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ABSTRACT
We present regression automata (RA), which are novel type
syntactic models for time series forecasting. Building on
top of conventional state-merging algorithms for identify-
ing automata, RA use numeric data in addition to symbolic
values and make predictions based on this data in a regres-
sion fashion. We apply our model to the problem of hourly
wind speed and wind power forecasting. Our results show
that RA outperform other state-of-the-art approaches for
predicting both wind speed and power generation. In both
cases, short-term predictions are used for resource allocation
and infrastructure load balancing. For those critical tasks,
the ability to inspect and interpret the generative model RA
provide is an additional benefit.

Keywords
Time Series Forecasting; Syntactic model; Regression Au-
tomata; (State) Machine Learning

1. INTRODUCTION
Forecasting is one of the most significant challenges in

time series analysis [1]. Financial and wind power series
attract continual attention, and many techniques were pro-
posed and studied in the recent decades [2]. In this paper,
we propose a novel model for learning syntactic patterns
and forecasting such series. We apply our algorithm to wind
speed and wind energy prediction problems.

With the promotion of sustainable energy production in
many countries, wind energy generation is developing rapidly
[3, 4]. Due to the wind’s uncertainty and discontinuity, ac-
curate wind speed prediction is one of the key challenges
for safe and reliable operation of wind power systems [5, 6].
Typically, short-term wind prediction, on time spans less
than 6 hours, and long-term wind prediction are distin-
guished. In this paper, we focus on the former, which is an
important problem for energy storage system design, power
dispatching, electricity pricing, etc.
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During the past 30 years, many methods for wind speed
prediction have been proposed. Generally those techniques
can be classified into three categories. The first one is the
conventional statistical model. Autoregressive Moving Av-
erage (ARMA) is the most representative [7]. Another con-
ventional model is Kalman filter algorithm [8]. The second
one is spatial correlation model. The original idea is called
correlated echelon model (CEM) [9]. It proposed to combine
time series forecasting and terrain characteristics. The tech-
niques of third category are from the area of artificial intel-
ligence and machine learning. The typical models that have
been successfully applied in time series forecasting are neu-
ral networks [10], support vector machines [11], and fuzzy
logic models [12] to name a few.

Syntactic models are alternatives to the conventional sys-
tems, because the learned models allow to inspect, interpret,
and understand complex system dynamics [13]. Examples
of such models are hidden Markov models (HMMs) and fi-
nite automata (FA) [14]. Syntactic methods are based on
symbols that have typically been abstracted from numeric
data in a pre-processing step. This gives three main advan-
tages: firstly, categorical prediction reduces the computa-
tion cost. Secondly, raw time series data in practice tends
to be very noisy. Symbolic representations are more robust
to noise. Lastly, the category bounds can be modified to re-
flect prediction uncertainty, which is now becoming a trend
in regression. To our best of knowledge, the only syntactic
models applied in wind speed prediction are Markov chains
[15] and semi-Markovian variants [16]. An interesting in-
direct approach to syntactic modeling of daily foreign ex-
change rates was proposed by Lee Giles et al [17]. They
first abstracted the raw financial data into symbols using a
SOM (self-organizing map), and then applied RNNs (recur-
rent neural networks) to the sequences for training. Finally,
DFA (deterministic finite state automata) were extracted
from RNNs for model interpretation. Unfortunately, this
novel model was only able to be used to predict directional-
ity, i.e., whether the exchange rate is positive or negative in
the future. Another related work is SAX (Symbolic Aggre-
gate approXimation), which provided high level representa-
tion for time series data [18]. However the main goals of SAX
were dimensionality reductions and similarity measurements
rather than forecasting.

Syntactic models are very useful because they provide a
concise overview of numeric time series’ behavior. A prob-
lem, however, is that they predict symbols instead of nu-
meric values. Consequently, both their learning and pre-
diction processes are less exact than those used by numeric
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models and therefore more difficult to evaluate and harder to
use in practice. In this paper, we overcome this problem of
syntactic models by incorporating the numeric data values
in the learning and prediction processes. Intuitively, the in-
puts of our model are the tuples of real numerical values and
symbolical values abstracted from the raw data. The sym-
bols are used for building the syntactic models underlying
a time series’ behavior in high level with states transitions,
while the numeric values are used to accurately reflect the
evolution of time series.

