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Abstract

An overview of the use of the discrete Sugeno integral as either an aggregation tool
or a preference functional is presented in the qualitative framework of two decision
paradigms: multi-criteria decision-making and decision-making under uncertainty.
The parallelism between the representation theorems in both settings is stressed,
even if a basic requirement like the idempotency of the aggregation scheme should be
explicitely stated in multi-criteria decision-making, while its counterpart is implicit
in decision under uncertainty by equating the utility of a constant act with the utility
of its consequence. Important particular cases of Sugeno integrals such as prioritized
minimum and maximum operators, their ordered versions, and Boolean max-min
functions are studied.

Keywords: Sugeno integral, aggregation procedures, multi-criteria decision-making, decision-
making under uncertainty.

1 Introduction

In most decision-making problems a global preference functional is used to help the decision-
maker make the “best” decision. Of course, the choice of such a global preference functional



is dictated by the behavior of the decision-maker but also by the nature of the available
information, hence by the scale type on which it is represented.

In this paper we deal with the treatment of data given on ordinal scales. Clearly, a
meaningful preference functional that aggregates ordinal values cannot take advantage of
usual arithmetic operations, unless these operations involve only order. In such a context
the so-called discrete Sugeno integral appears to be a potential candidate. We intend to
discuss its use as a preference functional, pointing out its “good” properties but also some
of its drawbacks.

The use of the discrete Sugeno integral can be envisaged from two points of view:
decision under uncertainty and multi-criteria decision-making. The two problems can be
modeled in a very similar way: states of nature in decision under uncertainty correspond to
criteria in the other problem. Hence the same mathematical tools apply to both problems,
although they differ by particular aspects. For instance, the number of criteria is finite
while the number of states of nature is often assumed to be infinite (even a continuum).
The analogies between decision-making under uncertainty and multi-criteria evaluation
have been noticed for a long time, but their systematic investigation is more recent and
may lead to a cross fertilization. Dubois et al. [6] have carried out a comparative study
of both problems in the numerical setting of Choquet integral-based evaluations and in
the qualitative setting of possibility measures. This has led to obtain a Choquet integral
representation theorem in the setting of multi-criteria decision-making [27, 28]. Fargier and
Perny [12] have considered the case of purely ordinal theories, stemming from social choice,
thus yielding a purely ordinal setting for decision under uncertainty (see also Dubois et
al. [1, 4]). Here, the parallel between decision-making under uncertainty and multi-criteria
evaluation is highlighted in the finitely-scaled setting, where a monotonic set function,
ranging in a finite chain, is used either to qualify the uncertainty of events or the importance
of groups of criteria.

The paper is organized as follows. In Section 2 we recall the definition of the Sugeno
integral as well as some of its representations. In Section 3 we present the use of the Sugeno
integral in two different decision frameworks: decision-making under uncertainty and multi-
criteria decision-making. Sections 4 and 5 are devoted to a presentation of some axiomatic
characterizations of the Sugeno integral. In Section 6 we present some particular Sugeno
integrals, such as the prioritized minimum and maximum. Finally, Section 7 deals with the
concept of preferential independence and related properties.

2 The discrete Sugeno integral

We consider a finite set of n elements N = {1,...,n}. Depending on the application,
these elements could be players in a cooperative game, criteria in a multi-criteria decision
problem, states of nature in a problem of decision under uncertainty, attributes, experts,
or voters in an opinion pooling problem, etc.
To define the Sugeno integral we need the concept of fuzzy measure [39]. A fuzzy

measure on N is a set function v : 2V — [0, 1] satisfying the following conditions:

i) v(@) =0,v(N)=1,

it) For any S, T C N, if S C T then v(S) < v(T) (monotonicity).

The range of function v is here arbitrarily chosen as the unit interval. In fact any set
equipped with a linear ordering relation will do. For instance a finite chain.



In what follows we denote by Fy the set of all fuzzy measures on V.

We now introduce the concept of discrete Sugeno integral [39], viewed as an aggregation
function from [0, 1]" to [0, 1]. For theoretical developments, see [16, 17, 32, 40].

The Sugeno integral of a function z : N — [0, 1] with respect to v € Fy is defined by

n

\/ ) Av(Aw)], (1)

where (-) is a permutation on N such that x() < --- < x(,). Also, A := min, V := max,
and Ay = {(@),...,(n)}.

We see in this definition that the “coefficient” attached to each variable x; is fixed only
by the permutation (-). For instance, if z3 < 1 < x9, we have, denoting a function by its
image,

So(T1, 29, x3) = [x3 ANv(3,1,2)] V [21 Av(1,2)] V [29 A 0(2)].

From the definition we immediately deduce that
So(z) € {xq,..., 2, } U{v(S)|S C N} (x €[0,1]™).
Moreover, denoting by eg the characteristic vector of S C N in {0, 1}", we have
Sy(es) =v(S) (S EN), (2)

showing that Sugeno integral is completely determined by its values at the vertices of the
cube [0, 1]™.

It was proved [18, 22, 39] that Sugeno integral can also be put in the following form,
which does not need the reordering of the variables:

So(x) =\ [o(M A (N\wz)] (@01 (3)

TCN ieT

However, this formulation involves 2" terms instead of n.

The expressions (1) and (3), whose primary operation is V, are disjunctive forms. Using
mutual distributivity of A and V, we can put the Sugeno integral in the following conjunctive
forms, see [18, 22]:

>
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[z Volde)] (2 € [0,1]"),

1

Sy(z) = NA\T)V(V 2)]  (zeo,1]").

