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Abstract

Recent advances in commodity depth or 3D sensing technologies have enabled us to move
closer to the goal of accurately sensing and modeling the 3D representations of complex
dynamic scenes. Indeed, in domains such as virtual reality, security, surveillance and
e-health, there is now a greater demand for affordable and flexible vision systems which
are capable of acquiring high quality 3D reconstructions. Available commodity RGB-D
cameras, though easily accessible, have limited field-of-view, and acquire noisy and low-
resolution measurements which restricts their direct usage in building such vision sys-
tems. This thesis targets these limitations and builds approaches around commodity 3D
sensing technologies to acquire noise-free and feature preserving full 3D reconstructions
of dynamic scenes containing, static or moving, rigid or non-rigid objects. A mono-view
system based on a single RGB-D camera is incapable of acquiring full 360° 3D re-
construction of a dynamic scene instantaneously. For this purpose, a multi-view system
composed of several RGB-D cameras covering the whole scene is used. In the first part of
this thesis, the domain of correctly aligning the information acquired from RGB-D cam-
eras in a multi-view system to provide full and textured 3D reconstructions of dynamic
scenes, instantaneously, is explored. This is achieved by solving the extrinsic calibration
problem. This thesis proposes an extrinsic calibration framework which uses the 2D
photometric and 3D geometric information, acquired with RGB-D cameras, according
to their relative (in)accuracies, affected by the presence of noise, in a single weighted
bi-objective optimization. An iterative scheme is also proposed, which estimates the pa-
rameters of noise model affecting both 2D and 3D measurements, and solves the extrinsic
calibration problem simultaneously. Results show improvement in calibration accuracy
as compared to state-of-art methods. In the second part of this thesis, the domain
of enhancement of noisy and low-resolution 3D data acquired with commodity RGB-D
cameras in both mono-view and multi-view systems is explored. This thesis extends
the state-of-art in mono-view template-free recursive 3D data enhancement which tar-
gets dynamic scenes containing rigid-objects, and thus requires tracking only the global
motions of those objects for view-dependent surface representation and filtering. This
thesis proposes to target dynamic scenes containing non-rigid objects which introduces
the complex requirements of tracking relatively large local motions and maintaining data
organization for view-dependent surface representation. The proposed method is shown
to be effective in handling non-rigid objects of changing topologies. Building upon the
previous work, this thesis overcomes the requirement of data organization by propos-
ing an approach based on view-independent surface representation. View-independence
decreases the complexity of the proposed algorithm and allows it the flexibility to pro-
cess and enhance noisy data, acquired with multiple cameras in a multi-view system,

simultaneously. Moreover, qualitative and quantitative experimental analysis shows this
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method to be more accurate in removing noise to produce enhanced 3D reconstructions
of non-rigid objects. Although, extending this method to a multi-view system would
allow for obtaining instantaneous enhanced full 360° 3D reconstructions of non-rigid
objects, it still lacks the ability to explicitly handle low-resolution data. Therefore, this
thesis proposes a novel recursive dynamic multi-frame 3D super-resolution algorithm
together with a novel 3D bilateral total variation regularization to filter out the noise,
recover details and enhance the resolution of data acquired from commodity cameras in
a multi-view system. Results show that this method is able to build accurate, smooth
and feature preserving full 360° 3D reconstructions of the dynamic scenes containing

non-rigid objects.
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Chapter 1

Introduction

1.1 Motivation and Scope

Sensing and modeling the 3D world around us has been one of the fundamental goals of
research in computer vision and robotics. The acquired 3D models/reconstructions find
their applications in various domains such as security and surveillance, virtual reality [1—
3], 3D printing [4], 3D telepresence systems [5], creation of viewpoint free 3D videos [6],
simultaneous localization and mapping [7], etc. Most of these applications require the
3D reconstructions to be noise-free while containing complete geometric and photometric

information from scenes with static or dynamic objects.

Reconstruction of the 3D world has traditionally been achieved by using a single moving
camera, or multiple static photometric cameras with overlapping field-of-views (FOVs).
It requires the detection of projections of same 3D points in 2D images across different
views. This makes the 3D reconstruction process highly sensitive to lighting conditions;
thus, limiting the usage of photometric cameras to elaborate setups [8]. These limita-
tions can be relaxed for reconstructing specific objects for which pre-built templates are

available or can be built a priori [9-17].

Recently available RGB-D or 3D cameras equipped with commodity depth sensing tech-
nologies based on structured-light or time-of-flight principles, such as Microsoft Kinect
version 1 and 2 [18], and Asus Xtion Pro Live [19], have opened further the possibilities
of research in this domain. They provide, in addition to photometric 2D information,
2.5D range information which can directly be converted into 3D point clouds. Such cam-
eras, with their 3D sensing capabilities, have diminished the barriers for 3D acquisition
and reconstruction. However, the partial 3D measurements of the scenes acquired by

these cameras are noisy and have limited resolution [20, 21]. Hence, the goal of using
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commodity cameras in an easy-to-build and flexible setup for acquiring enhanced and
high quality, i.e., high accuracy and features-preserving, full 360° 3D reconstructions of

scenes remains unfulfilled.

The acquisition of full 3D reconstructions of scenes via commodity RGB-D cameras can
be accomplished by using a single moving camera, known as a mono-view system, with
its location constantly being tracked [1, 4, 7]. This method is simple and attractive;
however, it has the drawback of not allowing to fully reconstruct dynamic scenes, i.e.,
scenes containing objects in motion, at each time-step. This problem can be solved by
using multiple fixed RGB-D cameras. This setup is known as a multi-view system where
the FOVs of all cameras together cover the entire scene [2, 3, 5, 22]. In this case, the
relative poses of all cameras are required for aligning the partial 3D reconstructions. The
problem of estimating the relative poses of cameras in a multi-view system is known as
extrinsic calibration. To solve this problem researchers have usually employed classical
extrinsic calibration methods which either use photometric information, also referred to
as 2D or RGB information [5, 23, 24], or 3D geometric information [25-27] separately
instead of using them together to complement the extrinsic calibration process and

achieve more accurate results.

Once all the relative poses of cameras are estimated in a multi-view system, the 3D
information acquired from each camera can be put into a single reference frame. This
raw information has limited resolution and suffers from high noise contamination, which
inhibits its direct use in various aforementioned applications. Research has been car-
ried out to improve the quality of information acquired via commodity depth sensing
technologies, in both mono-view and multi-view systems. On the one hand, there are
template based methods which recursively fuse the captured frame with a smooth tem-
plate to provide high quality reconstructions of non-rigid objects undergoing local mo-
tions (also called deformations). These methods are limited to the class of objects for
which templates are available or can be constructed [28-30]. On the other hand, there
are template-free methods which recursively fuse a specified number of captured frames
to produce high quality 3D reconstructions [1, 2, 31]. The downside of these methods,
using both mono-view [1] and multi-view systems [2], is their inability to tackle non-
rigid objects undergoing local deformations [32, 33]. This means that they can only
reconstruct rigid or quasi-rigid objects which are either static, or are undergoing global
deformation [34-36].

The scope of this thesis is to address the above mentioned limitations of state-of-art to
synthesize high-quality, and full 3D reconstructions of dynamic scenes, containing rigid
or non-rigid objects, from the data acquired via commodity RGB-D or 3D cameras. The

first part of this thesis deals with the construction of an RGB-D multi-view system by
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efficiently exploiting the acquired 2D photometric and 3D geometric information together
to solve the extrinsic calibration problem, and provide full textured 3D reconstructions
of scenes at each time-step. The second part of this thesis deals with template-free
and online enhancement of accuracy and details of, noisy and low-resolution (LR), 3D
reconstructions acquired via commodity RGB-D or 3D cameras based mono-view and
multi-view systems. We target 3D reconstructions of dynamic scenes containing both
rigid or non-rigid objects, undergoing local and global motions, respectively. In the next

two sections we expand on the challenges which lie in the way achieving our objectives.

1.1.1 Calibration of RGB-D Multi-View Systems

As mentioned before extrinsic calibration, or simply calibration in the context of a multi-
view system, is the process of finding relative poses of all cameras to correctly align the
partial 3D reconstructions acquired by them. It is performed by extracting the infor-
mation of common points, known as feature points, from the acquisitions of different
cameras in the multi-view system. Feature points are usually extracted from photo-
metric 2D or geometric 3D acquisitions of objects with known textural and geometric
properties [2, 22, 23, 37, 38].

Most of the techniques for extrinsic calibration of RGB-D multi-view systems rely on
well established 2D camera based calibration routines and pose refinement procedures [5,
23, 39, 40]. A well established method is Bundle Adjustment (BA) [3, 41, 42] which uses
2D feature points extracted from the RGB or infra-red (IR) images [5, 23, 23, 24, 24, 27].
A major drawback of 2D only calibration approaches is their inability to tackle noise
specific to depth sensors. This causes problems in alignment of 3D data from multiple
cameras. Researchers have tried to remedy this problem via explicit depth correction
for each camera separately [2, 3, 5, 43]. On the other hand, a final refinement step based
on Iterative Closest Point (ICP) [44] algorithm is also introduced [27]. ICP solves the
extrinsic calibration problem using 3D data only. This final refinement step, based on
ICP, tries to mitigate the pose misalignment problem due to depth specific sensor noise.
The extrinsic calibration methods mentioned here belong to the classical state-of-art for
extrinsic calibration of multi-view systems composed of either only 2D, or 3D cameras.
An RGB-D camera provides both 2D photometric (RGB and IR) and 3D geometric
(depth) information simultaneously. Therefore, it is interesting to investigate, develop
and analyze calibration methods, tailored for RGB-D multi-view systems, which utilize
both 2D and 3D information with respect to the noise present in them, to produce
more accurate calibration results. In this regard, some weighted bi-objective (pair-wise)
pose estimation schemes, mainly in the field of robotics, have been proposed. These

methods are restricted to selecting the relative importance (weight) given to each type of
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information manually [3, 7, 45] or empirically [46] without explicitly taking into account

their relative accuracies.

In this thesis we extend the state-of-art to propose a calibration framework tailored for
RGB-D multi-view systems. It combines the utilization of both 2D and 3D information
in a single weighted bi-objective optimization. We propose an automated scheme which
estimates the relative accuracy of 2D and 3D information for computing the weight to

be used in the proposed optimization for accurate estimation of relative camera poses.

1.1.2 Enhancement of 3D Dynamic Videos

As mentioned before the raw 3D data acquired via commodity depth sensing technologies
suffers from high magnitude of noise and has limited resolution. Therefore, there is a
need to enhance this data in terms of removal of noise and recovery or preservation of
details to accurately reconstruct generic dynamic scenes without the use of any priori

information.

Template-free enhancement of 3D dynamic videos, via recursive temporal data fusion,
containing rigid objects has been shown to produce noise-free 3D reconstructions in both
mono-view [1, 33, 34, 47, 48] and multi-view systems [2]. The focus of research has since
shifted towards tackling non-rigid objects undergoing local deformations. This requires
robust and efficient tracking of local changes in each object’s topology thus making the
recursive data fusion task considerably more challenging. Several recent techniques have
targeted high quality and complete 3D reconstructions of quasi-rigid objects, undergoing
minimal local motions, by recursively fusing filtered information from different views [49—
52]. For tackling non-rigid objects and noisy camera acquisitions, some offline and
computationally expensive methods have also been proposed. They use as input a whole
sequence of acquired frames and produce as output a sequence containing enhanced and
complete 3D reconstruction for per-frame [53-56]. These methods are also known as 4D
spatio-temporal reconstruction methods. They are not suitable for online or real-time

applications and face limitations in handling large local motions [57, 58].

In this thesis, we extend the state-of-art in the domain of online methods based on
recursive temporal data fusion for producing enhanced and complete 3D reconstructions
of dynamic scenes containing non-rigid objects undergoing large local motions. We
propose methods based on robust non-rigid object tracking and recursive data fusion to
remove noise in 3D dynamic videos acquired from mono-view systems. We extend our
work to noise-removal and resolutions enhancement of 3D dynamic videos obtained from

multi-view systems to obtain enhanced and full 3D reconstructions of dynamic scenes.
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1.2 Objectives and Contributions

The objective of this thesis is to tackle the limitations and challenges mentioned in Sec-
tion 2.3.1 and Section 1.1.2. Specifically, our aim is to investigate, develop and analyze
online techniques for enhanced and complete 3D reconstructions of dynamic scenes con-
taining non-rigidly deforming objects using commodity RGB-D or depth cameras. The

main contributions of this thesis are as follows:

1. RGB-D Multi-View System Calibration: One of the most crucial require-
ments for building a multi-view system is the estimation of relative poses of all
cameras. An approach tailored for an RGB-D camera based multi-view system is
missing. We propose a method termed BAICP+ which combines the BA [41] and
ICP [59] algorithms to take into account both 2D photometric and 3D geometric
information in a weighted bi-objective minimization formulation to estimate rela-
tive pose parameters of each camera. BAICP+ can be easily adapted to varying
quality of 2D and 3D data. We propose to model the measurement noise in 2D
and 3D features points, and use it to model the noise in the corresponding cost
functions derived from BA and ICP, respectively. This allows us to analytically
derive the proposed weighted bi-objective cost function via the Maximum Likeli-
hood (ML) method. The weighting factor appears as a function of noise in 2D
and 3D measurements and takes into account the effect of residual errors on the
optimization. We propose an iterative scheme to estimate noise variances in 2D
and 3D measurements, in order to simultaneously compute the weighting factor
together with the camera poses. Quantitative and qualitative evaluation of the
proposed approach, on simulated and real data, shows improved calibration accu-
racy as compared to refinement schemes which use only 2D or 3D measurement

information.

This work has the following associated publications:

e H. Afzal, D. Aouada, D. Fofi, B. Mirbach, and B. Ottersten. RGB-D Multi-
view System Calibration for Full 3D Scene Reconstruction. In 22nd Inter-
national Conference on Pattern Recognition (ICPR), pages 2459-2464, Aug
2014.

e H. Afzal, D. Aouada, D. Fofi, M. Antunes, B. Mirbach, and B. Ottersten.
Bi-objective Framework for Sensor Fusion in RGB-D Multi-View Systems:
Applications in Calibration (Under review in The Visual Computer). 2016.

2. Mono-View Enhancement of 3D Dynamic Videos: Recursive and template-

free enhancement techniques for mono-view dynamic depth or 3D videos, such as
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KinectFusion and its derivatives [1, 47, 48], are limited to rigid objects only. In this
thesis, we propose KinectDeform, an algorithm which targets enhanced 3D recon-
struction of scenes containing non-rigid objects, undergoing local motions. It is the
first non-rigid extension of KinectFusion and combines a fast local scene tracking
algorithm based on octree data representation, and hierarchical voxel associations
with a recursive data filtering mechanism. We analyze its performance on both
real and simulated data and show improved results in terms of smoothness and
feature preserving 3D reconstructions with reduced noise. While KinectDeform
shows satisfactory performance, it is based on a view-dependent data representa-
tion scheme due to which it requires organized data. Non-rigid registration destroys
the data organization and an expensive re-organization step needs to be carried out.
Therefore, we propose a view-independent technique. It uses octrees based space
subsampling and explicit projection-based Moving Least Squares (MLS) surface
representation. This improved technique is called VI-KinectDeform. Moreover,
the empirical weighted filtering scheme in KinectDeform is replaced by an auto-
mated fusion scheme based on a Kalman filter [60]. We analyze the performance
of KinectDeform and VI-KinectDeform both qualitatively and quantitatively and
show that both are able to produce enhanced and feature preserving 3D recon-

structions.

This work has the following associated publications:

e H. Afzal, K. A. Ismaeil, D. Aouada, F. Destelle, B. Mirbach, and B. Otter-
sten. KinectDeform: Enhanced 3D Reconstruction of Non-Rigidly Deforming
Objects. In The 3DV Workshop on Dynamic Shape Measurement and Anal-
ysis, December 2014.

e H. Afzal, D. Aouada, F. Destelle, B. Mirbach, and B. Ottersten. View-
Independent Enhanced 3D Reconstruction of Non-rigidly Deforming Objects.

In 16th International Conference on Computer Analysis of Images and Pat-
terns (CAIP), September 2-4, 2015.

3. Multi-View Enhancement of 3D Dynamic Videos: Several approaches
for enhanced and full, or complete, 3D reconstructions of non-rigid objects have
been proposed in the literature, but they suffer from several limitations due to
requirement of a template [29, 50, 61], inability to tackle large local deforma-
tions [53, 54], inability to tackle highly noisy and LR data [3, 62], and inability to
produce online results [57]. Although our proposed mono-view approach, namely
VI-KinectDeform, is able to handle most of these challenges and can be extended
to multi-view systems easily, it requires space subsampling based on octrees sev-

eral times per iteration; thus, making it expensive for use in real-time applications.



Chapter 1. Introduction 7

Moreover, it does not explicitly target noisy LR data. In this thesis we propose a
novel recursive and dynamic multi-frame 3D super-resolution scheme which pro-
duces high-resolution (HR), high-quality and complete 3D reconstructions at ev-
ery time-step by fusing the current acquisition, from a multi-view commodity 3D
camera setup, and the result of the previous iteration. The proposed approach is
template-free and works directly on 3D points, thus giving it flexibility to the types
of objects being reconstructed, and the ability to capture their characteristics, i.e.,
position and motion in the 3D world, more accurately. To handle system blur and
recover smooth position and motion estimates, a novel and efficient multi-level
3D Bilateral Total Variation (BTV) regularization is proposed which is used to
correct per-point position and motion estimates, at every iteration. Detailed ex-
perimental, quantitative and qualitative, evaluations have been carried out using
both simulated and real data. Results show that the proposed dynamic scheme
outperforms the state-of-art filtering algorithms and produces feature-preserving

and smooth reconstructions.

This work has the following associated publications:

e H. Afzal D. Aouada, B. Mirbach, and B. Ottersten. Full 3D Reconstruction
of Non-Rigidly Deforming Objects (To be submitted to Computer Vision and
Image understanding). 2016.

1.3 Thesis Outline

The organization of this dissertation is as follows:

e Chapter 2: An overview of the commodity depth sensing technologies and the
challenges they face in the way of acquiring accurate depth measurements has
been presented. This is followed by backgrounds on data acquisition from RGB-
D multi-view systems, RGB-D multi-view system calibration and enhanced 3D

reconstruction, respectively.

e Chapter 3: A sensor-fusion technique, called BAICP+, tailored for calibration
of RGB-D multi-view systems is presented which combines Bundle Adjustment
(BA), which makes use of 2D photometric information, and Iterative Closest Point
(ICP) algorithm, which makes use of 3D geometric information. Experiments
with simulated and real data show improved performance as compared to single

modality based state-of-art methods.
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e Chapter 4: Building on BAICP+, a completely automated bi-objective sensor
fusion framework for RGB-D multi-view system calibration is presented. It ana-
lytically derives a weighted bi-objective cost for estimation of calibration parame-
ters. The cost function depends on measurement noise in 2D and 3D information
which can also be estimated automatically in conjunction with calibration param-
eters. A comprehensive qualitative and quantitative analysis of the performance

of proposed technique is presented.

e Chapter 5: KinectDeform, a mono-view recursive method for enhanced 3D re-
construction of non-rigid objects undergoing local deformations is presented. It
combines an efficient local non-rigid registration method with view-dependent im-
plicit surface representation and is capable of handling generic objects undergoing

large local deformations.

e Chapter 6: VI-KinectDeform, which improves upon KinectDeform by replacing
the view-dependent implicit surface representation with a view-independent ex-
plicit surface representation is presented. It also provides an improved data fusion
with the help of Kalman filter. Proposed improvements are verified via qualitative

and quantitative performance analysis of both algorithms.

e Chapter 7: A framework which proposes a multi-frame recursive dynamic 3D
super-resolution algorithm is presented. The goal of this framework is the en-
hancement of resolution and quality of full 360° 3D reconstructions of dynamic
scenes, containing non-rigid objects, acquired with commodity 3D cameras based
multi-view systems. This framework also targets system blur and achieves globally
smooth point clouds by using a novel 3D bilateral total variation (BTV) regular-
izer. A comprehensive qualitative and quantitative performance analysis of the

the proposed framework on real and simulated data is presented and discussed.

e Chapter 8: A novel 3D bilateral total variation (BTV) regularization for filtering
and smoothing 3D point clouds is presented. The regularizer uses a gradient

operator built upon exploiting surface properties in local point patches.

e Chapter 9: Conclusions drawn from contributions resulting from research carried
out during the course of this thesis together with perspectives for future work are

presented.



Chapter 2

Background

This chapter provides an overview of the basic concepts and assumptions underlying
the construction of RGB-D multi-view systems. Moreover, recursive 3D data fusion for
producing enhanced and full 3D reconstructions of dynamic scenes containing non-rigidly

deforming objects is also discussed.

We start by reviewing the acquisition methodologies of commodity RGB-D cameras,
with a focus on depth sensing, based on structured-light and time-of-flight principles.
Moreover, we discuss the systematic and non-systematic factors affecting measurements
of these cameras. After that we discuss the use of such cameras in the construction
of a multi-view systems and formulate the extrinsic calibration problem while briefly
describing state-of-art methods, namely Bundle Adjustment [41] and Iterative Closest
Point (ICP) [44] algorithm, for solving this problem. Similarly we formulate the recursive
3D data enhancement problem and provide a brief description of state-of-art mono-view

data enhancement algorithm called KinectFusion [1].

2.1 Sensing via Commodity RGB-D Cameras

The recent and ubiquitous spread of affordable depth /3D sensing technologies has largely
been due to the introduction of commodity RGB-D cameras such as Microsoft Kinect
version 1 and 2 [18], and Asus Xtion Pro Live [19]. Such cameras are equipped with
an RGB camera and a depth camera, and are able to simultaneously acquire mapped
RGB and depth images of the scene in their field-of-view (FOV). The acquired RGB
and depth images can be used to produce textured 3D reconstructions as shown in
Figure 2.1. The depth sensing system present in commodity RGB-D cameras, and other

depth only cameras such as PMD Camboard Nano [20], uses active sensing technology,
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FIGURE 2.1: RGB-D camera components and acquisition. An RGB-D camera, such
as Asus Xtion Pro Live [19] shown here, is composed of an RGB camera for acquiring
an RGB image and an infra-red (IR) camera for acquiring an IR image which,
together with the knowledge of the IR pattern/signal projected from the IR projector,
is used to compute the depth image. RGB and depth images are used to generate
textured 3D reconstructions.

via an infra-red (IR) camera and an IR projector, based on either structured-light [19] or
time-of-flight [20] principles. We give an overview of these principles to understand their
working principle for depth sensing. This is followed by an overview of the challenges

faced by them in acquiring accurate depth measurements.