We preprocess the raw time series data sequentially and
discretize the numeric values into abstract symbols. We then
learn an RA using the DFASAT algorithm [19], but with
a novel heuristic and a novel consistency criteria. Finally,
we compare the resulting numeric predictions with baseline
methods such as persistence, autoregressive integrated mov-
ing average (ARIMA), neural networks, and regression trees.
The results demonstrate that our new method is competi-
tive with these commonly used methods. Furthermore, they
show that the numeric and syntactic prefix tree model used
as input for DFASAT is already competitive with the state-
of-the-art, albeit worse than the model obtained after learn-
ing. This result demonstrates the power of our method used
to combine numeric and syntactic data for time series pre-
diction.

Our contributions are the following:

• We develop a new method for learning DFA from time
series data using both numeric and symbolic inputs.
To our best knowledge, this is the first work that pro-
poses to learn automata for numeric regression tasks.

• We propose a novel heuristic and consistency test for
guiding the automaton learning process.

• We show that the learned models make predictions in
real unseen data with high accuracy, outperforming
the competition in short-term wind speed and wind
power prediction.

This paper is organized as follows. Section 2 introduces
data preprocessing. Section 3 briefly discusses the model
building and learning algorithm. The experimental results
are presented in Section 4. Section 5 discusses the results
and concludes the paper.

2. DATA PREPROCESSING

2.1 Discretization
The numeric signal needs to be abstracted as symbols for

state machine (automaton) learning. In this paper, we use
SAX to descritize numeric data. Figure 1 illustrates a ex-
ample of SAX. It firstly normalizes the raw data, then com-
presses by aggregating into piecewise aggregate approxima-
tions (PAAs). Lastly PAAs are assigned to symbols with
quantiles of standard normal distribution. In this example,
the raw data has length 48, the PAAs, i.e. colored bars
have the same size of 12. We will finally get a frame with
4 letters “ccac”. If we SAX the whole training data set in
the beginning and then slice them into frames, we will call
this strategy as “global SAX” in this paper. Table 1 shows
the symbols and their corresponding numeric guards in the
experimental case study one (see Section 4.3). All numeric
values are abstracted to the symbol according to the bins
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Figure 1: SAX labeling of time series data. The
dashed lines indicate discretization boundaries.
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Figure 2: WSS difference versus number of clusters
in training data. We select 8 as a good number of
clusters.

they fall in. Note that we transform the bins of quantiles
from standard normal distribution to un-normalized value
for better explanation. We use the similar idea of “ELBOW”
method [20] to determine the “optimal” number of clusters,
i.e. the alphabet size of SAX. The idea is finding the num-
ber of clusters that stops sharp dropping of the WSS (within
cluster sum of squares), which is illustrated in Figure 2.

2.2 Stationarity and Drift Model
Many time series in practice, such as the economic process

and the wind speed, are difficult to predict since they are
not stationary. Intuitively, the statistical properties of these
processes, such as mean and variance, vary over time [1].
Logarithm and differencing are two widely used preprocess-
ing methods for non-stationary time series [1]. The log-
arithm is useful to stabilize the variance of a time series
of which larger values tend to have larger variance, mean-
while it helps to expand the difference of small values around
zero. Differencing (1-st order derivative), i.e. computing
the differences between consecutive observations, is useful
to stabilize the mean of a time series by removing changes
in the level of a time series, and so eliminating trend and
seasonality. Assume that the original data of length N is
X = [x0, x1, · · · , xN−1], and our goal is to get a drift model,

xt − xt−1 = ĉ+ et (1)

where ĉ is our estimated mean value of the drift, and et
is assumed as white noise. Unlike the conventional time
series models that directly take all the historic difference



Table 1: Global SAX guards for the wind speed prediction task, values are in m/s.

Symbol a b c d e f g h

Guard (-∞, 0.59) [0.59, 1.16) [1.16, 1.58) [1.58, 1.96) [1.96, 2.34) [2.34, 2.76) [2.76, 3.33) [3.33, +∞)

Table 2: k-means centroids for the wind speed prediction task, values are in m/s.