TCN €T
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It was also proved [20] that Sugeno integral is a kind of “weighted” median. More
precisely, we have

Sy(z) = median(zy, ..., 2,, v(Aw)), v(Ag)), - - -, v(Aw)] (x €10,1]™). (4)
For instance, if x5 < x1 < x5 then
Sy(x1, 2, x3) = median[zy, z2, x3,v(1, 2), v(2)].
As an immediate corollary of (4), Sugeno integral is idempotent and

min; x; < S,(z) < max; z; (z €[0,1]™).
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Moreover, for any i > 2,
Ty < Spl(x) <xiy = Sp(x) =v(Ap).
Another interesting formula is the following [23]. For any k& € N, we have
Sy(z) = median[S, (z |z, = 1), Sp(v | 2x = 0), 2] (x €0,1]"), (5)

where x|z = 1 denotes the modification of function x where k +— x is changed into k — 1.
For instance, if n = 2 and k = 2, we have

Sy(21,29) = median[S,(z1,1),S,(x1,0), 2]
= median[z; V v(2), 21 Av(l),x9).

As a consequence of (5), we have, for any S # k,
v(S) < Sy(z) <v(SU{k}) = S,(x)=ux.

Before closing this section, we present an interesting result showing that the Sugeno
integral is a very natural concept. First, the unit interval [0, 1] can be viewed as a totally

ordered lattice with operations A and V. Next, from the variables z1,...,x, € [0,1] and
any constants r1,...,7, € [0,1], we can form a lattice polynomial
P”’lv---ﬂ"nL(l‘l? Tt 71"”)

in the usual manner using A, V, and, of course, parentheses. Now, it can be proved [23]
that if such a polynomial fulfills

Py . wn0,...,00)=0 and P, _,.(1,...,1)=1,

m

then it is a Sugeno integral on [0, 1]™.
For example,
Prl,m(xl,fljg,l’g) = ((.1'1 V ?”2) AN 333) V ([IZ’Q A\ 7“1)

is a Sugeno integral on [0, 1]3. The corresponding fuzzy measure can be identified by (2).

3 Two decision paradigms

In the present section we present two main classes of decision problems: decision-making
under uncertainty and multi-criteria decision-making. These decision paradigms present
some remarkable similarities.

3.1 Decision-making under uncertainty

A decision-making problem under uncertainty is a 4-uple (N, X, A, =), where

e N ={1,...,n} is the set of the possible states of nature (more precisely, descriptions
of such states),

e X is the set of the possible consequences of acts,
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o A= X" is the set of potential acts, that is, the set of functions z : N — X,
e > is a preference relation on A, supposed to be a complete preordering.

Note that this description actually corresponds to the framework of Savage [36] but for the
finiteness of the setting.

It is generally assumed that there is a utility function that describes the worth of the
consequences in X, under the form of a function u : X — U, where U is a totally ordered
set (in IR, in the usual decision theory). Similarly, it is assumed that there is a set function
v : 2N — V, where V is a totally ordered set as well, that describes the knowledge of
the decision-maker regarding the actual state of the world. v(S) is the likelihood of event
S C N, according to the decision-maker.

In the following we shall assume that the scales U and V' are included in a larger totally
ordered set L, so that it is possible to compare v(S) and u(x) for any S C N and = € X.
This assumption seems to be artificial, but it results from the existence of a complete
ranking of acts, interpreting the elements of X as constant acts and the events as binary
acts with extreme consequences.

Now, given an aggregation function M, : L™ — L, defined from a fuzzy measure v € Fy,
the question then arises of finding a set of conditions on > for the existence of a fuzzy
measure v € Fy, describing the decision-makers” uncertainty about the state of affairs, and
a utility function u : X — L such that

vzy & Ulzr)2Uly) (z,y€A),
where U, : A — L is a global preference functional defined by

Up(x) := MyJu(zy), ..., u(x,)] (x € A).

3.2 Multi-criteria decision-making
A multi-criteria decision-making (MCDM) problem is a triple (N, A, »), where
e N ={1,...,n} is the set of the criteria to satisfy,

e A is the Cartesian product Il;cyX; that corresponds to the set of alternatives, X;
being the evaluation scale related to criterion i (i € N),

e > is a preference relation on A.

In other words, n-tuples z = (#1,...,,) are interpreted as alternatives described via
their ratings according to the various criteria. Here again, given an aggregation function
M, : L — L, defined from a fuzzy measure v € Fy, one searches for a set of conditions
on = for the existence of a fuzzy measure v € Fy and n local utility functions u; : X; — L
(i € N) such that

-y & Ulz)>Uly) (z,y€A),

where U, : A — IR is a global preference functional defined by
UU(I) = Mv[ul(xl)a e ’U/n(xn)] (l’ S A)

As we can see this paradigm is formally equivalent [6, 28] to that of decision-making under
uncertainty, except that here each weak order on X; (i € N) is independent of others,

5



which requires the use of n utility functions uq,...,u,. In decision under uncertainty we
had X; = X (i € N) and only one utility function u was needed.

Since we make the hypothesis that the evaluations along each criterion ¢ € N are
qualitative by nature, we will assume that their utilities are evaluated on a finite ordinal
scale ' '

Li={0=1"<... <l,(ji) =1},
and that the aggregated values M,[ui(z1), ..., u,(x,)] also lie in a finite ordinal scale
L:={0=10l<---<ly=1}.

