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Abstract

This thesis studies the problem of energy efficiency of communications in
distributed computing paradigms, including cloud computing, mobile cloud
computing and fog/edge computing. Distributed computing paradigms have
significantly changed the way of doing business. With cloud computing, com-
panies and end users can access the vast majority services online through a
virtualized environment in a pay-as-you-go basis. Mobile cloud and fog/edge
computing are the natural extension of the cloud computing paradigm for
mobile and Internet of Things (IoT) devices. Based on offloading, the process
of outsourcing computing tasks from mobile devices to the cloud, mobile
cloud and fog/edge computing paradigms have become popular techniques
to augment the capabilities of the mobile devices and to reduce their battery
drain. Being equipped with a number of sensors, the proliferation of mobile
and IoT devices has given rise to a new cloud-based paradigm for collecting
data, which is called mobile crowdsensing as for proper operation it requires
a large number of participants.

A plethora of communication technologies is applicable to distributing
computing paradigms. For example, cloud data centers typically implement
wired technologies while mobile cloud and fog/edge environments exploit
wireless technologies such as 3G/4G, WiFi and Bluetooth. Communication
technologies directly impact the performance and the energy drain of the
system. This Ph.D. thesis analyzes from a global perspective the efficiency in
using energy of communications systems in distributed computing paradigms.
In particular, the following contributions are proposed:

• A new framework of performance metrics for communication systems of
cloud computing data centers. The proposed framework allows a fine-
grain analysis and comparison of communication systems, processes,
and protocols, defining their influence on the performance of cloud
applications.

• A novel model for the problem of computation offloading, which de-
scribes the workflow of mobile applications through a new Directed
Acyclic Graph (DAG) technique. This methodology is suitable for IoT
devices working in fog computing environments and was used to design
an Android application, called TreeGlass, which performs recognition
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of trees using Google Glass. TreeGlass is evaluated experimentally in
different offloading scenarios by measuring battery drain and time of
execution as key performance indicators.

• In mobile crowdsensing systems, novel performance metrics and a
new framework for data acquisition, which exploits a new policy for
user recruitment. Performance of the framework are validated through
CrowdSenSim, which is a new simulator designed for mobile crowd-
sensing activities in large scale urban scenarios.
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Chapter 1

Introduction

1.1 Context

Cloud computing has dramatically changed the way industry and clients do
business and consume services. Companies and end users can now access
the vast majority of services on demand and online through a virtualized
environment in a pay-as-you-go basis. According to Forbes, the revenues of
worldwide public IT cloud services are expected to reach $ 128 billions by
2018 [1]. The main features making attractive cloud computing paradigm
are scalability and elasticity. These properties eliminates the need for cloud
users to plan ahead for resource provisioning. Cloud computing has made
real the idea of computing utility. Computing is now identified as an essential
service ad disposal of everybody like water, electricity, gas, and Internet
connectivity.

The widespread diffusion of mobile devices such as laptop computers
and smartphones first and of the Internet of Things (IoT) devices later, has
created the need for extending the concept of utility computing in the mobile
environment. Mobile cloud and fog computing are distributed computing
paradigms filling this gap and enable the mobile users to access services
and benefit from all the advantages cloud computing paradigm offers [2].
The process of offloading has given rise to additional benefits for the mobile
users. Offloading is the process of outsourcing part of the computation from
the resource constrained mobile devices to the cloud. Through offloading,
mobile users augment the capabilities of the mobile and IoT devices, e.g.,
they can use applications that natively would not run locally because of
resource limitations such as poor processing power, storage and memory.
Moreover, avoiding local computing allows mobile and IoT devices to save
energy.

Cloud providers deliver to the users mainly three types of service models,
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS). IaaS providers offer to the users a pool of computing,
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storage and network resources. PaaS providers enable users to access a
platform to develop and deploy software while in SaaS users access software
running on servers. The emerging of new trends such as Big Data and IoT
has given rise to new types of services, including Sensing as a Service (S2aaS)
and Data as a Service (DaaS). S2aaS makes sensor infrastructure accessible
through the Internet and the data collected at users disposal. S2aaS business
models are projected to become a pillar solution for development of smart
cities.

Mobile CrowdSensing (MCS) has become a popular paradigm for sensing
data and operates exploiting sensors of smartphones and wearable devices.
MCS is projected to greatly improve citizens everyday life and to provide
new perspectives to urban societies. MCS is an essential solution for build-
ing smart cities of the future, which aim at using ICT solutions to improve
management of everyday life of their citizens [3]. In such a context, active
participation of citizens improves spatial coverage of already deployed sens-
ing systems with no need of further investments. MCS takes advantage of
human intelligence, which has a deeper context understanding than tradi-
tional sensor networks. For example, having human involved in detection of
free parking spot detection using WiFi scans like in ParkSense [4] provides
more accurate performance [5], [6]. Parking is only one of the possible
city services where MCS will play a fundamental role thanks to its unique
features. In addition, other potential applications are smart lighting, smart
traffic management and environmental monitoring, including air and noise
quality.

1.2 Motivation

The analysis of efficiency of communications from an energy perspective is a
challenging problem and depends on the distributed computing paradigm
and on the communication technology. For example, in cloud computing data
centers, turning off network switches running at low levels of utilizations
improves energy efficiency. In mobile cloud or fog computing, turning off
communication devices in the infrastructure side would not save energy
as the majority of energy costs is at the end-users side. Mobile and IoT
devices are battery equipped therefore energy is scarce and, consequently, a
precious resource. In this context, the choice of using a given communication
technology, such as WiFi rather than 3G interface, is crucial both for the
performance of the application and battery drain.

Each distributed computing domain, therefore, requires different ap-
proaches to optimize efficiency in using energy. Unlike focusing on a single
domain, one of the strengths of this thesis is the analysis of the problem from
a holistic and comprehensive perspective. The thesis provides contributions
in all the distributed computing domains, including cloud computing as well
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as mobile cloud and fog computing.

1.3 List of contributions

The objective of this PhD thesis is to study energy efficiency in cloud, mo-
bile cloud and fog computing paradigms. This section outlines the major
contributions:

• A comprehensive literature study in the field of communications in
data centers and mobile environments.

• A new framework of performance metrics for communication systems of
cloud computing data centers. The proposed framework allows a fine-
grain analysis and comparison of communication systems, processes,
and protocols, defining their influence on the performance of cloud
applications.

• A novel model for the problem of computation offloading in mobile
cloud computing with wearable devices.

• A new Directed Acyclic Graph (DAG) model to describe the workflow
of mobile cloud applications in fog computing.

• The development of an Android application, called TreeGlass, which
performs recognition of trees using Google Glass. The performance of
TreeGlass are evaluated experimentally measuring battery drain and
time execution as metrics.

• New performance metrics for mobile crowdsensing systems to assess
efficiency of recruitment policies, accuracy of task completion and
distribution of generated samples.

• A new framework for data acquisition, which exploits a new policy for
user recruitment and runs on a fog computing platform specifically
designed for smart cities.

• The development of CrowdSenSim, which is a new simulator designed
for mobile crowdsensing activities in large scale urban scenarios.

1.4 Thesis Structure

The manuscript is organized as follows:

• Part I presents essential notions required to read the dissertation. The
notions include an overview of distributed computing paradigms like
cloud computing, mobile cloud and fog computing (Chapter 2), an
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analysis of communication technologies (Chapter 3) and the study
of initiatives to make green distributed computing paradigms and
communication networks (Chapter 4).

• Part II presents background in cloud computing data centers, includ-
ing networking, resource allocation and existing performance metrics
currently adopted in industry (Chapter 5) and proposes the new frame-
work of metrics for data center communication systems (Chapter 6).

• Part III presents background on mobile cloud and fog computing,
detailing offloading and application partitioning techniques (Chapter 7)
and illustrates the proposed contributions in the field, namely the
model for computation offloading with wearable devices (Chapter 8),
the DAG-based methodology and TreeGlass (Chapter 9).

• Part IV presents background on mobile crowdsensing (Chapter 10)
and illustrates the contributions, the new performance metrics and the
CrowdSenSim simulator (Chapters 11) and the new framework for
data collection with the fog computing platform (Chapter 12).

• Part V concludes the work and outlines future research directions
(Chapter 13).

Fig. 1.1 shows graphically the structure of the dissertation, outlining in
blue the part containing the essential notions required to read the technical
contributions (in the red boxes). In each technical part, the first chapter is
devoted to present a more in depth background on the topic than the content
presented in Part I. Finally, the green box presents the conclusions.
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Chapter 2

Distributed Computing
Systems

Distributed computing refers to the model where computation problems are
divided into small pieces, usually called tasks, that are executed by multiple
devices with the objective of improving efficiency and performance. This
chapter analyzes the most widely adopted distributed systems nowadays,
including cloud computing, mobile cloud computing and fog computing
among the others.

2.1 Cloud Computing Paradigm

2.1.1 Introduction and Definition

The idea behind cloud computing, i.e., the provisioning of computing ca-
pabilities at user disposal is not new. John McCarthy in 1961 was already
envisioning computing as general utility and Leonard Kleinrock in 1969 said:
“As of now, computer networks are still in their infancy, but as they grow
up and become sophisticated, we will probably see the spread of ‘computer
utilities’ which, like present electric and telephone utilities, will service indi-
vidual homes and offices across the country”. Cloud computing has emerged
from a combination of economical needs and technological advances and
describes a new business model of provisioning services across the Internet.

The National Institute of Standards and Technology (NIST) provides the
following definition for cloud computing [7]:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
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NIST, also identifies five essential characteristics of cloud computing
paradigm, namely on-demand self-service, broad-network access, resource
pooling, rapid elasticity, and measured service. These characteristics describe
the capability for individuals and companies to benefit from cloud services
without having to invest in acquiring specific resources. On the contrary,
resources are rented according to the needs on a pay-as-you-go basis. The
needs of the users vary along time, hence cloud providers can adapt the
provisioning of resources according the requirements and not the peak load
and save considerable amount of operational costs at low loads. The pool
of shared computing resources are typically hosted in data centers and are
accessible to the users in a multi-tenant model, i.e., physical and virtualized
resources becomes assigned in elastic manner according to the users requests.
Virtualization allows to abstract the physical details of the hardware to create
virtual resources at disposal of applications [8].

It is worthwhile highlighting the difference between scalability and elas-
ticity:

• Scalability is the ability of the system to accommodate incoming loads
by increasing the amount of resources available. Two methods can be
employed to scale the system. One methodology advances hardware
capabilities (scale up), the second one adds additional nodes in the
system such as computing servers or network devices (scale out).

• Elasticity is the ability of the system in adjusting the available resources
according to the load. Therefore, incoming increasing loads are ac-
commodated through scale out techniques and when the demands
shrink, unnecessary resources are released. Elasticity makes possible
the pay-as-you-go property of cloud services.

2.1.2 Service Models

The underlining business model behind cloud computing is the vision of
“everything as a service” (XaaS), where the word “everything” is typically
substituted with a well defined resource put at user disposal [9], [10]. Three
are the main type of resources consumed as a service: infrastructure, platform
and software. Infrastructure as a Service (IaaS) providers offer to the users
a pool of computing (can be a physical of virtualized server), storage and
network resources . The users rent the resources and pay according to
the consumption similarly to a electricity bill. With IaaS, users can install,
manage and run any platform or software on top of the infrastructure.
Platform as a Service (PaaS) enable users to access a platform to develop and
deploy software. With PaaS model, the developers accelerate the software
design and development as well as testing, and deployment of applications
in a more simpler and cost-effective manner. Moreover, eliminating the
overhead of deployment and management allows the developers to focus
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only on the core parts of the new application. With Software as a Service
(SaaS), users access software running on servers. The vast majority of SaaS
applications can be run directly from a web browser. For the users, SaaS
model eliminates the need for installing and running the application on a
personal computer. For the providers, SaaS model eliminates high costs of
maintaining the application and supporting the customers.

With the development of the market, more resources such as hardware,
storage and network have become “offered as a service”. Hardware as
a Service (HaaS) is the business model for replacing outdated hardware
equipment with new one. For the companies, it translates in avoiding high
financial costs for major hardware upgrade, turning them into operational
costs. In Storage as a Service (StaaS) models, the providers rent physical
storage space to small companies or individuals. For companies, StaaS
allows to save costs in terms of personnel and hardware acquisition and
maintenance. Network as a service (NaaS) providers deliver to their users
virtual network services. For example, small network operators can rent
infrastructure from big operators and sell to the customers their access
capabilities. This typically applies to cellular networks, where the cost of
acquiring and running a Evolved Packet Core (EPC) is high (see Section 3.2.1
for more details).

2.2 Mobile Cloud/Edge/Fog Computing Paradigm

2.2.1 Introduction, Overview and Comparison

The Internet of Things (IoT) is a paradigm where everyday life things and
objects become “smart”, i.e., through wireless and wired connections they
can communicate one with each other and with users to enable pervasive
and ubiquitous computing [11], [12]. IoT devices are objects uniquely
identifiable and are equipped with communication, computing, storage and
sensing capabilities. Cooperation among different objects is essential to foster
the creation of new application and services. According to Gartner [13], the
number of connected things will reach nearly 21 billion by 2020 with an
increase of nearly from 2016 estimations. The use of IoT devices is expected
to generate $868 billion in 2016 and it is projected to surpass the Gross
Domestic Product (GDP) of Germany by 2030 (see Fig. 2.1).

Fig. 2.2 shows graphically the sectors where companies started investing
in IoT. The sectors are highly heterogeneous ranging from healthcare and
fitness to gaming, robotics and automotive and agriculture. IoT devices,
indeed appear to be suitable both for systems that require interconnection
and coordination among the devices and with humans.

Mobile and IoT devices can perform the computation locally or it could
be fully outsourced to the cloud using the mobile network connection. The
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Figure 2.1: IoT market value forecasts. Source: IoT Analytics, Quantifying
the connected world

Figure 2.2: Visual map of IoT companies group per type of business. Source:
Venture Scanner, Internet of Things Sector Update
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second case is called mobile cloud computing. In between these two extremes,
there are hybrid architectures in which computation is split between the
devices and the cloud at various degrees. While traditional mobile cloud
computing offers the highest computational power, they may lack the context
that is typically of interest to the mobile devices in an environment. Due
to the delay in accessing the cloud architecture, the here and now context
may not be provided accurately. Moreover, the context may not be known to
the cloud. For example, finding the nearest empty parking spot in an event
would likely be provided more effectively by local devices. IoT devices are
typically tiny devices and thus should operate using low power communi-
cation technologies. The vast majority of IoT devices communications are
Machine to Machine (M2M) wireless communications [14]. Examples of
such wireless technologies include WiFi and WiFi Direct, which implements
advanced security standards with respect to existing WiFi ad-hoc networking,
Bluetooth, ZigBee, IEEE 802.15.4, Z-wave, and LTE-Advanced. For proper
design of energy-efficient context-aware applications, it is of paramount
importance to consider the tradeoff between energy savings, computation
offloading, and the cost of keeping active the communication interfaces for
each distributed computing paradigm. Part III will elaborate in detail this
concept.

Mobile Cloud Computing

Mobile Cloud Computing (MCC) is the natural extension of the cloud com-
puting paradigm to mobile environment and is defined as the scenario where
data storage and processing take place outside the mobile devices [2], [15]–
[19]. The objective is two-fold: on one hand, offloading processing and
storage to the cloud augments the capabilities of mobile devices, which are
typically resource-constrained. On the other hand, avoiding local processing
allows mobile devices to lower energy consumption due to reduced pro-
cessing. However, offloading requires devices to keep active connectivity
with the cloud. As a result, energy savings are a trade-off between the gain
achieved from computation offloading and the cost increase due to additional
communication. This concept will be explained in details in Chapter 8.

Fog/Edge Computing

Cisco proposed the Fog Computing (FC) concept to extend traditional cloud
computing at the edge of the network [20], [21]. For this reason, fog
computing is also called edge computing. Fog computing is tailored to serve
applications that are geographically-distributed and require low latency and
context awareness. As a result, FC is projected to play an essential role in the
IoT framework [22]. Unlike MCC, FC infrastructure is highly heterogeneous
and consists of both traditional cloud data centers, cloudlets, and other
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mobile devices at the edge of the network. Being more agile and closer to the
end user, fog/edge computing infrastructure suits the IoT-based applications
and context-awareness concept perfectly.

Transient, Follow-me, and Femto Clouds

In recent years, researches have proposed other distributed computing
paradigms complementing MCC and FC:

Transient Clouds (TCs) are mobile clouds created on-the-fly by the devices
present in an environment and would disappear as the nodes leave the
network [23]. Such devices share their resources while they are a member
of the TC.

Follow-me Clouds (FMCs) enable mobile cloud services to follow mobile
users while traveling by migrating all or part of the service from the original
data center to an optimal one [24] to guarantee a sufficient level of Quality of
Service and Experience (QoSE). In the context of context-aware applications,
MCC and FMC are similar from an infrastructure perspective, because both
of them rely on computation offloading to remote datacenters.

Femto-Clouds (FeCs) are designed to cope with user mobility, but computa-
tion offloading takes place at the edge of the network, namely in the access
network [25]–[27]. In FeCs, femto antennas – augmented with computing
capabilities – become available to the mobile users for computation offload-
ing to maximize local computation and reduce latency. Unlike the current
definition, Habak et al. [28] have proposed Femto clouds with the aim of
exploiting underutilized computing capacity of mobile devices in the vicinity.
This proposal, however, matches perfectly the concept of FC.

Selecting the Optimum Paradigm

Table 2.1 compares the distributed computing paradigms in terms of i) com-
puting capacity (COM CAP), ii) availability (AVA), iii) reliability (REL) and
iv) heterogeneity (HET) of the infrastructure. Data centers offer virtually-
unlimited computing capacity with high standards of availability and reliabil-
ity, but result high access times for IoT devices. On the contrary, offloading
computation to edge devices is faster, however, devices at the edge of the
network such as cloutlets, laptops, smartphones, and tablets have limited
computational capacity and are less reliable compared to data centers; such
devices are battery-powered and have intermittent network connectivity.
Furthermore, edge devices are heterogeneous, i.e., they offer highly variable
computation capacity, storage and connectivity.

Reducing the distance between the computational sources and the local
environment by utilizing cloudlets, nearby devices from fog, and transient
cloud architectures is crucial to enable effective context-aware applications.
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The complexity of the algorithms used to determine the context dictates
where the computation should take place: Distant cloud resources can pro-
vide complex data analysis for long-term impacts and projections, while the
local cloud (fog or transient) can provide simpler but faster results based on
the behavior of the device. For example, in a health monitoring app, local
data involves the activity of a user and his surrounding group, while the
cloud can provide a rich data analysis by taking into consideration other
correlated information, obtained from other sensors.

Table 2.1: Comparison of distributed computing paradigms. CD means
Cloud Data Center while ED Edge Devices; H denotes High, M stands for
Medium and L is Low.

Computing paradigm Offloading Destination COM CAP AVA REL HET

MCC CD H H H L
Fog/Edge CD + ED H M H H

TCs ED M-L L M M
FMCs CD H H H L
FeCs ED M-L M M M

2.2.2 Service Models

The proliferation of IoT devices equipped with different sensors and commu-
nication capabilities along with the emerging computing trends described
in the previous section generate tremendous and unprecedented amount of
data, also known as Big Data. In this context, IoT devices are the new frontier
of sensor networks, just more powerful. Unlike sensor networks, three main
features characterize IoT with respect to sensors networks [29]: periodic
sensing, regular data collection and sense-compute-actuate loop [30]. As a
result, novel services like Data as a Service (DaaS) and Sensing as a Service
(S2aaS) originated from the combination of IoT and Big Data.

DaaS provides to customers data files such as text, images, sounds, and
videos. This model allows companies to better manage data, to abstract data
from the origin applications, to filter out noise and to provide a better data
understanding. Oracle supports DaaS business model through Oracle Data
Cloud and Oracle ID Graph.

S2aaS makes available to the public data collected from sensors. Conse-
quently, companies have no longer the need to acquire an infrastructure to
perform a sensing campaign. IoT and MCS are key enablers in the S2aaS
model, which in turn is envisioned to play are indispensable role in smart
cities. Efficiency of S2aaS models is defined in terms of the revenues obtained
selling data and the costs. In S2aaS, the organizer of a sensing campaign,
such as a government agency, an academic institution or business corporation,
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sustains costs to recruit and compensate users for their involvement [31].
Also the users sustain costs while contributing data. These costs are the en-
ergy spent from the batteries for sensing and reporting data and, eventually,
the data subscription plan if cellular connectivity is used for reporting.

IoT devices producing open data through S2aaS-based systems such as
mobile crowdsensing (see Part IV for definition and contributions to the field)
can enhance the services in several areas, including tourism and cultural
heritage with context-aware recommendation systems, healthcare, security
and environmental monitoring [32]. To illustrate with few examples, appli-
cations in healthcare domain range from fitness and wellbeing to activity
recognition, which can be employed to detect a fall and user reaction after
the fall, as well as monitoring of less active users and encourage them for
more activity. In the context of tourism, provisioning tourists with wearable
bracelets creates the capability for the promoters like hotels and museums
to make customized advertisements, while the users to benefit of particular
discounts. The municipality, at the same time and with no further expenses,
can control the flow of the tourists and obtain information about humidity,
temperature, noise for environmental monitoring through the apposite sen-
sors in the bracelets and road surface conditions through the accelerometer
and gyroscope.
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Chapter 3

Communications in Distributed
Computing Systems

3.1 Wired Communication Systems

Wired communications exploit wire-based technologies for data transfer. In
distributed computing systems, wired communications find applicability in
data center networks and in the core of the cellular network (see Section 3.2.1
for more insights).

The most common technologies used for wire-based communications are
electronic and optical. Currently, electronic-based communication systems
can support up to 100 Gbits/s for a bi-directional link. The technology is
standardized within the IEEE 802.3 working group, which is responsible for
maintenance and extension of Ethernet.

Optical communication technologies offer higher throughputs than elec-
tronic and data rates are expected to reach the order of terabits per sec-
ond [33]. Optical communications exploit fiber optics to transmit light
from a source to a destination. Fiber optics are made by glass and exhibit
low signal attenuation and dispersion, which increases the transmission
distance [34].

3.2 Wireless Communication Systems

Wireless communications are certainly the most popular type of communica-
tions nowadays. Mobile phones and smartphones provide ubiquitous con-
nectivity and are an essential tool for business and entertainment. Wireless
networks are replacing wired networks in homes, companies and campuses
and are an enabling technology for important research areas including sensor
networks [35], [36], smart homes and buildings [37], smart grids [38] and
in data center networks as well [39].
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Wireless connectivity bring several advantages over wired networks:

• Support to mobility. For example, students in a campus can move from
one lab to another one without losing connectivity;

• Increased coverage. Mobile connectivity can reach areas where fixed
infrastructure is not currently deployed;

• Simple configuration. This property ensures flexibility and allows to
expand the network easily, for example, welcoming or relocating em-
ployees of a company. Moreover, network can be expanded on demand.
For example, restaurants, hotels or other public-based business can
offer wireless connectivity to their client, which typically consume
services for a limited amount of time.

3.2.1 Cellular (3G/4G-LTE/5G)

Mobile users access cloud applications from mobile devices using mainly
cellular connectivity. According to Cisco [40] the global amount of traffic
produced on a monthly basis by mobile devices will reach 30.6 Exabytes by
2020. Nowadays, the estimations account for 3.7 Exabytes per month at
the end of 2015 and 3G and 4G connections represent the 47% and 43% of
cellular traffic. The term 3G stands for 3rd Generation and is the most widely
implemented and adopted technique nowadays for cellular services. With
3G devices achieved 4 times higher speed than the devices of the previous
generation (2G). While 2G and 3G were mainly designed for carrying voice
traffic, 4G and 5G technologies are and will be designed for transmission of
data such as videos. Hence, it achieves higher data throughput. While in
2015 4G connections represented only 14% of mobile connections [40], 4G
is increasingly replacing 3G on the market through LTE. LTE stands for Long
Term Evolution and is the name given to the technology able to considerably
improves 3G performance (sometimes it is called 3.75G [41]). ITU-R has
nominated the advanced LTE solutions (LTE-A) as 4G technology. With
LTE-A, users can achieve download and upload data rates up to 300 Mbits
and 50 Mbits respectively [42]. Next generation technologies, 5G, is still
under development and significant research efforts are necessary even to
conceptualize the requirements [41]. One of the pillars of 5G will be the
integration of Device to Device (D2D) communications with the objective of
relieve the load that high traffic demands are injecting in the backbone of
the cellular networks. D2D communications allows users in the vicinity to
communicate directly one with each other in the unlicensed spectrum, thus
avoiding the need to exploit the cellular infrastructure [43].

Fig. 3.1 shows the LTE architecture. The Packet Data Network Gateway
(P-GW) allocates resources to UEs, provides connectivity between the UE
and external networks and handles QoS and data encapsulation. Current
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Figure 3.1: LTE architecture

P-GWs usually run Deep Packet Inspection (DPI) for filtering, screening and
charging support per user basis. In addition, with the help of the Policy
Control and Charging Rules Function (PCRF), the P-GW also provides flow-
based charging control decisions. Indeed, the PCRF is in charge of providing
to the P-GW the QoS parameters and the bit rates according to subscription
profiles of the users. The Serving Gateway (S-GW) handles network traffic
before it is delivered to eNodeBs and UEs. The S-GW is responsible of packet
forwarding and collecting statistics for billing, i.e., the amount of traffic
sent and received by each user. The S-GW also helps in user authentication
and interacts with the Home Subscriber Server (HSS). The latter contains
user information and subscription profiles containing QoS parameters, such
as traffic classes and allowed bit rates. The Mobility Management Entity
(MME) controls signaling between UEs and the core network including, for
example, procedures for S-GW selection for initial UE attachment and during
horizontal handovers. Finally, the eNodeB provides radio connectivity to
the UEs and among the other duties, it is responsible for admission control,
radio resource management, cyphering/decyphering and IP packet header
compression for tunneling data transmission to P-GW. All the described
modules but the eNodeBs are called the Evolved Packet Core (EPC) network.

