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Motivation

Definition (Artificial Intelligence)
"AI is the science of knowing what to do when you don’t know what to
do." (Peter Norvig)a

a

http://www.youtube.com/watch?v=rtmQ3xlt-4A4m45

Definition (Machine Learning)
Machine Learning is the field of study that gives computers the ability
to learn without being explicitly programmed.
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Motivation
Goal: recognition of characters

Figure: notMNIST examples1.

1
http://yaroslavvb.blogspot.lu/2011/09/notmnist-dataset.html

P. GLAUNER and R. STATE (SnT) Deep Learning Big Data Spark TensorFlow December 9, 2016 3 / 55

http://yaroslavvb.blogspot.lu/2011/09/notmnist-dataset.html


Motivation
Goal: forecasting of time series
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Agenda

1. Neural networks
2. Deep Learning
3. TensorFlow
4. Distributed computing
5. Example: character recognition
6. Example: time series forecasting
7. Rise of the machines?
8. Conclusions and outreach
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Neural networks

Figure: Neural network with two input and output units2.

2Christopher M. Bishop, “Pattern Recognition and Machine Learning", Springer,
2007.
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Neural networks

Figure: History of neural networks3.

3Li Deng and Dong Yu, “Deep Learning Methods and Applications", Foundations
and Trends in Signal Processing, vol. 7 issues 3-4, pp. 197-387, 2014.
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Neural networks

Figure: Neural network with two input and output units.

The activation of unit i of layer j +1 can be calculated:
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Deep Learning: activation functions

Figure: Sigmoid and rectified linear unit (ReLU) activation functions.
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Neural networks: parameter optimization

Cost function for m examples, hypothesis hq and target values y

(i):
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Deep Learning: parameter optimization

How to optimize the weights?

Figure: Visualization for one parameter4.

4
http://sebastianraschka.com/faq/docs/closed-form-vs-gd.html
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Neural networks: parameter optimization

Algorithm 1 Batch gradient descent: training size m, learning rate a

repeat

q
j

 q
j

�a ∂
∂q

j

J(q) (simultaneously for all j)
until convergence
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Neural networks: parameter optimization

Algorithm 2 Stochastic gradient descent: training size m, learning rate
a.

Randomly shuffle data set
repeat

for i = 1 to m do

q
j

 q
j

�a ∂
∂q

j

J(q ,(x (i),y (i))) (simultaneously for all j)
end for

until convergence
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Neural networks: backpropagation

How to compute the partial derivatives?
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Neural networks: backpropagation

Algorithm 3 Backpropagation: training size m
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Deep Learning

Figure: Deep neural network layers learning complex feature hierarchies5.

5The Analytics Store, “Deep Learning",
http://theanalyticsstore.com/deep-learning/, retrieved: March 1, 2015.
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Deep Learning: DeepMind
I Founded in 2010 in London
I Created a neural network that learns how to play video games in a

similar fashion to humans
I Acquired by Google in 2014, estimates range from USD 400

million to over GBP 500 million
I Now being used in Google’s search engine
I AlphaGo played the game of Go at super-human performance

Figure: Google DeepMind6.

6
http://deepmind.com/, retrieved: March 2, 2016.
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TensorFlow

TensorFlow7 is used by Google for most of its Deep Learning products:

I Offers neural networks (NN), convolutional neural networks
(CNN), recurrent neural networks (RNN) and long-short term
memories (LSTM)

I Computations are expressed as a data flow graph
I Can be used for research and production
I Python and C++ interfaces
I Code snippets available from Udacity class8

7J. Dean, R. Monga et al.: TensorFlow, “Large-Scale Machine Learning on
Heterogeneous Distributed Systems", 2015.

8
http://www.udacity.com/course/deep-learning--ud730
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TensorFlow Playground
Let us experiment together with this playground for the next 20 minutes
to get a better understanding of neural networks:
http://playground.tensorflow.org
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TensorFlow: graph and execution

I A Tensor is a typed multi-dimensional array
I Nodes in the graph are called ops
I An op takes zero or more Tensors, performs some computation,

and produces zero or more Tensors
I Two phases:

I Construction phase, that assembles a graph
I Execution phase that uses a session to execute ops in the graph

I Auto-differentation of the graph to compute partial derivatives
used in stochastic gradient descent (SGD)
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TensorFlow: graph and execution

Figure: Sample computation graph9.

9J. Dean, R. Monga et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems", 2015.
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TensorFlow: installation

Great documentation10.

# Anaconda
$ sudo conda install \

-c http :// conda.anaconda.org/jjhelmus tensorflow

Support for Linux and Mac platforms, virtuelenv and Docker11. : time
series

10
http://www.tensorflow.org/versions/0.6.0/get_started

11
http://www.tensorflow.org/versions/0.6.0/get_started/os_setup.html#

pip_install
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Distributed computing: GPUs

Figure: Parallel execution on multiple units12.

