Z1(u) =

1 + z1u + z2u
2 + u3 and Z2(u) = 1 + u. In this case we have ŷ1 = y1x2 and

ŷ2 = y2x
−1
1 . Write Σ(1) = (x(1),y(1), B(1),Z(1)) for the initial generalized seed

(x,y, B,Z) and define seeds Σ(t) for t = 2, . . . , 9 inductively via the alternating
mutation sequence below:
(3.7)

Σ(1)
µ1←→ Σ(2)

µ2←→ Σ(3)
µ1←→ Σ(4)

µ2←→ Σ(5)
µ1←→ Σ(6)

µ2←→ Σ(7)
µ1←→ Σ(8)

µ2←→ Σ(9).

Then the exchange matrices and exchange polynomials of these generalized seeds
are given by

B(t) = (−1)t+1B, Z2(t) = Z2, and Z1(t) =

{
Z1 if t is odd;

Z1 if t is even.

The resulting cluster variables and coefficients are presented in Table 1.

Following the same formal procedure as in section 2, we may defineX-functions
X t
i ∈ Qsf(x,y, z) and Y -functions Y t

j ∈ Qsf(y, z) by computing xti and yti , respec-
tively, in the field Q(x,y, z) where x, y, and z represent collections of formal inde-
terminants. Using that zi,0 = zi,di = 1, the specialization of the Y -functions in the

tropical semifield P = Trop(y, z) again produces monomials Y t
j

∣∣
Trop(y,z)

=
n∏
i=1

y
ctij
i

where we write Ct for the resulting matrix whose columns ctj ∈ Zn we continue to
call c-vectors.
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{
x1(1) = x1

x2(1) = x2

{
y1(1) = y1

y2(1) = y2



x1(2) = x−1

1
1+z1ŷ1+z2ŷ

2
1+ŷ3

1

1⊕z1y1⊕z2y
2
1⊕y3

1

x2(2) = x2

{
y1(2) = y−1

1

y2(2) = y2(1⊕ z1y1 ⊕ z2y21 ⊕ y31)




x1(3) = x−1
1

1+z1ŷ1+z2ŷ
2
1+ŷ3

1

1⊕z1y1⊕z2y
2
1⊕y3

1

x2(3) = x−1
2

1+ŷ2+z1ŷ1ŷ2+z2ŷ
2
1 ŷ2+ŷ3

1 ŷ2
1⊕y2⊕z1y1y2⊕z2y

2
1y2⊕y3

1y2

{
y1(3) = y−1

1 (1⊕ y2 ⊕ z1y1y2 ⊕ z2y21y2 ⊕ y31y2)
y2(3) = y−1

2 (1⊕ z1y1 ⊕ z2y21 ⊕ y31)−1





x1(4) = x1x
−3
2

1+3ŷ2+3ŷ2
2+ŷ3

2+2z1ŷ1ŷ2+4z1ŷ1ŷ
2
2+2z1ŷ1ŷ

3
2+z2ŷ

2
1 ŷ2+z21 ŷ

2
1 ŷ

2
2+3z2ŷ

2
1 ŷ

2
2+z21 ŷ

2
1 ŷ

3
2+2z2ŷ

2
1 ŷ

3
2

+3ŷ3
1 ŷ

2
2+z1z2ŷ

3
1 ŷ

2
2+2ŷ3

1 ŷ
3
2+2z1z2ŷ

3
1 ŷ

3
2+z1ŷ

4
1 ŷ

2
2+2z1ŷ

4
1 ŷ

3
2+z22 ŷ

4
1 ŷ

3
2+2z2ŷ

5
1 ŷ

3
2+ŷ6

1 ŷ
3
2

1⊕3y2⊕3y2
2⊕y3

2⊕2z1y1y2⊕4z1y1y
2
2⊕2z1y1y

3
2⊕z2y

2
1y2⊕z21y

2
1y

2
2⊕3z2y

2
1y

2
2⊕z21y

2
1y

3
2⊕2z2y

2
1y

3
2

⊕3y3
1y

2
2⊕z1z2y

3
1y

2
2⊕2y3

1y
3
2⊕2z1z2y

3
1y

3
2⊕z1y

4
1y

2
2⊕2z1y

4
1y

3
2⊕z22y

4
1y

3
2⊕2z2y

5
1y

3
2⊕y6

1y
3
2

x2(4) = x−1
2

1+ŷ2+z1ŷ1ŷ2+z2ŷ
2
1 ŷ2+ŷ3

1 ŷ2
1⊕y2⊕z1y1y2⊕z2y

2
1y2⊕y3

1y2 



y1(4) = y1(1⊕ y2 ⊕ z1y1y2 ⊕ z2y21y2 ⊕ y31y2)−1

y2(4) = y−3
1 y−1

2 (1⊕ 3y2 ⊕ 3y22 ⊕ y32 ⊕ 2z1y1y2 ⊕ 4z1y1y22 ⊕ 2z1y1y32
⊕z2y21y2 ⊕ z21y21y22 ⊕ 3z2y21y

2
2 ⊕ z21y21y32 ⊕ 2z2y21y

3
2

⊕z1z2y31y22 ⊕ 2z1z2y31y
3
2 ⊕ 3y31y

2
2 ⊕ 2y31y

3
2

⊕z1y41y22 ⊕ 2z1y41y
3
2 ⊕ z22y41y32 ⊕ 2z2y51y

3
2 ⊕ y61y32)




x1(5) = x1x
−3
2

1+3ŷ2+3ŷ2
2+ŷ3

2+2z1ŷ1ŷ2+4z1ŷ1ŷ
2
2+2z1ŷ1ŷ

3
2+z2ŷ

2
1 ŷ2+z21 ŷ

2
1 ŷ

2
2+3z2ŷ

2
1 ŷ

2
2+z21 ŷ

2
1 ŷ

3
2+2z2ŷ

2
1 ŷ

3
2

+3ŷ3
1 ŷ

2
2+z1z2ŷ

3
1 ŷ

2
2+2ŷ3

1 ŷ
3
2+2z1z2ŷ

3
1 ŷ

3
2+z1ŷ

4
1 ŷ

2
2+2z1ŷ

4
1 ŷ

3
2+z22 ŷ

4
1 ŷ

3
2+2z2ŷ

5
1 ŷ

3
2+ŷ6

1 ŷ
3
2

1⊕3y2⊕3y2
2⊕y3

2⊕2z1y1y2⊕4z1y1y
2
2⊕2z1y1y

3
2⊕z2y

2
1y2⊕z21y

2
1y

2
2⊕3z2y

2
1y

2
2⊕z21y

2
1y

3
2⊕2z2y

2
1y

3
2

⊕3y3
1y

2
2⊕z1z2y

3
1y

2
2⊕2y3

1y
3
2⊕2z1z2y

3
1y

3
2⊕z1y

4
1y

2
2⊕2z1y

4
1y

3
2⊕z22y

4
1y

3
2⊕2z2y

5
1y

3
2⊕y6

1y
3
2

x2(5) = x1x
−2
2

1+2ŷ2+ŷ2
2+z1ŷ1ŷ2+z1ŷ1ŷ

2
2+z2ŷ

2
1 ŷ

2
2+ŷ3

1 ŷ
2
2

1⊕2y2⊕y2
2⊕z1y1y2⊕z1y1y

2
2⊕z2y

2
1y

2
2⊕y3

1y
2
2




y1(5) = y−2
1 y−1

2 (1⊕ 2y2 ⊕ y22 ⊕ z1y1y2 ⊕ z1y1y22 ⊕ z2y21y22 ⊕ y31y22)
y2(5) = y31y2(1⊕ 3y2 ⊕ 3y22 ⊕ y32 ⊕ 2z1y1y2 ⊕ 4z1y1y22 ⊕ 2z1y1y32

⊕z2y21y2 ⊕ z21y21y22 ⊕ 3z2y21y
2
2 ⊕ z21y21y32 ⊕ 2z2y21y

3
2

⊕3y31y22 ⊕ z1z2y31y22 ⊕ 2y31y
3
2 ⊕ 2z1z2y31y

3
2

⊕z1y41y22 ⊕ 2z1y41y
3
2 ⊕ z22y41y32 ⊕ 2z2y51y

3
2 ⊕ y61y32)−1





x1(6) = x21x
−3
2

1+3ŷ2+3ŷ2
2+ŷ3

2+z1ŷ1ŷ2+2z1ŷ1ŷ
2
2+z1ŷ1ŷ

3
2+z2ŷ

2
1 ŷ

2
2+z2ŷ

2
1 ŷ

3
2+ŷ3

1 ŷ
3
2

1⊕3y2⊕3y2
2⊕y3

2⊕z1y1y2⊕2z1y1y
2
2⊕z1y1y

3
2⊕z2y

2
1y

2
2⊕z2y

2
1y

3
2⊕y3

1y
3
2

x2(6) = x1x
−2
2

1+2ŷ2+ŷ2
2+z1ŷ1ŷ2+z1ŷ1ŷ

2
2+z2ŷ

2
1 ŷ

2
2+ŷ3

1 ŷ
2
2

1⊕2y2⊕y2
2⊕z1y1y2⊕z1y1y

2
2⊕z2y

2
1y

2
2⊕y3

1y
2
2




y1(6) = y21y2(1⊕ 2y2 ⊕ y22 ⊕ z1y1y2 ⊕ z1y1y22 ⊕ z2y21y22 ⊕ y31y22)−1

y2(6) = y−3
1 y−2

2 (1⊕ 3y2 ⊕ 3y22 ⊕ y32 ⊕ z1y1y2 ⊕ 2z1y1y22 ⊕ z1y1y32
⊕z2y21y22 ⊕ z2y21y32 ⊕ y31y32)



x1(7) = x21x

−3
2

1+3ŷ2+3ŷ2
2+ŷ3

2+z1ŷ1ŷ2+2z1ŷ1ŷ
2
2+z1ŷ1ŷ

3
2+z2ŷ

2
1 ŷ

2
2+z2ŷ

2
1 ŷ

3
2+ŷ3

1 ŷ
3
2

1⊕3y2⊕3y2
2⊕y3

2⊕z1y1y2⊕2z1y1y
2
2⊕z1y1y

3
2⊕z2y

2
1y

2
2⊕z2y

2
1y

3
2⊕y3

1y
3
2

x2(7) = x1x
−1
2

1+ŷ2
1⊕y2 




y1(7) = y−1
1 y−1

2 (1⊕ y2)
y2(7) = y31y

2
2(1⊕ 3y2 ⊕ 3y22 ⊕ y32 ⊕ z1y1y2 ⊕ 2z1y1y22 ⊕ z1y1y32

⊕z2y21y22 ⊕ z2y21y32 ⊕ y31y32)−1

{
x1(8) = x1

x2(8) = x1x
−1
2

1+ŷ2
1⊕y2

{
y1(8) = y1y2(1⊕ y2)−1

y2(8) = y−1
2{

x1(9) = x1

x2(9) = x2

{
y1(9) = y1

y2(9) = y2

Table 1: Cluster variables and coefficients for the mutation sequence (3.7).
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Proposition 3.8. (cf. [N, Prop. 3.8]) The c-vectors satisfy the following recur-

rence relation for t
k

— t′:

(3.8) ct
′
ij =

{
−ctik if j = k;

ctij + ctik[dkb
t
kj]+ + [−ctik]+dkbtkj if j 6= k.

Remark 3.9. It immediately follows that the c-vectors of A(x,y, B,Z) do not
depend on the choice of exchange polynomials Z, only their degrees.

As in section 2 the X-functions become particularly nice.

Proposition 3.10. (cf. [N, Prop. 3.3]) Each X-function X t
i is contained in

Z[x±1,y, z].

Using essentially the same Zn-grading these X-functions will once again be
homogeneous.

Proposition 3.11. (cf. [N, Prop. 3.15]) Under the Zn-grading

deg(xi) = ei, deg(yj) = −bj, and deg(zi,s) = 0,

each X-function is homogeneous and we write deg
(
X t
j

)
= gtj =

n∑
i=1

gtijei. More-

over, these g-vectors satisfy the following recurrence relation for t
k

— t′:

gt
′
ij =




gtij if j 6= k;

−gtik +
n∑
`=1

gti`[−bt`kdk]+ −
n∑
`=1

bti`[−ct`kdk]+ if j = k.

Remark 3.12. It immediately follows that the g-vectors of A(x,y, B,Z) also do
not depend on the choice of exchange polynomials Z, only their degrees.

Continuing to follow the developments of section 2 we may define F -polynomials
F t
i (y, z) ∈ Z[y, z] by specializing all cluster variables xi to 1 in the X-functions,

i.e. F t
i (y, z) = X t

i (1,y, z).

Proposition 3.13. (cf. [N, Prop. 3.12]) The F -polynomials satisfy the following

recurrence relation for t
k

— t′:

(3.9) F t′
j =





F t
j if j 6= k;

(
F t
k

)−1
( n∏

i=1

y
[−ctik]+
i

(
F t
i

)[−btik]+
)dk

Zk

( n∏

i=1

y
ctik
i

(
F t
i

)btik
)

if j = k.

The coefficients ytj can still be computed using the c-vectors and F -polynomials.
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Theorem 3.14. (cf. [N, Th. 3.23]) Fix an initial generalized seed (x,y, B,Z)
over a semifield P. For any vertex t ∈ Tn each coefficient ytj of A(x,y, B,Z) can
be computed as

(3.10) ytj =

( n∏

i=1

y
ctij
i

) n∏

i=1

F t
i

∣∣
P(y, z)b

t
ij .

Finally the separation of additions formula still holds for cluster variables of
A(x,y, B,Z).

Theorem 3.15. (cf. [N, Th. 3.24]) Fix an initial generalized seed (x,y, B,Z)
over a semifield P. For any vertex t ∈ Tn each cluster variable xtj of A(x,y, B,Z)
can be computed as

(3.11) xtj =

( n∏

i=1

x
gtij
i

)
F t
j

∣∣
F(ŷ, z)

F t
j

∣∣
P(y, z)

,

where ŷk = yk

n∏

i=1

xbiki .

Example 3.16. Following Theorems 3.14 and 3.15 we may immediately extract
the C-matrix, G-matrix, and F -polynomials associated to each of the seeds Σ(t)
in Example 3.7. Writing C(t), G(t), and F (t) for these quantities associated to
the generalized seed Σ(t) we obtain Table 2.

4 Companion Cluster Algebras

Fix an initial generalized seed (x,y, B,Z) over a semifield P. Write D = (diδij)
where di is the degree of the exchange polynomial Zi.

Denote by Lx := x1/d the collection (Lx1, · · · , Lxn) := (x
1/d1
1 , . . . , x

1/dn
n ) in

the extension field QP(x1/d) of QP(x). For clarity we also write Ly = y, i.e.
Lyj = yj. Define the left-companion cluster algebra LA of A to be A(Lx, Ly, DB) ⊂
QP(x1/d). Write (Lxt, Lyt, LBt) for the seed associated to vertex t ∈ Tn in the
construction of LA and denote by Lctj,

Lgtj, and LF t
j the c-vectors, g-vectors, and

F -polynomials of LA.
Write Rx = x, i.e. Rxi = xi, and denote the collection (Ry1, . . . ,

Ryn) =
(yd11 , . . . , y

dn
n ) by Ry := yd. Define the right-companion cluster algebra RA of

A to be A(Rx, Ry, BD) ⊂ QP(x). Write (Rxt, Ryt, RBt) for the seed associated
to vertex t ∈ Tn in the construction of RA and denote by Rctj,

Rgtj, and RF t
j the

c-vectors, g-vectors, and F -polynomials of RA.
We immediately obtain the following result as a consequence of Proposition 2.4

and Proposition 3.8 (cf. [N, Props. 3.9 and 3.10]).
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C(1) =

(
1 0
0 1

)
, G(1) =

(
1 0
0 1

)
,

{
F1(1) = 1

F2(1) = 1

C(2) =

(
−1 0
0 1

)
, G(2) =

(
−1 0
0 1

)
,

{
F1(2) = 1 + z1y1 + z2y21 + y31
F2(2) = 1

C(3) =

(
−1 0
0 −1

)
, G(3) =

(
−1 0
0 −1

)
,

{
F1(3) = 1 + z1y1 + z2y21 + y31
F2(3) = 1 + y2 + z1y1y2 + z2y21y2 + y31y2

C(4) =

(
1 −3
0 −1

)
, G(4) =

(
1 0
−3 −1

)
,





F1(4) = 1 + 3y2 + 3y22 + y32 + 2z1y1y2 + 4z1y1y22 + 2z1y1y32
+z2y21y2 + z21y

2
1y

2
2 + 3z2y21y

2
2 + z21y

2
1y

3
2 + 2z2y21y

3
2

+z1z2y31y
2
2 + 2z1z2y31y

3
2 + 3y31y

2
2 + 2y31y

3
2

+z1y41y
2
2 + 2z1y41y

3
2 + z22y

4
1y

3
2 + 2z2y51y

3
2 + y61y

3
2

F2(4) = 1 + y2 + z1y1y2 + z2y21y2 + y31y2

C(5) =

(
−2 3
−1 1

)
, G(5) =

(
1 1
−3 −2

)
,





F1(5) = 1 + 3y2 + 3y22 + y32 + 2z1y1y2 + 4z1y1y22 + 2z1y1y32
+z2y21y2 + z21y

2
1y

2
2 + 3z2y21y

2
2 + z21y

2
1y

3
2 + 2z2y21y

3
2

+z1z2y31y
2
2 + 2z1z2y31y

3
2 + 3y31y

2
2 + 2y31y

3
2

+z1y41y
2
2 + 2z1y41y

3
2 + z22y

4
1y

3
2 + 2z2y51y

3
2 + y61y

3
2

F2(5) = 1 + 2y2 + y22 + z1y1y2 + z1y1y22 + z2y21y
2
2 + y31y

2
2

C(6) =

(
2 −3
1 −2

)
, G(6) =

(
2 1
−3 −2

)
,





F1(6) = 1 + 3y2 + 3y22 + y32 + z1y1y2 + 2z1y1y22 + z1y1y32
+z2y21y

2
2 + z2y21y

3
2 + y31y

3
2

F2(6) = 1 + 2y2 + y22 + z1y1y2 + z1y1y22 + z2y21y
2
2 + y31y

2
2

C(7) =

(
−1 3
−1 2

)
, G(7) =

(
2 1
−3 −1

)
,





F1(7) = 1 + 3y2 + 3y22 + y32 + z1y1y2 + 2z1y1y22 + z1y1y32
+z2y21y

2
2 + z2y21y

3
2 + y31y

3
2

F2(7) = 1 + y2

C(8) =

(
1 0
1 −1

)
, G(8) =

(
1 1
0 −1

)
,

{
F1(8) = 1

F2(8) = 1 + y2

C(9) =

(
1 0
0 1

)
, G(9) =

(
1 0
0 1

)
,

{
F1(9) = 1

F2(9) = 1

Table 2: C-matrices, G-matrices, and F -polynomials for the mutation sequence
(3.7).
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Corollary 4.1. The c-vectors of the generalized cluster algebra A(x,y, B,Z) co-
incide with the c-vectors of its left-companion cluster algebra A(x1/d,y, DB) while
the c-vectors of its right-companion cluster algebra A(x,yd, BD) can be obtained
from those of A(x,y, B,Z) by the transformation Rctj = d−1i ctijdj.

Similarly the following result is an immediate consequence of Proposition 2.7
and Proposition 3.11 (cf. [N, Props. 3.16 and 3.17]).

Corollary 4.2. The g-vectors of the generalized cluster algebra A(x,y, B,Z) co-
incide with the g-vectors of its right-companion cluster algebra A(x,yd, BD) while
the g-vectors of its left-companion cluster algebra A(x1/d,y, DB) can be obtained
from those of A(x,y, B,Z) by the transformation Lgtj = dig

t
ijd
−1
j .

We see from Corollary 4.1 and Corollary 4.2 that the c- and g-vectors of the
generalized cluster algebra A(x,y, B,Z) are intimately related to those of its
left- and right-companion cluster algebras. The same is true for F -polynomials,
however the precise relationship for left- and right-companions are very different.

We begin with the left-companion. For 1 ≤ i ≤ n and 0 ≤ s ≤ di we will write
zbin = (zbini,s ) where zbini,s =

(
di
s

)
∈ Z.

Proposition 4.3. Let (x,y, B,Z) be a generalized seed over P. For any t ∈ Tn
and any 1 ≤ j ≤ n we have the following equalities in Qsf(y) and Qsf(x,y)
respectively:

(4.1) F t
j (y, z

bin) = LF t
j

(
Ly
)dj and F t

j (ŷ, z
bin) = LF t

j

(
Lŷ
)dj ,

where Lyi = yi and Lŷi = ŷi.

