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Abstra
t. We provide some new 
omputations of Farrell�Tate and Bredon (
o)homology for arith-

meti
 groups. For 
al
ulations of Farrell�Tate or Bredon homology, one needs 
ell 
omplexes where


ell stabilizers �x their 
ells pointwise. We provide two algorithms 
omputing an e�
ient subdi-

vision of a 
omplex to a
hieve this rigidity property. Applying these algorithms to available 
ell


omplexes for PSL4(Z) provides 
omputations of Farrell�Tate 
ohomology for small primes as well

as the Bredon homology for the 
lassifying spa
es of proper a
tions with 
oe�
ients in the 
omplex

representation ring.

1. Introdu
tion

Understanding the stru
ture of the 
ohomology of arithmeti
 groups is a very important problem

with relations to number theory and various K-theoreti
 areas. Expli
it 
ohomology 
omputations

usually pro
eed via the study of the a
tions of the arithmeti
 groups on their asso
iated symmetri


spa
es, and re
ent years have seen several advan
es in algorithmi
 
omputation of equivariant 
ell

stru
tures for these a
tions. To approa
h 
omputations of Farrell�Tate and Bredon (
o)homology

of arithmeti
 groups, one needs 
ell 
omplexes having a rigidity property : Cell stabilizers must �x

their 
ells pointwise. The known algorithms (using Voronoi de
ompositions and su
h te
hniques,


f. e.g. [7, 9℄) do not provide 
omplexes with this rigidity property, and both for the 
omputation

of Farrell�Tate 
ohomology (resp. the torsion at small prime numbers in group 
ohomology) of

arithmeti
 groups as well as for the 
omputation of Bredon homology, this la
k of rigid 
ell 
omplexes


onstitutes a signi�
ant bottlene
k.

In theory, it is always possible to obtain this rigidity property via the bary
entri
 subdivision.

However, the bary
entri
 subdivision of an n-dimensional 
ell 
omplex 
an multiply the number of


ells by (n + 1)! and thus easily let the memory sta
k over�ow. We provide two algorithms, 
alled

Rigid Fa
ets Subdivision, 
f. Se
tion 2, and Virtually Simpli
ial Subdivision, 
f. Se
tion 3, as well as a


ombination of them (Hybrid Subdivision, 
f. Se
tion 4) whi
h subdivide 
ell 
omplexes for arithmeti


groups su
h that stabilizers �x their 
ells pointwise, but only lead to a 
ontrolled in
rease (in terms

of sizes of stabilizer groups) in the number of 
ells, avoiding an explosion of the data volume. An

implementation of the algorithms, 
f. [5℄, shows that 
ases like PSL4(Z) 
an e�e
tively be treated with
it, using 
ommonly available ma
hine resour
es. For the sake of 
omparison, bary
entri
 subdivison

applied to the 
ell 
omplex for PSL4(Z) from [6℄ would produ
e 3540 times as many top-dimensional


ells as Rigid Fa
ets Subdivision does � see Table 1.

1.1. Computations of Farrell�Tate 
ohomology. Farrell�Tate 
ohomology is a modi�
ation of


ohomology of arithmeti
 groups whi
h is parti
ularly suitable to investigate torsion related to �nite

subgroups (in parti
ular, the torsion in 
ohomologi
al degrees above the virtual 
ohomologi
al di-

mension). While the known 
ell 
omplexes for arithmeti
 groups 
an deal very well with the rational


ohomology and torsion at primes whi
h do not divide orders of �nite subgroups, 
omputations with

these 
omplexes run into serious trouble for small prime numbers be
ause the di�erentials in the

relevant spe
tral sequen
e are too 
ompli
ated to evaluate. There is a suitable new te
hnique 
alled

torsion sub
omplex redu
tion, 
f. [14℄, whi
h produ
es signi�
antly smaller 
ell 
omplexes and there-

fore simpli�es the equivariant spe
tral sequen
e 
al
ulations. To apply this simpli�
ation, however,

one needs 
ell 
omplexes with the abovementioned rigidity property. Applying Rigid Fa
ets Subdi-

vision to a 
ell 
omplex for PSL4(Z), we have 
omputed the Farrell�Tate 
ohomology of PSL4(Z),
at the primes 3 and 5. These results 
an be found in Theorem 10 and Proposition 14. Sin
e the
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Table 1. Numbers of 
ells in the individual dimensions of the studied non-rigid

fundamental domain X for PSL4(Z) from [6℄, its rigid fa
ets subdivsion RFS(X),
its virtually simpli
ial subdivision VSS(X), its hybrid subdivision HyS(X) and its

bary
entri
 subdivision BCS(X).

Dimension 0 1 2 3 4 5 6

# Orbits in X 2 2 2 4 4 3 1

# Cells in X 304 1416 2040 1224 332 36 1

# Orbits in RFS(X) 17 213 1234 3025 3103 1117 1

# Cells in RFS(X) 4153 62592 268440 472272 370272 108096 96

# Orbits in VSS(X) 17 219 1508 5082 8456 6720 2040

# Cells in VSS(X) 4153 71952 390936 974304 1238688 783360 195840

# Orbits in HyS(X) 17 213 1245 3095 3214 1180 12

# Cells in HyS(X) 4153 62592 271416 483504 383520 114144 1152

# Cells in BCS(X) 5353 110352 644136 1658304 2138688 1359360 339840


omputation pro
eeds through a 
omplete des
ription of the redu
ed torsion sub
omplex, we 
an


ompute the torsion above the virtual 
ohomologi
al dimension in all degrees.

In the 
ases whi
h are e�e
tively of rank one (5-torsion in PSL4(Z)), we 
an 
he
k the results

of the 
ohomology 
omputation using torsion sub
omplex redu
tion by 
omparing to a 
omputation

using Brown's formula.

1.2. Computations of Bredon homology. For any group G, Baum and Connes introdu
ed a

map from the equivariant K-homology of G to the K-theory of the redu
ed C∗
-algebra of G, 
alled

the assembly map. For many 
lasses of groups, it has been proven that the assembly map is an

isomorphism; and the Baum�Connes 
onje
ture 
laims that it is an isomorphism for all �nitely

presented groups G (
ounter-examples have been found only for stronger versions of the Baum�

Connes 
onje
ture). The assembly map is known to be inje
tive for arithmeti
 groups. For an

overview on the 
onje
ture, see the monograph [13℄.

The geometri
-topologi
al side of Baum and Connes' assembly map, namely the equivariant K-

homology, 
an be determined using an Atiyah�Hirzebru
h spe
tral sequen
e with E2-page given by

the Bredon homology HFin
n (EG; RC) of the 
lassifying spa
e EG for proper a
tions with 
oe�
ients

in the 
omplex representation ring RC and with respe
t to the system Fin of �nite subgroups of G.
This Bredon homology 
an be 
omputed expli
itly, as des
ribed by San
hez-Gar
ia [18, 19℄.