Note that axiomatic characterizations of Sugeno integral were presented by Hougaard
and Keiding [19] in the framework of a cardinal scale and using a Von Neuman-Morgernstern
approach, and by Sabbadin [9, 35] and Marichal [23, 25] in our context.

4 Axiomatic characterizations of Sugeno integral in
the MCDM context

In this section we present some axiomatic characterizations of Sugeno integral. The first
three are rather technical and have no interpretation as appealing properties in multi-criteria
decision-making. Nevertheless, they are very simple to express.

Here and throughout we set

Fi=(r,...,7) (7 € [0,1]"),

and
Sy = xie;+ > yie (x,y €10,1]"; S C N),
i€s i¢S
where e; is the binary n-vector such that only its ¢th component is one.
Consider an aggregation function M : [0,1]" — IR and the following properties:
e [ncreasing monotonicity (in the wide sense). For any z, 2" € [0,1]", we have

r, < ieN) = M) <M.

Idempotency. For any x € [0, 1], we have M (z,...,z) = x.
e Non compensation. For any S C N and any r € [0, 1], we have

M (7S0), M(15T) € {M(150),r}.

Weak minitivity and mazitivity. For any = € [0, 1]™ and any r € [0, 1], we have

Mz AT)=M(z)ANr and M(zVT)=M(x)Vr.

Comonotonic minitivity and mazitivity. For any z, 2" € [0, 1]™ such that
(zi —xy)(2; — ) >0 (i,j € N)
we have

M(xzAz')=M(@)ANM(z') and M(xVa')= Mx)V M.



Then, we have the following three characterizations, see [21, 22].

Theorem 4.1 Let M : [0,1]" — IR. The following assertions are equivalent:
i) M is increasing, idempotent, and non compensatory,
i1) M is increasing and weakly minitive and mazitive,

iti) M is increasing, idempotent, and comonotonic minitive and maxitive,
)

w) there exists v € Fn such that M = S,,.

In the above characterizations, the existence of a fuzzy measure is not assumed before-
hand. We now present a characterization of Sugeno integral as a function which depends
upon a set function on N. In multi-criteria decision-making, the values of such a set function
can be interpreted as the degrees of importance of the subsets of criteria.

First, let ¥y be the set of all set functions o : 2 — [0, 1], with o(0)) = 0 and o(N) = 1.
We do not assume that these set functions are monotone. For any such set function o € ¥y,
we define the weighted maz-min function W)" : [0,1]" — IR associated to o by (see [22])

W)=\ [o(MA(A)]  (@eloam).

TCN ieT

By Eq. (3), we see that any Sugeno integral is a weighted max-min function. Conversely,
for any set function o € Xy defining Wy*, we have W) = W/ = S, where u € Fy is
defined by

wS) =\ o(T)  (SCN),

TCS

Thus any weighted max-min function is also a Sugeno integral. Hence we have
{SulpeFny={W;"| o€y}

Now, let L := {l; < --- < l;} be a finite ordinal scale with fixed endpoints I, := 0 and
Il == 1. For each o € Xy, we consider an aggregation function M, : L™ — L. Since L is an
ordinal scale, the numbers that are assigned to it are defined up to an increasing bijection
¢ from [0, 1] onto itself. Thus, each function M, should satisfy the following property (see
Orlov [30]): A function F': [0,1]" — IR is comparison meaningful (from an ordinal scale) if
for any increasing bijection ¢ : [0, 1] — [0, 1] and any n-tuples z, 2’ € [0, 1]", we have

F(z) < F(@') < Fle(r)) < Fle),

where the notation ¢(z) means (p(z1),...,p(z,)).

Starting from the idea that o(S) should be equal to M,(eg) for all S C N, we will
ask o to range in L. Therefore, the mapping (z,0) — M,(x), viewed as a function from
[0, 1]"2"~2 to IR, should be comparison meaningful. We then have the following character-
ization (see [23]).

Theorem 4.2 Let M be a set of functions M, : [0,1]" — R (¢ € Xy) fulfilling the
following three properties:

o there exist 0,0’ € X and x,2" € [0,1]" such that My(z) # M, (x'),

o M,(x,...,z) = My(x,...,x) for all x € [0,1] and all 0,0’ € X,



e the mapping (z,0) — M, (z), viewed as a function from [0,1]"72"~2 to IR, is contin-
uwous and comparison meaningful.

Then there ezists a continuous and strictly monotonic function g : [0,1] — IR such that
MC{goS,|veFn}={goW)"|oe€Xy}
Conversely, for any such function g, the set {go WY | o € ¥n} is a candidate for M.

The second property mentioned in Theorem 4.2 can be interpreted as follows. When
the partial evaluations of a given alternative do not depend on criteria then they do not
depend on their importance neither. Note however that this property is used in the proof
only at x =0 and x = 1.

Regarding idempotent functions, we have the following result, which follows immediately
from Theorem 4.2.

Theorem 4.3 Let M be a set of functions M, : [0,1]" — R (¢ € Xy) fulfilling the
following two properties:

o M, is idempotent for all o € Xy,

e the mapping (z,0) — M, (z), viewed as a function from [0,1]""2"~2 to IR, is contin-
uwous and comparison meaningful.

Then
MCA{S,|veFy} = {WZA | o€ Xn}.