2.1.1 Depth Sensing Technologies

1. Structured-light Cameras: Structured-light (SL) based depth sensing available
in commodity cameras such as Kinect version 1 uses active stereo-vision technology.
A near infra-red (NIR) laser projector projects a known pattern onto the scene.
The projected pattern gets deformed due to geometry of the scene. The scene is
then observed by a monochrome intensity camera from a different direction [63],
as shown in Figure 2.2. By analyzing the distortion of the pattern in the observed
image with respect to the original projected pattern a per pixel disparity value d
is computed [63]. Assuming knowledge of cameras’s horizontal focal length f and
the baseline b between camera and projector, the depth value z for each image
pixel can be computed via z = %. Here both d and f are given in pixel-units

while b is in the units of length.

2. Time-of-Flight Cameras: Time-of-Flight (ToF) based depth sensing available

in commodity cameras such as Kinect version 2 uses NIR intensity modulated
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FIGURE 2.2: Illustration of the basic principle of depth/3D sensing with a
structured-light camera. 3D geometry is computed by using deformation in the
observed and known pattern projected onto the scene (a straight line in this case).
(Reproduced from [64]).

periodic light signal to actively illuminate the scene [63]. The optical camera
captures the reflected light signal per pixel, and correlates it with the projected
signal to compute the phase shift Ap = p(t) —p(t+9), as illustrated in Figure 2.3.

The phase difference Ay is equivalent to the time shift in a periodic signal [63].

cAp
2w

It is then used to compute the depth z for the corresponding pixel via z =

where c is the speed of light.

2.1.2 Depth Sensing Challenges

In this section we briefly describe the challenges faced by the ToF and SL based depth
sensing technologies in acquiring accurate depth measurements. This topic has been

extensively discussed in the literature [63, 65, 66].

1. Systematic Depth Errors: Both SL and ToF cameras suffer from systematic
errors in depth measurements due to inadequate intrinsic calibration and limited
resolution [63]. The errors due to limited resolution are directly proportional to
the increase in distance of points being measured. Moreover, due to mixing of
different optical signals with the reference signal, ToF cameras have to approxi-
mate the original sinusoidal signal shape, or phase demodulation function, which
causes further systematic errors [63]. Moreover, the use of active-light depth sens-

ing technologies in a multi-view system causes interference problems resulting in
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inaccurate or undefined depth measurements. These problems can be tackled by
for example using ”Shake‘n’Sense” setup in the case of SL cameras [2, 67], and by

using unique modulation frequencies, in the case of ToF cameras [68].

2. Non-Systematic Depth Errors: Long exposure times can cause over-saturation
of light which may cause difficulties in pattern detection and hence distance/depth
computation in SL cameras. Over-saturation can affect the depth measurements
in ToF cameras as well, but they are usually equipped with band-pass filters to
suppress background light, hence making them more robust and more suitable for
use in outdoor environments [63]. Moreover, light scattering or multi-path effects
are another source of errors in depth measurements acquired from ToF or SL based
active-light systems. Furthermore, object boundaries suffer from inhomogeneous
depth measurements due to occlusion from the projected pattern, in the case of SL
cameras, and mixing of foreground and background signals, in case of ToF cam-
eras. The pixels containing such inaccurate boundary measurements are known as
flying pixels. Temperature-drift is also a source of error in both types of devices

wherein the depth measurements vary before and after the warm-up period.

2.2 RGB-D Multi-View System

Herein we introduce the model of the considered RGB-D multi-view system. Let us
consider a multi-view system composed of N intrinsically calibrated RGB-D cameras
with intersecting FOVs, as shown in Figure 2.4. At a fixed time ¢, every RGB-D camera
I, with [ = 1,--- | N, acquires mapped RGB and depth images of resolution m x n,
where m,n € N*, denoted by C(; ;) and D), respectively. Each pixel i is defined by its
position in the image plane where q} = (ul,v/)T, and u! € {1,--- ,n} , v} € {1,--- ,m}
and i € {1,--- ,mn}. We assume that the intrinsic parameters of each camera [ are

known and can be represented by the matrix:

0 o
Ki=|0 s &, (2.1)
0 0 1

where (f}*, f') represent the focal lengths of camera [, and (c}', ¢]') represent the center of
its imager, in horizontal and vertical directions, respectively. Using the matrix K;, depth
image D(; ;) can be converted to a 3D vertex map V ;) of dimensions 3 x m x n. The
tensor V; ;) represents the partial 3D reconstruction of the scene, acquired with camera

I, and contains 3D geometric points pél,t) € R3, such that pl('l’t) = ¥(q’, D4, K;) where
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W(-) uses camera’s intrinsic parameters to convert a depth value at pixel location q' in

D+ to the corresponding 3D point péu).

2.3 RGB-D Multi-System Calibration

2.3.1 Problem Formulation

In this section, we formulate the extrinsic calibration problem for an RGB-D multi-view
system. We drop the subscript for time ¢ as it is fixed for this problem. In order to
correctly align the partial 3D reconstructions {V;}, where [ = 1,--- | N, acquired by N
RGB-D cameras, it is necessary to accurately estimate their positions with respect to a
global reference frame, referred to as world and denoted by w, as shown in Figure 2.4.

Each camera’s relative position with respect to w is defined by:

R, t
T, = Tl n, (2.2)

where T; € SE(3) represents the rigid transformation, from camera [ to w. The matrix
R, is rotation matrix in SO(3) and t; € R? is translation vector. Therefore the same
point p € R3 in w viewed by camera [ as p; and by cameras k as py can be related to

the cameras’ reference frames as follows:
Rip; +t; = Rypy + tg. (2.3)

Similarly, for a given point r € R? in w, its projection on each camera’s image plane

results in 2D pixel coordinates q;, such that:
q = d} (Kla Tla I') ) vza (24)

where 1(.) is world to image plane projection function.

The problem at hand may therefore be stated as follows. Given N RGB-D cameras
in a multi-view system with acquired RGB images {Cy,--- ,Cxy} and 3D vertex maps
{V1,---,Vy}, we assume knowledge of H < mn matching points in each camera’s
RGB image plane referred to as 2D features and denoted as [qll, e ,qu |. Similarly,
we assume knowledge of J < mn matching 3D points in each camera’s 3D vertex map
called 3D features and denoted as [pll, e ,pf ]. Moreover we assume knowledge of each
camera’s intrinsic parameters, K = [K1, -+, Ky]. Using this information, we want to

find the estimates of the parameters T = [Ty, .-, Ty].
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2.3.2 Background and Previous Work

In this section, we introduce two state-of-art pose refinement algorithms namely Bundle
Adjustment (BA) [41] and Iterative Closest Point(ICP) [44] algorithm, which use the
2D and 3D features respectively, to solve the extrinsic calibration problem described in
Section 2.3. Bundle Adjustment (BA) has been the method of choice for problems related
to multi-view 3D reconstruction and pose refinement based on 2D features extracted from
RGB images [41], while Iterative Closest Point (ICP) algorithm has been the de facto

solution for pose refinement problems when only 3D features are available [44, 59].

2.3.2.1 Bundle Adjustment

Bundle Adjustment (BA) requires an initial estimate of the pose parameters. Moreover,
it also requires an estimate of 3D points i.e., [r!,- - v ], corresponding to available 2D
feature points [qll, e ,qf{ ]. These estimates are then refined by computing the error
of projection of estimate of each 3D point r*, h = 1,--- , H, corresponding to the 2D

feature point qlh to camera [ via:
a?(s?) = q? - 77/} (Klea rh> ) (25)

where a)'(S]') € R? and S = (T, r") I. Therefore, the total BA cost to be minimized for
the refinement of estimates of each camera’s pose parameters together with the estimates
of 3D points corresponding to 2D feature points is given as:
N
Vea(8) = tr(A](S)A(S)), (2.6)

=1

where S = (T,r), S; = (Ty,r), r = [r!, -+ ,r¥] and Ai(S;) = [a}(S}), --- ,al (SH)].

2.3.2.2 Iterative Closest Point

Iterative Closest Point (ICP) algorithm also uses initial estimates of the pose parameters
and minimizes the Euclidean distance between corresponding 3D feature points from

different views, such that:

b{,k(Tlv Ty) = (Rip] +t1) — (Rep), + t1), (2.7)

IBA can also refine the estimate of intrinsics K if required
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FIGURE 2.3: Tllustration of the basic principle of depth/3D sensing via time-of-flight
(ToF) camera. 3D geometry of the scene is computed by using the phase delay
between projected and sensed light signal. (Reproduced from [64]).

where b{k(Tl,Tk) € R¥and j € [1,---,J]. Therefore, the total ICP cost to be mini-

mized for refinement of each camera’s pose parameters is given as:

Viep(T) = > tr(B](Ty, T)By (T, Th)), (2.8)
1<l k<N
14k

where By (Ti, Tr) = [b} (T, Tg), - -+, by (Ty, Tp)].

2.4 Enhanced 3D Reconstruction

2.4.1 Problem Formulation

We herein formulate the problem of obtaining enhanced 3D reconstruction of dynamic
scenes using the data acquired with RGB-D or depth only cameras using template-free
recursive data fusion. We start by formulating this problem for a mono-view system and
discuss its extension to a multi-view system in order to obtain full and high quality 3D

reconstructions of dynamic scenes.

A fixed and fully calibrated depth camera acquires a sequence of consecutive noisy mea-

surements of a dynamic scene in the form of depth maps {D;} and their corresponding



Chapter 2. Background 16

/ RGB-D Multi-
View System

! Partial 3D
Reconstructions

FIGURE 2.4: A multi-view system composed of 4 RGB-D cameras with overlapping
field-of-views (FOVs) to capture the full scene. The poses of these cameras relative to
each other, or to a common global reference frame w assumed to be lying in camera
C1, are unknown therefore the partial 3D reconstruction acquired by them cannot be
correctly aligned.

3D vertex maps {V,}. This data may represent deformable moving surfaces in the depth

camera’s FOV.

Each vertex map Vy is related to the previous vertex map V;_; via:
Vi=h (Vt—l) + €, (29)

where hy(-) is the deformation that transforms V;_; to its consecutive vertex map V.
The additional term €; represents the error map due to the acquisition system depending

on factors discussed in Section 2.1.2.

The problem at hand is therefore to attenuate €;, and recover an enhanced sequence

{V{ } starting from the acquisition {V,}.

As a solution, a recursive filtering function filt(-,-) may be defined by sequentially fusing
the current measurement D; and the resulting enhanced vertex map V,{il of the previous

time-step such that:

\V4 for t = 0
-Vf::{ t or > (2.10)

! fi(vi D) t>o0.

We now consider a fully calibrated RGB-D multi-view setup as explained in Sections 2.2
and Section 2.3. With the knowledge of pose parameters T for the N cameras, we

can correctly align all the 3D information acquired by them, at a given time ¢, by
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FIGURE 2.5: Detailed pipeline of KinectFusion. D;: input depth map at time ¢, Dj:
result of bilateral filter on Dy, (thfl, N{fl): filtered vertex map and corresponding
normal map at time ¢t — 1, D} result of rigid registration of Dj} to V{il, (S7,W[) and
(Stf_l, Wtf_ 1): TSDF volumes corresponding to vertex maps V} and V{_l respectively.
For more details please see Section 2.4.2.1.

transforming them to a global reference frame w, and produce a full, albeit noisy, 3D
reconstruction of the scene. Let us denote by L; the point-set representing the full 3D
reconstruction obtained by concatenating all the aligned partial reconstructions, from
the multi-view system at time t. £; contains M 3D points, where M = Nmn. Given a
sequence of full 3D reconstructions {£;} acquired with the RGB-D multi-view system,
the task is to obtain noise-free 3D reconstructions {E{ } via a similar template-free

recursive filtering function as given in (2.10).

2.4.2 Background and Previous Work

The KinectFusion algorithm [1], and its derivatives [2, 47, 48], try to solve the problem
formulated in the Section 2.4.1 for obtaining 3D reconstructions of dynamic scenes, using
both mono-view and multi-view RGB-D systems, and achieve impressive results but are
restricted to reconstructing rigid objects only [1]. In what follows we provide a brief
overview of the KinectFusion algorithm for template-free and recursive enhancement of

3D reconstructions of dynamic scenes containing rigid objects.

2.4.2.1 KinectFusion

The KinectFusion algorithm provides a practical solution for the recursive problem de-
fined in (2.10) for the special case where the deformation h; is global, i.e., when the
transformation between V;_; and V. is a single rotation and translation with 6 degrees
of freedom [1].
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Figure 2.5 shows the detailed pipeline of the KinectFusion algorithm. In the first step,
a 2D bilateral filter is applied to the input depth map D; resulting in a filtered map
D; [1,69]. The new depth map D; is then given as input to the registration module where
its corresponding vertex map V; is computed. The normal map N; is also computed for

each 3D point in V; using neighboring points.

The registration step uses a multi-resolution point-plane error metric coupled with a
projective data association—based variation of the ICP algorithm to estimate the camera
(or conversely object) pose [1, 70]. This second step estimates the global deformation
between V; and V{A using their corresponding normal maps N; and fol, respectively.
This transformation is applied to V; (computed from D;) to get V}, which is back
projected to image plane using camera’s intrinsic matrix K in order to obtain DJ.
It is then fused with a global surface representation to get an enhanced 3D surface
reconstruction. We note that the reason for using D; instead of D for fusion is to
preserve the details which might have been lost due to bilateral filtering. For the last
step of data fusion or filtering, KinectFusion uses a method based on the signed distance
function (SDF) representation of a surface in 3D [1, 71]. An SDF S;(.) corresponding
to a vertex map V; represents points on surface as zeros, and free spaces in front of and
behind the surface as positive and negative values, respectively. These values increase

as distance from the surface increases. The SDF is formally defined as:

S,: R SR
d(p, Vi) p lies in front of Vy,
p —4 0 p €V,
—d(p, Vi) p lies behind Vy,

where d(.) calculates the shortest distance between a given 3D point p and V. Kinect-
Fusion uses a volumetric representation of the truncated SDF (TSDF). It is called TSDF
because the SDF is truncated using a limiting value of +u. A continuous TSDF is sam-
pled by a volume of resolution (Z x Z x Z) with Z € N*, lying in the camera’s reference
frame. The volume consists of volumetric elements called voxels where each voxel is
represented by its 3D centroid p, such that p € R®. A TSDF volume corresponding to
V7 is defined by two values computed for each of its voxels p; one is the TSDF value

itself S{(p), and second is the weight W}/ (p), using camera parameters K such that:

Si(p) = Q(llpll2 — [IPll2): (2.11)
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where p’ = g(q, D}, K) and q = ¥ (K, 14, p), and
in{l,1} - iff n > —
Q(n) = iy} sgnln) 10 2 . (2.12)
0 otherwise,

where p is the truncation distance and sgn() is the sign function. Note that q represents a
location on the 2D grid of D}. The weight W/ (p) should be proportional to the measure
of similarity of pixel ray direction from q to p to local surface normal at point p’ but
Newcombe et al. show that keeping the weight W} (p) = 1 works well for their filtering
scheme of KinectFusion which will be discussed next [1]. For filtering, KinectFusion
follows a scheme of weighted average of all TSDF volumes computed for V} resulting in
one global filtered TSDF volume where each voxel in the filtered volume is represented
by Slf(p) and Wtf(p) such that:

Wi, (p)SL(p) + Wi (p)Si (p)

S/ (p) =
(®) Wl (p)

: (2.13)

where

Wi (p) = W (p) + W/ (p). (2.14)

It is to be noted that Wtf (p) is reset to a default value after a fixed number of iterations.
The vertex map V{ is computed from the current filtered volume for the next iteration
using surface prediction via ray casting [1, 72]. The normal map N{ is also computed
using the gradient of the TSDF values in the filtered volume. The final extraction of the
surface or the point cloud in 3D from the filtered volume can be carried out by using
zero crossings or iso-surfaces in the TSDF volume followed by linear interpolation of

points.
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RGB-D Multi-View System
Calibration for Full 3D Scene

Reconstruction

Chapter 3 presents a sensor fusion approach for extrinsic calibration of an RGB-D multi-
view system. The proposed solution makes use of the 2D photometric and the 3D
geometric information acquired with RGB-D cameras. Both pieces of information are
used in a single weighted bi-objective optimization problem for pose estimation. The
weighting factor decides the relative importance given to 2D or 3D information in the
optimization. This formulation combines two well known pose estimation/refinement
frameworks, namely, Bundle Adjustment, which uses the 2D photometric information,
and the Iterative Closest Point algorithm, which uses the 3D geometric information. In
the experiments on simulated data, the weighting factor is varied manually to show that
more accurate results can be achieved via the proposed sensor fusion framework instead

of using data from different modalities, independently.

3.1 Introduction

The advent of commodity depth cameras such as structured-light based RGB-D cameras,
e.g., Asus Xtion Pro Live and Microsoft Kinect powered by PrimeSense technology [73],
has provided researchers with various opportunities to explore the domain of fast, accu-
rate and holistic 3D reconstructions of scenes in a multi-view setup. One of the most
crucial steps towards building such a multi-view system is estimating relative poses of
all cameras in the system. Only then the independently acquired data from each camera

can be put in a single reference frame to form a holistic 3D reconstruction of the scene.

20
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Kuster et al. have proposed to use visual features obtained from color coded markers
to determine intrinsic and relative pose parameters of cameras in a multi-view RGB-D
network [6]. Kainz et al. have proposed a system called OmniKinect (based on KinectFu-
sion [1]) for high quality dense volumetric reconstruction of static scenes using multiple
Kinect cameras with highly overlapping FOVs [2]. The initial pose estimates are gener-
ated by extracting 2D features from a cube shaped target with special patterns which
is followed by further refinement using depth information. Some other approaches were
proposed where after an initial pose estimation using visual features only [5], further
refinement is achieved by loop closing using 3D points [49]. Furuakwa et al. proposed to
add a third refinement step using the Bundle Adjustment (BA) framework to minimize
the back-projection error of selected 3D points [74]. Although 2D photometric features
and 3D geometric features are both used for multi-view pose estimation and reconstruc-

tion, most of the work done follows a similar pattern of using them independently.

Researchers in the field of robot mapping have explored combining 2D visual information
and 3D or depth information captured with an RGB-D camera in an analogous problem
where a single RGB-D camera is mounted on a robot for mapping an unknown envi-
ronment. Indeed, in their work called RGB-D Mapping, Henry et al. use visual features
extracted via Scale-Invariant Feature Transform (SIFT), or Features from Accelerated
Segment Test (FAST), from RGB images to perform an initial pair-wise alignment based
on Random Sample Consensus (RANSAC) method [7]. If enough visual features are not
found, then a joint optimization based on 2D visual features and 3D points from in-
put point clouds using RANSAC and dense Iterative Closest Point (ICP) framework is
carried out. Globally consistent alignments can be reached by making use of a pose
graph optimization technique such as Tree-based Network Optimizer (TORO) or sparse
BA [7]. Similar works on environment mapping and localization were presented in [75—
77]. A comparative technique is proposed in [78] which uses only depth images acquired
using an RGB-D camera. Penelle et al. have extended the idea of using 3D information
corresponding to 2D visual features for alignment of two RGB-D cameras facing each
other [26]. They use a two sided chessboard pattern to detect corners in RGB images
which act as the visual features [79].

A generic and holistic technique tailored for estimating the relative poses of all RGB-D
cameras in an n-camera multi-view system is missing. Such a technique should be able
to use all the available information acquired by RGB-D cameras in a single framework
and should be flexible enough to be able to adapt to changing conditions. It should
allow shape information to compensate for inadequate or noisy visual information and
vice versa.

In this work, we propose an algorithm called BAICP+ which, as the name suggests, is

based on two well known refinement frameworks. First is BA, which takes into account
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2D visual and its corresponding 3D shape information and is capable of estimating cam-
era intrinsic and pose parameters while refining the 3D shape. Second is ICP, which
takes into account the 3D point clouds from different views and tries to register them in
a common reference frame while refining the relative poses. Moreover, the generic nature
of our algorithm allows for any type of 2D visual features to be easily incorporated in
the refinement framework. It can also allow for the estimation of intrinsic parameters of
RGB or depth cameras and the extrinsic parameters relating RGB and depth cameras

in an RGB-D camera.

3.2 Background and Problem Formulation

The extrinsic calibration problem for a multi-view system composed of N RGB-D cam-
eras has been described in detail in Section 2.2. For simplicity, we assumed in Section 2.2
that each RGB-D camera [, with [ = 1,--- , N, is composed of an RGB camera and a
depth camera that are fully mapped hence, requiring a single associated intrinsic matrix
K;, and a single transformation matrix T; relating RGB-D camera’s relative position
to the world or w. However, for the sake of generalization, in this work, we assume
independent or unmapped RGB and depth cameras constituting each RGB-D camera.
Therefore, for each RGB-D camera [, let K} and Kéi be the intrinsic matrices associated
with its RGB and depth cameras, respectively. Similarly, let T; |¥ and T; [§j be the
rigid transformation matrices representing the poses of its RGB and depth cameras to

w, respectively.

The problem at hand may now be stated as follows. Given N RGB-D cameras in a
multi-view system, we assume the knowledge of H < mn matching 2D photometric
features qf‘ extracted from the acquired RGB images, where h = 1,--- ,H, m X n
is the resolution of acquired RGB and depth images and m,n € N*. Similarly we

assume the knowledge of J < mn matching 3D geometric features p{ captured by the

depth cameras, where j = 1,---,J. Moreover, we assume the knowledge of intrinsic
parameters, K¢ = [K$,--- , K] and K? = [K¢{,--- ,K4]. Using this information,
we want to find the estimates of the pose parameters T¢ = [T |¥,---, Ty [¢] and

T? = [Ty [3,---, Tn [9).

As discussed in Section 2.3.2.1 and Section 2.3.2.2, given an initial estimate of pose

parameters and of 3D points i.e., r”

, corresponding to the available 2D photometric
features, the BA algorithm refines these estimates with help of 2D features only. The
2D feature extraction needs to be robust enough to accurately detect the same features
in multiple views [41]. The ICP algorithm on the other hand, refines the initial pose

estimates with the help of only 3D geometric features extracted from the scene but it
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(a) 2 camera multi-view system with calib. (b) 2 camera multi-view system with Test
patterns Scene 1

(¢) 4 camera multi-view system with Test (d) 4 camera multi-view system with Test
Scene 2 Scene 3

FicUre 3.1: Simulated multi-view System with locations of calibration patterns and
test scenes.

requires large overlap between multiple views and also might not perform well if the
scene does not contain sufficient shape textures [59]. When both types of information
are available, as is the case with RGB-D cameras, it becomes interesting to use both BA

and ICP in a single framework to compliment each other.

