
PUMConf: A Tool to Configure Product Specific Use Case
and Domain Models in a Product Line

Ines Hajri, Arda Goknil, Lionel C. Briand
SnT Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

Thierry Stephany
International Electronics & Engineering (IEE)

Contern, Luxembourg
{firstname.lastname}@iee.lu

ABSTRACT
We present PUMConf, a tool for supporting configuration
that currently focuses on requirements and enables effective
product line management in the context of use case-driven
development. By design, it relies exclusively on variabil-
ity modeling for artifacts that are commonly used in such
contexts (i.e., use case diagram, specifications and domain
model). For given Product Line (PL) use case and do-
main models, PUMConf checks the consistency of the mod-
els, interactively receives configuration decisions from ana-
lysts, automatically checks decision consistency, and gener-
ates Product Specific (PS) use case and domain models from
the PL models and decisions. It has been evaluated on an
industrial case study in the automotive domain.

CCS Concepts
•Software and its engineering → Software product
lines;

Keywords
Product Line Engineering; Use Case-Driven Development.

1. INTRODUCTION
Product Line Engineering (PLE) is being widely adopted

in industry due to the increasing complexity of software sys-
tems that warrant better support for reusable software ar-
tifacts. In various business contexts, use cases are central
development artifacts and used for communicating require-
ments among stakeholders and for system test case genera-
tion [17] [18]. In environments where software development
practice is strongly use case-driven, use case configurators
can play a key role to capture variable requirements in Prod-
uct Line (PL) use cases and to generate Product Specific
(PS) use cases for each new customer in a product family.

We present a tool, PUMConf (Product line Use case Model
Configurator), to support automated requirements configu-
ration that guides stakeholders in making configuration deci-

sions and automatically generates use case and domain mod-
els for the configured product. PUMConf is developed for
use case-driven development environments within the con-
text of our research in collaboration with IEE S.A. [1], a
leading supplier of embedded software systems in the au-
tomotive domain. The motivation behind PUMConf is to
provide a high degree of automation during configuration
and to avoid unnecessary modeling overhead and complexity
by relying exclusively on variability modeling for commonly
used artifacts in use-case driven development, i.e., use case
diagrams, use case specifications and domain models.

PUMConf builds on our previous work [9] where we pro-
posed a use case-centric product line modeling method (PUM).
Using PUM, variability is directly captured in the PL use
case diagram, specifications and domain model without any
feature model, at a level of granularity enabling precise com-
munication with various stakeholders. PUMConf provides
the following features: (i) the automated consistency check-
ing of PL use case and domain models, (ii) the automated,
interactive configuration support including consistency check-
ing of configuration decisions, and (iii) the automated gen-
eration of PS use case and domain models from PL models
and configuration decisions. Natural Language Processing
(NLP) is employed to check the consistency of PL models.
Our tool automatically infers new configuration decisions
based on variation point-variant dependencies and prior de-
cisions input by the analyst. The consistency checking of
configuration decisions, i.e., determining contradicting de-
cisions made for the variation points in the PL use case
diagram, is based on mapping variation points, use cases
and variant dependencies into propositional logic formulas.
We developed our own consistency checking algorithm using
these logic formulas. PUMConf automatically generates PS
use case and domain models using a set of transformation
rules implemented in Java. Our tool is integrated with an
industrial requirements management tool: IBM DOORS.

In the remainder of this paper, we outline PUMConf’s
features and main components. We further highlight the
findings from our evaluation of PUMConf over an industrial
case study and a questionnaire study with IEE engineers.

2. RELATED WORK
Several configuration tools for scenario-based requirements

have been proposed in the literature [2, 3, 4, 8, 6, 7, 16].
Most of these require that feature models be manually traced
to requirements by analysts. This entails additional model-
ing and maintenance effort. Moon et al. [14, 13] present
a configurator generating PS use cases without using any

feature model. However, the configurator relies on various
matrices manually formed for use cases and primitive re-
quirements, i.e., building blocks of complex requirements.

There are various generic configurators, e.g., DOPLER [5],
C2O configurator [15], and SPLOT [12], developed for con-
figuring variability models. Though these configurators could
be employed, they require considerable effort and tool-specific
knowledge to be customized for configuring use cases.

PUMConf does not require analysts to trace feature mod-
els to use case models. It relies exclusively on variability
modeling within commonly used artifacts in use-case driven
development. Furthermore, our tool checks decision consis-
tency and orders decisions to facilitate the decision-making
process, thus providing a high degree of automation.

3. TOOL OVERVIEW
PUMConf is the tool support of our configuration ap-

proach for use case-driven development, described in a re-
cent research paper [10]. Figure 1 presents an overview of
our tool. In Step 1, the analyst elicits the PL use case and
domain models using (1) PL extensions for use case dia-
grams [11], (2) a structured form of use case specifications,
i.e., Restricted Use Case Modeling (RUCM) [19], and its PL
extensions, and (3) PL extensions for domain models [20].
The elicitation of PL models is performed according to our
Product line Use case modeling Method (PUM) [9].

AnalystPL Use Case
Diagram

PL Domain
Model

<<s>>

<<p>>

<<p>>

<<
m

>>

PL Use Case
Specifications

Elicitation of PL Use Case
and Domain Models with

Consistency Checking

¨

Are the models
consistent ?

List of
Inconsitencies

No Yes Elicitation of
Configuration Decisions

with Consistency Checking

≠

Yes

List of
Contradicting

Decisions

No

PS Use Case
Diagram

PS Domain
Model

PS Use Case
Specifications

•• •• •• •• •• •• •• ••

Are decisions
consistent and

complete?