Conversely, the set {W)" | o € ¥n} is a candidate for M.

Theorems 4.3 brings a rather natural motivation for the use of the Sugeno integral as an
aggregation function. Nevertheless, continuity may seem to be a questionable hypothesis
in the sense that its classical definition uses a distance between aggregated values and
relies on the cardinal properties of the arguments. Though continuity and comparison
meaningfulness are not contradictory, coupling these two axioms sounds somewhat awkward
since the latter one implies that the cardinal properties of the partial evaluations should
not be used. Suppressing the continuity property or replacing it by a natural property such
as increasing monotonicity remains a quite interesting open problem.

Now we point out a property showing that the Sugeno integral can sometimes have a
rather unpleasant behavior.

Proposition 4.1 Letv € Fy, SC N, r €10,1], and y € [0,1]". We have

yS;(q;Sg)ZZEZ\/ } = S,(FSz) =71 for all z € [0,1]" such that z; > r (i € N)
and
ySQ(ZSg)ZZGZV } =  S,(TSz) =r forall z € [0,1]" such that z; <r (i € N).



However, this drawback is less due to the use of Sugeno integral proper, than to the price
we must pay for the possible use of a finite scale in place of the unit interval. It enforces
a limited number of classes of equally rated decisions, hence producing a coarse ranking.
A second reason is the lack of compensation. The latter always occurs at some point in
a finite scale, since if we consider any function f : L? — L and two consecutive levels [;
and l;41, the property f(l;,li11) € {li,l;11} will always hold if, as in the case of Sugeno
integral, min < f < max. An unpleasant consequence of this fact is that some optimal
solutions to a problem in the sense of S, may fail to be Pareto-optimal. In order to cope
with the defect pointed out in Proposition 4.1, a way out is to refine the ordering induced by
Sugeno integral in a way similar to the way the rankings induced by the minimum (and the
maximum) aggregation have been refined, using the discrimin, and the leximin orderings
(see Dubois, Fargier, and Prade [3, 5]). This is a topic for further research, but see [13] for
preliminary findings.

5 Axiomatic characterizations of Sugeno integral in
the context of decision-making under uncertainty

In the framework of expected utility theory several authors have proposed characteriza-
tions leading to the use of either the expected value or the so-called Choquet integral, see
Savage [36], Schmeidler [37, 38], and Wakker [41]. However such characterizations always
presuppose that the set of states and/or the set of consequences is infinite.

Since we are concerned with the treatment of qualitative information, we will assume
that both sets are finite and the utility of each consequence is evaluated on a finite ordinal
scale

L={l < - <} CR,

that is, a scale which is unique up to order. Without loss of generality, we can embed this
scale in the unit interval [0, 1] and fix the endpoints /; := 0 and [ := 1. This assumption
enables us to consider the Sugeno integral as an aggregation function M, : L™ — L.

In order to better understand the meaning of Sugeno integral in the setting of decision-
making under uncertainty, consider a binary act of the form 755, where r € L, s € L, r > s.
Thus 7S5 is the act which yields a utility level r if S occurs and s otherwise. Then

S,(7S3) = sV (r Av(S)) = median(r, s, v(S)).

If we had chosen r < s then S,(7S5) = median(r,s,v(N \ S)). This evaluation of act
7S5 means the following. If the decision-maker is confident enough in the occurrence of
S (v(S) > r > s) then S§,(FS3) = r, the utility in case S occurs. If the confidence in S
is not high enough (r > s > v(5)) then the decision-maker presupposes S will not occur
and §,(TSs) = s, the utility in case S does not occur. If the confidence level is mild
(r > v(S) > s) then the utility of 7S5 exactly reflects this confidence level.

It implies that the decision-maker’s attitude in front of uncertainty is entirely captured
by the confidence function v. This is very different from expected utility where the attitude
of the decision-maker in front of risk is modeled by the shape of the utility function (concave
if the decision-maker is cautious).

A decision-maker is said to be uncertainty-averse with respect to event S iff v(S) <
n(v(N \ S)) where n is the order reversing map on L (n(t) =1 —t¢ if L = [0,1]). Indeed



the confidence relative to the occurrence of N \ S is evaluated by v(N \ S), but then
n(v(N \ S)) is a natural evaluation of the confidence in S, as much as v(S) itself (in
probability theory these evaluations coincide). The cautious evaluation of this confidence
in S'is v(S)An(v(N\S)), generally. By convention, we assume that v(S), not n(v(N\.S)),
qualifies the uncertainty relative to S, and the uncertainty averse decision-maker relative
to S selects a set function v such that v(S) < n(v(N '\ 5)). The uncertainty-aversion effect
is easily understood by the fact that it is more difficult to get a high utility value with
v(S) than with n(v(N \ S)). Note that if v expresses uncertainty aversion relative to S, it
expresses the same relative to N '\ S, namely

v(S) <n(w(N\S)) < olV\S) <n((9)),

since n is an involutive function.

The contrary of an uncertainty-averse decision-maker relative to S is an uncertainty-
prone decision-maker, for whom v(S) > n(v(N \ S)). If v(S) = n(v(N \ S)) then the
decision-maker is uncertainty-neutral w.r.t. S. Choosing a set function v such that v(S) <
n(v(N '\ 9)) for all S models a decision-maker who is uncertainty-averse (for all events).
Examples of set functions modeling such attitudes are lower probabilities, belief functions,
or necessity measures. Set functions modeling a systematic decision-prone attitude are for
instance upper probabilities, plausibility functions, and possibility measures. Among them,
only possibility and necessity functions make sense in the ordinal setting.