3.3 Proposed Approach

The main idea of this work is to make use of both 2D photometric and 3D geometric
or shape information acquired via an RGB-D camera to estimate poses of all cameras
in a multi-view system. The final goal is to get a holistic 3D reconstruction of static or
dynamic scenes. For this purpose we propose BAICP+, a technique based on BA and
ICP simultaneously. To that end, we consider the cost functions of BA defined in (2.6)
and of ICP defined in (2.8), and redefine the pose estimation problem as a weighted
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bi-objective optimization by introducing a new cost function Vpa;cp such that:

(1-a)

Vier(T9) + 22V a(8), (3.1)

Vearcp(S') = 2

where S’ = (TC,Td,r), S = (T%r) and r = [r!,--- ,r"]. The BA cost function Vg4
introduced in (2.6) is redefined in (3.2) to make it robust to the situations where a

camera is not able to view or detect any number of 2D feature points such that:

N
VBa(S) =Y tr(Wi(A](S)A(S))), (3.2)

=1
where S; = (T{,r) and W, is a diagonal matrix, of dimensions H x H, which contains
1 on its h'" diagonal element if camera [ is able to view the feature point r”, and 0
otherwise, for h = 1,--- , H. Similarly, the ICP cost function Vi¢p introduced in (2.8)

is redefined as follows:

Viep(Th) = > tr(W ) (Bl (T, THB«(T{, TY))), (3.3)
1<l,k<N
I#k
where W; ,,) is a diagonal matrix, of dimensions J x J, which contains 1 on its G
diagonal element if camera [ and camera m are able to view the feature point p”, and

0 otherwise, , for j =1,---,J.

The parameters a and b in (3.1) denote the total number of 3D point correspondences
and 2D feature points across all views. Two new factors s and « have been introduced
where s is a scale factor used to unify the units of V;op and Vpa. Indeed, while the
cost functions of BA computes Euclidean distances in pixels, the cost function of ICP
computes the distance in the units of 3D coordinates. Therefore, the parameter s is a
factor which makes the cost computed by BA to be approximately in the same unit as
ICP. The scale factor s is defined as s = (%;)2, where m? is the average depth of all 3D
points in w and m/ is the average focal length (in pixels) of all cameras per iteration.
As mentioned before, the reason for introducing new optimization parameters, namely
the transformations T, is to show the generality of our formulation. In this work, we
are still mainly concerned with estimating the relative pose parameters with respect to

all RGB cameras, i.e., T¢ and hence in experimental evaluations, use data mapped to

RGB cameras.

The weight « is a factor that introduces the flexibility in BAICP+ to treat the costs of
BA and ICP as the same or one greater than the other. The choice of & may be adaptive
to the data and the system. It can, therefore, give insight on the relative importance

between BA and ICP, i.e., between visual features and depth/3D information. For
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(a) View from camera 1 (b) View from camera 2

(c) Registration with Stereo (d) Registration with BAICP+

FI1GURE 3.2: A comparison of registration of 2 views between Stereo and BAICP+ on
real data. Only two chessboard acquisitions were used for calibration.

example, when very poor or no shape information is available BAICP+ should behave
as BA algorithm by setting o« &~ 1, or when very poor or no 2D visual information
is available BAICP+ should behave as ICP algorithm by setting a ~ 0. Solving a
minimization similar to (3.1) with an adaptive search for the optimal o will be discussed

in Chapter 4.

3.4 Experimental Results

3.4.1 Setup & Data Acquisition

For carrying out a detailed performance analysis (both qualitative and quantitative) of
BAICP+, a two pronged approach of using both real and simulated data is followed.
The tool which is used to generate simulated data is called V-REP which is developed
by Coppelia Robotics [80]. A two sided chessboard pattern is used in both real and

simulated experiments as shown in Figure 3.1(a) to overcome the problem of lack of
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overlap between views. The corners can act as easily detectable 2D features (54 corner-
s/acquisition in real data and 77 corners/acquisition in simulated data) whereas the 3D
points belonging to the pattern are extracted and act as 3D shape features. Only poses
are estimated in both types of experiments and intrinsic parameters are assumed to be
fixed.

For real experiments we use Asus Xtion Pro Live [19] two RGB-D cameras. These cam-
eras are mounted on a lift fixed with the roof and placed almost opposite to each other
about 4 meters apart. They are tilted towards the floor to capture the scene as shown in
Figure 3.2(a) and Figure 3.2(b). Each camera acquires an RGB image and depth map
mapped in RGB camera’s reference frame. BAICP+ can be easily adapted to this kind
of setup.

We simulate multi-view systems based on 2 or 4 RGB-D cameras in V-REP as shown
in Figure 3.1. Acquired data (both RGB and depth) are already mapped in RGB cam-
eras’ reference frames. Three test scenes are used as shown in Figure 3.1(b), 3.1(c) and
Figure 3.1(d) with varying complexity. We also vary the number of calibration pattern
acquisitions, the weighting factor a for BAICP+, and amount of noise (and outliers) in
data.

We assume that 2D features extracted from RGB images are affected by the systematic
noise due to quantization, as discussed in Section 2.1.2. We add noise to the depth
measurements, and hence to 3D feature points, via disparity following the principles
of depth sensing using structured-light technology as discussed in Section 2.1.1. For a
particular point/pixel in the depth image, noise ng in disparity d, effects the the depth

measurement z as follows:

52

—ﬁnda

Ny, =

(3.4)

where n, represents additive noise in depth z such that Z = z + n,, where Z is the
noisy z. These noisy depth values can then be used to compute the corresponding noisy
3D points. We use Gaussian distribution with zero mean and standard deviation of
0.2887 to generate a noise distribution to be used as disparity noise or ngy. The reason
for choosing this specific value is the similarity of resulting noisy data with real world

acquisitions [81].

3.4.2 Implementation Details

We now discuss the implementation details for carrying out the experimental evalua-
tion of BAICP+. Chessboard corners are detected and extracted from RGB images
using Bouguet’s Camera Calibration Toolbox in MATLAB [40]. Shape information cor-
responding to extracted corners is used to extract all 3D points belonging to the planar

pattern via RANSAC. Initial pose estimation based on stereo calibration using 2D visual
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(a) Registration with Stereo

-

(b) Registration with BAICP+

FIGURE 3.3: A comparison of registration of 4 views (each view represented with a
different color) between Stereo and BAIC P+ using 2 Calibration Acquisitions & Test
Scene 3.

features is performed using the OpenCV library in C++ [79] while the Point Cloud Li-
brary (PCL) is used for visualization [82]. The rest of the implementation takes place in
MATLAB. We use the non-linear optimization scheme based on Levenberg-Marquardt
algorithm to solve BAICP+ with varying weights. We run our method for 20 iterations.

3.4.3 Results and Analysis

For real data we perform initial stereo calibration based pose estimation, that we refer

to simply as ”Stereo” in our experiments, and then use BAICP+ with a = 0.5 to give
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F1cURE 3.4: Weighting factor a vs Average RMSE on test scenes for varying number
of cameras and number of calibration acquisitions.

a proof of concept of our method. We vary the number of calibration acquisitions, thus
varying the number of feature points. Figure 3.2(c) and Figure 3.2(d) show a significant
improvement over initial pose estimates based on stereo calibration method using only
2 calibration chessboard acquisitions [40].

Similar results can be seen for simulated data in terms of visual quality as shown in
Figure 3.2. Visually, it is difficult to see the difference when results of BAIPC+ are
compared with the results of BA, ICP, and BA followed by ICP (BA&ICP). That is
why the availability of ground truth data in this case allows for deeper quantitative
analysis and performance comparison of BAICP+. For error calculation, the principle
of back projection of noise free 3D data from camera to a global reference frame using
perfect and estimated parameters is used. A 3D point p;" acquired by camera [, for
m=1,--- M, and M is total number of 3D points acquired by camera [, is projected
back to w via the estimated and perfect pose parameters to give p,, and p,,, respectively.

Next step is to compute the Root Mean Squared Error (RMSE) based on the point-wise
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test scenes for varying number of cameras and number of calibration acquisitions

Euclidean distance between p,, and p,, such that:

M
1 R
err; = M(Z P — B |1?)- (3.5)
m=1
For N cameras the total error becomes:

1 N
err = lz; erry. (3.6)

In the first set of experiments, we analyze the performance of BAICP+ in setups com-
posed of 2 and 4 cameras, and 2 and 4 calibration acquisitions. We calculate the average
RMSE per setup for the 3 considered test scenes, as shown in Figure 3.1, and analyze
the performance of BAICP+ by varying « between 0 and 1 as shown in Figure 3.4. By

analyzing these results we can draw the conclusion that since with a = 0 and a = 1,
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BAICP+ behaves as only ICP, and only BA, respectively, these results show that the
combination of these two methods with o between 0 and 1 gives the best performance
in all cases but one (Test Scene 1 in Figure 3.4(b)). The results also show that « gives
BAICP+ the ability to adapt itself and behave as ICP only or BA only when required.
In the second set of experiments, we present a comparison of performance of state-of-
the-art methods with BAICP+. Again setups with 2 and 4 cameras were used with
2 and 4 calibration acquisitions and 3 test scenes. We compare Stereo, ICP (which is
BAICP+ with = 0), BA (which is BAICP+ with a = 1), BA&ICP (performing BA
then ICP for 10 iterations each) and BAICP+. For BAICP+, we use best result from
Figure 3.4. The results are shown in Figure 3.5 from which it is clear that if the right
weighting factor is selected then BAICP+ gives the optimal performance.

In another experiment, using a specific setup of 4 cameras and 2 calibration acquisitions,
we increased noise in depth data by increasing the standard deviation o of Gaussian dis-
tribution representing noise in disparity to 0.481. After that we add 1 outlier per view
in the 2D visual features. We tested the results on Test Scene 3. The results are shown
in Figure 3.6. We can see in Figure 3.6(a) that increased noise has small effect on the
performance of BAICP+ whereas adding 1 outlier per view has a large impact as «
goes on assigning more weight to the cost of the BA term. Figure 3.6(b) shows that
BAICP+ still has the optimal performance and can be easily adapted to behave as ICP

when outliers in 2D features are present.
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3.5 Conclusion

We have presented a generic formulation for RGB-D cameras based multi-view system
calibration. Our approach called BAICP+ combines BA and ICP in a single minimiza-
tion framework thus making use of both 2D visual and 3D geometric information. It
can be used to estimate both relative camera poses and structure parameters. Results
over different setups and test scenes show that with right weighting factor BAICP+
has optimal performance compared to both BA and ICP when used independently and
sequentially for pose estimation. Moreover, the generic nature of BAICP+ does not re-
strict it to RGB-D cameras only but allows it to be used with other multi-view systems
based, for example, on perspective cameras, depth only cameras, unaligned RGB and

depth cameras, etc.
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Bi-objective Framework for
Sensor Fusion in RGB-D
Multi-View Systems: Acquisition
and Modeling

In this chapter we present an automated sensor fusion framework. It is based on a
weighted bi-objective optimization for refinement of extrinsic calibration of an RGB-
D multi-view system. We build upon the work presented in Chapter 3 and derive an
analytical expression for the weighting factor, in the bi-objective optimization, in terms
of noise in the RGB and depth measurements. In the absence of information regarding
measurement noise, a completely automated and iterative scheme is proposed, which
alternates between camera pose estimation, and the computation of measurement noise
levels. The proposed framework is shown to perform better than state-of-art methods

on both simulated and real data.

4.1 Introduction

RGB-D cameras provide simultaneous image and range data of the environment, offer-
ing enhanced sensing capabilities when compared to using single sensor modality. The
acquisition of complete and textured 3D models of dynamic scenes can be achieved by
using several RGB-D cameras with overlapping FOVs in a multi-view system. The task

at hand is to find the relative poses of these cameras; also known as extrinsic calibration.

32
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Most of the works for extrinsic calibration of RGB-D multi-view systems rely on well es-
tablished 2D camera based calibration routines [39, 40] and pose refinement procedures,
e.g., Bundle Adjustment (BA) [3, 41, 42], using 2D feature points extracted from the
RGB images [5, 23, 24]. The 3D information from the depth sensor has mainly been used
in subsequent refinement steps using, e.g., the Iterative Closest Point (ICP) algorithm
[25—27]. In this regard, the following question arises: how to optimally use both sources

of complementary information.

Dou and Fuchs [3], in their work on multi-view 3D reconstruction, proposed to combine
2D and 3D information in a weighted bi-objective optimization scheme derived from
their previous work on pair-wise pose tracking for mono-view 3D reconstruction [45].
They propose to use matching feature points extracted via SIFT from RGB images
with matching planes extracted from 3D/depth images in a weighted bi-objective BA
scheme. The weighting factor is selected empirically for all experiments. A similar
approach is proposed by Henry et al. [7], using a global ICP scheme to align 2D visual
feature points and 3D/depth measurements from multiple views but the weights are,
again, selected empirically. Tykkala et al. [46] use what they call an image based direct
ICP approach for pairwise pose estimation. They propose to compute the weighting
factor via a heuristic measure using ratio of the median intensity and the depth values
of selected points. Michot et al. [83] propose to use a weighted bi-objective BA scheme
for the multi-sensor Simultaneous Localization and Mapping (SLAM) problem. They
discuss the dependence of the weighting factor on the ratio of the noise variance for each
sensor’s measurement and formulate their bi-objective optimization by using a mean
squared error (MSE) based cost function from individual sensors. They investigate three
methods for automatic weight computation namely L-Curve, L-Tangent Norm and cross
validation with experiments showing that the L-Curve based method performs better

than the others.

In Chapter 3, we introduced BAICP+ [84] which combines BA and ICP in a heuristically
constructed weighted bi-objective refinement approach. In our experiments, we varied
the weight factor manually and showed that combining 2D and 3D information provides
better results than state-of-art refinement approaches based on cost functions using
only 2D or 3D information. We also hypothesized that the weight factor depends on the
quality of the 2D and 3D information available.

In this chapter we extend and consolidate the work presented in Chapter 3 by investi-
gating a formal strategy for RGB-D sensor fusion for the extrinsic calibration of multiple
cameras. We analytically derive a Least Squares (LS) based cost function, via the Maxi-
mum Likelihood (ML) method, that optimally combines the BA based 2D cost function

with the ICP based 3D cost function, in a weighted bi-objective optimization scheme.
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Full 3D Reconstruction

(a) RGB-D Multi-View System (4 cam- (b) Full 3D Scene Reconstruction
eras)

FI1GURE 4.1: RGB-D Multi-View System with full scene 3D reconstruction in a
simulated setup. (a) RGB-D Multi-View System (4 cameras) with field of view (FOV)
of each camera. The highlighted region represents overlapping FOVs of all cameras.
The global reference frame w is aligned with camera C1. (b) Steps required for Full
3D Scene Reconstruction using an RGB-D Multi-View System. Each camera acquires
a RGB image and a depth image, which are used to estimate the relative pose of each
camera with respect to w. After extrinsic calibration, estimated poses are used to put
all acquisitions in w to get complete reconstruction.

The sensor fusion is achieved by using a weighting factor that depends on two types of
noise; the one affecting the 2D feature locations in the RGB images, and the second one
affecting the 3D point positions provided by the depth sensor. The experiments suggest
that using the proposed joint cost for relative pose refinement provides more accurate

results than the refinement schemes using 2D and 3D information separately.

In the absence of information regarding noise levels in the 2D and 3D feature points
we propose an iterative scheme which simultaneously estimates the noise along with the
estimation of calibration parameters. The proposed scheme is completely automated
requiring no manual intervention and no heuristic parameter setting. The quantitative
and qualitative experiments show that the proposed scheme is able to perform sensor
fusion for accurate camera calibration without any prior information about noise char-

acteristics.

4.2 Problem Formulation

The extrinsic calibration problem for an RGB-D multi-view system with N cameras,
as illustrated in Figure 2.4 and Figure 4.1, has been formulated in Section 2.3.1. As a

reminder, we assume the knowledge of H < mn matching 2D photometric feature points
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qf, forl=1,---,Nand h=1,---, H, extracted from RGB images of resolution m x n
and the knowledge of J < mn 3D geometric feature points p{ ,forj=1,---,J, extracted

from 3D /depth images also of resolution m x n. With mapped RGB and depth images
we also assume the knowledge of per camera intrinsic parameters, K = [K;, -+, Kx].
Using this information we want to find the estimates of per camera pose parameters
T = [Ty, -+, Tn], where a matrix T represents the rigid transformation from camera
[ to the world w, and is composed of a rotation matrix R; and translation vector t;
as defined in (2.2). The cost functions defined in Section 2.3.2.1 and Section 2.3.2.2
use the 2D and 3D information to estimate T, separately. These cost functions assume
to have the knowledge of initial estimate of pose parameters and of 3D points i.e.,

1 H]

r=[r',---,r"], corresponding to the available 2D feature points, which are then refined.

4.3 Bi-Objective Extrinsic Calibration

In this section, we present the bi-objective optimization for refinement of the extrinsic
calibration parameters in an RGB-D multi-view system. We use cost functions defined
in Section 2.3.2.1 and Section 2.3.2.2 which use 2D and 3D feature points extracted from

RGB images and vertex maps, respectively.

In this work, we propose to formally analyze and derive an expression for the cost
function, based on ML estimations, of the bi-objective optimization taking into account
the noise affecting both 2D and 3D measurement /feature points. We assume the presence
of independent additive Gaussian noise in each coordinate of the 3D feature points such

that:
B] ~ N (b, o3pTs ) . (4.1)

where f){ is the noisy 3D point and p{ is the noise free point. Similarly for 2D feature
points we have:
qu ~ N(q?a U%DIQ)a (42)

where (le‘ is the noisy 2D point and q? is the noise free point. This means that we have
to use the noisy 2D and 3D feature points to estimate the pose parameters. This leads to
redefining the 3D error function b‘lj’m(Tl, T,,), given in (2.7), such that it computes the
error between noisy points f){ and p;" projected to w, from camera [ and m, using the
pose parameters T; and T,,, respectively. Similarly the 2D error function alh(S;‘), given
in (2.5) where S} = (T',r"), is redefined such that it computes the 2D error between
back projection of the estimated 3D point r” to camera I, using T; and K;, and the

corresponding noisy 2D feature point (1{‘.
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Now, we can define the distribution the 3D error bg m (T, Typy) is drawn from by consid-

ering the noise free 3D points p{ and p, in (2.3) such that [25]:

b7 1 (T1, Ton) ~ N ((RZP? +t1) = (Rimpl, + tm), Rio3 pIsR] + RmanggR;n)

= N(03,203,13). (4.3)

Similarly, considering the noise free 2D measurements in (2.4), we have al'(SF) ~
N(02,025I2). It is clear from (4.3) that since bim(Tl,Tm), which is based on the
ICP algorithm, uses two noisy 3D feature points, hence, the variance of the correspond-
ing distribution is two times the variance of noise in each 3D feature point. This is in
contrast to the variance of distribution corresponding to af(S;I), which is based on the

BA algorithm and uses only one noisy 2D feature point [83].

Using bim(Tlva) and al(S}'), we want to find the likelihood cost function, max-
imum of which gives the Maximum Likelihood Estimate (MLE) of the parameters
S = (T,r). Since the MLE with Gaussian model is equivalent to the Least Squares
Estimate (LSE) [85], we can directly get:

N
A . 1 1
S = arg msln Z Ftr (BZm(Tl, Tm)Bl,m(Th Tm)> + Z UTtT (A;(Sl)Al(Sl)) .
1<l,m<N "~ 3D 1=1 2D
l#m
(4.4)
Therefore the total cost to be minimized is:
V(S) = Viep(T) + wVpa(S), (4.5)

where w = % is the weighting factor. The cost function in (4.4) optimally combines
information from RGB and depth sensors, to be used in the pose refinement scheme, by
taking into account the noise levels in the 2D and 3D points. It formally defines the the
relationship of measurement noise in the 2D and 3D feature points with the weighting
factor w. In case the assumption of noise with same variances affecting all 2D and 3D
points respectively, does not hold and information about the noise variances affecting
each point is available, it can be incorporated in the proposed framework. Moreover,
the use of the ICP based cost also allows the use of all the 3D points acquired by each
sensor (with the help of nearest neighbor correspondence) in the optimization scheme

when only 2D feature points are available.

The cost function (4.5) is a non-linear function of the parameters S and we resort to
numerical search methods [86] to optimize the criterion. Please refer to Appendix A for

further discussion.
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FIGURE 4.2: RGB-D Multi-View System (2 cameras) with field of view (FOV) of
each camera. The highlighted region represents overlapping FOVs of all cameras. The
global reference frame w is aligned with camera C1.

4.4 Weighting Factor Estimation

In this section we discuss the automatic and simultaneous estimation of the weighting
factor w in (4.5), together with the camera poses in the absence of information regarding
noise affecting both the 2D and 3D measurements. We propose an approach which
alternates between camera pose estimation and estimation of the 2D and the 3D noise

variances to arrive at a suitable solution.

In the previous section, the estimates of camera pose parameters and 3D points in w
corresponding to 2D feature points, were computed based on known 2D and 3D feature
points and the noise affecting them. We assumed the presence of Gaussian noise with
zero mean and variances of 0'% p and o*% p in 2D and 3D measurements, respectively. These
parameters, in turn, define the weighting factor w which is instrumental in constructing
the sensor fusion framework by optimally combining the 2D and 3D cost functions to
estimate the camera poses. In real-world scenarios, however, information about the
noise affecting one or both sensor measurements is often unavailable. This makes the
computation of a correct w difficult. As mentioned in Section 4.1, researchers have
tried to estimate the optimal weighting factor, for their proposed bi-objective schemes,
for solving mainly the pair-wise pose estimation problem. The commonly used used
methods range from using simple heuristic measures such as in the case of [46] to more
complex methods, based on analysis of trade-off between residuals of two cost functions

and based on learning via cross-validation, such as in the case of [83].

In this work, we propose to use a simple method for automatic estimation of the weight-

ing factor w which finds its basis in finding the MLE of noise variances, agD and ag Do
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(a) Features extracted from RGB image (b) Features extracted from depth image

FIGURE 4.3: Features extracted from RGB and depth images of camera C'1 in the
multi-view system composed of 2 cameras as shown in Figure 4.2. The extracted
feature points are also visible to camera C2.

using the 2D and 3D feature points together with the current estimates of camera poses
and 3D points in S. The MLE of the variance 03, is given as [85]:

N tT(B;m(Tla Tm)Bl,m(TZu Tm))
GBp= : > : (4.6)

where a is the total number of 3D feature correspondences across all views. Similarly,

the MLE of the variance ag p is computed via:

(4.7)

N
. tr(A](S;)A(Sy))
=1

where b is the total number of 2D feature points found across all views.