Symbol a b c d e f g h

Centroid 0.76 1.22 1.68 2.20 2.82 3.63 4.81 7.46

values into account to estimate ĉ, our syntactic model dis-
covers patterns sharing similar behaviors to individually get
the estimations of ĉ. Once ĉ is learned from training data,
Equation 1 is also used for forecasting with known previous
value.

Apart from global SAX and differencing, we also investi-
gate the following strategies of preprocessing, and compare
the results in the experiment (see Section 4.3).

• local SAX aggregates, discretizes, and normalizes data
in each sliding window, see [18] for details.

• k-means with the identical alphabet size as SAX is
listed in Table 2, which shows the centroids of the
symbols obtained in experimental case study one (see
Section 4.3). All numeric values are abstracted to the
symbol with the closest associated centroid.

• logarithm differencing compute the logarithm dif-
ference between consecutive observations, which actu-
ally reflects the ratio relations.

3. MODEL LEARNING

3.1 Regression Automata
We provide a very concise description of DFAs, the reader

is referred to [21] for a more elaborate overview. A determin-
istic finite automaton (DFA) is a quadrupleA = 〈Q,T,Σ, q0〉
where Q is a finite set of states, T : (Q,Σ)→ Q are labeled
transitions with labels coming from an alphabet Σ, q0 ∈ Q
is the start state. A DFA computation starts in the start
state q0 and traverses transitions according to a given input
string (sequence) s1 . . . sn ∈ Σ∗. At every index 1 ≤ i ≤ n,
the current state of the DFA is changed from source state
qi−1 to target state T (qi−1, si). This computation is called
deterministic because there exists exactly one target for ev-
ery source-symbol pair. In contrast to the commonly used
HMMs [22], the computation path of a given DFA is thus
completely determined for a given input string. This prop-
erty makes them easier to learn. Learning DFAs is how-
ever much harder than learning Markov chains because (like
HMMs) the traversed states are unknown (hidden) when
given only input data.

A regression automaton (RA) is a quintuple A = 〈Q,T,Σ,
q0, P 〉 where 〈Q,T,Σ, q0〉 is a DFA, and P is a prediction
function P : Q → R. The prediction function assigns a
prediction value to every state q ∈ Q. The computation of
an RA is identical to that of a DFA, any numeric input data
is ignored. Whenever a computation is in a state q, the value
P (q) is only used as a prediction for the next numeric data
value. In our case, we use the preprocessing described above
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Figure 3: Our labeling of time series data, consisting
of symbols and difference values. The dashed lines
indicate discretization boundaries (using code book
in Table 1). To avoid redundancy of data, the values
in this plot have been aggregated by SAX.

to obtain discretized symbols based on a time series signal,
and numeric values based on the difference of the series, see
Figure 3. The state of an RA is thus fully determined by the
syntactic data, and the predicted drift value only depends
on the current state. RAs can be seen as mappings from
symbolic sequences to drift values.

3.2 Evidence-Driven State-Merging
The current state-of-the-art in DFA learning is evidence-

driven state-merging in the red-blue framework (EDSM) [23],
possibly with some search procedure (see, e.g., [19]) in or-
der to continue searching once a possible local optimum has
been reached. In the following, we briefly explain the main
steps of this algorithm together with our adaptations needed
to handle numeric data.

3.2.1 Prefix Tree Construction
The first step in EDSM is to build a Prefix Tree (PT) from

the training data. For each input sample w from the training
data, a chain is created by introducing a state between each
letter wi (1 ≤ i ≤ |w|). This chain is inserted into the PT
by traversing its labeled transitions until the word is fully
inserted, or a leaf is reached. Upon reaching the leaf, the
remaining sequence is appended at this position. For every
state q in a PT, there exists exactly one computation that
reaches q. A PT therefore encodes exactly the information
in the (syntactic) training data, without any generalization.
The set of states Q is extended to contain a null state q⊥,
to represent transitions for which no input data exists in
the training sample, i.e., T (q, l) = q⊥ means it is currently
unknown what the target state is from state q with label l.
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Figure 4: First two levels of the APTA gen-
erated by sliding a window of length two over
the data in Figure 3. Between each data point
a state is created, and data points itself are
used to label transitions. Each node stores the
mean of the differences of its outgoing transi-
tions: e.g. for node q5, there are three outgo-
ing transitions stemming from three input samples
(c, 0.55)(b, -0.6), (c, 0.57)(b, -0.52), (c, 0.6)(d, 0.07) creating
this branch of the tree. The value -0.35 is the mean
value of -0.6, -0.52,+0.07.

