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PATRICK O. GLAUNER

Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg

2721 Luxembourg, Luxembourg

Email: patrick.glauner@uni.lu
snt.uni.lu

Inspired by recent successes of deep learning in computer vision, we propose

a novel application of deep convolutional neural networks to facial expression

recognition, in particular smile recognition. A smile recognition test accuracy
of 99.45% is achieved for the Denver Intensity of Spontaneous Facial Action

(DISFA) database, significantly outperforming existing approaches based on

hand-crafted features with accuracies ranging from 65.55% to 79.67%. The
novelty of this approach includes a comprehensive model selection of the ar-

chitecture parameters, allowing to find an appropriate architecture for each
expression such as smile. This is feasible because all experiments were run on a

Tesla K40c GPU, allowing a speedup of factor 10 over traditional computations

on a CPU.

Keywords: Computer Vision; Deep Learning; Facial expression recognition;

GPU acceleration.

1. Introduction

Neural networks are celebrating a comeback under the term “deep learn-

ing” for the last ten years by training many hidden layers allowing to self-

learn complex feature hierarchies. This makes them of particular interest

for computer vision, in which feature description is a long-standing issue.

Many advances have been reported in this period, including new training

methods and a paradigm shift of training from CPUs to GPUs. As a result,

those advances allow to train more reliable models much faster. This has

for example resulted in breakthroughs [3] in signal processing. Nonetheless,

deep neural networks are not a magic bullet and successful training is still

heavily based on experimentation.

The Facial Action Coding System (FACS) [1] is a system to taxonomize

any facial expression of a human being by their appearance on the face.

Action units describe muscles or muscle groups in the face, are set or unset
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and the activation may be on different intensity levels. State-of-the art

approaches in this field mostly rely on hand-crafted features [6] leaving a

lot of potential for higher accuracies. In contrast to other fields such as

face or gesture recognition, only very few works on deep learning applied

to facial expression recognition have been reported so far [2] in which the

architecture parameters are fixed. We are not aware of publications in which

the architecture of a deep neural network for facial expression recognition

is subject to extensive model selection. This allows to learn appropriate

architectures per action unit.

2. Deep neural networks

Training neural networks is difficult, as their cost functions have many

local minima. The more hidden layers, the more difficult the training of

a neural network. Hence, training tends to converge to a local minimum,

resulting in poor generalization of the network. In order to overcome these

issues, a variety of new concepts have been proposed in the literature, of

which only a few can be named in this chapter. Unsupervised pre-training

methods, such as autoencoders [8] allow to initialize the weights well in

order for backpropagation to quickly optimize them. The Rectified Linear

Unit (ReLU) [7] and dropout [10] are new regularization methods, leading to

significant improvements of shallow neural networks with just a few hidden

layers. Convolutional neural networks (CNNs) were initially proposed by

LeCun [5] for the recognition of hand-written digits. A CNN consists of two

layers: a convolutional layer, followed by a subsampling layer. Inspired by

biological processes and exploiting the fact that nearby pixels are strongly

correlated, CNNs are relatively insensitive to small translations or rotations

of the image input.

Training deep neural networks is slow due to the number of parameters

in the model. As the training can be described in a vectorized form, it is

possible to massively parallelize it. Modern GPUs have thousands of cores

and are therefore an ideal candidate for the execution of the training of

neural networks. Significant speedups of factor 10 or higher [9] have been

reported. A difficulty is to write GPU code. In the last few years, more

abstract libraries have been released.

3. DISFA database

The Denver Intensity of Spontaneous Facial Action (DISFA) [6] database

consists of 27 videos of 4844 frames each, with 130,788 images in total.
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Action unit annotations are on different levels of intensity, which are ignored

in the following experiments and action units are either set or unset. DISFA

was selected from a wider range of databases popular in the field of facial

expression recognition because of the high number of smiles, i.e. action

unit 12. In detail, 30,792 have this action unit set, 82,176 images have

some action unit(s) set and 48,612 images have no action unit(s) set at all.

Figure 1 contains a sample image of DISFA.

Fig. 1. Different input parts: a) mouth, b) face [6]. (Not at actual input
size/proportions.)

In the original paper on DISFA [6] multi-class SVMs were trained for the

different levels 0-5 of action unit intensity. Test accuracies for the individ-

ual levels and for the binary action unit recognition problem are reported

for three different hand-crafted feature description techniques: local binary

pattern (LBP), histogram of oriented gradient (HOG) and localized Ga-

bor filters. In those three cases, accuracies of 65.55%, 72.94% and 79.67%,

respectively, are reported for smile recognition.

4. Smile recognition

In the following experiments, an aligned version of DISFA is used. In this

aligned version, the faces have been cropped and annotated with facial

landmark points. Facial landmark points allow to compute a bounding box

to fit the mouth in all images. In the experiments, two inputs are used: the

mouth and face, downscaled to 85 × 69 and 128 × 104 pixels, respectively.

Both inputs are used to assess if the mouth alone is as expressive as or even

more expressive than the entire face for smile recognition.