We follow an iterative approach whereby using 2D and 3D feature points and an initial
estimate S, the MLE estimates of noise variances and hence of w are obtained via (4.6)
and (4.7). This initial estimate of w is then used to find an updated estimate of S
using (4.5) via non-linear optimization which, in turn, is used to update the estimate of
w. This process is repeated for a fixed number of iterations until the estimates of S and

w converge.

4.5 Experiments with Synthetic Data

In this section, we carry out a quantitative performance analysis of the proposed bi-

objective refinement with a known and an unknown weighting factor.
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4.5.1 Evaluation Methodology and Parameters

We use V-REP [87] to simulate 2 and 4 cameras based RGB-D multi-view systems, with
overlapping FOVs, as shown in Figure 4.2 and Figure 4.1, respectively. In both cases,
the global reference frame w lies in camera C1. We simulate a scene containing several
objects such as chairs, a table, sofas etc. The acquired noise-free data, in the form
of RGB and depth images, is assumed to be perfectly mapped in each camera’s RGB
sensor’s reference frame with known intrinsics. After data acquisition, random points,
visible to all cameras, are extracted as feature points in both RGB and depth images as
shown in Figure 4.3 (points on the floor are discarded). Features extracted from depth

maps are converted to the corresponding 3D points via known intrinsics.

In the next step, noise is added to the extracted 2D and 3D feature points. We assume
the presence of independent Gaussian noise in each coordinate of position of 2D feature
points with zero mean and standard deviation oop similar to [88]. The value of o9p is
varied between 0.2 to 1.8 pixels with a step size of 0.4 pixels. Depth sensor measurements
in RGB-D cameras suffer from different types of systematic and non-systematic errors
as investigated in [81, 89]. For our scheme we propose to counter, beforehand, the
systematic errors in depth measurements of each camera via a correction step, based on
comparing known and measured depths [5, 43]. Therefore, for all remaining errors we
assume the presence of additive independent Gaussian noise in each coordinate of 3D
feature points in each view with zero mean and standard deviation o3p. The value of
o3p is varied between 6 to 30 mm with a step size of 6 mm to keep it in the range of

errors computed in [89)].

We test the performance of the proposed scheme under various conditions by varying the
number of cameras and their positions as shown in Figure 4.2 and Figure 4.1, by varying
the noise magnitude in 2D and 3D feature points as explained above, and by varying the
number of 2D and 3D feature points. For each configuration, 50 noise realizations are
generated. For each noise realization, 2D feature points and their corresponding noisy
3D measurements from vertex maps are used to initialize the pose estimates via a Di-
rect Linear Transform (DLT) based approach [40, 90]. Using the initial pose estimates,
optimization is carried out via the proposed scheme, with known noise parameters as
explained in Section 4.3, and with unknown noise parameters using the automatic iter-
ative estimation scheme as explained in Section 4.4 (required 3 iterations to converge in
most cases). Furthermore, optimization is also carried out via ICP algorithm using 3D

feature points only, and via BA algorithm using 2D features points only.

Accuracy of the estimated poses is computed by comparison with the ground truth

poses as done in [88]. Two measures of accuracy are computed. First is the angular
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magnitude of residual rotation computed via lf{lTRl, and second is the relative translation

llE—t. |
53]

of each initialization and of each refinement approach, for each configuration are plotted

by using the function boxplot in MATLAB as shown in Figure 4.4 - 4.12. The horizontal

error which is computed via . The results of 50 realizations showing the accuracy,

line inside each box marks the median, the edges mark the 25th and the 75th percentiles,
the whisker edges show most extreme data points with outliers plotted separately as red

Crosses.

The implementation of the proposed bi-objective optimization scheme and ICP is based
on the non-linear optimization via Levenberg Marquardt (LM) algorithm [91], while the
implementation of BA is based on a sparse variant of the LM algorithm called Sparse
Bundle Adjustment (SBA) [41, 92].

4.5.2 System Composed of Two Sensors

This section compares the performance of the proposed bi-objective optimization scheme,
with known and unknown weighting factor, ICP and BA for refinement of camera pose
parameters in a two camera setup shown in Figure 4.2. The pose of camera C'2 with
respect to camera C'1 is estimated. After initialization, pose refinement is carried out

using the four refinement methods and results are plotted in Figure 4.4 - 4.8.

4.5.2.1 Varying Noise Levels

In this experiment, the extrinsic calibration is carried out using 100 2D feature points
and 100 3D feature points. Figure 4.4 shows the error distribution for fixed 3D noise
and varying 2D noise, while Figure 4.5 shows the distribution in case the 2D noise is

kept fixed, and the 3D noise is varied.

As expected, the accuracy of the extrinsic calibration decreases with increasing noise
levels. Also, all pose refinement approaches are able to improve the initial pose estimates,
explained by the fact that only inlier data points are generated (no wrong matching
feature points are included). A careful analysis of the results shows that our bi-objective
optimization scheme with known w, which uses simultaneously the 2D and 3D data,
provides better pose estimations when compared to ICP and BA, where only 3D feature
points and 2D feature points are used, respectively. The weighting factor based on the
noise variance information in (4.5) automatically gives prominence to more reliable data,
decreasing the impact of the other sensor modality. Moreover, it shows that our proposed

automatic iterative estimation scheme used in the absence of information regarding noise
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FIGURE 4.4: Error distribution of pose estimates for camera C'2 in a two camera
setup. 100 2D and 100 3D feature points are used. The following methods are
compared: Init. - Initial pose obtained using a DLT like approach (2D feature points
and corresponding 3D points are used) [40, 90]; ICP - refinement of Init. using
Iterative Closest Point (only 3D feature points are used); Our - refinement of Init.
using our bi-objective optimization with known w (2D and 3D feature points are
used); OurAuto - refinement of Init. using our bi-objective optimization with
unknown w (2D and 3D feature points are used); BA - refinement of Init. using
Bundle adjustment (only 2D feature points are used). Gaussian noise is added to the
data, being the variance of the 3D noise fixed (03p = 18mm), and the 2D noise ogp is
varied between 0.2 and 1.8 pixels (horizontal axes).

Init. ICP === Qur OurAuto == BA |

parameters, and hence unknown w, is robust and also more accurate when compared to

BA and ICP, and in most cases nearly as accurate as the method with known w.

4.5.2.2 Varying Data Ratio

In this experiment, the extrinsic calibration is carried out using fixed noise variance
(02p = 1pix, o3p = 18mm). Figure 4.6 shows the error distribution for a fixed number
of 3D points and a varying number of 2D points, while Figure 4.7 shows the distribution
in case the 2D points are kept fixed, and the number of 3D points is varied. Since
the initial poses are obtained by using 2D feature points and their corresponding 3D
points, the initialization varies in Figure 4.6 as number of 2D feature points vary but
stays approximately the same in Figure 4.7 as the number of 2D feature points remain
fixed. The conclusions drawn in the previous section regarding improved accuracy of the
proposed approaches hold, and these results show that the proposed scheme generalizes
for different ratios between the number of 2D and 3D points. Increasing the number
of data points of one of the sensor modalities always improves the extrinsic calibration

accuracy for the algorithms using those modalities.
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FIGURE 4.6: Error distribution of pose estimates for camera C2 in a two camera
setup. Gaussian noise is added to the data (ocap = 1pix, o3p = 18mm), 250 3D feature
points and a varying number of 2D feature points (horizontal axes) is considered.

Moreover, the results in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 show the
increased robustness of the proposed approach and ICP to bad initialization as compared
to BA.

4.5.3 System Composed of Four Sensors

This section compares performance of the proposed bi-objective optimization scheme
with ICP and BA for refinement of camera pose parameters in a four camera setup

shown in Figure 4.1. The poses of cameras C2, C3 and C4 are aligned with camera
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F1GURE 4.7: Error distribution of pose estimates for camera C2 in a two camera
setup. Gaussian noise is added to the data (oop = 1pix),o3p = 18mm), 250 2D feature
points and a varying number of 3D feature points (horizontal axes) is considered.
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FIGURE 4.8: Mean error distribution, of pose estimates for cameras C'2, C3 and C4.
in a four camera setup. 100 2D and 100 3D feature points are used. Gaussian noise is
added to the data, being the variance of the 3D noise fixed (o05p = 18mm), and the
2D noise ogp is varied between 0.2 and 1.8 pixels (horizontal axes).

C'1. After initialization, pose refinement is carried out using the four refinement methods

and results are plotted.

4.5.3.1 Varying Noise Levels

In this experiment, the extrinsic calibration is carried out using 100 2D feature points
and 100 3D feature points. Figure 4.8 shows the mean error distribution for computed
poses of all cameras, for fixed 3D noise and varying 2D noise. Figure 4.9 shows the

mean distribution in case the 2D noise is fixed. These results again show the improved
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FI1GURE 4.10: Comparison of error distributions, of the extrinsic calibration of a four
camera setup, using 100 2D and 100 3D feature points. The results are based on mean
error distribution and error distribution for camera C2, camera C'3 and camera C4.
Gaussian noise is added to the data, being the variance of the both 2D noise and 3D
noise fixed (o2p = 1pix, o3p = 18mm).

performance of the proposed approaches due to the use of both 2D and 3D information
together, with the help of correct weighting factor. The performance of all methods gets
affected as the noise in 2D and 3D data increases. These results also show improvement
in performance of all methods as compared to the multi-view system composed of two
cameras due to increased number of 2D and 3D points available. Moreover, these results
show that the proposed scheme generalizes for different numbers of cameras used in the

multi-view system.

We also notice an interesting behavior where in some cases the proposed automatic
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FIGURE 4.11: Mean error distribution, of pose estimates for cameras C'2, C'3 and
C4. in a four camera setup. Gaussian noise is added to the data (o2p = 1pix),
os3p = 18mm), 250 3D feature points and a varying number of 2D feature points
(horizontal axes) is considered.
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FIGURE 4.12: Mean error distribution, of pose estimates for cameras C'2, C'3 and
C4. in a four camera setup. Gaussian noise is added to the data (o2p = 1pix),
osp = 18mm), 250 2D feature points and a varying number of 3D feature points
(horizontal axes) is considered.

iterative scheme based on alternative computation of camera poses and w gives better
results compared to the scheme with known w. Apart from increase in the number of
measurements per feature point, a reason for this can be that for the case of known w we
are assuming that for all the 2D and 3D feature points the variances of noise affecting
them are the same and constant; but depending on a particular realization, the noise
will be a bit higher or lower than the fixed value. Therefore the automatic procedure
which tries to compute the variances directly from the noisy data is, in many cases,
better able to capture the noise characteristics. For BA, Figure 4.9 shows a decrease

in its performance as the 3D noise increases. The reason being that apart from its
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dependence on the initial camera poses, the initial guess of the 3D points corresponding

to 2D feature points also gets worse due to increased 3D noise.

In Figure 4.10, we compare the mean error distribution with error distributions of
individual cameras for the single case of 2D and 3D noise variance (oop = 1pix,
osp = 18mm). These results show that while the initial guess for camera C3 is compar-

atively worse, the performance of optimization schemes is comparable across all views.

4.5.3.2 Varying Number of Points

In this experiment, the extrinsic calibration is carried out using a fixed noise variance
(02p = 1pix, o3p = 18mm). Figure 4.11 shows the mean error distribution for a fixed
number of 3D points and a varying number of 2D points. Figure 4.12, on the other
hand, shows the mean distribution in case the 2D points are kept fixed, and the number
of 3D points are varied. Here, again, the conclusions drawn in the previous sections
hold, while also showing that increasing the number of data points of one of the sensor
modalities always improves the extrinsic calibration accuracy for the methods using

those modalities.

4.6 Experiments with Real Data

In this section, we carry out a qualitative performance analysis of the proposed bi-
objective refinement scheme using a real setup. Our setup consists of 4 Asus Xtion Pro
Live cameras [19] with their positions shown in Figure 4.13. Each camera acquires an

RGB image and a depth image which is mapped to the RGB image.

The first step is to perform intrinsic calibration to find the intrinsic and distortion pa-
rameters for each camera. For this purpose, we use the method proposed by Zhang [39]
which uses 2D corners extracted from RGB images of a checkerboard pattern viewed at
different poses to compute these parameters [40]. As mentioned before, the measure-
ments of these RGB-D cameras suffer from inherent depth bias. Therefore, we perform
a depth bias correction procedure, similar to the one used in [43], for each camera sep-
arately. This procedure requires placing the camera at known distances away from an
object (a plane in our case). Using known and measured depth values, we estimate the
coefficients of a polynomial which computes the depth correction as a function of mea-
sured depth value. These coefficients are unique to each camera and, hence, are used to

correct the depth measurements acquired by that camera.
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pattern
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FIGURE 4.13: Multi-view system consisting of 4 Asus Xtion Pro Live Cameras C1,
C2, C3 and C4 mounted on a ceiling lift. This system is used to acquire
measurements of a real scene. A two-sided planar checkerboard calibration pattern
used to extract feature points is also shown.
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FIGURE 4.14: 3D reconstruction of a human using a real scene acquired from the
multi-view system shown in Figure 4.13. Acquisition: Each of the 4 cameras acquire
an RGB image and a depth image. 3D Reconstruction: Point clouds based 3D
reconstruction using pose estimates refined by the proposed bi-objective scheme with
the help of automated weighting.

After intrinsic calibration and depth bias correction, the next step is to perform the
extrinsic calibration using the proposed bi-objective scheme. We first need to extract
matching 2D and 3D feature points using RGB and depth images acquired by all 4
cameras. We again use different views of a (two-sided) planar checkerboard pattern as
shown in Figure 4.13 and extract matching corners from RGB images to be used as 2D
feature points and use the corresponding depth values from depth images to get the 3D
feature points. The 3D feature points are filtered via a plane detection approach based
on RANSAC algorithm to remove outliers if any exist. The initial pose estimates are
generated in the same manner as explained in Section 4.5, via a Direct Linear Transform
(DLT) based approach [40, 90]. These initial poses are then refined via the proposed

iterative pose estimation and weight estimation approach explained in Section 4.4, BA
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FI1GURE 4.15: Comparison of 3D reconstructions of a human using a real scene as
shown in Figure 4.13, via different calibration methods namely Init., ICP, BA and
OurAuto described in Figure 4.5. The acquisitions from cameras C'1, C2, C3 and
C'4 are assigned the colors red, green, blue and magenta, respectively. Misalignments
are highlighted via black boxes. Top Row shows side view of the 3D reconstruction
and misalignment of views in the results of Init. and BA can be seen clearly, while
Bottom Row shows the frontal view and misalignment of views in the results of Init.,
ICP and BA are visible. It can also be seen that OurAuto gives better results
compared to the other methods.

and ICP. Once the refined poses are obtained, they can be used to produce full, textured,
3D reconstructions using data acquired by all 4 cameras as shown in Figure 4.14. A
qualitative comparison of 3D reconstructions obtained via different calibration methods
is shown in Figure 4.15. It can be seen that the partial reconstructions are better aligned
using the proposed method, which means that the quality of the extrinsic calibration is
superior when compared to the other approaches. Note that we are only showing the
alignment of the partial point clouds, and no post-processing step such as smoothing or
meshing are applied. We chose to do so to better assess, visually, the accuracy of the

extrinsic calibration.
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4.7 Conclusion

In this work we have proposed a framework for RGB and depth sensor fusion based on
bi-objective optimization, for refinement of extrinsic calibration in RGB-D multi-view
systems. Our bi-objective optimization scheme makes use of a cost function from the BA
algorithm for 2D feature points extracted from RGB images and a cost function from
the ICP algorithm for 3D feature points extracted from depth images. We analytically
derive an expression for the weighted bi-objective cost function. It also analytically
relates the weighing factor to the noise in the 2D and 3D measurements, thus making
the cost function free of any parameter that needs to be tuned. In case the information
regarding measurement noise in 2D and 3D data is not available, we propose an iterative
scheme which alternates between estimation of noise parameters assuming known poses,
and estimation of camera poses assuming known noise parameters. Thus, it enables us
to automatically compute the correct weighting factor when information about measure-
ment noise is not available. A thorough investigation of the performance of the proposed
approach for both synthetic and real data showed improved accuracy compared to re-
finement schemes which only use 2D or 3D information, and comparative performance
of proposed approaches with known and unknown noise parameters. These experiments
also showed the invariance of the proposed approach under various conditions which
include varying the number and position of cameras, varying the 2D and 3D noise and

varying the number of the 2D and 3D feature points.



Chapter 5

KinectDeform: Enhanced 3D
Reconstruction of Non-Rigidly
Deforming Objects

In this part of the thesis we turn our attention to research, analysis, and develop-
ment of methods which target online and template-free enhancement of noisy 3D data
acquired with commodity 3D cameras. Our focus is on reconstructing scenes which
contain non-rigid objects undergoing generic local deformations. For this purpose we
propose KinectDeform, a recursive method which targets enhanced 3D reconstruction
of dynamic scenes containing non-rigid objects. It provides an innovation to the exist-
ing class of mono-view algorithms which either target scenes with rigid objects only or
allow for very limited local deformations or use precomputed templates to track them.
KinectDeform combines a fast non-rigid scene tracking algorithm based on octree data
representation and hierarchical voxel associations with a recursive data filtering mech-
anism. A performance analysis on real and simulated data shows that KinectDeform
is able to produce smoothness and feature preserving 3D reconstructions with reduced

noise.

5.1 Introduction

Reconstructing real objects accurately and efficiently is one of the major goals in the field
of 3D computer vision. It opens doors to various applications from object detection to
environment mapping, from gesture control to security and surveillance etc. Commod-

ity depth cameras such as recently available structured light and time-of-flight cameras,

50
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FIGURE 5.1: High-level pipeline of: (a) KinectFusion, and (b) the proposed
KinectDeform. Dy: input depth map at time ¢, (V{_l, N{_l): filtered vertex map and
corresponding normal map at time ¢t — 1, D} and D}_;: resulting depth maps of rigid

and non-rigid registration steps correspondingly. For more details please see
Section 2.4.2.1 and Section 5.2.

though affordable and easily accessible, acquire noisy measurements with limited resolu-
tion, and hence provide 3D representations which are only suitable for a limited number

of applications.

Many recent approaches try to solve the problem of attaining improved 3D reconstruc-
tion of scenes or objects from low quality raw data [28, 31]. One approach which stands
out due to its performance, efficiency, and high quality results is the KinectFusion algo-
rithm by Newcombe et al. [1, 93]. It either uses a moving RGB-D camera or considers
objects moving in front of a static camera to obtain their high quality 3D reconstruction.
Figure 5.1 (a) shows the high-level pipeline of KinectFusion where a rigid alignment of
3D data captured during sequential time-steps is followed by filtering or fusion of data
accumulated over time. The key feature of KinectFusion is its run-time performance by
using commodity graphics hardware, such that it is able to fuse and reconstruct data

acquired at a rate which is as high as 30 frames per second in real-time.

KinectFusion became a cornerstone for various works which either built on it or used
similar ideas, e.g., to map larger environments in one go by using a moving volume
approach [47, 48], or by using octrees for memory efficient surface reconstruction [94, 95],
or by using voxel hashing for even better accuracy and efficiency [33]. Kainz et al.
modified the KinectFusion pipeline in order to incorporate multiple cameras for holistic
3D reconstruction of static objects [2]. Cerqueira et al. customized KinectFusion for
real-time tracking and modeling of a human face [34]; whereas Sturm et al. used its
components for full human body 3D reconstruction [36]. Moreover, improvements were

also proposed in the real-time tracking module and pose computation by directly fusing
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depth maps with the truncated signed distance function (TSDF) volume [32], or by
using visual features together with 3D information [47, 48, 94]. Similarly, textured 3D
models were achieved by mapping visual texture information on the reconstructed 3D
models [47, 48].

A limitation of the techniques mentioned above is that they target environments with
rigid objects. This makes tracking such objects relatively simple by merely calculating a
single global transformation for the whole object or scene. Non-rigid objects in otherwise
rigid scene are considered as unstable regions, they are segmented and removed when
detected [95, 96]. In the application of face modeling, facial expressions are required to
be as consistent as possible throughout the scanning period [34]. Similarly, for full-body
3D reconstruction, the person to be scanned is required to be static with small non-
rigidities handled by using a rough template from the first frame [36]. For the same body
scanning applications, Cui et al. on the other hand, proposed to tackle non-rigidities by
using a global non-rigid alignment based on joint constraints. Their technique however
cannot handle large motions, and is also not very practical for real-time applications [35].
Recently, Zollhoefer et al. [29] have proposed what they claim to be the first ‘general
purpose’ non-rigid 3D reconstruction system which works in real-time and produces
refined 3D reconstructions. It works by first acquiring a rigid template of the object to

be reconstructed. This template is then used to track non-rigidities with high flexibility.

In this work, we propose a framework which is derived from KinectFusion with the
ability to track and reconstruct, with high accuracy, without any template or constraint
on motion, rigid as well as non-rigid moving objects. Figure 5.1 (b) shows the high-level
pipeline of the proposed technique. Our key contributions consist of using tracking based
on non-rigid registration of the result of the previous time-step to the newly acquired
deformed data, followed by a recursive filtering mechanism based on the registered result
and the newly acquired data. We make use of a generic tracking algorithm for non-rigid
alignment which is efficient and can be easily parallelized [97]. We use both real and

simulated data to validate the performance of the proposed technique.

5.2 Proposed Approach

In Section 2.4.1 we have formulated the problem of template-free recursive data fusion to
obtain noise-free enhanced 3D reconstructions of the scene using the data acquired via a
commodity depth camera. The KinectFusion algorithm which provides a solution to this

problem under the constraints of global motion has been described in Section 2.4.2.1.
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FI1GURE 5.2: Detailed pipeline of the proposed KinectDeform. D;: input depth map
at time-step ¢, D,: result of bilateral filter on Dy, (Vf_17 Nf_l): filtered vertex map
and corresponding normal map at time-step ¢ — 1, Gj_;: unorganized point cloud

which is the result of non-rigid registration of V{_l to Dy, D7_,: depth map

corresponding to Gy, (S7, Wv,), (S{_1, Wyr_,) and (Sff—l’WVf,l) are TSDF

volumes corresponding to vertex maps V;, Vi_; and thq respectively. For more
details please see Section 2.4.2.1 and Section 5.2.

We propose to modify the KinectFusion to achieve 3D tracking, and hence enhanced 3D
reconstruction of not only rigid but also non-rigidly objects undergoing local deforma-
tions, as well. One of the main reasons for taking KinectFusion as a reference is its ease
of parallelization for real-time implementation. We would like to maintain this feature in
the proposed approach that we refer to as KinectDeform. As depicted in the high-level
descriptions of Figure 5.1, KinectDeform modifies KinectFusion at two main levels; first,
the registration which, from rigid, becomes non-rigid, and second, the reference frame
in the filtering process changes where the newly acquired measurement is the one to act
as a reference for the current state of the object and to which the resulting vertex map
from the filtered TSDF from the previous iteration should be aligned and fused with.