While for Coxeter groups with a small system of generators [19℄ and arithmeti
 groups of rank 2 [15℄,
general formulae for the equivariant K-homology have been established, the only known higher-

rank 
ase to date is the example SL3(Z) in [18℄. Although there are by now 
onsiderably more

arithmeti
 groups for whi
h 
ell 
omplexes have been worked out [6,7,9℄, no further 
omputations of

Bredon homology HFin
n (EG; RC) have been done sin
e 2008 be
ause the relevant 
ell 
omplexes fail

to have the rigidity property required for San
hez-Gar
ia's method. We dis
uss an expli
it example,


f. Se
tion 10, demonstrating that the rigidity property is essential for the 
omputation of Bredon

homology and 
annot be 
ir
umvented by a di�erent method.

Applying rigid fa
ets subdivision to the 
ell 
omplex for EPSL4(Z) from [6℄, we obtain

HFin
n (EPSL4(Z); RC) ∼=





0, n > 4,

Z, n = 3,

0, n = 2,

Z4, n = 1,

Z25 ⊕ Z/2, n = 0.

This is 
onsistent with the rational homology of BPSL4(Z) as inferred from the results of [6℄. As

further 
onsisten
y 
he
ks, the authors have paid attention that the homology of the 
ell 
omplex

remains un
hanged under our implementation of rigid fa
ets subdivision, and that the equivariant

Euler 
hara
teristi
 of EG vanishes before and after subdividing.
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Organization of the paper. In Se
tion 2, we provide the Rigid Fa
ets Subdivision algorithm. In

Se
tion 3, we provide the Virtually Simpli
ial Subdivision algorithm. In Se
tion 8, we apply the

Rigid Fa
ets Subdivision algorithm to a PSL4(Z), and 
ompare the result with a 
omputation using

Brown's 
onjuga
y 
lasses 
ell 
omplex. Finally in Se
tion 10, we provide a 
ounterexample in order to


ontradi
t the possibility to 
ompute the Bredon homology from an arbitrary non-rigid 
ell 
omplex.
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2. The rigid fa
ets subdivision algorithm

In this se
tion, we dis
uss the rigid fa
ets subdivision algorithm whi
h rigidi�es equivariant 
ell


omplexes. The 
ore of the method is Algorithm 2, whi
h is expe
ted to run in reasonable time for

input 
oming from 
ell 
omplexes for arithmeti
 groups. The key fa
t whi
h guarantees that rigid

fa
ets subdivision works, is Lemma 7 below.

Algorithm 1 Subdivide to get stabilizers whi
h �x their 
ells pointwise

Input: An n-dimensional Γ-equivariant CW-
omplex X with �nite 
ell stabilizers and a metri
 as

in Remark 2.

Output: A rigidi�
ation of X (that is, an equivalent Γ-
ell 
omplex on whi
h ea
h stabilizer �xes

its 
ell pointwise).

for m running from 1 to n do

for σ running through lifts of m-
ells in Γ\X
(m)

do

if σ is not rigid then

Use Algorithm 2 or 3 to subdivide σ into a partition P , whi
h is a union of rigid m-
ells,

disjoint up to boundaries, with a fundamental domain F for the Γσ-a
tion on P .
Run through all the (m+ 1)-
ells; if their boundaries 
ontain σ,

then repla
e σ by its partition P .
Repla
e the 
ell σ by F in Γ\X

(m)
.

end if

end for

end for

De�nition 1. Following the notation in [4℄, we use the term Γ-equivariant CW-
omplex, or simply

Γ-
ell 
omplex, to mean a CW-
omplex X on whi
h a dis
rete group Γ a
ts 
ellularly, i.e., in su
h a

way that the a
tion indu
es a permutation of the 
ells of X . We say the 
ell 
omplex is rigid if ea
h

element in the stabilizer of any 
ell �xes the 
ell pointwise.

Remark 2. The algorithm produ
ing the subdivision of the Γ-equivariant CW-
omplex X only

modi�es 
ombinatorial data, based on the bary
entri
 subdivison of individual 
ells. We require X to


ome with a geometri
 realization, equipped with a metri
 su
h that ea
h of the 
ells of X is 
onvex,

the restri
tion of the metri
 to ea
h 
ell is CAT(0) and the 
ell stabilizers a
t by CAT(0)-isometries.

We are not requiring that the metri
 is CAT(0) on the whole CW-
omplex. Note however that the

examples we are most interested in, are those where Γ is an arithmeti
 group and the geometri


realization of X is the asso
iated symmetri
 spa
e.
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De�nition 3. A rigidi�
ation X̂ of a Γ-
ell 
omplex X is a rigid Γ-
ell 
omplex X̂ with the same

underlying topologi
al spa
e as X . The map passing through the underlying topologi
al spa
e is then

a Γ-equivariant homeomorphism X̂ → X of Γ-spa
es. Note that a Γ-equivariant homeomorphism of

Γ-spa
es does not need to preserve existing 
ell stru
ture, so X̂ is allowed to have more 
ells than X .

The outer shell of the rigid fa
ets subdivision is Algorithm 1, whi
h subdivides (whenever ne
essary)

representatives of 
ell orbits using Algorithm 2, respe
tively Algorithm 3.

Proposition 4. Let Γ be a dis
rete group, and let X be a Γ-equivariant CW-
omplex having �nitely

many Γ-orbits and �nite 
ell stabilizers. Assume furthermore that X is equipped with a metri
 as in

Remark 2. Then Algorithm 1 �nds a rigidi�
ation of X (with respe
t to the Γ-a
tion). It terminates

in �nite time.

Proof. The key step of the algorithm is proved by Lemma 7 below; the rest is a routine indu
tion.

Lemma 7 is the point where the 
onvexity and isometry requirements are needed. By the �niteness

assumptions for orbits and 
ell stabilizers, the loops are all deterministi
 over �nite index sets. Ea
h

operation inside them takes �nite time, 
f. Corollary 8, when
e the 
laim. �

Observation 5. The outer shell Algorithm 1 
an be used with any subdivision algorithm for the


ells. In parti
ular, repla
ing the use of Algorithm 2 by the bary
entri
 subdivision in Algorithm 1,

the 
laims of Proposition 4 still hold. However, as mentioned in the introdu
tion, the reason for

developing Algorithm 2 is to redu
e the blow-up in the number of 
ells, so as to make the algorithm

pra
ti
ally appli
able to 
ell 
omplexes for higher-rank arithmeti
 groups.

We now dis
uss the a
tual subdivision to rigidify 
ells, Algorithm 2.

Algorithm 2 � Rigid Fa
ets Subdivision

Input: An m-
ell σ with stabilizer group Γσ, with rigid fa
es, equipped with a metri
 as in

Remark 2.

Output: A Γσ-equivariant set of rigid m-
ells, disjoint up to boundaries, 
onstituting a partition

P of σ, together with a 
ontra
tible fundamental domain F (a single m-
ell) for the a
tion of Γσ

on P .