Proof. We will proceed by induction on the distance from t0 to t in Tn. To

begin, note that by definition we have
(
Lxt0j
)dj =

(
x
1/dj
j

)dj = xj = xt0j so that

F t0
j = 1 = LF t0

j , in particular F t0
j =

(
LF t0

j

)dj . Consider t
k

— t′ with t′ further

from t0 than t and suppose F t
j =

(
LF t

j

)dj for all j. Then by Proposition 2.8 and

Proposition 3.13 we see for j 6= k that F t′
j = F t

j =
(
LF t

j

)dj =
(
LF t′

j

)dj while taking
j = k we have

LF t′
k

(
Ly
)dk =

(
(
LF t

k

)−1
( n∏

i=1

Ly
[−Lctik]+
i

(
LF t

i

)[−dib
t
ik]+

)(
1+

n∏

i=1

Ly
Lctik
i

(
LF t

i

)dibtik
))dk

=
((

LF t
k

)dk)−1
( n∏

i=1

Ly
[−Lctik]+
i

((
LF t

i

)di)[−btik]+
)dk dk∑

s=0

(dk
s

)( n∏

i=1

Ly
Lctik
i

((
LF t

i

)di)b
t
ik

)s

=
(
F t
k

)−1
( n∏

i=1

y
[−ctik]+
i

(
F t
i

)[−btik]+

)dk dk∑

s=0

(dk
s

)( n∏

i=1

y
ctik
i

(
F t
i

)btik
)s

= F t′
k (y, zbin),

where we used Corollary 4.1 in the third equality above. It follows by induction

that F t
j (y, z

bin) = LF t
j

(
Ly
)dj for all t ∈ Tn and 1 ≤ j ≤ n. Note that ŷj = yj

n∏
i=1
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x
bij
i = Lyj

n∏
i=1

Lx
dibij
i = Lŷj so that substituting the variables ŷj into this identity

gives F t
j (ŷ, z

bin) = LF t
j

(
Lŷ
)dj for all t ∈ Tn and 1 ≤ j ≤ n.

Write xti
∣∣
z=zbin

∈ F and ytj
∣∣
z=zbin

∈ P for the variables obtained by apply-
ing equations (3.15) and (3.14) respectively using the specialized F -polynomials
F t
j (y, z

bin) in place of the generic F -polynomials F t
j (y, z).

Theorem 4.4. We have xti
∣∣
z=zbin

=
(
Lxti
)di and ytj

∣∣
z=zbin

= Lyti .

Proof. For coefficients we apply Theorem 2.9 and Theorem 3.14 along with Corol-
lary 4.1 to get

Lytj =

( n∏

i=1

Ly
Lctij
i

) n∏

i=1

LF t
i

∣∣
P

(
Ly
)dibtij =

( n∏

i=1

y
ctij
i

) n∏

i=1

F t
i

∣∣
P(y, zbin)b

t
ij = ytj.

To finish, we may apply Theorem 2.10 and Theorem 3.15 along with Corol-
lary 4.2 to get

(
Lxtj
)dj =

(( n∏

i=1

Lx
Lgtij
i

)LF t
j

∣∣
F
(
Lŷ
)

LF t
j

∣∣
P

(
Ly
)
)dj

=

( n∏

i=1

Lx
Lgtijdj
i

)LF t
j

∣∣
F
(
Lŷ
)dj

LF t
j

∣∣
P

(
Ly
)dj

=

( n∏

i=1

(
Lx

1/di
i

)gtij)F t
j

∣∣
F(ŷ, zbin)

F t
j

∣∣
P(y, zbin)

=

( n∏

i=1

x
gtij
i

)
F t
j

∣∣
F(ŷ, zbin)

F t
j

∣∣
P(y, zbin)

= xtj.

Example 4.5. As an illustration of Corollaries 4.1 and 4.2 as well as Theorem 4.4
we now present the C-matrices, G-matrices, and F -polynomials for the left com-
panion cluster algebra LA in Table 3 from which we invite the reader to directly
verify these results.

To state a relationship between a generalized cluster algebra and its right-
companion we need the following analogue of Proposition 4.3.

Proposition 4.6. Let (x,y, B,Z) be a generalized seed over P. For any t ∈ Tn
and any 1 ≤ j ≤ n we have the following equalities in Qsf(y) and Qsf(x,y)
respectively:

(4.2) F t
j (y,0) = RF t

j

(
Ry
)

and F t
j (ŷ,0) = RF t

j

(
Rŷ
)
,

where Ryi = ydii and Rŷi = ŷdii .
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LC(1) =

(
1 0
0 1

)
, LG(1) =

(
1 0
0 1

)
,

{
LF1(1) = 1
LF2(1) = 1

LC(2) =

(
−1 0

0 1

)
, LG(2) =

(
−1 0

0 1

)
,

{
LF1(2) = 1 + Ly1
LF2(2) = 1

LC(3) =

(
−1 0

0 −1

)
, LG(3) =

(
−1 0

0 −1

)
,

{
LF1(3) = 1 + Ly1
LF2(3) = 1 + Ly2 + 3Ly1

Ly2 + 3Ly21
Ly2 + Ly31

Ly2

LC(4) =

(
1 −3
0 −1

)
, LG(4) =

(
1 0
−1 −1

)
,

{
LF1(4) = 1 + Ly2 + 2Ly1

Ly2 + Ly21
Ly2

LF2(4) = 1 + Ly2 + 3Ly1
Ly2 + 3Ly21

Ly2 + Ly31
Ly2

LC(5) =

(
−2 3
−1 1

)
, LG(5) =

(
1 3
−1 −2

)
,





LF1(5) = 1 + Ly2 + 2Ly1
Ly2 + Ly21

Ly2
LF2(5) = 1 + 2Ly2 + Ly22 + 3Ly1

Ly2

+3Ly1
Ly22 + 3Ly21

Ly22 + Ly31
Ly22

LC(6) =

(
2 −3
1 −2

)
, LG(6) =

(
2 3
−1 −2

)
,





LF1(6) = 1 + Ly2 + Ly1
Ly2

LF2(6) = 1 + 2Ly2 + Ly22 + 3Ly1
Ly2

+3Ly1
Ly22 + 3Ly21

Ly22 + Ly31
Ly22

LC(7) =

(
−1 3
−1 2

)
, LG(7) =

(
2 3
−1 −1

)
,

{
LF1(7) = 1 + Ly2 + Ly1

Ly2
LF2(7) = 1 + Ly2

LC(8) =

(
1 0
1 −1

)
, LG(8) =

(
1 3
0 −1

)
,

{
LF1(8) = 1
LF2(8) = 1 + Ly2

LC(9) =

(
1 0
0 1

)
, LG(9) =

(
1 0
0 1

)
,

{
LF1(9) = 1
LF2(9) = 1

Table 3: C-matrices, G-matrices, and F -polynomials for the same mutation se-
quence (3.7) applied to the seeds of LA.
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Proof. We will proceed by induction on the distance from t0 to t in Tn. To begin,

note that by definition we have F t0
j = 1 = RF t0

j . Consider t
k

— t′ with t′ further
from t0 than t and suppose F t

j = RF t
j for all j. Then by Proposition 2.8 and

Proposition 3.13 we see for j 6= k that F t′
j = F t

j = RF t
j = RF t′

j while taking j = k
we have

RF t′
k

(
Ry
)

=
(
RF t

k

)−1
( n∏

i=1

Ry
[−Rctik]+
i

(
RF t

i

)[−btikdk]+
)(

1+
n∏

i=1

Ry
Rctik
i

(
RF t

i

)btikdk
)

=
(
F t
k

)−1
( n∏

i=1

y
[−ctikdk]+
i

(
F t
i

)[−btikdk]+
)(

1+
n∏

i=1

y
ctikdk
i

(
F t
i

)btikdk
)

=
(
F t
k

)−1
( n∏

i=1

y
[−ctik]+
i

(
F t
i

)[−btik]+
)dk(

1 +

( n∏

i=1

y
ctik
i

(
F t
i

)btik
)dk)

= F t′
k (y,0).

It follows by induction that F t
j (y,0) = RF t

j

(
Ry
)

for all t ∈ Tn and 1 ≤ j ≤ n.

Finally notice that Rŷj = Ryj
n∏
i=1

Rx
bijdj
i = y

dj
j

n∏
i=1

x
bijdj
i = ŷ

dj
j so that substituting

the variables ŷj into this identity gives F t
j (ŷ,0) = RF t

j

(
Rŷ
)

for all t ∈ Tn and
1 ≤ j ≤ n.

Write xti
∣∣
z=0
∈ F and ytj

∣∣
z=0
∈ P for the variables obtained by applying equa-

tions (3.15) and (3.14) respectively using the specialized F -polynomials F t
j (y,0)

in place of the generic F -polynomials F t
j (y, z).

Theorem 4.7. We have xti
∣∣
z=0

= Rxti and
(
ytj
∣∣
z=0

)dj = Rytj.

Proof. To see the claim for coefficients we apply Theorem 2.9 and Theorem 3.14
along with Corollary 4.1 and Proposition 4.6 to get

Rytj =

( n∏

i=1

Ry
Rctij
i

) n∏

i=1

RF t
i

∣∣
P(Ry)b

t
ijdj =

( n∏

i=1

y
ctijdj
i

) n∏

i=1

F t
i

∣∣
P(y,0)b

t
ijdj =

(
ytj
)dj .

Finally to see the claim for cluster variables we apply Theorem 2.10 and Theo-
rem 3.15 along with Corollary 4.2 and Proposition 4.6 to get

Rxtj =

( n∏

i=1

Rx
Rgtij
i

)RF t
j

∣∣
F(Rŷ)

RF t
j

∣∣
P(Ry)

=

( n∏

i=1

x
gtij
i

)
F t
j

∣∣
F(ŷ,0)

F t
j

∣∣
P(y,0)

= xtj.

Example 4.8. As an illustration of Corollaries 4.1 and 4.2 as well as Theorem 4.7
we now present the C-matrices, G-matrices, and F -polynomials for the right com-
panion cluster algebra RA in Table 4 from which we invite the reader to directly
verify these results.
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RC(1) =

(
1 0
0 1

)
, RG(1) =

(
1 0
0 1

)
,

{
RF1(1) = 1
RF2(1) = 1

RC(2) =

(
−1 0
0 1

)
, RG(2) =

(
−1 0

0 1

)
,

{
RF1(2) = 1 + Ry1
RF2(2) = 1

RC(3) =

(
−1 0

0 −1

)
, RG(3) =

(
−1 0

0 −1

)
,

{
RF1(3) = 1 + Ry1
RF2(3) = 1 + Ry2 + Ry1

Ry2

RC(4) =

(
1 −1
0 −1

)
, RG(4) =

(
1 0
−3 −1

)
,





RF1(4) = 1 + 3Ry2 + 3Ry22 + Ry32
+3Ry1

Ry22 + 2Ry1
Ry32 + Ry21

Ry32
RF2(4) = 1 + Ry2 + Ry1

Ry2

RC(5) =

(
−2 1
−3 1

)
, RG(5) =

(
1 1
−3 −2

)
,





RF1(5) = 1 + 3Ry2 + 3Ry22 + Ry32
+3Ry1

Ry22 + 2Ry1
Ry32 + Ry21

Ry32
RF2(5) = 1 + 2Ry2 + Ry22 + Ry1

Ry22

RC(6) =

(
2 −1
3 −2

)
, RG(6) =

(
2 1
−3 −2

)
,

{
RF1(6) = 1 + 3Ry2 + 3Ry22 + Ry32 + Ry1

Ry32
RF2(6) = 1 + 2Ry2 + Ry22 + Ry1

Ry22

RC(7) =

(
−1 1
−3 2

)
, RG(7) =

(
2 1
−3 −1

)
,

{
RF1(7) = 1 + 3Ry2 + 3Ry22 + Ry32 + Ry1

Ry32
RF2(7) = 1 + Ry2

RC(8) =

(
1 0
3 −1

)
, RG(8) =

(
1 1
0 −1

)
,

{
RF1(8) = 1
RF2(8) = 1 + Ry2

RC(9) =

(
1 0
0 1

)
, RG(9) =

(
1 0
0 1

)
,

{
RF1(9) = 1
RF2(9) = 1

Table 4: C-matrices, G-matrices, and F -polynomials for the same mutation se-
quence (3.7) applied to the seeds of RA.
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On the Torelli theorem for
Deligne-Hitchin moduli spaces

by David Alfaya and Tomas L. Gómez

Abstract

We prove a Torelli theorem for the parabolic Deligne-Hitchin moduli
space, and compare it with previous Torelli theorems for non-parabolic
Deligne-Hitchin moduli spaces.

1 Introduction

Let X be a smooth projective complex curve. The classical Torelli theorem says
that we can recover the isomorphism class of the curve from the isomorphism class
of the Jacobian J(X) (which we think of as the moduli space of degree 0 line bun-
dles on X) with the standard polarization Θ(X). In other words, if (J(X),Θ(X))
is isomorphic to (J(X ′),Θ(X ′)) as polarized varieties, then there is an isomor-
phism between X and X ′. This has been generalized for other moduli spaces.
A theorem which asserts that we can recover the curve X from the isomorphism
class of some moduli space is called a Torelli theorem.

For instance, a Torelli theorem is known for the moduli space of semistable
vector bundles with fixed determinant on X [Tj, NR, MN, KP]. For the moduli
space of Higgs bundles, the Torelli theorem was proved in [BG]. In the case of
the moduli space of parabolic bundles and parabolic Higgs bundles we recover the
curve with the parabolic points [BBB, BHK, GL, BGL].

Deligne [De] has given a glueing construction of the twistor space of the moduli
space of Higgs bundles [Hi2, §9], and this complex analytic space is called the
Deligne-Hitchin moduli space (see [Si3] for the description).

In [BGHL] a Torelli theorem for the Deligne-Hitchin moduli space is proved (it
should be noted that in [BGHL] we fix the determinant of the underlying vector
bundle to be trivial, so the structure group is SL(r,C), but in [Si3] only the degree
is fixed, so the structure group is GL(r,C)).

In [BGH], Deligne glueing is used to construct a Deligne-Hitchin moduli space
for a semisimple structure group and a Torelli type theorem is proved for it.

In this talk we report on the work [AG], where we prove a Torelli theorem
for the Deligne-Hitchin moduli space for parabolic vector bundles, which is con-
structed using Deligne glueing. The detailed constructions and proofs (sometimes
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with more generality) can be found in the original paper [AG]. The aim here is
to highlight the main ideas and to explain the similarities and differences with
[BGHL] and [BGH].

The theorem we are going to prove is (see next section for the definition of the
Deligne-Hitchin moduli space)

Theorem 1.1. Fix a genus g ≥ 3, a number of points n ≥ 1, and a rank r ≥ 2.
Let X and X ′ be smooth complex projective curves of genus g, and D ⊂ X,
D′ ⊂ X ′ divisors consisting of n distinct points. Let α and α′ be systems of weights
satisfying the conditions in Remark 2.1. Assume

∑
x∈D β(x) and

∑
x′∈D′ β

′(x′) are
coprime to r.

If r = 2 and the parabolic Deligne-Hitchin moduli spaces are isomorphic as
analytic varieties

MDH(X, r, α) ∼=MDH(X ′, r, α′)

then (X ′, D′) is isomorphic to either (X,D) or (X,D).

We remark that the condition r = 2 is imposed because we use [BBB]. The
situation is the following: the moduli spaces of parabolic Higgs bundles

M(X, r, α, ξ) and M(X, r,−α, ξ)

with ξ = OX(−∑x∈D β(x) · x) embed into the parabolic Deligne-Hitchin moduli
space. We show (for arbitrary r) that we can recover the images of these em-
beddings just from the isomorphism class of the parabolic Deligne-Hitchin moduli
space. Then we apply the Torelli theorem for parabolic vector bundles [BBB]
(which requires r = 2) to obtain our Torelli theorem. Therefore, if the result
of [BBB] were generalized to arbitrary r, we would automatically get a Torelli
theorem for parabolic Deligne-Hitchin moduli spaces for arbitrary rank r.
Acknowledgments. Besides GEOQUANT 2015, this work was also presented
in the conference “NS@50: Fifty Years of the Narasimhan-Seshadri Theorem”
(Chennai Mathematical Institute, October 2015). We thank the organizers and
participants of both conferences, for the invitation to present our work, and for
the stimulating atmosphere. We thank Indranil Biswas for discussions. This re-
search was funded by MINECO (grant MTM2013-42135-P and ICMAT Severo
Ochoa project SEV-2015-0554) and the 7th European Union Framework Pro-
gramme (Marie Curie IRSES grant 612534 project MODULI). The first author
was also supported by a predoctoral grant from Fundación La Caixa – Severo
Ochoa International Ph.D. Program.

2 Parabolic Deligne-Hitchin moduli space

In this section we recall some basic definitions and the constructions of the moduli
spaces involved. Let X be a smooth projective complex curve, and let D be a
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divisor consisting of n ≥ 1 distinct points (these are called the parabolic points). A
parabolic vector bundle on X is a holomorphic vector bundle E or rank r endowed
with a weighted filtration of the fiber Ex over each parabolic point x ∈ D:

Ex = Ex,1 ) Ex,2 ) · · · ) Ex,lx ) Ex,lx+1 = 0

0 ≤ α1(x) < α2(x) < · · · < αlx(x) < 1 .

We say that αi(x) is the weight associated to Ex,i. In this article we will assume
that the filtrations are full flags, i.e., lx = r for all parabolic points x.

Let (E,E•) be a parabolic vector bundle. We define its parabolic degree to be

(2.1) pardeg(E,E•) = deg(E) +
∑

x∈D

r∑

i=1

αi(x) .

Let F ⊂ E be a subbundle. There is a parabolic structure induced on F as follows.
For each parabolic point x ∈ X we obtain a filtration Fx,i of Fx by looking at the
intersections Fx ∩ Ex,j for all j. The weight βi(x) of Fx,i is defined as

βi(x) = max
j
{αj(x) : Fx ∩ Ex,j = Fx,i} .

We say that a parabolic bundle (E,E•) is stable (respectively, semistable) if for
all proper parabolic subbundles F ( E, with the induced parabolic structure,

pardeg(F, F•) < pardeg(E,E•) (respectively, ≤) .

Let M(X, r, α, ξ) (or M(r, α, ξ), or just M, if the rest of the data is clear from
the context) be the moduli space of semistable parabolic vector bundles on X of
rank r, weights α and fixed determinant isomorphic to the line bundle ξ. It is
projective of dimension

dimM(X, r, α, ξ) = (r2 − 1)(g − 1) +
n(r2 − r)

2
.

Remark 2.1. We will assume the following conditions throughout the article

1. The weights are generic (see [AG] for the explicit meaning of generic in our
situation), and the filtrations are full flags.

2. The weights are “concentrated”, meaning that αr(x) − α1(x) < 4
nr2

for all
parabolic points x ∈ D.

3. For each parabolic point the sum of the weights is an integer, i.e., for all
parabolic points x ∈ D

β(x) :=
r∑

i=1

αi(x) ∈ Z .
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4. The degree of ξ (the determinant of the vector bundles E) and the rank r
are coprime.

Proposition 2.2. Under the above assumptions, there are no strictly semistable
parabolic vector bundles with respect the the weights α, the moduli space

M(X, r, α, ξ)

is smooth, projective and parameterizes stable parabolic bundles. Furthermore, if
(E,E•) is a parabolic vector bundle, then it is stable as a vector bundle if and only
if it is stable as a parabolic vector bundle.

For the proof, see [AG]. Recall that, as the rank and degree are coprime, no
vector bundle is strictly semistable as a vector bundle.

A strongly parabolic Higgs bundle is a parabolic vector bundle (E,E•) together
with a homomorphism, called Higgs field,

Φ : E −→ E ⊗K(D)

such that, for all parabolic points x ∈ D, the homomorphism induced in the fiber
satisfies

Φ(Ex,i) ⊂ Ex,i+1 ⊗K(D)|x
where K is the canonical line bundle of the curve X. A weakly parabolic Higgs
bundle is defined analogously, but requiring the weaker condition

Φ(Ex,i) ⊂ Ex,i ⊗K(D)|x .

Unless otherwise stated, all Higgs fields will be strongly parabolic.
A subbundle F ⊂ E is called Φ-invariant if Φ(F ) ⊂ F ⊗ K(D). We say

that a parabolic Higgs bundle (E,E•,Φ) is stable (respectively, semistable) if the
inequality (2.1) holds for all proper Φ-invariant subbundles.