With regard to delays, P-GWs are responsible of high delay. P-GW are
expensive hardware and even large operators can not afford to buy and
maintain a large number distributed all over a country. For example, the
operators in UK have installed a limited number of P-GW only in London.
Small operators, typically find more convenient to rent P-GW functionalities
from larger operators in form of NaaS (see Section 2.1.2).

3.2.2 WiFi and WiFi Direct

WiFi stands for “Wireless Fidelity” and is a technology for Wireless Local Area
Networks (WLANs). WLANs limit their extension to a given geographical area
and can work both in ad hoc mode or with an infrastructure. In infrastructure
mode, the devices communicate with a single Access Point (AP), typically a
wireless router. Viceversa, in ad-hoc, which is also known as peer-to-peer
mode the devices do not require an AP to communicate. Devices on the
network all communicate through a single access point, which is generally
the wireless router. In WiFi Direc, each device can become AP, therefore they
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can dynamically change role from client to AP [44]. WLANs were developed
as the mobile extension of wired LANs. Consequently, they support high
bit rates and are suitable for both data and real-time traffic. According
to the WiFi Alliance, the generic term WiFi pertains to any type of WLAN
product based on any of the IEEE 802.11 standard. IEEE has released the
first version of 802.11 standard, also known as 802.11 legacy, in 1997 and
later many developments have been carried on with the objective of extend
the capabilities or to adapt the standard in particular cases.

With 802.11 legacy, devices could transmit over the unlicensed Industrial
Scientific Medical (ISM) frequency band at 2.4 GHz. The maximum operating
sending rate was 2 Mbits using either frequency-hopping spread spectrum
(FHSS) or direct-sequence spread spectrum (DSSS) as access techniques. The
most widely adopted standards have been 802.11a/b/g. 802.11a operates at
5 GHz frequencies and uses the orthogonal frequency division multiplexing
(OFDM) radio technology, which allows to reach higher throughputs (up to
54 Mbits) since it distributes data over multiple frequency channels. 802.11b
extends 802.11 legacy supporting data rates up to 11 Mbits according to
the signal strength using DSSS only, while 802.11g supports the same data
rates of 802.11a, but is designed to be compatible with 802.11b using 2.4
GHz frequencies. Nowadays, the most common implemented standard in
smartphones is 802.11n. Unlike precedent standards, 802.11n features
Multiple Input Multiple Output (MIMO) antennas, which allows to achieve
higher throughputs. 802.11n maintains compatibility with b/g standards
using 2.4 GHz frequencies, but works best at the 5 GHz frequency band.

Because of its design purposes, 802.11 offers high throughput to a limited
number of connected devices both in ad hoc or infrastructure modes. As
a result, it is not suitable for IoT devices like sensors, which operates well
with lower throughputs, but require connectivity with a potentially high
number of other devices. For this reason, the IEEE 802 LAN/MAN Standards
Committee formed the IEEE 802.11ah Task Group (TGah) to extend 802.11
standard for IoT domain, [45]. The WiFi Alliance has recently announced
that the 802.11ah standard, which is expected to be approved in 2016, will
be known as WiFi HaLow.

3.2.3 Bluetooth, ZigBee and NFC

The vast majority of wearable devices is equipped with short range connec-
tivity technologies, including Bluetooth, ZigBee and Near Field Communica-
tions (NFC). If compared to WiFi, the commonality these technology share is
lower transmission range and lower bit rates. Bluetooth is a standard (IEEE
802.15.1, no longer maintained) for wireless technology created on purpose
for short-range communication. It exists two types of classes of devices:

• Class 1 devices support communications up to 100 meters (typically
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20-30 meters);

• Class 2 devices support communications up to 30 meters (typically
5-10 meters).

Bluetooth finds applications in domains that require to synchronize devices
locally. Any Bluetooth device can be connected with several other devices
communicating in point-to-point or or point-to-multipoint fashion. Thus it
finds applicability in connecting keyboards, headsets, printers, trackpads and
speakers with computers or cars.

The original versions of Bluetooth were quite demanding from an energy
point of view. Version 4.0, developed in 2011 has mitigated such problem
and it is called Bluetooth Low Energy (BLE). A device running BLE has the
potential to last up to five years.

ZigBee was originally designed before BLE to be a low power demanding
alternative solution to Bluetooth. ZigBee has been standardized by IEEE in
the 802.15.4 standard and supports communications in the range 10-100
meters. Similarly to Bluetooth and BLE, Zigbee operates within the 2.4
GHz ISM frequency band. ZigBee finds applicability in automation, security
systems, smart lighting among the others.

To conclude, Near Field Communications (NFC) are designed for contact-
less, very short-range type of communications (in the order of 10 cm). NFC
is compatible and can operate with Bluetooth and finds applicability in micro
payments with credit cards at supermarket or of subway and train tickets.

Table 3.1 compares properties of the most important wireless technologies
according to the following properties: i) maximum data transmission rate,
energy consumption, transmission range and type of spectrum utilized.
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Chapter 4

Energy Efficiency in
Distributed Computing
Systems and Communication
Networks

Energy consumption is a crucial problem and researchers in distributed
computing systems and communication networks have started to investigate
proper remedies. In distributed computing systems, the vast majority of
energy is consumed by data center facilities. Only in the US, data centers
consumed about 70 billion kWh of electricity in 2014, which corresponds to
the consumption of nearly 6.4 million average homes in the country [46].
Communication networks, including wired and wireless networks, are an
important contributor to energy consumption. In a recent analysis, Andrae
et al. [47] state that by 2030 communication networks will account for 51%
of the global electricity consumption if proper countermeasures are not put
in action. The study takes into account the forecasts of traffic growth (see
Section 3.2.1 for insights on mobile traffic growth) and energy trends for
fixed, residential networks, mobile networks and data centers as well as
actions already taken in using renewable energy.

Reducing energy consumption is worldwide recognized as an essential
target to achieve and attracted interest of both governments, industry and
consumers for a number of reasons. First, the growing environmental con-
cerns advocate proper measures to reduce greenhouse gas emissions (GHG)
and carbon footprint to alleviate the threats to the environment. The second
reason is economic, as sustainable development is much more effective from
an economical point of view. High energy consumption impact considerably
on the energy bill the industry has to sustain. Moreover, companies actively
engaged in developing green initiatives reinforce their brand and are more
attractive from a market perspective.
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The following sections analyze initiatives to make green distributed com-
puting systems (Section 4.1) and communication networks (Section 4.2).

4.1 Energy Efficiency in Distributed Computing
Systems

In cloud computing systems, data centers are the major contributors to energy
consumption. Data center performance and efficiency can be expressed in
terms of the amount of supplied electrical energy that is actually turned into
computing power. Data centers require a tremendous amount of energy to
operate. In Europe, data centers are forecasted to consume up to 93 TWh
by 2020 [48]. According to Zheng et al. [49], 76% of this consumption is
attributed to the IT equipment while the remaining 24% is lost in cooling
(12%) in power distribution (7%) and other facility operations (5%). More
details on energy efficiency in cloud data centers is provided in Chapter 5.

In mobile cloud and fog computing systems, energy efficiency solutions
have been developed to reduce the battery drain of the devices. The objective
can be achieved by reducing the contribution given by the computation, the
communications or the combination of the two. Practically, this translates in
putting in force techniques such as offloading and application partitioning
to relive the load of the mobile devices. Chapter 7 provides more details
on this regard, while Section 4.2.2 illustrate techniques concerning only the
networking part.

4.2 Energy Efficiency in Communication Networks

4.2.1 Green Wired Networks

Wired networks are typically used in the core of the Internet. Energy con-
sumption of transport and core networks accounts for nearly 30% on the
overall energy budged of a typical Internet Service Provider (ISP)/telecom op-
erator network configuration, while 70% is attributed to access devices [50].
Despite this huge unbalance, making green core networks provides substan-
tial savings. During 2012, the german ISP Deutsche Telekom Group reported
a total annual energy consumption of 4.11 TWh of which approximately 3
TWh accounted in form of electricity and the remaining in form of fossil fuels,
district heating, and fuels for the vehicle fleet. This consumption corresponds
of 0.5% of the needs of the overall country [51].

According to Bolla et al. [50], three are the possible approaches to
achieve energy savings in wired networks: i) re-engineering, ii) dynamic
adaptation, and iii) smart sleeping. With re-engineering approaches, new
technologies that are more energy efficient replace old ones. For example,
optical technologies are replacing more and more links of the core network
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as they are capable of supporting higher throughputs and are more energy
efficient than electronic ones. Exploiting dynamic adaptation makes the
technology adjusting the provisioning of network resources to current level
of demands. A popular technique is Dynamic Frequence Voltage Scaling
(DVSF), which adjust the power consumption according to the offered load.
Finally, smart sleeping techniques makes the devices turning into low state
energy or idle mode by freezing some functionalities.

4.2.2 Green Wireless Networks

In wireless networks such as cellular and WLAN, the high density of base
stations (BS) and access points (AP) allows on one hand to provide high
access speed to the users, but on the other hand it is the main cause of
energy consumption. Provisioning wireless network resources is a challenging
problem as it is difficult to have precise knowledge on the demands. The
demands depend mainly user mobility, which typically follows patterns that
can be predicted only with a certain level of accuracy. User mobility patterns
are usually divided into two main categories: time-based and location- or
activity-based patterns. Time-based mobility patterns are characterized by
the timing of user movements, for example during going to or back from
work place. Activity- or location-based patterns are characterized by the
the destination users reach, for example work place, gym or restaurants.
Although it is not strictly necessary, the two types of patterns are usually
dependent one each other, i.e., during morning users preferentially go to
work. According to Budzisz et al. [52], two types of algorithms are applied
to obtain energy savings: offline and online. Offline algorithms generates
predefined time schedule when BS and AP are turned on or off. These
algorithms are based on historical measures of the users demands and may
underestimate the necessary resources when special events occur. Online
algorithms instead adjust dynamically the resource provisioning according
to real-time measures of users demands, therefore in case of unexpected
events they are able to ensure connectivity to the users. One of the remedies
to green wireless networks consists in making the hardware more energy-
proportional. Nowadays, hardware of wireless networking is not energy
proportional as the consumption at low levels of utilization may account 60%
to 80% of the peak power consumption. More energy-proportional hardware
would make easy to adapt consumption to current user demands.

In wireless sensor networks, the techniques to achieve energy efficiency
are more numerous [53]. In sensors, batteries resources are extremely
precious therefore devices are designed to go in idle/sleep mode as soon the
context makes it possible. Sensors can reduce their transmission power to
save energy. This results limiting data transmission only to other sensors that
are close. In addition to limit transmission power, routing techniques impact
significantly on the sensors decisions of data transmission. Communications
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in wireless sensor networks are typically multihop, hence the selection of
proper paths from source to destination limits energy consumption of all the
sensors in the network. Another method to achieve energy savings consists
in performing data aggregation, which implies to limit the frequency of
transmission of sensing readings. Network coding techniques [54], [55]
represent an excellent tool to perform data aggregation.
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Chapter 5

Background

5.1 The Role of Communications in Data Centers

Cloud computing has become fundamental for IT operations worldwide and
has replaced traditional business models. Enterprises can now access the vast
majority of software and services online through a virtualized environment,
avoiding the need for expensive investments into IT infrastructure, while
covering only costs of infrastructure required to provide connectivity. Instead,
they can focus on their core business directly and consume IT services over
the Internet on a pay-as-you-go basis. For operation, cloud computing relies
on the network of geographically distributed data centers. Cloud data centers
are composed of several systems: IT equipment, which is further divided
into computing and communication equipment, the cooling system and
power distribution system. Among all the component, the IT equipment is
essential to guarantee service to end users. Being located outside of the data
center, they can access and exploit the data center computing capabilities
through the Internet and the data center network architecture. A number of
data center network architectures has been proposed in the literature and
have been analyzed by extensive surveys [56]–[60]. Selecting the proper
architecture is important as it has a direct impact of the overall efficiency,
scalability and power consumption of the data center. For the data center
operators, measuring these key performance indicators is essential to analyze
costs and revenues. Resource allocation is an important factor in the costs-
revenues analysis: proper allocation policies permit to exploit efficiently the
data center resources while guaranteeing performance of cloud applications
that are the primary source of revenues. With the only exception of High
Performance Computing (HPC) applications, where the dominant component
is the computing part, cloud computing applications are communication-
intensive [61]. For example, application like video streaming, cloud storage
and backup require high bandwidth to transfer large amounts of data coming
from or destined to the end users.
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Figure 5.1: Classification of Data Center Network Architectures

The following sections overview and classify data center architectures
(Section 5.1.1) and communication-aware resource allocation policies for
data centers (Section 5.1.2).

5.1.1 Data Center Architectures

Introduction and Classification

Before analyzing in detail data center architectures and illustrating their
classification, it is important to distinguish between the notions of data center
infrastructure and architecture that are often confused. On one hand, the
data center infrastructure is defined as the “home to the computational power,
storage, management and dissemination of data and information necessary to
a particular body of knowledge or pertaining to a particular business”. On the
other hand, the data center network architecture “is the set of network nodes
and links that characterize the interconnectivity among the computing servers
and to the external world”.

Architectures can be classified according to which component is respon-
sible for data forwarding or the technology used for communications (see
Fig. 5.1). The first classification groups the architectures in switch- or server-
centric. In switch-centric architectures, switches are the key components
responsible for traffic forwarding while in server-centric architectures servers
are demanded to perform interconnecting tasks in addition to computation.
The main difference between switch- and server-centric architectures is in the
hardware used. Server-centric architectures use Commercial Off-The-Shelf
(COTS) switches, that simple and low cost devices for two reasons: they are
cheap and do not consume large amounts of energy. Viceversa, switch-centric
architectures employ very complex, energy-hungry and costly switches. In
addition, switch-centric architectures suffer of the problem of bandwidth
oversubscription: in layered topologies, servers are prevented to exploit at
100% the available bandwidth because of the difference between ingress
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and egress bandwidth provisioned in each switch. The ingress and egress
bandwidth are respectively the incoming traffic arriving and the outgoing
traffic processed by the switch. More details on bandwidth oversubscription
problem are given in Section 6.2.2. To summarize the properties:

• Switch-centric:

– Switches are the key components in data forwarding;

– Switches are complex;

– Servers are in charge of forwarding functionalities.

• Server-centric :

– Servers are the key components in data forwarding;

– Switches are very simple (COTS);

– Servers are not in charge of forwarding functionalities.

According to the technology used for data transfer, data center architec-
tures can be grouped in electronic, optical or hybrid. Electronic architectures
are the most widely adopted and are summarized in the next subsection.
The adoption of optical technology has been investigated mainly to miti-
gate the communication capacity problem of the electronic data centers.
Having new servers equipped with 10 GE links makes the capacity in the
aggregation network a severe problem leading to high bandwidth oversub-
scription ratios [62]. Optical data center networks rely on a mix of active and
passive optical devices, being Micro-Electro-Mechanical Systems Switches
(MEMS) the most widely adopted [63], [64]. MEMS is a popular technologies
enabling matrix optical switching that allow fully non-blocking all-optical
connection between a number of input and output fibers. Only few archi-
tectures like Proteus are fully optical [64], the majority are hybrid, i.e., like
Helios [65], C-through [66] and Flyways [67] incorporate both electronic
and optical components. Another optic-based approach is the adoption of
free space optical communications [68]. In indoor systems, atmospheric
impairments do not represent an issue and the speed of light is approximately
1.5 times faster than that of in fiber optics, which reduces latency. Moreover,
unlike copper cables and optical fibers, in free space optical communications
links can be re-deployed after deployment.

Overview of Data Center Architectures

A number of surveys has studied and analyzed data center architectures [56]–
[60]. In the following, the properties and characteristics of the most popular
architectures are briefly summarized. The analysis is limited to switch- and
server-centric electronic architectures.
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Three-tier Architectures: In a three-tier architecture, the network topology
is based on a Clos construction and consists of three layers: at the lowest
level, the computing servers are interconnected to the network through access
switches. The upper layers, aggregation and core layer, provide connectivity
towards the data center gateway. The family of three-tier architectures
belongs to the switch-centric category. Several three-tier-like architectures
have been proposed, including Al-Fares et al. [69], PortLand [70], VL2 [71].

Jupiter: [72] is the architecture Google currently implements in its data
centers. The building blocks of this architecture are heterogeneous. The
smallest unit consists of a set of switches that are called TOR and are used to
build the blocks of each layer. Inside a block, the switches can be placed on
two levels. The Aggregation blocks are divided into sub-groups that are called
Middle Blocks, each of them is composed by several TOR switches. The high
modularity makes Jupiter one of the most scalable switch-centric architecture
that can host up to 400 k servers and 1.3 Pbps of bisection bandwidth.

BCube: [73] BCube is a server-centric architecture specifically designed for
container data centers and consists of servers equipped with multiple network
ports connected with low cost COTS switches. In BCube two servers are never
interconnected directly. BCube is build recursively and two parameters, the
number of ports per server k and the number of ports per switch n. Then, the
total number of servers and switches is nk+1 and (k+1)·nk respectively. BCube
is designed to be easily scalable, cost effective, fault tolerant and to provide
high cross bisection bandwidth and load balancing. However, because of the
high cabling cost, this architecture was never actually implemented in real
datacenters [72].

DCell: [74] is designed to provide rich connectivity among servers and
replaces expensive core and aggregation switches of three-tier architectures
with COTS switches. Similarly to BCube, DCell is build recursively and the
total number of servers and switches can be determined from two parameters
n and k. However, in DCell n stands for the number of servers per basic
cell, DCell0 while k is the number of DCell levels and the server degree of
connectivity is defined as k+1. Then, the total number of servers and switches
is t j+1 � t j · (t j + 1), t0 � n and g j � t j−1 + 1 respectively. Unlike BCube,
in DCell servers are interconnected directly. DCell exhibits all properties of
BCube.

5.1.2 The Impact of Resource Allocation in Data Centers

Resource allocation is essential for proper data center operation and directly
impacts overall system performance. The cloud users negotiate certain Ser-
vice Level Agreements (SLA) with the cloud provider [75], such as execution
deadline, service availability etc. Then, is responsibility of the cloud provider
to allocate a sufficient amount of computing capacity/memory/storage to
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not violate the SLA. Traditionally, resource allocation in data center was
communication-unaware, but it has been proved to perform poorly with
respect to communication-aware schemes. In the following, the popular
communication-aware resource allocation schemes are summarized.

DENS [76] is a communication-aware scheduler and stands for Data
center Energy-efficient Network-aware Scheduling. DENS takes into ac-
count communication aspects through analysis of feedback from the network.
Specifically, DENS monitors the status of the queues of outgoing links of Top
of Rack (TOR) network switches with the aim of favoring selection of empty
queues and penalize fully loaded ones. This helps preventing congestion.
Servers selection has the objective of penalize unloaded servers and favor al-
location of jobs in servers with high load. It should be noted that overutilized
servers are penalized to prevent running at peak load for long time periods,
which decreases hardware reliability and affects the job execution deadlines.

Takouna et al. [77] propose Peer VMs Aggregation (PVA), which is a
methodology to aggregate in the same server the VMs that exchange traffic
one with each other through migration. The objective is to reduce the
total traffic in the network by determining the bandwidth demands and the
communication patterns of VMs. Based on VM migration, PVA suffers of
overheads such as time and bandwidth require to reconfigure the system.

e-STAB [78] stands for energy-efficient Scheduler for cloud computing
applications with Traffic loAd Balancing. The name is explicative as its
objective is optimization of energy consumption in data centers and it is
pursued balancing the communication flows produced by the allocated jobs
while consolidating the jobs on a minimum amount of the computing servers.
e-STAB was one of the first schedulers assigning equally importance to
computing and communication requirements.

HEROS [79] stands for Heterogeneous Energy-efficient Resource allo-
cation Optimizing Scheduler and takes inspiration from DENS [76] and
e-STAB [78] methodologies. Unlike DENS, which appears to be most suitable
for three-tier like architectures, HEROS can be adopted efficiently from data
centers with any network architecture. e-STAB has been proved favoring
excessively load balancing with respect to consolidation while HEROS main-
tains a good tradeoff between load balancing and consolidation by preventing
selection of servers that run at too high utilization levels.

Zotkiewicz et al. [80] present an on-line, energy- and communication-
aware scheduler for SaaS applications. To each application corresponds a
workflow that is composed of several tasks. Tasks are modeled with Directed
Acyclic Graphs (DAGs), see Section 7.2.2 for more insights. The scheduler
assigns tasks in a two phases-procedure and the scheduling decisions are
based on the servers and network utilization levels. In the first phase, the
scheduler calculates virtual deadlines for each task of the workflow. In the
second phase, tasks are assigned to servers able to satisfy the virtual deadlines
similarly to HEROS [79].
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Belabed et al. [81] present an optimization framework for VM placement
supporting virtual bridging and multipath forwarding. Virtual bridging stands
for the capability of a container in taking the function of a bridge at hypervisor
level. IEEE has released a standard for virtual bridging, which is called Edge
Virtual Bridging (EVB) and was recently enhanced in two different proposals,
namely 802.1qbg and 802.1qbh. Multipath forwarding is the capability of
ensuring that packets follow the specified paths while being routed. Multipath
forwading is part of multipath routing problem, which addresses the usage
of path diversity to improve resource utilization, reliability and quality of
experience (QoE) in networks. Multipath routing is used in data centers to
achieve traffic engineering through load balancing [82].

MAPLE [83] is a communication-aware VM placement. MAPLE is de-
signed to perform optimal allocation of computing and communication
resources and provision predictable network performance to guarantee QoS
and SLA. It takes into account network requirements by estimating the ef-
fective bandwidth the communications between servers require in order to
prevent Quality of Service violations and guarantee SLA the cloud users
or tenants have negotiated. Effective bandwidth stands for the “minimum
amount of bandwidth required by a traffic source to maintain specified QoS
targets” [84]. Bandwidth estimations are determined in a decentralized
fashion with the objective of improving the run-time performance.

5.2 Existing Performance Metrics for Data Centers

Existing metrics that assess efficiency, performance and quality of cloud
computing systems can be attributed to the following categories:

• Power and energy efficiency;

• Environment and air management;

• Cooling efficiency;

• Other metrics.

5.2.1 Power and energy efficiency

The most important metrics in this category are the Power Usage Effectiveness
(PUE) and Data Center infrastructure Efficiency (DCiE) [85]. PUE is defined
as the ratio between the power consumed by the facility and the power
consumed by the IT equipment, while DCiE is the reciprocal of PUE. Energy
Utilization Effectiveness (EUE) [86] is analogous to PUE, but is based on
energy rather than power. Another metric in analogy with PUE and EUE is
Carbon Usage Effectiveness (CUE) [87]. The CUE metric analyzes the total
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Figure 5.2: Classification of Metrics for Data Centers

GHG emissions of a data center facility in relation to the power spent by the IT
equipment. The Energy Reuse Effectiveness (ERE) and Energy Reuse Factor
(ERF) [88] measure how much energy can be reused outside the data center,
and the Uninterruptible Power Supply (UPS) Load Factor [89] accounts for
the average UPS load over the total UPS capacity. Two more generic metrics
are Data Center Energy Productivity (DCEP) [90] and Power to Performance
Effectiveness (PPE) [91]. They evaluate respectively the amount of energy
spent to produce useful work and effectiveness of the IT equipment in terms
of power consumption relative to the delivered performance. A new metric
called Performance per Watt (PpW) [92] defines energy efficiency of a server
and can be used for server selection during resource allocation [79].

5.2.2 Environment and air management

One of the most important metrics for environment and air management
is the Return Temperature Index (RTI) [93]. RTI evaluates the energy
performance of air management in isolating cold and hot airstreams. The
Recirculation Index (RI) [94] accounts for the percentage of recirculated air
absorbed by a rack while the Capture Index (CI) [95] evaluates the fraction
of airflow, entering or exiting a rack, which follows the desired path.

Amokrane et al. [96] propose new metrics to determine how data centers
are environmental friendly. The first is a network-based carbon intensity met-
ric, which computes the amount of CO2 emissions per byte and is measured
in tonCO2/Mbps. Akamai and Verizon, for example, already make use of this
metric as they report respectively on annual basis the CO2 emissions per GiB
and TiB of data delivered. The second metric determines the amount of CO2
emissions per core and is measured in tonCO2/Core. The objective of these
metrics is to strength the use of green SLAs.

5.2.3 Cooling efficiency

The Rack Cooling Index (RCI) [93] is a metric evaluating rack cooling
efficiency according to the thermal guidelines provided by manufacturers.
Data Center Cooling System Efficiency (DCCSE) [97] assesses the amount
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of power needed to operate cooling equipment. It is defined as the ratio
between the average cooling system power consumption and load of the data
center. Airflow Efficiency (AE) [97] assesses the fans and the efficiency of
air circulation. The Air Economizer Utilization Factor (AEUF) [97] measures
the number of hours in a year during which the air economizer exploits low
external temperatures for chilling water. The technique is also known as
“free-cooling.”

5.2.4 Other metrics

The metrics assessing performance of traditional communication networks
typically focus on network latency, bandwidth and error rates as main indica-
tors. The detailed surveys are available in [98]–[100].

Certain aspects of data center networks are explored in [101], [102].
The focus is devoted to the evaluation of latency and bandwidth between
pairs of running VMs [101] and the analysis of data center network costs
and capacity [102].