• Sort the (m− 1)-fa
es of σ into orbits {{gjtσj}t}j under the a
tion of Γσ, where j is indexing
the orbits and t is indexing the 
ells inside ea
h orbit.

• Let T be the list 
ontaining the element g11σ1.

while #T < #{orbits of (m− 1)-fa
es of σ} do
Choose one 
ell τ ∈ {gjtσj} in the next orbit {gjtσj} not yet represented in T ,
if the union of τ with the 
ells in T has vanishing naive Euler 
hara
teristi
 then

if {τ} ∪ T is 
ontra
tible (we 
an use Ellis' method [10℄ to 
he
k this) then

Constru
t the boundary S of {τ} ∪ T .
if S has the naive Euler 
hara
teristi
 of an (m− 2)-sphere then

if #T < #{orbits of (m− 1)-fa
es of σ}-1 then
Add the 
hosen 
ell τ to T .

else

if S is simply 
onne
ted then Add the 
hosen 
ell τ to T .
end if

end if

end if

end if

end if

end while

• Use Algorithm 3 to 
onstru
t the m-
ell F := |
⋃

τ∈T 
onvex envelope(τ , bary
enter(σ))|.
• Let Γpw

σ be the subgroup of Γσ whi
h �xes the 
ell σ pointwise.

• Then P :=
⋃

16t6|Γσ/Γ
pw

σ | g1tF is the desired partition of σ.

• Return P and F .
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Figure 1. From left to right: 1) A full square with natural 
ell stru
ture and

a
tion by its stabilizer mirroring it onto itself. 2) Bary
entri
 subdivision of the

square. 3) Rigid fa
et subdivision of the square with respe
t to the mirroring a
-

tion. 4) Virtually Simpli
ial Subdivision of the square with respe
t to the mirroring

a
tion; note that the fundamental domain F 
an be 
hosen arbitrarily by sele
ting

one 
ell among ea
h of the pairs {a1, a2}, {b1, b2} and {c1, c2}.
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Remark 6. Essentially, Algorithm 2 produ
es a 
onvex union of 
ells of the bary
entri
 subdivision

whi
h is a fundamental domain for the Γσ-a
tion. The slight 
ompli
ations arise from the fa
t that

we do not a
tually want to 
ompute the full bary
entri
 subdivision, to gain 
omputational feasibility.

Lemma 7 (Rigid Fa
ets Lemma). Let σ be a 
ell (with stabilizer Γσ), whose fa
es are all rigid and

whi
h is equipped with a metri
 as in Remark 2. Let Γpw
σ be the subgroup of Γσ whi
h �xes the 
ell

σ pointwise. Then there is a fundamental domain F for the a
tion of Γσ/Γ
pw
σ on σ su
h that σ is

tessellated by |Γσ/Γ
pw
σ | 
opies of F .

Proof. First we have to 
he
k that the statement is well de�ned in the sense that Γσ/Γ
pw
σ is a group.

This is the 
ase be
ause for all g in Γσ, for all γ in Γpw
σ , for all x in σ we have (g−1γg)x = g−1(γ(gx)) =

g−1(gx) = x. Therefore, as the kernel of the a
tion of Γσ on σ, Γpw
σ is a normal subgroup; and there

is a short exa
t sequen
e of groups,

1 → Γpw
σ → Γσ → Γσ/Γ

pw
σ → 1,

whi
h makes our statement well de�ned.

Suppose that α is one of the fa
ets of σ. We are going to prove that the size of the orbit of α, under
the a
tion of Γσ on the set of fa
ets of σ, is |Γσ/Γ

pw
σ |. Let Γα be the stabilizer of α. We 
laim that

Γα ∩ Γσ = Γpw
σ . The a
tion of Γσ on the 
ompa
t set closure(σ) is by homeomorphisms; therefore,

any element of Γσ �xing σ pointwise also �xes the boundary ∂σ pointwise. Hen
e Γα ∩ Γσ ⊃ Γpw
σ .

On the other hand, let g ∈ Γα ∩ Γσ. Then by assumption on the rigidity of the fa
ets, g �xes the 
ell

α pointwise. Sin
e the 
ell σ is 
onvex and the group a
ts by CAT(0)-isometries, the bary
enter of σ
preserves its distan
es to the boundary ∂σ under the a
tion of Γσ on σ, and hen
e remains �xed. As

a further 
onsequen
e of the CAT(0) isometry, the �xed point set of g extends, by preservation of the

distan
es, from the 
onvex envelope of α and the bary
enter of σ to the whole 
ell σ. Hen
e, g is an

element of Γpw
σ . Thus, we 
an 
on
lude that Γα ∩Γσ = Γpw

σ . When
e, the size of the orbit of α under

the a
tion of Γσ is |Γσ/Γ
pw
σ |.

Furthermore, from Γα ∩Γσ = Γpw
σ , we see that Γσ/Γ

pw
σ a
ts freely on the set of fa
ets of σ. So, we


an take one arbitrary representative αk for ea
h orbit of fa
ets, to unite to a fundamental domain

for Γσ/Γ
pw
σ on the set of fa
ets of σ. Taking the 
onvex envelope ek of αk and the bary
enter of σ,

we get a fundamental domain F :=
⋃

k ek for Γσ/Γ
pw
σ on σ. By the above orbit size 
al
ulation, it

yields the desired tessellation. �

Corollary 8. Algorithm 2 terminates after �nitely many steps and produ
es a rigid subdivision of

the 
ell σ.

Proof. The existen
e of the fundamental domain F for the a
tion σ is guaranteed by Lemma 7. The


ontra
tibility of the fundamental domain T and the simply 
onne
tedness of its boundary S ensure

that merging the union of 
ells

⋃
τ∈T


onvex envelope(τ , bary
enter(σ))

into one 
ell F 
an be realized with the boundary 
onstru
tion ∂F =
⋃

τ∈T τ ∪
⋃

s∈S e(s), where e(s)
is the 
onvex envelope of s and the bary
enter of σ. �
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Algorithm 3 Constru
ting the union of the 
onvex envelopes

Input: A list T of j-
ells, 
onne
ted by adja
en
y,

and an m-
ell σ su
h that all τ ∈ T are fa
es of σ.
Output: A (j + 1)-
ell F whi
h has the same underlying topologi
al spa
e as⋃

τ∈T 
onvex envelope(τ , bary
enter(σ)).

Re
ord the bary
enter of σ as a new vertex, with stabilizer Γσ.

Enumerate the �nite set S := {ρ is (j − 1)-
ell | ∃! τ ∈ T : ρ ∈ ∂τ}.
Then S 
ontains all the (j − 1)-fa
es ρ of all τ ∈ T su
h that ρ is not a 
ommon fa
e of any two

j-
ells τ1, τ2 ∈ T .
• For ea
h s ∈ S, take the 
onvex envelope e(s) of s and the bary
enter of σ.
• Re
ord e(s) as an oriented j-
ell, with boundary

∂e(s) = {s} ∪
⋃

ε∈∂s

{
onvex envelope(ε, barycenter(σ))}.