Let MHiggs(X, r, α, ξ) (or just MHiggs if the rest of the data is clear from the
context) be the moduli space of semistable parabolic Higgs bundles on X of rank
r, weights α, fixed determinant isomorphic to the line bundle ξ, and tr Φ = 0.
Recall that we are assuming that the weights are generic. This implies that there
are no strictly semistable parabolic Higgs bundles, and that this moduli space is
smooth. Its dimension is

dimMHiggs(X, r, α, ξ) = 2(r2 − 1)(g − 1) + n(r2 − r) .

The cotangent space ofM(r, α, ξ) sits inside this moduli space as an open subset

(2.2) T ∗M(X, r, α, ξ) ⊂MHiggs(X, r, α, ξ) .

This open subset consists of the parabolic Higgs bundles whose underlying para-
bolic bundle is stable. The complement consists of parabolic Higgs bundles which
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are stable as a parabolic Higgs bundle, but whose underlying parabolic bundle is
unstable.

To see (2.2), note that the tangent space to a point (E,E•) is

H1(X,ParEnd0(E,E•)) ,

the first cohomology of the sheaf of traceless weakly parabolic endomorphisms
(the traceless condition comes from the fact that the determinant is fixed). By
Serre duality

H1(X,ParEnd0(E,E•))
∗ ∼= H0(X, SParEnd0(E,E•)⊗K(D)) ,

the space of strongly parabolic Higgs fields with tr Φ = 0, and any such Higgs
bundle is stable because the underlying parabolic vector bundle is stable. This
explains why it is natural to require that the Higgs field is traceless and strongly
parabolic (as opposed to weakly parabolic).

The moduli space of parabolic Higgs bundles is endowed with a C∗-action
which, for each t ∈ C∗, sends (E,E•,Φ) to (E,E•, tΦ). This is compatible, using
(2.2), with scalar multiplication on the cotangent bundle of M(X, r, α, ξ).

We now recall the definition of the Hitchin map and spectral curves in this
setting. Denote by S the total space of the line bundle K(D), let

p : S = Spec Sym•(K(D))∗ −→ X

be the projection and let x ∈ H0(S, p∗K(D)) be the tautological section. Taking
the characteristic polynomial of a Higgs field

det(x · id− p∗Φ) = xr + s̃1x
r−1 + s̃2x

r−2 + · · ·+ s̃r

we obtain sections s̃i ∈ H0(S, p∗KiDi) and it can be shown that these come from
sections on X, i.e., there are sections si ∈ H0(X,KiDi) such that p∗si = s̃i.

Recall that we are assuming that Φ is strongly parabolic. Then the residue at
each parabolic point is nilpotent and hence the eigenvalues of Φ vanish at the divi-
sor D. Therefore, for each i the section si belongs to the subspace H0(X,KiDi−1),
where we use the shorthand KiDj = Ki ⊗OX(D)j.

Furthermore, we are assuming that the trace of Φ is identically zero, so s1 = 0.
We then define the Hitchin space as

(2.3) H0 = H0(X,K2D)⊕ · · · ⊕H0(X,KrDr−1) .

The Hitchin map is defined by taking the characteristic polynomial of the Higgs
field, i.e., to each Higgs field Φ we associate the point in the Hitchin space defined
by the elements si, 2 ≤ i ≤ r defined above

H :MHiggs(r, α, ξ) −→ H0 .
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This map is projective with connected fibers.
From now on we will assume

ξ = OX
(
−
∑

x∈D
β(x) · x

)

so that the parabolic degree of our vector bundles will be zero (recall that β(x) is
an integer because of the assumptions in Remark 2.1).

Deligne introduced the notion of λ-connection (λ ∈ C) which interpolates
between Higgs bundles and usual connections: if λ = 0 we get a Higgs bundle,
and if λ = 1 we get a usual connection.

Definition 2.3. Let (E,E•) be a parabolic bundle with an isomorphism det(E) ∼=
ξ. A λ-connection, for the group SL(r,C), on X is a triple (E,E•,∇) where ∇ is
a C-linear homomorphism

∇ : E −→ E ⊗K(D)

such that

1. (Leibniz) If f is a holomorphic function and s is a holomorphic section of E
(both over some open set of X),

∇(fs) = f∇(s) + λs⊗ df .

2. For each parabolic point x ∈ D the residue satisfies

Resx(∇)(Ex,i) ⊆ Ex,i .

3. For each parabolic point x ∈ D, the action of the residue of ∇ on Ex,i/Ex,i+1

is multiplication by λαi(x) (this is well defined because the residue preserves
the filtration by the previous property).

4. The operator tr(∇) : det(E) −→ det(E) ⊗ K(D) induced by ∇ coincides
with λ∇ξ,β (defined below).

A parabolic vector bundle (E,E•) induces a parabolic structure on the deter-
minant ξ = det(E), with weights β(x) =

∑r
i=1 αi(x), and using the correspon-

dence between parabolic bundles of parabolic degree 0 and connections, this gives
a connection on ξ (with poles along D) which we denote ∇ξ,β.

A subbundle F ⊂ E is called ∇-invariant if ∇(F ) ⊂ F ⊗K(D). We say that
a λ-connection is stable (respectively, semistable) if the inequality (2.1) holds for
all proper ∇-invariant parabolic subbundles.

LetMHodge(X, r, α, ξ) (or justMHodge if the rest of the data is clear from the
context) be the moduli space of tuples (λ,E,E•,∇) where ∇ is a semistable λ-
connection (these objects are called parabolic Hodge bundles). It has a projection

(2.4) prλ :MHodge(X, r, α, ξ) −→ C .
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Note that, if λ = 0, then a λ-connection is just a Higgs bundle, so we have

pr−1λ (0) =MHiggs(X, r, α, ξ) .

The Hodge moduli space is endowed with a C∗-action which, for each t ∈ C∗,
sends

(2.5) (λ,E,E•,∇) 7→ (tλ, E,E•, t∇) .

This extends the standard C∗-action on the moduli space of parabolic Higgs bun-
dles, and the projection prλ is equivariant, using the standard scalar multiplication
on C.

On the other hand, if λ = 1, then a λ-connection is a holomorphic flat con-
nection on a parabolic vector bundle, i.e., a logarithmic connection such that the
residue over each parabolic point x acts on Ex,i/Ex,i+1 as αi(x). Therefore, the
fiber over λ = 1 is the moduli space of parabolic SL(r,C) connections

pr−1λ (1) =Mconn(X, r, α, ξ) .

If ∇ is a λ-connection with λ 6= 0, then (1/λ)∇ is a usual connection, so the fiber
of prλ over any λ 6= 0 is isomorphic to the moduli space of parabolic connections
(i.e., meromorphic connections which respect the parabolic filtration). Therefore,
the Hodge moduli space shows that the moduli space of Higgs bundles is a degen-
eration of the moduli space of connections (or, equivalently, the moduli space of
connections is a deformation of the moduli space of Higgs bundles).

Now we are going to describe Deligne’s glueing in the parabolic setting. Let XR
be the real manifold underlying X with the orientation induced by the complex
structure. Fix a base point x0 and a positively oriented simple loop

γx ∈ π1(XR \D, x0)

around each parabolic point x ∈ D. Let Mrep(XR, r, α) be the set of irreducible
representations

ρ : π1(XR \D, x0) −→ SL(r,C)

of the fundamental group, up to conjugation by SL(r,C), such that, for each
parabolic point x ∈ D, the eigenvalues of ρ(γx) are {e−2πiαi(x)}. Note that, since
the sum of the weights for each parabolic point is an integer, the determinant of
ρ(γx) is 1.

Simpson [Si1] has given a Riemann-Hilbert correspondence between stable
parabolic connections of parabolic degree 0 and stable filtered local systems of
degree 0 for the general linear group GL(n,C). It has a version for our setting (the
group is SL(r,C) and the eigenvalues of the monodromies around the parabolic
points are fixed by the weights α as above) which gives a biholomorphism

(2.6) RHX :Mrep(XR, r, α)
∼=−→Mconn(X, r, α, ξ) .
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Using this biholomorphism and the action (2.5) we obtain a holomorphic open
embedding

C∗ ×Mrep(XR, r, α) ↪→ MHodge(X, r, α, ξ)(2.7)

(t, ρ) 7→ (t, t · RHX(ρ))

onto the open locus pr−1λ (C∗) ⊂MHodge(X, r, α, ξ).
Let JR be the almost complex structure on XR coming from X. Then −JR

is also an almost complex structure on XR whose corresponding Riemann surface
will be denoted by X. Let ξ be the line bundle on X given by the complex
structure conjugate to ξ. As a topological line bundle, it is isomorphic to ξ−1.
Note that the underlying manifold XR to X is the same as XR but the induced
orientation is the opposite. Therefore, if we consider the same loops γx defined
above, we can identify

Mrep(XR, r, α) =Mrep(XR, r,−α) .

We will also use the Riemann-Hilbert isomorphism for X

RHX :Mrep(XR, r,−α)
∼=−→Mconn(X, r,−α, ξ) .

The parabolic Deligne-Hitchin moduli space is defined by glueing

MDH(X, r, α) :=MHodge(X, r, α, ξ) ∪MHodge(X, r,−α, ξ)

along the image of C∗ ×Mrep(XR, r, α) = C∗ ×Mrep(XR, r,−α) using RHX and
RHX , identifying

(λ, λ · RHX(ρ)) ∈MHodge(X, r, α, ξ)

with
(λ−1, λ−1 · RHX(ρ)) ∈MHodge(X, r,−α, ξ) .

The projection prλ in (2.4) extends to a morphism to P1 which we denote by the
same letter

prλ :MDH(X, r, α) −→ P1 .

This moduli space will be denoted MDH if the rest of the data is clear from
the context. It is clear, staring at the definition, that there is a holomorphic
isomorphism,

(2.8) MDH(X, r, α) ∼=MDH(X, r,−α)

covering the antipodal map on P1. Because of this isomorphism, we cannot ex-
pect to recover the isomorphism class of (X,D), but only the unordered pair
{(X,D), (X,D)}.
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3 Torelli theorem

Taking the Higgs field to be zero, we have an embedding of the moduli space of
parabolic vector bundles in the moduli space of parabolic Higgs bundles. Fur-
thermore, a Higgs bundle is the same thing as a 0-connection, so we also have an
embedding into the Hodge moduli space. Finally, the Hodge moduli space is an
open subset of the Deligne-Hitchin moduli space, so we have an embedding

(3.1) M(X, r, α, ξ) ⊂MDH(X, r, α)

Note that the image of this embedding sits on the fiber over λ = 0. By definition,
MHodge(X, r,−α, ξ) is also an open subset of MDH(X, r, α), so we also have an
embedding

(3.2) M(X, r,−α, ξ) ⊂MDH(X, r, α)

and the image of this embedding sits over λ =∞ ∈ P1.
The strategy of the proof is the following. Given the isomorphism class of

MDH(X, r, α) as an analytic variety, we want to identify the image ofM(X, r, α, ξ)
under the first embedding. Then we have the isomorphism class ofM(X, r, α, ξ),
and we can apply the Torelli theorem [BBB] for the moduli space of parabolic
bundles, in order to recover the isomorphism class of the pointed curve. Unfor-
tunately, the Torelli theorem for parabolic bundles is only known for r = 2, and
this is why we have to restrict our attention to rank 2.

Because of the isomorphism (2.8), we will not be able to distinguish between
the images of (3.1) and (3.2).

The idea of the proof is to look at all vector fields on MDH(X, r, α), i.e.,
sections of its tangent bundle. We look at the analytic subset of this moduli space
defined as the simultaneous zeroes of all vector fields. More precisely, we will
prove the following

Proposition 3.1. Let Z be an irreducible component of

{z ∈MDH(X, r, α) : η(z) = 0 for all η ∈ H0(MDH, TMDH)}

such that
dimZ = dimM(X, r, α, ξ) .

Then Z is the image of one of the embeddings (3.1) and (3.2).

We start by showing that, at most, these two subsets satisfy the condition:

Proposition 3.2. Let Z be an irreducible component of MC∗
DH, the fixed locus of

the standard C∗-action. Then

dimZ ≤ dimM(X, r, α, ξ)

with equality only for Z the image of the embedding (3.1) or (3.2).
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Proof. Here we use the standard C∗-action. This produces a vector field which
vanishes at the fixed point locus. The projection prλ is equivariant with respect
to the standard C∗-action, so the irreducible components of the fixed point locus
of the C∗-action have to sit in the fibers of λ equal to 0 or ∞. We will first
consider the case λ = 0, so the fixed locus sits in the moduli space of parabolic
Higgs bundles. The Hitchin map is equivariant with respect to the C∗-action on
the parabolic Higgs moduli, so the fixed locus has to sit in H−1(0), which is called
the nilpotent cone.

The nilpotent cone is equidimensional of dimension dimM(X, r, α, ξ). Exactly
one of its components is the moduli space of parabolic bundlesM(X, r, α, ξ), and
this is a fixed locus of the standard C∗-action. The standard C∗-action is nontrivial
on the other components (by an argument similar to [Si2, Lemma 11.9]). We
remark that the other fixed locus subvarieties correspond to variations of Hodge
structures.

The case λ = ∞ is the same, but looking at the moduli space of parabolic
Higgs bundles on X.

In [BGHL] the same proof was used. In [BGH] we do not have at our dis-
posal an analogue of [Si2, Lemma 11.9], and the proof is based on a study of the
infinitesimal deformations of the points fixed by the standard C∗-action.

Now we show the opposite direction, i.e., we show that the images of these
embeddings do satisfy the condition. We would like to show that all global vector
fields vanish at M, and we will do this by showing the stronger condition

H0(M(X, r, α, ξ), TMDH(X, r, α)|M(X,r,α,ξ)) = 0 .

This will be proved in several steps.

Lemma 3.3. The holomorphic cotangent bundle

T ∗M(X, r, α, ξ) −→M(X, r, α, ξ)

does not admit any nonzero holomorphic section.

Proof. Since we are assuming full flags, it is known that M(X, r, α, ξ) is rational
[BY, Theorem 6.1], and it is well-known that a smooth rational projective variety
does not admit nonzero holomorphic 1-forms.

In [BGHL] this is Lemma 2.1, and it was proved using the Hecke transform.
The point is that, in the setting of [BGHL], we are looking at differentials (1-
forms) on the moduli space of vector bundles with trivial determinant, which
is not smooth. By doing a Hecke transform, we relate it to the moduli space
of vector bundles with fixed determinant OX(x0) for a fixed point x0. This is a
smooth unirational projective variety [Se, p. 53], so it does not admit any nonzero
holomorphic 1-form. An argument using the Hecke correspondence shows that the
same holds for the moduli space of vector bundles with trivial determinant.
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In [BGH] this is Proposition 4.2, and it was proved using “abelianization”.
By fixing a spectral curve, we obtained a dominant rational map from an abelian
variety to the moduli space of bundles. Using this map, a holomorphic 1-form ω
on the moduli space would give a rational 1-form on the abelian variety which,
by a codimension argument, is shown to be defined on the whole abelian variety.
Any 1-form on an abelian variety is closed, so ω is closed, but the first cohomology
of the moduli space is zero [AB, Ch. 10], so ω = df for a holomorphic function
on the moduli space, but since this is projective, f is constant, so ω = 0.

Lemma 3.4. The holomorphic tangent bundle

TM(X, r, α, ξ) −→M(X, r, α, ξ)

does not admit any nonzero holomorphic section

Proof. We adapt an argument of Hitchin [Hi2, Theorem 6.2]. A section s of the
tangent bundle gives, by contraction, a function on the total space of the cotangent
bundle

s] : T ∗M(X, r, α, ξ) −→ C
which is linear on the fibers. The total space of the cotangent bundle is an open
subset of the moduli of parabolic Higgs bundles, and the codimension of the
complement is greater than two (here we use a calculation of Faltings [F, Lemma
II.6 and V.(iii), p. 561]), so it extends to a function on the moduli of parabolic
Higgs bundles. This descends, using the Hitchin map, to a function on the Hitchin
space, which is homogeneous of degree 1 with respect to the standard C∗-action
(because s] is linear on the fibers). But the Hitchin space (2.3) has no linear part,
so this function has to be zero, and hence s = 0.

In [BGHL] this is Lemma 2.2, and the proof is the same. In [BGH] this is
Proposition 4.1, and we use a result of Faltings [F, Corollary III.3].

Corollary 3.5. The tangent bundle to the parabolic Higgs moduli space, restricted
to the moduli space of parabolic bundles, has no nonzero section, i.e.

H0(M, TMHiggs|M) = 0 .

Proof. There is a short exact sequence on M

0 −→ TM−→ TMHiggs|M −→ N −→ 0

where N is the normal of the embedding ofM inMHiggs, but N ∼= T ∗M because
we have a closed embedding (the zero section) and an open embedding

M⊂ T ∗M⊂MHiggs .

Now we use Lemmas 3.3 and 3.4.
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LetMs−par
Hodge andMs−par

conn be the subsets ofMHodge andMconn where the under-
lying parabolic bundle is stable as a parabolic bundle. Recall that we are assuming
generic weights, so that Ms−par =M.

Proposition 3.6. The projection

prE :Ms−par
conn −→M

sending a connection to the underlying parabolic bundle, admits no holomorphic
section.

Proof. Let s be such a section. The parabolic version of the Riemann-Hilbert
correspondence (2.6) gives a biholomorphism between the moduli space of stable
parabolic connections and the moduli space of irreducible representations of the
fundamental group of the open curve, and this moduli space is an affine variety.
Then the section s would give a holomorphic map from the projective variety
M to an affine variety, but this map has to be constant, so the map s does not
exist.

In [BGHL] this is Proposition 3.2. There we remark that the projection prE
is a torsor under the cotangent bundle. A section of prE then gives a nonzero
cohomology class in the first cohomology class of the cotangent bundle, but in the
setting of [BGHL] it is proved that this cohomology group is zero.

In [BGH] this is Proposition 4.4. We remark that the projection prE is isomor-
phic to the torsor of holomorphic connections on certain determinant line bundle,
but this line bundle is ample, so it does not admit holomorphic connections.

Corollary 3.7. Let
prE :Ms−par

Hodge −→M
be the projection which sends each Hodge bundle to the underlying parabolic bundle.
The only section s of this projection is the standard embedding of M in MHodge.

Proof. The composition of the section s with the projection prλ is a regular func-
tion on the projective variety M, hence it is constant which, after scaling with
the C∗-action, we may assume it is 1 or 0.

It cannot be 1, because the fiber of prλ over 1 is the moduli space of connec-
tions, and it would contradict Proposition 3.6.

If it is 0 then, since the fiber of prλ over 0 is the moduli space of parabolic
Higgs bundles, the section s factors throughMs−par

Higgs , but this is isomorphic to the
total space of T ∗M. Then s is a section of this vector bundle and, by Lemma 3.3,
it has to be the zero section.

Corollary 3.8.

H0(M(X, r, α, ξ), TMHodge(X, r, α, ξ)|M(X,r,α,ξ)) = 0
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Proof. Using the short exact sequence on M

0 −→ TM−→ TMs−par
Hodge|M −→ N −→ 0

and Lemma 3.4, it suffices to show that N has no nonzero sections. Note that N is
isomorphic toMs−par

Hodge as varieties overM, sending (λ,E,E•,∇) to the derivative

at t = 0 of the map C −→Ms−par
Hodge given by

t 7→ (tλ, E,E•, t∇)

so by Corollary 3.7 we conclude that N has no nonzero section.

We are now ready to prove the main Theorem 1.1.
Corollary 3.8 implies that the images of the embeddings (3.1) and (3.2) are

in the fixed point locus of any C∗-action on the parabolic Deligne-Hitchin moduli
space (if they were not, the derivative of the action would give vector field whose
restriction to these images is nonzero). This together with Proposition 3.2, shows
that these are the only irreducible components Z with this property having

dimZ = dimM

hence proving Proposition 3.1.
Finally, using Proposition 3.1, from the isomorphism class of the parabolic

Deligne-Hitchin moduli space we recover the isomorphism class of M(X, r, α, ξ)
or M(X, r,−α, ξ). Therefore, assuming r = 2 we can apply [BBB] to finish the
proof of the main Theorem.

The same ideas also give Torelli theorems for MHiggs and MHodge. Indeed, in
these cases we again have an embedding of M, and the image is characterized
as the only irreducible component, with dimension dimM, of the simultaneous
zeroes of the sections of the tangent bundle. See [AG] for details.
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Abstract

In this paper we study Higgs and co–Higgs G–bundles on compact
Kähler manifolds X. Our main results are:

1. If X is Calabi–Yau (i.e., it has vanishing first Chern class), and (E, θ)
is a semistable Higgs or co–Higgs G–bundle on X, then the principal
G–bundle E is semistable. In particular, there is a deformation retract
ofMH(G) ontoM(G), whereM(G) is the moduli space of semistable
principal G–bundles with vanishing rational Chern classes on X, and
analogously,MH(G) is the moduli space of semistable principal Higgs
G–bundles with vanishing rational Chern classes.