To enforce green SLAs, the CP should compute the carbon footprint of
each VDC request. To do so, we use two metrics: (1) carbon emission
per unit of bandwidth (tonCO2/Mbps) and (2) carbon emission per core
(tonCO2/Core). These metrics are chosen because the bandwidth and the
CPU are the major fac- tors that determine the power consumption in data
centers and they are already considered in industry. For instance, Akamai
reports annually its carbon emission in CO 2 per gigabyte of data deliv-
ered (tonCO2/Gbps), Verizon reports its carbon emissions per terabyte of
transported data across its network

5.3 Open Research Problems

Assessing performance and energy efficiency of data centers has become
fundamental. It allows to understand and optimize the operation of exist-
ing data centers and it is crucial for the design and construction of next
generation cloud computing data centers. Currently, industries and data
center operators use a number of metrics to assess efficiency and energy
consumption of cloud computing systems. As outlined in Section 5.2, these
metrics focus mainly on the efficiency of IT equipment, cooling and power
distribution systems. However, none of the existing metrics is precise enough
to distinguish and analyze the performance of data center communication
systems from IT equipment. Distinguishing communication systems from
the IT equipment and assessing their performance is fundamental as most
cloud applications follow a Software-as-a-Service (SaaS) model [103], and
communication processes, not computing, tend to become the bottleneck
limiting overall system performance.
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5.4 Contributions

This thesis proposes a new framework of metrics for assessing performance
and energy efficiency of communication systems for cloud computing data
centers. Unlike existing metrics, the proposed framework allows a fine-grain
analysis and comparison of communication systems, processes, and protocols,
defining their influence on the performance of cloud applications. The pre-
sented framework is being considered for standardization and is positioned
to become an essential tool for scientific research in cloud computing and
data center industries.
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Chapter 6

New Framework of
Performance Metrics for
Communication Systems in
Data Centers

6.1 Introduction and Motivation

Cloud computing has emerged and has become fundamental for IT oper-
ations worldwide, replacing traditional business models. Enterprises can
now access the vast majority of software and services online through a vir-
tualized environment, avoiding the need for expensive investments into IT
infrastructure, while covering only costs of infrastructure required to provide
connectivity. Instead, they can focus on their core business directly and
consume IT services over the Internet on a pay-as-you-go basis. For opera-
tion, cloud computing relies on the network of geographically distributed
data centers. Therefore, assessing data center performance is important
for understanding the operation of existing data centers and crucial for the
design and construction of next generation systems for cloud computing.

Current research and industry standards propose a number of metrics
for assessing efficiency of energy distribution [104]–[107] and cooling [93],
[108], [109]. The most popular metric used nowadays is Power Usage
Effectiveness (PUE) [110]. It measures the portion of the supplied electricity
actually delivered to the IT equipment. Unfortunately, most of the available
metrics are too generic. They indeed are unable to differentiate between
individual IT subsystems. For example, using existing metrics, it is not
possible to distinguish the efficiency of the data center communication system
from the efficiency of the computing servers, as both remain considered under
the common umbrella of IT equipment [111].

Ideally, power consumption of network devices should be proportional
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to the workload. However, in reality their power consumption is composed
of two parts, fixed (for switch chassis and line cards) and variable (for ac-
tive transmitters). Only the latter scales with the transmission rate, or the
presence of forwarded traffic, while the former part remains constant, even
when the switch is idle. This phenomenon, known as energy proportion-
ality, describes the relation between energy consumption and offered load
in the system or a component. With current network switches, the differ-
ence between peak and idle consumption is less than 8%, while turning off
an unused port saves only 1-2 Watts [112]. As computing servers’ power
consumption becomes more proportional to the workload and effective at
low utilization levels, network power consumption remains a concern. In
certain scenarios, network power consumption can account for nearly 50%
of the overall data center power consumption [113]. To assess the degree
of energy proportionality for network devices, we propose a metric which
can be applied to investigate both the energy proportionality of individual
network devices as well as of the whole system.

Distinguishing communication systems from the IT equipment and assess-
ing their performance is very important. Most cloud applications follow a
Software-as-a-Service (SaaS) model [103], and communication processes,
not computing, tend to become the bottleneck limiting overall system perfor-
mance [61]. Specifically, latency, available bandwidth or both can become
limiting factors. Voice conferencing, for example, imposes severe constraints
on the communication latency, but does not require high bandwidth availabil-
ity. On the opposite side, video streaming, cloud storage and cloud backup
applications require high bandwidth to transfer huge amounts of data, but
remain tolerant to network delays. Finally, cloud gaming produces high
traffic load and requires tight delay constraints to keep players synchronized.

Cloud communications can be categorized according to the direction of
information flow: cloud-to-user and intra-cloud. The former is related to
serving cloud users located in the access network. This was not needed in
the PC era when all data and software were available on user devices. The
latter corresponds to the traffic which remains inside a data center. Cisco
estimates that network traffic is the fastest-growing data center component,
rising to 4.3 ZiB in 2016 with a combined annual growth rate of 44% [114].
Networking solutions, architectures and protocols therefore must be carefully
considered to achieve good performance.

6.2 Design

This section defines a framework of metrics that characterize performance
and energy efficiency of communication systems in cloud computing data
centers.

Cloud applications, with the only exception for High Performance Comput-
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ing (HPC), are communication-intensive [61]. Therefore, the communication
parameters, such as bandwidth capacity, latency and error rate, can affect
system performance dramatically. Unfortunately, existing performance and
power-related metrics that are widely used in the data center industry (see
Section 5.2) fail to distinguish communication systems from the category
of IT equipment. The proposed metrics address this gap by allowing finer
granularity. At the same time, they remain general and intuitive to be uni-
versal and applicable to the vast majority of existing data centers and their
communication systems.

The proposed metrics can be broadly attributed to the following three
categories:

• power-related metrics;

• performance-related metrics;

• network traffic-related metrics.

Power-related metrics assess energy efficiency of communication systems
by analyzing how much of the electric power is actually turned into the work
of information delivery. Performance-related metrics analyze communication
rate, capacity, and latency for information delivery. Finally, network traffic-
related metrics provide insights into the nature of the transmitted information
and help to measure control traffic overheads. Table 6.1 summarizes the
power, performance and traffic related metrics presented in the following
sections.

6.2.1 Power-Related Metrics

Communication Network Energy Efficiency

The communication network turns the supplied electricity into the job of
information delivery. The efficiency of this process can be measured by the
metric Communication Network Energy Efficiency (CNEE):

CNEE �
Power Consumed by Network Equipment
Effective Network Throughput Capacity

. (6.1)

The data center network equipment includes all the hardware compo-
nents that take part in information delivery between servers, including net-
work switches, routers, communication links, and Network Interface Cards
(NICs) of the servers1. The effective network throughput capacity is a maxi-
mum end-to-end throughput offered by the network to the computing servers.
In the context of this paper, the terms “computing servers” and “servers” are

1The servers, excluding their NICs, are considered to be devoted to computing and not as
a communication equipment.
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used interchangeably. The CNEE is measured in Watts/bit/second, which is
equivalent to joules/bit, or the amount of energy required to deliver a single
bit of information by the network.

Network Power Usage Effectiveness

Another measure of the communication system effectiveness is in the power
consumed by the network equipment as a fraction of the total power con-
sumed by the IT equipment. This metric is called Network Power Usage
Effectiveness (NPUE) and is defined as follows:

NPUE �
Total Power Consumed by IT Equipment
Power Consumed by Network Equipment

. (6.2)

NPUE specifies which fraction of the power consumed by the IT equipment
is used to operate data center communication system. In a similar way
PUE [85] measures the portion of the amount of energy used by a data
center facility that is delivered to power IT equipment. The NPUE metric
assumes values greater or equal to 1. For example, for NPUE equal to 6
for every 6 Watts consumed by IT equipment, 1 Watt is devoted to operate
network equipment. The NPUE value equal to 1 corresponds to the system
where all the IT-related power is consumed by the network equipment, which
is a not desirable target: if all the IT power is consumed by the network
equipment, there is nothing left for computing servers. However, NPUE
values approaching 1 are not necessarily symptoms of network inefficiency.
It can signal that the computing servers were upgraded and became more
energy efficient.
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Energy Proportionality Coefficient

Ideally, energy consumption of network devices should be proportional to
their workload. However, in reality neither computing servers nor network
switches are energy proportional. Many servers consume up to 66% of their
peak power consumption when idle [115]. For network switches this ratio is
even higher and can reach 85% [116].

Energy Proportionality Coefficient (EPC) is measured as energy consump-
tion of a system or a device as a function of the offered load. In the ideal case,
represented by a straight line in Figure 6.1, every increase in load l should
correspond to the equivalent increase in power consumption P. In reality, the
observed power consumption is often non-linear. Its energy proportionality
varies depending on the incline with the respect to the ideal case. To analyze
this deviation for continuous power consumption profiles, a tangent line can
be built at every point to the observed curve. The angle of this tangent line
α can be obtained by computing the first derivative of the observed function:

tan α �
dP
dl
. (6.3)

Having tan α we can define the measure of energy proportionality as
follows:

EPC �

∫ 1

0
sin 2α(l)dl �

∫ 1

0

2 tan α(l)
1 + tan2 α(l) dl. (6.4)

Figure 6.2 plots the values of EPC metric for different values of α in polar
coordinates. For α � π/4, which corresponds to a fully proportional case
where each increase in the system load leads to an equal increase in energy
consumption, EPC is equal to 1. On the contrary, for α � −π/4, which means
for every increase in the system load the energy consumption is equally

54



decreased, the EPC is equal to −1. In between, EPC turns to zero for α � 0,
which describes the case when system energy consumption is constant and
does not depend on the load, and α � π/2, which is the asymptote of the
power consumption function.

Energy proportionality has been first discussed for computing servers [117]
and then for network equipment [113], [118]. In [118] the authors analyze
how different routing strategies, energy-aware and energy-unaware, affect
energy proportionality of several data center network topologies.

Several metrics evaluating energy proportionality have already been
proposed in the literature. The Energy Proportionality Index (EPI) [116]
captures the difference between the measured power and the ideal power,
the power that the device should consume if it is fully energy proportional.
EPI is expressed through the idle and peak power only. EPI equal to zero
shows that the energy consumption is agnostic to the workload, while EPI
equal to 100 % indicates that the device is fully energy proportional.

The Idle-to-peak Power Ratio (IPR) and the Linear Deviation Ratio (LDR)
[119] measure the ratio between the idle and the peak power consumptions
and deviation of the observed power consumption from the fully proportional
case respectively. IPR values tending to zero indicate energy proportional
designs. LDR, instead, measures maximum deviation of the power consump-
tion from a straight line connecting idle and peak power consumption values.
Positive LDR values indicate that the measured power is above the line, while
negative values are for the measured power below the line. When power
consumption is perfectly linear, the LDR is equal to 0.

Unlike other existing metrics, EPC is able to express energy proportional-
ity of a device or a system in every point of the observed power consumption,
for any load level, allowing more accurate estimation. In contrast, EPI and
IPR depend only on idle and peak power consumptions and LDR depends
only on the absolute value of the highest deviation from a fully proportional
case. Similar to EPC, EPI can be computed considering angles of ideal and
measured power consumption functions. However, the functions where en-
ergy remains constant with the increase in the workload are not taken into
account. EPC, instead, can differentiate between constant and non-constant
functions.

6.2.2 Performance-Related Metrics

Cloud computing systems provide on-demand access to the pool of shared
computing resources over the Internet. Therefore, communication processes,
not computing, often define the efficiency of the cloud. In this section, we
present a set of metrics which capture performance and describe energy
efficiency of data center communication systems. These metrics combine
traditional performance characteristics, such as bandwidth and delay, and
data center specific parameters, such as degree of servers’ connectivity.
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Network Latency

Cloud applications are found to be extremely sensitive to communication de-
lays [61], [120]. Therefore, an ability to monitor and control network latency
is especially important to guarantee Quality of Service (QoS) and Service
Level Agreements (SLAs). Network delays are composed of signal transmis-
sion time, channel propagation delay, packet processing delays at every node
and queuing delays. As a result, communication latency is proportional to
the number of hops between information senders and receivers.

The most important latency-related metric is Uplink/Downlink Com-
munication Latency (UDCL), or Uplink/Downlink Hop Distance (UDHD) if
expressed in the number of hops. UDCL measures the time (in seconds)
needed for an incoming to the data center request to reach a computing
server (downlink) or the time it takes for a computing result to leave the data
center network (uplink) and be on the way to the end user. UDCL is added
on top of the task execution time for every processed user request. Network
topologies hosting computing servers closer to the data center gateway have
smaller UDCL and can provide faster response times.

Another important metric is Inter-Server Communication Latency (ISCL),
or Inter-Server Hop Distance (ISHD) if expressed in the number of hops.
These metrics measure the time (in seconds), or the number of hops, it takes
for one task to communicate with another task executed on a different server:

ISHD �
1

N(N − 1)

N∑
i�1

N∑
j�1
j,i

hi j , (6.5)

where N is the total number of servers, and hi j is the number of hops between
the servers i and j.

ISCL and ISHD are particularly relevant for cloud applications whose
execution can be parallelized. Their tasks will need to exchange data and
will perform faster in network architectures with fewer hops between servers
and smaller inter-server delays. However, inter-server delays will make no
difference for standalone applications whose execution is confined to single
server.

In addition to measuring average values, it is important to analyze devi-
ation in the distribution of inter-server delays. Small deviation values will
characterize data center networks with small distances between comput-
ing servers (e.g., switch-centric architectures, such as Al-Fares et al. pro-
posal [69], PortLand [70] and VL2 [71]), and allow placement of interde-
pendent tasks at any server, not depending on its location. However, for
data centers with highly variable inter-server delays, such as server-centric
architectures like BCube [73] and DCell [74], it becomes highly beneficial
to consolidate heavily communicating tasks to reduce network delays and
improve performance.
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Figure 6.3: Communication latency in different data center architectures
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Figure 6.4: Bandwidth oversubscription in three-tier topology

The third delay-related metric is the Database Access Latency (DAL).
DAL is defined as an average Round-Trip Time (RTT) measured between
computing servers and the data center database. DAL is measured in seconds.
An overwhelming majority of cloud applications store and obtain data from
database [61]. Thus, reducing the time required for sending a query and
receiving data can significantly speed up performance. As an alternative to
bringing databases physically closer, a number of data replication techniques
can be employed [121]. Data replication reduces DAL for the cached data,
but can also introduce traffic overhead for propagating replica updates in
the system. Figure 6.3 illustrates the aforementioned delays in the three-tier,
BCube and DCell data center architectures.

Bandwidth Oversubscription Ratio

Bandwidth oversubscription can be defined as the ratio between the aggre-
gate ingress and aggregate egress bandwidth of a network switch[122]. For
example, in a typical three-tier topology (see Fig. 6.4), Top-of-Rack (ToR)
switches are equipped with two 10 Gb/s links to the aggregation network
and can support up to 48 servers in the access network, each connected with
a 1 Gb/s link. This entails a Bandwidth Oversubscription Ratio (BOR) of
(48 Gb/s)/(20 Gb/s) � 2.4 : 1, which corresponds to a per-server bandwidth
of (1 Gb/s)/2.4 � 416 Mb/s under full load. Further bandwidth aggrega-
tion of 1.5:1 occurs at the aggregation level, where each switch has eight
10 Gb/s links to the core network and twelve 10 Gb/s links to the access
network. As a result, the per-server available bandwidth can be as low as
(416 Mb/s)/1.5 � 277 Mb/s in a fully loaded topology [122]. Server-centric
architectures do not introduce points of bandwidth oversubscription; as a
result, BOR is equal to 1.

Computing BOR is important to estimate the minimum non-blocking
bandwidth available to every server. When the computing servers produce
more traffic that the available bandwidth, ToR and aggregation switches can
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become congested and start to drop packets from the overflowed buffers,
significantly degrading performance of cloud applications.

Network Losses

The packets travelling in a data center network may be lost and fail to
reach their destination due to link errors. These losses may cause significant
communication delays, as retransmissions are performed only at the transport
layer using TCP protocol. For this, it is important to analyze end-to-end error
rates at bit and packet levels to assure network performance and the desired
level of QoS.

In data centers, interconnection links are not identical. For example, a
typical fat-tree three-tier architecture (see Fig. 6.3a) contains optical 10 Gb/s
links with per-link Bit Error Rate (BER) in the range of 10−12 to 10−18 in the
core and access layers. While in the access layer a less expensive twisted pair
gigabit Ethernet technology is used with BERs as high as 10−10. Knowing
the topology and characteristics of the network links, it becomes possible to
calculate average end-to-end error rates depending on the communication
paths involved, e.g., servers-to-gateway or servers-to-servers.

In this paper we define two metrics for error rate estimation. The first is
the Uplink/Downlink Error Rate (UDER). UDER measures average BER on
the paths between data center gateway and computing servers and is defined
as follows:

UDER �
1
N
·

N∑
n�1

L∑
l�1

BERnl , (6.6)

where N is the number of computing servers, L is the number of hierar-
chical layers in network topology and BERnl is the BER of the layer l link
interconnecting server n with the data center gateway.

The Inter-Server Error Rate (ISER), instead, evaluates the average error
rate of inter-server communications:

ISER �
1

N(N − 1) ·
N∑

i�1

N∑
j�1
j,i

BERi j , (6.7)

where N is the number of computing servers and BERi j is the BER of the
path interconnecting server i and server j. The latter is calculated as a sum
of BERs of all links between servers i and j.

Measuring error rates is important. It allows diversifying resource allo-
cation strategies that take into account sensitivity of cloud applications to
transmission errors and helps detecting hardware faults.
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Average Link Utilization Ratio

Average Link Utilization Ratio (ALUR) shows average traffic load on data
center communication links and can be defined as follows:

ALUR �
1
Ni
·

Ni∑
n�1

un , (6.8)

where un is the utilization ratio of link n and Ni is the number of links of
type i. ALUR is an aggregate network metric and is designed to improve
analysis of traffic distribution and load levels in different parts of the data
center network. It helps to define proper traffic management policies, can be
used to detect network hotspots and becomes an essential tool for preventing
performance degradation of cloud applications due to network congestion.

For a three-tier fat tree topology ALUR can be measured separately for
the access, aggregation and core segments of the network. High congestion
in any of these segments will signal the need to increase the capacity of
network links and switches or even reconsider bandwidth oversubscription
ratios between these segments. For BCube and DCell topologies, ALUR
can be measured over server-to-server and server-to-switch segments of the
network.

Average Server Degree Connectivity

Depending on the design strategy, data center topologies are either switch-
centric or server-centric. In switch-centric architectures, such as fat-tree,
each server is usually connected to a single ToR switch with only one link. In
server-centric architectures, instead, the computing servers are connected
to several commodity switches (BCube) and/or a number of other servers
(DCell) to increase network capacity and provide resilience to node and
switch failures.

A higher degree of connectivity increases network capacity, makes the
whole topology fault tolerant and helps to balance the load. However, having
a high number of connections increases network power consumption as
more links and NICs have to be deployed and utilized. To analyze how well
the computing servers are connected, Average Server Degree Connectivity
(ASDC) can be computed:

ASDC �
1
N
·

N∑
n�1

cn , (6.9)

where N is a total number of data center servers and a number of cn network
links connects server n to other devices, switches and/or servers.
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6.2.3 Network Traffic-Related Metrics

Knowing the properties of network traffic is a key to understanding efficiency
of data center communication systems. By the direction of signaling, network
traffic can be classified into internal and external.

Internal traffic remains within the data center network and accounts
for almost 75% of all communications in modern data centers [114]. It is
mostly composed of storage and database interactions of cloud applications
as well as communications between individual tasks executed in parallel. The
performance of data center internal communications is subject to database
access delays (metric DAL) as well as bandwidth availability (metric BOR)
and latency between servers (metrics ISCL/ISHD). Neither bandwidth nor
latency on the uplink and downlink paths of the data center network affect
the performance of internal communications significantly.

External traffic is that destined to the end users. It includes the traffic
produced by cloud applications as well as inter data center traffic [114].
The external traffic is highly sensitive to the available bandwidth (met-
ric BOR) and communication latency in the uplink and downlink (metrics
UDCL/UDHD). At the same time, the bandwidth and communication la-
tency between servers (metrics ISCL/ISHD) do not affect the performance of
external communications significantly.

The proportion between internal and external data center traffic can be
estimated as follows.

• Internal Traffic Ratio (ITR) is the ratio of the traffic that remains inside
the data center to the total data center traffic:

• Internal Traffic Ratio (ITR) is the ratio of the traffic that remains inside
the data center to the total data center traffic:

ITR �
Internal Traffic

Total Data Center Traffic
. (6.10)

• External Traffic Ratio (ETR) is the fraction of traffic that leaves the data
center network:

ETR � 1 − ITR �
External Traffic

Total Data Center Traffic
. (6.11)

In addition to categorizing network traffic according to its destination,
it is important to distinguish user- or application-related messaging from
the rest of the traffic which includes network management and monitoring.
The latter is required to operate communication networks. Management
operations include transmissions for address resolution (e.g., ARP) and
routing (e.g., OSPF). Control messaging and problem detection (e.g., ICMP)
can also be attributed to management operations, while SNMP traffic is
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Figure 6.5: Powering up equipment as data center load increases

related to monitoring operations. The Management and Monitoring Traffic
Ratio (MMTR) helps to unveil traffic overhead for network management and
can be computed as follows:

MMTR �
Management and Monitoring Traffic

Total Data Center Traffic
. (6.12)

To obtain the energy spent on network management and not for trans-
porting application-related traffic, we can use the CNEE metric (showing
communication network energy efficiency) and compute Management and
Monitoring Traffic Energy (MMTE) as follows:

MMTE � CNEE ·Management and Monitoring Traffic. (6.13)

MMTE is measured in Joules and shows the amount of energy consumed
by the communication equipment to keep the network operational. In an
ideal case MMTE should assume values close to zero, when most of the
consumed energy is attributed to application-related traffic delivered at the
full effective network capacity.

Understanding data center traffic is very important. Network traffic analy-
sis at the micro- and macroscopic levels can help in estimating the impact on
network processes [123], design traffic engineering solutions [124], capture
interdependencies between executed workloads [125], and optimize com-
munication between several geographically distributed data centers [126].

6.3 Evaluation

This section presents evaluation and numerical comparison of the proposed
metrics in categories of power, performance, and network traffic of data
center communication systems.

6.3.1 Evaluation Scenario

Several data center architectures have been proposed in the literature [56],
[58]. For evaluation purposes, we consider the following four architectures:
fat-tree three-tier [69]–[71], BCube [73], DCell [74] and Optically cross-
braced Hypercube [127] (OH). For a fair comparison, all the architectures
are configured to host 4096 computing servers.
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In the fat-tree three-tier topology, these servers are arranged into 128
racks and served by 8 core and 16 aggregation switches. The core and
aggregation switches as well as the aggregation and access switches are
interconnected using 10 Gb/s, 0.24 µs optical links. The links connecting
computing servers and access network ToR switches are 1 Gb/s, 0.01 µs
twisted pair links.

In the BCube and DCell topologies, the 4096 computing servers are
arranged in groups of n � 8. This entails a BCube architecture of level k � 4
with 3 layers of commodity switches per group of servers and a level k � 2
DCell. 1 Gb/s links are used to interconnect computing servers with the
commodity switches. In the lowest layer these links are 2 meters long, while
in the upper layers they are 10 and 50 meters long, respectively. The gateway
router is connected to the data center network through a number of load
balancers using 50 m long, 40 Gb/s optical fibers.

In OH, 12 hypercube dimensions are needed to support 4096 servers.
This requires 12 · 212/4 � 12228 2-by-2 optical switches for interconnection.

In all architectures, optical fibers are assumed to support single-mode
light propagation for a 1550 nm operating wavelength.

6.3.2 Evaluation of Power-Related Metrics

In this section we evaluate power-related metrics, including CNEE, NPUE
and EPC, for different data center architectures.

Evaluation of Network Energy and Power Usage Effectiveness

To obtain CNEE and NPUE it is necessary to calculate the power consumption
of the computing servers and network equipment as the load of the data
center increases. This increase can be non-linear as waking up new servers
in already operational racks does not require waking up additional network
switches. However, starting up a new rack would require powering on the
top-of-rack switch and possibly aggregation and core switches. Figure 6.5
illustrates this concept using a three-tier topology.

To estimate the power consumption of a single server we selected the
most widely used hardware models from different vendors, Dell PowerEdge
R720 [128], Huawei Tecal RH2288H V2 [129], and IBM System x3500
M4 [130], and computed their average peak and idle power consumptions.
Assuming the servers implement Dynamic Voltage and Frequency Scaling
(DVFS), their power consumption P(l) can be estimated as follows [131]:

P(l) � Pidle +
Ppeak − Pidle

2
· (1 + l − e−( l

τ )), (6.14)

where l is the load of the server and τ is the utilization level at which
servers attain asymptotic power consumption, which is typically in the range
[0.5, 0.8].
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Figure 6.6: IT power consumption in fat tree three-tier data center

For network equipment we considered HP FlexFabric 11908 [132] to be
used in the aggregation and core layers of the fat tree three-tier architecture,
and HP 5900 AF [133] for the ToR and the commodity switches in BCube
and DCell architectures. Finally, PRISMA II optical switches are considered
for OH architecture [134].

Figure 6.6 shows normalized power consumption of the data center
IT equipment for a fat-tree three-tier architecture. The power consumed
by the servers excludes network interface card power consumption, which
is included in network power consumption. The leaps highlighted in the
zoomed part correspond to a server wake up in a previously idle rack. It
causes a wake up of the access, aggregation and core layer switches and
leads to non-proportionality in network power consumption.

The CNEE computed for all four data center architectures considered is
reported in the first row of Table 6.2. The CNEE is the highest for the fat-tree
three-tier topology, which is mainly caused by high bandwidth oversubscrip-
tions performed at several layers. As a result, the energy is spent to support
higher bitrates, but they cannot be fully utilized by the servers. In contrast,
the throughput in BCube and DCell architectures can achieve 100 % of the
network capacity. CNEE, besides being sensitive to bandwidth oversubscrip-
tion, also depends on the overall network power consumption. This is the
reason why CNEE is higher for BCube than for DCell. BCube hosts a large
number of commodity switches (k + 1) · nk (2048), while DCell has only one
commodity switch per group of n servers (512). OH architecture hosts 12228
2-by-2 optical switches whose power consumption is significantly lower than
commodity switches used for BCube and DCell. As a result, the CNEE value
computed for OH topology is more similar to the DCell value rather than that
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Table 6.2: Evaluation of Power-related Metrics

METRICS
ARCHITECTURES

Three-tier BCube DCell OH

CNEE 0.203 µJ/bit 0.109 µJ/bit 0.027 µJ/bit 0.033 µJ/bit
NPUE 3.58 2.50 6.86 5.99

of BCube.
Having evaluated energy spent to deliver a single bit of information, it

is possible to assess the overall power effectiveness of data center networks
with NPUE. With the lowest NPUE, BCube appears to be the most power-
hungry topology. As already mentioned, it is due to the fact that BCube
hosts a high number of switches. In addition to the number of network
devices, their power efficiency plays an important role in NPUE. For example,
DCell has a higher number of switches when compared with the three-tier
topology. However, these are commodity switches whose power consumption
is several magnitudes lower that the consumption of core and aggregation
level switches. Despite low power consumption of individual optical switches,
OH architecture has lower NPUE than DCell. In OH, transceivers and the high
number of active ports per servers are the two main components contributing
to network power consumption.