For the stabilizers, we re
ord Γe(s) = Γs ∩ Γσ and Γ

onvex envelope(ε,barycenter(σ)) = Γε ∩ Γσ.

The boundary of the (j + 1)-
ell F 
onsists of all the j-fa
es τ ∈ T and e(s) (for all s ∈ S).
Here, we have to take 
are of whi
h of the newly 
onstru
ted 
ells e(s) are on the same Γσ-orbit.

In order to de
ide this, we make use of their 
ommon vertex, the bary
enter of σ :

• Identify the orbits e(s1) and e(s2) if and only if ∃ γ ∈ Γσ : γs1 = s2.
• Attribute arbitrary orientations to Γσ-representatives of the new 
ells e(s), and spread them

on their Γσ-orbit using the above identi�
ations.

• Return the (j + 1)-
ell F with boundary

∂F =
⋃

τ∈T

τ ∪
⋃

s∈S

e(s)

and stabilizer Γσ∩
⋂

τ∈T Γτ , where the orbits are subje
t to the above spe
i�ed identi�
ations.

3. Virtually Simpli
ial Subdivision

As a 
ompromise between Rigid Fa
ets Subdivision (RFS) and Bary
entri
 Subdivision (BCS),

we 
an make a simpli�
ation of RFS, whi
h we shall 
all Virtually Simpli
ial Subdivision (VSS) and

detail in Algorithm 3 below. For a 
ell 
omplex X , VSS(X) is a re�nement of RFS(X), and BCS(X)
is a further re�nement of VSS(X), as illustrated in Figure 1.

Algorithm 4 � Virtually Simpli
ial Subdivision

Input: An m-
ell σ with stabilizer group Γσ, with rigid fa
es, equipped with a metri
 as in

Remark 2.

Output: A Γσ-equivariant set of rigid m-
ells, disjoint up to boundaries, 
onsituting a partition

P of σ, together with a fundamental domain F (a set of m-
ells) for the a
tion of Γσ on P .

• Sort the (m− 1)-fa
es of σ into orbits {{gjtσj}t}j under the a
tion of Γσ, where j is indexing
the orbits and t is indexing the 
ells inside ea
h orbit.

• Use Algorithm 3 to 
onstru
t the m-
ells Fj := 
onvex envelope(gj1σj , bary
enter(σ)), where
j runs through all orbits.

• Let Γpw
σ be the subgroup of Γσ whi
h �xes the 
ell σ pointwise.

• Then P :=
⋃

j

⋃
16t6|Γσ/Γ

pw

σ | gjtFj is the desired partition of σ.

• Return P and the set F := {Fj}j.

Corollary 9. Algorithm 3 terminates after �nitely many steps and produ
es a rigid subdivision of

the 
ell σ.

Proof. The existen
e of the fundamental domain F for the a
tion σ is guaranteed by Lemma 7. We

do not need any topologi
al properties for F , be
ause its 
ells already have the stru
ture 
onstru
ted

with Algorithm 3. �
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Table 2. Time spent on a single pro
essor for subdividing available 
ell 
omplexes.

Arithmeti
 group SL3(Z) Γ1 in SL3(Z) Γ2 in SL3(Z) Sp4(Z) PSL4(Z)

Rigid Fa
ets Subdivision 8s 17s 26s 24s 69 minutes

Virtually Simpli
ial Subdivision 9s 22s 33s 43s 111 minutes

Hybrid Subdivision 9s 20s 31s 33s 33 minutes

Bary
entri
 Subdivision 13s 56s 104s 296s ?

4. Hybrid Subdivision

The bulk of the pro
essing time of Rigid Fa
ets Subdivision (RFS) and Virtually Simpli
ial Sub-

division (VSS) is being spent on the top-dimensional 
ells. We 
an save a 
onsiderable amount of

pro
essing time as 
ompared to RFS if we do not merge the top-dimensional 
ells. And we 
an do

that by applying RFS until we are in (top minus 1) dimensions, and then a
hieve the subdivision

using VSS on the top-dimensional 
ells. We will 
all this pro
ess �Hybrid Subdivision (HyS)�. It is

faster than both RFS and VSS on large 
ell 
omplexes, and it produ
es 
onsiderably less 
ells than

VSS. We note however that the VSS pro
ess on the top-dimensional 
ells adds a few low-dimensional


ells when 
onne
ting to the bary
enter, so for instan
e in Table 5, the low-dimensional numbers of


ells are slightly higher for HyS than for RFS, rather than being equal.

5. Comparison of the various subdivision algorithms

As illustrated in Figure 1, all of the 
ells 
onstru
ted by Rigid Fa
ets Subdivision are also 
on-

stru
ted by bary
entri
 subdivision; and usually, Rigid Fa
ets Subdivision is 
oarser than bary
entri


subdivision. However, the worst-
ase 
omplexity of Rigid Fa
ets Subdivision is not better than that

of bary
entri
 subdivision: If X is a single n-simplex with the natural permutation a
tion of the

symmetri
 group Σn+1 a
ting on the verti
es, then any rigidi�
ation will need to produ
e at least

(n + 1)! = #Σn+1 top-dimensional 
ells for X . However, the point is that the average 
ell 
omplex

for interesting arithmeti
 groups has many of its 
ells already almost rigid and, only very few with

maximally possible stabilizer. Therefore, the 
omplexity for the 
ases of interest is signi�
antly better

than that of the bary
entri
 subdivision, as eviden
ed by Table 1. As we see from Figure 1, Rigid

Fa
ets Subdivision is a minimal rigidi�
ation only for the top-dimensional 
ells; in lower dimensions

it 
reates some super�uous 
ells at the bary
enters of fa
ets, and 
ells 
onne
ting those bary
enters

with the 
onstru
ted fundamental domain for the boundary of the subdivided 
ell.

In Table 1, note that we do not have the numbers of orbits for the bary
entri
 subdivision, be
ause

the latter was not 
onstru
ted; only the numbers of 
ells have been 
al
ulated. In su
h a 
onstru
tion,

the boundaries of the 4-
ells would span a 1658304× 2138688-matrix, and even though that matrix

is quite sparse, the authors have not tried to store that amount of information on a ma
hine. In

retrospe
tive however, 
onsidering that the amount of 
ells that have been 
onstru
ted with Virtually

Simpli
ial Subdivision 
omes 
lose to the amount of 
ells expe
ted for bary
entri
 subdivision, it

turns out that this issue would not prevent applying bary
entri
 subdivision (whi
h in the end was

not done, be
ause Table 2 was interpreted by the authors as an exponential growth of the runtime).