2. Calabi–Yau manifolds are characterized as those compact Kähler man-
ifolds whose tangent bundle is semistable for every Kähler class, and
have the following property: if (E, θ) is a semistable Higgs or co–Higgs
vector bundle, then E is semistable.

1 Introduction

In our previous paper [BBGL] we showed that the existence of semistable Higgs
bundles with a nontrivial Higgs field on a compact Kähler manifold X constrains
the geometry of X. In particular, it was shown that if X is Kähler-Einstein
with c1(TX) ≥ 0, then it is necessarily Calabi-Yau, i.e., c1(TX) = 0. In this
paper we extend the analysis of the interplay between the existence of semistable
Higgs bundles and the geometry of the underlying manifold (actually, we shall
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also consider co-Higgs bundles, and allow the structure group of the bundle to
be any reductive linear algebraic group). Thus, if X is Calabi–Yau and (E, θ) is
a semistable Higgs or co–Higgs G–bundle on X, it is proved that the underlying
principal G–bundle E is semistable (Lemma 5.1). This has a consequence on the
topology of the moduli spaces of principal (Higgs) G-bundles having vanishing
rational Chern classes. We can indeed prove that there is a deformation retract
of MH(G) onto M(G), where M(G) is the moduli space of semistable principal
G–bundles with vanishing rational Chern classes, and analogously,MH(G) is the
moduli space of semistable principal Higgs G–bundles with vanishing rational
Chern classes (cf. [BF, FL] for similar deformation retract results).

As a further application, we can prove a characterization of Calabi–Yau man-
ifolds in terms of Higgs and co-Higgs bundles; the characterization in question
says that if X is a compact Kähler manifold with semistable tangent bundle with
respect to every Kähler class, having the following property: for any semistable
Higgs or co–Higgs vector bundle (E, θ) on X, the vector bundle E is semistable,
then X is Calabi-Yau (Theorem 5.2).

In Section 4 We give a result about the behavior of semistable Higgs bundles
under pullback by finite morphisms of Kähler manifolds. Let (X, ω) be a Ricci–
flat compact Kähler manifold, M a compact connected Kähler manifold, and

f : M −→ X

a surjective holomorphic map such that each fiber of f is a finite subset of M .
Let (EG, θ) be a Higgs G–bundle on X such that the pulled back Higgs G–bundle
(f ∗EG, f ∗θ) on M is semistable (respectively, stable). Then the principal G–
bundle f ∗EG is semistable (respectively, polystable).

2 Preliminaries

Let X be a compact connected Kähler manifold equipped with a Kähler form ω.
Using ω, the degree of torsion-free coherent analytic sheaves on X is defined as
follows:

degree(F ) :=

∫

X

c1(F )
∧

ωd−1 ∈ R ,

where d = dimCX. The holomorphic cotangent bundle of X will be denoted by
ΩX .

Let G be a connected reductive affine algebraic group defined over C. The
connected component of the center of G containing the identity element will be
denoted by Z0(G). The Lie algebra of G will be denoted by g. A Zariski closed
connected subgroup P ⊆ G is called a parabolic subgroup of G if G/P is a projec-
tive variety. The unipotent radical of a parabolic subgroup P will be denoted by
Ru(P ). A Levi subgroup of a parabolic subgroup P is a Zariski closed subgroup



Yang–Mills–Higgs connections on Calabi–Yau manifolds, II 169

L(P ) ⊂ P such that the composition

L(P ) ↪→ P −→ P/Ru(P )

is an isomorphism. Levi subgroups exist, and any two Levi subgroups of P differ
by an inner automorphism of P [Bo, § 11.22, p. 158], [Hu2, § 30.2, p. 184]. The
quotient mapG −→ G/P defines a principal P–bundle onG/P . The holomorphic
line bundle on G/P associated to this principal P–bundle for a character χ of P
will be denoted by G(χ). A character χ of a parabolic subgroup P is called strictly
anti–dominant if χ|Z0(G) is trivial, and the associated holomorphic line bundle on
G(χ) −→ G/P is ample.

For a principal G–bundle EG on X, the vector bundle

ad(EG) := EG ×G g −→ X

associated to EG for the adjoint action of G on its Lie algebra g is called the
adjoint bundle for EG. So the fibers of ad(EG) are Lie algebras identified with
g up to inner automorphisms. Using the Lie algebra structure of the fibers of
ad(EG) and the exterior multiplication of differential forms we have a symmetric
bilinear pairing

(ad(EG)⊗ ΩX)× (ad(EG)⊗ ΩX) −→ ad(EG)⊗ Ω2
X

which will be denoted by
∧

.
A Higgs field on a holomorphic principal G–bundle EG on X is a holomorphic

section θ of ad(EG)⊗ ΩX such that

(2.1) θ
∧

θ = 0 .

A Higgs G–bundle on X is a pair of the form (EG, θ), where EG is holomor-
phic principal G–bundle on X and θ is a Higgs field on EG. A Higgs G–bundle
(EG, θ) is called stable (respectively, semistable) if for every quadruple of the form
(U, P, χ, EP ), where

• U ⊂ X is a dense open subset such that the complement X \U is a complex
analytic subset of X of complex codimension at least two,

• P ⊂ G is a proper parabolic subgroup,

• χ is a strictly anti–dominant character of P , and

• EP ⊂ EG|U is a holomorphic reduction of structure group to P over U such
that θ|U is a section of ad(EP )⊗ ΩU ,
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the following holds:
degree(EP ×χ C) > 0

(respectively, degree(EP ×χ C) ≥ 0); note that since X \U is a complex analytic
subset of X of complex codimension at least two, the line bundle EP ×χ C on U
extends uniquely to a holomorphic line bundle on X.

A semistable Higgs G–bundle (EG, θ) is called polystable if there is a Levi
subgroup L(Q) of a parabolic subgroup Q ⊂ G and a Higgs L(Q)–bundle (E ′, θ′)
on X such that

• the Higgs G–bundle obtained by extending the structure group of (E ′, θ′)
using the inclusion L(Q) ↪→ G is isomorphic to (EG, θ), and

• the Higgs L(Q)–bundle (E ′, θ′) is stable.

Fix a maximal compact subgroup K ⊂ G. Given a holomorphic principal
G–bundle EG and a C∞ reduction of structure group EK ⊂ EG to the subgroup
K, there is a unique connection on the principal K–bundle EK that is compatible
with the holomorphic structure of EG [At, pp. 191–192, Proposition 5]; it is known
as the Chern connection. A C∞ reduction of structure group of EG to K is called
a Hermitian structure on EG.

Let Λω denote the adjoint of multiplication of differential forms on X by ω.
Given a Higgs G–bundle (EG, θ) on X, a Hermitian structure EK ⊂ EG is

said to satisfy the Yang–Mills–Higgs equation if

(2.2) Λω(K + θ
∧

θ∗) = z ,

where K is the curvature of the Chern connection associated to EK and z is
some element of the Lie algebra of Z0(G); the adjoint θ∗ is constructed using
the Hermitian structure EK . A Higgs G–bundle admits a Hermitian structure
satisfying the Yang–Mills–Higgs equation if and only if it is polystable [Si], [BiSc,
p. 554, Theorem 4.6].

Given a polystable Higgs G–bundle (E, θ), any two Hermitian structures on
EG satisfying the Yang–Mills–Higgs equation differ by a holomorphic automor-
phism of EG that preserves θ; however, the associated Chern connection is unique
[BiSc, p. 554, Theorem 4.6].

3 Higgs G–bundles on Calabi–Yau manifolds

Henceforth, till the end of Section 4, we assume that c1(TX) ∈ H2(X, Q) is zero.
From this assumption it follows that every Kähler class on X contains a Ricci–flat
Kähler metric [Ya, p. 364, Theorem 2]. We will assume that the Kähler form ω
on X is Ricci–flat.
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3.1 Higgs G–bundles on Calabi-Yau manifolds

Let (EG, θ) be a polystable Higgs G–bundle on X. For any holomorphic tangent
vector v ∈ TxX, note that θ(x) is an element of the fiber ad(EG)x. For any point
x ∈ X, consider the complex subspace

(3.1) Θ̂x := {θ(x)(v) | v ∈ TxX} ⊂ ad(EG)x .

Form (2.1) it follows immediately that Θ̂x is an abelian subalgebra of the Lie
algebra ad(EG)x.

Let ∇ be the connection on ad(EG) induced by the unique connection on EG
given by the solutions of the Yang–Mills–Higgs equation.

Lemma 3.1.

1. The abelian subalgebra Θ̂x ⊂ ad(EG)x is semisimple.

2. {Θ̂x}x∈X ⊂ ad(EG) is preserved by the connection ∇ on ad(EG). In par-
ticular,

{Θ̂x}x∈X ⊂ ad(EG)

is a holomorphic subbundle.

Proof. First take G = GL(n,C), so that (EG, θ) defines a Higgs vector bundle
(F, ϕ) of rank n. Let

Θ̂′x ⊂ End(Fx)

be the subalgebra constructed as in (3.1) for the Higgs vector bundle (F, ϕ). From
[BBGL, Proposition 2.5] it follows immediately that there is a basis of the vector
space Fx such that

ϕ(x)(v) ∈ End(Fx)

is diagonal with respect to it for all v ∈ Tx. This implies that the subalgebra Θ̂′x
is semisimple (this uses the Jordan–Chevalley decomposition, see e.g. [Hu1, Ch.
2]).

Consider the OX–linear homomorphism

η : TX −→ End(F )

that sends any w ∈ TyX to ϕ(y)(w) ∈ End(Fy), where ϕ as before is the
Higgs field on the holomorphic vector bundle F . Proposition 2.2 of [BBGL] says
that ϕ is flat with respect to the connection on End(F ) ⊗ ΩX induced by the
connection ∇ on End(F ) = ad(EG) and the Levi–Civita connection on ΩX for ω.
Therefore, the above homomorphism η intertwines the Levi–Civita connection on
TX and the connection on End(F ). Consequently, the image η(TX) ⊂ End(F )
is preserved by the connection on End(F ). On the other hand, η(TX) coincides

with {Θ̂′x}x∈X ⊂ End(F ).
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Therefore, the lemma is proved when G = GL(n,C).
For a general G, take any homomorphism

ρ : G −→ GL(N,C)

such that ρ(Z0(G)) lies inside the center of GL(N,C). Let (Eρ, θρ) be the Higgs
vector bundle of rank N given by (EG, θ) using ρ. For any Hermitian structure
on EG solving the Yang–Mills–Higgs equation for (EG, θ), the induced Hermitian
structure on Eρ solves the Yang–Mills–Higgs equation for (Eρ, θρ). We have shown
above that the lemma holds for (Eρ, θρ).

Since the lemma holds for (Eρ, θρ) for every ρ of the above type, we conclude
that the lemma holds for (EG, θ).

As before, (EG, θ) is a polystable Higgs G–bundle on X. Fix a Hermitian
structure

(3.2) EK ⊂ EG

that satisfies the Yang–Mills–Higgs equation for (EG, θ).
Take another Higgs field β on EG. Let

β̃ : TX −→ ad(EG)

be the OX–linear homomorphism that sends any tangent vector w ∈ TyX to

β(y)(w) ∈ ad(EG)y .

Theorem 3.2. Assume that the image β̃(TX) is contained in the subbundle

{Θ̂x}x∈X ⊂ ad(EG)

in Lemma 3.1. Then EK in (3.2) also satisfies the Yang–Mills–Higgs equation for
(EG, β). In particular, (EG, β) is polystable.

Proof. From Theorem 4.2 of [BBGL] we know that EK in (3.2) satisfies the Yang–
Mills–Higgs equation for (EG, 0). Therefore, it suffices to show that β

∧
β∗ = 0

(see (2.2)).
Let

γ : TX −→ ad(EG)

be the C∞(X)–linear homomorphism that sends any w ∈ TyX to θ∗(y)(w) ∈
ad(EG)y. Clearly, we have

(3.3) γ(TX)∗ = {Θ̂x}x∈X ;
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as before, the superscript “∗” denotes adjoint with respect to the reduction EK .
Since the subbundle {Θ̂x}x∈X is preserved by the connection on ad(EG), from
(3.3) it follows that

(3.4) {Θ̂x}x∈X + γ(TX) ⊂ ad(EG)

is a subbundle preserved by the connection; it should be clarified that the above
need not be a direct sum.

We know that θ
∧
θ∗ = 0 [BBGL, Lemma 4.1]. This and (2.1) together imply

that the subbundle in (3.4) is an abelian subalgebra bundle. We have

β̃(TX) ⊂ {Θ̂x}x∈X ,

and hence β∗ is a section of γ(TX)⊗ ΩX ⊂ ad(EG)⊗ ΩX . Since the subbundle
in (3.4) is an abelian subalgebra bundle, we now conclude that β

∧
β∗ = 0.

The proof of Theorem 3.2 gives the following:

Corollary 3.3. Let φ be a Higgs field on EG such that φ
∧
φ∗ = 0. Then EK

in (3.2) also satisfies the Yang–Mills–Higgs equation for (EG, φ). In particular,
(EG, φ) is polystable.

Proof. As noted in the proof of Theorem 3.2, the reduction EK satisfies the Yang–
Mills–Higgs equation for (EG, 0). Since φ

∧
φ∗ = 0, it follows that EK in (3.2)

satisfies the Yang–Mills–Higgs equation for (EG, φ).

Remark 3.4. The condition in Theorem 3.2 that β̃(TX) ⊂ {Θ̂x}x∈X does not
depend on the Hermitian structure EK ; it depends only on the Higgs G–bundle
(EG, θ). In contrast, the condition φ

∧
φ∗ = 0 in Corollary 3.3 depends also on

EK .

3.2 A deformation retraction

Let MH(G) denote the moduli space of semistable Higgs G–bundles (EG, θ) on
X such that all rational characteristic classes of EG of positive degree vanish. It
is known (it is a straightforward consequence of Theorem 2 in [Si]) that if the
following three conditions hold:

1. (EG, θ) is semistable,

2. for all characters χ of G, the line bundle on X associated to EG for χ is of
degree zero, and

3. the second Chern class c2(ad(EG)) ∈ H4(X, Q) vanishes,
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then all characteristic classes of EG of positive degree vanish. Let M(G) denote
the moduli space of semistable principal G–bundles EG on X such that all rational
characteristic classes of EG of positive degree vanish.

We have an inclusion

(3.5) ξ : M(G) −→ MH(G) , EG 7−→ (EG, 0) .

Proposition 3.5. There is a natural holomorphic deformation retraction ofMH(G)
to the image of ξ in (3.5).

Proof. Points ofMH(G) parametrize the polystable Higgs G–bundles (EG, θ) on
X such that all rational characteristic classes of EG of positive degree vanish.
Given such a Higgs G–bundle (EG, θ), from Theorem 3.2 we know that (EG, t · θ)
is polystable for all t ∈ C. Therefore, we have a holomorphic map

F : C×MH(G) −→ MH(G) , (t, (EG, θ)) 7−→ (EG, t · θ) .
The restriction of F to {1} ×MH(G) is the identity map of MH(G), while the
image of the restriction of F to {0} ×MH(G) is the image of ξ. Moreover, the
restriction of F to {0} × ξ(M(G)) is the identity map.

Fix a point x0 ∈ X. Since G is an affine variety and π1(X, x0) is finitely
presented, the geometric invariant theoretic quotient

MR(G) := Hom(π1(X, x0), G)//G

for the adjoint action of G on Hom(π1(X, x0), G) is an affine variety. The points of
MR(G) parameterize the equivalence classes of homomorphisms from π1(X, x0)
to G such that the Zariski closure of the image is a reductive subgroup of G.
Consider the quotient space

MR(K) := Hom(π1(X, x0), K)/K ,

where K as before is a maximal compact subgroup of G. The inclusion of K in
G produces an inclusion

(3.6) ξ′ : MR(K) −→ MR(G) .

Corollary 3.6. There is a natural deformation retraction ofMR(G) to the subset
MR(K) in (3.6).

Proof. The nonabelian Hodge theory gives a homeomorphism of MR(G) with
MH(G). On the other hand, MR(K) is identified with M(G), and the following
diagram is commutative:

M(G)
ξ−→ MH(G)y ∼

y ∼
MR(K)

ξ′−→ MR(G)

Hence Proposition 3.5 produces the deformation retraction in question.
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4 Pullback of Higgs bundles by finite morphisms

Take (X, ω) to be as before. Let M be compact connected Kähler manifold, and
let

f : M −→ X

be a surjective holomorphic map such that each fiber of f is a finite subset of M .
In particular, we have dimM = dimX. It is known that the form f ∗ω represents
a Kähler class on the Kähler manifold M [BiSu, p. 438, Lemma 2.1]. The degree
of torsion-free coherent analytic sheaves on M will be defined using the Kähler
class given by f ∗ω.

Proposition 4.1. Let (EG, θ) be a Higgs G–bundle on X such that the pulled back
Higgs G–bundle (f ∗EG, f ∗θ) on M is semistable. Then the principal G–bundle
f ∗EG is semistable.

Proof. Since the pulled back Higgs G–bundle (f ∗EG, f ∗θ) is semistable, it follows
that (EG, θ) is semistable. Indeed, the pullback of any reduction of structure
group of (EG, θ) that contradicts the semistability condition also contradicts the
semistability condition for (f ∗EG, f ∗θ). Since the Higgs G–bundle (EG, θ) is
semistable, we conclude that the principal G–bundle EG is semistable [Bi, p. 305,
Lemma 6.2]. This, in turn, implies that f ∗EG is semistable (see [BiSu, p. 441,
Theorem 2.4] and [BiSu, p. 442, Remark 2.5]).

Proposition 4.2. Let (EG, θ) be a Higgs G–bundle on X such that the pulled
back Higgs G–bundle (f ∗EG, f ∗θ) on M is stable. Then the principal G–bundle
f ∗EG is polystable.

Proof. The principal G–Higgs bundle (EG, θ) is stable, because any reduction of
it contradicting the stability condition pulls back to a reduction that contradicts
the stability condition for (f ∗EG, f ∗θ). Since (EG, θ) is stable, we know that EG
is polystable [Bi, p. 306, Lemma 6.4]. Now f ∗EG is polystable because EG is so
[BiSc, p. 439, Proposition 2.3], [BiSc, p. 442, Remark 2.6].

5 Co–Higgs bundles

We recall the definition of a co–Higgs vector bundle [Ra1, Ra2, Hi].
Let (X, ω) be a compact connected Kähler manifold and E a holomorphic

vector bundle on X. A co–Higgs field on E is a holomorphic section

θ ∈ H0(X, End(E)⊗ TX)

such that the section θ
∧
θ of End(E)⊗∧2 TX vanishes identically. A co–Higgs

bundle on X is a pair (E, θ), where E is a holomorphic vector bundle on X and
θ is a co–Higgs field on E [Ra1, Ra2, Hi].
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A co–Higgs bundle (E, θ) is called semistable if for all nonzero coherent ana-
lytic subsheaves F ⊂ E with θ(F ) ⊂ F ⊗ TX, the inequality

µ(F ) :=
degree(F )

rank(F )
≤ degree(E)

rank(E)
:= µ(E)

holds.

5.1 Co–Higgs bundles on Calabi–Yau manifolds

In this subsection we assume that c1(TX) ∈ H2(X, Q) is zero, and the Kähler
form ω on X is Ricci–flat. Take a holomorphic vector bundle E on X.

Lemma 5.1. Let θ be a Higgs field or a co–Higgs field on E such that (E, θ) is
semistable. Then the vector bundle E is semistable.

Proof. Let θ be a co–Higgs field on E such that the co–Higgs bundle (E, θ) is
semistable. Assume that E is not semistable. Let F be the maximal semistable
subsheaf of E, in other words, F is the first term in the Harder–Narasimhan
filtration of E. The maximal semistable subsheaf of E/F will be denoted by F1,
so µmax(E/F ) = µ(F1). Note that we have

(5.1) µ(F ) > µ(F1) = µmax(E/F ) .

Since ω is Ricci–flat we know that TX is polystable. The tensor product
of a semistable sheaf and a semistable vector bundle is semistable [AB, p. 212,
Lemma 2.7]. Therefore, the maximal semistable subsheaf of (E/F )⊗ TX is

F1 ⊗ TX ⊂ (E/F )⊗ TX .