Evaluation of Energy Proportionality

Figure 6.7 shows normalized power consumption along with the computed
EPC values for several network switches with different profiles. The dashed
line represents an ideal case with EPC equal to 1.

Switch 1 shows a curvilinear behavior. For intermediate loads in the
range (0.2, 0.8), the power consumption increases at a smaller rate than the
workload, while for the low (< 0.2) and high (> 0.8) load levels it increases
more rapidly than the incoming workload. As a result, the obtained EPC
is equal to 0.69. With EPC equal to 0.2, switch 2 shows a realistic energy
consumption profile with a large idle part and a stepwise power consumption
attributed to communication ports. This is very close to the case represented
by Switch 3. Being completely insensitive to the workload, EPC value of
Switch 3 is equal to 0. Switch 4 has negative EPC equal to −0.89. It signals
that the device starts consuming less energy as the workload increases.

6.3.3 Evaluation of Performance-Related Metrics

This subsection presents evaluation results of the proposed metrics for net-
work latency (UDCL, UDHD, ISCL, ISHD, DAL), network losses (UDER, ISER)
and connectivity (ASDC) with the exception of BOR and ALUR. Server-centric
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Figure 6.7: Power consumption profiles of different network switches

architectures typically do not introduce points of bandwidth multiplexing and
oversubscription, which makes their BOR metric to be equal to 1. Computing
ALUR metric requires having per-link traffic statistics, which can be obtained
either from detailed traces or, more realistically, directly measured in real
data centers during runtime.

Network Latency, Network Losses and Server Degree Connectivity

To evaluate UDCL, ISCL, DAL, UDER and ISER we considered transmission
of two test packets of 40 Bytes and 1500 Bytes, corresponding to a TCP
acknowledgement and a maximum Ethernet transmission unit respectively. A
one-way transmission delay is measured for UDCL and ISCL, and a round-trip
delay for DAL. For signal losses, a BER of 10−12 is considered for copper
cables and 10−14 for optical fibers. As no other traffic is present in the data
center network, Ethernet inter-frame gap and thus queuing delays can be
neglected.

The network delay of a single packet is composed of the transmission
delay Dt and link propagation delay Dp. Dt is expressed as a ratio between
packet size S and link rate R, while Dp is defined as the link length L over
the signal propagation speed P:

Dt �
S
R
, Dp �

L
P
. (6.15)

P defines the physical characteristic of the medium. In copper it is two
thirds of the light speed c, while in optical fiber the speed of light is scaled
with the refractive index, taken to be equal to 1.468 for glass fiber [135].
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Table 6.3: Evaluation of Network Latency, Network Losses and Server Degree
Connectivity.

METRICS
ARCHITECTURES

Three-tier BCube DCell OH

UDCL 1.45 µs 1.38 µs 1.19 µs 1.16 µs
ISCL 1.98 µs 3.93 µs 4.73 µs 1.2 µs

UDCL 15.7 µs 14.47 µs 15.50 µs 14.42 µs
ISCL 28.34 µs 73.72 µs 93.92 µs 24.47 µs

40
B

15
00

B

DAL 18.11 µs 17.15 µs 17.15 µs 15.71 µs
UDHD 4 3 3 3
ISHD 5.78 7.00 8.94 3.25
UDER 1.03 · 10−12 1.02 · 10−12 1.02 · 10−12 1.02 · 10−12

ISER 1.77 · 10−12 4.21 · 10−12 5.34 · 10−12 2.00 · 10−14

ASDC 1 4 2.79 12

Table 6.3 presents the results for network latency, losses and connectivity
related metrics. The results show that the OH architecture can provide better
support to internal communications with ISCL, ISHD and ISER all being
lower in comparison to the other architectures. The result is expected as OH
is the architecture with the highest ASDC value, which guarantees having
short paths even between distant servers. With respect to BCube and DCell,
the three-tier topology supports internal communications better. This might
be surprising as the three-tier connectivity degree measured with ASDC is
the lowest among all architectures. However, both BCube and DCell, while
being much better interconnected, need to traverse a large number of hops
to communicate between distant servers.

The error rate between servers, measured by ISER, is the highest for
BCube and DCell due to their heavy reliance on copper links. The error rate
between servers and the gateway, measured with UDER, on the contrary,
is lower in BCube and DCell as packets sent by the servers traverse fewer
number of hops to reach the gateway.

6.3.4 Evaluation of Network Traffic-Related Metrics

To evaluate network traffic related metrics MMTR and MMTE we used packet
traces collected in real data centers, UNIV1 and UNIV2 [136]. Along with the
user application data these traces also include ARP, ICMP and OSPF flows.
Both data centers follow a two-tier architecture design. The traces contain
one and a half hours of traffic for UNIV1 and two and a half hours for UNIV2
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Table 6.4: Evaluation of Management and Monitoring Traffic Energy

MMTE
ARCHITECTURES

Three-tier BCube DCell OH

UNIV1 169.19 J 90.62 J 22.23 J 27.31 J
UNIV2 30.98 J 16.59 J 4.09 J 5.00 J

data centers.
To analyze the fraction of network management and monitoring traffic

we computed MMTR, which is 0.79% for UNIV1 and 0.025% for UNIV2 data
centers. The results show that although UNVI1 has a smaller number of
network devices, its network is managed less efficiently.

Table 6.4 shows energy consumed by the data center network to process
and deliver management and monitoring traffic. The MMTE metric is com-
puted taking into account data center topologies presented in Section 6.3.1.
As expected, the energy consumption of UNIV2 management and monitoring
traffic is lower than in UNIV1 for all the architectures. DCell always outper-
forms other architectures as it spends the lowest energy to transfer a single
bit of information (see CNEE values reported in Table 6.2), while the fat-tree
three-tier architecture is the most energy consuming topology.

The choice of the employed resource allocation strategy would certainly
impact most of the presented metrics. Workload (or VM) migration would
increase the radio of monitoring and management traffic in MMTR and
MMTE metrics, increase a portion of the internal traffic in ITR and ETR
metrics, and even change average link utilization ratio (ALUR). This again
confirms that a set of presented metrics could become an essential tool in
developing and refining resource allocation in cloud computing data centers
and can lead to novel network-aware scheduling solutions [76], [78].

6.4 Summary and Perspectives

Energy efficiency and infrastructure monitoring are two of the main parame-
ters for successful data center operation. The proposed framework of metrics
is positioned to become an essential tool for monitoring, comparing and
assessing performance of data center communication systems.

The power-related metrics (see Section 6.2.1), such as NPUE, assess
with a fine granularity energy efficiency of the network and allow data
center operators to optimize their investments in networking equipment and
interconnects. The performance-related metrics (see Section 6.2.2), such as
ALUR, enable detailed monitoring and assessment of network throughput,
delay and error rate performance. They are especially relevant for the largest
class of SaaS cloud applications which often communicate intensively with
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the end users and also internally. The analysis of these metrics helps to
ensure and guarantee QoS and SLA to the customers. Finally, network traffic-
related metrics (see Section 6.2.3) permit the development of proper traffic
management and infrastructure-aware resource allocation policies. The
proposed framework of metrics for networks of cloud computing data centers
is essential for optimization of operation and to plan capacity extensions of
existing facilities as well as the design of future data centers.

In addition, the proposed metrics are easy-to-integrate metrics into ex-
isting data center monitoring systems, such as VMware vCenter Log In-
sight [137] or Cisco Prime Data Center Network Manager [138]. Most data
center monitoring systems already provide information that is required for
computing these metrics, including runtime power consumption, link uti-
lization levels or error rates. For example, simple analysis of destination
addresses can help to differentiate between the internal and outgoing data
center traffic. Data center monitoring software maintains statistics for each
server, for example the status of the links. Consequently, a simple query on
the average number of active links for each server will allow the computation
of the ASDC metric. The availability of up-to-date link- and traffic-related sta-
tistical information enables the design of network-aware resource allocation
and scheduling solutions (see Section 5.1.2).

Table 6.5 provides a top-level comparison of the evaluated data center
architectures. For the purpose of simplicity, the values are reported as high
(H), medium (M) and low (L), while the precise measurement values and
evaluation details are reported in Section 6.3. High bandwidth oversubscrip-
tion of the three-tier architecture prevents computing servers from exploiting
full available network capacity and, as a consequence, leads to the highest
energy-per-bit consumption. DCell appears as the most “green” architecture
with the lowest energy-per-bit ratio and high power usage effectiveness.
BCube is less effective in terms of the power usage effectives because it
hosts the highest number of switches. The analysis of communication latency
shows that hierarchical architectures, such as three-tier fat tree, favor internal
server-to-server communications, while distributed data center architectures,
including BCube and DCell have shorter paths for the traffic directed out of
the data center. On the other hand, server-centric architectures, such as OH,
can reduce the number of hops between distant servers significantly. As a
consequence, they provide better support to internal communications than
hierarchical architectures.
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Part III

Energy Efficiency in Mobile
Cloud/Fog Computing
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Chapter 7

Background on Mobile
Cloud/Fog Computing

The chapter presents in more details Mobile Cloud Computing and Fog
Computing paradigms, with a particular focus on the concepts of offloading
and application partitioning. Then, it overviews potential research challenges
and illustrates the proposed contributions in the field.

7.1 Analysis of Mobile Cloud and Fog Computing

Mobile devices have become essential for our everyday activities such as busi-
ness, health-care, social activities and entertainment [18], [139]. According
to Gartner, the worldwide smartphone sales reached 1.4 billion units [140]
in 2015, while the sales of wearable devices recorded 232 million units in
2015 and are projected to reach 322 million units in 2017 [141]. Smart
watches, glasses, rings, gloves and helmets are the most popular wearable
devices currently available on the market, which will worth $ 30.2 billion by
2018 [142]. Although being constrained by the battery, modern mobile de-
vices have computing, communication and storage resources. However, these
resources are limited. The role of mobile distributed computing paradigms is
to overcome limitations such as computational capability, battery power, con-
nectivity, opportunity to gather more sensing data, access to different content
and to make use of idling processing power [2]. These are the motivations
leading to the development of all mobile distributed computing paradigms
described in Section 2.2. In this chapter, MCC and FC are analyzed in detail.

With MCC and FC, developers can exploit the virtually unlimited re-
sources of the cloud and or the fog in terms of storage, power consumption
and computation capabilities for their applications. The key ingredient for
the success of MCC and FC is the capability of outsourcing part of the com-
puting tasks from weak mobile devices to the powerful cloud or fog. The
technique used for outsourcing is application partitioning. Specifically, the
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applications partitioned into tasks whose execution can be partially or com-
pletely offloaded on the cloud environment in order to narrowing the mobile
devices effort. The main goal is to make users mobile devices to performs
input/output operations only. MCC and FC also bring other new opportuni-
ties such the usage of the mobile devices and the cloud to collecting data,
perform distributed sensing and crowdsourcing.

With respect to MCC, FC is still in its infancy. Fogs were first proposed by
Cisco to specifically support IoT unique characteristics like geo-distribution,
location awareness and low latency in addition to mobility, which is also a
requirement in MCC [20], [21]. Recently, Sarkar et al. [22] have studied the
suitability of FC to IoT providing a comparison study with traditional cloud
paradigm. The study focuses on the capability of fogs and clouds in serving
latency-sensitive applications while in another work the authors model fog
computing architecture to be energy-efficient and guarantee low latency.
Resource management in FC is a concern [143]–[145]. Aazam et al. [143]
group IoT devices into three categories: static, small and large mobile devices.
The fog provides resources according to the requirements of each category.
Static devices do not need support for mobility, hence they require a lower
amount of resources than mobile devices. Pricing is dynamic and it is based
on the amount of resources each category consumes as well as the type of
customers and service asked to the fog. According to Deng et al. [144], fog
computing-based resource allocation policies should consider the tradeoff
power consumption vs. communication delay of the mobile devices. Ningning
et al. [145] aim at providing load balancing in fog environments considering
that nodes can join and leave the fog. Security is a fundamental aspect in any
distributed computing systems, including FC. However, only few works have
analyzed this aspect [146], [147]. Stojmenovic et al. [146] discuss security
and privacy issues and present a case study with analysis of countermeasures
to the man-in-the-middle attack. Wang et al. [147] study and compare
security problems in fogs and clouds digital forensics, i.e., the application of
science to the identify, collect, and analyze data while preserving its integrity
during examination. Practical application of fog computing paradigm is
mainly in the healthcare domain [148], [149].

7.2 Offloading and Application partitioning

The need to augment the performance of the devices and the application,
including a better usage of the battery drives adoption of mobile distributed
computing paradigm and the key pillar feature enabling mobile/edge fog
computing is offloading. In the literature, the concepts of offloading and ap-
plication partitioning are often confused and used interchangeably. However,
it exists a subtle difference. The term “offloading” is general and used to
describe the process of outsourcing part of the computation in mobile cloud
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Mobile/Edge Fog Computing

Application Partitioning
Dynamic

Static

Offloading/Outsourcing

Traffic

Computation

Figure 7.1: Taxonomy of Key Features in Mobile/Edge/Fog Computing

computing where only two entities are usually involved, namely the mobile
device and the cloud. Application partitioning describes the methodologies to
perform offloading. Moreover, as in fog computing the entities involved are
more than two, the mobile or IoT device initiating the process, the mobile or
IoT devices in the vicinity and the cloud, the term application partitioning is
more suitable. Fig. 7.1 illustrates the salient aspects of both offloading and
application partitioning.

This section first provides a general definition and a deep analysis of
offloading (Section 7.2.1) and finally overviews the techniques for application
partitioning and existing modeling tools (Section 7.2.2).

7.2.1 Offloading

Offloading is the process of outsourcing functionalities from one device to
another. This definition is general enough because in the literature two type
of functionalities that can be offloaded: traffic and computation. Although in
the following sections both aspects will be covered, this thesis will analyze in
the next chapters contributions in the area of computation offloading only. A
general taxonomy on offloading is presented in [150].

Traffic Offloading

Traffic offloading is the process of redirecting traffic delivered with cellular
network with other types of communication technologies.

Mobile cloud applications is one of the fastest growing markets. Currently,
more than 7 billion people use mobile devices connected to Internet. Mobile
gadgets and smartphones are already essential in our daily activities as
they help doing business, communicating and entertaining [18], [139]. In
2015, smart devices accounted for only 36% of the total number of Internet
connections originated by mobile devices, but they generated more than 89%
of the total mobile data traffic [40]. Currently, mobile data traffic is growing
at an unprecedented rate and is projected to generate up to 30 EB per month
by 2018 [40], which overloads current cellular networks.

74



A number of promising solutions has been recently proposed to address
growing traffic demands. With the objective of “bringing network closer
to the user”, a mix of macro, micro, pico, femto and relay base stations
has been proposed in LTE-A [151]. The reduction of the cell size helps to
increase network capacity and coverage, but comes with additional costs of
installing and maintaining the new base station [152]. Traffic offloading
to other networks can help to avoid having additional cellular network
equipment. The offloading is usually performed to WiFi [153]–[155] or
to the opportunistic networks [156]–[158]. WiFi operates on unlicensed
frequencies and, unlike LTE, which uplink and downlink data rates remain
constant to every user, WiFi channels are shared between the served users.
WiFi infrastructure is not expensive and already widespread in many areas.
Opportunistic networks do not require any infrastructure, but they operate
relying on intermittent contacts of in proximity users.

From the user perspective, with traffic offloading applications can directly
contact the server in the cloud without the need to pass by the mobile core
network. WiFi and opportunistic communications are more energy efficient
than LTE or 3G [159], [160] and commonly available “free of charge”. As
a result, users do not consume data from the monthly traffic plan they
subscribed and for which they have to pay the operators. On the other hand,
traffic offloading latency can be an issue affecting performance [161] as both
WiFi and opportunistic communications become unreliable with high levels
of user mobility. Network performance can change quickly and degrade
user experience making it worse than in the case without offloading. In
addition, most of the operating systems for smartphones, including Android
and iOS, already make preference to WiFi over cellular connectivity for data
transmission. However, keeping both interfaces constantly active excessively
drains battery power. For these reasons, traffic offloading decisions should
be taken carefully and take into account performance and mobility in the
offloaded networks.

Computation Offloading

Khan et al. [15] identify four main objectives for computation offloading:
i) to enhance and augment performance of the applications, ii) to reduce
battery consumption of the devices, iii) to allows execution of applications
in constrained environments, and iv), pursuing multiple objectives at the
same time. Objectives i), ii) and iv) are the most widely investigated in the
literature [2], [15], [16]. Despite several offloading techniques have been
proposed so far, it does not exist a technique outperforming the others in
terms of performance [17].

Developers typically employ offloading to improve performances of weak
mobile devices by considering carefully computing components to offload
and/or communication technology used during data transfer. Tout et al. [162]
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exploit offloading to augment performance of mobile devices working in
multi-persona fashion. It has been proved that a worker carrying multiple
devices, for example to separate accounts of different workplaces, drains
its productivity. Thus, multi-persona systems have been developed with the
objective of consolidating all different profiles in a single terminal providing
to the user the capability to clearly distinguish between each profiles and
the contexts in which it is used. Mahmoodi et al. [163] specifically analyze
the impact of having multiple communication technologies at disposal for
efficient offloading. In [164] Wolski et al. study an offloading decision
mechanism driven by the availability of bandwidth in the network. Offloading
decisions take into account the risk costs as well as execution time while
performing task execution locally or remotely. A hybrid solution, which bases
offloading decisions not only on bandwidth availability, but also on computing
effort is discussed in [165]. Performance of the offloading strategy are
evaluated for data transfer with WiFi, cellular technology and a combination
of the two. Deng et al. [166] propose a genetic algorithm to optimize
offloading decisions. The algorithm is proposed for mobile service workflows
with inter-dependency among the components and takes into account node
mobility.

Nodari et al. [167] use a machine learning approach to preserve battery
life in tracking user position. The algorithm predicts future movements of
the users and it runs in the cloud, while the mobile device communicates
with the server only for updating the position. In this way, the sensors used
to collect position data are involved with less frequently. This mechanism
improves considerable battery lifetime of the mobile device. In [168] the
authors develop a speech recognition library as a case of study for comparing
several dynamic offloading strategies with both WiFi and 3G communication
technologies. Miettinen et al. in [169] take into account the trade off between
local computation and communication costs for saving energy offloading
computing tasks. The authors perform real energy measurements on different
smartphones running different applications, such as compression algorithms,
video encoding. Similarly, also Segata et al. [170] study the trade-off between
energy consumption for data transmission to the cloud and the energy cost
of local computation. The authors focus on the communication part with
an analysis of the cellular technologies 2G and 3G, and of WiFi. The results
are obtained with real measurement. The analysis performed by Altamimi
et al. [171] is similar to [170], but focus on energy models for WLAN, 3G
and 4G technologies and validated experimentally the theoretical models
proposed to assess the energy cost of offloading. While assessing energy-
efficiency in performing offloading, it is also necessary to quantify costs that
are not directly related to offloading itself. In [172] propose a job-scheduling
offloading mechanisms and a methodology to measure the efficiency of
offloading considering both direct and indirect costs.

The following paragraphs overview the most popular techniques for
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computation offloading.

MAUI: [173], developed by researches at Microsoft, is a system where de-
velopers have to modify the application code to identify the methods to be
offloaded. The acronym MAUI stands for Mobile Assistance Using Infrastruc-
ture. The objective is to minimize energy consumed for computing purposes.
A profiler collects information on energy and data transfer requirements of
the application. Offloading decisions are taken at client side on the basis of
the information collected. This framework needs to be set up during develop-
ment phase and it requires to recompile the application in case of any change
of the offloading scenarios. MAUI has some limitations. First, it operates
only for applications developed in .NET. Second, offloading decisions do not
consider the energy and time spent for communications with the cloud.

CloneCloud: [174], developed by researches at Intel Labs Berkeley, is system
that augments performance of smartphones through dynamic offloading
execution of applications to the cloud. Offloading is seamless, i.e., does not
require any conversion mechanisms to port applications from the device to
the cloud. The entire application stack is fully cloned, thus when the system
decides that migration is convenient, it migrates treads at selected points
of the application to the cloud. Therefore, proper decisions are essential to
guarantee the performance of the application. Wen et al. [175] uses a similar
philosophy and create perfect copy of the application in the cloud in order
to perform complete execution on the cloud and to limit the mobile device
effort to only display the result.

eXCloud: [176] exploits State-On-Demand (SOD) on top of the VM for
a lightweight task migration from the mobile devices to the cloud at VM
instance level. Offloading occurs when the smartphone resources are not
sufficient to execute some tasks or the computing load exceeds certain levels.
The migration to the cloud is transparent to the applications and only copies
the required data are copied to the cloud with the objective of saving network
bandwidth resources. A limitation of this method is that offloading decisions
do not consider energy consumption or communication costs at all.

ThinkAir: [177] similarly to MAUI [173] supports offloading at method-level
and similarly to CloneCloud [174] in the cloud a copy of the smartphone
execution is created. Unlike other methods, ThinkAir supports on-demand
resource allocation and parallelization to reduce delays and optimize system
performance. Offloading decisions are based on energy consumption of CPU,
screen, GPS, WiFi, 3G, and audio interfaces while considering that execution
of tasks requiring GPS and audio can not be outsourced. With ThinkAir,
developers are asked to mark any method that may require offloading.

Cuckoo: [178] is system that allows developers to easily write and run
applications in Android platform empowered with offloading. Applications
programmed with the Cuckoo model can offload execution to any Java Virtual
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Machine on the cloud. For this reason, developers need to design both client
and server side of the application. However, offloading decisions are not
taken during runtime and are not based on energy consumption.

7.2.2 Application partitioning

Application partitioning describes the methodologies to divide an application
into tasks that are processed and executed by different devices. Although
according to [179] applications can be partitioned only in static and dynamic
fashion, other studies further differentiate dynamic techniques into casual
and periodic [17].

Techniques

Static application partitioning: is normally used to divide computational
heavy tasks from light ones and let them run in the cloud to save resources.
In static partitioning techniques the task division is pre-determined by the
developer. This solutions is not very effective. Because of the heterogeneity of
a number of factors such as type of devices, network conditions, computing
load, battery status, it is almost impossible to find a priori an effective
partitioning scheme able to work under any circumstance.

Dynamic application partitioning: divides the tasks of the application dur-
ing runtime after having analyzed contextual information in order to take
decisions. For example, information on network status may involve the com-
putation of available bandwidth and current network latency, information on
the availability of the resources may require knowledge about current battery
status of the device and CPU load. Decisions to partition the application aim
to maximize the benefits, such as reducing execution time or energy con-
sumption. According to [17], dynamic partitioning can be casual or periodic.
The first method refers to techniques that activates offloading mechanisms
only when certain conditions are met, for example, the load of the mobile
device reaches given thresholds. Periodic partitioning instead checks the
conditions periodically.

Modeling Application Partitioning

The problem of application partitioning involves the modeling and analysis
of how and where tasks/methods/fragments are executed. In the literature,
Directed Acyclic Graphs (DAGs) are the best tool to represent tasks and the
dependencies among the tasks. Given a graph G with a set of nodes V(G)
and edges E(G), V(G) denotes the tasks and E(G) the dependencies between
the tasks. G has a cycle if a series of out edges starting from the nodes v lead
to itself. A DAG has no cycles. DAGs are typically employed for scheduling
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tasks in data centers [80] or in grids [180]. DAG-based scheduling is an
NP-HARD problem, hence it does not exist a solution or algorithm to solve the
problem in polynomial time [181]. In cloud applications, communications
play a key role. As a result, The modeling of TreeGlass tasks dependencies
is inspired by previous work Communication-Aware DAG (CA-DAG) [61].
CA-DAG allows fine modeling of all the components of a communication-
aware system, namely computing and communication parts. In more details,
CA-DAG models computing tasks with squared blocks and communication
tasks with rounded blocks.

Ahmad et al. [182] propose to partitioning data-intensive applications in
order to minimize movement of data. The model is suitable for applications
such as large-scale and extensive simulations where the communication effort
is higher than the computation. In such applications, moving data from one
node to another introduces latency and reduces throughput. Data-intensive
applications are modeled trough DAGs, where each node represents a task
and each edge the precedence of tasks and the direction of the data stream.
Data-intensive stream applications are also the focus of [183].

Yang et al. [184] propose a method call tree. Each node of the tree
corresponds to a method and each edge (i , j) indicates that the method i
calls j. The tree is constructed in such a way that methods are executed in
post-order traversal manner, i.e., to display the current node, first the left
and then the right subtrees are traversed by recursively calling the post-order
function. Moreover, nested migration is not allowed, i.e., if one module is
migrated from the mobile device to the cloud, then all the modules in its
sub-tree are migrated as well.

In [185], the authors propose to model applications with the so called
execution dependency trees (EDTs). EDTs profile with a fine level of detail the
cost of executing applications by identifying three different type of relations
between tasks or modules. The first type of relation is denoted as series, i.e., a
given module can not start its execution before the execution of the previous
ended. It also exist probabilistic relations, which describe conditionals. Then,
parallel relation describes modules that can be executed simultaneously.