In the following we assume that

e The set XV of acts is equipped with a complete preordering structure =. (Savage’s
first axiom). Then the scale L can be viewed as the quotient set X~/ ~ w.r.t. the
equivalence relation induced by >. The use of an L-valued aggregation function M,
ensures this.

e This ordering is not trivial, that is: Jx,y,x = y (Savage’s fifth axiom), that is
My (x) > My(y).

It is easy to check that Sugeno’s integral verifies the following property: let S be any subset
of N and z € X¥. Let 7 and 3 be constant acts, then Sugeno integral satisfies

(CCA): r>s = G&,(7S2) >S8,(352) Vze XV,

(coherence w.r.t. constant acts). (CCA) is a weak version of Savage’s third axiom.
The following result can be obtained [9]:

Proposition 5.1 If an aggregation function M,, which ensures a non trivial complete pre-
ordering of acts verifies CCA then it is increasingly monotonic in the wide sense. More-
over the set function is also monotonic w.r.t. set inclusion (letting v(S) = M,(es), where
€s = TSG)

Now we shall describe two properties that sound natural in the face of a one-shot act,
that is an act that is not supposed to be repeated. For such acts, the evaluation of utility
of a decision hardly admits any form of compensation since the actual utility is the utility
of the consequence actually obtained in the state of affairs that prevailed when the decision
was applied. Especially in the face of total ignorance (modeled by v(S) = v(N \ §) =
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0V S # N for an uncertainty-averse decision-maker, and v(S) = v(N \ S) = 1 VS # 0 for
an uncertainty-prone decision-maker) the utility of an act  will be min; u(x;) (uncertainty-
aversion) or max; u(x;) (uncertainty-prone).

For instance, suppose you are asked to toss a coin only once and that obtaining heads
makes you win 100 Euros while getting tails makes you lose 100 Euros. Suppose the die is
fair. Since you play only once, it is strange to assume that you can get anything but win
or lose 100 Euros out of that game. Assuming the utility of +100 equals 1 while that of
—100 is 0, it would be strange to claim that, in the front of ignorance the utility of that
single-shot game is anything but 0 (uncertainty averse) or 1 (uncertainty-prone).

Suppose a constant act 7 and two acts i,z € XV. Suppose y = z and ¥ = z. Let y AT
be the act such that its ith component is y; A r. In the face of a single-shot act, it is very
natural to admit that y A7 > z (restricted conjunctive dominance). Indeed in any state of
nature, the decision-maker expectations if choosing act y A7 will always be greater than z
in a one-shot setting. Hence the aggregation function should satisfy

(RCD):  M,(T) > M,(2) and M,(y) > M,(z) implies M,(FAy) > M,(z).

A similar reasoning leads to find it natural to obey the dual property (restricted disjunctive
dominance)

(RDD):  M,(z) > M,() and M,(z) > M,(y) implies M,(z) > M,(TVy),

where 7 V y has its ith component equal to r V y;. Indeed selecting the best consequences
of two acts dominated by z cannot lead to overrule this act z in a one-shot setting.
Now we can prove the following proposition [9, 35]:

Proposition 5.2 If M, is increasing and satisfies both (RCD) and (RDD) then it is both
weakly minitive and mazitive.

Dubois, Prade, and Sabbadin [9] have proved the following theorem.

Theorem 5.1 (Axiomatization of Sugeno integral as a qualitative utility) Let >
be a preference relation between acts which is complete, transitive, non trivial, and sat-
isfies (CCA), (RCD), (RDD). Then there is a finite chain L, a utility function u on X |
and a L-valued monotonic set function v on N such that

rzy e S(r) =2 S(y)

where

So(x) = \/ [u(zp) Av(Ag)).

r,€X

Clearly, due to the above discussion, this result is the exact counterpart of Theorem 4.1
reduced to i7) and iv).

Another axiomatization of Sugeno integral as a qualitative utility has been proposed
by Sabbadin [35], replacing (RCD) and (RDD) by two simpler, if actually more restrictive,
axioms. The first axiom is non compensation. It expresses the requirement that the utility
of a binary act 7S5 with r > s is either u(r), u(s), or v(S). As explained earlier, this is
very natural in the scope of one-shot decision under uncertainty. Then the decision-maker
can only expect from act 7S5 to receive r, or s, and if the decision-maker uncertainty is not
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extreme, the utility of 755 reflects the confidence in S. However this property goes along
with a presupposition that v(S) and u(r), u(s) can be compared and are evalued on the
same scale. In the scope of decision under uncertainty this is a trivial consequence of the
assumption that all acts can be compared, since comparing v(S) and u(r) comes down to
comparing a constant act 7 and a binary act 150 = eg, that is, comparing a sure gain with
a simple bet with extreme consequences.

The second axiom is that of the existence of a certainty equivalent to any simple bet
150, namely

CE: VS3z eX, 150 ~ z;,

which means v(S) = u(x;). Then the representation theorem for qualitative utility de-
scribed by Sugeno integral is still valid if the conditions (RCD) and (RDD) are changed
into non-compensation and the existence of a certainty-equivalent for each binary act
150 (CE). However the latter axiom, v(S) = wu(z;) for some 4, is maybe more restric-
tive than necessary, since commensurateness between uncertainty and utility just means
VS, Fi, u(x;—1) < v(S) < u(x;). Hence the (CE) assumption implies that the scale of util-
ities has not more levels than elements in X. On the contrary the former axiomatization
allows for as many as |X U 2] levels.