Now,
µ(F1 ⊗ TX) = µ(F1)

because c1(TX) = 0. Hence from (5.1) it follows that

(5.2) µ(F ) > µ(F1 ⊗ TX) = µmax((E/F )⊗ TX) .

Let
q : E −→ E/F

be the quotient homomorphism. From (5.2) it follows that there is no nonzero
homomorphism from E to (E/F )⊗ TX. In particular, the composition

F ↪→ E
θ−→ E ⊗ TX q⊗Id−→ (E/F )⊗ TX

vanishes identically. This immediately implies that θ(F ) ⊂ F ⊗ TX. Therefore,
the co–Higgs subsheaf (F, θ|F ) of (E, θ) violates the inequality in the definition of
semistability. But this contradicts the given condition that (E, θ) is semistable.
Hence we conclude that E is semistable.

Note that ΩX is polystable because TX is polystable. Hence the above proof
also works when the co-Higgs field θ is replaced by a Higgs field.
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A particular case of this result was shown in [Ra2] for X a K3 surface. More-
over, a result implying this Lemma was proved in [BH].

5.2 A characterization of Calabi–Yau manifolds

Theorem 5.2. Let X be a compact connected Kähler manifold such that for every
Kähler class [ω] ∈ H2(X, R) on it the following two hold:

1. the tangent bundle TX is semistable, and

2. for every semistable Higgs or co–Higgs bundle (E, θ) on X, the underlying
holomorphic vector bundle E is semistable.

Then c1(TX) = 0.

Proof. We will show that degree(TX) = 0 for every Kähler class on X. For this,
take any Kähler class [ω].

First assume that degree(TX) > 0 with respect to [ω]. We will construct a
co–Higgs field on the holomorphic vector bundle

(5.3) E := OX ⊕ TX .

Since the vector bundle Hom(TX, OX) = ΩX is a direct summand End(E), we
have

End(TX) = ΩX ⊗ TX = Hom(TX, OX)⊗ TX ⊂ End(E)⊗ TX .

Hence IdTX ∈ H0(X, End(TX)) is a co–Higgs field on E; this co–Higgs field on
E will be denoted by θ.

We will show that the co–Higgs bundle (E, θ) is semistable.
For show that, take any coherent analytic subsheaf F ⊂ E such that θ(F ) ⊂

F ⊗ TX. First consider the case where

F
⋂

(0, TX) = 0 .

Then the composition

F ↪→ E = OX ⊕ TX −→ OX

is injective. Hence
µ(F ) ≤ µ(OX) = 0 < µ(E) .

Hence the co–Higgs subsheaf (F, θ|F ) of (E, θ) does not violate the inequality
condition for semistability.

Next assume that
F
⋂

(0, TX) 6= 0 .
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Now in view of the given condition that θ(F ) ⊂ F ⊗ TX, from the construction
of the co–Higgs field θ is follows immediately that

F
⋂

(OX , 0) 6= 0 .

Hence we have

(5.4) F = (F
⋂

(0, TX))⊕ (F
⋂

(OX , 0)) .

Note that
µ(F

⋂
(0, TX)) ≤ µ(TX)

because TX is semistable, and also we have µ(F
⋂

(OX , 0)) ≤ µ(OX). Therefore,
from (5.4) it follows that

µ(F ) ≤ µ(E) .

Hence again the co–Higgs subsheaf (F, θ|F ) of (E, θ) does not violate the inequal-
ity condition for semistability. So (E, θ) is semistable.

Hence by the given condition, the holomorphic vector bundle E is semistable.
But this implies that degree(TX) = 0. This contradicts the assumption that
degree(TX) > 0.

Now assume that degree(TX) < 0. We will construct a Higgs field on the
vector bundle E in (5.3).

The vector bundle Hom(OX , TX) = TX is a direct summand End(E). Hence
we have

End(TX) = TX ⊗ ΩX = Hom(OX , TX)⊗ ΩX ⊂ End(E)⊗ ΩX .

Consequently, IdTX ∈ H0(X, End(TX)) is a Higgs field on E; this Higgs field on
E will be denoted by θ′.

We will show that the above Higgs vector bundle (E, θ) is semistable.
Take any coherent analytic subsheaf

F ⊂ E

such that θ(F ) ⊂ F ⊗ΩX and rank(F ) < rank(E). First consider the case where

F
⋂

(OX , 0) = 0 .

Then we have F ⊂ (0, TX) ⊂ E. Since TX is semistable, we have

µ(F ) ≤ µ(TX) .

On the other hand, µ(TX) < µ(E), because degree(TX) < 0 = µ(OX). Com-
bining these we get

µ(F ) < µ(E) ,
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and consequently, the Higgs subsheaf (F, θ|F ) of (E, θ) does not violate the in-
equality condition for semistability.

Now assume that
F
⋂

(OX , 0) 6= 0 .

Hence

(5.5) rank(F
⋂

(OX , 0)) = 1 ,

because F
⋂

(OX , 0) is a nonzero subsheaf of OX . Now from the construction of
the Higgs field θ it follows that

rank(F
⋂

(0, TX)) = rank(TX) .

Combining this with (5.5) we conclude that rank(F ) = rank(E). This contradicts
the assumption that rank(F ) < rank(E). Hence we conclude that the Higgs
vector bundle (E, θ) is semistable.

Now the given condition says that E is semistable, which in turn implies that

degree(TX) = 0 .

This contradicts the assumption that degree(TX) < 0.
Therefore, we conclude that degree(TX) = 0 for all Kähler classes [ω] on X.

In other words,

(5.6) c1(TX) ∪ ([ω])d−1 = 0

for every Kähler class [ω] on X, where d as before is the complex dimension of d.
But the R–linear span of

{[ω]d−1 ∈ H2d−2(X, R) | [ω] Kähler class}

is the full H2d−2(X, R). Therefore, from (5.6) it follows that

c1(TX) ∪ δ = 0

for all δ ∈ H2d−2(X, R). Now from the Poincaré duality it follows that c1(TX) ∈
H2(X, R) vanishes.
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Hitchin Pairs for non-compact real Lie groups

by Peter B. Gothen1

Abstract

Hitchin pairs on Riemann surfaces are generalizations of Higgs bundles,
allowing the Higgs field to be twisted by an arbitrary line bundle. We
consider this generalization in the context of G-Higgs bundles for a real
reductive Lie group G. We outline the basic theory and review some selected
results, including recent results by Nozad and the author [32] on Hitchin
pairs for the unitary group of indefinite signature U(p, q).

1 Introduction

Let X be a closed Riemann surface with holomorphic cotangent bundle K = Ω1
X .

A rank n Higgs bundle on X is a pair (E, φ), where E → X is a rank n holomorphic
vector bundle and φ : E → E⊗K is an endomorphism valued holomorphic 1-form
on X. Higgs bundles are fundamental objects in the non-abelian Hodge theorem
[20, 22, 37, 60]. In the simplest (abelian) case of n = 1 this can be expressed as
the isomorphism

Hom(π1X,C∗) ' T ∗ Jac(X),

whose infinitesimal version gives the Hodge decomposition H1(X,C) ' H1,0(X)⊕
H0,1(X). Thus, for n = 1, a flat line bundle on X corresponds to a pair (E, φ)
consisting of a holomorphic line bundle E → X and a holomorphic 1-form φ on
X. For general n, non-abelian Hodge theory produces an isomorphism

Hom(π1X,GL(n,C))//GL(n,C) 'M(GL(n,C)).

Here the space on the right hand side is the moduli space of isomorphism classes
of Higgs bundles (of degree 0) and the space on the left hand side is the space
of representations of π1X modulo the action of GL(n,C) by overall conjugation.

1The author was partially supported by CMUP (UID/MAT/00144/2013) and the project
PTDC/MAT-GEO/2823/2014 funded by FCT (Portugal) with national and where applicable
European structural funds through the programme FEDER, under the partnership agreement
PT2020. The author acknowledges support from U.S. National Science Foundation grants DMS
1107452, 1107263, 1107367 ”RNMS: GEometric structures And Representation varieties” (the
GEAR Network)
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Note that, viewed in this way, the non-abelian Hodge theorem generalizes the
Narasimhan–Seshadri theorem [54] to non-compact groups.

For many purposes, rather than considering φ as a 1-form, one might as well
consider pairs (E, φ), where φ : E → E ⊗L is twisted by an arbitrary line bundle
L → X. Such a pair is known as a Hitchin pair or a twisted Higgs bundle. This
point of view was probably first explored systematically by Nitsure [55]. The non-
abelian Hodge theorem generalizes to this context and involves, on the one side,
meromorphic Higgs bundles and on the other side meromorphic connections. This
generalization has been carried out by Simpson [61], for Higgs fields with simple
poles, and Biquard–Boalch [5], for more general polar parts (see Boalch [8] for a
survey).

Another generalization of the non-abelian Hodge theorem has to do with rep-
resentations of π1X in groups G other than the general linear group. This already
goes back to Hitchin’s seminal papers [37, 38, 39] and indeed was also treated by
Simpson [62]. Here we shall focus on the theory for real G, which has quite a
different flavour from the theory for complex G. A systematic approach to non-
abelian Hodge theory for real reductive groups G and applications to the study
of character varieties has been explored in a number of papers; see, for example,
[30, 12, 24, 25]. The focus of the present paper are the objects which are obtained
by allowing for an arbitrary twisting line bundle L in G-Higgs bundles rather than
just the canonical bundle K. These objects are known as G-Hitchin pairs.

There are many other important aspects of Higgs bundle theory and without
any pretense of completeness, we mention here a few. One of the important fea-
tures of the Higgs bundle moduli space for complex G is that it is an algebraically
completely integrable Hamiltonian system (see Hitchin[38]), known as the Hitchin
system. This is closely related to the fact that this moduli space is a holomorphic
symplectic manifold admitting a hyper-Kähler metric. This aspect of the the-
ory can be generalized to Hitchin pairs using Poisson geometry, as pioneered by
Bottacin [9] and Markman [47]; see Biquard–Boalch [5] for the existence of hyper-
Kähler metrics on the symplectic leaves. Closely related is the theory of parabolic
Higgs bundles (see, for example, Konno [45] and Yokogawa [67]). Parabolic G-
Higgs bundles for real G have been considered by, among others, Logares [46],
Garćıa-Prada–Logares–Muñoz [28] and Biquard–Garćıa-Prada–Mundet [6]. Higgs
bundles also play an important role in mirror symmetry (see, for example, Hausel–
Thaddeus [34]) and in the geometric Langlands correspondence (see, for example,
Kapustin–Witten [42]). Also a number of results on G-Higgs bundles for real
groups can be obtained via the study of the Hitchin fibration; for this we refer
the reader to Baraglia–Schaposnik [4], Garćıa-Prada–Peón-Nieto–Ramanan [29],
Hitchin–Schaposnik [40], Peón-Nieto [57] and Schaposnik [58], as well as further
references found therein.

In this paper we describe the basics of the theory of G-Hitchin pairs and give
a few examples (Section 2). We explain the Hitchin–Kobayashi correspondence
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which relates the (parameter dependent) stability condition for G-Hitchin pairs
to solutions to Hitchin’s gauge theoretic equations (Section 3). We then describe
recent work of Nozad and the author [32] on U(p, q)-Hitchin pairs (introduced
in Section 4), the Milnor–Wood inequality for such pairs (Section 5) and how
wall-crossing arguments can be used to study their moduli (Section 6).
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2 Hitchin pairs for real groups

Let G be a connected real reductive Lie group. Following Knapp [44], we shall
take this to mean that the following data has been fixed:

• a maximal compact subgroup H ⊂ G;

• a Cartan decomposition g = h + m;

• a non-degenerate Ad(G)-invariant quadratic form, negative definite on h and
positive definite on m, which restricts to the Killing form on the semisimple
part gss = g/[g, g] of g.

Note that the above data complexify (with the possible exception of G) and that
there is an isotropy representation

ι : HC → Aut(mC)

coming from restricting and complexifying the adjoint representation of G.
Let X be Riemann surface and let K = Ω1

X be its holomorphic cotangent
bundle. Fix a line bundle L → X. For a principal HC-bundle E → X and a
representation ρ : HC → GL(V ) of HC, we denote the associated vector bundle
by E(V ) = E ×ρ V .

Definition 2.1. A G-Hitchin pair (twisted by L) on X is a pair (E, φ), where
E → X is a holomorphic principal HC-bundle and φ ∈ H0(X,L ⊗ E(mC)) is
a holomorphic 1-form with values in the vector bundle defined by the isotropy
representation of HC. If L = K, the pair (E, φ) is called a G-Higgs bundle.

Example 2.2. If G is compact, a G-Hitchin pair is nothing but a holomorphic
principal GC-bundle.
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Example 2.3. If G = GL(n,C), a G-Hitchin pair is a pair (E, φ), where E → X
is a rank n holomorphic vector bundle and φ ∈ H0(X,L⊗End(E)) is an L-twisted
endomorphism of E. A SL(n,C)-Higgs bundle is given by the same data, with the
additional requirements that det(E) = OX and φ ∈ H0(X,L ⊗ End0(E)), where
End0(E) ⊂ End(E) is the subbundle of φ with φ = 0.

Example 2.4. Let G = SL(n,R). A maximal compact subgroup is SO(n) defined
by the standard inner product 〈x, y〉 =

∑
xiyi and the isotropy representation

is the subspace of A ∈ sl(n,R) which are symmetric with respect to the inner
product:

〈Ax, y〉 = 〈x,Ay〉.
Hence a SL(n,R)-Hitchin pair can be viewed as a pair ((U,Q), φ), where (U,Q) is a
holomorphic orthogonal bundle, i.e., U → X is a rank n vector bundle with a non-
degenerate holomorphic quadratic form Q, and φ ∈ H0(X,L⊗S2

QU). Here S2
QU ⊂

End(U) denotes the subbundle of endomorphism of U , which are symmetric with
respect to Q.

Example 2.5. Let G = U(p, q), the group of linear transformations of Cp+q

which preserves an indefinite hermitian form of signature (p, q) on Cp+q = Cp×Cq.
Taking the obvious U(p)×U(q) as the maximal compact subgroup, we have HC =
GL(p,C)×GL(q,C) and the isotropy representation is

GL(p,C)×GL(q,C)→ Hom(Cq,Cp)⊕ Hom(Cp,Cq)

acting by restricting the adjoint representation of GL(p+ q,C). Hence a U(p, q)-
Hitchin pair can be identified with a quadruple (V,W, β, γ), where

β ∈ H0(L⊗ Hom(W,V )) and γ ∈ H0(L⊗ Hom(V,W )).

The GL(p+q,C)-Hitchin pair associated via the inclusion U(p, q) ⊂ GL(p+q,C) is
(E, φ), where E = V ⊕W and φ =

(
0 β
γ 0

)
. Of course a SU(p, q)-Hitchin pair is given

by the same data, with the additional requirement that det(V )⊗ det(W ) = OX .

Example 2.6. Let G = Sp(2n,R), the real symplectic group in dimension 2n,
defined as the subgroup of SL(2n,R) of transformations of R2n preserving the stan-
dard symplectic form, which can be written in coordinates (x1, y1, . . . , xn, yn) ∈
R2n as

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.
Then a Sp(2n,R)-Hitchin pair can identified with a triple (V, β, γ), where V → X
is a rank n vector bundle and

β ∈ H0(L⊗ S2V ) and γ ∈ H0(L⊗ S2V ∗).

Note how the inclusions Sp(2n,R) ⊂ SL(2n,R) and Sp(2n,R) ⊂ SU(n, n) are
reflected in the associated vector bundle data. In the former case, the rank 2n
orthogonal bundle (U,Q) is given by U = V ⊕ V ∗ with the quadratic form Q =
( 0 1
1 0 ).
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3 The Hitchin–Kobayashi correspondence

We now move on to the central notion of stability for G-Hitchin pairs. The
stability condition depends on a parameter c ∈ iz, where z denotes the centre of
h.

From the point of view of construction of moduli spaces, stability allows for a
GIT construction of the moduli spaceMc

d(X,G) of c-semistable G-Higgs bundles
for a fixed topological invariant d ∈ π1(H); this construction has been carried out
by Schmitt (see [59]).

On the other hand, there is a Hitchin–Kobayashi correspondence for G-Higgs
bundles, which gives necessary and sufficient conditions in terms of stability for
the existence of solutions to the so-called Hitchin’s equations. To state these
equations, we need some notation. By a hermitian metric on the HC-bundle
E we mean a reduction of structure group to H ⊂ HC, i.e., a smooth section
h : X → E(HC/H). We denote the corresponding principal H-bundle by Eh.
Note that h defines a compact real structure, denoted by σh, on the bundle of Lie
algebras E(gC), compatible with the decomposition E(gC) = E(hC)⊕E(mC). If we
combine σh with the conjugation on complex 1-forms on X, we obtain a complex
antilinear involution A1(E(gC))→ A1(E(gC)). This restricts to an antilinear map
which, by a slight abuse of notation, we denote by the same symbol:

σh : A1,0(E(mC))→ A0,1(E(mC)).

Fix a hermitian metric hL on L and let ωX denote the Kähler form of a metric on
X compatible with its complex structure, normalized so that

∫
X
ωX = 2π. Then,

for c ∈ iz, Hitchin’s equation for a metric h on E is the following

(3.1) F (Ah) + [φ, σh(φ)]ωX = −icωX .

Here Ah denotes the Chern connection on Eh (i.e., the unique H-connection com-
patible with the holomorphic structure on E) and F (Ah) its curvature. Moreover,
the bracket [φ, σh(φ)] is defined by combining the Lie bracket on gC = hC + mC

with the contraction L⊗ L→ OX given by the metric hL. Note also that in the
case when L = K, the second term on the left hand side can be written simply as
[φ, σh(φ)] where the bracket on the Lie algebra is now combined with the wedge
product on forms.

In order to state the Hitchin–Kobayashi correspondence for G-Hitchin pairs,
giving necessary and sufficient conditions for the existence of solutions to the
Hitchin equation, one needs an appropriate stability condition. The general con-
dition needed can be found in [24] (based, in turn, on Bradlow–Garćıa-Prada-
Mundet [14] and Mundet [41]). It is fairly involved to state in general, so we shall
refer the reader to loc. cit. for the full statement and here just give a couple of
examples which cover our present needs. Note that, just as the Hitchin equation,
the stability condition will depend on a parameter c ∈ iz.
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Example 3.1. (Cf. Hitchin[37], Simpson [60, 62].) Consider GL(n,C)-Hitchin
pairs (E, φ), where E → X is a rank n vector bundle and φ ∈ H0(X,L⊗End(E)).
Recall that the slope of a vector bundle E on X is the ratio between its degree and
its rank: µ(E) = deg(E)/ rk(E). A GL(n,C)-Hitchin pair (E, φ) is semistable if

(3.2) µ(F ) ≤ µ(E)

for all non-zero subbundles F ⊂ E which are preserved by φ, i.e., such that
φ(F ) ⊂ F ⊗ L. Moreover, (E, φ) is stable if additionally strict inequality holds
in (3.2) whenever F 6= E. Finally, (E, φ) is polystable if it is the direct sum of
stable Higgs bundles, all of the same slope. In this case iz ' R and the stability
parameter is fixed to be the real constant c = µ(E). Note that this constraint is of
a topological nature and can be obtained from Chern–Weil theory by integrating
the trace of the Hitchin equation, which in this case is:

F (Ah) + [φ, φ∗h ]ωX = −ic IdωX .

Example 3.2. (Cf. [10].) Consider U(p, q)-Hitchin pairs (V,W, β, γ). In this case,
iz ' R× R and the Hitchin equation becomes

(3.3)
F (Ah(V )) + (ββ∗h − γ∗hγ)ωX = −ic1 IdV ωX ,

F (Ah(W )) + (γγ∗h − β∗hβ)ωX = −ic2 IdW ωX .

Here Ah(V ) and Ah(W ) denote the Chern connections on V and W , respectively,
and the parameter (c1, c2) ∈ R× R is constrained by Chern–Weil theory by

p

p+ q
c1 +

q

p+ q
c2 = µ(V ⊕W ).

The stability condition is most conveniently described by introducing the α-slope
of (V,W, β, γ) by

µα(V,W, β, γ) = µ(V ⊕W ) + α
p

p+ q

for a real parameter α, related to (c1, c2) by α = c2−c1. The α-stability conditions
are completely analogous to the ones of Example 3.1, but applied to U(p′, q′)-
subbundles, defined in the obvious way by V ′ ⊂ V and W ′ ⊂ W such that
β(W ′) ⊂ V ′ ⊗ L and γ(V ′) ⊂ W ′ ⊗ L.