7.3 Open Research Problems

Wearable devices have already become essential for our day life. Smart
watches, glasses, rings, gloves and helmets are the most popular wearable
devices currently available on the market [186], which is projected to rise up
to $30.2 billion by 2018 [142]. According to Juniper Research, companies
will spend up to $68.7 million in wearable advertising by 2018 [187]. In
genereal, wearable devices are defined as electronic technology to be incor-
porated in clothing or worn on the body, able to perform different tasks,
such the tracking, monitoring of physiological functions and provide biofeed-
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back [188]. Unlike generic IoT devices, wearables have unique features
such as mobility and are utilized by humans, hence the management is more
interactive and complex. The hardware of mobile devices improved consid-
erably in recent years, but not the batteries, which take decades to double
performance [189]. Consequently, energy is a very precious resource for
wearables in particular. In addition, 75% of users consider battery lifetime as
the main feature they look at while buying mobile devices [190]. Wearable
devices are usually paired with a smartphone for several operations such
as option setup, synchronization and data visualization. Lumo Lift1, for
example, uses biomechanic motion sensors to track posture and physical
activities. Collected data is then delivered to the smartphone via Bluetooth.
Consequently, while performing computing offloading from wearable devices,
it is of paramount importance to benefit from the resources smartphones pro-
vide in addition to the cloud. Then, wearable devices and smartphones form
a fog. Efficient computing and communication offloading in fog computing
and the interaction between fog and cloud remain unexplored fields so far.

Several models have been proposed to study and model the application
execution in cloud and mobile cloud computing. However, none of them ap-
pears to be suitable in fog domain. In fog computing, it is essential to capture
the location where each task is executed and which technology is used for
data transfer. The plethora or possible locations for task execution and com-
munication technologies calls for a novel DAG-based application partitioning
model not only able to differentiate between computing and communication
tasks and between series/probabilistic/parallel tasks execution.

7.4 Contributions

Given the challenges presented in Section 7.3, the next chapters illustrate
the following contributions:

• A general and theoretic model for computation offloading in mobile
cloud/fog computing platforms for wearable devices. Performance of
the model are validated with simulations performed with NS-3 with a
face recognition application (Chapter 8).

• An Android-based application called TreeGlass, which is developed with
the objective of assessing the performance of application partitioning in
fog computing. TreeGlass’s tasks are partitioned between the wearable
device (Google Glass), the smartphone and the cloud according to
a new proposed partitioning scheme in different scenarios. Under
each configuration, the execution time and energy drain are evaluated
experimentally (Chapter 9).

1http://www.lumobodytech.com/
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Chapter 8

Computing- and
Communication-Aware
Offloading: Model Design

Taking into account both computing and communications is essential to
devise effective offloading mechanisms. This chapter presents and validates
a model for offloading and application partitioning with wearable devices in
mobile/edge fog computing.

8.1 Model for Computing and Communication Offload-
ing with Wearable Devices

Fig. 8.1 illustrates a typical mobile cloud computing scenario. Wearable
devices are often equipped with wireless WiFi and/or Bluetooth connectivity,
but usually have no 3G/LTE interfaces, because of their significantly higher
energy consumption [191], [192]. Nevertheless, as 3G/LTE connectivity is
expected to be present in future devices, the case when wearable devices
exploit cellular connectivity using the user smartphone as relay is included
as well. Furthermore, as smartphones can be used for offloading tasks in
addition to clouds, it is important to take into account also their energy
consumption.

For the aforementioned reasons, the proposed model accounts for all three
main architectural components: wearable devices, smartphones, and cloud
data centers. Computation offloading can be performed in four different
ways. In the first case, labeled in Table 8.1 as “w-l”, wearable devices can
execute complete tasks locally, which corresponds to no offloading. They
use considerable amount of computing resources, drain energy, but can safe
on communication with no delays introduced because of offloading. The
second possibility is to offload processing from the wearable device to the
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Figure 8.1: Mobile cloud computing scenario for wearable devices

smartphone (w-s). The offloaded task needs to be transmitted from wearable
device to the smartphone. The smartphone performs processing and returns
the result back, which introduces communication delays, but helps to avoid
local processing at the wearable device. The third case, labeled as “w-s-c”,
allows the smartphone to relay and send the offloaded tasks to the cloud.
Processing in the cloud is especially beneficial for computationally intensive
tasks, but introduces higher communication delays to account for wide-area
network delivery to distant servers. Finally, in the case labeled as “w-ap-c”,
wearable devices are connected to the cloud through WiFi. It involves only
one radio link in the access and the processing is performed in the cloud.

From the smartphones’ point of view, two scenarios can be identified.
First, when they perform processing locally (s-l), medium amount of en-
ergy is required with minimum cost of communications involved, due to the
proximity to wearable device and low consumption of the WiFi/Bluetooth
interfaces. On the other hand, the time necessary for computing and trans-
mitting back to the wearable device results is high, as smartphones have
limited computing power, which results in increased time of processing. Al-
ternatively, the smartphone can offload tasks to the cloud (s-c). In such
scenario, no computing is required at the smartphone, but communications
require to keep alive both LTE and WiFi/Bluetooth interfaces, which inquires
high energy consumption.

8.1.1 Communications in Mobile Cloud Computing

Mobile devices can exploit different technologies for communications. Wear-
able devices are usually equipped with WiFi, Bluetooth and Near Field
Communication (NFC) interfaces or a combination of them. For the scope
of this analysis, WiFi technology is considered, in particular the standard
IEEE 802.11g as it provides high data rates (up to 54 Mbit/s) and the longest
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Table 8.2: WiFi Setup Parameters

SYMBOL VALUE DESCRIPTION

ρid 3.68 W Power in idle mode
ρtx 0.37 W Power during transmission
ρrx 0.31 W Power during reception
λr 1000 fps Packet reception rate
λg 1000 fps Packet generation rate
γxr 0.09 · 10−3 J Processing energy during packet reception
γx g 0.11 · 10−3 J Processing energy during packet generation

operating range for wearable devices. The most common technology for the
communication between the smartphone and the cloud is cellular 3G/LTE. It
supports data rates of up to 300 Mbit/s in the downlink and 75 Mbit/s in the
uplink.

Equation (8.1) describes the WiFi transmission time Tw of N packets. Tp
represents individual packet transmission time. Tack is the time required
for acknowledgment. DIFS and SIFS are inter-frames spaces specified
by the IEEE 802.11 standard. B is a backoff time, which helps to avoid
network contention if multiple nodes need to access the shared channel
simultaneously.

Tw � DIFS + B + N · (Tp + Tack + SIFS). (8.1)

WiFi power consumption Pw is described according to the model proposed
by Garcia et al. in [193]:

Pw � ρid + ρtx · τtx + ρrx · τrx + γx g · λg+γxr · λr , (8.2)

where τtx and τrx are channel airtime fraction for transmission and reception
respectively. Table 8.2 describes remaining parameters and their correspond-
ing values used to validate the model.

The time Tl spent for transmission of D bytes sent at rate r on LTE link is
as follows:

Tl � Tpr + (D · 8)/r. (8.3)

Tpr is the promotion time, which is the time necessary to allocate resources
to the device. This involves switching from a low-power state to a high-
power state for transmission. Equation (8.3) is applicable for both uplink
and downlink traffic. According to the model presented in [159], the power
consumption Pl over the LTE link can be described as follows:

Pl � αu · tu + αd · td + β. (8.4)

Table 8.3 lists typical values for power consumption on LTE links.
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8.1.2 Computation Offloading from Wearable Devices

Four different task execution models are available for wearable devices. They
can execute tasks locally (w-l), offload to the smartphone (w-s), offload to
the cloud (c) via smartphone (w-s-c) or offload to the cloud via WiFi access
point (w-ap-c). The offloaded tasks are considered to be always accepted
and processed in the cloud.

Local Processing in Wearable Devices (w-l): The simplest way is to start
task execution locally. Task completion time is deterministic and depends
on the computing power of the local hardware, which is quite limited for
the majority of wearable devices. As a result, only tasks requiring low- and
medium-size computing can be executed locally. While high-performance
computing tasks would either take too long to complete or will drain the
available battery power too fast.

Offloading from Wearable Devices to Smartphone (w-s): The nearest
place to offload execution is a smartphone. Task execution can take benefits
of larger computing, battery power, and storage resources of the smartphone,
but require sending tasks for execution and receiving back the completion
result. Yet, this communication occurs over short range and is energy efficient.
The time needed to obtain results Tw-s consists of the time necessary for
sending data to the smartphone and the time to receive the results back using
WiFi connection Tw and the processing time Tsp taken by the smartphone:

Tw-s � Tw + Tsp . (8.5)

From the wearable device point-of-view, energy Ew-s is only spent for
communication purposes and can be described as follows:

Ew-s � Tw · Pw . (8.6)

We recall that definition of Pw can be found in (8.2).

Offloading from Wearable Devices to Cloud via Smartphone (w-s-c):
When the smartphone acts as a relay in offloading tasks to the cloud, the
time needed to obtain the results Tw-s-c is defined as follows:

Tw-s-c � Tw + Tl + δi + Tcp , (8.7)

where Tw is the WiFi communication time between wearable device and
the smartphone, Tl corresponds to the time spent over the LTE link as
per (8.3) and δi corresponds to the wide-area network delay [194], while
Tcp corresponds to the time taken by the cloud to perform computing. Energy
consumption remains identical to the case (w-s) and it is described in (8.6).

Offloading from Wearable Devices to Cloud via Access Point (w-ap-c):
Similarly to the second and third cases (w-s, w-s-c), when wearable devices
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Figure 8.2: Wearable device (a) processing and communication time and
(b) energy consumption
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Figure 8.3: Smartphone (a) processing and communication time and (b)
energy consumption

offload tasks to the remote cloud without using a smartphone as a relay, wear-
ables spend energy only to communicate with the AP (8.6). To be generic,
the proposed model differentiates between distances of wearable devices
and the AP and distance between wearable devices and the smartphone.
This allows capturing different channel conditions and accounts to variable
latencies. In this scenario, the time wearable devices need to receive back
the results is described as follows:

Tw-ap-c � Tw + δi + Tcp , (8.8)

where Tw + δi corresponds to the communications with the cloud through
the AP and the Internet and Tcp is the processing time in the cloud.

Fig. 8.2 shows the time and energy comparison between the different
cases having considered a face recognition task with images of variable
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Table 8.3: LTE Setup Parameters

SYMBOL VALUE DESCRIPTION

αu 438.39 · 10−9 W/bps Power for bps in uplink
αd 51.97 · 10−9 W/bps Power for bps in downlink
αp 1210.7 · 10−3 W/bps Power for promotion
β 1288.04 · 10−9 W Idle Power

size. Face recognition is both computing- and communication-intensive
task [195]. We used Matlab model to derive relationship between the size of
the picture and the number of instructions. The power spent for processing
is set to be equal to 3318 mW per instruction on the wearable device and
2845 mW on the smartphone [191], [196]. Tables 8.2 and 8.3 list the
communication parameters used for analytical validation of the model. As
expected, Fig. 8.2 shows that offloading appears to be highly beneficial in
terms of responsiveness and energy consumption as the amount of data
to be transferred and processed increases. Specifically, wearable devices
have advantage to offload tasks for local execution in the smartphone over
offloading to the cloud when the data size is smaller than 1 MB. For objects
of a larger size, the cloud always provides faster responses. In addition,
Fig. 8.2(a) highlights that WiFi technology should be preferred over LTE
when tasks are executed in the cloud.

8.1.3 Computation Offloading from Smartphones

From the smartphones’ point of view, upon receiving a task from wearable
devices they can either (a) execute the task locally (s-l) or (b) offload the
task to the cloud (s-c).

Local Processing in Smartphones (s-l): In such a scenario, the smartphone
receives data from the wearable device performs the task locally and sends
the results back. Communications happen through the WiFi link only. As a
result, the time Ts-l spent by the smartphone in assisting the wearable device
for offloading is defined as:

Ts-l � Tw + Tsp , (8.9)

where Tw corresponds to the communication time through WiFi and Tsp
the time spent for local processing. Smartphones spend energy Es-l for both
computing and communication:

Es-l � Tw + Pw + Tsp · Psp , (8.10)

where Pw corresponds to the WiFi power consumption as per (8.2) and Psp
is the power spent for local processing.
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Figure 8.4: Wearable device (a) processing and communication time and
(b) energy consumption

Offloading from Smartphones to Cloud (s-c): Smartphones can receive
data from wearable devices and to perform offloading to the cloud. In such
case, no energy costs are associated with processing, but the smartphone is
required to keep active both WiFi and LTE interfaces for communication for
the time Tw and Tl. As a result, Ts-c the time spent by the smartphone in
assisting the wearable device for offloading is defined as:

Ts-c � Tw + Tl . (8.11)

The energy spent by the smartphone is defined as:

Es-c � Tw · Pw + Tl · Pl + αp · Tpr , (8.12)

where where Pw and Pl correspond to the WiFi and LTE power consumption
defined in (8.2) and (8.4) respectively, while αp corresponds to the power
spent by smartphones during promotion time Tpr as per Table 8.3.

Fig. 8.3 shows the time and energy for smartphones. In contrast with
the results obtained for wearables, Fig. 8.3(b) shows that it becomes more
energy efficient if smartphones perform offloading if the size of data transfer
is larger than 1.2 MB. This value is in full agreement with the expected
during analysis value.

8.2 Validation

This section provides performance evaluation performed with NS-3 network
simulator extended with LTE functionality from LENA project framework.
Similarly to Section 8.1, face recognition is the application used for our
analysis.
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Figure 8.5: Smartphone (a) processing and communication time and (b)
energy consumption

8.2.1 System Scenario

Google Glasses have been used as wearable device. They are equipped with a
dual core ARM Cortex-A9 CPU with maximum frequency at 1 GHz [197]. This
architecture is able to offer a maximum computational power of 5000 DMIPS.
The power consumed to perform an OpenCV detection algorithm is 3318 mW,
while data transmission consumes 653 mW using WiFi at 734 Kbps [196],
[198]. LG Nexus 5 is the smartphone used for simulations. It is equipped
with a quad core Qualcomm Snapdragon with a maximum computational
power of 30645 DMIPS [199]. The simulated cloud is assumed to have a
computational power of an Intel Core i7 3770K able to elaborate a maximum
of 106926 DMIPS at 3.9 GHz [200].

For communications, the simulated WiFi data rates range from 734 Kbps
to a maximum of 24 Mbps [196]. For LTE, in the uplink the supported data
rates range from 0.924 Mbps up to 20 Mbps while in downlink the considered
range is 2.24-40.2 Mbps. Distances between the devices (wearable and
smartphones) and antennas (WiFi AP and LTE antennas) range between 0.5
and 15 m for WiFi and from 50 to 500 m for LTE. The size of simulated
graphical objects range from 50 KB to a maximum size of 2 MB.

For analysis of energy consumption, the setting used for computing is
exactly the same of Section 8.1. Wearable devices spend 653 mW and
smartphone 1749 mW for communications over the WiFi links [196] and
smartphones consume 2200 mW [192] over the LTE links.

8.2.2 Results

Fig. 8.4 shows the results of the simulation from the point of view of the
wearable device. Similar to the model, the decision whether to offload a task
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Figure 8.7: Distribution of (a) processing and communication time and (b)
energy consumption for smartphones

or to execute locally depends on the amount of the data to be processed. For
small data sizes, below 150 KB, the difference in execution time is marginal,
while for bigger amounts of data to be processed the results are consistent
with the proposed model. Offloading results being always more energy
efficient as compared to local processing.

Fig. 8.5 shows the simulation results for smartphones. With respect to
previous analysis, the behaviour of the charts is consistent with the model
only for time responsiveness. More precisely, performing offloading starts
being beneficial for amounts of data to be processed larger than 600 KB. For
energy consumption, instead, offloading is practically always beneficial as
the threshold is around 150 KB. The results presented in Fig. 8.5 differ from
the theoretical model. This is especially evident for energy consumption (see
comparison of Fig. 8.5(b) and Fig. 8.3(b)). On one hand, it is because NS3
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implements more realistic models for communication, while on the other
hand the results in Fig. 8.5 are averages having considered different channel
conditions, which can not be captured by the theoretical model.

Fig. 8.6 shows task execution time and energy consumption measured
at the wearable device during offloading of a 500 KB file. If performed
locally, task execution results being a heavy operation. Indeed, offloading is
beneficial for the lifetime of the device as all cases outperform local execution
in terms of both time and energy. From time perspective, the best way is to
offload tasks to the cloud using WiFi connection, because cloud performs
computing faster than a mobile device. Direct connection with the cloud
avoids communication over the time-consuming LTE network at the expense
in energy consumption. Because of the need to cross the Evolved Packet Core
(EPC) network [54], communications over LTE are time consuming and it
becomes clear comparing the cases (w-s) and (w-s-c) in Fig. 8.6(a). For this
amount of data (500 KB), the local processing at the smartphone leads to a
faster response to the wearable device with the same energy cost. This can
be considered as an intermediate case, as the data size is not small enough
to be efficiently processed on the wearable device and not so large to be sent
to the cloud.

Fig. 8.7 shows task execution time and energy consumption measured at
the smartphone during offloading of a picture of 500 KB. Local processing at
the smartphone provides faster response if compared to offloading the task to
the cloud because of the communication over the LTE network. Indeed, even
if the cloud can perform the task faster, the time spent in communication
over LTE will affect negatively the performance with respect of both time
and energy.
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Chapter 9

Implementation: TreeGlass, an
Android application for Google
Glass

Following the guidelines the model developed in Chapter 8, this Chapter
presents results obtained developing an application for Google Glasses. The
application is designed to be easily partitioned into tasks. For evaluation
purposes, the tasks can be run with a certain degree of freedom in different
entities of the fog environment, such as the Google Glasses, the smartphone
and the cloud. A Power monitor is used to profile and monitor energy
consumption of the mobile devices.

9.1 The TreeGlass Application

9.1.1 Introduction and Objectives

TreeGlass application is designed to perform recognition of trees. The appli-
cation runs in a fog computing platform with tasks distributed among the
wearable device, the smartphone and the cloud. In a nutshell, TreeGlass
operation is similar to the workflow of face recognition applications [195],
[201], [202], i.e., unique features are first extracted from a picture (detec-
tion phase) and are compared against a predefined database (recognition
phase). TreeGlass uses Google Glass to take pictures of leaves for detection
and recognition. Fig. 9.1 illustrates the typical workflow of the application,
where Fig. 9.1a shows the capture of the image and Fig. 9.1b the display of
the result from the point of view of the user wearing the Google Glass.

To illustrate the workflows of TreeGlass with more details, first the leaf is
detected from the picture and key features such as the color and the contour
of the leaf are extracted. The contour of the leaves is a closed curve shape
and can be analyzed with a similarity metric [203]. These features are
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(a) (b)

Figure 9.1: Execution TreeGlass from Google Glass (a) Initial and (b) Final
Steps

Figure 9.2: TreeGlass example execution

sent to the cloud and compared with the database in order to find a match.
Whether the match is found or not, an answer is sent back and displayed to
the user. Fig. 9.2 shows an example of positive match: the contour of the
leaf is highlighted and the name of the tree displayed.

The ultimate goal of the application is to test in realistic scenarios the
performance of application partitioning techniques (explained in details in
Section 9.1.3) when applied to wearable devices in fog computing.

9.1.2 The architecture

TreeGlass has been developed with Android and can potentially run over any
Android-based wearable device equipped with camera, smartphones and
the cloud. In the experiments, Google Glasses were the reference wearable
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Figure 9.3: TreeGlass architecture

device. It should be noted that the application is designed in such a way
that its entities can run simultaneously on wearable and smartphone devices.
Fig. 9.3 illustrates TreeGlass architecture with all the three entities of the
fog computing environment. The figure also highlights the technologies that
allows the entities to communicate one with each other and the programming
languages used.

The minimum operative system to support the application is Android
KitKat 4.4.4 (API Level 19), which is the native version running on the Google
Glass and that was used during all the experiments. The mobile application
is written in Java and it exploits the standard APIs provided by the Android
SDK.

The task that is always executed in the cloud is the recognition phase,
i.e., the cloud is responsible to find a match between the features extracted
from the picture and the features stored in the database. The cloud however,
is also designed to run some of the tasks of the Android application devoted
to image processing. This design choice has the objective of guaranteeing
high flexibility in partitioning the application and to obtain an exhaustive
comparison between all possible offloading scenarios. The part of TreeGlass
that runs in the cloud is written in Python. Indeed, an Android version of the
application on the cloud would run only under a simulator which is a not
effective solution as it introduces overheads.

For the sake of simplicity, the database of the application consists of three
types of leaves: oak, maple and chestnut. Each entry of the database contains
a master picture of the leaf and the list of features such as color and contour.
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The core part of the application is based on the OpenCV1 library. OpenCV
provides high level functions to manipulate images and extract features of
objects within them. Moreover this library provides methods to compare
features of different images and then return a usable metrics for the match
finding. On top of the OpenCV library, the custom Java and Python libraries
aggregate methods of the latter with the objective of to dividing the appli-
cation in tasks. The tasks will be later run in different configurations to
verify the performance for any possible offloading scenario. The Java and
Python form a unique library called TreeRecLib. TreeRecLib Java version is
exploited by the instances of the application that run on Google Glass and on
the smartphone, while the Python version is used by the server in the cloud.
Both versions of the library contain the same function calls and perform the
same operations.

9.1.3 Application Partitioning in TreeGlass

TreeGlass is real-time application modeled with a set of tasks that have spe-
cific precedence constraints. The division in tasks is essential to quantify
coherently the performance of the application in different offloading scenar-
ios. A task is defined as a portion of the application execution which involves
the call to one or more methods that having the same objective within the
task.

Similarly to CA-DAG (see Section 7.2 for the details), TreeGlass DAGs
are characterized by squared blocks representing computing tasks. Unlike
CA-DAG, communication tasks are not depicted with rounded blocks. The
motivation behind this design choice is that in fog computing, the description
of a communication tasks requires the knowledge of the type of technology
involved and the destination rather than a generic description. The main
goal of CA-DAG, indeed, was to distinguish between computing and commu-
nication tasks, not to understand where computing tasks are run and how
the information is transferred between one task and the other. As a result,
TreeGlass DAGs layout is column-based, where each column represent an
entity of the fog where the computation takes place and communications are
represented with different types of arrows according to the technology used.

Depending on the offloading scenario (see Section 9.1.4 for the details),
the application is partitioned into 5 computing tasks and up to 4 communica-
tion tasks. Computing tasks are the following:

• Image Capture (IC): Google Glass device captures the pictures. In
all the offloading scenarios, this task is always executed locally on
the Google Glass and does not contribute for the analysis of energy
consumption for the following reasons. First, the task can not be
logically and physically offloaded to other entities of the fog platform.

1http://opencv.org/
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Table 9.1: Task Description

TASK-ID COLOR DESCRIPTION

IC Pictures capture from the Google Glass.
IP Processing of input image is processed.
FE Extraction of the features of the image.
FM Database query for match finding.
BS Preparation and display of the result.

Second, users spend arbitrary time to capture images and, moreover,
they often perform this operation multiple times before obtaining an
acceptable picture and then proceed to the next steps.

• Image Processing (IP): The image processing methods of the OpenCV
library prepare the picture for detection and recognition.

• Features Extraction (FE): The elaborate image is analyzed for extraction
of the key features. In this task allows to perform detection of the leaf.

• Find Match (FM): Thanks to the features extracted, this task queries
the database to find a match with the existing entries and sends back
the positive or negative outcome of the process.

• Build and Show (BS): Once the wearable device receives the feedback,
it presents the outcome to the user. The result is “built” according to
the user interface guidelines and then displayed to the user. This task
is always performed by the Google Glass as it is the device in charge of
the input/output operations.

To improve readability and understanding of offloading scenarios and the
results, a color uniquely defines a computing task. Table 9.1 details task
description and its associated color.

In TreeGlass, communication tasks transfer information from one comput-
ing task to another, which can run over a different entity of the fog platform
or within the same device. The technologies used are Bluetooth and WiFi.
Within the workflow of the application both of the technologies can be used,
although the communication between two task can be performed by only one
technology at a time. The Bluetooth communications are represented with
a double arrow and they are always performed between Google Glass and
smartphone. The WiFi communications are represented with a dot-dashed
arrow and this technology is always used for data exchange involving the
cloud independently of the device on the other side of the communication. Ta-
ble 9.2 summarizes the different types of arrow and presents the description
of a regular arrow used as representation of a time linear execution between
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Table 9.2: Arrows Description

ARROW TYPE DESCRIPTION

A regular arrow indicates the simple time linear execution
of tasks within the same entity.
A dash dotted arrow indicates a data transfer between two
entities using WiFi technology.
A double arrow indicates a data transfer between two
entities using Bluetooth technology.

computation tasks within the same entity of the fog platform. Similarly to
the computing tasks, all the communication operations such as data sent
via Bluetooth or data received via WiFi are uniquely characterized by a color.
However, the mapping of operations and colors is presented in Section 9.2 as
it is not utilized for the DAGs description.

9.1.4 Offloading Scenarios

TreeGlass takes advantages of all devices and entities of the fog platform
where the computing tasks are executed. The wearable device and the
cloud are always part involved in computing. If the smartphone is utilized
as well, then formally TreeGlass is partitioned in a fog computing platform
otherwise TreeGlass is partitioned in a mobile cloud computing platform.
Overall, four scenarios are identified and they cover all the possible cases
of TreeGlass partitioning over wearable devices, smartphones and the cloud.
The scenarios comply with the theoretical model proposed in Section 8.1.2.

Scenario GG-C LOCAL Fig. 9.4 depicts the first scenario, which involves
only two entities: the wearable device and the cloud. This scenario o is called
GG-C LOCAL because almost the whole computation effort is carried locally
on the Google Glass. The communication between the two entities is WiFi.
The wearable device performs locally the first three tasks of the application
(IC, IP, FE) and it sends the resulting data to the cloud. The data sent to
the cloud is a JSON string containing the features extracted from the picture
captured by the user. Once the cloud receives this information, it compares
the data with the entries in the database and it sends back to the Google Glass
another JSON string containing the resulting match or mismatch (task FM).
The final task the wearable device has to complete is to build the received
result and display it to the user (task BS).