In 
ontrast, for SL3(Z), the bary
entri
 subdivision is almost rea
hed (see Table 3) : In dimensions

0 and 1, the same 
ell stru
ture is obtained with both subdivision methods, the only di�eren
e being

that the four tetrahedra whi
h represent the top-dimensional 
ells, are merged into one polyhedron

when passing to the rigid fa
ets subdivision, along three triangles of trivial stabilizers. Note also

that Soulé did in [22℄ 
arry out the bary
entri
 subdivision by hand. This means for the 2-torsion
sub
omplex of SL3(Z), whi
h we will dis
uss in Se
tion 6, that we 
an extra
t it equivalently by hand

from [22℄, or by ma
hine after rigid fa
ets subdivision.

In order to ben
hmark the run-time, in Table 2, we denote the subgroup of SL3(Z) 
onsisting of

(1) all matri
es whose �rst 
olumn agrees with the �rst standard basis ve
tor modulo 2 by Γ1;

(2) all matri
es whi
h are upper triangular modulo 2 by Γ2.
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Table 3. Numbers of 
ells in the individual dimensions, of the studied non-rigid

fundamental domain X for SL3(Z), its rigid fa
ets subdivsion RFS(X), its virtually
simpli
ial subdivision VSS(X), its hybrid subdivision HyS(X) and its bary
entri


subdivision BCS(X) (the latter three 
oin
ide for SL3(Z)).

Dimension 0 1 2 3

# Orbits in X 1 1 2 1

# Cells in X 16 24 10 1

# Orbits in RFS(X) 5 11 8 1

# Cells in RFS(X) 51 194 168 24

# Orbits in VSS(X), HyS(X) and BCS(X) 5 11 11 4

# Cells in VSS(X), HyS(X) and BCS(X) 51 194 240 96

6. Example: Farrell�Tate 
ohomology of SL3(Z)

From the non-rigid 
ell 
omplex des
ribing the a
tion of SL3(Z) on its symmetri
 spa
e, provided

by Mathieu Dutour Sikiri¢ in [8℄, we obtain, after applying Rigid Fa
ets Subdivision, the following

2-torsion sub
omplex, in a

ordan
e with Soulé's subdivision [22℄.

stab(M) ∼= S4

stab(Q) ∼= D6
stab(O) ∼= S4 stab(N) ∼= D4

stab(P) ∼= S4

N’ M’

D2
D3

D3

D2

Z/2

Z/2
Z/2

D4

Z/2

D4

D2

Z/2

Here, the three edges NM , NM ′
and N ′M ′

have to be identi�ed as indi
ated by the arrows. All

of the seven triangles belong with their interior to the 2-torsion sub
omplex, ea
h with stabilizer

Z/2, ex
ept for the one whi
h is marked to have stabilizer D2. Using torsion sub
omplex redu
tion

(
f. [14℄), we redu
e this sub
omplex to

b
S4

O
b

D2 D6

Q

Z/2 S4

M
b

D4 S4

P

b
D4 D4

N ′

b

and then to

S4b
Z/2 S4b

D4 S4b

whi
h is the geometri
 realization of Soulé's diagram of 
ell stabilizers. This yields the mod 2 Farrell


ohomology as spe
i�ed in [22℄.

Also for PSL4(Z), Rigid Fa
ets Subdivision allows us to obtain the 2-torsion sub
omplex, but

be
ause of the 
omplexity the latter (see Table 4), the 
urrent implementation of Torsion Sub
omplex

Redu
tion does not get it down to manageable size. In up
oming joint work, the authors are going to
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Table 4. Numbers of 
ells in the 2-torsion sub
omplex for PSL4(Z) before redu
-

tion, obtained after rigid fa
ets subdivsion of the studied 
ell 
omplex, sorted into

isomorphism types of their stabilizers. Here, G1 and G2 are non-trivial group ex-

tensions 1 → A4 × A4 → G1 → Z/2Z → 1 and 1 → G0 → G2 → Z/2Z → 1 for

1 → (Z/2Z)4 → G0 → Z/3Z → 1

Stabilizer type A4 G1 (Z/2Z)2 S4 Z/2Z D8 (Z/2Z)3 G2 Z/4Z

Verti
es 2 1 5 4 1 2 1 1 0
Edges 2 0 24 2 101 5 1 0 5
2-
ells 0 0 27 0 326 0 0 0 4
3-
ells 0 0 8 0 340 0 0 0 0
4-
ells 0 0 0 0 116 0 0 0 0

Table 5. Numbers of 
ells in the individual dimensions, of the non-rigid fundamental

domain X for Sp4(Z) des
ribed in [12℄ and implemented by Dutor Sikiri¢ [8℄, its rigid

fa
ets subdivsion RFS(X), its virtually simpli
ial subdivision VSS(X), its hybrid

subdivision HyS(X) and its bary
entri
 subdivision BCS(X).

Dimension 0 1 2 3 4

In X : # Orbits | # Cells 2 | 76 2 | 216 3 | 180 3 | 40 1 | 1

In RFS(X): # Orbits | # Cells 8 | 185 31 | 800 54 | 1048 30 | 448 1 | 16

In VSS(X): # Orbits | # Cells 8 | 185 39 | 1152 106 | 2536 122 | 2352 49 | 784

In HyS(X): # Orbits | # Cells 8 | 185 35 | 864 72 | 1336 53 | 816 10 | 160

In BCS(X) : # Orbits | # Cells 11 | 513 90 | 3488 295 | 7904 368 | 7392 154 | 2464

present a new implementation of Torsion Sub
omplex Redu
tion, whi
h will over
ome this problem

using Dis
rete Morse Theory.

7. Example: Farrell�Tate 
ohomology of Sp4(Z) at odd primes

We shortly dis
uss the results of applying rigid fa
ets subdivision and torsion sub
omplex redu
tion

(for odd primes) to the non-rigid 
ell 
omplex des
ribing the a
tion of Sp4(Z) on the asso
iated

symmetri
 spa
e Sp4(R)/U(2), des
ribed in [12℄ and implemented by Mathieu Dutour Sikiri¢ in [8℄.

The 3-torsion sub
omplex for Sp4(Z) is a single vertex whose stabilizer group is the group [72, 30]
in the GAP SmallGroup library. This group is of the form C3 ×((C6 ×C2) ⋊ C2) and its mod 3


ohomology is isomorphi
 to the mod 3 
ohomology of C3 × S3. In parti
ular, we get isomorphisms

Hi(Sp4(Z),F3) ∼= Hi(C3 × S3,F3), i > vcd(Sp4(Z)).

The Hilbert�Poin
aré series for the mod 3 
ohomology of C3 × S3 is given by

HPC3 × S3
(T ; 3) =

(1 + T )(1 + T 3)

(1− T 2)(1− T 4)
.

In [3, (6.7)℄, the Hilbert�Poin
aré-series for Sp4(Z) has been 
omputed. In the notation of lo
.
it.,

the di�eren
e to the Hilbert�Poin
aré-series for C3 × S3 above is given by

P (Γ6
0)− P (B′ ⋊ Z/2) =

1 + T 3 + T 4 + T 5

1− T 4
−

1 + T + T 3 + T 4

1− T 4
=

T 5 − T

1 − T 4
= −T.