12J. Dean, R. Monga et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems", 2015.
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Distributed computing: Spark
Use of Spark for distributed computation of gradients:

Figure: Distributed computation of gradients13.

13
http://arimo.com/machine-learning/deep-learning/2016/

arimo-distributed-tensorflow-on-spark/
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Distributed computing: Spark

Model selection
The process of optimizing various hyper parameters, including:

I Number of layers
I Size of a layer
I Learning rate
I Regularization
I ...
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Distributed computing: Spark
Use of Spark for distributed computation of model selection:

Figure: Distributed model selection on a single node14.

14
http://databricks.com/blog/2016/01/25/

deep-learning-with-apache-spark-and-tensorflow.html
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Distributed computing: cloud

Google Cloud Machine Learning: https://cloud.google.com/ml/
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Example: character recognition

MNIST:

Figure: Hand-written digit recognition learned by a neural network15.

15Yann LeCun et al.: LeNet-5, convolutional neural networks.
http://yann.lecun.com/exdb/lenet/. Retrieved: April 22, 2015.
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Example: character recognition

notMNIST: letters A-J.

Figure: notMNIST examples16.

16
http://yaroslavvb.blogspot.lu/2011/09/notmnist-dataset.html
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Example: character recognition

Figure: Architecture of network (biases omitted).
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Example: character recognition

I Source code: http://github.com/pglauner/UCC_2016_Tutorial
I Run create_notmnist.py once to get and convert the data
I Run notminst_classifier.py for the experiments
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Example: character recognition

weights1 = tf.Variable(
tf.truncated_normal ([ image_size * image_size , 1024]))

biases1 = tf.Variable(tf.zeros ([1024]))

weights2 = tf.Variable(
tf.truncated_normal ([1024 , 1024]))

biases2 = tf.Variable(tf.zeros ([1024]))

weights3 = tf.Variable(
tf.truncated_normal ([1024 , num_labels ]))

biases3 = tf.Variable(tf.zeros ([ num_labels ]))
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Example: character recognition

[...]
def model(data , train=False ):

hidden1 = tf.nn.relu(
tf.matmul(data , weights1) + biases1)

if train:
hidden1 = tf.nn.dropout(hidden1 , 0.7, seed=SEED)

hidden2 = tf.nn.relu(
tf.matmul(hidden1 , weights2) + biases2)

if train:
hidden2 = tf.nn.dropout(hidden2 , 0.7, seed=SEED)

return tf.matmul(hidden2 , weights3) + biases3
[...]
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Example: character recognition

logits = model(tf_train_dataset , True)

loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(

logits , tf_train_labels ))

# L2 regularization for the fully connected parameters
regularizers = (tf.nn.l2_loss(weights1)

+ tf.nn.l2_loss(biases1)
+ tf.nn.l2_loss(weights2)
+ tf.nn.l2_loss(biases2)
+ tf.nn.l2_loss(weights3)
+ tf.nn.l2_loss(biases3 ))

loss += 5e-4 * regularizers
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Example: character recognition
Training set (200000 , 784) (200000 , 10)
Validation set (10000 , 784) (10000 , 10)
Test set (10000 , 784) (10000 , 10)

Initialized
Minibatch loss at step 0: 13926.021484
Minibatch accuracy: 7.8%
Validation accuracy: 25.4%
Minibatch loss at step 500: 839.786133
Minibatch accuracy: 76.6%
Validation accuracy: 81.2%
[...]
Minibatch loss at step 2500: 515.079651
Minibatch accuracy: 78.9%
Validation accuracy: 80.4%
Minibatch loss at step 3000: 503.497894
Minibatch accuracy: 66.4%
Validation accuracy: 80.1%
Test accuracy: 87.2%
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Example: character recognition
Goal: become invariant to translation and rotation

Figure: Illustration of a Convolutional Neural Network (CNN)17.

17C. M. Bishop, “Pattern Recognition and Machine Learning", Springer, 2007.
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Example: character recognition

I Source code: http://github.com/pglauner/UCC_2016_Tutorial
I Run notminst_classifier_CNN.py for the experiments
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Example: character recognition
Training set (200000 , 28, 28, 1) (200000 , 10)
Validation set (10000 , 28, 28, 1) (10000 , 10)
Test set (10000 , 28, 28, 1) (10000 , 10)

Initialized
Minibatch loss at step 0: 5.747538
Minibatch accuracy: 6.2%
Validation accuracy: 10.0%
Minibatch loss at step 500: 0.642069
Minibatch accuracy: 87.5%
Validation accuracy: 81.9%
[...]
Minibatch loss at step 2500: 0.721265
Minibatch accuracy: 75.0%
Validation accuracy: 86.1%
Minibatch loss at step 3000: 0.646058
Minibatch accuracy: 87.5%
Validation accuracy: 86.5%
Test accuracy: 93.2%
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Example: time series forecasting
Goal: predict time series of electricity load
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Example: time series forecasting
I Feed-forward networks lack the ability to handle temporal data
I Recurrent neural networks (RNNs) have cycles in the graph

structure, allowing them to keep temporal information

Figure: Simple RNN, current connection in bold.
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Example: time series forecasting