Scenario GG-C REMOTE The second scenario is very similar to the previous
one. Fig. 9.5 shows that the entities involved in the computation are the
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Figure 9.4: Scenario GG-C LOCAL

same and they use the same communication technology as before. This
scenario differs from the previous one because the wearable device is only in
charge of the input/output operations while all the computation is completely
offloaded to the cloud. This scenario is therefore called GG-C REMOTE and
from the computation perspective is at the opposite side of GG-C LOCAL. The
Google Glass only performs the tasks IC and BS providing the input data to
the cloud and displaying the final result to the user. Thus, after the wearable
device captures the picture, the whole picture is sent via WiFi to the cloud
where tasks IP, FE and FM are executed. The result is then sent back to the
Google Glass using the same technology as the initial communication. The
two communications this time exchange the whole picture instead of just a
string as in the GG-C LOCAL scenario.

Scenario GG-SM-C FOG Fig. 9.6 shows the third scenario. Unlike GG-C
LOCAL and GG-C REMOTE, which follow a traditional mobile cloud computing
paradigm, this scenario is an example of fog computing approach. In fact, part
of the computation is offloaded close to the user, namely on the smartphone
which is the third entity of the fog platform with the wearable device and
the cloud.

Similarly to GG-C REMOTE, in this scenario the Google Glass is in charge
of the input/output operations by capturing the input image in task IC and
displaying the final result in task BS. From the point of view of the wearable
device, the computation is completely offloaded like in the GG-C REMOTE

scenario. The wearable device sends via Bluetooth the image captured in
task IC to the smartphone. The motivations behind this design choice are the
following: i) Bluetooth is more energy efficient than WiFi and is specifically
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Figure 9.5: Scenario GG-C REMOTE

designed for communications in small operative range; ii) the majority of
mobile OS already provide pairing functionalities between smartphones and
IoT devices using Bluetooth, iii) the Google Glass can connect to a new
WiFi network only if it is not protected by any password. The companion
application installed on the smartphone helps the wearable device to connect
to a new network protected by a password. Unfortunately, it is not possible
to connect the Google Glass to a network that needs credential and this is
the case where the smartphone is needed to connect the wearable device to
the network using the latter as relay.

Once the information reaches the smartphone, it can proceed and reach
the cloud via cellular technology or through WiFi according to the theoretical
model proposed in Section 8.1.2. First, for practical reasons, WiFi technology
is simpler to adopt and to profile and assess its energy consumption. The
smartphone performs some preliminary computation on the received image
and executes tasks IP and FE before involving the cloud. The smartphone
and the cloud communicate trough WiFi and, as in scenario GG-C LOCAL,
the exchanged data is a string containing the featured extracted by the
smartphone. The cloud always executes task FM and it sends back the result
to the smartphone as string with the same communication technology. The
final result (task BS) has to be displayed by the Google Glass because of the
direct interaction with the user. Thus the smartphone sends via Bluetooth
the resulting image which the wearable device has to display with task BS

at the end. Finally the smartphone is only in charge of forwarding the final
result to the wearable device.

99



Gg Sm C

IC A A

A IP A

A FE A

A A FM

A
... A

BS A A

Figure 9.6: Scenario GG-SM-C FOG

Scenario GG-SM-C RELAY Fig. 9.7 depicts the fourth and last scenario,
where the entities and the communications technologies are the same of the
GG-SM-C FOG scenario. Consequently, the GG-SM-C RELAY is also an example
of fog computing approach. In this scenario, the smartphone is only used for
communication purposes and the computation is completely offloaded to the
cloud. As a result, in GG-SM-C FOG scenario the computing capabilities of
the fog are utilized while GG-SM-C RELAY uses its communication potential.
The smartphone, indeed, behaves as relay for the Google Glass by redirecting
the received data from the wearable device to the cloud and vice versa when
the cloud makes available the result. The Google Glass execute input/output
related tasks such as tasks IC and BS. Communications are performed again
using Bluetooth technology with the smartphone and the exchanged data is
the raw input image (output of task IC), and the result given from the cloud
(input of task BS). The smartphone, after having received the data from the
Google Glass, immediately sends the image to the cloud via WiFi with no
additional operations than the preparation of data needed to manipulate the
stream coming from the Bluetooth communication stack and redirect it to
the WiFi communication stream. Thus, the cloud is in charge of performing
the tasks IP, FE and FM. After successful execution of FM, the cloud sends
back to the Google Glass the result, using the smartphone as relay in the
opposite communication order of the beginning. Fig. 9.7 shows two blank
spaces left in correspondence of the smartphone column. They represent the
operations that the smartphone does in order to forward the data between
wearable device and the cloud. It is not a unique arrow because between the
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Figure 9.7: Scenario GG-SM-C RELAY

two communication there are small operations performed by the smartphone
so it is not immediate forwarding.

9.2 Evaluation

9.2.1 Equipment and Settings

TreeGlass has been practically implemented on real devices. In the following,
the details of the all equipment are presented.

Smartphone

The smartphone device used for the experiments is the Samsung Galaxy Note
4. The choice of smartphone is not driven by a particular need; the only re-
quirement is that the device should be an Android-based device. The Google
Glass could be paired with an iOS device as well but, using an Android phone
provided more flexibility during the implementation and while performing
the experiments. Having different OS would have introduced overhead by
translating the application code to the language needed to execute it.

During the experiments, the smartphone runs Android Lollipop 5.1.1 (API
Level 23) which is the latest version available for the device at the time. It is
equipped with a quad-core 2.7 GHz Krait 450 and 3 GB of RAM; furthermore
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it has a GPU Adreno 420 but, for evaluation purposes, this element is not
involved in the process. The chipset is a Qualcomm Snapdragon 805. The
display is a 5.7 in super AMOLED capacitive touchscreen with a resolution of
1440 × 2560 pixels. Moreover it is equipped with a 16 MP camera, 32 GB of
flash storage and other less relevant sensor for the purposes of this research.
On the connectivity side, the Galaxy Note 4 provides WiFi connectivity with
standard 802.11 a/b/g/n/ac and a Bluetooth v4.1. Finally this smartphone
device is powered by a 3220 mA and 4.4 V battery.

Wearable device: Google Glass

The Google Glass is the wearable device used in the experiment. It is equipped
with many sensors such as gyroscope, accelerometer, compass and, unlike
the vast majority of other wearable devices, it is equipped with a camera.
The camera is crucial for the purposes of the application and the related
experiments because it provides the input of the application process. The
Google Glass operative system is Android based and it runs a special release
of Android KitKat 4.4.4 (API Level 19). This wearable device is equipped with
a dual-core OMAP 4430 System on a chip processor and 2 GB of RAM. The
display is characterized by a Prism projector of 640 × 360 pixels (equivalent
of a 25 in/64 cm screen from 8 ft/2.4 m away. Moreover it is equipped with
a 5 MP camera, 16 GB of flash storage and other less relevant sensor for my
purposes. On the connectivity side, Google Glass provides WiFi connectivity
with standard 802.11 b/g at 2.4 GHz and a Bluetooth antenna for device
to device communication. Finally this wearable device is powered by a
570 mA and 3.7 V battery. Google provides a companion application called
MyGlass2: it accessible to everyone on the official Google Play and Apple
AppStore and let the user set up, manage, and add new features to the
Glass device. By connecting the wearable device to the smartphone via
Bluetooth, this application allows to add WiFi networks, manage the photo
gallery, perform some realtime screencast of the running operative system and
install/uninstall applications. The pairing between the two devices allows
the wearable device to access the internet by using the cellular network of
the smartphone and the tethering function of the latter.

Cloud

The cloud is simulated with a personal laptop connected to the same LAN.
Since the computational power and the hardware of the laptop offer better
performances than the two mobile devices, it can be used to simulate the
cloud part of the environment. The laptop is a MacBook Pro (Retina, 13-inch,
Mid 2014). The laptop runs OS X El Capitan version 10.11 at the time of

2http://play.google.com/store/apps/details?id=com.google.glass.companion
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Figure 9.8: Power measurement set up for Google Glass

the tests; it is equipped with a dual-core 3.0 GHz Intel Core i7 and 16 GB of
RAM; it has a 256 GB Apple SSD as storage and an AirPort Extreme card for
Wi-FI 802.11 a/b/g/n/ac connectivity.

Power Monitor

The Power Monitor hardware by Monsoon3 is the fundamental tool in the
power measurements phase. Several papers in the scientific literature use
the approach of collecting power consumption data via software by means
of system calls [204], [205]. Even though this method may be valid, the
power monitor provides extremely accurate results if used directly to acquire
measurements. In order to retrieve data, the power monitor substitutes the
battery of the mobile device. At the other side, the monitor is connected to a
laptop running a Windows operative system. Thanks to a specific software
provided by Monsoon, data is downloaded in real time to the laptop with
a sampling rate of 5000 samples per second. The software displays a real
time chart of the sampled data at the same time and it allows me to save the
session in a csv file at the end of the session.

9.2.2 Results

The power monitor helped measuring two different performance metrics, i.e.,
execution time and power consumption from the point of view of the Google
Glass and the smartphone, see Fig. 9.8 and Fig. 9.9 respectively.

Taking into account both computing and communication operations per-
formed by [TreeGlass], execution time was measured first. The results
achieved are averages over multiple runs. Having knowledge of the execu-
tion time at the granularity of a task makes easier to determine the energy

3http://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 9.9: Power measurement set up for Google Glass

consumption of each task and, therefore, to compute the overall energy
consumption of the application.

Results of Execution Time

The execution time of any application depends on many factors including the
environmental conditions, current level of the battery and eventual energy-
saving mechanisms set on the devices. It should be noted the aforementioned
issues do not affect computing tasks as much as communication tasks. For
example, environmental aspects such as fading and shadowing, influence
channel conditions and directly affect performance of communications.

Execution time of Computing Tasks: To limit the influence of external
factors in the measurements, TreeGlass is the only application running on
Google Glass and the smartphone. For this evaluation, the scenarios GG-
C LOCAL and GG-SM-C FOG are considered as in these cases the cloud is
involved in computing aspects but the database search. Table 9.3 presents the
results for the execution time spent for computing by all the tasks but tasks IC

and FM. Indeed, these two tasks are not relevant to assess the performance
of the application. Task IC involves taking the picture and the duration of the
tasks is highly dependent on the user. Task FM corresponds to the query in
the database to find a match and given that is always performed in the cloud,
its duration can be considered negligible with respect to the other tasks. It
should be noted that task BS displaying the final result is always performed
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Table 9.3: Execution times of computing tasks on mobile devices

TASK GOOGLE GLASS SMARTPHONE

TASK IP 0.711 s 0.594 s
TASK FE 0.125 s 0.114 s
TASK BS 2.853 s –

Table 9.4: Execution times of computing tasks on mobile devices

TECHNOLOGY & DATA GOOGLE GLASS SMARTPHONE

SEND RECEIVE SEND RECEIVE

WiFi - Text 0.209 s – 0.017 s –
WiFi - Image data 12.079 s 2.906 s 1.809 s 0.416 s
Bluetooth - Image Data 15.402 s 4.035 s 0.370 s 8.017 s

locally at the Google Glass and the table clearly shows that it is the task that
last longer. Indeed, behind the scenes, the BS task is responsible of image
merging in addition to display the result, which is a very time and energy
consuming operation. As expected, Table 9.3 also shows that the tasks IP

and FE are executed faster if performed by the smartphone.

Execution time of Communication Tasks: For the measurements, all the
devices in the fog platform were connected under the same LAN (eduroam),
which is however not under control. Therefore, having other users connected
and generating traffic somehow degrades the performance of the test be-
cause of interferences. Similarly to computing tasks, Table 9.4 shows the
results performed for IP, FE and BS tasks in GG-C LOCAL and GG-SM-C FOG

scenarios. The smartphone always outperforms the Google Glass of at least
one order of magnitude as it is equipped with most recent hardware and
support updated versions of the communication technologies. The Google
Glass transfer different type of data. In GG-C LOCAL scenario, as most of
the computing part is performed locally, only a JSON string is sent to the
cloud. In GG-SM-C FOG, the Google Glass are only in charge of capturing the
image, which is then sent to the smartphone and or relayed to the cloud with
Bluetooth and or WiFi. Considering Bluetooth as communication technology,
the differences in terms of time execution are evident. The smartphone
performs operations faster than the wearable device, with the sole exception
when the smartphone receives data via Bluetooth. This happens for the
GG-SM-C FOG scenario and the it is due to the fact that the bottleneck is
the time spent from the wearable device to send data via Bluetooth to the
smartphone. The latter is then forced to use more time in order to wait the
wearable device to send all the data.
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Table 9.5: Color code definition in charts

COLOR DESCRIPTION

Execution of computing tasks IP and FE.
Execution of computing task BS: preparation and display of the
result.
Send data via WiFi from the current entity to another one.
Receive data via WiFi in the current entity from another one.
Send data via Bluetooth from the current entity to another one.
Receive data via Bluetooth in the current entity from another
one.
Waiting time while the device is in idle mode in respect to the
current application.

Results of Enegy Consumption

The results presented in this section are obtained with the help of the Mon-
soon power monitor and with precise knowledge of the task duration esti-
mated in Section 9.2.2. More precisely, the power monitor presents only the
power consumption profile for the entire application duration. Therefore,
the energy spent by each task is determined splitting the whole profile into
pieces of predetermined duration.

Table 9.5 shows the color code use to present the results. It differentiate
between computing and communication tasks. The charts are mainly charac-
terized by colors that refer to the execution of the communication operations
because time execution of computing tasks is faster in comparison to the
duration of communication tasks. It should be noted that for computing
tasks the color code is similar to the one presented in Table 9.1, and for task
BS it is the same. Being very short, tasks IP and FE are merged together and
represented with a dotted-pattern where the background is a combination of
the correspondent backgrounds shown in Table 9.1. This operation allows
to improve the readability, otherwise they would have not appeared in the
charts. Communication tasks are colored with different shadings of the same
color according to the operation and technology used, WiFi - Bluetooth and
Send - Receive. Finally, yellow denotes the waiting time, i.e., the time when
an entity waits the result from another one in order to proceed with the
execution of the task.

Analysis of GG-C LOCAL: Fig. 9.10 shows the power consumed by Google
Glass in the scenario GG-C LOCAL and Table 9.6. The initial part of the
power profile is characterized by picks of energy consumption that almost
reach values of 2500 mW due to the start up of the application and the
local computation performed on the wearable device. As explained, the
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Table 9.6: Energy values of GG-C LOCAL scenario

OPERATION ENERGY CONSUMPTION

TASK IP & FE 1.041 J
WIFI SEND 0.505 J
WAITING 1.304 J
WIFI RECEIVE 3.772 J
TASK BS 2.637 J

execution of the tasks IP and FE is fast, but the sum of the two operation is
easy to be detected in the chart. After the FE phase, the extracted features
are sent to the cloud in form of a JSON string via WiFi. This requires less
energy than the local computation, but it takes more time to complete the
operation (see the red section). Then, the Google Glass wait for the cloud
performing the database search and sending back the results. It is interesting
to notice that during the waiting time, the device consumes a similar amount
of energy that while transmitting data with WiFi. The reason is that the
device remains in listening mode, keeping running in background all the
functionalities of TreeGlass. The longer task is the reception of the result
from the cloud (pink section). The power trend is similar to the sending and
waiting periods but it presents higher peeks towards the end of the phase to
process the received stream of data. Consequently the energy consumption is
higher in respect to the other sections. It is interesting to notice that during
the communication phases and the waiting time, the power consumption
presents a trend almost stable around 1300 mW. The final green sector
represents the final computation task executed by the Google Glass where
the result is built and displayed to the user. Task BS requires lot of power
because it has to update the user interface of the application in order to show
the result to the user. Thus, the screen consumes energy to be refreshed and
the peeks of power consumption have almost the same height of the ones in
the initial phase, tasks IP and FE.

Analysis of GG-C REMOTE: Fig. 9.11 shows the performance of the GG-
C REMOTE scenario and the correspondent values of energy consumption
are presented in Table 9.7. Similarly to the previous case, these results
are presented from the point of view of the Google Glass because from
the computing point of view, this scenario is the opposite of the previous
one. In GG-C LOCAL all the computing tasks are executed locally, in GG-C
REMOTE the computing tasks are offloaded. Thus, the large red sector that
characterize the initial WiFi send represents the sending of the input image
to the cloud in order to be further processed. Differently from the previous
scenario, the data sent to the cloud is not only text, but the entire image is
compressed and sent as a stream. The amount of data is then significantly
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Figure 9.10: Scenario GG-C LOCAL Power consumption

Table 9.7: Energy values of GG-C REMOTE scenario

OPERATION ENERGY CONSUMPTION

WIFI SEND 12.505 J
WAITING 0.429 J
WIFI RECEIVE 1.075 J
TASK BS 1.116 J

higher than in the GG-C LOCAL scenario and it requires more time and power
to the Google Glass to perform the task. The power profile reaches peeks
higher than 2500 mW in some points and the total amount of energy spent
for this operation is around 12.505 J. Once the image reaches the cloud, it is
processed extremely fast (tasks IP, FE and FM see Fig. 9.5) and the Google
Glass wait spends little amount of time waiting. As all the results are already
prepared to be showed, the WiFi - recv operation is short although consumes
a considerable amount of power. Similarly, also the duration of the BS task is
faster than in the GG-C LOCAL scenario and reaches higher peak of power
consumption.

Summary: GG-C LOCAL vs GG-C REMOTE:
The comparison between the GG-C LOCAL and GG-C REMOTE scenarios

is very important to understand pros and cons of mobile cloud computing.
Both cases have the same entities involved and they differ one from the
other by the amount of computing tasks offloaded and the type of data
involved in the communication. In GG-C REMOTE, the long time needed
by the wearable device to send the data to the cloud limits the effect of
offloading the computation performed locally in the GG-C LOCAL scenario.
Even if the computation is way faster if performed by the cloud, the initial
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Figure 9.11: Scenario GG-C REMOTE Power consumption

communication operation requires a large amount of energy that is higher
than the overall consumption of GG-C LOCAL. It is important to notice that
to maintain the same functionalities, the two scenarios requires that Google
Glass sends two different type of data: a string for GG-C LOCAL and the
raw image for GG-C REMOTE. On one hand, in the GG-C REMOTE scenario,
compressing and sending the image are the expensive operation in terms
of energy and time consumption. On the other hand, in the GG-C LOCAL

scenario the wearable device is able to stabilize its power consumption before
receiving the result from the cloud, in the second scenario the long time
spent sending the image does not allow the device to cool down and save
energy.

Analysis of GG-SM-C FOG: The scenario GG-SM-C FOG is a fog computing
approach. Indeed, the GG-SM-C FOG case involves all three entities in
performing the computing tasks. More in details, the smartphone is in charge
of prepare the data and send it to the cloud for further processing and
database lookup. Fig. 9.12 displays the power consumption of the Google
Glass, while Fig. 9.13 displays the power consumption of the smartphone.
Similarly to the previous scenarios, the values of the energy consumption per
task are summarized in Table 9.8 for the wearable device and in Table 9.9
for the smartphone. The Google Glass and the smartphone communicate
through Bluetooth and the smartphone uses WiFi for communications with
the cloud. Similarly to GG-C REMOTE scenario, the most expensive operation
in terms of energy consumption executed by the wearable device is the initial
data transmission (see the blue section). This task takes a quite long time to
be completed: indeed, in addition to the the data transfer itself, it involves
the compression of the image. Altogether, this corresponds to a power draw
which is on average higher more than 1500 mW. Once this first operation is

109



Table 9.8: Energy values of GG-SM-C FOG scenario for Google Glass

OPERATION ENERGY CONSUMPTION

BLUETOOTH SEND 19.926 J
WAITING 7.011 J
BLUETOOTH RECEIVE 5.250 J
TASK BS 4.107 J

completed, the wearable device waits. The smartphone processes the image,
sends the results to the cloud for the database lookup and receives back a
reply, which is then forwarded to the Google Glass. In this time window, the
power profile varies a lot because the device is listening on the Bluetooth
connection for the reply and tries to cool down and stabilize. The cyan sector
identifies the reception of the result by the Google Glass. It is a quite costly
operation because of the decompression of the image, which leads to an
overall energy consumption of 5.250 J. The green sector represents again
the final step of the result display performed in task BS.

Fig. 9.13 is the power profile from the smartphone point of view during
GG-SM-C FOG. Since the wearable device takes a long time to complete the
image data transfer, the smartphone remains in receiving mode for a long
time as well (see the cyan sector). Unlike the Google Glass, the smartphone
consumes less energy during this period because of the more performing
Bluetooth antenna and the power consumption profile is almost stable around
500 mW. Once the reception of the image is completed, the smartphone
executes tasks IP and FE. The execution is visible as the peeks that are high as
much as 3500 mW highlighted in the brown-dotted-pattern of Fig. 9.13. After
the execution of task FE, the smartphone sends the features extracted from
the image in form of a JSON string to the cloud (red period), waits (yellow
period) the reception of the results (pink period), which are forwarded back
to the Google Glass (dark blue period). It is worth noting the efficiency of the
device in stabilizing the power consumption between the data uploading and
downloading performed with WiFi. Another interesting fact is that Bluetooth
send and receive operations lead to similar energy consumption profiles.

Analysis of GG-SM-C RELAY: From the point of view of the Google Glass,
the scenario GG-SM-C RELAY is almost identical to GG-SM-C FOG. Fig. 9.14
illustrates the power consumption profile and Table 9.10 shows the corre-
sponding values, which are totally in line with the ones already presented
in Table 9.8. From the smartphone point of view, however, this is not true.
Indeed, the GG-SM-C RELAY uses the communication and not computing
resources of the fog and the smartphone acts as a relay, forwarding the raw
image to the cloud without performing any other operation. While the initial
reception of the image with Bluetooth costs a similar amount of time and
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Figure 9.12: Scenario GG-SM-C FOG Google Glass power consumption

Table 9.9: Energy values of GG-SM-C FOG scenario for the smartphone

OPERATION ENERGY CONSUMPTION

BLUETOOTH RECEIVE 4.360 J
TASK IP & FE 1.973 J
WIFI SEND 0.247 J
WAITING 0.558 J
WIFI RECEIVE 0.439 J
BLUETOOTH SEND 0.618 J
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Figure 9.13: Scenario GG-SM-C FOG smartphone power consumption
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Table 9.10: Energy values of GG-SM-C RELAY scenario for Google Glass

OPERATION ENERGY CONSUMPTION

BLUETOOTH SEND 20.658 J
WAITING 4.867 J
BLUETOOTH RECEIVE 5.281 J
TASK BS 5.362 J
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Figure 9.14: Scenario GG-SM-C RELAY Google Glass power consumption

energy than the GG-SM-C FOG scenario, then the uploading of the image
and the download of the results from the cloud with WiFi have an higher
cost as expected. Both operations are similar in time and power consumption
as Table 9.11 confirms. Between the two operations there is a small time
window when the smartphone waits for the execution of the tasks IP, FE and
FM from the cloud. This time is highlighted in yellow and is short and almost
imperceptible due to the fast execution of the cloud. The final part of the
power profile, shown in dark blue, indicates the Bluetooth communication
with the wearable device where the result is sent.

Table 9.11: Energy values of GG-SM-C RELAY scenario for the smartphone

OPERATION ENERGY CONSUMPTION

BLUETOOTH RECEIVE 4.400 J
WIFI SEND 1.975 J
WAITING 0.255 J
WIFI RECEIVE 2.066 J
BLUETOOTH SEND 0.534 J
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Figure 9.15: Scenario GG-SM-C RELAY smartphone power consumption

Summary: GG-SM-C FOG vs GG-SM-C RELAY:
Looking at the two fog computing-based scenarios where all the three

entities are involved is not easy to find relevant differences. The execution
time and power consumption values are similar in both cases. In fact the
overall energy consumption of the Google Glass is 36.294 J in GG-SM-C FOG

scenario and 36.168 J in GG-SM-C RELAY scenario while the smartphone
consumes 8.195 J in GG-SM-C FOG scenario and 9.230 J in GG-SM-C RELAY

scenario. From the point of view of the smartphone, performing locally the
computation is almost negligible with respect to the communication tasks. A
significant difference though is visible between the two scenarios GG-SM-C
RELAY is almost identical to GG-SM-C FOG for what concern the data transfer:
the transmission of a string is fast and it costs a low amount of energy, while
the transfer of the entire image requires more resources.

Comparison of all the scenarios:
After having presented all the scenarios separately, this section provides

an overall comparison of energy consumed for computing tasks (Fig. 9.16)
and communication tasks (Fig. 9.17) in all the scenarios. Moreover, Fig. 9.18
gives an understanding of the overall consumption per scenario, including
the waiting time.

As pointed out in the previous sections, the communication tasks are
costly in terms of time and power consumption consequently. On the other
hand, the computation tasks require less time but the power consumption
is higher. Thus, the final outcome is very similar between the two types
of task. Fig. 9.18 shows clearly this concept. For the scenarios GG-SM-C
FOG and GG-SM-C RELAY, although the computation is distributed among
several entities (Google Glass, smartphone and cloud) and the energy con-
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Figure 9.16: Energy spent for computation by mobile devices

Gg-C
Local

Gg-C
Remote

Gg-Sm-C
Fog

Gg-Sm-C
Relay

0

10

20

30

3.77

1.08

0.44
2.07

0.51

12.51

0.25
1.98

9.61 9.68

20.54 21.19

E
n
er
gy

(J
)

Bluetooth send
Bluetooth recv
WiFi send
WiFi recv

Figure 9.17: Energy spent for communication by mobile devices

114



Gg-C
Local

Gg-C
Remote

Gg-Sm-C
Fog

Gg-Sm-C
Relay

0

10

20

30

40
5.36

5.12
2.07
1.98

9.68

21.19

4.11 0.29
1.580.44

0.25
7.57

9.61

20.54

1.12 1.08
0.43

12.51
2.64
3.77

1.3
0.51
0.16
0.88

E
n
er
gy

(J
)

Bluetooth send
Bluetooth recv
WiFi send
WiFi recv
Waiting
Task Ip
Task Fe
Task Bs

Figure 9.18: Energy spent for communication by mobile devices

sumption is almost identical from the point of view of the Google Glass,
the communication dominates and makes the two cases different. Indeed,
direct communications between the Google Glass and the cloud lead to faster
execution time and lower power consumption. This trend becomes evident
comparing the couples of scenarios (GG-C LOCAL and GG-C REMOTE) and
(GG-SM-C FOG and GG-SM-C RELAY): the first couple presents an energy
consumption profile which is lower by more than two times with respect to
the second couple. As mentioned before, one of the causes for this behaviour
is the type of data exchanged text or image.