More details are provided in Figure 5.2, and described in what follows.

5.2.1 Non-Rigid Registration

Similarly to KinectFusion, for an improved registration, a bilateral filter is applied to the
input depth map Dy as a first preprocessing step. We obtain a bilateral filtered depth
map D}, and its corresponding vertex map V}. The next step is to register the resulting
vertex map of the previous iteration, i.e., V{_l, with this new vertex map V. Conversely
to other classical reconstruction methods, our pipeline captures non-rigid objects. As a
consequence, this registration step aims to align two vertex maps describing the local
deformation h; in (2.9). This deformation is unknown but can be estimated locally by

a patch-oriented method, describing the global non-rigid deformation by a set of local
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Level 2 Level 4 Voxel Scene flow

FI1GURE 5.3: Outline of the non-rigid registration algorithm used by our pipeline,
from the first cloud (a) to the second one (b). As a first step, both clouds are mapped
rigidly by centering their respective centroid (c). A common discrete space is then
built using two separate octrees for which the root cell is the bounding box of the
cloud couple. These octrees are then subdivided regularly until a fixed level S is
reached. Finally, the algorithm described in [97] is used to create a voxel-to-voxel 3D
scene flow, describing a global non-rigid deformation as a set of rigid ones.

rigid ones. As such, we propose to apply a modified scene-flow based tracking method
from [97]. As opposed to other well-known techniques [30, 98—-102], this algorithm offers
real-time capabilities, and can handle non-rigidly deforming objects in a generic way
without considering a specific motion or shape model. The proposed scene-flow tracking
technique relies on several steps: the pair of vertex maps V{_l and V; are first centered
by joining their respective centroids. A double voxelization step then embeds each cloud
considering as a first cell the bounding box of the two point clouds, i.e., sharing the
same root cell. These octrees are aimed to be subdivided in a regular way considering
each cut point as the cell center. Thus the subdivision of both clouds describes the
same discrete coordinate space, see Figure 5.3. Then, a voxel-to-voxel scene flow is
created using a local neighborhood relation among the voxels of the two octrees, several
different hierarchical relations, and finally a local and computationally efficient algorithm
to establish the relation from voxels of the first octree to the second one. KinectDeform
uses the obtained voxel-to-voxel flow in order to register locally each point-based patch
from Vi:l, embedded in the first octree, to V}, embedded in the second one. The result

of the registration is G;_;, which is an unorganized 3D point cloud.



Chapter 5. KinectDeform: Enhanced 3D Reconstruction of Non-Rigidly Deforming
Objects 55

5.2.2 TSDF Volume Creation and Fusion

To create a TSDF volume using the approach explained in Section 2.4.2.1 from the
information in G ;, an organized point cloud or depth map needs to be extracted from
it. An idea would be to simply back project points in G;_; to the image plane using the
camera matrix K. This would result in several points in G;_ ; being projected to the same
pixel location in the image plane to which only one depth value is to be assigned. Hence,
a lot of valuable information would be lost. To get a more accurate representation of
G, , with respect to the camera, we perform surface reconstruction based on Delaunay
triangulation [103]. The resulting mesh, is used for generating the depth map Dj_,
by simulating a noise-free camera with the same pose and camera matrix K as the real
camera used for acquiring the initial raw data and by performing ray-tracing [104]. Next
step is to use the resultant depth map Dj_; and input depth map D; to fuse them to
get a filtered and enhanced reconstruction of the object at time ¢. Here again we use
D, for fusion and filtering instead of D; to avoid loss of important information due
to bilateral filtering. For data fusion and filtering we also use the volumetric TSDF
for surface representation as done by KinectFusion [1, 71]. The reason for choosing
this representation scheme over other similar non-parametric representations is ease of
surface extraction and parallelization of volumetric TSDF computation and fusion [1].
As mentioned in the begining of Section 5.2, for handling local deformations we cannot
keep a globally consistent surface representation as reference and keep fusing newly
acquired information to it. Instead we create TSDF volumes for both Dj ; and D;
using their corresponding Vj_; and V; using (2.11) and (2.12) to get S;_; and Sy,

respectively.

We propose to modify the weighting scheme of KinecFusion in order to take the following
factors into account. On one hand Vj_;, which is the deformed version of V{fl, brings
valuable information due to temporal filtering and also improved registration due to it
being aligned to the filtered version of V;. On the other hand we also have to take into
account errors during registration and also loss of some details in V; caused by bilateral
filtering which in turn might cause loss of some details in V}_;. Similarly we should also
consider the sensor or acquisition noise introduced in each acquisition V;. Therefore, to

reflect these factors the weights W; and W/, are initialized and updated as follows:

Wi(p) = w(oe, &), (5.1)

and

e = 1,
Wi (p) = { 17D 1 (5.2)
w(op,€,_;)  otherwise,
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FIGURE 5.4: RMSE of raw and filtered data with ground truth for simulated “cloth”
dataset

where w(o, z) = exp(—x20~2) is the Gaussian weights function, o, and o, are standard
deviations defining the Gaussian weight functions for current measurements and de-
formed results of previous iterations, respectively. €/ is a global estimate of sensor noise
in the current acquisition D; and €]_; is defined as root-mean-square error (RMSE)

based on point-wise Euclidean distances between V; and Vj_;:

M

r 1 ) T’,i

1= 37 Qo IVi=VEETIP), (5.3)
i=1

where M is the total number of points in Vi, and €} is an estimate of the registration
error and details lost during bilateral filtering, meshing and back projection in Vj_;
with respect to V; assuming that bilateral filtering removes the sensor noise from V;
and hence from V}_;. The parameters o. and o, are chosen empirically for now, taking
into account the factors mentioned above by giving a higher weight to the temporally
filtered deformed data compared to the raw input with increasing time. The two newly
created volumes are fused by following (2.14) to get the filtered TSDF volume Stf which
is used to extract the vertex map V{ and the normal map sz for the next iteration

using the same method as KinectFusion.

5.3 Experiments and Results

To analyze the performance of KinectDeform both quantitatively and qualitatively, we
test it on both simulated and real non-rigidly deforming depth sequences. For quantita-

tive analysis, we use two different data sources. The first one is the simulated deforming
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FIGURE 5.5: “Cloth” dataset. Top row: Frame 5 (a) Ground truth, (b) raw data,
(c) result of KinectDeform, (d) result of KinectDeform after deblurring. Bottom
row: Frame 20 (e) Ground truth, (f) raw data, (g) result of KinectDeform, (h) result
of KinectDeform after deblurring. Display color-scale is based on the depth values of
the 3D points and is in the units of meters.

“cloth” dataset acquired using the ArcSim simulator [105, 106], as shown in Figure 5.5.
The second one is the high quality “facecap” dataset which was provided courtesy of
the research group of Graphics, Vision & Video of the Max-Planck-Institute for Infor-
matics [107], as shown in Figure 5.7.

In order to create Kinect v1 based acquired raw data, we simulate a realistic acquisition
of the “cloth” sequence using Blensor by placing the camera at a distance of 1.8m [104].
We have used a sequence of 25 frames from this dataset. This noisy data is then filtered
in KinectDeform with o, = 18.5mm and 2.25mm < o, < 6.55mm. From Blensor we
can get an estimate of the sensor noise €¢,. The simulated noisy data and results of
KinectDeform are compared with the ground truth data to compute RMSE based on
Euclidean distances with nearest neighbors using CloudCompare [108]. The quantita-
tive and qualitative improvements due to KinectDeform are shown in Figure 5.4. For
qualitative evaluation we compare the reconstructions of frames 5 and 15 obtained using
KinectDeform with the ground truth and the raw acquisitions as shown in Figure 5.5.
Figure 5.5 (d) and Figure 5.5 (h) show the results of applying a deblurring filter on the
results of KinectDeform to remove remaining artifacts and get more refined reconstruc-
tions [109]. Results show significant improvements in the 3D reconstructions as a result

of KinectDeform both qualitatively and quantitatively.

For the “facecap” dataset we use a sequence of 21 frames, simulate a laser scanner in
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FIGURE 5.6: RMSE of raw and filtered data with ground truth for “facecap” dataset

V-REP with objects placed at 0.5m away from the camera [80] and add depth noise to
the acquisitions based on Laplacian distribution with 0 mean and standard deviation
of 0.25mm. The standard deviation parameters chosen for the weighting scheme of
KinectDeform are o, = 0.4mm and 0.4mm > o0, < 0.425mm. The results are shown
in Figure 5.6 and Figure 5.7. Though similar improvements in 3D reconstructions can
be seen in this case as well, an important factor apparent here is the effect of temporal

filtering due to which the error decreases gradually as shown in the Figure 5.6.

To explain this difference in the temporal effect of filtering between two sequences, a
closer look at the deformations introduced in both sequences is required. Figure 5.5(a)
and Figure 5.5(f) show a large amount of deformation between frames of the “cloth”
sequence. Large deformations break the temporal effect of filtering because of factors
such as self occlusions and by significantly changing geometry of the incoming reference
frame thus reducing the value of important details brought by the result of previous
iterations. That is why when the rate of deformation is small as in the sequence of
“facecap” dataset as shown in Figure 5.7(a) and Figure 5.7(f) the effect of temporal

filtering is clearly visible as shown in Figure 5.6.

We also tested KinectDeform on real data captured by the Asus Xtion Pro Live camera
using a plain cloth being waved in front of it. In this case we tested the empirical
weighting scheme similar to KinectFusion in which the weight of reference is increased
by 1 after every iteration until a threshold is reached. KinectDeform was run over 25
frames from this dataset and results for frames 10, 15 and 20 are shown in Figure 5.8.
It shows that even using this empirical weighting scheme, results in smoother surfaces

having preserved details.
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FIGURE 5.7: “Facecap” dataset. Top row: Frame 5 (a) Ground truth, (b) raw data,
(c) result of KinectDeform, (d) result of KinectDeform after deblurring. Bottom
row: Frame 15 (e) Ground truth, (f) raw data, (g) result of KinectDeform, (h) result
of KinectDeform after deblurring. Display color-scale is based on the depth values of
the 3D points and is in the units of meters.

5.4 Conclusion

We have presented KinectDeform, a novel method for enhanced 3D reconstruction based
on tracking of dynamic non-rigid objects. It has two main components, first is the use
of an efficient and effective pair-wise non-rigid tracking which allows for tracking of non-
rigid objects without any constraints and without using a template. Second is the use
of a recursive filtering mechanism derived from KinectFusion but with a change in the
reference being used and a weighting scheme which takes into account different sources
of noise present in the input data. We have carried out both quantitative and qualitative
evaluation of our method and we show that this algorithm is successfully able to filter
noisy depth data to give smoother and feature preserving reconstructions over time.
KinectDeform has been designed keeping in mind its planned extension to a completely
automated real-time system which should enable us to analyze its performance over
longer sequences constituting hundreds of data frames. It should also enable us to

study further the domain of filtering based on non-rigid tracking for data acquired from
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FI1GURE 5.8: Real moving cloth dataset. Left Column: Raw acquisitions. Right
Column: Results of KinectDeform. Top row: Frame 10. Middle row: Frame 15.
Bottom row: Frame 20. Display color-scale is based on the depth values of the 3D
points and is in the units of meters.

consumer depth cameras both in mono-view and multi-view systems which is discussed

in the next chapters.



Chapter 6

View-Independent Enhanced 3D
Reconstruction of Non-Rigidly
Deforming Objects

In this Chapter, we target enhanced 3D reconstruction of non-rigid objects undergoing
local deformations based on a view-independent surface representation with an auto-
mated recursive filtering scheme. This work improves upon the KinectDeform algorithm
which was presented in Chapter 5. KinectDeform uses an implicit view-dependent vol-
umetric TSDF based surface representation. The view-dependence makes its pipeline
complex by requiring surface prediction and extraction steps based on camera’s FOV.
In this Chapter we propose to use an explicit projection-based Moving Least Squares
(MLS) surface representation from point-sets. Moreover, the empirical weighted filtering
scheme in KinectDeform is replaced by an automated fusion scheme based on a Kalman
filter. Qualitative and quantitative performance analysis shows that the proposed tech-

nique is able to produce enhanced and feature preserving 3D reconstructions.

6.1 Introduction

Data acquired by commodity 3D sensing technologies is noisy and of limited resolution.
This limits its direct use in various applications ranging from environment mapping for
mobile autonomous systems and preservation of historical sites, to human activity and
gesture recognition for virtual communications, assistive robotics, security and surveil-

lance.

61
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Research has been carried out to build online template-free and recursive filtering tech-
niques, such as KinectFusion, around commodity 3D sensing technologies to accurately
reconstruct captured 3D rigid objects or static scenes [1, 2, 47, 48]. Recently, researchers
have focused on tracking highly non-rigid behaviors of deforming objects without the
knowledge of any prior shape or reference [97, 110], for the purposes of, for example,

depth video enhancement [111-113].

In our previous work in Chapter 5, known as KinectDeform, we showed that a non-rigid
registration method can be used in a recursive pipeline similar to KinectFusion to pro-
duce enhanced 3D reconstructions of deforming objects [114]. The non-rigid registration
step in the pipeline is followed by surface filtering or fusion using volumetric TSDF based
implicit surface representation. This surface representation scheme is view-dependent
and requires organized point clouds as input. Since non-rigid registration deforms, and
hence destroys the organization of input point clouds, an expensive data-reorganization
step in the form of meshing and ray-casting is required before surface fusion [114].
Moreover, for fusion, a weighted average scheme is used for which parameters are cho-
sen empirically for each iteration. Ray-casting is used again to extract the resulting

point-based surface from fused TSDF volumes after every iteration.

In this work, we propose a method called View-Independent KinectDeform or VI-
KinectDeform which improves upon the KinectDeform algorithm by replacing the vol-
umetric TSDF based view-dependent surface representation with an octree-based view-
independent and explicit surface representation using Point Set Surfaces (PSS) based on
the method of Moving Least Squares (MLS) [115]. This results in a simplified version
of KinectDeform with the removal of an expensive data reorganization step. Moreover,
we improve upon the fusion mechanism by proposing an automated recursive filtering
scheme using a simple Kalman filter [60]. Due to our explicit surface representation,
surface prediction step at the end of each iteration is also not required resulting in a
simpler algorithm. We compare the results of VI-KinectDeform with those of KinectDe-
form using non-rigidly deforming objects and show that for the same number of iterations

VI-KinectDeform produces stable and more accurate 3D reconstructions.

6.2 Background and Problem Formulation

6.2.1 Background

The online and template-free recursive filtering problem for getting enhanced 3D recon-
structions via commodity depth cameras has been formulated in Section 2.4.1. In this

work we redefine the problem by assuming that an input 3D point cloud acquired with
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a camera at time ¢t may be unorganized and hence, can be represented by a 3D point-
set V4, of size M, with corresponding measurement error &. The point-set {p{ }in Vy,
where pg € R? and j € {1,..., M}, approximates the underlying surface of deformable

objects in camera’s field of view. The problem at hand is therefore to reduce & for

t > 0, to recover an enhanced sequence {V({ /,Vll, .. .,V]{,/_l} starting from the input
sequence {Vo,V1,...,Vn—_1}. This leads to redefining the required recursive filtering
function filt(-,-) in (2.10) such that:
y V for t =0,
filt(Vi_1, Ve) t > 0.

As mentioned before a major shortcoming of the KinectDeform scheme lies in the 3D
surface representation based on the view-dependent TSDF volume for data fusion and
filtering [114]. Construction of a TSDF volume for a point cloud requires projecting
each centroid of the TSDF volume to the corresponding camera’s image plane which, in
turn, requires the points in the point cloud to be organized with respect to the image
plane. Therefore, after the non-rigid registration which destroys the data organization
of the input point cloud, an expensive data reorganization step based on meshing and
ray-casting is required for computation of a TSDF. After that, the TSDF volumes,
created for current measurement and the deformed result of previous iteration, are fused
together using an empirical weighting scheme whereby the weighting parameters are
chosen heuristically [114]. This is followed by another surface prediction step via ray-

casting to extract the final filtered surface from the fused volume.

6.2.2 Point Set Surfaces

Keeping in view the key limitations of the KinectDeform method explained in Sec-
tion 6.2.1, a simpler approach would be to replace the view-dependent TSDF volume-
based surface representation for fusion and filtering with a view-independent surface
representation. This would result in avoiding data reorganization and surface prediction
steps. As mentioned before the input points {p’}, ignoring subscript ¢ for simplicity,
approximate the underlying surface of objects in the scene. In [115], Alexa et al. built
upon Levin’s work [116], and proposed a view-independent point-based surface recon-
struction method based on MLS. This method projects a point r € R? lying near {p’}
on the underlying surface approximated by the local neighborhood of r. Apart from fa-
cilitating the computation of the differential geometric properties of the surface such as
normals and curvatures, this method is able to handle noisy data and provides smooth
reconstructions. Moreover, the local nature of projection procedure improves the effi-

ciency of the algorithm [117].
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The projection procedure as proposed by Alexa et al. is divided into two steps [115].

In the first step a local reference domain, i.e., a plane H, = {p e R3 : ii'p =il v,v €
R3,d € R3, ||d|| = 1}, is computed by minimizing the following non-linear energy func-
tion [117]:
Sy —» 2
enrs(v,@) = Y w(d, ar —vI)(E ar — v)%, (6.2)

ar€Qr
where €, is the neighborhood of r. Also i = (r —v)/||r — v||, (.,.) is the dot product
and w(d,e) = exp(—e?d~2) is the Gaussian weight function where d represents the
anticipated spacing between neighboring points [115]. The surface features of size less
than d are smoothed out due to the MLS projection. Replacing v by r 4 ¢td where t € R

in (6.2) we have:

evns(r,d) = > w(d, ||lqr — r — ti[|)(d, qr — v — tid)>. (6.3)
Ar€Qr

The minimum of (6.3) is found with the smallest ¢ and the local tangent plane H, near
r [115]. The local reference domain is then defined by an orthonormal coordinate system
in H, with v as its origin [117].

In the next step, we find the orthogonal projections of points qv € )y, lying in the local
neighborhood of v to get their corresponding 2D representations (zq,,%q,) in the local
coordinate system in H,. The height of qv over H, is found via:

hg, = (U,qy —r — tid). (6.4)

v

Using the local 2D projections and the height map, a local bivariate polynomial approx-

imation ¢ : R? — R is computed by minimizing the weighted least squares error:

> w(d lay — = ti])(9(2qy, Yau) — hay ). (6.5)
qvEQy

The degree of the polynomial to be computed is fixed beforehand. At the end, the
projection r € R3 onto the underlying surface, denoted by P(r), is defined by the

polynomial value at the origin, i.e.:
P(r) =v+¢(0,0)d =r+ (t + ¢(0,0))u. (6.6)

The projected point is considered to be the resulting filtered point lying on the approx-
imated surface. These two steps are repeated for all points which need to be sampled
to sufficiently represent the surfaces of objects in camera’s FOV to get enhanced 3D

reconstructions.
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FIGURE 6.1: Detailed pipeline of VI-KinectDeform. V;: input point cloud at time t.
V;: result of pre-processing on V;. VI': result of non-rigid registration of V{_’l to V.
U, and U;_1: resulting voxel sets based on octree sub-division corresponding to V; and
V[_, respectively. thilz the result of projection-based MLS surface computation and

Kalman filtering-based fusion. th_/lz the final result after post-processing. For more
details please read Section 6.2 and Section 6.3.

6.3 Proposed Technique

Figure 6.1 shows the pipeline of VI-KinectDeform which is an improved/simplified ver-
sion of KinectDeform. After the non-rigid registration step which deforms thill to pro-
duce V/_; to be registered to V;, the data reorganization step is removed. Instead, a
view-independent surface representation and filtering based on the MLS method is pro-
posed. Since the MLS method works on the local neighborhoods of sampled points,
voxelizing /sub-dividing the space of input 3D point clouds not only provides us with
sampling information but also helps in accelerating the search for local neighborhoods
of the sampled points. After that, the sampled points are projected onto the underlying
surfaces of both point clouds based on the MLS method. The resulting projections are
then fused together via an automatic Kalman filtering based scheme to give enhanced

3D reconstructions. These steps are explained as follows:

6.3.1 Sampling and MLS Based Projection

We use octree data structure to sample the space occupied by V; and V;_; resulting
in two voxel sets U; and U;—1 with a pre-defined depth k& € N. At depth level k, U;
and U, contain the non-empty voxels of and of_l, respectively. It is to be noted that
since V; and V;_; are mapped, the corresponding voxels in U; and U;—1 occupy the same

space. Each voxel uf o € Uy where a € {1,...,0F} (or similarly each voxel uf |, € U_;)

k

is represented by its geometric center cf, (or cf_l »)» the points contained in the voxel
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and information about its immediate neighbors. These centroids lying near input points
provide us with suitable sampling points to be projected onto the underlying surface
based on the procedure explained in Section 6.2. Therefore, in the next step the centroid
of each non-empty leaf voxel in U; U U;—1 lying in the vicinity of points from both V,
and V/_; is projected on the approximated underlying surfaces using its corresponding

neighborhood points in V; and V;_, respectively, via the MLS method to get:

C

P = Pi(cia), Pi_1 = Pi1(cf,), or
pi = Pt(Cf_Lb), Pi_1 = Pt—l(cf_Lb)- (6.7)

where 1 < ¢ < (of +0f ), and P,(.) and P,_1(.) are the MLS based projections function,
defined in (6.6), corresponding to V; and V;_,, respectively. The degree of the bivariate
polynomial approximating the underlying surface computed for each centroid is kept
variable (maximum 3 for our experiments) depending on the number of points found in
the neighborhood. Hence as a result of the MLS-based projection procedure, two sets

of corresponding filtered points, {py} and {p{_,}, are generated.

6.3.2 Fusion

It is clear that under ideal conditions, i.e., noise free sensor and with perfectly registered
inputs V; and VJ_, the point sets {pf} and {p{_;} should be the same however, the
noise factors affecting the sensor measurements and the non-rigid data registration have
to be taken into account. Therefore, in this step we propose a methodology to fuse
the corresponding projected points {pf} and {p{_;}, taking into account noise factors
affecting them to produce a filtered 3D reconstruction th . The main noise factor affect-
ing the current measurement V;, and hence {p{}, is the sensor noise while on the other
hand for V/_ it is assumed that, due to pre-processing, some amount of this sensor noise
is mitigated with a loss of few details and hence the main noise factor is error due to
non-rigid registration [114]. This should be coupled with iterative effects of filtering as
V/_, is indeed a deformed state of the filtered th_ll.