In parti
ular, the Hilbert�Poin
aré series for C3 × S3 and Sp4(Z) agree above the virtual 
ohomologi
al

dimension of Sp4(Z) and thus the 
omputation via rigid fa
ets subdivision and torsion sub
omplex

redu
tion agrees with the 
omputation of Brownstein and Lee in [3℄.

The 5-torsion sub
omplex for Sp4(Z) is a single vertex whose stabilizer group is C10, whose mod

5 
ohomology is isomorphi
 to the mod 5 
ohomology of C5. This agrees dire
tly with [3, Corollary

6.3℄ in degrees above the virtual 
ohomologi
al dimension.
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Table 5 provides an overview of the numbers of 
ells resp. orbits in the 
omplexes subdivided by

rigid fa
ets subdivision and bary
entri
 subdivision, respe
tively.

8. Example: Farrell�Tate 
ohomology of PSL4(Z) at the prime 3

Applying the rigid fa
ets subdivision algorithm to the PSL4(Z)-equivariant 
ell 
omplex from [6℄,

extra
ting the 3-torsion sub
omplex, and redu
ing it using the methods of [14℄, we get the following

graph of groups T , de
orated with the groups stabilizing the 
ells that are the pre-images of the

proje
tion to the quotient spa
e.

bb

S3

S3

S3 × S3 S3 × S3
E9 ⋊C2 C3

b S3b
E9 ⋊C2

Here, E9 ⋊C2 denotes the semi-dire
t produ
t of the elementary abelian group of order 9 with C2,

where C2 a
ts by inversion (
orresponding to the group [18,4℄ in GAP's SmallGroups library). The

ma
hine 
omputation provided the following system of morphisms among the above 
ell stabilizers.

The E9 ⋊C2 edge stabilizer admits an isomorphism of groups φ (not the identity, though) to the

E9 ⋊C2 vertex stabilizer and an in
lusion into the S3 × S3 vertex stabilizer. Of the two S3 edge

stabilizers, one has maps diag(1, 1) and diag(1, 0) to the two S3 × S3 vertex stabilizers, and the

other one has maps diag(1,−1) and diag(−1,−1) to the two S3 × S3 vertex stabilizers. The C3 edge

stabilizer admits an in
lusion into the E9 ⋊C2 vertex stabilizer, and an in
lusion into the S3 vertex

stabilizer.

By the properties of torsion sub
omplex redu
tion, the PSL4(Z)-equivariant 
ohomology of the

3-torsion sub
omplex is isomorphi
 to the PSL4(Z)-equivariant 
ohomology of the above graph of

groups T . Similarly, the Farrell�Tate 
ohomology of PSL4(Z) at the prime 3 is isomorphi
 to the

Farrell�Tate 
ohomology of the above graph of groups. In the following, we evaluate the isotropy

spe
tral sequen
e

Ep,q
1 =

⊕

σ∈Tp

Hq(Stab(σ);F3) ⇒ Ĥ
p+q

(PSL4(Z);F3)


onverging to Farrell�Tate 
ohomology. As we only 
onsider a graph, the spe
tral sequen
e is 
on
en-

trated in the two 
olumns p = 0, 1. The di�erential d1 is indu
ed from the in
lusions of subgroups,

up to the sign 
oming from the 
hoi
e of orientation of the graph. Sin
e the spe
tral sequen
e is

only 
on
entrated in the �rst two 
olumns, we will have E2 = E∞. Sin
e we are interested in �eld


oe�
ients, there are no extension problems to solve at the E∞-page.

The relevant 
ohomology groups of the �nite groups are:

• H•(C3;F3) ∼= F3[x](a) with deg a = 1 and deg x = 2.
• H•(S3;F3) ∼= F3[y](b) with deg b = 3 and deg y = 4.
• By the Künneth formula, H•(S3 × S3;F3) ∼= H•(S3;F3)

⊗2
.

• By the Ho
hs
hild�Serre spe
tral sequen
e, H•(E9 ⋊C2;F3) ∼= F3[x1, x2](a1, a2)
C2

where

deg xi = 2, deg ai = 1 and C2 a
ts by multipli
ation with −1 on all the generators.

To des
ribe the d1-di�erential, it is enough to note that the restri
tion map asso
iated to the in
lusion

C3 →֒ S3 is the in
lusion of C2-invariants.

Now, for the evaluation of the spe
tral sequen
e, we �rst deal with the edges atta
hed to the loop.

(1) The restri
tion map

φ⊕ (ResS3

C3
◦ pr∗2) : H

•(E9 ⋊C2;F3) → H•(E9 ⋊C2;F3)⊕H•(C3;F3)

is inje
tive, and the 
okernel is isomorphi
 to H•(C3;F3). Here φ denotes the isomorphism

E9 ⋊C2
∼= E9 ⋊C2 appearing as stabilizer in
lusion in the redu
ed torsion sub
omplex.

(2) The in
lusion of the dihedral vertex group into the 
y
li
 edge group is an inje
tion

ResS3

C3
: H•(S3;F3) →֒ H•(C3;F3)
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given by the in
lusion of the invariant elements for the C2-a
tion by −1. Therefore, the


okernel is 
on
entrated in degrees 1, 2 mod 4 (ex
ept for the degree 0).

Therefore, we 
an redu
e the E1-page of the spe
tral sequen
e as follows: from (1), we �nd that

we 
an remove the two summands for E9 ⋊C2 from the 
olumns p = 0 and p = 1, respe
tively; but in
turn, we have to repla
e the restri
tion map for E9 ⋊C2 →֒ S3 × S3 by a map from the 
ohomology

of S3 × S3 to the 
okernel of the restri
tion map in (2). However, sin
e the latter is 
on
entrated

in degrees 1 and 2, the indu
ed restri
tion map is trivial in the generating degrees 3 and 4, hen
e
it is trivial. Therefore, the E1-page de
omposes: one 
ontribution 
omes from the 
okernel of the

restri
tion map H•(S3;F3) →֒ H•(C3;F3), the other 
ontribution 
omes from the loop 
onne
ting the

two 
opies of S3 × S3 via the S3-edges.
The 
ohomology of the loop is 
omputed as follows:

(3) The restri
tion maps diag(1, 1), diag(1, 0), diag(1,−1) and diag(−1,−1) :

F3[x4, y4](a3, b3) ∼= H•(S3 × S3;F3) → H•(S3;F3) ∼= F3[z4](c3)

are surje
tive. On the kernel of diag(1, 1), the restri
tion of diag(1,−1) is still surje
tive. On
the kernel of diag(−1,−1), the restri
tion of diag(1, 0) is still surje
tive.