The Hitchin–Kobayashi correspondence for G-Hitchin pairs [37, 62, 14, 24] can
now be stated as follows.

Theorem 3.3. Let (E, φ) be a G-Hitchin pair. There exists a hermitian metric h
in E solving Hitchin’s equation (3.1) if and only if (E, φ) is c-polystable. Moreover,
the solution h is unique up to H-gauge transformations of Eh.
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Next we explain how to give an interpretation in terms of moduli spaces.
Fix a C∞ principal H-bundle E of topological class d ∈ π1H and consider the
configuration space of G-Higgs pairs on E :

C(E) = {(∂̄A, φ) | ∂̄Aφ = 0}.

Here ∂̄A is a ∂̄-operator on E defining a structure of holomorphic principal HC-
bundle EA → X and the C∞-Higgs field φ ∈ A1,0(E(mC)). Let Cc−ps(E) ⊂ C(E)
be the subset of c-polystable G-Higgs pairs. The complex gauge group GC is the
group of C∞ automorphisms of the principal HC-bundle EC obtained by extending
the structure group to the complexification HC of H. It acts on Cc−ps(E) and we
can identify, as sets2,

Mc
d(X,G) = Cc−ps(E)/GC.

Now consider Hitchin’s equation (3.1) as an equation for a pair (A, φ) of a
(metric) connection A on E and a Higgs field φ ∈ A1,0(E(mC)). The complex
gauge group GC acts transitively on the space of metrics on E with stabilizer the
unitary gauge group G, by which we understand the C∞ automorphism group of
the H-bundle E . Thus the Hitchin–Kobayashi correspondence of Theorem 3.3
says that there is a complex gauge transformation taking (A, φ) to a solution to
Hitchin’s equation if and only if (EA, φ) is c-polystable, and this solution is unique
up to unitary gauge transformation. In other words, we have a bijection

(3.4) Mc
d(X,G) ' {(A, φ) | (A, φ) satisfies (3.1)}/G.

When G is compact, there is no Higgs field and the Hitchin equation simply
says that the Chern connection is (projectively) flat. Hence (3.4) identifies the
moduli space of semistable GC-bundles with the moduli space of (projectively)
flat G-connections. This latter space can in turn be identified with the character
variety of representations of (a central extension of) the fundamental group of X
in G.

For non-compact G, assume that L = K and that the parameter c ∈ iZ(g).
Then the Hitchin equation can be interpreted as a (projective) flatness condition
for the G-connection B defined by

(3.5) B = Ah + φ− σh(φ).

It is a fundamental theorem of Donaldson [22] and (more generally) Corlette [20]
that for any flat reductive3 connection B on a principal G-bundle EG, there exists
a so-called harmonic metric on EG. A consequence of harmonicity is that when

2Indeed a construction of the moduli space using complex analytic methods in the style of
Kuranishi should be possible, though we are not aware of the existence of such a construction
in the literature.

3When G is linear this simply means that the holonomy representation is completely re-
ducible.
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the metric is used to decompose B as in (3.5), then (A, φ) satisfies the Hitchin
equation. Combining this with the Hitchin–Kobayashi correspondence gives the
non-abelian Hodge theorem4: an identification between the moduli space of G-
Higgs bundles and the character variety for representations of (a central extension
of) π1X in G.

Example 3.4. If we want to apply the non-abelian Hodge theorem to U(p, q)-
Higgs bundles, we need to fix the parameter in Hitchin’s equation to be in the
centre of U(p, q), i.e., in the notation of Example 3.2, we must take c1 = c2 = c =
µ(V ⊕W ). Of course this corresponds to the value for GL(n,C)-Higgs bundles
under the inclusion U(p, q) ⊂ GL(p+ q,C) (cf. Examples 2.5 and 3.1).

4 Hitchin pairs for U(p, q) and quiver bundles

We saw in Example 3.2, that there is a degree of freedom in the choice of stability
parameter for U(p, q)-Hitchin pairs. There is another way of viewing this parame-
ter dependence for the stability condition, which is to notice that a U(p, q)-Hitchin
pair can be viewed as a quiver bundle (see, e.g., King [43], Álvarez-Cónsul–Garćıa-
Prada [1, 2], and also [31]). To explain this, recall that a quiver Q is an oriented
graph (which we shall assume to be finite), given by a set of vertices Q0, a set of
arrows Q1 and head and tail maps

h, t : Q1 → Q0.

For each a ∈ Q1, let Ma → X be a holomorphic vector bundle on X and let
M = {Ma} be the collection of these twisting bundles.

Definition 4.1. A Q-bundle twisted by M on X is a collection of holomorphic
vector bundles Ei → X indexed by the vertices i ∈ Q0 of Q and a collection of
holomorphic maps φa : Ma ⊗ Eta → Eha indexed by the arrows a ∈ Q1 of Q.

Remark 4.2. It is easy to see that Q-bundles on X form a category which can
be made into an abelian category by considering coherent Q-sheaves, in a way
analogous to what happens for vector bundles.

It should now be clear that L-twisted U(p, q)-Hitchin pairs can be viewed as
Q-bundles for the quiver

(4.1) • \\ •��

where both arrows are twisted by L∗.

4See the references cited in the Introduction for the generalization to the meromorphic situ-
ation.
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There is a natural stability condition for quiver bundles which, just as for
Hitchin pairs, gives necessary and sufficient conditions for the existence of so-
lutions to certain natural gauge theoretic equations (cf. King [43] and Álvarez-
Cónsul–Garćıa-Prada [1, 2]). This condition depends on a parameter vector

α = (αi)i∈Q0 ∈ RQ0

and it is defined using the α-slope of a Q-bundle E:

µα(E) =

∑
i(deg(Ei) + αi rk(Ei))∑

i rk(Ei)
.

Thus E is α-stable if for any proper non-zero sub-Q-bundle E ′ of E, we have

µα(E ′) < µα(E),

and α-semi- and polystability are defined just as for vector bundles.
Note that the stability condition is unchanged under an overall translation of

the stability parameter
(αi) 7→ (αi + a)

for any constant a ∈ R. Thus we may as well take α0 = 0 and we see that the
number of effective stability parameters is |Q0| − 1. In the case of Q-bundles
for the quiver (4.1), i.e., U(p, q)-Hitchin pairs, we then have one real parameter
α = α1 and the general Q-bundle stability condition reproduces the stability for
U(p, q)-Hitchin pairs of Example 3.2.

5 The Milnor–Wood inequality for U(p, q)-Hitchin

pairs

The Milnor–Wood inequality has its origins [48, 66] in the theory of flat bundles.
From this point of view there is a long sequence of generalizations and important
contributions (see, for example, Dupont [23], Toledo [64], Domic–Toledo [21],
Turaev [65], Clerc–Ørsted [19], Burger–Iozzi-Wienhard [17, 18]). Here we shall,
however, focus on its Higgs bundle incarnation, again first considered by Hitchin
[37]. From this point of view it is a bound on the topological class of a U(p, q)-
Hitchin pair. In order to state it we need the following definition.

Definition 5.1. Let E = (V,W, β, γ) be a U(p, q)-Hitchin pair. The Toledo
invariant of E is

τ(E) =
2pq

p+ q

(
µ(V )− µ(W )

)
.

Note that, if we set a = deg(V ) and b = deg(W ), then we can write τ(E) =
2(qa− pb)/(p+ q).

The Milnor–Wood inequality for U(p, q)-Hitchin pairs can now be stated as
follows:
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Proposition 5.2 (Gothen–Nozad [32, Proposition 3.3]). Let E = (V,W, β, γ) be
an α-semistable U(p, q)-Hitchin pair with twisting line bundle L. Then

− rk(β) deg(L) + α
(

rk(β)− 2pq

p+ q

)
≤ τ(E) ≤ rk(γ) deg(L) + α

(
rk(γ)− 2pq

p+ q

)
.

The proof is analogous to the one for U(p, q)-Higgs bundles in [10]. It ap-
plies the α-semistability condition for U(p, q)-Hitchin pairs to certain subobjects
defined in a natural way using β and γ. We refer the reader to [32] for details.

Remark 5.3. The Toledo invariant has been defined for G-Higgs bundles for
any non-compact simple reductive group G of hermitian type by Biquard–Garćıa-
Prada–Rubio [7]. These authors also prove a very general Milnor–Wood inequality
for such G-Higgs bundles. In the case when L = K their theorem specializes to
our Proposition 5.2.

The inequality of Proposition 5.2 has several interesting consequences, for
example we get the following bounds on the Toledo invariant (cf. [32, Proposi-
tion 3.4]).

Proposition 5.4. Let E = (V,W, β, γ) be an α-semistable U(p, q)-Hitchin pair
with twisting line bundle L with deg(L) ≥ 0. Then the following hold:

(i) If α ≤ − deg(L) then

min{p, q}
(
−α |p− q|

p+ q
− deg(L)

)
≤ τ(E) ≤ −α 2pq

p+ q
.

(ii) If − deg(L) ≤ α ≤ deg(L) then

min{p, q}
(
−α |p− q|

p+ q
− deg(L)

)
≤ τ(E) ≤ min{p, q}

(
deg(L)− α |p− q|

p+ q

)
.

(iii) If deg(L) ≤ α then

−α 2pq

p+ q
≤ τ(E) ≤ min{p, q}

(
deg(L)− α |p− q|

p+ q

)
.

Note, in particular, that for α = 0 (the value relevant for the non-abelian
Hodge theorem) we have by (ii) of the proposition that

(5.1) |τ(E)| ≤ min{p, q} deg(L).

In the case of U(p, q)-Higgs bundles (i.e., α = 0 and L = K) this is the usual
Milnor–Wood inequality (cf. [10]).
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The study of properties of Higgs bundles with extremal values for the Toledo
invariant is an interesting question. This has been studied for various specific
groups G of hermitian type by Hitchin [37] for PSL(2,R), Gothen [30] for Sp(4,R),
Garćıa-Prada–Gothen–Mundet [25] for Sp(2n,R), Bradlow–Garćıa-Prada–Gothen
[10, 11, 16] for SO∗(2n) and U(p, q). A general study for G-Higgs bundles for non-
compact groups of hermitian type was carried out by Biquard–Garćıa-Prada–
Rubio [7]. From the point of view of representations of surface groups much
work has also been done and without being at all exhaustive, we mention here
a few works: Toledo [64], Hernández [36] and Burger–Iozzi–Wienhard [17, 18].
From either point of view, one of the key properties of maximal objects (Higgs
bundles or representations) is that they exhibit rigidity phenomena, of which we
mention but two examples. Firstly, a classical theorem of Toledo, which states
that a maximal representation of π1X in U(p, 1) factors through U(1, 1)×U(p−1).
Secondly we mention [10, Proposition 3.30], which says that the moduli space of
maximal U(p, p)-Higgs bundles is isomorphic to the moduli space of K2-twisted
Hitchin pairs of rank p — so here Hitchin pairs play an important role even in
the theory of usual Higgs bundles. Toledo’s theorem and its generalizations for
surface group representations have clear parallels on the Higgs bundle side of the
non-abelian Hodge theory correspondence. On the other hand, the surface group
representation parallel of the second kind of rigidity phenomenon is perhaps less
clear; see, however, Guichard–Wienhard [33] for the case of representations in
Sp(2n,R).

6 Wall crossing for U(p, q)-Hitchin pairs

We finish this paper by describing an application of wall-crossing techniques to
moduli of U(p, q)-Hitchin pairs, following [56, 32]. These techniques have a long
history in the subject, going back at least to Thaddeus’ proof [63] of the rank 2
Verlinde formula. The main results on connectedness of moduli spaces of U(p, q)-
Higgs bundles from [10] were based on the wall-crossing results for triples of
[11]: triples are Q-bundles for a quiver with two vertices and one arrow between
them, so they correspond to U(p, q)-Hitchin pairs with one of the Higgs fields β
or γ vanishing. Later some of these results have been generalized to holomorphic
chains, i.e., Q-bundles for a quiver of type An, see Álvarez-Cónsul–Garćıa-Prada–
Schmitt [3], Garćıa-Prada–Heinloth–Schmitt [27], Garćıa-Prada–Heinloth [26] and
Heinloth [35]. Similar ideas have also been employed by other authors to study
various properties of moduli spaces, including their Hodge numbers, such as the
works of Bradlow–Garćıa-Prada– Muñoz–Newstead [15], Bradlow–Garćıa-Prada–
Mercat–Muñoz–Newstead [13], Muñoz [49, 50, 51] and Muñoz–Ortega–Vázquez-
Gallo [52, 53].

One common feature of all these results is that they deal with quivers without
oriented cycles, corresponding to nilpotent Higgs fields. It is therefore interesting
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to investigate to what extend the aforementioned results can be generalized to
quivers with oriented cycles. Since we need at least two vertices to have effective
stability parameters, the simplest possible case is that of U(p, q)-Hitchin pairs,
corresponding to the quiver (4.1).

It turns out that a direct generalization of the arguments for triples of [11]
runs into difficulties. To explain this, we first remark that the stability condition
can only change for certain discrete values of the parameter α, called critical
values. Fix topological invariants t = (p, q, a, b) of U(p, q)-Hitchin pairs, where
a = deg(V ) and b = deg(W ). Then α is a critical value of the stability parameter
for U(p, q)-Hitchin pairs of type t if it is numerically possible to have a proper
subobject E ′ ⊂ E of a U(p, q)-Hitchin pair E = (V,W, β, γ) of type t such that

(6.1) µα(E ′) = µα(E) and
p′

p′ + q′
6= p

p+ q

(Here the type of E ′ is t′ = (p′, q′, a′, b′).) This means that α is critical if and only
if it is possible for U(p, q)-Hitchin pairs to exist which are α′-stable for α′ < α and
α′-unstable for α′ > α (and vice-versa). Denote byMα± the moduli space of α±-
semistable U(p, q)-Hitchin pairs of type t, where α± = α± ε for ε > 0 small. Then
one is led to introduce “flip loci” Sα± ⊂ Mα± corresponding to U(p, q)-Hitchin
pairs which change their stability properties as the critical value α is crossed. If
one can estimate appropriately the codimension of these flip loci, it will follow
thatMα± are birationally equivalent. The U(p, q)-Hitchin pairs E in the flip loci
have descriptions as extensions

0→ E ′ → E → E ′′ → 0

for α-semistable U(p, q)-Hitchin pairs (of lower rank) E ′ and E ′′ satisfying (6.1).
Such extensions are controlled by the first hypercohomology of a two-term complex
of sheaves Hom•(E ′′, E ′) (see [32, Definition 2.14], cf. [31]). Thus, in order to
control the number of extensions one needs vanishing results for the zeroth and
second hypercohomology groups. This, together with an analysis of the moduli
space for large α, was the strategy followed in [10] to prove irreducibility of moduli
spaces of holomorphic triples.

The main difficulty in generalizing this approach to U(p, q)-Hitchin pairs is that
the vanishing results do not generalize without additional hypotheses (compare,
for example, [11, Proposition 3.6] and [32, Proposition 3.22]). However, for a
certain range of the parameter α and the Toledo invariant, things can be made to
work. Thus we can obtain birationality of moduli spaces of U(p, q)-Hitchin pairs
under certain constraints (see [32, Theorem 5.3]). This combined with the results
from [10] on connectedness of moduli of U(p, q)-Higgs bundles finally gives the
main result:

Theorem 6.1 ([32, Theorem 5.5]). Denote by Mα(p, q, a, b) the moduli space
of semistable K-twisted U(p, q)-Hitchin pairs. Suppose that τ = 2pq

p+q
(a/p − b/q)
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satisfies |τ | ≤ min{p, q}(2g − 2). Suppose also that either one of the following
conditions holds:

(1) a/p− b/q > −(2g−2), q ≤ p and 0 ≤ α < 2pq
pq−q2+p+q

(
b/q−a/p− (2g−2)

)
+

2g − 2,

(2) a/p−b/q < 2g−2, p ≤ q and 2pq
pq−p2+p+q (b/q−a/p+2g−2)−(2g−2) < α ≤ 0.

Then the closure of the stable locus in the moduli spaceMα(p, q, a, b) is irreducible.
In particular, if gcd(p+ q, a+ b) = 1, then Mα(p, q, a, b) is irreducible.

Remark 6.2. Unless p = q, the conditions on a/b − b/q in the theorem are
guaranteed by the hypothesis |τ | ≤ min{p, q}(2g − 2) (see [32, Remark 5.6]).
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Quadric bundles applied to non-maximal Higgs bundles

by André Oliveira

Abstract

We present a survey on the moduli spaces of rank 2 quadric bundles
over a compact Riemann surface X. These are objects which generalise
orthogonal bundles and which naturally occur through the study of the
connected components of the moduli spaces of Higgs bundles over X for the
real symplectic group Sp(4,R), with non-maximal Toledo invariant. Hence
they are also related with the moduli space of representations of π1(X) in
Sp(4,R). We explain this motivation in some detail.

1 Components of Higgs bundles moduli spaces

Higgs bundles over a compact Riemann surface X were introduced by Nigel
Hitchin in [25] as a pair (V, ϕ) where V is a rank 2 and degree d holomorphic
vector bundle on X, with fixed determinant, and ϕ a section of End(V )⊗K with
trace zero. K denotes the canonical line bundle of X — the cotangent bundle
of X. Nowadays those are also known as SL(2,C)-Higgs bundles. In the same
paper, Hitchin determined the Poincaré polynomial of the corresponding moduli
space Md(SL(2,C)), for d odd. The method was based on Morse-Bott theory,
so smoothness of the moduli was an essential feature. It was then clear that
Md(SL(2,C)) has an extremely rich topological structure, so a natural question
was to ask about the topology of the moduli spaces of Higgs bundles for other
groups. For SL(3,C), this was achieved by P. Gothen in [20] and more recently,
and using a new approach, O. Garćıa-Prada, J. Heinloth and A. Schmitt in [13, 12]
obtained the same for SL(4,C) and recursive formulas for SL(n,C). Other recent
developments were achieved in [34] on the study ofMd(SL(n,C)), which seem to
confirm some fascinating conjectures [24]. All these cases were done under the
condition of coprimality between rank and degree, so that the moduli spaces are
smooth.

However, for a general real, connected, semisimple Lie group G, the moduli
spaces Mc(G) of G-Higgs bundles with fixed topological type c ∈ π1(G), are
non-smooth. This is one of the reasons why the topology of Mc(G) is basically
unknown. Still, their most basic topological invariant — the number of connected
components — is a honourable exception in this unknown territory, and much is
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known about it. If G is compact thenMc(G) is non-empty and connected for any
c ∈ π1(G) [33] and the same is true if G is complex [17, 28]. In both cases the
same holds even if G is just reductive or even non-connected (the only difference is
that for non-connected groups, the topological type is indexed not by π1(G), but
by a different set [30]). When G is a real group, the situation can be drastically
different. There are two cases where extra components are known to occur: when
G is a split real form of GC and when G is a non-compact group of hermitian
type.

Suppose G is a split real form of GC. Intuitively this means that G is the
“maximally non-compact” real form of GC; see for example [32] for the precise
definition. For instance SL(n,R) and Sp(2n,R) are split real forms of SL(n,C)
and of Sp(2n,C), respectively. For these groups, Hitchin proved in [27] that there
always exists at least one topological type c for which Mc(G) is disconnected
and that the “extra” component is contractible and indeed isomorphic to a vector
space — this is the celebrated Hitchin component also known as Teichmüller
component. We will not pursue in this direction here.

A non-compact semisimple Lie group G of hermitian type is characterised by
the fact that G/H is a hermitian symmetric space, where H ⊂ G is a maximal
compact subgroup. Thus G/H admits a complex structure compatible with the
Riemannian structure, making it a Kähler manifold. If G/H is irreducible, the
centre of the Lie algebra of H is one-dimensional and this implies that the torsion-
free part of π1(G) = π1(H) is isomorphic to Z, hence the topological type gives
rise to an integer d (usually the degree of some vector bundle), called the Toledo
invariant. This Toledo invariant is subject to a bound condition, called the Milnor-
Wood inequality, beyond which the moduli spaces Md(G) are empty. Moreover,
when |d| is maximal (and G is of tube type [5]) there is a so-called Cayler partner
phenomena which implies the existence of extra components for Md(G). This
has been studied for many classes of hermitian type groups [5] and proved in an
intrinsic and general way recently in [2].