Actually, it can be shown that the (CE) axiom can be dropped and Sugeno integral can
be axiomatized using the non trivial complete ordering assumption on acts, (CCA), and non
compensation only. Comparing to Theorem 4.1, notice that the idempotence assumption is
not explicitly made. However, it is always implicit in the setting of Savage where the utility
of a constant act is equated to the utility of the corresponding consequence (M, (F) = r).

6 Particular Sugeno integrals

In this section we present some subfamilies of the class of Sugeno integrals, namely the
prioritized maximum and minimum, the ordered prioritized maximum and minimum, and
the Boolean max-min functions. We also discuss their relevance for the two decision-making
paradigms.

6.1 Prioritized maximum and minimum operators

The minimum and maximum operators have been extended by Dubois and Prade [8] in
a way which is consistent with possibility theory: the prioritized minimum (pmin) and
maximum (pmax).

Using the concept of possibility and necessity of fuzzy events |7, 43], one can evaluate the
possibility that a relevant goal is attained, and the necessity that all the relevant goals are
attained by the help of pmin and pmax operators. The formal analogy with the weighted
arithmetic mean is obvious.

For any vector w = (w1, ...,w,) € [0,1]" such that

the prioritized maximum operator pmax, associated to w is defined by

pmax,(z) = \/ (w; Az;), x€0,1]"
i=1

12



For any vector w = (wy,...,w,) € [0,1]" such that

n

the prioritized minimum operator pmin,, associated to w is defined by

pmin (z) = N\ (w; Va;), x€]0,1]".

~.

=1

The operator pmax , is a Sugeno integral S, such that

o(T)=\/w; (T CN).

€T
In this case, v represents a possibility measure 11, which is characterized by the following

property:
ISuUT)=T11(S) VIIT) (S,T C N).

Similarly, pmin , is a Sugeno integral S, such that

W)= A\ wi (TCN).

In this case, v represents a necessity measure N, which is characterized by the following

property:
NS NT)=N(S)AN(T) (S,T C N).

As particular Sugeno integrals, the prioritized minimum and maximum operators can
be characterized as follows, see [8, 21, 33] .

Proposition 6.1 Let v € Fy. The following three assertions are equivalent:
i) v is a possibility measure
ii) there exists w € [0, 1]" such that S, = pmax,,
iii) S,(zVa')=38,(x) VS, (2) for all x,2" € [0,1]™.
The following three assertions are equivalent:
iv) v is a necessity measure
v) there ezists w € [0,1]™ such that S, = pmin,
vi) Sy(x ANx') =S8,(z) ANSy(2') for all xz,2’ € ]0,1]".

Properties #i7) and vi) can be justified indirectly in the setting of decision under un-
certainty. When the set function is a necessity measure (resp. a possibility measure), the
decision-maker is systematically uncertainty-averse (resp. uncertainty-prone). Uncertainty
aversion is modeled in terms of acts by means of a pessimism axiom that reads as follows
[10, 35]:

(PES): Vz,y, ySz>=z = x>aSy.

This axiom sounds reasonable for a systematic uncertainty-averse decision-maker. Indeed,
if ySx > x it means that changing z; into y; for ¢ € S improves the situation for the
decision-maker. The reason why it improves the situation is that overall y is better than
x if S does occur, and moreover, the decision-maker considers it sure enough that S will
occur, otherwise decision-maker would neglect y as being implausibly obtained. Now when
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decision-maker considers xSy, then y will be neglected. Indeed since decision-maker con-
siders the occurrence of S sure enough, (s)he considers the occurrence of its complement
rather impossible, and will not focus on consequences of states where S does not occur. So
xSy does not improve the situation w.r.t. .

Now it can be established [10, 35] that if axiom (PES) is satisfied by an increasing
aggregation M, and z = z Ay then M,(z) = M,(z) or M,(z) = M,(y) which obviously
implies the minitivity property for M,. Hence the representation theorem for non trivial
complete preorderings on acts obeying (CCA), (RDD), and (PES) in terms of a prioritized
minimum (involving a necessity measure for capturing the attitude of the decision-maker
in front of uncertainty) is closely related to the second part of Proposition 6.1.

A similar remark for the prioritized maximum can be made. In this case the uncertainty-
prone decision-maker may use a preference relation on acts satisfying an optimism axiom

(OPT): Vz,y, z>ySx = aSyruz.

Here, changing x into y when S occurs depreciates the act. For the optimistic decision-
maker, it means that y is less attractive than x and that s(he) considers S as fully possible;
now when evaluating xSy, the decision-maker considers that since S is possible, (s)he still
expects the benefits offered by consequence x when S occurs, regardless of y which is
obtained if S does not occur. Indeed either y is less attractive than x, and decision-maker
relies on S occuring, so Sy > x holds, or y is more attractive than x; hence xSy > z in
any case. Similarly to the pessimistic case, if (OPT) is satisfied by M, then if z = 2 V y,
it follows that M,(z) = M,(z) or M,(z) = M,(y) [10, 35], hence M, is maxitive, hence v
is a possibility measure and the prioritized maximum is retrieved with the assumptions of
Proposition 6.1.