Therefore, the 
ohomology of one edge of the loop is killed already by the restri
tion map from

any one of the vertex groups. Number the S3 × S3-verti
es by 1 and 2, and the S3-edges by a and

b. The restri
tion from the vertex group 1 to the edge a is surje
tive. Removing this part from the

spe
tral sequen
e, the restri
tion from the vertex group 2 to the edge a is trivial, but we still have

the restri
tion to the edge b. This kills the edge 
ohomology b, showing that the di�erential d1 is

surje
tive in the loop part of the E1-page. The kernel of the di�erential 
onsists then exa
tly of two


opies of the kernel of a restri
tion map ResS3 × S3

S3
.

Theorem 10. The Farrell�Tate 
ohomology of the group PSL4(Z) (with 
oe�
ients in F3) in degrees

> 2 is given as follows:

Ĥ
•
(PSL4(Z);F3) ∼=

(
kerResS3 × S3

S3

)⊕2

⊕ coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

This, in parti
ular also 
omputes the 3-torsion group 
ohomology of PSL4(Z) above the virtual 
oho-

mologi
al dimension.

The 
okernel of the d1-di�erential in degree 0 and hen
e the �rst 
ohomology Ĥ
1
(PSL4(Z);F3) is

of F3-rank 1, 
oming from the loop of the 3-torsion graph.

Remark 11. The kernel 
omes from the p = 0 
olumn of the E2 = E∞-page. The 
okernel 
omes

from the p = 1 
olumn and 
onsequently has a shift. The 
up produ
t on the kernel is the one indu
ed

from 
ohomology of S3 × S3, and 
up-produ
t with 
lasses in the 
okernel is always 0.

Inspired by Grunewald, we 
onsider the Hilbert�Poin
aré series of the Farrell�Tate 
ohomology of

PSL4(Z) with 
oe�
ients in Fℓ :

HPPSL4(Z)(T ; ℓ) :=

∞∑

q=1

dim Ĥ
q
(PSL4(Z);Fℓ) · T

q.

Corollary 12. The Hilbert�Poin
aré series of the 3-torsion Farrell�Tate 
ohomology of PSL4(Z) (for
degrees > 1) is then

HPPSL4(Z)(T ; 3) = T +
2(T 3 + T 4 + T 6 + T 7)

(1− T 4)2
+

T 2 + T 3

1− T 4
.

Remark 13. Note that the above 
al
ulation des
ribes the Farrell�Tate 
ohomology in all degrees,

not just some small ones. Essentially, the 
omputer 
al
ulation produ
es the redu
ed torsion sub
om-

plex (whi
h en
odes the 
ohomology for all degrees). The spe
tral sequen
e is evaluated using the


up-produ
t stru
ture. Note that the �niteness results for group homology imply that the 
up-produ
t

stru
ture for both group and Farrell�Tate 
ohomology is �nitely generated. Using suitable 
ommuta-

tive algebra pa
kages, su
h 
omputations of the ring stru
ture (and therefore additive 
omputations

for all 
ohomologi
al degrees) 
ould probably also be automated.

We make the following 
onsideration on the 
ompatibility of our result for Farrell�Tate 
ohomology

with the result of Dutour�Ellis�S
hürmann [6℄ for group homology in low degrees. The isomorphism

types 
omputed in the latter arti
le are to 
orrespond as follows to the evaluation of our above

Hilbert-Poin
aré series in those degrees.
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Hq(PSL4(Z);Z) ∼=



























0, q = 1,

(Z/2)3, q = 2,

Z ⊕ (Z/4)2 ⊕ (Z/3)2 ⊕ Z/5, q = 3,

(Z/2)4 ⊕ Z/5, q = 4,

(Z/2)13, q = 5,

� dim Ĥ
q
(PSL4(Z);F3) =



























1, q = 1,

1, q = 2,

3, q = 3,

2, q = 4,

0, q = 5.

For this to be 
onsistent, the Farrell�Tate 
ohomology groups in degrees 1 and 2 need to vanish

in group homology; so, these should be annihilated by di�erentials from the orbit spa
e. We have

eviden
e for this in degree 1, sin
e the loop in the graph be
omes 
ontra
tible in the orbit spa
e of

the full lo
ally symmetri
 spa
e. In degree 3, one of the summands in H3(PSL4(Z);Z) is rationally
non-trivial and must 
ome from the orbit spa
e. This means that only the submodule (Z/3)2 
an


ome from Farrell�Tate 
ohomology, and the third dimension that we observe in degree 3 Farrell�Tate

ohomology must belong to the degree 2 stabilizer 
ohomology 
lass that is annihilated by the above

mentioned di�erentials from the orbit spa
e.

From Theorem 10, we dedu
e that the degree 2 Farrell�Tate 
lass 
an only 
ome from

coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

Then, this 
lass and its group homology 
ounterpart sit at position p = 1, q = 1 in the respe
tive

equivariant spe
tral sequen
e, and hen
e the annihilating di�erential, emanating from the orbit spa
e

homology module Z ⊂ H3(PSL4(Z);Z) sitting at position p = 3, q = 0, must be of se
ond degree.

In degrees 4 and 5, the dimensions already agree via the Universal Coe�
ient Theorem, so here

we infer that the submodule (Z/3)2 in degree 3 should a
tually 
ome from Farrell�Tate 
ohomology,

so it should be stabilizer 
ohomology that is not hit by higher degree di�erentials.

9. Homologi
al 5-torsion in PSL4(Z)

We applied the rigid fa
ets subdivision algorithm to the PSL4(Z)-equivariant 
ell 
omplex of [6℄,

extra
ted the 5-torsion sub
omplex, and redu
ed it using the methods of [14℄ to the following graph

T :
bD5 D5

The d1-di�erential of the equivariant spe
tral sequen
e on T is zero, be
ause the

isomorphisms at edge end and edge origin 
an
el ea
h other. Then the E1 = E∞ page is 
on
entrated

in the 
olumns p = 0 and 1, with dimensions over F5 being 1 in rows q 
ongruent to 3 or 4 mod 4,
and zero otherwise. This yields

Proposition 14. We observe on Farrell 
ohomology: dimF5
Ĥ

p+q
(PSL4(Z);F5) =



















1, p + q ≡ 1 mod 4,

0, p + q ≡ 2 mod 4,

1, p + q ≡ 3 mod 4,

2, p + q ≡ 4 mod 4.

We 
he
k this result with a 
omputation of Ĥ
•
(PSL4(Z);F5) using Brown's 
omplex [2, last 
hap-

ters℄. In this 
ase, it is standard that the set {1, ζ5, ζ
3
2 , ζ

3
5} is an integral basis of OQ(ζ5) and in

parti
ular Z[ζ5] = OQ(ζ5) is a Dedekind ring.

We 
an therefore use Reiner's result [17℄ to determine 
onjuga
y 
lasses of C5-subgroups in GL4(Z).
Sin
e both Z and Z[ζ5] have trivial 
lass group, there is only one isomorphism 
lass of Z[C5]-module

with nontrivial a
tion and Z-rank 4. Hen
e, there is a unique 
onjuga
y 
lass of 
y
li
 order 5
subgroup in GL4(Z). Sin
e the 
enter of GL4(Z) is of order 2, the same is true for PGL4(Z).