Bluetooth communications appear to be the more costly than commu-
nications with WiFi (see Fig. 9.17). The reason is the long execution time
required by the Google Glass to send and receive all the data. Looking at
the smartphone energy consumption during the same operations, the same
operations require significantly less amount of energy energy.

For the computation side, the collected data reveals that the smartphone
requires more energy for processing with respect to the Google Glass. The
gap between the two devices is not very big and is attributed to the different
hardware the two entities are equipped with. Moreover, another reason is
the different battery capacity which provide a different amount of energy.

Finally, waiting times are very demanding in terms of power, especially
for the Google Glass. The wearable device experiences waiting times of
different durations and in these periods the power consumption trend looks
like the activity on the device is still running actively. Despite the fact any sort
of external operation was removed in this phase of the execution, operations
performed by the operative system appear in this unpredictable behavior.
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Chapter 10

Background on Mobile
CrowdSensing

This chapter introduces Mobile crowd sensing (MCS), illustrates open re-
search challenges in the field and outlines the proposed contributions.

10.1 Mobile CrowdSensing in a Nutshell

MCS has become in the recent years an appealing paradigm for sensing
and collecting data. In MCS, users contribute data gathered from sensors
embedded in mobile devices, which include smartphones, tablets and in
general IoT devices, which is then delivered to a collector in the cloud [5],
[206] (see Fig. 10.1).

The term mobile crowd sensing was first introduced by Ganti et al. [5] and
indicates a more general paradigm than mobile phone sensing[207], [208].
Guo et al. in [206] give a definition that clearly highlights this difference:
“MCS is a new sensing paradigm that empowers ordinary citizens to contribute
data sensed or generated from their mobile devices, aggregates and fuses the
data in the cloud for crowd intelligence extraction and people-centric service
delivery”.

To operate efficiently, MCS systems require participation and contribution
of a large number of users. Although entire communities can potentially
benefit from such a contribution, singular person may be reluctant to partici-
pate, being selfish or having privacy concerns. To easy this burden, in the
last years the research community has put lot of effort in developing proper
incentive mechanisms [209], [210] and in investigating privacy issues [211],
[212].

The ubiquitous diffusion of mobile devices and the rich set of built-in
sensors they are equipped with are two main key enablers leading to the
success of MCS paradigm. Accelerometer, GPS, camera and microphone are
only a representative set of sensors equipped in mobile devices. Although
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Figure 10.1: Cloud-based MCS system components

MCS is an emerging paradigm, a number of MCS applications relying on
mobile device sensors have already been developed in different scenarios,
including health-care, environmental monitoring, public safety and intelligent
transportation systems such as traffic monitoring and management [207],
[208], [213]. All these applications suit urban scenarios very well. MCS
is also a key solution for building smart cities, which aim at using ICT
solutions to improve management of everyday life of their citizens [3], [214].
Google, for example, uses crowd-sourced information about smartphone
locations to offer real-time view of congested traffic roads and has recently
released a new application, called Science Journal, which allows to gather
and visualize data from smartphones’ sensors [215]. Pokemon Go, developed
by Niantic in collaboration with Google, is an application which may act as
MCS framework to collecting data like user location and movements. The
application is extremely popular. In the USA, 10 M users downloaded the
application in two weeks. The application has the potential to become the
first large-scale MCS framework daily used by millions of people and can
bring side-effect advantages. For example, in Italy, users while playing have
filmed and reported a robbery that lead to the arrest of the thief 1.

In MCS systems, data collection can be either opportunistic or partici-
patory [207], [208] (see Fig. 10.2). The user involvement in opportunistic
sensing systems is minimal or none, which means that the decisions to
perform sensing and report data are application- or device-driven. On the
contrary, in participatory sensing systems rely on active user engagement in
the sensing process. For example, a user spontaneously contribute to the sys-
tem without having received a specific task. Participatory sensing is tailored
to crowd sensing architectures with a “central intelligence” responsible to
assign tasks to the users, e.g., to ask one user to record a video in a given

1http://www.intelligonews.it/articoli/29-luglio-2016/47061/
ragazzini-a-caccia-di-pokemon-a-roma-filmano-ladro-arrestato
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Figure 10.2: Taxonomy of MCS Sensing Paradigms

area at a given time. Unlike opportunistic sensing systems, the participatory
paradigm imposes a higher cost on the user in terms of cooperation effort.
Having devices or applications responsible for sensing lowers the burden
for user participation and makes opportunistic sensing ideal for distributed
solutions. The following chapters present solutions for participatory MCS
systems.

To this date, research in MCS is still in its infancy, with many of the
core paradigms undefined or unclear. To illustrate, for example, there is
no general consensus on the term “opportunistic sensing”. According to
Ganti et al. [5] “opportunistic sensing” is defined as “On the other hand,
opportunistic sensing is where the sensing is more autonomous and user in-
volvement is minimal (e.g. continuous location sampling)”. However, Khan et
al. [208] state that opportunistic sensing requires no user involvement at all,
since the decisions to perform sensing is a prerogative of the device itself.
Finally, Han et al. [216] enlarge previous vision of opportunistic sensing
in the context of single user involvement and they describe opportunistic
sensing as a paradigm enabling cooperation among smartphones. Typically,
both terms “opportunistic” and “participatory” sensing remain consider un-
der the common umbrella of MCS [5], [208], [217]. In other cases, both
“mobile crowd sensing” and “participatory sensing” are used interchange-
ably [218]. Other times, both “mobile crowd sensing”, “participatory sensing”
and “opportunistic sensing” are synonyms [219].

10.2 Research Challenges and Open Questions

Although being recent, MCS is already a largely explored research field.
Nevertheless, to be widely adopted in real world, several challenges and
open questions have to be addressed.

In the recent years, the research community has put lot of effort in
developing incentive mechanisms to foster user participation in MCS [210],
[220] and in investigating privacy issues [211], [212]. After the advent
of Pokemon Go, an interesting research challenge in this area would be
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Figure 10.3: Taxonomy of Costs in Participatory MCS

exploring the privacy concerns of both actors, players and governments. In
China, for example, the authorities are reluctant to make public available the
application bearing in mind that players while walking may reveal military
bases. While privacy concerns is certainly a limiting factor, the cost of sensing
often defines the level of user participation. On one hand, mobile devices are
battery constrained and it is important to use all available energy wisely, i.e.,
refrain from unnecessary sensing and data reporting operations. While on
the other hand, reporting collected samples using wireless communication
technologies, such as 3G/4G, WiFi or Bluetooth, affects battery lifetime [159],
[160] and has associated data plan costs.

User recruitment is one of the key challenges in participatory MCS sys-
tems. In urban environments, the high number of potential contributors calls
for the design of efficient recruitment policies. Proper policies allow selection
of users able to fulfill sensing tasks with high accuracy and to minimize the
system costs. From the standpoint of the central platform, which organizes
and dispatches tasks, the efficiency of a data acquisition framework is de-
fined in terms of the revenues, obtained through Sensing as a Service (S2aaS)
business models [221], and the costs sustained. Costs in participatory MCS
have a double nature (see Fig. 10.3). The central platform sustains monetary
costs to recruit and reward users for their contribution. Users as well sustain
costs while contributing data, i.e., the energy spent from the batteries for
sensing and reporting data and, eventually, the data subscription plan if the
cellular connectivity is utilized for reporting. As in cloud-based S2aaS the
mobile devices are the most hungry components in the ecosystem [222],
cost-effective solutions in data acquisition not only allows to minimize the
energy expenditure, but are also are a powerful incentive to stimulate user
participation [223].

Other important challenges to be tackled in MCS are data accuracy.
On one hand, several research work assess quality of generated data by
evaluating trustworthiness of the users, for example through reputation-
based mechanism [213], [224]–[226]. On the other hand, several techniques
can be employed to estimate data quality and accuracy for example statistical-
based techniques like leave-one-out and bootstrap [227], [228]. Another
method to improve quality of data consists in periodic calibration user-devices
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with the help of fixed infrastructure such as weather stations [229].

10.3 Contributions

Given the challenges presented in Section 10.2, the following chapters are
devoted to illustrate the solutions proposed:

• Novel performance metrics to assess efficiency of recruitment policies,
accuracy of task completion and distribution of sample generation
(Section 11.1).

• A new simulator, CrowdSenSim, able to assess in large scale urban
environments costs for the users of crowdsensing activities and amount
of generated data (Section 11.2).

• A novel user recruitment policy for participatory MCS systems, based
on three selection criteria that define user eligibility. The user recruit-
ment policy is the key component of a new data collection framework
(Chapter 12). Performance of the framework is assessed with Crowd-
SenSim and the efficiency of the user recruitment policy through the
new metrics.
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Chapter 11

Assessing Performance of
Mobile CrowdSensing Systems

Measuring and assessing performance is essential for any system. It allows
to minimize costs while maximizing the efficiency of the process, to identify
best practice and solutions to expand. This chapter presents a methodology
to assess performance of MCS systems providing an overview of existing
and novel proposed metrics. Simulations are a common tool to assess
performance in a controlled environment. Because of the complex nature of
MCS systems, simulations and not real testbed are the candidate solution
for performance evaluation. In this context, the chapter reviews simulators
suitable for MCS systems and presents CrowdSenSim, the first simulator
able to assess performance of MCS systems in realistic large scale urban
environments.

11.1 Performance Metrics for Mobile CrowdSensing
Systems

Metrics are essential to measure properties, quantify and assess performance
of systems. This section first reviews performance metrics in the literature
and discuss possible directions to design new metrics (Section 11.1.1). Finally,
the section illustrates new metrics designed to assess the efficiency of user
recruitment, the accuracy of task completion and distribution of sample
generation (Section 11.1.2).
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11.1.1 Background on Existing Performance Metrics and Open
Challenges

Existing Metrics

In the recent years, a number of metrics have proposed metrics to address
mainly two challenges in MCS, namely quality of data and coverage.

In wireless sensor networks such as MCS systems, mobile users and
devices are in charge of collecting data of the surroundings while moving.
Assessing quality of information because the contact time between users
and phenomena can be short, mobility follows random and uncontrollable
trajectories and the accuracy of sensors can vary. As a result, the information
collected depends on multiple factors such as location, sensing conditions
and modalities and ambient noise levels. Several research works propose
metrics to evaluate the quality of information [230], [231] and service [232].
In [230] the authors propose to assess quality of information according to
three main features: sampling precision, data accuracy and granularity. This
methodology is general and applicable to urban scenarios. Tham et al. [231]
propose IQ, Information Quality of Contributors, which relates the quality of
information to the presence or absence of a given participants in a location
of a sensing task. Di Stefano et al. [232] have proposed a non-markovian
stochastic Petri net formulation to evaluate the performance of MCS systems
assessing Quality of Service (QoS) metrics.

Assessing coverage is very important [233], [234]. Indeed, it allows to
quantify zones with high/low density of data generation and take proper
countermeasures to respectively decrease or increase the generation process.
In particular the most challenging problem is to deal with low amounts of
data, which do not allow to proper characterize and map a phenomena.
A common method to cope with the low amount of data problem, is data
correlation, i.e., applying machine learning techniques to predict the value of
sensor readings according to the spatiotemporal patterns of generated data.
In [233], the authors propose the coverage quality, which is a metric defining
data coverage in terms of the number of sensor readings obtained per sensing
cycle in a given area. In urban environments, the spatiotemporal location
of the users is dynamic, i.e., it changes over time and geographical position
and makes the quality of sensed data dependent on time and location. In
the context environmental monitoring with image type of data, in [234] the
authors propose urban resolution r, a new metric to measure the quality of
sensing images and help recovery of blank zones through spatiotemporal
data correlation.

Open Challenges

To this date, it exists a number of possible directions to explore for the
design metrics to form a complete and coherent framework of performance
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evaluation in MCS.
So far, no metrics were proposed to evaluate efficiency of user recruitment

policies. As explained in Section 10.2, proper selection of users is funda-
mental in participatory MCS systems to maximize utility in data collection,
task fulfillment and minimize the expenditure. Performance metrics in this
area should assess efficiency of policies in terms of costs, number of users
contacted and number of users recruited per sensing task and according to
spatiotemporal windows.

Opportunistic MCS systems are largely unexplored at the time of this
writing. Novel metrics have to be designed in this area. For example, the
evaluation of the amount of data generated per user is essential to design
proper rewarding mechanisms and determine the accuracy in capturing
phenomena.

The following section addresses some of the challenges illustrated.

11.1.2 New Performance Metrics

User Recruitment Effectiveness (URE)

The effectiveness of any recruitment policy can be defined in terms of the
number of contacted users and the ones that are actually recruited. To quan-
tify such effectiveness, a novel metric called User Recruitment Effectiveness
(URE) is proposed:

URE � E

[
N r

N c

]
, (11.1)

where E [N c] and E [N r] correspond to the average number of contacted
and recruited users respectively. The URE metric can assume real values in
the range [0, 1]. Values of URE close to 1 indicate efficient policies. More
precisely, URE � 1 corresponds to have all the contacted users actually
recruited.

Global Task Accuracy (GTA)

Measuring task accuracy is important. Obviously, task accuracy depends on
time distribution of the contribution provided by N users. Let us consider
the case for all the N users deliver sensed data during the first timeslot
t � 1 and remain idle for the remaining T − 1 timeslots. Consequently, the
task is accomplished with poor accuracy. Conversely, if N users contribute
data uniformly along the entire period T, the task is accomplished with high
accuracy. The Global Task Accuracy (GTA) metric quantifies accuracy of
accomplished task as follows:

GTA �
1
T
·

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N
−

T∑
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q · ©­«
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ª®¬
 , (11.2)
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where nt is the number of users in timeslot t contributing data and q is a
penalization term, which reduces task accuracy when in a given timeslot
the contribution is null. The term q is set to be inverse proportional to the
number of timeslots T:

q � 1/T. (11.3)

The rationale behind this choice is that having no contribution in one timeslot
affects more severely short tasks than longer ones. The penalization should
be more severe if during consecutive timeslots none of the users contributed
data. For this reason, in (11.2) q linearly increases with the number of
timeslots with no contribution. The terms xt and yt are boolean variables:

xt �

{
1 if nt > 0;
0 otherwise.

, yt �

{
1 if nt � 0;
0 otherwise.

(11.4)

It is worth mentioning that both URE and GTA metrics should not be com-
puted run time, but after task completion, i.e., the duration Ti of the task i
expired.

Sample Distribution (SD)

Having the knowledge on the amount of data the users can contribute is
important for the applications and to determine the accuracy in mapping
a phenomena. However, for drawing more precise conclusions, it is funda-
mental to determine also where and when the user devices generate samples.
To this end, the Sample Distribution (SD) metric measures the amount of
generated samples per meter and is defined as follows:

SD �
N a

s |t
∆

, (11.5)

where ∆ is the average distance between samples and N a
s |t is the number of

samples generated. The parameter ∆ is defined as follows:

∆ �

∑n
i , j
i≥ j

d(i , j)

n(n − 1)
2

. (11.6)

The term d(i , j) is the distance (in meters) between the location where the
samples i and j were generated.

The SD metric belongs to the family of metrics assessing coverage of data
generation. Unlike the metrics presented in Section 11.1.1, SD is totally
independent of the type of data generated.
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11.2 CrowdSenSim: Mobile Crowd Sensing Simula-
tor

For proper operation MCS systems require the contribution from a large
number of participants. Sensing campaigns are often in the order of hours
or days. Therefore assessing performance of MCS systems through the
development of real testbeds is costly and often not feasible. Nevertheless, it
exists in the literature few examples. This section reviews existing testbeds
and simulators suitable for MCS, presents designs principles of CrowdSenSim
and finally illustrates the architecture.

11.2.1 Background on Real Testbed and Simulators

Testbed

With the objective of studying coverage and scaling properties of MCS sys-
tems, in [235] the authors have recruited 85 people to collect data for a
two months period in Seoul, Korea. Several data types were collected and
among those, nearly 22 000 audio clips and 6 200 photos were included in
the resulting dataset.

In [236] the authors have developed an application called TrackMaison
(Track my activity in social networks) to collect data concerning usage of
social networks with ultimate goal of designing a behaviometric identification
framework. Behaviometric identification refers to continuous identification
and authentication of IoT devices and is envisioned to co-exist and strengthen
biometric authentication, which is unfeasible to provide continuously. A
population of 10 individuals were providing data for 15 days from the
following set of social networking applications: Facebook, Twitter, LinkedIn,
WhatsApp and Skype.

SilentSense[237] is an application providing non-intrusive user identi-
fication mechanism to identify whether the person using the device is the
owner, a guest or an attacker. To assess the effectiveness of the application a
number of 100 volunteers were recruited.

Simulators

Tanas et al. propose to exploit Network Simulator 3 (NS-3) for crowdsensing
simulations [238]. The objective is to assess the performance of a crowd-
sensing network taking into account the mobility properties of the nodes
together with the wireless interface in ad-hoc network mode. Furthermore,
the authors present a case study about how participants could report inci-
dents in the public rail transport. NS-3 provides highly accurate estimations
of network properties. However, having detailed information on commu-
nication properties comes with the cost of losing scalability. First, it is not
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possible to simulate tens of thousands of users contributing data. Second,
the granularity of the duration of NS-3 simulations is typically in the order
of minutes. Indeed, the objective is to capture specific behaviors such as
the changes of the TCP congestion window. However, the duration of real
sensing campaigns is typically in the order of hours or days.

In [239], Farkas and Lendák present a simulation environment developed
to investigate performance of crowdsensing applications in an urban parking
scenario. Although the application domain is only parking-based, the au-
thors claim that the proposes solution can be applied to other crowdsensing
scenarios. However, the scenario considers only drivers as type of users and
users travel from one parking spot to another. The authors consider humans
as sensors that trigger parking events. However, to be widely applicable, a
crowdsensing simulator has to take into account data generated from mobile
and IoT devices’ sensors carried by human individuals.

Mehdi et al. propose CupCarbon [240], which is a discrete-event wireless
sensor network (WSN) simulator for IoT and smart cities. One of the major
strengths is the possibility to model and simulate WSN on realistic urban
environments through OpenStreetMap. To set up the simulation, the users
have to deploy on the map the various sensors and the nodes such as mobile
users, gas and media sensors and base stations. The approach is not intended
for crowdsensing scenarios with thousands of users.

11.2.2 Design Principles and Key Performance Indicators

The section outlines the design principles and the main key performance
indicators were used for the design of CrowdSenSim.

Design Principles

To design a novel MCS simulator, the main aspect to consider are the scala-
bility, the implementation in a realistic urban environment, the user mobility
and communications.

Scalability: For proper operation, MCS systems require a large number of
participants. Hence MCS simulators should be designed to host in the order
of tens of thousands participants moving in wide geographical space. Each
user can potentially own several IoT and mobile devices, each of them is a
potential data contributor. Time dimension is also important. The duration of
a sensing campaign ranges from hours to days and a simulator should address
this challenge efficiently. For instance, let us consider 10 000 users producing
data with an average of only 30 minutes per day. Each user delivers 12 bits
long samples of the accelerometer working at 50 Hz frequency. The total
amount of generated data is 1.35 GB. Considering prolonged duration of
user contribution and additional sensors would considerably augment the
figure.
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Realistic urban environment: Similarly to CupCarbon, MCS simulators
should rely on realistic urban environments for several reasons. First, exploit-
ing realistic layouts of urban environments makes the simulator flexible and
easy to be adopted in any city. Second, it allows to perform analysis providing
meaningful insights to the municipality to understand the feasibility and
the potentiality of the proposed MCS solution. Simulations over a grid or a
square area as abstraction levels lower the complexity, but do not allow to
take into account important features such as movements in real streets and
physical obstacles such as buildings.

User mobility: Human mobility is defined as sequences of spatiotemporal
user movements. Understanding human mobility in an urban environments
is crucial to design mobility patterns that meet social behaviors and scale to
the requirements of modern smart cities [241].

Communication technologies: IoT and mobile devices are equipped with
several communication technologies, including 3G/LTE, WiFi and Bluetooth.
Each communication technology drains battery of the devices differently and
can have associated costs (e.g., users have a limited monthly plan).

Key Performance Indicators

This subsection details important types of KPI that CrowdSenSim is designed
to assess, including data generation and cost evaluation.

Data Generation: Sensors work with different sampling frequency and
sample size. After data collection, mobile devices deliver samples to a central
collector using different communication technologies. In S2aaS models,
revenues are proportional to the amount of generated data. Therefore, it is
important to assess KPI concerning data generation such as the amount of
data collected in a given time window, or per area.

Costs: Nowadays energy consumption is one of the most important and
challenging issues. In MCS, energy is consumed to perform sensing and
reporting. The energy spent per sensing is typically proportional to the
sampling frequency of the sensor. The energy spent for communications
depends on the technology used. Rapid battery drain due to MCS-related
applications can lower user participation.

11.2.3 Architecture

Fig. 11.1 describes the architecture of CrowdSenSim, which is build in
modular fashion and it is composed of the following modules:

• City Layout module.

• User Mobility module;
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Figure 11.1: Architecture of CrowdSenSim

• Crowdsensing input parameters module.

The first two modules are in charge of defining the list of events, which
is used to perform the simulations along with the inputs provided by the
Crowdsensing input parameters module. It is worth mentioning that all
the modules are independent by design. The objective is to guarantee to
future developers the possibility to implement, for example, other mobility
models without compromising the overall functionality of the simulator. The
remainder of this section describes the functionalities of each module in
detail.

City Layout

In CrowdSenSim, the users move in a real city setting, namely the City of
Luxembourg. It covers an area of 1.11 km2 and is the home of many national
and international institutional buildings. The information about the streets
of the city is obtained from a crowdsourced application which provides free
access to street-level maps1 in form of a set of coordinates C containing
<latitude, longitude, altitude>, see Fig. 11.2. The set of coordinates compos-
ing the street layout is one input of the simulator and is used as basis for the
user mobility model and the engine in charge of generating the list of events.

User Mobility

The participants move along the streets of the city and their original location
is randomly assigned from the set of coordinates C. The initial time of
user deployment Tin is also randomly assigned: by default it is uniformly

1DigiPoint: http://www.zonums.com/gmaps/digipoint.php
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Figure 11.2: Street-level information of Luxembourg

distributed between 8:00 AM and 1:30 PM. Each participant decides the
amount of time Ttr s/he travels and, by default, it is a value uniformly
distributed between 10 and 30 minutes. The mobility model implemented
is a random mobility model where user movements are constrained by the
physical layout of the streets. More precisely, each participant jumps from a
given coordinate c1 to another coordinate c2 in C. It should be noted that c2
is selected as follows: by default, it is in the same street of c1, otherwise it
belongs to another street in case c1 is in proximity of intersections. Given
that the participant is in c1 at time t1 and s/he moves with an average speed
uniformly distributed between 1 and 1.5 m/s, it is possible to compute t2 after
having determined the spatial distance between c1 and c2. In CrowdSenSim,
the arrival of a user in a given location at a given time is an event.

Crowdsensing input parameters

Each MCS system has unique features to take into account. For example, the
notion of tasks is essential in participatory MCS systems, but not in oppor-
tunistic ones. Considering participatory systems, this module is responsible
to define parameters such as number of tasks and task coverage radius.

Simulations and Results

Receiving in input the list of events ordered by time and the specific pa-
rameters of crowdsensing system, the simulation engine runs to provide the
results. For that, a file is created which contains information on user, location,
number of sensing events, energy consumption, number of users assigned to
a task. The file is used in input of the engine responsible to generate results.
Through scripts, simulations are run a number of times to generate statistical
results with 95% confidence interval.
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Chapter 12

Energy Efficient Data
Collection: Model Design and
Implementation

The chapter proposes a novel framework for data acquisition in participatory
MCS systems. The framework runs over a fog computing platform deployed
in a distributed fashion in a urban environment. The fog facilitates the most
important operations in data acquisition, such as user recruitment and task
completion.

12.1 The Role of Fog Computing in CrowdSensing

Fog computing architectures are heterogeneous and consists of both devices
at the edge of the network and traditional cloud data centers. In the front-
end, the mobile devices are IoT devices, smartphones and cloudlets with
various degree of computing, storage and networking capabilities. Cloudlets
are typically local processing units such as notebook or desktops used for
temporary storage and processing [242]. In addition to provision computing
resources, they can also provide data aggregation functions to reduce the
amount of information delivered to the cloud. Cloud data centers, in the
back-end of the architecture, provide centralization of functionalities and
backup.

To properly support IoT-based services and applications, including MCS,
an efficient deployment of fog architectures in urban environments is essen-
tial [243]. Edge devices such as cloudlets, that are responsible for provision-
ing location-aware and low latency computing, have to be geographically
distributed across the city. Bus stops are a natural choice for installing
cloudlets for a number of reasons. First, bus stops are widespread across
urban environments. Second, they are already existing and deployed infras-
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Table 12.1: Classification of stop relevance. Each interval corresponds to
the number of trips passing by a stop from 6:00 AM to 10:00 PM.

COLOR
RELEVANCE INTERVAL

TORINO BUDAPEST OTTAWA

0 - 5 0 - 25 0 - 25
5 - 10 25 - 100 25 - 50

10 - 50 100 - 250 50 - 100
50 - 100 250 - 500 100 - 250

100 - 250 500 - 750 250 - 500
250 - 500 750 - 1000 500 - 1000

>500 >1000 >1000

tructure. As a consequence, such solution would save capital expenditure
costs. For example, bus stops are already connected to the city power grid
therefore there is no need for investments. Third, bus-stops are expected to
become intelligent in the near future and provide additional services such as
hosting femto cells to increase cellular capacity and connectivity [244]. In
cities, not all the bus stops are identical. Because of the location, some of
the them are hubs, i.e., they are stops used by a huge number of passengers
every day. Therefore, such stops are more relevant to the system than the
ones used by few passengers. Obviously, stops need to be equipped with
computing capacity proportionally to their relevance. To study the relevance
property of bus stops, we analyze data from Google Transit Feed. Google
Transit [245] is a tool that integrates information on public transportation
system like stop location, routes, bus schedule and fare on Google Maps to
let trip planning easier and accessible for everyone.