It should be noted that the prioritized maximum and minimum were originally in-
troduced as “weighted maximum and minimum”, where the term “weighted” is used by
analogy with the weighted average. However, it is more natural to call these operations
“prioritized maximum and minimum”. Indeed they are useful in the handling of constraint
priority in fuzzy constraint satisfaction problems (see [2]).

[43

6.2 Ordered prioritized maximum and minimum operators

For any vector w = (w1, ...,wy) € [0,1]" such that
l=wi>... 2wy,

the ordered prioritized maximum operator [11] opmax, associated to w is defined by

opmax,(z) = \/ (w; Az x € [0,1]".
i=1

For any vector w’ = (w},...,w),) € [0,1]™ such that
Wy > >w =0,

the ordered prioritized minimum operator opmin, associated to w’ is defined by

opmin, (z) = A (W] V@), x€l0,1]"
=1
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In this definition the inequalities w; > ... > w, and w] > ... > w,, are not restrictive.

Indeed, if there exists i € {1,...,n — 1} such that w; < w;;1 and w; < w},; then we have
(wi N2@y) V (Wig1 AZ@g1)) = wit1 A gy,
(wg V :E(i)) VAN (w;+1 vV x(iﬂ)) = wg V X ()

This means that w; can be replaced by w;y; in opmax, and w; ; by wj in opmin,,.

Dubois et al. [11] used the ordered prioritized maximum (opmax) and minimum (opmin)
for modeling soft partial matching. The basic idea of opmax (and opmin) is the same as
in the OWA operator introduced by Yager [42]. That is, in both operators coefficients are
associated with a particular rank rather than a particular element. The main difference
between OWA and opmax (and opmin) is in the underlying non-ordered aggregation op-
eration. OWA uses weighted arithmetic mean while opmax and opmin apply prioritized
maximum and minimum. At first glance, this does not seem to be an essential difference.
However, Dubois and Prade [8] proved that opmax and opmin are equivalent to the median
of the ordered values and some appropriately chosen additional numbers used instead of
the original weights.

Indeed, the operator opmax is a Sugeno integral S, such that

’U(T) = wn_‘TH_l (T g N, T 7£ (Z))

Thus, v(T') only depends on the cardinality of 7T'.
Similarly, the operator opmin , operator is a Sugeno integral S, such that

o(T) = w1y (T C N, T #N).

The next proposition [21, 22] shows that any ordered prioritized maximum operator can
be put in the form of an ordered prioritized minimum operator and conversely.

Proposition 6.2 Let w and w' be weight vectors defining opmax,, and opmin,, respectively.
We have

opmin, = opmax, < w;=w;1 Vie{l,...,n—1}
Using (4), we can also see that, for all = € [0, 1]",

opmax,(z) = median(xy,..., Ty, ws,...,wWy),

Opminw’(x) = median($la s 7:En7w/17 s 7w':1—1)‘

Finally, we have the following characterization [15, 21].

Proposition 6.3 Let v € Fy. The following assertions are equivalent:
i) v depends only on the cardinality of subsets
ii) there exists w € [0,1]" such that S, = opmax,,
iii) there exists W' € [0,1]" such that S, = opmin,,
) S, is a symmetric function.

Ordered prioritized maximum and minimum have not been very much considered for
decision-making under uncertainty. However it is interesting to consider what this prefer-
ence functional may mean. Clearly the uncertainty function depends only on the cardinality
of events. This form of uncertainty function expresses some kind of ignorance, since all states
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will be equally plausible, as well as each pair of states, each k-uple of states. So the sym-
metry of the utility function w.r.t. the states reflects a situation where the decision-maker
cannot discriminate among states. Since there are many such set functions (contrary to
the probabilistic and the possibilistic cases where v is then respectively the uniform proba-
bility or possibility) it may be interesting to try and describe the type of uncertainty they
capture. This is a topic for further research.

6.3 Boolean max-min functions

When the fuzzy measure v is {0, 1}-valued, the Sugeno integral S, becomes a Boolean
max-min function [22], also called a lattice polynomial [31]. Thus, its definition is the
following.

For any non-constant set function ¢ : 2% — {0,1} such that ¢(§) = 0, the Boolean
max-min function BY" : [0, 1]™ — [0, 1], associated to ¢, is defined by

B@) = V e A=V A
TCN i€T TCN €T
o(T)=1
In this subsection we investigate this particular Sugeno integral. First, we can readily
see that any Boolean max-min function always provides one of its arguments. Moreover,
we have the following results [21, 23, 24].

Proposition 6.4 Consider a function M : [0,1]" — TR. The following assertions are
equivalent:

i) there exists a set function ¢ : 2N — {0,1} such that M = BY"

i1) there exists a {0,1}-valued v € Fy such that M = S,
iti) there exists v € Fy such that M =S, and M(z) € {z1,...,z,} (x €[0,1]")

)

w) M is continuous, idempotent, and comparison meaningful.

Theorem 6.1 The function M : [0,1]" — IR is non-constant, continuous, and comparison
meaningful if and only if there exists a set function ¢ : 2V — {0,1} and a continuous and
strictly monotonic function g : [0,1] — IR such that M = g o BY".

For any k € N, the Sugeno integral on [0, 1] defined from the Dirac measure associated
with k, that is, the {0, 1}-valued fuzzy measure v € Fy defined by v(T") = 1 if and only if
T >k, is called a “dictatorial” Sugeno integral. In that case, we have

Sy(x) = xy, (x €10,1]™).