I A long short-term memory (LSTM)18 is a modular recurrent neural
network composed of LSTM cell

I LSTM cells can be put together in a modular structure to build
complex recurrent neural networks

I LSTMs have been reported to outperform regular RNNs and
Hidden Markov Models in classification and time series prediction
tasks19

18S. Hochreiter and J. Schmidhuber, “Long short-term memory", Neural
Computation, vol. 9, issue 8, pp. 1735-1780, 1997.

19N. Srivastava, E. Mansimov and R. Salakhutdinov, “Unsupervised Learning of
Video Representations using LSTMs", University of Toronto, 2015.
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Example: time series forecasting

I Source code: http://github.com/pglauner/UCC_2016_Tutorial
I Run LSTM.py for the experiments
I Simplified example, as time series is synthetic and harmonic
I More complex task will follow later
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Example: time series forecasting

I Training on two time series at the same time
I Input values of each time series: value, derivative, second-order

derivative
I Training data must be sufficiently long
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Example: time series forecasting
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Example: time series forecasting
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Example: time series forecasting
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Example: time series forecasting
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Example: time series forecasting

# Input layer for 6 inputs , batch size 1
input_layer = tf.placeholder(tf.float32 ,

[1, INPUT_DIM * 3])

# Initialization of LSTM layer
lstm_layer = rnn_cell.BasicLSTMCell(INPUT_DIM * 3)
# LSTM state , initialized to 0
lstm_state = tf.Variable(

tf.zeros ([1, lstm_layer.state_size ]))
# Connect input layer to LSTM
lstm_output , lstm_state_output1 = lstm_layer(

input_layer , lstm_state)
# Update of LSTM state
lstm_update = lstm_state.assign(lstm_state_output1)
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Example: time series forecasting
# Regression output layer
# Weights and biases
output_W = tf.Variable(

tf.truncated_normal ([ INPUT_DIM * 3, INPUT_DIM ]))
output_b = tf.Variable(tf.zeros([ INPUT_DIM ]))
output_layer = tf.matmul(lstm_output , output_W)

+ output_b

# Input for correct output (for training)
output_ground_truth = tf.placeholder(

tf.float32 , [1, INPUT_DIM ])

# Sum of squared error terms
error = tf.pow(tf.sub(output_layer ,

output_ground_truth), 2)

# Adam optimizer
optimizer = tf.train.AdamOptimizer (0.0006)

.minimize(error)
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Example: time series forecasting

I Add some noise for more realistic synthetic data
I Real-world load forecasting problem: http://www.kaggle.com/c/

global-energy-forecasting-competition-2012-load-forecasting

I Models can be applied to other regression problems or time series
classification (e.g. for detection of electricity theft)

I Usually more features need to be added
I Model selection in order to tweak hyper parameters (architecture,

learning rate, etc.)
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Rise of the machines?
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Rise of the machines?

Do we have to be worried?
I Specialized AIs have made significant progress and started to

outperform humans
I Do we have to be worried about machines taking over?
I When will we achieve the singularity, the point in time when

machines will become more intelligent than humans?
I Fears are spread by Stephen Hawking and other researchers
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Rise of the machines?

From a researcher who actually works on AI
"There’s also a lot of hype, that AI will create evil robots with
super-intelligence. That’s an unnecessary distraction. [...] Those of us
on the frontline shipping code, we’re excited by AI, but we don’t see a
realistic path for our software to become sentient. [...] If we colonize
Mars, there could be too many people there, which would be a serious
pressing issue. But there’s no point working on it right now, and that’s
why I can’t productively work on not turning AI evil." (Andrew Ng)a

a

http://www.theregister.co.uk/2015/03/19/andrew_ng_baidu_ai/
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Rise of the machines?

Some thoughts
I The fear of an out-of-control AI is exaggerated
I Fears are mostly spread by people who do not work on AI, such

as Stephen Hawking
I A lot of work needs to be done to work towards an artificial

general intelligence

I Working towards simulating the brain may achieve the singularity
in the late 21st centurya

I In any case, many jobs will disappear in the next decades
I If computers only do a larger fraction of today’s jobs, this will put

pressure on salaries
aM. Shanahan, “The Technological Singularity", MIT Press, 2015.
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Conclusions and outreach

I Deep neural networks can learn complex feature hierarchies
I TensorFlow is a easy-to-use Deep Learning framework
I Significant speedup of training on GPUs or Spark
I Interfaces for Python and C++
I Offers rich functionality and advanced features, such as LSTMs
I Udacity class and lots of documentation and examples available
I AI will not turn evil so soon
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