For RAs, the PT structure is constructed in the stan-
dard way using only the syntactic data, see Figure 4 for an
example. The transitions are labeled with the symbol cor-
responding to the chosen discretization. In addition to the
prefix tree structure, we aggregate the numeric values of all
outgoing transitions in each node; the numeric values above
states q1, q3, q5 and q8 are the average values of the differ-
ences of all outgoing transitions. If we want to predict the
next value following 1.3, i.e. the original value of last data
in Figure 3. we follow the transitions with the correspond-
ing symbolic label, e.g., c, from the starting state q0. In
our example, it will transition to state q5. By applying the
reverse translation from Equation 1, the predicted value is
1.3− 0.35 = 0.95.

3.2.2 Merging States in EDSM
The PT, encoding all the training data without general-

ization, usually leads to high variance models sensitive to
noise, and has an increased risk of overfitting. The goal of
DFA learning is to find a smallest DFA A that is consis-
tent with the training data set [24]. Seeking this DFA is
an active research topic in grammatical inference, see [25].
The PT is iteratively made smaller by heuristically merg-
ing pairs of states (q, q′), and re-estimating the transition
function (matrix) T . Every such merge creates a new state
q′′ that has the incoming and outgoing transitions of both
q and q′. The merged states q and q′ are removed from the
model. When a merge introduces a non-deterministic choice,
i.e., T (q, a) = q1 and T (q′, a) = q2 both exist for some la-
bel a, states q1 and q2 are merged as well. This is called
the determinization process. Which merge to perform is de-
termined using a heuristic (typically an evidence measure).
Standard EDSM, for instance, maximizes the total number
of merged states with matching outputs [23]. Probabilistic
DFAs can be learned using statistical distances such as KL-
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Figure 5: Red-Blue Framework: Starting at the
root, the algorithm tries to find the smallest consis-
tent state machine. Already identified parts of the
target are marked red, and direct neighbors of those
states as blue. The heuristic focuses on the fringe
of the marked states, instead of having to check all
possible combinations of states.

divergence [26] or outcomes of for instance likelihood ratio
tests [27].

In DFASAT and in this paper, the widely used red-blue
framework [23] is applied for guiding the merge process. As
shown in Figure 5, the red-blue framework only merges red
r ∈ R ⊆ Q and blue b ∈ B ⊆ Q states. The red states and
the transitions between them form the currently constructed
DFA, the blue states are still to be identified transitions, po-
tentially to new states of the DFA. The new state q′′ result-
ing from a red-blue merge is colored red, i.e., R := R∪{q′′}.
In addition, every non-red target state q ∈ Q \R that is the
target of a transition T (r, l) = q, for any l ∈ Σ, with a red
source state r ∈ R, is colored blue, i.e., B := B ∪ {q}. In
this way, the framework maintains a core of red states with
a fringe of blue states (see Figure 5). Initially, the start
state of the APTA is colored red, and its children (targets
for every symbol) are colored blue.

Merges are only allowed if the resulting DFA is still consis-
tent, e.g., states with different outputs cannot be merged [23],
states with significantly different outgoing transition labels
cannot be merged [19], or states with significantly different
outgoing transition label distributions cannot be merged [28].
Overall, the run time complexity of red-blue algorithms is
bounded by |S| · n, where S is the input set and n the size
of the final model [23]. For the RA learning problem, new
heuristics and consistency tests are needed because the goal
is to produce accurate numeric predictions instead of accu-
rate predictions of syntactic input/output values.

3.2.3 Merging for Regression Automata
Instead of the statistical or input/output consistency checks

in traditional state merging approaches described before, we
allow merges between states q and q′ where the mean value
of difference is smaller than a given threshold. Take the data
series in Figure 3 for example, patterns “ab” and “bc” share
a similar trend, i.e., similar difference values stored in q1 and
q3 in Figure 4. We only consider merges in which all states
that are merged due to determinization have sufficiently sim-
ilar difference values. In addition to these difference values,
we also store the number of occurrences in every state.