In KinectDeform, we tackle these factors by performing a surface fusion/filtering using a
weighted average of TSDF values of corresponding voxels [114]. The weights are chosen
empirically based on an analysis of noise factors affecting the two input voxel sets per
iteration. In this work, we propose an automatic filtering approach by point tracking
with a Kalman filter [60]. The observation model is based on the current measurements
{pf{}, and the associated sensor noise € is assumed to follow a Gaussian distribution
ng ~ N (0,0'5,2,715). Similarly, the motion model assumes as its output the result of non-

rigid registration ,i.e., {p§_;}, and the associated process noise nj_; is assumed to follow
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FIGURE 6.2: “Facecap” dataset. Quantitative analysis on data with different levels of
Gaussian noise. Each figure contains RMSE in log scale of: noisy data, result of
KinectDeform and result of VI-KinectDeform. (a) Results for Gaussian noise with
standard deviation of 0.01 m. It also contains RMSE in log scale of VI-KinectDeform
with registration based on noise free data. (b) Results for Gaussian noise with
standard deviation of 0.03 m. (c) Results for Gaussian noise with standard deviation
of 0.05 m.
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a Gaussian distribution nj_; ~ N (0, af’tfl). Therefore the prediction step is:

koo ok
Pit—1 = P15

(6.8)
2 _ 2 2
Oift—1 = Ti—1jp—1 T Ort—1
and measurement update is given as:
k _ .k k k
Py =Py T Gi(py — Pt\t,l)a (6.9)
2 _ 2 2
T4t = Ttfe—1 — Gtat\tfl?
where: )
O- —
Gp= ——t=t (6.10)

2 2 -
Oijt—1 T Tst

This results in the filtered set of points {pf‘ .} which constitutes th .

6.4 Experiments and Results

The quality of VI-KinectDeform is analyzed both quantitatively and qualitatively. We
use the “Facecap” dataset which captures a person’s face deforming non-rigidly due to
changing expressions in different scenes [107]. The selected scene includes 40 frames.
We simulate a depth camera in V-Rep [80], placed approximately at 0.45 m — 0.55 m
away from the object and add Gaussian noise in depth measurements with zero mean and
standard deviations of 0.01 m, 0.03 m and 0.05 m, respectively. Experiments are carried
out using these datasets for both VI-KinectDeform and KinectDeform. A bilateral filter
is used in the pre-processing step to obtain improved registration for both methods [118].
We use the algorithm proposed by Destelle et al. [97] for non-rigid registration in both
methods. We use the proposed automated fusion scheme in both VI-KinectDeform and
KinectDeform by replacing the empirical fusion scheme used previously. Post-processing
is based on the bilateral mesh de-noising with very small parameters for the neighbor-
hood size and the projection distance for both VI-KinectDeform and KinectDeform [119].
The quantitative evaluation of VI-KinectDeform as compared to KinectDeform is re-
ported in Figure 6.2. It shows the RMSE of the data enhanced with VI-KinectDeform,
and the data enhanced with KinectDeform with respect to the ground truth data for dif-
ferent noise levels. These results show superior performance of VI-KinectDeform in terms
of overall accuracy of 3D reconstructions as compared to KinectDeform. It is noted that
the accuracy of the proposed technique is restricted by the accuracy of the considered
non-rigid registration algorithm. We have tested the proposed VI-KinectDeform by us-

ing non-rigid registration parameters obtained from noise free data. The post-processing
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FIGURE 6.3: “Facecap” dataset. First row: Frame #5, Second row: Frame #15,
Third row: Frame #35. Each row contains noisy data with Gaussian noise of
standard deviation 0.01 m, result of KinectDeform, result of VI-KinectDeform, result
of VI-KinectDeform with registration based on noise free data and ground truth
respectively. Display color-scale is based on the depth values of the 3D points and is
in the units of meters.

step is skipped in this case. The resulting curve in Fig. 6.2(a) shows a significant decrease
in error when using VI-KinectDeform as compared to its earlier version. This is observed
through all frames. The qualitative analysis presented in Figure. 6.3, corresponding to
the noise level and results in Figure 6.2(a), shows superior quality of 3D reconstructions
obtained via VI-KinectDeform in terms of feature preservation and smoothness when

compared to the results obtained via KinectDeform.

For further analysis of the performance of the proposed technique, we use the “Swing”
dataset [120]. We, again, simulate a depth camera in V-Rep placed approximately at
1.5 m away from the object and add Gaussian noise with zero mean and standard devi-
ation of 0.0075 m. We use 20 frames for this experiment. We analyze the performance

of the proposed VI-KinectDeform with 3 other view-independent surface representation
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FIGURE 6.4: “Swing” dataset. RMSE in log scale of: noisy data with Gaussian noise
of standard deviation 0.0075 m, result of closest point-based surface representation,
result of weighted-mean based surface representation, result of local plane
projection-based surface representation and result of the proposed projection-based
MLS surface representation. Please read Section 3.4 for more details.

schemes. These representation schemes are based on finding the surface approximation
with respect to each centroid belonging to the leaf nodes of U; and U;—; lying close to
Vi and V] .

The first scheme is based on finding the closest points in local neighborhoods of the
centroids. The second scheme is based on finding the weighted mean of all points lying
in local neighborhoods of each centroid using the weighting scheme similar to the one
used in (6.2). The third scheme fits tangent planes to points in local neighborhoods
and finds the projections of the centroid on them. It is similar to the proposed scheme
wherein the degree of the polynomial is fixed to one.

Quantitative and qualitative results are shown in Figure 6.4 and Figure 6.5, respectively.
As expected, Figure 6.4 shows that the closest point-based method is least accurate fol-
lowed by the weighted mean-based method, the plane projection-based method, and
the proposed projection-based MLS method in terms of overall accuracy. Similar re-
sults are obtained via quantitative analysis as shown in Figure 6.5 wherein the proposed
method produces the most accurate and feature preserving reconstruction. The plane
projection-based method also gives good results but small features such as nose and
foldings on clothing are not well preserved. This experiment shows that the proposed
pipeline is generic enough such that any view-independent point-based surface represen-

tation scheme using local neighborhoods can replace the proposed MLS-based scheme.
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FIGURE 6.5: “Swing” dataset. First row: Left: noisy data with Gaussian noise of
standard deviation 0.0075 m, Center: result of closest point-based surface
representation, Right: result of weighted mean-based surface representation. Second
row: Left: result of local plane projection-based surface representation, Center:
result of the proposed projection-based MLS surface representation, Right: ground
truth. Display color-scale is based on the depth values of the 3D points and is in the
units of meters.
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6.5 Conclusion and Future Work

In this work we have proposed VI-KinectDeform, an automated recursive filtering scheme
for producing enhanced 3D reconstructions of non-rigidly deforming objects. It im-
proves upon our previous work, i.e., KinectDeform [114], by replacing the implicit
view-dependent TSDF based surface representation scheme with an explicit MLS-based
view-independent surface representation scheme [115]. This simplifies the pipeline by
removing surface prediction and extraction steps. Moreover we improve upon the data
fusion scheme by proposing an automated point tracking with a Kalman filter [60], The
quantitative and qualitative evaluation of our method shows that it is able to produce
smooth and feature preserving 3D reconstructions with an improved accuracy when
compared to KinectDeform. We also show that the proposed pipeline is generic, and
can use any view-independent point-based surface representation scheme. The generic
and view-independent nature of this algorithm allows for the extension to a multi-view
system to produce enhanced full 360° 3D reconstructions of scenes containing non-rigid

objects.



Chapter 7

Full 3D Reconstruction of
Non-Rigidly Deforming Objects

In this chapter, we discuss enhanced full 360° 3D reconstruction of dynamic scenes con-
taining non-rigidly deforming objects using data acquired from commodity RGB-D or
3D cameras. In the Chapters 3 and 4, we have explored the domain of setting up a
multi-view system around commodity RGB-D cameras. Our proposed method accu-
rately aligns the partial measurements, acquired by each camera, to obtain full 360° 3D
reconstructions of dynamic scenes instantaneously. Moreover, we have extended state-
of-art by proposing template-free recursive data filtering methods to remove noise and
produce enhanced 3D reconstructions of non-rigildy deforming objects using data ac-
quired from mainly mono-view systems. In this part we target to enhance the quality of
noisy and low-resolution (LR) full 3D reconstructions acquired with a fully calibrated
multi-view system. For this purpose, we propose a recursive dynamic multi-frame 3D
super-resolution (SR) scheme for noise removal and resolution enhancement of 3D mea-
surements, of non-rigidly deforming objects, acquired by 3D sensors in a multi-view
system. The proposed approach is template-free and works directly on 3D points, thus
giving it flexibility to the types of objects being reconstructed, and the ability to cap-
ture their characteristics, i.e., position and motion in the 3D world more accurately.
To tackle the affects of system blur we use an efficient multi-level 3D bilateral total
variation (BTV) regularization. Quantitative and qualitative performance evaluation of
the proposed technique using both simulated and real data shows that it outperforms
state-of-art methods and produces smooth, high-quality and feature preserving full 3D

reconstructions.

73
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7.1 Introduction

Acquiring high quality and full 360° 3D reconstructions of dynamic scenes containing
non-rigidly deforming objects is one of the fundamental goals of research in computer

vision and robotics.

Compared to photometric cameras, commodity 3D cameras based reconstruction ap-
proaches, although aided by 3D acquisitions, have to overcome problems related to
noise and limited resolution. After the advent of commodity RGB-D or 3D cameras
based enhanced 3D reconstruction techniques for rigid objects [1, 2, 47, 48], researchers
have moved towards handling non-rigid deformations by proposing to construct com-
plete and enhanced 3D models of mainly human subjects by fusing information from
multiple views. This requires handling quasi-rigid motions between different views for
which a global non-rigid registration is performed [49, 50], or a model-to-part registra-
tion based on deformation graph [121] or Shape Completion and Animation of People
(SCAPE) model [122] is used to avoid error accumulation [51, 52]. The works of Cui et
al. [123] and Shapiro et al. [124] are interesting in this regard as they try to tackle the
limited-resolution of the data acquired commodity 3D cameras as well. Before data fu-
sion, a resolution enhancement step, called super-resolution (SR), is performed on data
from individual views with the help of either high-resolution (HR) RGB images [123] or
mono-view filtering under rigidity constraints [1, 124], to get enhanced HR 3D recon-

structions.

To efficiently achieve enhanced 3D reconstructions of non-rigid objects, undergoing rela-
tively large local motions, template based methods have been proposed in which a high
quality template is built as a first step. Li et al. [50, 61] and Zollhéfer et al. [29] propose
to pre-build high quality complete templates of the target objects, which are then used
to track non-rigid deformations before being fused with current measurements to pro-
duce enhanced 3D reconstructions. These methods are restricted to the class of objects
which can stay static or undergo controlled rigid motions for a sufficient period of time

for accurate template reconstruction.

On the other hand, methods based on different 3D non-rigid registration algorithms,
using compact deformable parameterizations based on, e.g., Deformation Graphs [121,
125], Thin Plate Splines [126, 127], and skeleton extraction [10], consensus and matching
under articulated motion assumptions [128], have been proposed [129, 130]. Ye et al.,
propose a performance capture method for complete human bodies based on skeleton
fitting with three hand-held Kinect v1 cameras by making use of RGB information to aid

in the registration process [131]. Li et al. [50] employ a visual hull prior, with pair-wise
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non-rigid scan registration based on deformation graphs [125] for hole-filling and shape

completion based on relatively noise-free data.

Another class of template-free methods for complete reconstruction of 3D objects is
based on spatio-temporal refinement and tracking of input data to build 4D models
offline [53, 54]. Wand et al. use a topology-aware adaptive sub-space deformation
technique to reduce the drift, together with as-rigid-as-possible and temporally co-
herent constraints on motion, to establish correspondences between acquisitions in 3D
videos [55, 56]. The computed deformation field is used to construct a noise-free tem-
plate from partial acquisitions. Sharf et al. relax the motion and spatial coherence
constraints by using a bounded volume [57]. Their method suffers from flickering effects
while still not being able to capture large deformations [50]. A recent work by Xu et
al. is interesting wherein a complete 3D model, and ultimately a 4D reconstruction, is
iteratively built by fusing the non-rigidly deforming partial and low resolution observa-
tions and parameters of deformation subspace with the help of the Coherent Point Drift
(CPD) algorithm [132]. CPD is a probabilistic non-rigid registration algorithm which is
shown to handle arbitrary motions and arbitrary topologies accurately. The method of

Xu et al. also has a tendency to suffer from drift due to large deformations.

Similar to Xu et al. [58], a recent body of work in this domain uses a recursive approach
for temporal fusion and incremental construction of high quality 3D reference models
without the need to build complete 4D reconstructions. In this vain, Dou and Fuchs,
have proposed a recursive template-free scheme, using a multi-view system composed
of ten Kinect vl cameras, which tracks the motion of dynamic human subjects using
deformation graphs [3]. After motion estimation, partial measurements and the reference
frame are fused together using a directional distance function to produce enhanced 3D
reconstructions [3, 133]. This method is restricted by the limitations of having open
gesture topology for the reference frame. Moreover, the results lack quantitative analysis,
and the technique has not been tested in setups with fewer cameras or with low-resolution
acquisitions. DynamicFusion is a similar work which targets real-time enhancement
and incremental surface completion of non-rigidly deforming objects using a mono-view

system, but suffers from similar limitations as the work by Dou and Fuchs [3, 62].

To tackle the above mentioned challenges of recursive surface enhancement techniques,
we have proposed mono-view techniques such as KinectDeform and VI-KinectDeform in
Chapter 5 and Chapter 6. They are able to handle large local motions and do not require
a reference model with a fixed topology. KinectDeform is a view-dependent method and
hence can only produce partial reconstructions. VI-KinectDeform, on the other hand,
is a view-independent moving least squares (MLS) and Kalman filter based, 3D video

enhancement scheme which could directly be used in 3D multi-view systems. It has duly
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been tested for mono-view systems but has not been tested for and may not perform
well on LR data [134].

To tackle LR and noisy non-rigidly deforming data we look into image-based SR tech-
niques [111-113, 135-137]. It is important to mention the work of Al Ismaeil et al.
in this regard which, though restricted to enhancement of mono-view dynamic depth
videos, proposes to tackle the problem of LR sensing systems via recursive dynamic
multi-frame depth SR algorithm [111, 135]. This algorithm recursively estimates an HR
and enhanced depth map at each time-step, by taking as input the current upsampled
LR measurement and the result of previous time-step to track and correct the depth and
radial displacement values of each 3D point, associated with a pixel, using a Kalman
filter [60]. This method performs well on various non-rigid scenes but cannot be used
for full 3D reconstructions. Moreover, due to range flow approximation this method can

face difficulties to track fast and abrupt motions.

This overview of the state-of-art suggests that although several approaches for enhanced
and complete 3D reconstructions of non-rigid objects, undergoing local motions, have
been proposed, they suffer from several limitations. These limitations are due to the
requirements for template generation, inability to tackle large deformations, inability to

tackle highly noisy and low-resolution data, and inability to produce online results.

To tackle these limitations, we propose a template-free and recursive SR approach capa-
ble of handling highly noisy and low-resolution data acquired from a multi-view system.
The pipeline of the proposed algorithm is shown in Figure 7.1. Following image-based SR
approaches [113, 135], at every time-step, it upsamples the acquired measurement and
uses it together with the result of previous time-step to track and correct the position
and motion of each 3D point. It, therefore, avoids error accumulation or drift caused by
large deformations. Furthermore, regularization of positions and correction of motion
is carried out, at each time-step, with the help of a novel 3D BTV regularization. We
validate the proposed approach via quantitative and qualitative analysis on simulated

and real data.

7.2 Problem Formulation

A fully calibrated 3D multi-view system captures an LR 3D video {L;} of a scene
containing non-rigidly deforming objects, with each unorganized point cloud represented
as an ordered point-set L;, acquired at time ¢, and containing M 3D points, where
M € N*. The acquired points in £; approximate the underlying surface of objects in

the scene. The objective is to reconstruct an enhanced HR 3D video {#;} where each
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FI1GURE 7.1: Detailed pipeline of the proposed recursive dynamic multi-frame 3D
super-resolution algorithm. For more details please see Section 7.3.

point-set H; = [p},--- ,pM], with points p} = (x,yi, z{)T where z%, i and 2} € R, T is
the transpose, i € {1,--- ,U}, and also, U = o x M, where o € N* is factor by which

the resolution of the input data is enhanced. It is also known as the SR factor.

Let us assume that each LR acquired point cloud L; is related to the corresponding HR

cloud H; via the sensor model:
['t = T(Ht) + Wt, (71)

where 7(.) is the measurement function which incorporates system blur and downsam-
pling operators, and W, represents additive white noise at time ¢ and has same size
as Hi. We can perform dense upsampling on the acquired LR point clouds as a pre-
processing step which eliminates the resolution difference between the measured data
and the desired H; that we are to estimate, and helps in decreasing the registration
error [112, 113]. Considering a dense upsampling operator 1 which performs an increase

or enhancement in resolution, with a factor o, (7.1) becomes:
He = Lo = [r(He)] T 4+Wi 1, (7.2)

Moreover, each HR point cloud H;_; undergoes a dynamic deformation at time ¢ to give
HR point cloud H; via:
Hie = he (He1) + F, (7.3)

where hy(-) is the local deformation function which deforms H;_1 to H;, and F; is the

innovation containing information about new and disappearing points [111, 135].

The objective of this paper is to devise a dynamic multi-frame SR algorithm which
recursively estimates Hy, by taking into account the current upsampled input point

cloud 7:[t, the previous result ’;Clt_l and the estimated 3D non-rigid deformation relating
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them, such that:

. ~ for t =0
{ Ht or s (7.4)

N\ fitHe H)  t>o.

where filt(-,-) is a filtering function which is redefined from (2.10). It takes into account
the local deformations between 7-Alt,1 and 7—~lt to mitigate the effects of cameras’ measure-

ment limitations which result in noisy measurements with limited resolution and system
blur.

7.3 Proposed Approach

7.3.1 Overview

In this chapter, we propose a recursive dynamic multi-frame 3D SR algorithm. It tack-
les the limitations imposed on the multi-view systems based on commodity 3D cameras,
which lead to acquiring noisy and LR measurements. It produces enhanced HR and full
3D reconstructions of dynamic scenes. Figure 7.1 gives an overview of this algorithm.
After upsampling the acquired LR point cloud £; to get H;, using (7.2), we estimate the
non-rigid deformations which register the enhanced HR result of previous iteration Hyq
with #,;. This registration is used to establish point-to-point correspondences between
H,; and 7:[,5,1, which allows to track and filter the position and motion of each point in
#;. For this purpose, we use the CPD algorithm [132] which is a probabilistic method,
wherein the matching of two point clouds is considered a probability density estimation
problem [132]. It provides better registration accuracy than the registration algorithm,
proposed in [97], which is used in KinectDeform and VI-KinectDeform. The CPD algo-
rithm non-rigidly registers Hy—1 to Hy, which is followed by a nearest neighbor search
for establishing point-to-point correspondences. For per-point refinement via tracking,
in this work, we use a Kalman filter [60], which performs prediction and correction for
each 3D point’s motion and position using the point-to-point correspondence informa-
tion. This results in a noise-free but blurred estimate of H; [31]. We use a novel 3D
BTV regularization to perform deblurring and produce a noise-free HR estimate .
After that a motion correction step using updated point positions in H, is also carried
out. These steps are repeated for every measurement £;, and hence result in a recursive

process which enhances the resolution and quality of £; using the previous result.

In what follows, we describe the method for per-point tracking using the correspondence

information provided by the non-rigid registration algorithm.
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7.3.2 Per-point Refinement via Tracking

For simplification of notation, in what follows we remove the point indices i, i.e., ri = ry,
vri € R3. We assume that the non-rigid registration step, in Figure 7.1, establishes
point-to-point correspondences between the points p; and p;_1. Now the measurement

model for each point follows from (7.2) such that:

Pt = Pt + Ny, (7.5)

where n; = (n(w,t), n(yi),n(z,t))T represents per coordinate independent Gaussian noise

which affects each measured point p; such that n; ~ N (03, C) is a 3-dimensional noise
g2 0 0

vector where 03 is a 3D null vector, and C= | 0 ¢ 0 ) is the covariance matrix. The
0 0 o2

per-point dynamic model follows from (7.3) such that:

Pt = Pt—1 + Wy, (7.6)

where w; is the noisy version of the innovation. We propose to treat each 3D point p;
in motion as an independent dynamic system decorrelated from other 3D points in the
scene. The state s; of this dynamic system is defined by the position p; = (x¢, yt, 2¢)7
and the velocity vi = (v(z,1), V(y,0)5 U(Zyt)>T of the corresponding 3D point such that s; =
(T4, Vizt)s Yt> Vg t)» 2t V(z,p))T- We propose to use the per point correspondence together
with the measurement and dynamic models, and their corresponding measurement and

motion uncertainties, to update and filter the system state using a Kalman filter [60].

Following from (7.5), the measurement model for state s; is defined as:

1 00 00O
pt=B.s;+n,whereB=]10 0 1 0 0 0 (7.7)
000O0T10

In this work we assume a constant velocity model, where the acceleration a; of the point

ng 0 O
p: is a random vector such that a; ~ N(03, C,) where C, = ( 0 o7, 0 ) . Considering
0 0 o2,

a time step At the dynamic model in (7.6) can be written as:
1 2
Pt = Pt-1 + Vi 1AL + §atAt ) (7.8)
and the corresponding velocity is:

vi = vi_1 + a;At, (7.9)
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which can, in turn, be written in the following matrix form:

D, 02x2 O2x2
sy = Ds; + ay,such that D = [ 022 D,  02x2 | (7.10)
022 0242 D,

1 At

where D, = D, = D, = ( > Moreover, a; represents the process error, such
0 1

02, A Oax2 Oaxo
that a; ~ N (0g, Q) where Og is a 6 dimensional null vector and Q = [ 02x2 02,4 O2x2 |,
O2x2 O2x2 02 A

At?/4  At/2
At/2 1

diction of the next state is given as:

where A = At? ( > Now using the standard Kalman equations, the pre-

{ §t|t71 = Dst71|t717 (7.11)

P, =DP; ;;, ,DT+Q,

where P;_);_; is the covariance matrix corresponding to the previous state s;_1;_; and
f’t‘t,l is the covariance matrix corresponding to the predicted state 8;;_;. The error in
the predicted state S;;_; is corrected by comparing it with the observed measurement

Pt based on the Kalman gain matrix Gy; which is computed as follows:
A . —1
Gt|t == Pt‘t—lBT <BPt‘t_1BT + C) 3 (712)

using this gain Gy, the corrected state vector and covariance matrix are obtained via:

{ et = Seje—1 + Gyje (Pt — BSye—1), (7.13)

Py =P 1 — GyBP,, .