4.1. Model

The architecture of the network is as follows: The input images are fed into

a convolution comprising a convolutional and a subsampling layer. That
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convolution may be followed by more convolutions to become gradually

more invariant to distortions in the input. In the second stage, a regular

neural network follows the convolutions in order to discriminate the features

learned by the convolutions. The output layer consists of two units for

smile or no smile. The novelty of this approach is that the exact number

of convolutions, number of hidden layers and size of hidden layers are not

fixed but subject to extensive model selection in Sec. 4.3.

4.2. Experiment setting

Due to training time constraints, some parameters have been fixed to rea-

sonable and empirical values, such as the size of convolutions (5× 5 pixels,

32 feature maps) and the size of subsamplings (2 × 2 pixels using max

pooling). All layers use ReLU units, except of softmax being used in the

output layer. The learning rate is fixed to α = 0.01 and not subject to

model selection as it would significantly prolong the model selection. The

same considerations apply to the momentum, which is fixed to µ = 0.9.

The entire database has been randomly split into a 60%/20%/20% train-

ing/validation/test ratio. Training neural networks comes with uncertain-

ties, mostly due to the random initialization of the weights, but also due

to that random split of the data. Evaluations have shown that for 10 simi-

lar experiments carried out, the standard deviation of the test accuracy is

0.041725%. Because of this low standard deviation, performing each exper-

iment exactly once has only a very low bias and is therefore relatively safe

to do for reasons of faster training time. Throughout the experiments, the

classification rate is used as the accuracy measure.

The model is implemented using Lasagne [4] and the generated CUDA

code is executed on a Tesla K40c [9] as training on a GPU allows to perform

a comprehensive model selection in a feasible amount of time. Stochastic

gradient descent with a batch size of 500 is used.

4.3. Parameter optimization

The four parameters to be optimized are: the number of convolutions, the

number of hidden layers, the number of units per hidden layer and the

dropout factor. Each parameter was optimized independently due to train-

ing time constraints. This may not lead to an optimal model, but has proven

to work empirically well. Each model was trained for 50 epochs in the model

selection. The test accuracies for each parameter value are summarized in

Tables 1 and 2 for the mouth and face inputs, respectively.
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Table 1. Parameters and values used in model selection for mouth input. Optimal
parameter values and test accuracies in bold.

Parameter Values Default value Accuracymouth

#Convolutions 1, 2, 3 1 97.15%,97.64%, 96.90%

#Hidden layers 1, 2, 3 1 97.15%, 97.58%, 96.60%

#Units / hidden layer 100, 200, 300, 400 100 97.15%, 97.31%, 97.11%, 97.50%

Dropout 0, 0.1, 0.5, 0.7 0.5 94.54%, 97.70%, 97.15%, 96.56%

Table 2. Parameters and values used in model selection for face input. Optimal
parameter values and test accuracies in bold.

Parameter Values Default value Accuracyface

#Convolutions 1, 2, 3 1 98.02%, 97.50%, 97.39%

#Hidden layers 1, 2, 3 1 98.02%, 98.00%, 97.70%

#Units / hidden layer 100, 200, 300, 400 100 98.02%, 98.02%, 98.10%, 98.13%

Dropout 0, 0.1, 0.5, 0.7 0.5 98.57%, 98.30%, 98.02%, 98.37%

For the mouth input, there is a preference to more convolutions and

more hidden layers. This is the case because slight translations or rotations

in the mouth input have stronger consequences on the classification result.

In the entire face, that sort of distortions may be less of a problem because

other parts of the face such as the cheeks contribute to smile recognition,

too.

4.4. Results and discussion

Both final models were trained for 1000 epochs. The test accuracies of both

models started to converge after about 300 epochs. For the mouth and face

inputs, the best accuracies were achieved after 700 and 1000 epochs with

99.45% and 99.34%, respectively. Both models significantly outperform the

state-of-the-art SVM baselines reported in Sec. 3 ranging from 65.55% to

79.67%. Overall, there is no strong preference for either the mouth or face

input. Further experiments with a reduced dataset containing only 70%

of the images that have no action unit(s) set at all support this hypothe-

sis. Concretely, the test accuracies for the mouth and face input reduced

to 99.24% and 99.26%, respectively. Thus, the difference between the two

models has been further reduced and this time giving a very low preference

for the face input. Nonetheless, this difference is not representative as it is

within the experiment error standard deviation reported in Sec. 4.2.

Training time per epoch are 82 seconds and 41 seconds for the mouth

and face input models, respectively. Experiments have shown that the train-

ing time mostly depends on the number of convolutions. Using the Tesla
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K40c GPU has allowed to speed up the training time by factor ten over the

use of a CPU to execute the CPU code generated by the library. This clearly

demonstrates the importance of training on a GPU to do a comprehensive

model selection in a feasible amount of time.

5. Conclusions and future work

Deep learning is an umbrella term for training neural networks with po-

tentially many hidden layers using new training methods allowing to learn

complex feature hierarchies from data. Applied to action unit recognition

and smile recognition in particular, a deep convolutional neural network

model with an overall accuracy of 99.45% significantly outperforms exist-

ing approaches. The underlying extensive model selection allows to find for

each action unit an appropriate architecture in order to maximize test ac-

curacies. In the future, we will extend the model to images from multiple

databases and to make predictions in image sequences.
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