To evaluated possible merges and choose the best merge,
we use the variant Akaike information criterion (AIC) for
regression models [29] as a merge heuristic:



∆AIC = 2 (κbefore − κafter) + n lg
RSSbefore

RSSafter
(2)

where κbefore and κafter is the number of parameters in
the model, i.e., the number of states before and after the
merge respectively, n is the number of data points in train-
ing set for fitting the model, RSSbefore and RSSafter are
the residual errors, i.e., the total square error in states be-
fore and after merge models. We compute AIC difference
in each iteration of merge, there could exist more than one
pairs of red-blue states, i.e. candidates for merge, however,
only the highest AIC difference of candidate pair is selected
for merge to improve model performance most significantly.
An overview of our new state merging algorithm is given in
Algorithm 1, where #occ(q) denotes the number of occur-
rences in state q.

3.3 Model Smoothing
Another source of difficulty in applying syntactic models

to regression tasks is model smoothing. Taking the model in
Figure 4 for instance, it can happen that new data contains
a symbol “e”. For this case, no matching transition exists,
and it is impossible to obtain a prediction from the model.
In this paper, we solve this problem using a relatively simple
strategy: we follow the transition with the symbol closest to
the input “e” according to the discretization scheme. In this
example, state q8 is reached by following the transition for
symbol “d”. In this way it is possible to make a numeric pre-
diction even for sequences that were neither seen in training
data nor generalized to during learning. In our case studies,
this only happens less than 0.1% of the time.

3.4 Sliding Window Length
One of the key problems in our learning task is to de-

termine the length of the sliding window, i.e., how many
historical data points the prediction would rely on. Fig-
ure 6 illustrates the relationship between fitting error and
model complexity for the wind speed training data used in
the experiments. Larger length of sliding window results in
more layers in PT and hence more states. Ein and Eout are
the fitting mean square error in training data and testing
data respectively. We can see that by increasing the model
complexity (sliding window length), Ein decreases sharply,
while Eout becomes increasingly worse, which is typically
the result of overfitting. In practice, we favor simpler mod-
els in order to reduce the risk of overfitting. The models,
of which window length are less than 5, have relative small
Eout. We fix the length as 4 for the main experiments, and
also try length 8 in order to discover whether state merging
can overcome the drop in Eout, see Section 4.4

4. EXPERIMENTS

4.1 Typical Methods for Comparison
In this paper, regression automata are compared with

other widely used prediction models.

• Persistent Model is the most widely used baseline
in time series forecasting tasks, which just let the pre-
dicted value equal its preceding known one.

• Autoregressive Integrated Moving Average
(ARIMA) To ensure fairness when comparing pre-
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Figure 6: PT Fitting Error vs Window Length: Er-
rors Ein, Eout on training data and testing data cal-
culated on the PT, the starting data structure for
the learning algorithm.

diction results, we use integrated ARMA (ARIMA) in
this paper since as we apply 1-st order derivatives in
the preprocessing procedure. The maximum order of
AR and MA is fixed to 3 since we have sliding window
of length 4. We select the “best fitting model” with
with lowest AIC and highest log-likelihood.

• Recurrent Neural Network (RNN) using long-
term short-term nodes [30] were very successful. We
train a model on normalized differences input and out-
put. We select 3 layers and 15 hidden neurons. The
output function is ReLU.

• Regression Tree (RT) is a IF-THEN rules based
model, which been applied successfully in time series
forecasting [31]. In this paper, the regression tree is
built using scikit-learn DecisionTreeRegressor tool1,
which is based on CART algorithm [32].

4.2 Evaluation Metrics
For notational convenience, we collect all the predicted

data and form a new vector v̂ = [v̂1, v̂2, · · · , v̂k, · · · , v̂N ].
The corresponding vector of actual values is defined as v =
[v1, v2, · · · , vk, · · · , vN ]. In this paper, the following types of
indices are calculated for fair comparisons:

• Root mean square error:

RMSE =

√√√√ 1

N

N∑
k=1

(v̂k − vk)2 (3)

• Mean absolute percentage error:

MAPE =
1

N

N∑
k=1

∣∣∣∣ v̂k − vkvk

∣∣∣∣× 100% (4)

• Mean absolute error:

MAE =
1

N

N∑
k=1

|v̂k − vk| (5)