This per-point filtering is performed for each p; to obtain the filtered, but blurred,
estimate of Hy, i.e., 7:[{[ . Similarly, we get the filtered 3D velocity estimates for all
points i.e., f)tf , where )A/tf contains U velocity vectors. It is to be noticed that since
the measurement noise and the process noise affect each coordinate of the 3D point
independently, the per point Kalman filtering can be split into per coordinate Kalman
filtering. This decreases the complexity of computation of the Kalman gain matrix Gy,

for each point.

7.3.2.1 Depth Dependent Measurement Noise

The measurement model in (7.5) assumes per coordinate independent Gaussian noise

affecting each 3D point p;. In reality and as explained in Section 2.1.1 the 3D points are
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computed from depth images acquired via commodity 3D cameras built on structured-
light or time-of-flight principles [18-20]. The acquired per-point depth measurement,
ie., q: = (g, vy, 2¢)7 is defined by the approximated pixel position (@, 7¢), in the depth

image, and the measured depth value Z; where:
Qr = q¢ + 1y, (7.14)

where n; = (n(u,t),n(v,t),n(m))T represents noise in the measured pixel position and
depth value. Let us consider a structured-light depth camera [19], for which the depth
measurement Z; suffers due to noise ny;) in disparity d as explained in Section 2.1.1,
which is the distance (in pixels) between locations of a point in observed and projected

pattern, via the relation [84, 138]:

2
n(z’t) = —ﬁn(d,t), (7.15)

where f is camera’s horizontal focal length, b the baseline distance between the camera
and the projector, and n(4 is the noise in the corresponding disparity measurement dy.
The main factor affecting both the pixel and disparity measurements is the noise due to
quantization [84], therefore we can assume it to be drawn from independent Gaussian
distributions such that ng, s ~ N(0,02), ng.ey ~ N(0,07) and ngy ~ N(0,03). This
allows us to model the noise in depth measurement i.e., ngs ~ N (0,0(22’1‘/)) where
U(2z,t) = (_%21;)2‘73'

To convert the depth measurement q; to the corresponding 3D position p;, the intrinsic

u 0 u
matrix K = (JEJ fo ZU ), where (fy, fu) represent the focal lengths (where f = f,), and
00 1

(cu, ¢y) represent center of camera’s imager such that:

pr = K 'Zq = K ' Z(q + 1), (7.16)
- % 00
where Z; = (Zot % 0) and 2 = z + N(zt)- Therefore the measurement model for each 3D
001 ’

point can now be defined as:

Pt = pi +1's, (7.17)
where:
2eN (1) F (Ut —Cu) Nz ) F1 (2 ) Pu )

n; = Ztn(v,t)+(vt*0v);lt(z,t)+"<z,t)n(u,t) . (7.18)

v

N(zt)
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Here n'; ~ N (03, C}) where the entries of covariance matrix C;} are defined as:

2202 +(u _6“)2022 . +03022 .
COU(n(x,t)yn(a:,t)) - ( ‘ t fg( A ( ’)> )
2202+ (v —cv)202z . +012,022 .
cov(n(yt),n(w)) = ( ¢ i fﬁ( ) ( ,)> :
cov(n(z,0), N(z1) = 0L, (7.19)
CO’U(’TL(Lt), (y,t)) = (Ut_c}ljgfq:t_cv)o'?z,t)a
cov(n(z 1), N(z) = WU Gty
cov(ny,n(-p) = 5ol ),

where cou(.,.) computes the covariance between two random variables. This covariance
matrix, specific to each point, can therefore be replaced in (7.12) when dealing with data
acquired from depth cameras. To compute this covariance matrix, the noise-free pixel
and depth values are required, but are not available in practice. Therefore, we propose
to use the measured pixel and depth values instead, which are the closest approximation
of the noise-free values we can get. Using the Cj increases complexity of the proposed
approach as now we have to deploy a Kalman filter per point, instead of per coordinate
which was the case previously, but it captures the noise characteristics of depth cameras

more accurately.

7.3.3 Proposed 3D BTV Deblurring

Per-point refinement via tracking discussed in Section 7.3.2 does not explicitly cater for
blurring in the measurement model in (7.2) [31]. Furthermore, blurring artifacts are
introduced due to treating each point separately which affects the global smoothness
property of point clouds [135]. This results in filtered but blurred estimates of 3D
point positions in Hy, i.e., 7:[{ , together with the corresponding velocity estimates, i.e.,
f/tf . Therefore after per-point tracking, at every time-step At, it is necessary to carry
out deblurring and regularization of position and motion estimates at hand to produce
deblurred and globally smooth estimates [135]. We tackle the problem of deblurring by
using a novel method for 3D BTV regularization of point positions. The regularized
position estimates are used to correct the motion estimates. Please refer to Chapter 8
for details of this method. We carry out the 3D BTV regularization of position estimates
7-1{ to get a deblurred point cloud H,.

In the next step we want to use the deblurred point cloud H; to correct the per point

constant velocities estimates in Wc to get f)t. For this purpose we use 7:[t and the previous
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FIGURE 7.2: Comparison of results of different steps of the proposed dynamic
filtering pipeline, as shown in Figure 7.1, on 35 LR frames of the “Samba”

dataset [120] with zero-mean Gaussian noise of standard deviation 3cm added to each
coordinate of 3D points independently. The steps include dense upsampling (UP), UP
with per-point tracking using a Kalman filter (UPTrack), and UP with per-point
tracking and 3D BTV deblurring (UPTrackTV). Per-point tracking alone is not able
to handle system blur, therefore the proposed method of per-point tracking together
with 3D BTV deblurring produces the best results. The SR factor is o = 4.

result Hy_1 to compute the per point corrected velocities estimates via:
vy = (P — Pi—1)/AL. (7.20)

These corrected velocity estimates are used to get the per-point corrected state estimates

which are then used in the next iteration.

7.4 Experiments and Results

In this section we present the results of the quantitative and qualitative analysis of
performance of the proposed recursive dynamic 3D SR method using both synthetic
and real experimental data. The data is in the form of 3D videos and contains non-
rigid objects undergoing local motions of various complexities. We start by analyzing
the results of our experiments on synthetic data which includes evaluation of different
steps of the proposed method and its comparison with the state-of-art methods. This
is followed by an analysis of results of the proposed method using real data acquired by
cameras in a multi-view system. We show the ability of the proposed 3D SR method to
enhance LR and noisy 3D reconstructions of non-rigid objects undergoing local motions

as well as significant topology changes.
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FIGURE 7.3: Comparison of the proposed technique with the state-of-art methods for
enhancement of 3D measurements, corresponding to non-rigid objects, affected by
noise of varying magnitude. 35 LR frames of the “Samba” dataset [120], with
zero-mean Gaussian noise of standard deviations lem, 2em and 3cm added to each
coordinate of 3D points independently, are used respectively. The SR factor is o = 4.
Two static filtering methods namely Bilateral Mesh Denoising (BMD) [139] and
Moving Least Squares (MLS) [140] are compared with the proposed recursive and
dynamic SR method with (UPTrackTV) and without (UPTrack) the 3D BTV
deblurring. BMD1 is the result of BMD on data affected by Gaussian noise of
standard deviation lem, and so on. Results show that UPTrackTV provides the best
performance, as compared to the other methods, across all noise levels with its
comparative performance improvement increasing with increasing data noise. This is
due to its ability to tackle noisy artifacts locally as well as globally, in contrast with
other methods which are mainly local in nature and hence, are unable to tackle high
magnitude of noise in the data.

7.4.1 Evaluation on Synthetic Data

In this section we analyze the performance of the proposed method, using synthetic data
with available ground truth, both qualitatively and quantitatively. This performance
analysis includes analyzing the affects of different steps of the proposed pipeline followed

by a comparison with the state-of-art filtering methods under varying noise and SR levels.

We use the “Samba” dataset [120] which contains high quality meshes from which HR
3D point clouds, representing full 3D reconstructions of real scenes of a non-rigid human
body undergoing smooth and non-smooth local motions over time which we call the

ground truth (GT), are extracted. We use 35 frames for our experiments.

We start by analyzing the effects of different steps of the proposed SR pipeline as shown
in Figure 7.1. For this purpose, the GT point clouds are first downsampled by a SR
factor o = 4, then zero-mean Gaussian noise is added independently to each coordinate

of 3D points, of the downsampled GT clouds, with standard deviations 0, = 0y = 0, =
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F1GURE 7.4: Comparison of the proposed technique with the state-of-art methods for
3D point cloud enhancement for different SR factors. 35 LR frames (downsampled by
a factor o = 4) of the “Samba” dataset [120], with zero-mean Gaussian noise of
standard deviation 3cm added to each coordinate of 3D points independently, are
used. The filtering is performed on the input data upsampled by a factor o = 1 and

o = 4, respectively. Two static filtering methods namely BMD [139] and MLS [140]
are compared with the proposed recursive and dynamic SR method. BMD1 is the
result of BMD on input LR and noisy data upsampled by a factor o = 1, and so on.
Although the proposed method has comparative performance at o = 1 with respect to
the performance of the state-of-art methods at o = 4, it achieves best results at o = 4.

3cm. These LR noisy point clouds are given as input and SR results of upsampling
based on mesh edge division using GT mesh information with o=4, upsampling and
per-point tracking using a Kalman filter, and upsampling, per-point tracking together
with multi-Level iterative 3D BTV deblurring, are obtained. Root Mean Squared Error
(RMSE) for the result of each method is computed with respect to the HR GT data.
Figure 7.2 shows the RMSE per frame for each of the steps mentioned before. Although
per-point tracking using a Kalman filter recursively enhances the 3D point clouds and
requires only 3-4 frames to converge, its performance is limited by its inability to handle
system blur and its ability to introduce noisy artifacts. Adding a deblurring step based

on 3D BTV regularization solves this problem and produces the best results.

In the next experiment, we perform a comparison of the state-of-art static 3D point
cloud enhancement methods with the proposed dynamic SR scheme using the data
affected by noise of varying magnitude. The GT point clouds are downsampled and
upsampled by a factor o = 4 as explained above. Zero-mean Gaussian noise of standard
deviations 0, = 0y = 0, = lem, 2cm and 3cem, is added to the downsampled GT point
clouds, respectively. In addition to the proposed method, we use static filtering schemes
based on Bilateral Mesh Denoising (BMD) [139] and Moving Least Squares (MLS) [140]
to enhance the upsampled point clouds. RMSE per frame for results of BMD, MLS,
proposed method with per-point tracking only and proposed method with per-point
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FIGURE 7.5: Comparison of the proposed technique with the dynamic state-of-art
method, namely recUP-SR [135], for enhancement of 3D/depth videos generated by
simulating a mono-view depth system using the “Samba” dataset [120]. 19 LR depth
frames with zero-mean Gaussian noise of standard deviation 3cm added to the depth
measurements, are used [135]. The results show improved accuracy of the proposed
method as compared to recUP-SR.

tracking and 3D BTV deblurring, are plotted in Figure 7.3. Although the proposed
method, with per-point tracking only, is able converge more quickly as the noise level
decreases, its performance remains worse than the other methods due to introduction
of blurring artifacts. The performance of BMD and MLS starts to get worse with the
increase in noise magnitude due to their local nature and their inability to handle highly
noisy artifacts. The proposed method with per-point tracking and 3D BTV blurring
provides the best performance at all noise levels and can produce globally smooth and

feature preserving point clouds even at high noise levels.

In Figure 7.6, we plot mesh reconstructions of an example frame (number 33) which are
obtained as a result of; adding independent Gaussian noise to each coordinate of the
downsampled GT data with standard deviation of 1em, dense upsampling of LR noisy
data with o = 4 only, upsampling and BMD, upsampling and MLS, proposed pipeline
with o = 4, together with HR ground truth meshes. The meshing of point clouds is
carried out by using the mesh information available for GT. The results clearly show
that the proposed technique produces enhanced, smoother and feature preserving re-
construction as compared to other methods. BMD and MLS fail to preserve smaller
features such as hands, arm, nose, etc. To investigate further the quality of reconstruc-
tions obtained via the methods mentioned above we calculate the RMSE for different
body parts for the reconstructed example Frame#33. Table 7.1 shows these results from

which it is clear that even for separate body parts the conclusions drawn above hold.

Figure. 7.6 shows plots of 3D mesh reconstruction of an example Frame#33, from dif-

ferent views, obtained as result of the proposed method. The proposed method tackles
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TABLE 7.1: 3D RMSE in mm for different body parts, of Frame#33 of the ”Samba”
dataset [120], using different methods as shown in Figure 7.6.

Arm | Leg | Torso | Full body

LR 11.31 | 11.61 | 11.03 | 11.48
UpP 9.43 | 10.23 | 9.55 | 9.84
BMD 9.22 | 9.03 | 7.46 |8.23
MLS 10.07 | 883 | 7.75 | 8.69

Proposed || 8.05 | 7.55 | 7.26 | 7.83

non-rigidities and recursively filters the noisy measurements to produce super-resolved

and enhanced complete 3D reconstructions of dynamic objects/scenes.

In the next experiment, we perform a comparison of the state-of-art static 3D point cloud
enhancement methods, i.e., BMD and MLS, with the proposed dynamic SR scheme for
different SR factors. This means that GT point clouds are first downsampled by a SR
factor o = 4, then zero-mean Gaussian noise is added independently to each coordinate
of 3D points, of the downsampled GT clouds, with standard deviations o, = o, =
0, = 3cm. Filtering is carried on this data with upsamling factors of o = 1 and o = 4,
respectively. RMSE per frame is plotted in Figure 7.4. Results show that proposed
method clearly outperforms both BMD and MLS when used on same data. The results
also show that even at upsampling factor o = 1 the proposed dynamic scheme gives
comparative performance with respect to both BMD and MLS used on upsampled noisy
data with o = 4. This is outperformed by applying the proposed dynamic filtering
scheme at o = 4. The reason for this is that at o = 1, the method recursively denoises
the noisy input. On the other hand, at o = 4, the method applies the full recursive
dynamic super-resolution pipeline which together with denoising, enhances the quality

of data by preserving useful features.

Lastly, we perform a comparison of the proposed dynamic 3D SR method with the state-
of-art dynamic depth SR method proposed by Al Ismaeil et al. [135], called recUP-SR.
We again make use of the “Samba” dataset [120], and simulate a depth camera, placed
at a distance of approx. 2 meters, in V-Rep [80] to generate a mono-view synthetic
depth sequence [135]. This GT depth sequence is downsampled by a factor o = 4, and
zero mean Gaussian noise of variance o, = 3cm is added to the depth measurements.
This LR noisy depth sequence is given as input to recUP-SR, and is converted to a
3D sequence via the known camera parameters and given as input to the proposed
method. To compare the super-resolved (by a factor o = 4) results of both methods the
resulting depth sequence from recUP-SR and the GT depth sequence are converted to 3D
sequences as explained before. After that per frame RMSE for the result of each method
with respect to the 3D GT is computed. The results are reported in the Figure 7.5. The
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results show the robustness and improved accuracy of the proposed method as compared
to recUP-SR.

7.4.2 Evaluation on Real Data

In this section we analyze the performance of the proposed method using real data ac-
quired via multi-view systems composed of photometric and commodity depth cameras,
respectively. In addition to showcasing the ability of the proposed method to enhance
the quality of LR and noisy data to produce smooth and feature preserving full 3D
reconstructions of non-rigid objects, this experimental analysis also demonstrates the
capabilities of the proposed method to produce accurate and enhanced 3D reconstruc-

tions of objects with changing topologies.

In the first experiment we use full 3D point-clouds extracted from meshes of the “adult
child ball” scene from the InriadD dataset [141]. This dataset is acquired via a fully
calibrated multi-view system based on photometric RGB cameras. This dataset has
two characteristics; the resolution of data is quite low (approx. 10000 points per scene)
resulting in non-smooth surfaces, and it contains an object, i.e. a ball, with changing
topology as shown in Figure 7.8. Due to these characteristics this dataset is very chal-
lenging for the class of methods to which belong the works by Dou and Fuchs [3, 133]
and DynamicFusion [62]. These methods do not explicitly target LR data and are very
sensitive to objects with changing topologies due to their design of always fusing the
current measurement with the first frame which is considered to be the reference. The
proposed method, on the other hand, explicitly targets LR 3D data and produces HR,
smooth and feature preserving 3D reconstructions as shown in Figure 7.8. Moreover,
it works by recursively fusing the current measurement and the result of the previous
iteration/time-step and hence, can accurately reconstruct objects, in this case a ball,

with changing topologies.

In the next experiment we use point clouds from the full 3D video of the “jumping
in place” action performed by a human subject from the Berkeley Multimodal Human
Action Database (MHAD) [142]. This dataset is acquired via a fully calibrated multi-
view system composed of two Kinect versionl cameras placed at opposite corners of the
acquisition space. As explained in Section 2.1.1 and Section 2.1.2, the depth acquisi-
tion system of Kinect versionl is based on structured-light principle and suffers from
depth dependent measurement noise. The distance of Kinect cameras from the subjects
in MHAD’s multi-view setup is approximately 3.5 — 4 meters. This results in highly
noisy 3D measurements with non-smooth surfaces and diminished features as shown in

Figure 7.9. Figure 7.9 also shows the point clouds which are received as the output of
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the proposed algorithm. The input data is upsampled by a factor o = 1.5. Moreover, to
tackle the depth dependent measurement noise specific to Kinect versionl cameras the
measurement model presented in Section 7.3.2.1 is used during the per-point tracking
step. The resolution enhancement together with per-point tracking and 3D BTV de-
blurring results in point clouds which are relatively noise-free, have smoother surfaces

with less holes/gaps and better preserved features/details.

7.5 Conclusion

In this chapter we have presented a framework for acquiring high quality and full 360°
3D reconstructions of dynamic scenes containing non-rigid objects undergoing large local
motions/deformations. We target noisy and LR data acquired from commodity 3D
cameras in a multi-view system. This framework is based on a recursive dynamic multi-
frame 3D SR algorithm which is capable of filtering out the noise as well as enhancing the
resolution of the raw measurements obtained from multi-view systems. The proposed
algorithm tracks and filters the position and motion of every 3D point recursively, hence
making use of complete 3D characteristics of the input data. It is able to handle generic
3D as well as structured-light sensing based depth specific noise in 3D measurements.
Moreover, it uses a 3D BTV regularization for deblurring and smoothing of the point
clouds after per point tracking. Quantitative and qualitative evaluation of the proposed
framework on both simulated and real data shows its improved performance as compared
to state-of-art methods, and its ability to tackle highly noisy and LR data in order to

produce noise-free, smooth and feature preserving full 3D reconstructions.
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(d) MLS (e) Proposed (f) GT

FIGURE 7.6: 3D mesh plots of a super-resolved resultant Frame#33 from the
”Samba” dataset [120] after: b) dense upsampling (UP), c) Bilateral Mesh Denoising
(BMD), d) Moving Least Squares (MLS) and e) Proposed recursive and dynamic SR
scheme. a) is the 3D plot of LR noisy data, and e) is the GT HR mesh respectively.
Proposed technique produces smooth, enhanced and feature preserving reconstruction
as compared to the rest. The SR factor is 0 = 4. Display color-scale is based on mean
surface curvature.
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(a) Front (b) Left (c¢) Right (d) Back

F1GURE 7.7: 3D mesh plot of from different views of a super-resolved resultant full
3D point cloud (Frame#33) from the ”Samba” dataset [120]. Display color-scale is
based on mean surface curvature.
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(a) LR (b) Proposed

FIGURE 7.8: 3D mesh plots of three LR frames (#5, #12 and #15) from the
"InriadD” dataset [141], i.e. the first column, and the corresponding super-resolved
(using SR factor o = 4) results of the proposed algorithm, i.e. the second column. The
input data has low-resolution which results in non-smooth surfaces, thick edges and
loss of details. The results show super-resolved, smooth, and feature preserving 3D
reconstructions of non-rigid objects. They also show ability of the proposed method
to produce enhanced reconstructions of objects with changing topologies e.g., the ball
in the above plots. Display color-scale is based on mean surface curvature.



Chapter 7. Full 8D Reconstruction of Non-Rigidly Deforming Objects

93

(b) Proposed

FIGURE 7.9: Plots of LR 3D point-clouds of five frames (#6, #10, #18, #22 and
#35) from the "Berkeley MHAD” Kinect dataset [142], i.e. the first row, and the
corresponding super-resolved (using SR factor o = 1.5) results of the proposed
algorithm, i.e. the second row. The input data suffers from high magnitude of noisy
artifacts, in the form of non-smooth surface and jagged edges, due to large distance of
the object from the cameras. The results show super-resolved, smooth, and feature
preserving full 3D reconstructions of the human subject.



Chapter 8

Point Cloud Denoising via 3D
Bilateral Total Variation

Regularization

In this chapter, we discuss the problem of noise removal from unorganized 3D point
clouds while preserving finer details to produce accurate 3D reconstructions of objects
or scenes. The state-of-art unorganized 3D point cloud denoising methods are usually
local in nature. The local nature of theses methods restricts their ability to tackle noisy
artifacts and produce globally smooth 3D reconstructions while preserving salient fea-
tures. Total variation regularization based global methods, such as BTV regularization,
have been successful in denoising and deblurring color or depth images to produce glob-
ally smooth and edge preserving results [143]. These methods make use of organization
of the data on the image grid to compute the total variation of all pixel values. In
this work we propose to extend the image based BTV regularization to unorganized
3D point clouds. We tackle the challenge of computation of BTV of 3D points without
the availability of local neighborhood or structure information by extracting local point
patches and making use of elements from the local Bilateral Mesh Denoising (BMD)
framework [139]. Quantitative and qualitative performance evaluation of the proposed
algorithm shows that it outperforms state-of-art local point cloud denoising methods

and produces accurate, globally smooth and features preserving 3D reconstructions.

8.1 Introduction

Modeling the 3D world around us accurately is a fundamental task in computer vision.

It can be achieved via 3D sensors acquiring the geometric information in the form of 3D

94
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point clouds. In most cases the quality of this information declines due to various sys-
tematic and non-systematic factors. This challenge has been amplified by the availability
of commodity depth cameras, such as Microsoft Kinect [18], Asus Xtion Pro Live [19]
and PMD camboard nano [20] etc, which though easily available and widely in use pro-
duce low quality and limited resolution geometric measurements. Therefore, there is a
need for such algorithms which can filter the acquired 3D point clouds provided by such
sensors to mitigate the noise affecting them, while preserving the feature information, in

order to help produce as accurate 3D reconstructions of the scenes/objects as possible.