On the other hand, the connected components ofMd(G) for non-maximal and
non-zero Toledo invariant are not known in general. One exception is the case
of U(p, q), which has been basically dealt in [3, 4]. Two other exceptions are the
cases of G = Sp(4,R) and of G = SO0(2, 3) — the identity component of SO(2, 3).
In these two cases, it is known [16, 22] that all the non-maximal subspaces are
connected for each fixed topological type. Note that in the case of SO0(2, 3), the
topological type is given by an element (d, w) ∈ Z× Z/2 = π1(SO0(2, 3)), with d
being the Toledo invariant; so for each d there are two components, labeled by w.
We expect that the same holds true in general, that is, Md(G) is connected for
non-maximal d and fixed topological type.

In this paper we give an overview of the proof given in [22] of the connectedness
of Md(Sp(4,R)) and Md(SO0(2, 3)) for non-maximal and non-zero d. In this
study one is naturally lead to consider a certain type of pairs, which we call quadric
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bundles, and the corresponding moduli spaces, depending on a real parameter α.
Denote them by Nα(d). The relevant parameter for the study of Md(Sp(4,R))
andMd(SO0(2, 3)) is α = 0. The idea is to obtain a description of the connected
components of Nα−m(d), for a specific value α−m of the parameter α, and then vary
α, analysing the wall-crossing in the spirit of [38, 4]. It turns out that a crucial
step in that proof (namely in the description of of Nα−m(d)) is a detailed analysis
of the Hitchin fibration for L-twisted SL(2,C)-Higgs bundles, taking into account
all the fibres of the Hitchin map and not only the generic ones. This was done in
[23], and we briefly describe this analysis.

In the last section of the paper we briefly mention some other results concerning
the spaces Nα(d), obtained in [31], that lead to the description of some geometric
and topological properties of these moduli spaces. In particular, these results
imply that, under some conditions on d and on the genus of X, a Torelli type
theorem holds for Nα(d).

2 From Higgs bundles to quadric bundles

2.1 Definitions and examples

Let X be a compact Riemann surface of genus g ≥ 2, with canonical line bundle
K = T ∗X1,0, the holomorphic cotangent bundle. Let G be a real semisimple, con-
nected, Lie group. Fix a maximal compact subgroup H ⊆ G with complexification
HC ⊆ GC. If hC ⊆ gC are the corresponding Lie algebras, then the Cartan decom-
position is gC = hC ⊕mC, where mC is the vector space defined as the orthogonal
complement of hC with respect to the Killing form. Since [mC, hC] ⊂ mC, then mC

is a representation of HC via the isotropy representation HC → GL(mC) induced
by the adjoint representation Ad : GC → GL(gC). If EHC is a principal HC-bundle
over X, denote by EHC(mC) = EHC ×HC mC the vector bundle associated to EHC

via the isotropy representation.

Definition 2.1. A G-Higgs bundle over X is a pair (EHC , ϕ) where EHC is a princi-
pal holomorphic HC-bundle and ϕ is a global holomorphic section of EHC(mC)⊗K,
called the Higgs field.

In practice we usually replace the principal HC-bundle EHC by the correspond-
ing vector bundle associated to some standard representation of HC in some Cn.
Let us give two examples.

If G = SL(n,C), then HC = G gives rise to a rank n vector bundle V with triv-
ial determinant and since mC = sl(n,C), the Higgs field ϕ is a traceless K-twisted
endomorphism of V . If we fix the determinant of V to be any line bundle and
impose the same traceless condition to ϕ : V → V ⊗K, then we also call the pair
(V, ϕ) an SL(n,C)-Higgs bundle, although it is really a “twisted” SL(n,C)-Higgs



204 André Oliveira

bundle. All these are usually just called Higgs bundles with fixed determinant.
These are the “original” Higgs bundles, introduced in [25].

If G = Sp(2n,R), we can take H = U(n) as a maximal compact subgroup.
So HC = GL(n,C) gives rise to a rank n holomorphic vector bundle V . The
Cartan decomposition is sp(2n,C) = gl(n,C)⊕mC where the inclusion gl(n,C) ↪→
sp(2n,C) is given by A 7→ diag(A,−AT ).
So mC =

{
(B,C) ∈ gl(n,C)2 | B = BT , C = CT

}
. Hence we have that:

Definition 2.2. An Sp(2n,R)-Higgs bundle is a triple (V, β, γ) where V is a
holomorphic rank n vector bundle, β ∈ H0(X,S2V ⊗K) and γ ∈ H0(X,S2V ∗ ⊗
K).

In an Sp(2n,R)-Higgs bundle (V, β, γ), we can then think of γ as a map γ :
V → V ∗ ⊗K such that γt ⊗ IdK = γ and likewise for β : V ∗ → V ⊗K.

A G-Higgs bundle (EHC , ϕ) is topologically classified by the topological invari-
ant of the corresponding HC-bundle EHC , given by an element π1(H) ∼= π1(G).

In [14], a general notion of (semi,poly)stability of G-Higgs bundles was devel-
oped, allowing for proving a Hitchin–Kobayashi correspondence between polystable
G-Higgs bundles and solutions to certain gauge theoretic equations known as
Hitchin equations. On the other hand, A. Schmitt introduced stability conditions
for more general objects, which also apply for the G-Higgs bundles context, and
used these in his general construction of moduli spaces; cf. [35]. In particular
his stability conditions coincide with the ones relevant for the Hitchin–Kobayashi
correspondence. It should be noted that the stability conditions depend on a pa-
rameter α ∈

√
−1h ∩ z, where z is the centre of hC. In most cases this parameter

is fixed by the topological type, so it really does not play any relevant role. This
happens for any compact or complex Lie group and most real groups. Indeed,
the only case where the parameter is not fixed by the topology is when G is of
hermitian type. This is the case of Sp(2n,R), so it is important for us to take into
account the presence of α.

Denote by Mα
d (G) the moduli space of S-equivalence classes of α-semistable

G-Higgs bundles with topological invariant d ∈ π1(G). On each S-equivalence
class there is a unique (up to isomorphism) α-polystable representative, so we can
considerMα

d (G) as the moduli space isomorphism classes of α-polystable G-Higgs
bundles.

Remark 2.3. Given any line bundle L→ X, of non-negative degree, everything
we just said generalises to L-twisted G-Higgs pairs. The only difference to G-Higgs
bundles is that the Higgs field is a section of EHC(mC)⊗L instead of EHC(mC)⊗K.



Quadric bundles applied to non-maximal Higgs bundles 205

2.2 Higgs bundles for Sp(4,R) and quadric bundles

2.2.1 Moduli of Sp(4,R)-Higgs bundles

We already know that an Sp(4,R)-Higgs bundle is a triple (V, β, γ) with rk(V ) = 2
and

β ∈ H0(X,S2V ⊗K), γ ∈ H0(X,S2V ∗ ⊗K).

The topological type is given by the degree of V : d = deg(V ) ∈ Z = π1(Sp(4,R)).
In fact, Sp(4,R) is of hermitian type, and the invariant d is the Toledo invariant
mentioned in Section 1.

Given a real parameter α, here is the α-(semi)stability condition for Sp(4,R)-
Higgs bundles; see [14, 15] for the deduction of these conditions.

Definition 2.4. Let (V, β, γ) be an Sp(4,R)-Higgs bundle with deg(V ) = d. It is
α-semistable if the following hold:

1. if β = 0 then d− 2α ≥ 0;

2. if γ = 0 then d− 2α ≤ 0.

3. for any line subbundle L ⊂ V , we have:

(a) deg(L) ≤ α if γ(L) = 0;

(b) deg(L) ≤ d/2 if β(L⊥) ⊂ L⊗K and γ(L) ⊂ L⊥ ⊗K;

(c) deg(L) ≤ d− α if β(L⊥) = 0.

Here L⊥ stands for the kernel of the projection V ∗ → L∗, so it is the annihilator
of L under γ; note that we are not considering any metric on V whatsoever. As
usual, there are also the notions of α-stability (by considering strict inequalities)
and of α-polystability; cf. [22].

Remark 2.5. If we view a semistable rank two vector bundle V of degree d as
an Sp(4,R)-Higgs bundle with β = γ = 0, then it is α-semistable if and only if
α = d/2.

Our aim is to present an overview on the study of the connected components of
the moduli space of 0-polystable Sp(4,R)-Higgs bundlesMd(Sp(4,R)) for certain
values of d. To keep the notation simpler, we will just write

Md(Sp(4,R)) =M0
d(Sp(4,R))

for the case α = 0. In this case we will just say “polystable” instead of 0-polystable
and likewise for stable and semistable.
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Remark 2.6. (Relation with representations π1(X) → Sp(4,R)) We con-
sider α = 0 because this is the appropriate value for which non-abelian Hodge
theory applies. More precisely, the non-abelian Hodge Theorem for Sp(4,R) states
that an Sp(4,R)-Higgs bundle is polystable if and only if it corresponds to a re-
ductive representation of π1(X) in Sp(4,R). This implies that Md(Sp(4,R)) is
homeomorphic to the space of reductive representations of π1(X) in Sp(4,R), with
topological invariant d, modulo the action of conjugation by Sp(4,R), that is to
Rd(Sp(4,R)) = Homred(π1(X), Sp(4,R))/Sp(4,R). This theorem is in fact valid
for any real semisimple Lie group and also for real reductive groups with some
slight modifications. The proof in the classical G = SL(n,C) case follows from
[8, 10, 25, 37]. The more general case follows from [8, 14]. See for instance [16, 15]
for more information for the case of Sp(2n,R) and [5] for an overview on the
approach for the general group case.

The Milnor-Wood inequality for G = Sp(4,R) states that if an Sp(4,R)-Higgs
bundle of degree d is semistable, then [9, 21, 14, 2]

|d| ≤ 2g − 2.

(A similar type of inequality was proved for the first time for G = PSL(2,R) by
Milnor in [29], on the representations side; cf. Remark 2.6.)

So Md(Sp(4,R)) is empty if |d| > 2g − 2. If |d| = 2g − 2 then we say
that we are in the maximal Toledo case, which is in fact the case where more
interesting phenomena occur. Indeed, it is known [21] that M±(2g−2)(Sp(4,R))
has 3× 22g + 2g − 4 components and that it is isomorphic to the moduli space of
K2-twisted GL(2,R)-Higgs bundles — this is an example of the Cayley partner
phenomena mentioned in the introduction (see also [5, 2]). In subsection 3.2.2
below we will see this for a subvariety of M2g−2(Sp(4,R)). It is also known that
M0(Sp(4,R)) is connected [21]. The corresponding results for these two extreme
cases for |d| in higher rank are also known; cf. [15].

Nevertheless, in this paper we are interested in the components ofMd(Sp(4,R))
for non-maximal and non-zero Toledo invariant: 0 < |d| < 2g − 2. The duality
(V, β, γ) 7→ (V ∗, γ, β) gives an isomorphismMd(Sp(4,R)) ∼=M−d(Sp(4,R)), thus
we just consider 0 < d < 2g − 2.

2.2.2 The approach to count components

The general idea, introduced in [25, 27], to study the connected components of
Mc(G) is to use the functional f : Mc(G) → R mapping a G-Higgs bundle to
the (square of the) L2-norm of the Higgs field. The fact that f is proper and
bounded below implies that it attains a minimum on each connected component
of Mc(G). Hence the number of connected components of Mc(G) is bounded
above by the one of the subvariety Nc(G) ⊂Mc(G) of local minimum of f . The
procedure is thus to identify Nc(G), study its connected components and then
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draw conclusions about the components of Mc(G). Of course if Nc(G) turns out
to be connected, then it immediately follows that Mc(G) is connected as well.

Explicitly, for Sp(4,R), the Higgs field splits as β and γ, so we have

(2.1) f(V, β, γ) = ‖β‖2
L2 + ‖γ‖2

L2 =

∫

X

tr(ββ∗,h) +

∫

X

tr(γ∗,hγ),

where h : V → V̄ ∗ is the metric on V which provides the Hitchin-Kobayashi
correspondence and hence we are taking in (2.1) the adjoint with respect to h.

The following result completely identifies the subvariety of local minima in
the non-zero and non-maximal cases. For this identification it is important that,
over the smooth locus of Md(Sp(4,R)), the function f is a moment map of the
hamiltonian circle action (V, β, γ) 7→ (V, eiθβ, eiθγ). By work of Frankel [11], a
smooth point of Md(Sp(4,R)) is a critical point of f exactly when it is a fixed
point of this U(1)-action. Then there is a cohomological criteria [3, Corollary 4.15]
which identifies the local minima among this fixed point set. Finally one has to
perform a subsequent analysis to identify the local minima over the singular locus
of Md(Sp(4,R)).

Proposition 2.7 ([21]). Let (V, β, γ) represent a point of Md(Sp(4,R)), with
0 < d < 2g − 2. Then it is a local minimum of f if and only if β = 0.

Thus, for 0 < d < 2g − 2, the subvariety of local minima Nd(Sp(4,R)) ⊂
Md(Sp(4,R)) is given by pairs (V, γ) where V is a rank 2 bundle, of degree d and
γ is a section of S2V ∗ ⊗ K. This is what we call a quadric bundle. Since d is
positive, γ must indeed be a non-zero section, as we saw in Remark 2.5.

Definition 2.8. A quadric bundle on X is a pair (V, γ), where V is a holomorphic
vector bundle over X and γ is a holomorphic non-zero section of S2V ∗ ⊗K.

Quadric bundles are sometimes also called conic bundles or quadratic pairs in
the literature. In particular, this happens in the papers [22, 31] by the author
where they were named quadratic pairs. But the term “quadric bundles” used in
[18] is indeed more adequate, since it is more specific and moreover reveals the
fact that these can be seen as bundles of quadrics, since for each p ∈ X the map
γ restricted to the fibre Vp defines a bilinear symmetric form, hence a quadric in
Prk(V )−1. When rk(V ) = 2, the term conic bundle is then perfectly adequate also.

The rank and degree of a quadric bundle are of course the rank and degree of
V . We will only consider the rank 2 case. The rank n case appears naturally by
considering Sp(2n,R)-Higgs bundles.

Remark 2.9. More generally, one can define U -quadric bundles, for a fixed holo-
morphic line bundle U over X. The only difference for the preceding definition
is that γ is a non-zero section of S2V ∗ ⊗ U . We will mostly be interested in
(K-)quadric bundles, but more general U -quadric bundles will also appear, more
precisely when U = LK, for some line bundle L, in relation with the group
SO0(2, 3). All results below can be adapted to this more general setting [22].
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Quadric bundles of rank up to 3 were studied in [19] by Gómez and Sols, where
they introduced an appropriate α-semistability condition, depending on a real pa-
rameter α, and constructed moduli spaces of S-equivalence classes of α-semistable
quadric bundles using GIT. The construction of the moduli spaces follows from the
general methods of [35]. Denote the moduli space of S-equivalence classes of α-
semistable U -quadric bundles on X of rank 2 and degree d by NX,α(2, d) = Nα(d).

A simplified δ-(semi)stability condition for quadric bundles of arbitrary rank
has been obtained in [18]. In rank 2 our α-semistability condition reads as follows
(see [22, Proposition 2.15]). It is equivalent to the corresponding one on [18] by
taking α = d/2− δ.

Definition 2.10. Let (V, γ) be a rank 2 quadric bundle of degree d.

• The pair (V, γ) is α-semistable if and only if α ≤ d/2 and, for any line bundle
L ⊂ V , the following conditions hold:

1. deg(L) ≤ α, if γ(L) = 0;

2. deg(L) ≤ d/2, if γ(L) ⊂ L⊥K;

3. deg(L) ≤ d− α, if γ(L) 6⊂ L⊥K.

• The pair (V, γ) is α-stable if and only if it is α-semistable for any line bundle
L ⊂ V , the conditions (1), (2) and (3) above hold with strict inequalities.

Clearly these conditions are compatible with the ones of Definition 2.4. There
is also the notion of α-polystability, but we omit it (see again Proposition 2.15
of [22]). The important thing to note is that on each S-equivalence class of α-
semistable quadric bundles there is a unique α-polystable representative. Thus
the points of Nα(d) parametrize the isomorphism classes of α-polystable quadric
bundles of rank 2 and, furthermore, Nα(d) is a subvariety of Mα

d (Sp(4,R)).
The next result follows from Proposition 2.7 and the discussion preceding it.

Proposition 2.11. Let 0 < d < 2g − 2. The number of connected components
of the moduli space Md(Sp(4,R)) of semistable Sp(4,R)-Higgs bundles of degree
d is bounded above by the number of connected components of N0(d), the moduli
space of 0-polystable quadric bundles of degree d.

3 Moduli of quadric bundles and wall-crossing

3.1 Non-emptiness conditions

The next result gives a Milnor-Wood type of inequality for quadric bundles.

Proposition 3.1. If Nα(d) is non-empty then 2α ≤ d ≤ 2g − 2.
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Proof. The first statement is immediate from α-semistability, hence let us look to
the second inequality.

Let (V, γ) be quadric bundle of rank 2 and degree d. If rk(γ) = 2 (generically),
then det(γ) is a non-zero section of Λ2V −2K2 so d ≤ 2g − 2.

Suppose now that there exists an α-semistable quadric bundle (V, γ) of rank
2 and degree d > 2g − 2, with rk(γ) < 2. Since γ 6= 0, we must have rk(γ) = 1.
Let N be the line subbundle of V given by the kernel of γ and let I ⊂ V ∗ be such
that IK is the saturation of the image sheaf of γ. Hence γ induces a non-zero
map of line bundles V/N → IK, so

(3.1) −d+ deg(N) + deg(I) + 2g − 2 ≥ 0.

But, from the α-semistability condition, we have deg(N) ≤ α and deg(I) ≤ α−d,
because γ(I⊥) = 0. This implies −d+deg(N)+deg(I)+2g−2 < 0, contradicting
(3.1). We conclude that there is no such (V, γ).

In fact, the inequalities of this proposition are equivalent to the non-emptiness
of the moduli. This follows from the results below. So from now on we assume

2α ≤ d ≤ 2g − 2.

Indeed most of the times we will consider 2α < d < 2g − 2.

Remark 3.2. Recall that our motivation comes from Sp(4,R)-Higgs bundles and
there (see Proposition 2.7) we imposed d > 0. However, the moduli spaces of
quadric bundles make perfect sense and can be non-empty also for d ≤ 0. Hence
we will not impose d > 0 for the quadric bundles moduli spaces, although when
d ≤ 0 we lose the relation with Higgs bundles.

3.2 Moduli for small parameter

3.2.1 Stabilization parameter

For a fixed d ≤ 2g− 2, we know that there are no moduli spaces Nα(d) whenever
α is “large”, meaning α > d/2. Here we prove that there is a different kind of
phenomena when α is “small”. Precisely, we show that all the moduli spaces
Nα′(d) are isomorphic for any α′ < d− g + 1. Moreover, in all of them, the map
γ is generically non-degenerate. Write αm = d− g + 1.

Proposition 3.3. If (V, γ) is an α-semistable pair with α < αm, then γ is gener-
ically non-degenerate. Moreover, if α2 ≤ α1 < αm, then Nα1(d) and Nα2(d) are
isomorphic.

Proof. Recall that we always have γ 6= 0. If rk(γ) = 1, considering again the line
bundles N = ker(γ) ⊂ V and I ⊂ V ∗ as in the proof of Proposition 3.1, we see
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that 0 ≤ −d + deg(N) + deg(I) + 2g − 2 ≤ 2α − 2d + 2g − 2, i.e., α ≥ αm. This
settles the first part of the proposition.

Let (V, γ) ∈ Nα1(d). The only way that (V, γ) may not belong to Nα2(d)
is from the existence of an α2-destabilizing subbundle which, since α2 ≤ α1 and
looking at Definition 2.10, must be a line subbundle L ⊂ V such that γ(L) = 0 and
deg(L) > α2. This in turn implies that rk(γ) = 1 generically, which is impossible
due to the first part of the proposition.

Conversely, if (V, γ) ∈ Nα2(d), then (V, γ) ∈ Nα1(d) unless there is an α1-
destabilizing subbundle L of (V, γ) such that d − α1 < deg(L) ≤ d − α2, and

γ(L) 6⊂ L⊥K. Therefore the composite L → V
γ−→ V ∗ ⊗ U → L−1K is non-zero

so −2 deg(L) + 2g − 2 ≥ 0. On the other hand, d − α1 < deg(L) together with
α1 < αm, gives −2 deg(L) + 2g − 2 < 0, yielding again to a contradiction.

We now aim to study the connectedness of the spaces Nα(d), for α < αm.
Although our main motivation comes from the study of Sp(4,R)-Higgs bundles
with non-maximal Toledo invariant (cf. Proposition 2.7), let us say a few words
about Nα(2g− 2), which really has a different behaviour from all the other cases.