1http://scikit-learn.org/stable/modules/generated/sklearn.
tree.DecisionTreeRegressor.html



Algorithm 1 State-merging for Regression Automata

Require: an input sample S, an occurrence threshold t, and a difference threshold td
A = PT(S) . construct the prefix tree
R = {q0} . color the start state red
B = {q ∈ Q \R | ∃l ∈ Σ : T (q0, l) = q} . color all its children blue
while B 6= ∅ do . while A contains blue states

if ∃b ∈ B s.t. ∀r ∈ R holds merge(A, r, b, td) = false then . if a blue state is inconsistent with all red states
R := R ∪ {b} . color b red
B := B ∪ {q ∈ Q \R | ∃l ∈ Σ : T (q, l) = q and #occ(q) ≥ t} . color all its children with at least t occurrences blue

else
for all b ∈ B and r ∈ R do . forall red-blue pair of states

compute the ∆AIC of merge(A, r, b) . find the best performing merge
end for
call the merge(A, r, b, td) with highest ∆AIC . perform the best merge
let q′′ be resulting state
R := R ∪ {q′′} . color the resulting state red
R := R \ {r} . uncolor the merged red state
Q := Q \ {r, b} . remove the merged states
B := {q ∈ Q \R | ∃r ∈ R, l ∈ Σ : T (q, l) = q and #occ(q) ≥ t} . recompute the set of blue states

end if
end while
return A

Algorithm 2 Merging two regression states: merge (A, q, q′, td)

Require: an RA A = 〈Q,T,Σ, q0, P 〉, two states q, q′ ∈ Q, and a threshold td
Ensure: if q and q′ are inconsistent, return false; else return A with q and q′ merged.

if |P (q)− P (q′)| ≥ td, then return false . return false if q is inconsistent with q′

create a new state q′′, and set Q := Q ∪ q′′ . add a new state q′′ to A

set #occ(q′′) := #occ(q) + #occ(q′) and P (q′′) := #occ(q)P (q)+#occ(q′)P (q′)
#occ(q′′) . (update #occ and P )

for all symbols l ∈ Σ do . for all transitions from q and q′

if T (q, l)¬ = q⊥ then set T (q′′, l) := T (q, l) . copy outgoing transitions from q
if T (q, l)¬ = q⊥ then set T (q′′, l) := T (q′, l) . copy outgoing transitions from q′

end for
for all states qs ∈ Q and symbols l ∈ Σ such that T (qs, l) ∈ {q, q′} do . for all source states of transitions to q or q′

set T (qs, l) := q′′ . copy incoming transitions to q or q′

end for
for all symbols l ∈ Σ do . for all old transitions from q and q′

if T (q, l)¬ = q⊥ and T (q′, l)¬ = q⊥, then res := merge(A′, T (q, l), T (q′, l), td) . determinize the targets
if res equals false, then return false and undo the merge . return false if the targets are inconsistent

end for
return true

4.3 Experiment Results

4.3.1 Case Study One: Wind Speed Prediction
The data used in this case is from the online weather

database of Delft University of Technology2. There is data
from 16 weather stations in total. We selected station “Rijn-
haven” among the stations with longest observation period,
from 2013-04-23 to 2015-10-12. We calculate hourly aver-
ages of the wind speed, and predict one hour ahead. Using
a sliding window of 4 hours, the data was split into a training
set containing 17537 windows with 70148 data points, and
a test set containing 4113 windows with 16452 data points.

To begin with, we compare different preprocessing strate-
gies in prefix tree. SAX generally outperforms k-means,
which provides the insights that in the wind data, the sym-
bolization based on equal space of probability better discov-
ers the patterns for the drift estimation. Logarithm differ-

2http://weather.tudelft.nl/csv/

encing generally helps to get lower MAPE, because it reflects
ratio relationship, which is consistent with the definition of
MAPE. Though local SAX is powerful in anomaly pattern
discovery, see [18], global SAX makes more sense in the ex-
periment. The global SAX and differencing strategies are
chosen in the following cases studies. To make a fair com-
parison, all other baselines are fed with difference inputs.

The evaluation results of different models are summarized
in Table 4, where the best for each index is in bold. Our
model outperforms all other baselines with in MAPE while
ARIMA shows slightly better results in RMSE and MAE.