State-of-art methods suggest two main classes of 3D point cloud denoising techniques i.e.,
neighborhood based methods and projection based methods [144]. Neighborhood based
methods find their roots in image based denoising methods and have been extended
to 3D point clouds such as Bilateral Mesh Denoising (BMD) by Fleishman et al [145].
For each point, its neighbors are assigned weights using similarity measures based on
distance and other geometric properties and a new value is computed via a weighted
mean [146]. A non-local denoising based extension of this method where a weight based
on patch based similarity measure approximated via Radial Basis Functions (RBF's) is

added as proposed by Yoshizawa et al [147].

Projection based approaches, on the other hand, include the well-known Moving Least
Squares method which was introduced by Levin [148]. This method works by finding
the projection of each point on the underlying surface of the points in its local neigh-
borhood [140]. Since it was first proposed, it has been a topic of interests for various
researchers who have presented several insights and improvements to this method for

preserving sharp geometric features [149-154].

The above mentioned methods, although able to produce relatively smooth and feature
preserving 3D reconstructions, still face challenges when they encounter highly noisy
data due to their local nature. This causes noisy artifacts in the resulting reconstructions.
Total variation (TV) regularization is a class of global methods which has been proven
to be very successful in denoising and deblurring noisy images, mainly due to their
global smoothing and edge preserving abilities [155, 156]. It works by maximizing the
data fidelity while minmizing the total variation amongst the pixel values in the image
at the same time. Farisu et al. proposed to incorporate the concept of the bilateral
filter [157] for images in TV regularization to propose Bilateral Total Variation (BTV)
regularization. The proposed BTV regularization provides a priori knowledge to stabilize
the ill-posed super-resolution (SR) image reconstruction problem [143]. It combines
image restoration and edge preserving properties of TV and bilateral filter, while putting

a check on local artifacts and over-smoothing, and preserves finer details [143]. It has
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since been used in various color and depth images based SR approaches [111, 113, 158—
161].

In this work, we propose to extend the image based BTV regularization to unorganized
3D point clouds to produce globally smooth but feature preserving 3D reconstructions
by mitigating the noise affecting the acquired point clouds. The color or depth image
based BTV regularization approaches make use of data organization on the image grid,
which provides the local neighborhood or structure information, to compute the BTV
of color or depth values in the image [111, 143]. In the case of unorganized point clouds
there is no information available about local structures or neighborhood which makes
the task of computation of total variation of 3D points very challenging. In this work,
we solve this problem by making use of the elements from BMD framework to extract
the shape and geometric properties in local point patches for computation of BTV. Our
experiments show that the proposed approach is able to produce globally smooth and

feature preserving 3D reconstructions as compared to state-of-art methods.

8.2 Background and Problem Formulation

Given a noisy 2D image X, the BTV regularization minimizes the following cost in order

to produce an enhanced image:
. . 1 -
X = argmin | VX + 5 |X - X3, (8.1)

which defines an Lo-optimization with an L1-BTV regularization |VX|. VX represents
the discrete gradient of X, |.| denotes the L1-norm and p is the regularization parame-
ter. Using the structure and neighborhood information embedded in images, the BTV

regulazier is easy to compute and is given by [143]:

l !
VX =) ) alitimlix - srsix, (8.2)

n=—lm=0

where S, and S are operators which shift the image X by p and ¢ pixels in horizontal
and vertical directions, respectively. The scalar a, 0 < a < 1, controls the speed of
decay. Our goal is to denoise an unorganized noisy 3D point cloud represented by an
ordered point set H of size U € N*, which is the noisy version of H = [p!,--- ,p"], such
that each p' € R3, and i € {1,---,U}, via BTV regularization. There is however, no
strucutre or neighborhood information which allows us to easily compute the gradient
or BTV as in (8.2).
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The BMD algorithm filters a 3D point by estimating the local surface normal and moving
the point in the direction of that normal. The distance by which the query point is
moved is computed as the weighted mean of the shortest distances of all points in its

neighborhood to the plane which is tangent to the local surface approximated by the

neighborhood. The weighted mean of the shortest distances di for a point p’ with a
normal @’ and neighborhood defined by ¢ is computed as:
n: d4 AW ]
where d” = (ii")T(p’ — p’) and the weight:
w(og,d?) = exp(—(dV)?/203), (8.4)

where d = (@")T(p’ — p’) is the shortest distance of p’ to the plane which is tangent,
at p’, to the underlying surface sampled by the local patch of p’. The parameter og
is a constant thresholding factor. The weight w(og,d”) serves to detect outliers and
preserve the edge information by taking into account the change in curvature in the

local patch of p’. The weight w(o, /), on the other hand, is defined as:
w(ae, ¢7) = exp(—(¢7)?/207), (8.5)

where ¢ = ||p’ — p’|| is the Euclidean distance between p’ and p’, and o, is a constant
thresholding factor. The weight w(o., ) serves to give more importance points which

lie closer to p’. Once di is computed we get the filtered point p’ via:
p'=p' +u.d. (8.6)

Therefore, the problem at hand is to use the elements of BMD to compute BTV for

unorganized 3D point clouds and use it to formulate the 3D BTV regularization.

8.3 3D Bilateral Total Variation Regularization

In this work we propose to tackle the problem of point cloud denoising by introducing a
novel method for 3D BTV regularization. Given a noisy measurement #, the proposed

method is based on the following minimization framework:

N 1 ~
H= argm}i[nu]V’H| + §H’H —HT |3, (8.7)
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FiGure 8.1: Tllustration of main components for per point gradient computation on a
2D surface. p? is the query point and p’ lies in its neighborhood. Their corresponding
neighborhoods are represented by Q' and €/ and the local point patches
corresponding to these neighborhoods are classified by the mean and covariance of
points in them i.e., (p’,C*) and (p/, C7), respectively. ¢/ is the Euclidean distance
between p’ and p’ and d¥ is the shortest distance of p’ to the plane, tangent at p’ to
the local patch of p?, defined via the normal vector G°.

BTV regularization/denoising has been a topic of interest for researchers but most of the
research has been restricted to organized color and depth images [111, 159-162], where
the neighborhoods are well defined and the gradient, based on intensity or depth values,
is easy to compute, e.g., via shift operators [31, 111]. In the current problem, H s
a set of unorganized 3D points without any connectivity or neighborhood information,
therefore the extension of BTV regularization to 3D point clouds is not a straightforward
task. We are interested in finding a gradient operator V, which computes the gradient
per 3D point by taking into account the spatial and geometric properties of the local
point patches in its neighborhood. Therefore, we choose V such that it exploits the
properties of local point patches based on their unique locations, geometry and curvature,

as illustrated in Figure 8.1. We formulate the 3D BTV regularization such that:

IVH| = ZIIVP”II

Ty w(oq, d?)w(oe, ¢)||((p" — p') — (p/ — p’))|l

> picqs W(og, ddyw(oe, cii) : (8.8)

i p] el

where 0 is the pre-computed neighborhood of p?. Each local patch corresponding to
the neighborhood €2 of the query point p is characterized by the mean and covariance

e., (Ei, C?), of the points in it. Similarly the patch corresponding to p’ is characterized
by (Ej ,C7). We assume that all points in H7 are equally distributed therefore we have

C! = C/. Now we localize p’ and p’ by subtracting from them the corresponding means
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and then finding the difference between their local positions. This difference is then

weighted by w(og,d”) and w(o.,c”) as defined in (8.4) and (8.5), respectively.

The Lo-norm in (8.7) is convex and differentiable whereas the Lj-norm is convex and
non-differentiable (non-smooth). Such type of problems cannot be solved using simple
gradient-decent methods [162]. Therefore we use the Foward-Backward Splitting (FBS)
method (also known as proximal gradient solver), which relies on computing a prozimal
operator for the non-smooth part of the problem, which is implemented using Fast
Adaptive Shrinkage/Thresholding Algorithm (FASTA) [162]. |VH| is first reformulated
to a simpler form which is differentiable, by defining a vector r¥ € R? and using Cauchy-
Swartz inequality to write [162]:

max (1, Vp¥) = [VpY] (8.9)
where r/ is assumed to be parallel to Vp*, having a unit norm. Using this definition

of ||[Vp¥|| in (8.8) and (8.9) receptively, solving (8.7) is equivalent to finding:

1 .
max argmin u(R, VH) + =||H — HS||? 8.10
i argmin u(R,VH) + 5[ — 7 (5.10)
where R = {r"/}, and the inner minimization is now differentiable. The minimal value
of H for a given value of R should satisfy H = H/ + uV - R where V- is the discrete
divergence operator and can be computed by taking transpose of the gradient operator.
We can reformulate (8.10) using the optimal value of H to get dual form of (8.7) such
that:

~ 1 1 -~
R=arg min —||V-R - =—H|% (8.11)
IRlloo<1 2 [

This problem is solved via the FBS method as explained in [162], and the final deblurred

result is obtained via:
H=H +uv R (8.12)

In the case V is a linear operator it can be represented as a sparse matrix for which the
corresponding discrete divergence operator can be computed by taking the transpose of
this sparse matrix. This makes the solution of this problem very efficient. Therefore, for
making V linear we use the input H to pre-compute the neighborhoods Q! and ¥/, the
weights w(og,d”) and w(o., ), and the normals w', for all points. This method, al-
though effective, is sensitive to the choice of parameters and can result in oversmoothing
of the output. Therefore, similar to the work done in the image domain [111, 159-161],
we propose to use iterative regularization with the minimization in (8.7) carried out

multiple times, whereby in each iteration the regularization parameter u is decreased in
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a dyadic way. This produces enhanced and feature preserving point clouds as shown in

the results.

8.4 Experiments and Results

In this section we present the results of the quantitative and qualitative analysis of
performance of the proposed 3D BTV regularization using both simulated and real

data.

We start by presenting a performance comparison of the proposed algorithm with the
state-of-art methods. For this purpose, we simulate a 3D camera acquisition of a human
face obtained from the “Facecap” dataset [107]. We call this acquisition, containing
13710 3D points, the ground truth (GT) and it is shown in Figure 8.2(a). We add
independent Gaussian noise in each coordinate of the 3D points in the GT with zero
mean and standard deviations, i.e., o of 2.bmm and 5mm, respectively. The noisy 3D
data is shown in Figure 8.2(c) and Figure 8.2(h), respectively. The noisy point clouds
are then given as input to the state-of-art filtering algorithms namely, BMD and MLS,
and also to the proposed 3D BTV regularization. For the sake of fair comparison, the
number of iterations for each method are selected such that they either achieve a smooth

reconstruction and/or the processing time is comparative to other methods.

The resulting filtered point clouds are plotted in Figure 8.2. A qualitative analysis of the
results show that although BMD is able to remove most of the noisy artifacts from the
input point clouds, the resulting point clouds suffer from loss of valuable local and global
feature information due to over-smoothing, as shown in Figure 8.2(d) and Figure 8.2(i),
respectively. The effects of over-smoothing become worse as the noise level increases.
The results of MLS, on the other hand, show its inability to tackle the noisy artifacts
in the data. This behavior becomes severe as the noise in the data increases, as shown
in Figure 8.2(e) and Figure 8.2(j), respectively. In comparison, the proposed method is
able to successfully remove noise from the data and does not suffer from the problem
of over-smoothing. This method is able to preserve salient facial features in the output
point clouds, even at higher noise levels, as shown in Figure 8.2(f) and Figure 8.2(k),
respectively. This is due to using the combination of the TV regularization, which is
global in nature, and elements of the BMD framework which exploit the local shape and
geometric properties of point patches. Moreover, the use of TV regularization equips
the proposed method to successfully preserve the edge information as compared to the

state-of-art methods, as shown in the results in Figure 8.2.
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(i)

Ficure 8.2: 3D plotting of the simulated frame from the “Facecap” dataset. The GT
data is plotted in the First row. This is followed by the plots of results of the
state-of-art methods and the proposed technique, which are used to filter the GT data
affected by zeros mean independent Gaussian noise with the standard deviations, i.e.,
o of Second row: 2.5mm and Third row: 5mm, respectively. Each row contains,
from left to right, the noisy input point cloud, the result of BMD, the result of MLS,
and the result of the proposed 3D BTV regularization. Display color-scale is based on
the depth values of the 3D points and is in the units of meters.

For quantitative analysis, we compute the RMSE of the filtered point cloud resulting
from each method with respect to the GT. A comparison of the RMSE, and the pro-
cessing times, for each method is shown in Table 8.1. BMD is the most efficient of all
three methods but is also the less accurate due to loss of valuable feature information
as explained before. On the other hand, MLS consumes more processing time but is un-
able to tackle artifacts due to high magnitude of noise. The proposed method consumes
approximately the same amount of processing time as MLS and is the most accurate
of all the tested methods. It is able to successfully filter the data affected by varying

amount of noise.
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TABLE 8.1: 3D RMSE in mm/processing time in sec for the results obtained from
the state-of-art methods, namely BMD and MLS, as well as the proposed method,
i.e., 3DBTV on a single simulated 3D frame obtained from the “Facecap” dataset.
Independent Gaussian noise is added in each coordinate of the 3D points with zero
mean and standard deviations, i.e, o of 2.5mm and 5mm, respectively.

o =2.5mm o =5mm
BMD 1.26mm/10sec | 2.42mm/23sec
MLS 1.10mm/47sec | 2.22mm/117sec
3DBTV || 0.98mm/46sec | 1.63mm/114sec

In the next step, we analyze the qualitative performance of the proposed algorithm
using real data. For this purpose, we use a video sequence containing a non-rigidly
deforming human face acquired with a PMD camboard nano ToF camera [20, 111].
We select 3 frames from this sequence, as shown in Figure 8.3(a), Figure 8.3(c) and
Figure 8.3(e), respectively. The PMD camera has a resolution of 120 x 160 and, each
selected frame contains approximately 4400 valid 3D points. We run the proposed
3D BTV regularization on each of the selected 3 frames. The processing time per
frame is 4.5sec, approximately. The resulting 3D frames or point clouds are plotted in
Figure 8.3(b), Figure 8.3(d) andFigure 8.3(f), respectively. These results show the ability
of the proposed algorithm to filter out noise from the camera acquisitions. Moreover,
the results show that the proposed algorithm is able to preserve features such as nose,

mouth, collar etc., and produce globally smooth 3D reconstructions.

8.5 Conclusion

In this chapter, we have presented a framework for denoising unorganized 3D point
clouds via 3D BTV regularization. BTV regularization has been shown to perform well
for noise removal and feature preservation in 2D color and depth images. The computa-
tion of BTV of image pixels is made easier by the data organization on the image grid,
which provides local structure and neighborhood information. In the case of unorga-
nized 3D point clouds, computation of BTV of 3D points becomes a challenging task as
no information about local structure or neighborhood is available. We propose to use
the elements from BMD framework which exploit the shape and geometric properties in
local point patches to compute the 3D BTV. We perform experiments on both simulated
and real data and show that the proposed method is more accurate as compare to the
state-of-art local filtering methods, and is able to produce globally smooth and feature

preserving 3D reconstructions.
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FIGURE 8.3: Results of applying the proposed technique on real data acquired with a
PMD camboard nano ToF camera [20]. First column contains a 3D plotting of the 3
selected frames from the data acquired with the camera. Second column contains a
3D plotting of the corresponding filtered frames obtained via the proposed 3D BTV
regularization. Display color-scale is based on the depth values of the 3D points and is
in the units of meters.



Chapter 9

Conclusions and Future Work

Recently available 3D sensing technologies in commodity RGB-D or 3D cameras have
enabled us to acquire 3D reconstructions of the world in an affordable and flexible
manner. With affordability and flexibility, come the limitations of limited field-of-view
(FOV), high magnitude of noise and limited resolution which affect the 3D measure-
ments acquired with these cameras. These limitations inhibit the usage of commodity
cameras in applications which require accurate, detailed and full 3D reconstructions of
the environment. In this thesis, our goal has been to extend state-of-art via research
and development of algorithms which overcome the above mentioned limitations of com-
modity RGB-D or 3D cameras to build accurate, feature preserving and full 360° 3D
reconstructions of the environment instantaneously. These algorithms are able to recon-
struct dynamic scenes containing rigid as well as non-rigid objects undergoing relatively

large local motions.

Indeed, a single commodity RGB-D camera can only capture partial views of a dynamic
scene and hence fails to provide full 360° 3D reconstructions instantaneously. For this
purpose, multiple cameras with overlapping FOVs can be used but the partial 3D re-
constructions obtained from them cannot be accurately aligned unless the knowledge of
their relative poses is available. Estimation of relative camera poses is carried out by a
process known as extrinsic calibration. State-of-art methods for extrinsic calibration of
RGB-D multi-view systems use classical calibration algorithms which make use of 2D
photometric and 3D geometric information, separately. A technique tailored for RGB-D
cameras based multi-view systems was missing. Such technique should use both types of
available complementary information to achieve more accurate results. For this purpose
we have proposed BAICP+ which combines two sate-of-art algorithms namely Bundle
Adjustment (BA) [41], which makes use of 2D photometric information, and Iterative

Closest Point (ICP) [44] algorithm, which makes use of 3D geometric information in a

104
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single weighted bi-objective optimization. By manually varying the weight which decides
the relative importance given to either 2D or 3D information, we have shown that the
proposed framework achieves more accurate result as compared to state-of-art methods

using 2D and 3D information separately.

Building upon BAICP+, in the next step we have analytically analyzed the relationship
of the weight with noise present in the 2D and 3D measurements. As a result, we
have proposed a completely automated weighted bi-objective optimization scheme which
optimally combines both sources of information to achieve accurate results. In the
absence of parameters of noise model affecting the 2D and 3D measurements, we have
proposed an iterative method to estimate these parameters together with relative camera
poses in parallel. In our experiments, we have shown improved calibration performance
as compared to state-of-art methods on both simulated and real data. In this work we
have considered a noise model which assumes independent and identically distributed
noise in both 2D and 3D measurements. Although, this method has shown to perform
well on real data but the noise affecting specifically the 3D measurements is in reality
more complex and depends on several factors as explained in Section 2.1.2. Therefore,
as future work we would like to look into incorporating these factors and more complex

noise models in our framework.

In the second part of this thesis, we have targeted the other two limitations of commodity
RGB-D or 3D cameras, namely high magnitude of measurement noise and limited reso-
lution. These limitation prevents these cameras from acquiring accurate 3D reconstruc-
tions with complex and fine-scale features. Our focus has been on online methods which
recursively fuse and filter the acquired information to improve its resolution and quality.
The state-of-art recursive 3D data fusion and filtering algorithms, built around com-
modity 3D sensing technologies, such as KinectFusion are restricted to reconstructing
dynamic scenes containing rigid objects undergoing global deformations only [1]. There-
fore we have proposed KinectDeform, which extends KinectFusion to target enhanced
3D reconstruction of scenes containing non-rigid objects undergoing local deformations.
KinectDeform uses mono-view systems and combines an efficient non-rigid registration
algorithm with a view-dependent implicit TSDF based surface representation. Exper-
iments showed that KinectDeform is able to produce noise-free 3D reconstructions of

non-rigid objects and can handle large local deformations.

Moving beyond KinectDeform and towards handling data from multi-view systems, we
have proposed an algorithm called VI-KinectDeform. VI-KinectDeform simplifies the
KinectDeform pipeline by replacing its view-dependent implicit TSDF based surface rep-

resentation, which required an expensive data reorganization step at every iteration, with



a view-independent explicit MLS based surface representation. Comparative experimen-
tal evaluation of VI-KinectDeform and KinectDeform also showed VI-KinectDeform’s
improved performance in terms of both complexity and accuracy. Although both Kinect-
Deform and VI-KinectDeform produce noise-free results and VI-KinectDeform is easily
extendable to multi-view systems, they can only handle HR data and might not work
well with LR data. Therefore, we have proposed a multi-view framework based on LR
data acquired via commodity cameras. The proposed framework filters out noise and
enhances the resolution of data to recover and preserve features and, produce full 360°
3D reconstructions of non-rigid objects. This framework makes use of a novel recursive
dynamic multi-frame 3D super-resolution algorithm to track and filter the 3D motion
and position of every point. To recover global smoothness property of 3D data after
per-point tracking and to remove system blur, we have also proposed a novel 3D bilat-
eral total variation (BTV) regularization. The proposed 3D BTV regularization exploits
surface properties of local point patches to construct a surface gradient operator for the
computation of the regularization term. A detailed qualitative and quantitative eval-
uation of the proposed framework shows it to be able to handle highly noisy and LR
data to produce accurate, smooth, feature preserving and full 3D reconstruction of dy-
namic scenes. The per-point tracking algorithm used in the proposed framework allows
for handling large local motions but it uses a constant velocity model which limits the
ability to track abrupt changes in motion of 3D points. Therefore, as future work it
would be interesting to incorporate a more complex motion model such as the constant

acceleration model in the proposed framework.



Appendix A

Non-linear Optimization for
Proposed Bi-Objective

Framework

Due to the non-linear dependence of cost function in (4.5) on parameters in S, the MLE
S is to be computed via a numerical scheme based on non-linear optimization. In this
scheme at every iteration a small change is introduced in the current set of parameters
leading to comparatively improved performance or lower residual [86]. First step in this
scheme is to linearize b{,m (T;, Trn) and af(SP) about current estimate S assuming very

small error AS using Taylor expansion to get:

b}, (Tt T) 2 b, (T1, ) + 3y, AS, (A1)

l,m

and:
al(Sh) ~ al'(Sh) + JarAS, (A.2)

where Jb{m and Ja?, are Jacobians of bf"m(Tl,Tm) and al'(S}'), with respect to S,

respectively. Replacing (A.1) and (A.2) in (4.5) and concatenating b’ al', AS and

l,m?

corresponding Jacobians we have:

V(S) ~ (B +JgAS) (B + JgAS)+
w(A+JIAAS)T(A +ITAAS)
= (BTB +2A8TJEB + ASTILIBAS)
+w(ATA +2AS8TIL A + ASTILIAAS). (A.3)
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After that we take the derivative of V' (S) with respect to S and equate it to zero to get:

oV (S)
0S

~JLB + JLIgAS + wIh A + wILJpAAS =0. (A.4)
Rearranging (A.4), we get the parameter update rule as:
AS = —(JEIg + wIhJA) T IEB + wIL A). (A.5)

We can also rearrange (A.5) according to Levenberg-Marquardt LM [91] algorithm get

the parameter update rule as:

1 1
((ﬁJgJB + ——JaJa)+
93p 93D
1 1
Adiag(ﬁJgJB + ——JAJa))AS
93p 93D
1 1
93p EbY5)

where A is the damping factor.
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