This particular type of Boolean max-min functions will play an important role in the next
section.

7 Preferential independence and related properties

The key property in the classical decision theory under uncertainty is the “independence”
condition that requires separability of preferences across disjoint states of nature. It was
originally introduced by Marschak [26] and Nash [29] as clearly pointed out by Fishburn
and Wakker [14]. It has been popularized in decision theory as the sure thing principle by
Savage [36]. This property can be expressed in two equivalent ways in the MCDM setting:
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e Conjoint independence or mutual independence (MI) is satisfied for a binary relation
> on the Cartesian product A = IL;cny X if, for any alternatives x,y, z,t € A,

xSz = ySz & xSt ySt (6)
for any S C N.

e Coordinate independence (CI) is satisfied for > if relation (6) is restricted to S =
N\ {k}, for any k € N.

These properties are obviously violated if a Sugeno integral is used as a representation of
.

- Weak separability (WS) is a weaker concept of independence and corresponds to the
restriction of (6) to S = {k} for any £ € S. With the use of relation (5), we get the

following result [23]:

Theorem 7.1 If a weakly separable weak order > is representable by Sugeno integral, then
> 1s dictatorial, namely it is based on a Dirac measure.

Weaker versions of properties (MI)=(CI) and (WS) can be introduced as follows:

e Directional mutual independence (DMI) is satisfied for > if, for any alternatives
x,y,z,t €A,
rSz - ySz = aSt>ySt (7)

for any S C N, where > represents the asymmetric part of > (see also [10] and [35,
p.78]).

e Directional coordinate independence (DCI) corresponds to (7) where S is restricted to
N\ {k} for any k € N.

e Directional weak separability (DWS) if (7) is restricted to S = {k} for any k € N.

It is clear that (DMI)=(DCI) and (DMI)=(DWS).
We also obtain an interesting result:

Proposition 7.1 If a Sugeno integral represents >~ then the preference relation is direc-
tionally weakly separable (DWS) but violates directional coordinate independence (DCI).

For particular Sugeno integrals as the prioritized maximum and minimum operators
and the ordered prioritized maximum and minimum operators we obtain stronger results
expressed in the following proposition:

Proposition 7.2 i) If opmax, or opmin, represents =, the preference relation is direc-
tionally coordinate independent (DCI) but violates directional mutual independence (DMI).
i1) If pmax,, or pmin,, represents =, the preference relation satisfies the directional mutual
independence (DMI) but violates mutual independence (MI).
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These results may sound paradoxical or counter-intuitive. However the main reason for
the violation of independence by Sugeno integral is due to the fact that for monotonic set
functions one may have

v(S) >wv(S) and v(SUT)<v(S'UT), (8)

where TN (S US") = (. Note that this situation can easily be encountered for belief
functions and plausibility functions of Shafer. So one must be careful before discarding set
functions for which (8) can be observed.

The failure of preferential independence of Sugeno integral in the MCDM context is
the counterpart of the failure of the Sure thing principle in the decision under uncertainty
framework. This lack of independence is much more drastic than for Choquet integral,
since in the latter, independence is only restricted to special situations.

In decision under uncertainty frameworks, the failure of independence for Sugeno inte-
gral has two consequences. First, conditional preference is difficult to study, which may
make the modeling of rational decisions more difficult in a dynamic context when new in-
formation is obtained by the decision-maker. Moreover, given constant acts 7, 5, 77, s/, with
r > s and v’ > §', only the directonal mutual independence property applied to binary acts
holds for Sugeno integral :

S,(rSs) > S,(fTs) = S,(1"Ss) > S, (r'Ts), (9)

for two events S, T. Hence there is ambiguity as to how the uncertainty relation on events
can be defined from binary acts. Fortunately, if v > r > s > &', then (9) holds with a
strict inequality on the right-hand side. It leads us to define v(S) as the utility of the act
150, with extreme consequences, because it induces the most refined confidence relation
between events understood as binary acts 7.S5. How to define the conditioning of confidence
relations (hence of fuzzy measures) in this context is still an open problem.

8 Conclusions

Sugeno integral really appears as the natural counterpart of the Lebesgue and Choquet
integrals in the ordinal setting. Moreover it encompasses basically all idempotent nontrivial
sensible aggregations over a finite scale. It looks difficult not to deal with it in such a setting.

This paper strongly suggests that it may be useful as a tool for decision under uncertainty
as well as for multi-criteria decision-making. However more insight is needed in order to
actually use such a tool in concrete situations.

From the point of view of multi-criteria decision-making, it would be useful to describe
in a more transparent way the range of aggregation operations it covers, so as to figure out
the expressive power of the ordinal approach. Moreover, the practical use of this ordinal
approach is totally conditioned on the possibility of laying bare suitable finite scales for
each criterion and performing their commensurate union into a single value-scale. How to
achieve this in practice is far from obvious and requires that suitable questions be asked
to the decision-maker so as to get some commensurability landmarks relating the criteria.
See Rico et al. [34] for recent research along this line.

In the scope of decision-making under uncertainty the major open issue is the proper
definition of conditioning, for the purpose of dynamic decision-making.
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Lastly, in both settings, the potential lack of Pareto-optimality of best solutions, due to
the coarseness of the finite scale setting, should be addressed through a suitable refinement
of classes of equivalent decisions [3, 13].
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