The final merged state machine is illustrated in Figure 7.
The model’s size is drastically reduced from 350 states to
20 states (except the start state and the leaf states since
they are useless for the regression). The top-most state is
the start state. Starting from this state, the model moves
along transitions by first discretizing the next time series
value and then following the transition with that discretized
label. The first value in every state (a circle) is the mean



Table 3: Comparisons of Different Preprocessing Strategies

Methods Gloabl-SAX-diff k-means-diff Local-SAX-diff Global-SAX-logdiff k-means-logdiff Local-SAX-logdiff

RMSE (m/s) 0.5031 0.6501 0.5115 0.5072 0.6211 0.5124
MAPE (%) 18.7711 25.3068 18.9490 18.3330 20.6989 18.7300
MAE (m/s) 0.3660 0.4850 0.3725 0.3666 0.4347 0.3722

value of difference values from the training data reaching
that state. These are used to make predictions. The second
values shows the number of occurrences of every state.

The automaton has 11 loops, i.e., transitions where origin
and target state are the same, which are introduced by state
merge. Given the historic data that already abstracted into
the pattern abc (continuously increasing wind speed) for in-
stance, it starts from root state and reach the state 0.054,
which means it is expected to drift up 0.054 m/s. And for
the pattern hgf, it reaches the state -0.107, which predicts a
0.107 m/s drift down. The pattern hhh staying high speed
for 3 hours, reaches -0.145 and is predicted to slope down.

4.3.2 Case Study Two: Multi-Step Prediction
In this case study, we evaluate the regression models for

multi-steps, i.e., more than one-hour-ahead forecasting, still
using the data sets with one data point per hour. Our
input data again consists of windows, pre-processed as in
the previous case studies, except for the last element of
the window being the value for multiple steps ahead. For
example to predict a value three hours into the future, at
time T + 3, our training data contains windows of the form
(xT−2, xT−1, xT , xT+3). The evaluation results of 3-hour-
ahead and 6-hour-ahead predictions are listed in Table 5
and Table 6. With the increasing of prediction interval, the
persistent model doesn’t work so well as in Case One. Our
model improves significantly compared to other approaches.

4.3.3 Case Study Three: Wind Power Prediction
In this case study, we investigate the wind power predic-

tion using the data set from National Renewable Energy
Laboratory (NREL) of U.S. Department of Energy3. The
training data starts from 2004-01-02 00:00:00 to 2006-05-
31 23:50:00, while the testing data starts from 2006-06-01
00:00:00 to 2007-01-01 23:50:00.

Similar to the wind speed forecasting case study, we apply
our model in wind power prediction, i.e. using the historical
wind power data as input and the one, three, and six hour
ahead power as output. Wind power forecasting is challeng-
ing due to the non-linearity resulting from the dead zone
and the saturation characters. More specifically, power out-
put has zero value when the wind speed value is lower than
the wind turbines’ cut-in threshold, meanwhile the output
reaching constant rated power if the wind speed is greater
than the cut-off upper-bound. Table 7 gives a comparison of
the power prediction for different models. Note that due to
the dead zone character of wind power system, lots of zero
value of real data exist making MAPE metric ill-defined.
Only RMSE and MAE are reported for comparison. From
the results we can see that ARIMA performance better in 1-
hour-ahead data set. ARIMA is powerful in one step ahead
because the on-line updating of both input autoregressive

3http://www.nrel.gov/electricity/transmission/eastern wind
dataset.html

values and residual errors is efficient in short term forecast-
ing. However, in relative longer prediction intervals, our
model gains improvement over baselines.

