

Deep Learning Concepts from Theory to Practice

January 19, 2016

Patrick Oliver GLAUNER and Dr. Radu STATE

patrick.glauner@uni.lu, radu.state@uni.lu

SEDAN Lab, SnT - Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg

Biography

- Joined SnT in September 2015 as a PhD student
- Collaboration with Choice Technologies Holding on detection of non-technical losses (NTLs)
- MSc in Machine Learning from Imperial College London
- Previously worked at CERN and SAP

Motivation

Definition (Artificial Intelligence)

"Al is the science of knowing what to do when you don't know what to do." (Peter Norvig)^a

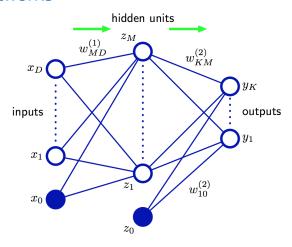
Definition (Machine Learning)

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed.

^ahttp://www.youtube.com/watch?v=rtmQ3xlt-4A4m45

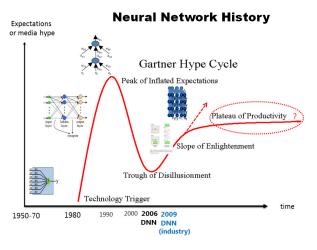
Motivation

- Deep Learning attracted major IT companies including Google,
 Facebook, Microsoft and Baidu to make significant investments
- Learning features from data rather than modeling them
- Specialized artificial intelligences have started to outperform humans on certain tasks
- Advances have been raising many hopes about the future of machine learning


Agenda

- 1. Neural networks
- 2. Deep Learning
- 3. Event-driven stock prediction
- 4. Conclusions and outreach

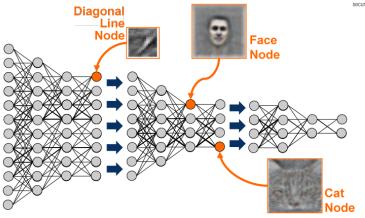
Neural networks



Neural network with two input and output units ¹.

¹Bishop, Christopher M.: Pattern Recognition and Machine Learning. Springer. 2007.

Neural networks



History of neural networks 2.

²Deng, Li and Yu, Dong: Deep Learning Methods and Applications. Foundations and Trends in Signal Processing, 7 (3-4), 197-387. 2014.

Deep Learning

Deep neural network layers learning complex feature hierarchies ³.

http://theanalyticsstore.com/deep-learning/. Retrieved: March 1, 2015.

³The Analytics Store: Deep Learning.

Deep Learning

- Specialized artificial intelligences based on Deep Learning have started to outperform humans on certain tasks
- ► Training time can accelerated using GPUs ^{4 5} or a distributed environment, such as Apache Spark ⁶

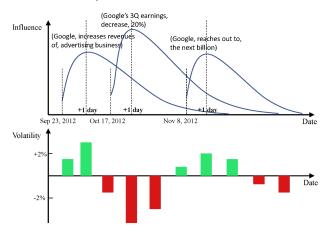
⁴Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D. and Bengio, Y.: Theano: A CPU and GPU Math Expression Compiler. Proceedings of the Python for Scientific Computing Conference (SciPy) 2010. June 30 - July 3, Austin, TX. 2010.

⁵NVIDIA: TESLA. http://www.nvidia.com/object/tesla-servers.html. Retrieved: August 20, 2015.

⁶Apache Spark. http://spark.apache.org/. Retrieved: November 3, 2015.

Deep Learning: DeepMind

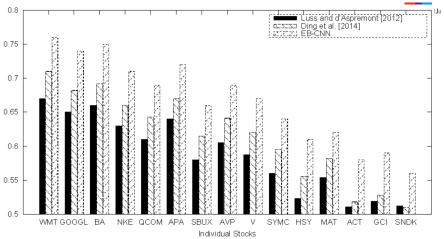
- ► Founded in 2010 in London
- Created a neural network that learns how to play video games in a similar fashion to humans
- Acquired by Google in 2014, estimates range from USD 400 million to over GBP 500 million
- Now being used in Google's search engine



Google DeepMind 7.

⁷http://deepmind.com/. Retrieved: January 15, 2016.

Event-driven stock prediction



Example news influence of Google Inc. 8.

⁸Ding, Xiao; Zhang, Yue; Liu, Ting and Duan, Junwen: Deep Learning for Event-Driven Stock Prediction. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina. 2015.

Event-driven stock prediction

Accuracies of prediction for selected stocks from S&P 500 9.

⁹Ding et al. (2015)

Event-driven stock prediction

- This model combines influence of long-term, mid-term and security and trustlu short-term events on stock price movements
- It significantly outperforms state-of-the-art models by an extra 6% of accuracy, in particular for stocks with low amount of news

Stock	Profit of Lavrenko et al. [2000]	Profit of EBCNN
IBM	\$47,000	\$42,000
Lucent	\$20,000	\$27,000
Yahoo	\$19,000	\$32,000
Amazon	\$14,000	\$35,000
Disney	-\$53,000	\$7,000
AOL	-\$18,000	\$14,000
Intel	-\$14,000	\$8,000
Oracle	-\$13,000	\$17,000

Compared to baseline from Feb. to Nov. 2013 using 35,603 news ¹⁰.

¹⁰Ding et al. (2015)

Conclusions and outreach

- Deep neural networks can learn complex feature hierarchies
- Significant speedup of training due to GPU acceleration
- About to be applied to the detection of NTLs
- Has been successfully applied to stock prediction
- Promising methods, lots of potential to be applied to FinTech
- SEDAN Lab is happy to provide more details on Deep Learning and to discuss potential joint projects!