Now there is a ne
essary modi�
ation to deal with the 
ase SL4(Z), along the lines of the dis
ussion
in [16℄. While 
onjuga
y 
lasses of C5-subgroups in GL4(Z) 
orrespond to isomorphism 
lasses of

Z[C5]-modules, the 
onjuga
y 
lasses of C5-subgroups in SL4(Z) 
orrespond to su
h modules equipped

with an additional orientation, i.e., a 
hoi
e of isomorphism detM ∼=
∧4

Z M
∼= Z. The 
onjuga
y 
lass

in GL4(Z) lifts to SL4(Z), and the 
orresponding module has two di�erent 
hoi
es of orientation.

The Galois group Gal(Q(ζ5)/Q) ∼= Z/4Z a
ts on the set of oriented modules. The a
tion ex
hanges

the orientations. Therefore, there is one 
onjuga
y 
lass of C5-subgroup in SL4(Z) stabilized by

Z/2Z →֒ Gal(Q(ζ5)/Q).
The 
entralizer of this C5-subgroup is the group of norm-1 units of Z[ζ5], whi
h by Diri
hlet's unit

theorem is isomorphi
 to

ker
(
Z[ζ5]

× → Z×
)
∼= Z/10Z× Z.

As in [16, Se
tion 5℄, the normalizer is an extension of the 
entralizer by an a
tion of the stabilizer

of the 
orresponding oriented module in the Galois group. We noted above that the Galois group

Z/4Z ex
hanges the two orientations of the trivial module, hen
e the stabilizer is the subgroup

Z/2Z ⊂ Z/4Z. The normalizer therefore is of the form (Z/10Z× Z)⋊ Z/2Z. The a
tion of Z/2Z on
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Z/10Z is by multipli
ation with −1 be
ause the a
tion of the Galois group is via the identi�
ation

Z/4Z ∼= Z/5Z×
. The a
tion of Z/2Z on Z is trivial: the full Galois group a
ts on Z via a surje
tive

homomorphism Z/4Z → Z× ∼= Z/2Z. The stabilizer of the oriented module in the Galois group lies

in the kernel of the above a
tion, as 
laimed. Therefore, the normalizer is in fa
t of the form D10 ×Z.
Applying the formulas from [16, Se
tion 3℄, the Farrell�Tate 
ohomology of the normalizer is of

the form F5[a
±2
2 ](b31)

⊕2 ⊕ F5[a
±2
2 ](b31)

⊕2
−1 where the lower subs
ript −1 indi
ates a degree shift by −1.

The Hilbert�Poin
aré series for the positive degrees is

T 3+2T 4+T 5

1−T 4 = T 3(1+T )2

1−T 4 .

The 
omputations in [6℄ show that the 5-torsion in integral homology of PSL4(Z) of dimension 1

in degrees 0, 3 mod 4 and trivial otherwise. By the universal 
oe�
ient theorem, this agrees with the

above 
omputation.

10. Ne
essity of Rigidity for Bredon homology

From a non-rigid 
ell 
omplex, i.e., a 
ell 
omplex where 
ell stabilizers do not ne
essarily �x the


orresponding 
ell pointwise, one 
an 
ompute 
lassi
al group homology via the equivariant spe
tral

sequen
e with 
oe�
ients in the orientation module. Su
h an orientation module, where elements

of the stabilizer group a
t by multipli
ation with 1 or −1, depending on whether they preserve or

reverse the orientation of the 
ell, 
annot exist for Bredon homology. We make this pre
ise in the

following statement:

Proposition 15. There is no module-wise variation of the Bredon module with 
oe�
ients in the


omplex representation ring and with respe
t to the system of �nite subgroups su
h that Bredon ho-

mology 
an be 
omputed from a non-rigid 
ell 
omplex.

Proof. We provide a 
ounterexample in order to 
ontradi
t the possibility to 
ompute the Bredon

homology from an arbitrary non-rigid 
ell 
omplex.

Consider the 
lassi
al modular group PSL2(Z). A model for EPSL2(Z) is given by the modular

tree [21℄. There is a rigid 
ell 
omplex stru
ture T1 on it, given as follows. By [21℄, the modular tree

admits a stri
t fundamental domain for PSL2(Z), of the shape

Z/3Z b b Z/2Z

with vertex stabilizers as indi
ated and trivial edge stabilizer. We obtain the 
ell 
omplex T1 by

tessellating the modular tree with the PSL2(Z)-images of this fundamental domain. Obviously, T1 is

rigid, and it yields the Bredon 
hain 
omplex

0 → RC(〈1〉)
d

−→ RC(Z/2Z)⊕RC(Z/3Z) → 0.

The map d in the above Bredon 
hain 
omplex is inje
tive, and as RC(Z/nZ) ∼= Zn
, we read o�

HFin
1 (EPSL2(Z); RC) = 0, HFin

0 (EPSL2(Z); RC) ∼= Z4.

Now we equip the modular tree with an alternative equivariant 
ell stru
ture T2, indu
ed by the

non-stri
t fundamental domain

Z/3Z b b Z/3Z

where the (set-wise) edge stabilizer is Z/2Z, �ipping the edge onto itself. It 
an be seen as a rami�ed

double 
over of the fundamental domain for T1 dis
ussed above. A system of representative 
ells for

T2 is given by the edge of double length, and one vertex of stabilizer type Z/3Z. This yields a 
hain


omplex

0 → ˜RC(Z/2Z) → RC(Z/3Z) → 0,

where the tilde 
ould be any 
onstru
tion whi
h takes the non-trivial Z/2Z-a
tion on the edge of

double length into a

ount (similar to the 
oe�
ients in the orientation module for group homol-

ogy 
omputed from non-rigid 
ell 
omplexes). But no matter how this 
onstru
tion is done, from

RC(Z/3Z) ∼= Z3
, we 
an never rea
h HFin

0 (EPSL2(Z); RC) ∼= Z4. Hen
e T2 is our desired 
ounterex-

ample. �

Remark 16. We 
ould of 
ourse drop the 
ondition �module-wise� in the above proposition, and

investigate whether there is a reasonable 
onstru
tion whi
h maps the representation ring to a 
om-

plex of modules and yields a quasi-isomorphism from the total 
omplex to the Bredon 
omplex for

the subdivided tree. But with su
h a 
onstru
tion, one would only super�
ially hide the fa
t that

one needs to know how to subdivide in order to get the 
onstru
ted 
omplexes right. This means

that it will not be pra
ti
able to 
ompute Bredon homology with respe
t to the system of �nite
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subgroups and 
oe�
ients in the 
omplex representation ring without subdividing the 
ell 
omplex

under 
onsideration to make it rigid.
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