3.2.2 Maximal Toledo invariant

Take d = 2g− 2. In this case αm = g− 1 = d/2, so the stabilisation parameter of
the previous results is really the largest value for which non-emptiness holds. This
means that, whenever non-empty, all the moduli spaces Nα(2g−2) are isomorphic,
independently of α. Accordingly, in this maximal case, we drop the α from the
notation and just write N (2g − 2).

The other special feature about this case is that if (V, γ) ∈ N (2g − 2), then
γ : V → V ∗⊗K is an isomorphism, since we already know that it must be injective
and now the degrees match. By choosing a square root K1/2 of K, γ gives rise to a
symmetric isomorphism q = γ⊗IdK−1/2 : V ⊗K−1/2 ∼= V ∗⊗K1/2, i.e. to a nowhere
degenerate quadratic form on V ⊗ K−1/2. In other words, (V ⊗ K−1/2, q) is an
orthogonal vector bundle. Now, there is a semistability condition for orthogonal
bundles (namely that any isotropic subbundle must have non-positive degree;
[33]), and it can be seen that the orthogonal bundle (V ⊗K−1/2, q) is semistable
if and only if (V, γ) is α-semistable for any α < αm. So:

Proposition 3.4. The moduli space N (2g− 2) is isomorphic to the moduli space
of rank 2 orthogonal vector bundles (without fixed topological type).

The existence of this isomorphism justifies the disconnectedness of N (2g− 2).
This is an example of the Cayley correspondence mentioned in the introduction.
All this goes through higher rank, telling us that quadric bundles are the natural
generalisation of orthogonal vector bundles, when we remove the non-degeneracy
condition, providing another motivation for the consideration of these objects.
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3.2.3 Quadric bundles, twisted Higgs pairs and the fibres of the Hitchin
map

Write α−m for any value of α less than αm = d − g + 1. We shall now deal with
the spaces Nα−m(d) for any d < 2g − 2. We will do it by relating pairs (V, γ)
with certain twisted rank 2 Higgs bundles and using the Hitchin map on the
corresponding moduli space.

Consider a quadric bundle (V, γ) ∈ Nα−m(d). By Proposition 3.3, det(γ) is a
non-zero holomorphic section of Λ2V −2K2. Since now d < 2g − 2, the section
det(γ) has zeros, so we consider the corresponding effective divisor div(det(γ)) ∈
Sym4g−4−2d(X).

Write Jacd(X) for the “Jacobian variety” of degree d holomorphic line bundles
over X. Let PX be the 22g-cover of Sym4g−4−2d(X) obtained by pulling back
the cover Jac2g−2−d(X) → Jac4g−4−2d(X), L 7→ L2, under the Abel-Jacobi map
Sym4g−4−2d(X) → Jac4g−4−2d(X). The elements of PX are pairs (D,L) in the
product Sym4g−4−2d(X)× Jac2g−2−d(X) such that O(D) ∼= L2.

In order to describe Nα−m(d), we shall use the following map, which is analogue
to the so-called Hitchin map defined by Hitchin in [25], and which will recall below
in (3.3):

(3.2)
h : Nα−m(d) −→ PX

(V, γ) 7−→ (div(det(γ)),Λ2V −1K).

Our goal is to be able to say something about the fibres of this map.
To relate h with the Hitchin map, recall first that, given any line bundle L of

non-negative degree, an L-twisted Higgs pair of type is a pair (V, ϕ), where V is a
holomorphic vector bundle over X and ϕ ∈ H0(X,End(V )⊗ L). So, we are just
twisting the Higgs field by L instead of K.

Definition 3.5. A rank 2 and degree d, L-twisted Higgs pair (V, ϕ) is semistable
if deg(F ) ≤ d/2 for any line subbundle F ⊂ V such that ϕ(F ) ⊂ FL.

LetMΛ
L denote the moduli space of L-twisted Higgs pairs of rank 2 and degree

d, with fixed determinant Λ ∈ Jacd(X) and with traceless Higgs field. In this
particular case, the Hitchin map in MΛ

L is defined by:

(3.3)
H : MΛ

L −→ H0(X,L2)
(V, ϕ) 7−→ det(ϕ).

We can naturally associate a ξ-twisted Higgs pair to a given quadric bundle
(V, γ), of rank 2, where ξ = Λ2V −1K. This is done by taking advantage of the fact
that for a 2-dimensional vector space V, there is an isomorphism V⊗ Λ2V∗ ∼= V∗
given by v⊗φ 7→ φ(v∧−). Then, from such quadric bundle, simply associate the
ξ-twisted Higgs pair (V, g−1γ), where g is the isomorphism

(3.4) g : V ⊗ ξ ∼=−→ V ∗ ⊗K
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given by g(v ⊗ φ ⊗ u) = φ(v ∧ −) ⊗ u; so indeed g−1γ : V → V ⊗ ξ. Choosing
appropriate local frames, g is locally given by ( 0 −1

1 0 ) so

(3.5) det(g−1γ) = det(γ) and tr(g−1γ) = 0,

due to the symmetry of γ. Moreover, it is easy to see that (V, γ) is α−m-semistable
if and only if the corresponding (V, g−1γ) is semistable as in Definition 3.5. So if

(V, γ) ∈ Nα−m , then (V, g−1γ) represents a point in Mξ−1K
ξ .

Let us now go back to the map h in (3.2). Let (D, ξ) be any pair in PX .
We want to describe the fibre of h over (D, ξ), i.e., the space of isomorphism
classes of α−m-polystable quadric bundles (V, γ) such that div(det(γ)) = D and
Λ2V ∼= ξ−1K. The following result gives the fibre h−1(D, ξ) in terms of the fibre
H−1(s), for a certain section s of ξ2.

Proposition 3.6 ([22]). Let (D, ξ) ∈ PX and choose some s ∈ H0(X, ξ2) such

that div(s) = D. Then h−1(D, ξ) ∈ Nα−m(d) is isomorphic to H−1(s) ∈Mξ−1K
ξ .

The isomorphism of this proposition is of course given by the above correspon-
dence between quadric bundles and ξ-twisted Higgs pairs. Notice that everything
makes sense because of (3.5). A word of caution is however required here since
there is a choice of a section s associated to the divisor D in Proposition 3.6.
However, the given description of h−1(D, ξ) does not depend of this choice, due
to Lemma 4.6 of [22]; see also Remark 4.10 in loc. cit. for more details.

Using this we can prove the following.

Theorem 3.7 ([22]). Let d < 2g− 2. The moduli space Nα−m(d) is connected and
has dimension 7g − 7− 3d.

The basic idea to prove connectedness is to prove that any fibre of h is con-
nected. For that we use Proposition 3.6 and want to prove that H−1(s) is con-
nected for every 0 6= s ∈ H0(X, ξ2). This is done using the theory of spectral
covers and their Jacobians and Prym varieties, as developed in [1, 25, 26]. Besides
these classical references, the reader may also check the details of the following
definitions for instance in [23].

For every s 6= 0, there is a naturally associated curve Xs — the spectral curve
of s — inside the total space of π : ξ → X. The projection π|Xs : Xs → X is a
2 : 1 cover of X, with the branch locus being given by the divisor of s.

For generic s ∈ H0(X, ξ2) the curve Xs is smooth. It is well-known thatH−1(s)
is indeed (a torsor for) the Prym variety of Xs. This Prym variety is, in particular,
a complex torus, so connected. If deg(ξ) ≥ 2g−2 then the connectedness of every
fibre of H follows from the connectedness of the generic fibre (see Proposition 3.7
of [23]). It is nevertheless important to notice that deg(ξ) = −d+2g−2, so deg(ξ)
can be any positive integer. Moreover, it is precisely the case deg(ξ) < 2g − 2
that is of most interest to us, since that is the case relevant to Sp(4,R)-Higgs
bundles. So, for these cases, our knowledge of the generic fibre is not enough
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to draw conclusions on the connectedness of the singular fibres, that is, the ones
where the spectral curve Xs acquires singularities. However, this was achieved by
P. Gothen and the author in [23] as follows.

When the spectral case is irreducible, we use the correspondence between Higgs
pairs on X and rank one torsion free sheaves on Xs [1] to show that the fibre of
the Hitchin map is essentially the compactification by rank 1 torsion free sheaves
of the Prym of the double cover Xs → X. In order to prove the connectedness
of the fibre, we made use of the the compactification of the Jacobian of Xs by
the parabolic modules of Cook [6, 7]. One advantage of this compactification
is that it fibres over the Jacobian of the normalisation of Xs, as opposed to the
compactification by rank one torsion free sheaves. In the case of reducible spectral
curve Xs, we gave a direct description of the fibre as a stratified space. All
together, the statement of our result, adapted to the situation under consideration
in Proposition 3.6, is the following.

Theorem 3.8 ([23]). Consider the Hitchin map H : Mξ−1K
ξ → H0(X, ξ2). For

any s, H−1(s) is connected. Moreover, for s 6= 0, the dimension of the fibre is
dim(H−1(s)) = −d+ 3g − 3.

As PX is connected and of dimension 4g − 4− 2d, this settles Theorem 3.7.
The following corollary of Theorem 3.7 is immediate.

Corollary 3.9. If g − 1 < d < 2g − 2, then the moduli space N0(d) is connected.

For the cases 0 < d < g − 1, we must take into account other values of the
parameter and not just α−m.

3.3 Critical values and wall-crossing

Having established the connectedness of the space Nα−m(d) in Theorem 3.7, the
purpose of this section is to study the variation of the moduli spaces Nα(d) with
the stability parameter α. Recall that the goal is to be able to say something
about the connectedness of N0(d). As in several other cases [38, 4], we have
critical values for the parameter. These are special values αk, for which the α-
semistability condition changes. One proves that indeed there are a finite number
of these critical values and, more precisely, that α is a critical value if and only
if it is equal to d/2 or to αk = [d/2] − k, with k = 0, . . . ,−d + g − 1 + [d/2].
By definition, on each open interval between consecutive critical values, the α-
semistability condition does not vary, hence the corresponding moduli spaces are
isomorphic. If α+

k denotes the value of any parameter between the critical values
αk and αk+1, we can write without ambiguity Nα+

k
(d) for the moduli space of α+

k -
semistable quadric bundles of for any α between αk and αk+1. Likewise, define
Nα−k (d), with α−k denoting any value between the critical values αk−1 and αk.

With this notation we have Nα+
k

(d) = Nα−k+1
(d).
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The information obtained so far on the variation of Nα(d) with α and d is
summarised in the next graphic.

2g−2

g−1

α
=
d
−

g
+
1

α
=
d
/
2

d

α0

Above the line d = 2g − 2,
Nα(d) is empty as well as on
the right of the line α = d/2.
For a fixed d < 2g − 2, the re-
gion on the left of the line α =
αm = d − g + 1, is the region
Nα−m(d) described in the pre-
vious section, where there are
no critical values. The critical
values are represented by the
dots between the lines α = αm
and α = d/2.

Given a critical value αk we have the corresponding subvariety Sα+
k

(d) ⊂
Nα+

k
(d) consisting of those pairs which are α+

k -semistable but α−k -unstable. In

the same manner, define the subvariety Sα−k (d) ⊂ Nα−k (d). Consequently,

(3.6) Nα−k (d) \ Sα−k (d) ∼= Nα+
k

(d) \ Sα+
k

(d).

So the spaces Sα±k (d) encode the difference between the spaces Nα−k (d) and Nα+
k

(d)
on opposite sides of the critical value αk. This difference is usually known as the
wall-crossing phenomena through αk. In order to study this wall-crossing we need
a description of the spaces Sα±k (d).

In Section 3 of [22] we studied these Sα±k (d) for any critical value. In partic-

ular, it was enough to conclude that they have high codimension in Nα±k (d). For
technical reasons, we had to impose the condition d < g − 1. More precisely, we
have the following.

Proposition 3.10. Suppose that d < g − 1. Then dimNα(d) = 7g − 7− 3d, for
any α ≤ d/2. Moreover, for any k, the codimensions of Sα±k (d) ⊂ Nα±k (d) are
strictly positive.

3.4 Connectedness of the moduli spaces of quadric bun-
dles

Since we already know from Theorem 3.7 that Nα−m(d) is connected for any d <
2g − 2, Proposition 3.10 yields the following (cf. [22, Theorem 5.3]):

Theorem 3.11. The moduli spaces Nα(d) are connected for any d < g − 1 and
any α < d/2.
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Corollary 3.12. If 0 < d < g − 1, then the moduli space N0(d) is connected.

Recall that we want to study the connected components of the moduli space
N0(d) of 0-polystable quadric bundles, for any 0 < d < 2g − 2. From Corollaries
3.9 and 3.12 we see that the only remaining case to understand is when d =
g − 1. Notice that the space N0(g − 1) is really Nαm(g − 1). Now, although
the codimensions of every Sα±k (d) are only known under the condition d < g − 1,

it follows from Corollaries 3.11 and 3.15 of [22] that the codimensions of both
Sα±m(d) are known to be positive also when d = g − 1. From this, arguing as in
the last paragraph of the proof of [22, Theorem 5.3], we prove that also N0(g− 1)
is connected. So we conclude that:

Theorem 3.13. The moduli space of 0-polystable quadric bundles of degree d is
connected for every 0 < d < 2g − 2.

4 Conclusion and further remarks

4.1 Non-maximal components for Sp(4,R) and SO0(2, 3)

Proposition 2.11 and Theorem 3.13 imply then that we have achieved our objec-
tive of calculating the number of connected components of the moduli space of
Sp(4,R)-Higgs bundles over X, with non-maximal and non-zero Toledo invariant:

Theorem 4.1. If 0 < |d| < 2g − 2 then Md(Sp(4,R)) is connected.

This theorem has in fact been proved before [22], by O. Garćıa-Prada and I.
Mundet i Riera in [16], using different techniques. More precisely, they do consider
quadric bundles, but prove the connectedness directly, i.e., fixing α = 0 and not
implementing the variation of the parameter.

Our method easily generalises for U -quadric bundles — see Remark 2.9 — for
any line bundle U . In particular, if we consider LK-quadric bundles, with L
some line bundle of degree 1, then these are related with SO0(2, 3)-Higgs bundles
with non-maximal (and non-zero) Toledo invariant, in the same way K-quadric
bundles arise in the Sp(4,R) case. Applying Definition 2.1, it is easy to check
that an SO0(2, 3)-Higgs bundle is defined by a tuple (L,W,QW , β, γ) where L
is a line bundle, (W,QW ) is an orthogonal rank 3 bundle and the Higgs field is
defined by maps β : W → LK and γ : W → L−1K. These are topologically
classified by the degree d of L (this is the Toledo invariant) and by the second
Stiefel-Whitney class w2 of W . Note that SO0(2, 3) is isomorphic to PSp(4,R).
Moreover, an SO0(2, 3)-Higgs bundle lifts to an Sp(4,R)-Higgs bundle if and only
if d ≡ w2 mod 2.

The precise same methods that we described for Sp(4,R), yield then the fol-
lowing (see [22, Theorem 6.26]):
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Theorem 4.2. If 0 < |d| < 2g − 2 and w2 ∈ Z/2 then Md,w2(SO0(2, 3)) is
connected.

Recalling that non-abelian Hodge theory implies that the moduli space of
G-Higgs bundles over X is homeomorphic to the space of conjugacy classes of
reductive representations of π1(X) in G (cf. Remark 2.6), we conclude the both
Theorems 4.1 and 4.2 have their counterparts on the representations side (see
[16, 22] for the detailed statements).

4.2 Some different directions

4.2.1 Torelli theorem

Our method to analyse the components of the moduli spacesNα(d) of α-semistable
quadric bundles of degree d was to start with the study in the lowest extreme of
α, that is the study of Nα−m(d). One can ask what happens in the highest possible
extreme, namely α = αM = d/2. Since this is a critical value, take a slight lower
value, α−M = d/2− ε, for a small ε > 0. Here, different phenomena arise.

Briefly, it is easy to check that if (V, γ) is α−M -semistable, then V is itself
semistable as a rank 2 vector bundle. If M(d) denotes the moduli space of
polystable rank 2 degree d vector bundles on X, this yields a forgetful map
π : Nα−M (d)→M(d). If d = 2g− 2, this map is an embedding because Nα−M (d) is,

as we saw, the moduli of orthogonal vector bundles and thus follows from [36]. If
g−1 ≤ d < 2g−2, the determination of the image of π is a Brill-Noether problem.
If d < g − 1, π is surjective and if, further, d < 0, the map π, suitably restricted,
is a projective bundle over the stable locus M s(d) ⊂ M(d). This is explained in
Proposition 3.13 of [22].

So assume d < 0, and from now on let us just consider quadric bundles (V, γ)
where the determinant of V is fixed to be some line bundle Λ of degree d. Let
Nα(Λ) ⊂ Nα(d) and M(Λ) ⊂ M(d) denote the corresponding obvious moduli
spaces. Using the projective bundle π onto the stable locus of M(Λ) and through
a detailed analysis of the the smooth locus N sm

α (Λ) ⊂ Nα(Λ), we were able to
obtain some geometric and topological results on Nα(d). This procedure is taken
in detail in [31] again in the more general setting of U -quadric bundles.

For instance we proved that Nα(Λ) is irreducible and N sm
α (Λ) is simply-

connected — see Corollaries 4.3 and 4.4 of [31]. The irreducibility was already
known from [19], using different methods.

Under some slight conditions on the genus of X, we calculated the torsion-free
part of the first three integral cohomology groups of the smooth locus N sm

α (Λ) ⊂
Nα(Λ) for any α. In particular [31, Proposition 5.6] says that H3(N sm

α (Λ),Z) is
isomorphic to H1(X,Z). This fact, together with the assumption that the genus
of X is at least 5, and after properly defining a polarisation on H3(N sm

α (Λ),Z)
compatible with the one on H1(X,Z), allowed us to prove that a Torelli type
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theorem holds for Nα(Λ). From this it follows that the same is also true for the
non-fixed determinant moduli. To emphasise now the base curve, write NX,α(Λ)
for the moduli space of α-polystable quadric bundles of rank two with fixed de-
terminant Λ on X. Let NX,α(d) be the same thing but just fixing the degree and
not the determinant.

Theorem 4.3 ([31]). Let X and X ′ be smooth projective curves of genus g, g′ ≥ 5,
Λ and Λ′ line bundles of degree d < 0 and d′ < 0 on X and X ′, respectively. If
NX,α(Λ) ∼= NX′,α(Λ′) then X ∼= X ′. The same holds for NX,α(d) and NX′,α(d′).

In other words, the isomorphism class of the curve X is determined by the one
of the projective variety NX,α(Λ).

4.2.2 Higher ranks

One natural question is to wonder if the procedure we described here can be
generalised to ranks higher than 2. First, Proposition 2.11 is true for any rank (it
is even true for any real reductive Lie group). Proposition 2.7 also generalises in
a straightforward way for Sp(2n,R) for n > 2, so we are again lead to the study
of higher rank quadric bundles. The technical problems start here because the
α-semistability condition can be much more complicated in higher rank, involving
not only subbundles but filtrations (see [19] and [18]). One consequence is that
the study of Nα−m(d) and mainly of Sα±k (d) should become much more complicated.
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André Oliveira
Quadric bundles applied to non-maximal Higgs bundles . . . . . . . . . . . 201–220

Program of the School . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Program of the Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223





Instructions to authors

Manuscripts should be written in English, French or German, and printed in
Latex style.  The  final  Latex  source  files,  on  which  the  publication  will  be
based, should be prepared by the authors in a prescribed format using the
macro packages available at the webpage of the journal
http://math.uni.lu/travaux-mathematiques

Each paper  must  include an  abstract of  not  more than 200 words,  which
should contain a brief but informative summary of the contents of the paper.
The abstract should be written in English. 

Authors should include in their papers one or more classification numbers,
following the AMS Mathematics Subject Classification. Details of this scheme
can be found in each Annual Index of Mathematical Reviews or on the web at
http://www.ams.org/msc.

A few key words should also be indicated. 

The manuscripts have to be  submitted electronically to
 martin.schlichenmaier@uni.lu.

Subscription

In order to subscribe to the journal or to order previous volumes separately,
please write to the address .

University  of Luxembourg
Campus Kirchberg
Mathematics Research Unit
6, rue Coudenhove-Kalergi
L-1359 Luxembourg
Grand-Duchy of Luxembourg 

Electronic  copies are also available on the above mentioned web-page of the
journal.







                    University of Luxembourg
Mathematics Research Unit

Campus Kirchberg
6, rue Coudenhove-Kalergi

L-1359 Luxembourg

                                              —

                    University of Luxembourg
          Multilingual. Personalised. Connected.

ISBN 978-2-87971-167-6
ISSN 1024-1833

www.uni.lu


	Vol. XXIV, 2016