Similarly to [246], the relevance of stop i is defined in terms of the
number of trips crossing i during a given time period. For the evaluation, the
time period is set to 6:00 AM - 10:00 PM of a weekday, namely 2016-06-17.
Fig. 12.1 shows relevance stop distribution in different cities, namely Torino,
Budapest and Ottawa according to the classification proposed in Table 12.1.
In all the cities, the number of stops with high relevance is low. Relevant
stops are typically concentrated in the city center or in proximity of popular
public parking facilities or train stations, which are expected to serve a high
number of users along the day.

12.2 The Data Collection Framework

A data acquisition framework defines the set of steps necessary to produce
and deliver the information from the participants to the organizer/collector.
Fig. 12.2 shows the architecture considered and illustrates the functions each
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(a) Torino (b) Budapest

(c) Ottawa

Figure 12.1: Analysis of stop relevance distribution in different cities
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Figure 12.2: Architecture of the proposed fog-based data acquisition frame-
work

actor carries out.
The organizer of the crowdsensing campaign C is interested in acquiring

data from given points of interest in the city, also called the sensing terrain.
The organizer, located in the cloud, is in charge of analyzing data after it has
been collected and make it available to S2aaS applications. The organizer
also defines the set of sensing tasks W � {w1 , w2 , . . . ,wW } of C. Each
task wi is described in terms of its location Li and time duration Ti, i.e.,
wi(Li , Ti). The location L consists of latitude and longitude parameters. The
time duration T is given in timeslots. As a result, the duration T of the
campaign C is as follows:

T �

∑
i∈W

Ti . (12.1)

In this work we exploit the computational capacity the fog provides for
efficient user recruitment. However, user recruitment is not the sole ap-
plication the fog platform deployed as in Section 12.1 can support. Local
analytics [247], privacy preservation and evaluation of trust of data con-
tributed [248] are a few examples of functionalities that the proposed fog
platform can support. The cloudlets in the fog receive the tasks to dispatch
from the organizer in the cloud. The cloudlets in proximity of the location of
the sensing tasks are in charge of recruit the user using the policy proposed in
Section 12.2.1. The participants to the campaign communicate periodically
to cloudlets information about their sociability and remaining battery charge.
Consequently, the cloudlets can determine which users are eligible to become
contributors and contact them for recruitment.

After being contacted, the users can decide whether to accept the task.
In positive case, users acquire the status of recruited, they are assigned to
the task and can contribute data. Acceptance depends on user sociability
and remaining battery of charge of user devices. Users with high values of
sociability factor use social media often and are more likely to accept the
task [249].
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Table 12.2: Symbols list and description

SYMBOL DESCRIPTION

C Crowdsensing campaign
w Task w
W Set of tasks | w ∈ W
u User u
U Set of users | u ∈ U
t Timeslot t

Ti Duration task i
T Duration of the sensing campaign
L Location of users and tasks

Ri Recruitment factor of user i
Di Distance factor of user i
Si Sociability factor of user i
Ei Energy factor of user i

Rmin Minimum recruitment factor for eligibility
Du ,w Distance (m) between user u and task w
Dmax Maximum task coverage radius

Es Energy consumed for sensing
Er Energy consumed for data delivery (reporting)
Ptx Power consumed for data delivery

Ai Task acceptance factor of user i
N Minimum number of users to mark a task as accomplished
Pi Popularity factor of location i
E [N c] Average number of contacted users
E [N r] Average number of recruited users

C Set of coordinates <latitude, longitude, altitude> of city layout

12.2.1 User Recruitment

User recruitment is a fundamental step in participatory data acquisition
frameworks. Recruitment policies delineate the set of criteria for user eli-
gibility in contributing to crowdsensing campaign. Contrary to traditional
recruitment solutions, in this paper we define a policy able to select partici-
pants on the basis of three parameters: i) the distance between users and
sensing task location, ii) user sociability, and iii) remaining battery of charge
of users devices. The policy is named DSE (Distance, Sociability, Energy).
Table 12.2 lists description of symbols used to define the user recruitment
policy.

Let U � {u1 , u2 , . . . , uU} be the set of users potentially employed to
accomplish the tasks. Each user ui is described in terms of their current
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location, sociability factor and energy, i.e. ui(Li , Si , Ei). It is worthwhile
mentioning that both user location and sociability factor are time dependent
and Si and Ei can assume real values in [0, 1].

During each timeslot, the recruitment policy selects users with highest
recruitment factor R from the set U . Only users with values of R > Rmin
are taken into consideration and contacted. Rmin defines the minimum
recruitment factor and is set by the organizer to be identical for all the tasks
in the campaign C. For each user i, the recruitment factor is defined as
follows:

Ri � α · Di + β · Si + γ · Ei , (12.2)

where the parameters α, β, γ are weighted coefficients defining the impact
of the corresponding component, distance, sociability and energy on R.
Taking into account that α + β + γ must equal unity, high values of α will
prioritize selection of users close to the sensing task. High values of β will
favor selection of highly sociable users while high values of γ will make
the remaining battery charge of devices the most important component for
recruitment.

The component Di is the distance factor, which measures the distance of
user ui from the sensing task w j with respect to a maximum coverage radius
for the task Dmax.

Di � Dui ,w j/Dmax. (12.3)

Users located farther than Dmax from the location of a sensing task are not
considered eligible to contribute data for that task. Indeed, the closer the
users are to the sensing task location, the higher the accuracy in capturing
the phenomenon is. The Haversine formula can be employed to compute
Dui ,w j [250].

User sociability S can be defined in terms of the amount of data users
consume or the time they spend using mobile social network applications, or
their combination [236]. Sociability is an essential parameter to consider for
user recruitment. Users with high sociability are more active and use their
devices online intensively, which makes them excellent candidates during the
selection process. Moreover, they tend to visit more places and get connected
to more users, which further increases their mobile social activity [251]. To
assess sociability, it is necessary to determine the data usage or the total
time that a user spends on a particular social network application in a single
session. Once acquired, the instantaneous values are averaged by the number
of sessions in a time window, e.g., an hour or a day. The actual user sociability
is then determined through the Exponential Weighted Moving Average filter
(EWMA) over the values obtained in each time window. This allows tuning
and eventually limits the contribution of older values. It is worth mentioning
that the sociability metric determined with this method is a relative metric
based on a normalized value of user’s sociability by the maximum sociability
value in the network.
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The parameter E indicates the energy, i.e., the remaining battery charge
of users devices. The most widely adopted mobile OS like iOS and Android,
provide APIs to obtain information on current level of battery charge of
mobile devices. For crowdsensing operation, the devices consume energy to
perform sensing (Es) and reporting (Er) operations:

E � Es + Er . (12.4)

The energy Es drain due to sensing is the sum over all sensors K involved to
fulfill a task during T: ∑

k∈K

T∑
t�1

fk · ρk , (12.5)

where fk is the sampling frequency of sensor k and ρk a constant, different
per sensor, which describes the energy cost per sample [247]. Typically, the
parameter ρ can be obtained from the data sheet of the sensor.

The users exploit WiFi connectivity for data reporting and communication
with the cloudlets. Most of the mobile operating systems, including Android
and iOS, tend to prefer WiFi over cellular connectivity for data transmission,
as it is more energy efficient [252] and users do not consume the data plan
they pay to the cellular operators [253]. As a result, when both WiFi and
LTE interfaces are active, transmissions take place via WiFi. The energy Er
spent during the transmission time τtx is defined as:

Er �

∫ τtx

0
Ptx dt , (12.6)

where Ptx is the power consumed for transmissions of WiFi packets generated
at rate λg [193]:

Ptx � ρid + ρtx · τtx + γx g · λg . (12.7)

12.2.2 Task Completion

To recruit users, the campaign organizer sustains a cost. For each request
sent to the users, the cost c associated to the task w is equal to 1 unit of cost.
The costs have a different nature. For example, costs could be financial or
expressed in terms of the bandwidth used to broadcast recruitment messages.
Costs can also be social: contacting persistently a users who has refused a
task in previous timeslots may diminishes the chances that s/he will accept
the task. The objective of the organizer is to minimize the total cost sustained
while maximizing the number of accomplished tasks. The tradeoff between
the recruitment cost and the number of accomplished tasks defines the
efficiency of the recruitment policy.

Users with high recruitment factor are contacted and can decide whether
to accept or refuse the task. Upon acceptance, the user acquires the recruited
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Figure 12.3: Example of acceptance factor A for σ � 0.5

status. Acceptance is based on user sociability and remaining battery charge.
Users with high values of sociability and energy factors, S and E respectively,
are more likely to accept the task. The acceptance factor A is computed by
the user devices and it is modelled as a logarithmically increasing function:

A(S, E) � σ · log(1 + S) + (1 − σ) · log(1 + E), (12.8)

σ is a balancing coefficient that shows a relative importance between the
sociability and energy factors. Fig. 12.3 shows the relation between A, S and
E, which allows to perform a fine-grain comparison of the task acceptance
probability of users with low versus high sociability and energy ratings.
For users with high values of sociability and remaining battery charge, the
acceptance factor A assumes values close to 1. Viceversa, for users with
low values of sociability and remaining battery charge, a small difference
between two factors S1 and S2, E1 and E2 corresponds to a considerable
difference in the respective acceptance factors A1 and A2.

Upon acceptance, the user acquires the recruited status and contributes
as long as s/he remains within a distance closer than Dmax. In such a case,
s/he is not contacted to contribute to the same task any longer. Viceversa,
users refusing a task can be contacted again if the eligibility criteria are still
met. After rejection during timeslot t, a user is contacted again during tnext
as follows:

tnext � t + i · τ, (12.9)

where τ is a fixed number of timeslots the systems backs off and i is the
number of times the user has previously refused the same task. Consequently,
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the higher the number of rejection, the longer the system will wait before
contacting again the user for the same task.

System-level accuracy increases if the organizer does not recruit persis-
tently the same group of users to accomplish a task [254]. For this reason,
each task w acquires the status accomplished if, during t, a given number N
of individual users are involved and contribute by reporting data. During ti,
whenever it is not possible to recruit a sufficient number of users, the task i
is marked as failed.

Like in social networks, some locations in cities are hubs, i.e., they attract
a large number of individuals, whereas others do not [255]. To capture
this phenomenon, each location l is assigned a popularity factor P, and
P can take real values in the range [0, 1]. Practically, tasks associated to
locations with high popularity factor should require a high number of users
to successfully complete the task. In addition to the location popularity, also
the time dimension plays a crucial role in defining N. Longer tasks require a
higher number of users than short ones to guarantee good levels of accuracy.
As a result, the number of users Ni necessary to accomplish the task i out of
U is calculated as follows:

Ni � Pi · (ti/T) · |U | . (12.10)

12.3 Performance Evaluation

To evaluate and assess efficiency of the data acquisition framework, Crowd-
SenSim was used. The participants move along the streets of the city and
their original location is randomly assigned from the set of coordinates C.
The number of participants ranges from 2 000 to 10 000, which corresponds
to nearly one tenth of the population of Luxembourg (107 340 inhabitants as
of late 2014). For simplicity, the start time of the walk is uniformly distributed
between 8:00 AM and 1:30 PM. Each participant has only one mobile device,
whose initial remaining charge of the battery is uniformly distributed between
0.5 and 0.9. The devices are equipped with accelerometer, temperature and
pressure sensors, and transmit information using WiFi. As sensing equipment,
the devices exploit real sensors implemented in current smartphones and
tablets. Specifically, we select the FXOS8700CQ 3axis linear accelerometer
from Freescale Semiconductor [256] and the BMP280 from Bosch [257],
which is a digital pressure and temperature sensor. Table 12.3 describes
the parameters used for sensing equipment. Equation (12.7) describes WiFi
power consumption the devices spend for communication. Table 8.2 presents
the detailed information on communication and the parameters. Users walk
for a period of time that is uniformly distributed between 10 and 30 minutes
with an average speed uniformly distributed between 1 and 1.5 m/s. The
participants push data to the collector while walking. Once the period of
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Table 12.3: Sensing Equipment Parameters

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

Figure 12.4: Location of sensing tasks and cloudlets

walking ends, they stop moving and contributing. As a consequence, users
can contribute for only a small portion of the day, which allows us to study
the system performance under a relatively worst case scenario. Each user
has an associated sociability profile uniformly distributed between 0 and 1.

A set of 6 cloudlets dispatching 25 tasks is deployed in different locations
of the city, see Fig. 12.4 for the details. The starting time of each task is
distributed uniformly in the time period 8:00 AM - 2:00 PM. Table 12.4
lists the details on the simulation settings. For simplicity, each task lasts
40 timeslots and each timeslot corresponds to 1 minute. In the first set
of experiments, the popularity factor P of each location, the minimum
recruitment factor Rmin and the maximum task coverage radius Dmax are
fixed and set equal to 0.2, 0.55 and 55 m respectively.
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Table 12.4: Simulation settings

PARAMETER VALUE

Number of users [1 000 - 10 000]
Overall evaluation period 8:00 AM - 2:00 PM
Time of travel per user Uniformly distributed in [10, 30] min
Average user velocity Uniformly distributed in [1, 1.5] m/s
Initial remaining
charge
of the battery

Uniformly distributed in [0.5, 0.9]

Timeslot duration 1 minute
Task duration 40 timeslots
Number of tasks 25
Number of cloudlets 6
Popularity factor P 0.2

Performance of the DSE Policy

Having fixed the parameters of the recruitment policy α � β � γ � 0.33 and
σ � 0.5, Fig. 12.5 shows the number of contacted and recruited or assigned
users per task. Tasks are grouped according to the initial time of deployment
The number of contacted users corresponds to the cost the system sustains
for recruitment. For this experiment we compare the performance of the DSE
policy with a recruitment policy where the distance is the only criterion for
user eligibility. The second policy is called Distance-Based policy (DB) and
requires to set α � 1, β � γ � 0. The DSE policy outperforms the DB policy
in terms of the number of users recruited. The average number of users
recruited per task is 21.23 and 17.08 for DSE and DB respectively, which
corresponds to an increase of 19.55 %. Moreover, when the DB policy fails
to contact users like in task # 3 or contacts very few users like in task #
1, the DSE policy makes a significant difference. Consequently, considering
user sociability and remaining battery of charge of the devices in addition to
task spatial coverage for recruitment is an effective solution. Although being
more efficient in recruiting users, the DSE policy is more costly than the DB
policy. The average number of contacted users is 45.4 while for the DB policy
is 32.92, which corresponds to an increase of costs of around 27 %.

To better understand the number of completed tasks, Fig. 12.6 details
the number of unique users assigned to each task. The gray line plots N, the
minimum number of users necessary to denote a task as accomplished. N is
computed by (12.10) and is equal for all the tasks as the location popularity
and the task duration have been fixed. Consequently, partial relaxation of
any of the constraints on task completion would increase the number of
accomplished tasks. As it is possible to see, DSE accomplishes 10 tasks out of
25 and one more is close to completion. On the other hand, DB accomplishes
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Figure 12.5: Number of contacted versus recruited users. Distance-based
(DB) policy is used as baseline for comparison.
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Figure 12.6: Number of assigned users per task
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7 tasks and two are close to completion. Only the campaign organizer can
compare the tradeoff between cost increase and return, and pursue proper
measures, e.g., to reduce the cost of user recruitment.

The next set of experiments aims at evaluating the efficiency of recruit-
ment and accuracy of task completion with URE and GTA metrics. Fig. 12.7
shows the recruitment efficiency of the campaign, which is 0.46 and it is
computed as an average of the URE values of each task. As a consequence,
under the current settings, the systems contacts many users that refuse to con-
tribute to the campaign. It is worth mentioning that for accomplished tasks
such as task # 2 (see Fig. 12.6), the values of URE metric are always equal
to or higher than 0.5. Therefore, for accomplished tasks, the recruitment
process is more efficient as at leas half of the contacted users are actually
recruited. The system achieves the highest efficiency in recruitment for task
# 3 although the number of recruited users is only 4 and the task is not
successfully accomplished.

Fig. 12.8 plots values of GTA metric per task. In general, the tasks are not
carried out with very high accuracy. The main reason is that only few users
out of N contribute to the task. The second most important reason is that not
all the N users remain for the entire duration of the task under the maximum
task coverage radius Dmax. For example, task # 3 is carried out with very low
accuracy because few users contribute for a very short duration. As a result
the penalization component in (11.2) diminishes considerably the achieved
accuracy.

Analysis of the parameters of the model

Having evaluated the performance of the DSE policy, in this section we
study the impact of all main parameters such as the minimum recruitment
factor Rmin and the maximum task coverage radius Dmax. We also evaluate
the influence of the number of users presents in the system as well as the
control parameters α, β, γ and σ. For the evaluation, we exploit as common
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Figure 12.9: Average number of successfully accomplished tasks with in-
creasing values of minimum recruitment factor Rmin

performance metric the average, over 100 runs, of the number of successfully
accomplished tasks. The results are expressed in percentage and the bars
indicates the 95% confidence interval.

Fig. 12.9 evaluates the impact of the minimum recruitment factor Rmin.
Proper tuning of this parameter is important: high values of Rmin make the
user selection strict and only few users will be eligible for selection. On the
other hand, low values of Rmin relax the conditions for eligibility allowing
the system to contact more users. The plot confirms the model: for values of
Rmin < 0.5, the percentage of accomplished tasks is higher than 10 %. Indeed,
contacting more users it increases the chances of having N users assigned to
a task, which is the minimum number of individual users necessary to denote
the task as successfully accomplished.

Having fixed Rmin � 0.3 from this point on, Fig. 12.10 evaluates the
impact of the maximum task coverage radius Dmax. The higher the values
Dmax assume, the larger is the area users can be contacted. The plot highlights
this property and it is interesting to note a linear increase of the percentage
of accomplished tasks for values of Dmax in the range [30 − 70] m, while

144



30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

Maximum task coverage radius Dmax [m]

A
cc

om
pl

is
he

d
Ta

sk
s

[%
]

Figure 12.10: Average number of successfully accomplished tasks with
increasing values of radius Dmax
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Figure 12.11: Average number of successfully accomplished tasks with
increasing number of users in the system

for Dmax > 70 the increase becomes smoother. The behavior suggests that
increasing the maximum task coverage radius significantly helps to contact
higher number of users and to cope with user movement. However, recruiting
users far from the location of the sensing task may result in poor accuracy
for particular applications. For example, if the sensing task requires users to
take a picture, being closer to the location of the task is crucial. On the other
hand, for the vast majority of S2aaS applications requiring monitoring of
phenomena such as noise or air pollution, temperature and pressure, having
users far for the location of the sensing task can be acceptable.

The previous experiments were conducted having fixed the population.
The following analysis aims to assess the impact of the total number of users
in the systemU . A higher number of users in the system makes larger the
selection pool and, intuitively, should favor task accomplishment. However,
the hypothesis has to be verified for two reasons: i) the proportionality
between N and U , see (12.10), and ii) the limited period the users move
with respect to the total evaluation period (see Table 12.4) may lead users
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Figure 12.12: Sensing Cost

be active when the task already expired or did not started yet. Having
set Dmax � 70 m, Fig. 12.11 shows that the number of tasks accomplished
increases with the number of users U . The number of accomplished tasks
increases substantially (around 40%), when the population in the system
changes from 3 k to 7 k. Because of the aforementioned reasons, the increase
becomes more gentle when the number of users in the systems is greater
than 7 k.

Analysis of the energy consumption of the users

This section evaluates the battery drain of user devices assessing the distribu-
tion of user energy consumption for sensing and data reporting. As expected,
both distributions follow the same profile because data after being collected
from the sensor is immediately delivered. Fig. 12.12 shows the distribution
of users battery consumption due to sensing operations. The results are
measured in form of current drain. The vast majority of the users spends
little amount of energy for sensing. The motivation is twofold. First, many
users contribute to only one task and because of the mobility, they contribute
for few timeslots. Second, modern sensors are designed to be energy efficient.
When compared with the battery capacity available in today smartphones,
which is in the order of 2500 mAh, it is clear that the energy consumed for
sensing is negligible with respect to the energy spent for communications
(see Fig. 12.13).

146



0-
5

5-
10

10
-1

5

15
-2

0

20
-2

5

25
-3

0

30
-3

5

35
-4

0

40
-4

5

45
-5

0

50
-5

5

55
-6

0

60
-6

5

65
-7

0

0

75

150

225

300

375

450

Energy [J]

N
um

be
ro

fU
se

rs

Figure 12.13: Communication Cost

147



Part V

Conclusion

148



Chapter 13

Conclusions and Perspectives

This chapter recalls the context of the thesis, provides a summary of the main
strengths of this dissertation, and finally summarizes in each area the main
contributions outlining perspectives and future research directions.

13.1 Summary

This thesis has studied the problem of energy efficiency of communications
in distributed computing paradigms like cloud computing, mobile cloud and
fog/edge computing. The analysis is a challenging problem as the overall
performance depend on the computing paradigm and on the communica-
tion technology. Each domain, therefore, requires different approaches to
optimize efficiency in using energy. In cloud data centers, saving energy
can be obtained through turning off unutilized hardware or strengthen the
efficiency of resource allocation. In mobile environments, energy efficiency
can be achieved through offloading computing tasks for remote execution
using the most adequate communication technologies. Finally, in mobile
crowdsensing, efficient user recruitment leads to energy savings.

The strengths of this Ph.D. are in the proposition of contributions in
all distributed computing paradigms. These includes not only traditional
and well established research areas like cloud computing and mobile cloud
computing, but also prospective areas such as fog computing and mobile
crowdsensing. In addition, this Ph.D. thesis presents a wide range of method-
ologies used in the proposed contributions. Besides analytical models, in
this thesis experimental solutions and a new simulator were designed. In
the context of mobile cloud and fog computing an experimental Android
application was designed for Google Glass and performance evaluation was
carried profiling energy consumed through real measurements with a power
monitor. As for proper operation, MCS systems require the contribution
from a large number of participants, the development of a real testbed is not
feasible. Therefore, simulations are the candidate tool to assess the costs and

149



understand the performance of MCS systems. These motivations lead to the
development of CrowdSenSim.

13.2 Cloud Computing: Contributions and Perspec-
tives

In the context of cloud computing, this thesis has proposed a new framework
of performance metrics for communication systems of data centers. The
proposed framework allows a fine-grain analysis and comparison of com-
munication systems, processes, and protocols, defining their influence on
the performance of cloud applications. Thus, the framework of metrics is
positioned to become an essential tool for monitoring, comparing and as-
sessing performance of data center communication systems. In addition, the
information provided by the metric is essential for optimizing daily operation
of data center and to plan capacity extensions of existing facilities as well as
to design future data centers.

As future work, the proposed metrics could be integrated into existing
data center monitoring systems, such as VMware vCenter Log Insight or Cisco
Prime Data Center Network Manager. The information the metrics provides,
such as link- and traffic-related statistics as well as insights on energy are an
excellent base to devise and design novel resource allocation and schedul-
ing solutions. Moreover, the framework is projected to be considered for
standardization.

13.3 Mobile Cloud/Fog Computing: Contributions and
Perspectives

In this field, this dissertation has contributed a novel model for the problem of
computation offloading, which describes the workflow of mobile applications
through a new Directed Acyclic Graph (DAG) technique. This methodology is
suitable for IoT devices working in fog computing environments and was used
to design an Android application, called TreeGlass. As the name explains,
the application performs recognition of trees using Google Glass. TreeGlass
is evaluated experimentally in different offloading scenarios by measuring
battery drain and time of execution as key performance indicators. The
results highlights that communications during computation offloading may
result being expensive on the basis of the type of data is necessary to transfer.
In addition, from an energy perspective, mobile cloud computing should be
preferred to fog computing in case of heavy data transfers.

The DAG methodology presented is general and therefore applicable to
the design of new applications suitable for partitioning. Mobile cloud and fog
computing can play an essential role in remote control and tactile Internet.
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Accelerometer and gyroscope enable human hand gestures to become control
commands for other devices such as drones or robots. Despite other control
devices, smarthphones are very popular and have a much simpler interface,
the touch screen. Being battery equipped, smartphones have constrained
computing, battery and storage resources, which requires offloading the
execution of heavy tasks to the cloud to enrich quality of experience and
prolong battery lifetime.

13.4 Mobile CrowdSensing: Contributions and Per-
spectives

In the context of MCS, this Ph.D. has contributed novel metrics to assess effi-
ciency of recruitment policies, accuracy of task completion and distribution
of generated samples. Moreover, it was proposed a new framework for data
acquisition in participatory MCS systems, which operates on a fog computing
platform deployed widespread in urban environments. In participatory MCS
systems, user recruitment is important and the proposed data acquisition
framework exploits a novel policy. Users selection is based on three criteria,
distance from the task location, user sociability and energy of the device.
The performance of the framework was validated with CrowdSenSim, which
is the first simulator designed for research use in large-scale urban MCS
systems.

The preliminary work illustrated in this manuscript has a number of
potential future directions. First, the proposed data acquisition framework
is suitable for participatory systems. However, the participatory paradigm
imposes a higher cost on the user in terms of cooperation effort. Having
devices or applications responsible for sensing allows lowering the burden for
user participation and makes opportunistic sensing suitable for distributed
solutions. Thus, the proposal or the adaptation of the current framework to
opportunistic systems is an extremely promising solution. Second, CrowdSen-
Sim possible future developments are numerous and are projected to involve
many research areas. From a technical point of view, the notion of places
should be introduced to mark differently open areas than closed buildings
such as restaurants, pubs, museums, hospitals, etc... Novel mobility models
should be included to consider the case where users move towards a given
destination after occurrence of an event. To conclude, CrowdSenSim can
be used in the context of smart lighting. Lighting is an essential community
service, but current implementations are not energy efficient and impacts on
the energy budged of the municipalities for at least 40%. New smart lighting
techniques makes use of Internet of Things (IoT) based lamppost, which
save energy by turning off or dimming the light according to the presence
of citizens. Therefore, CrowdSenSim has the potential to assess the costs
and the benefits in adopting the new smart lighting solutions in real urban
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