4.4 Learning and Model Complexity
Learning finite state automata exactly with incomplete

samples is NP-hard [33]. State-merging algorithms use heuris-
tics, and generally have a worse-case complexity in the order
of a cubic term in the input data size. Evaluating a regres-
sion automata is linear sequence of looking up the transitions
to the last node, and adding the predicted speed difference to
the previous speed value. Our automata only have about 20
states, requiring to store 20 float values and at most 20×|Σ|
triples of state-symbol-state for the transition matrix. In
practice, the runtime of RAs, including training and test-
ing, on our Intel 2.6 GHz i5 processors using a single core
doesn’t need more than a minute. The comparisons with all
baselines are listed in Table 9. We also compare the perfor-
mance of the prefix tree with the performance our merged
regression automata. The prefix tree is a compact repre-
sentation of the input data and is generated in linear time.
While it is generated much faster, it does not generalize, and
is large in size. In Figure 6, shows the training and testing
error in prefix trees with different depths. The longer the
window size, i.e. the higher the order of auto-regression,
the deeper the prefix tree will get. We try to investigate
how state merging influences the model performance and
how it relates to varying size measured in states. Table 8
shows the benefit of the learning process. impr(%) is the
automaton’s improvement in RMSE over prefix trees. For
longer sliding windows, state merging clearly improves the
RAs performance more. The RMSE of model with length-8
has very closed accuracy with length-4 model after learning.
It surprisingly provides the evidence of the generalization
efficiency of our learning algorithm.

5. CONCLUSION
The main contribution of this work is the extension of

automata for time series regression. A novel state merging
approach for learning small automata from numeric data is
proposed using the DFASAT framework. To the best of our
knowledge, we provide the first automaton model together
with a learning algorithm that can be directly applied to
time series regression problems. Several case studies are
performed, which demonstrate that our approach allows for
powerful generalization from training to testing data. In ad-
dition to good performance in practice, our algorithm pro-
vides succinct and interpretable models, which can be essen-
tial for deployment in real wind power parks. In the near
future, we will make even more use of the numeric wind
speed/power data during merging. This way, we can exploit
spatial information, either by modifying our preprocessing
to create a multivariate regression problem, or considering
additional information such as location, directionality, cor-
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Figure 7: The merged RA for the one-hour-ahead wind-speed prediction.

Table 4: One-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 0.4996 0.5031 0.4956 0.6060 0.6884 0.5077
MAPE (%) 18.5797 18.7711 18.7355 24.483 27.1475 18.6090
MAE (m/s) 0.3629 0.3660 0.3615 0.4707 0.5116 0.3685

relation, and standard deviations during consistency checks
and merging. Additionally, different discretization strategies
could be further invested for better abstraction of numeri-

cal data. An interesting approach would be to discretize
this data on-the-fly during the learning process, as has been
before with temporal data in timed automata [27]. In ad-



Table 5: 3-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 0.8722 0.8753 0.8821 1.0015 0.9892 0.8930
MAPE (%) 32.5249 32.6794 33.1649 37.2406 38.8493 33.2933
MAE (m/s) 0.6321 0.6347 0.6432 0.7637 0.7404 0.6489

Table 6: 6-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 1.2048 1.2083 1.2286 1.2617 1.3038 1.2344
MAPE (%) 46.8085 47.0155 48.0161 47.02642 51.9327 48.1143
MAE (m/s) 0.8974 0.9013 0.9192 0.9444 0.9855 0.9226

Table 7: Power Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

1-hour-ahead
RMSE (MW) 1.8952 1.8979 1.8673 1.9859 2.6541 1.9830
MAE (MW) 1.2610 1.2613 1.2312 1.2814 1.8066 1.2793

3-hour-ahead
RMSE (MW) 3.7427 3.7435 3.7738 4.6883 4.4193 3.8796
MAE (MW) 2.6438 2.6458 2.6196 3.6595 3.1597 2.6832

6-hour-ahead
RMSE (MW) 5.0053 5.0088 5.0434 5.1567 5.4872 5.1486
MAE (MW) 3.6529 3.6546 3.6540 3.7355 4.0661 3.6529

Table 8: Improvement due to state-merging over the prefix tree in the RSME measure at different sliding
window length.

1-hour-ahead 3-hour-ahead 6-hour-ahead

RA Prefix Tree impr (%) RA Prefix Tree impr (%) RA Prefix Tree impr (%)

length-4 0.4996 0.5031 0.70 0.8722 0.8753 0.35 1.2048 1.2083 0.29
length-8 0.4994 0.5959 16.19 0.8737 0.9333 6.39 1.2089 1.2495 3.25

Table 9: Runtime Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

Runtime 19.086s 1.806s 1m48.796s 19m54.580s 2.035s 1.081s

dition to mean forecasting, probabilistic prediction is also
important for decision purpose [34]. RAs can generate the
probabilities for symbolic forecasts, which will be done in
the near future. We will also try the rolling evaluation for
concept drift problems [17].
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