Generation of
Product Specific Use

Case and Domain Models

Æ

•• •• •• •• •• •• •• ••

Actor Reques
t Order

Show
catalog

Pay For

Figure 1: Tool Overview

Once the analyst captures variability in PL models, PUM-
Conf automatically checks the consistency of the PL use case
diagram, the PL use case specifications and the PL domain
model. If any inconsistency is detected, e.g., a variation
point specified in the diagram is missing in the specifications,
the tool reports these inconsistencies. Another consistency
checking task concerns the PL use case specifications, which
should conform to the RUCM template.

In Step 2, PUMConf processes the PL models once they
are deemed consistent. It interactively gets configuration de-
cisions from the analyst and detects contradicting decisions
made for variation points in the PL use case diagram.

Once all the configuration decisions are made, the tool
proceeds to Step 3 with the generation of PS use case and
domain models from the PL models. The generation is based
on decisions and a set of transformation rules. In the rest of
this section, we elaborate on each step in Figure 1.

3.1 Elicitation of PL Use Case Models
As a first step, the analyst manually elicits PL use case

and domain models. To model variation points, variant use

cases as well as their constraints and dependencies in the
use case diagram, PUMConf employs the PL extensions pro-
posed by Halmans and Pohl [11]. Figure 2 shows a part of
the PL use case diagram for Smart Trunk Opener (STO), a
real-time automotive embedded system developed by IEE.

STO System

Sensors

Recognize
Gesture Identify System

Operating
Status Storing

Error
Status

Provide System
Operating

Status

Tester

<<include>>

<<Variant>>
Store Error

Status

<<include>>

Clearing
Error

Status

<<Variant>>
Clear Error

Status

0..1

0..1

<<Variant>>
Clear Error Status

via Diagnostic Mode

<<Variant>>
Clear Error Status
via IEE QC Mode

0..1

<<include>>
Method of
Clearing

Error Status
1..1

<<require>>

<<include>>

STO
Controller

Figure 2: Part of the PL Use Case Diagram for STO

In Figure 2, there are three variation points (i.e., Storing
Error Status, Clearing Error Status and Method of Clear-
ing Error Status), four variant use cases, one require de-
pendency between two variation points, and four cardinality
constraints restricting the selection of variant use cases.

Table 1: A PL Use Case Specification for STO
1 USE CASE Identify System Operating Status
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the watchdog reset is valid.
4 2. The system VALIDATES THAT the RAM is valid.
5 3. The system VALIDATES THAT the sensors are valid.
6 4. The system VALIDATES THAT no error is detected.
7 1.1 Specific Alternative Flow
8 RFS 1
9 1. The system sets WatchdogError as detected.
10 2. RESUME STEP 2.
11 Postcondition: The WatchdogError has been detected.
12 1.4 Specific Alternative Flow
13 RFS 4
14 1. INCLUDE VARIATION POINT: Storing Error Status.
15 2. ABORT.
16 Postcondition: There are some errors detected.

The analyst models the PL use case specifications accord-
ing to RUCM and its PL extensions [9] (see Table 1). RUCM
is based on restriction rules and keywords constraining the
use of natural language. The PL extensions consist of new
keywords (e.g., INCLUDE VARIATION POINT in Line 14)
to capture variability in specifications. Moreover, they are
used to model variability that cannot be represented in the
PL use case diagram, e.g., optional use case steps and vari-
ant step order.

<<Variation>>
Request

- code: integer
- name: String
- response: ResponseType

<<Variation>>
ErrorClearing
Request

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

<<Variant>>
DataProvision
Request

1*
ask

<<Optional>>
VoltageDiagnostic
- guardACVoltage : integer
- guardCurrent: integer

QCMode
ClearErrorReq

<<Variant>>
DiagnosticMode
ClearErrorReq

Figure 3: Part of the PL Domain Model for STO

To model variant domain entities, PUMConf employs the
Variation, Variant, and Optional stereotypes proposed by

Ziadi and Jezequel [20] (Figure 3). The Variant and Varia-
tion stereotypes specify variability associated with an inher-
itance hierarchy, while variant entities which are not part of
any inheritance hierarchy are stereotyped as Optional.

PUMConf uses NLP to automatically check (1) if the PL
specifications conform to the RUCM template and its exten-
sions, (2) if the PL use case diagram is consistent with its
specifications, and (3) if the PL domain model is consistent
with the PL use case specifications.

3.2 Elicitation of Configuration Decisions
PUMConf guides the analyst in making decisions for the

PL use case diagram, specifications, and domain model.

3.2.1 Configuration Decisions for PL Diagrams
The analyst makes decisions for variation points in the PL

diagram (see Figure 4). A decision is about selecting, for the
product, variant use cases in the variation point.

List of Contradicting Decisions

List of VPs

Filtering VPs¨ ≠Collecting a
Decision

Checking
Decision

Consistency

ÆVP1

VP2

VP3

Decision
for VP

VP1

Are
Decisions

Consistent?[Yes]

[No]

Figure 4: Overview of Making a Diagram Decision

Before each decision, PUMConf filters out variation points
included by variant use cases (Filtering VPs) since the an-
alyst can make a decision for these variation points only if
the including variant use case is selected. For instance, in
Figure 2, Method of Clearing Error Status is not considered
if Clear Error Status is not selected (see Figure 5(a)).

Figure 5: UI for Collecting a Decision for the PL
Use Case Diagram

PUMConf receives a diagram decision from the analyst
(Collecting a Decision). In Figure 5(b), Store Error Status
in Storing Error Status is selected by the analyst.

Figure 6: UI for Resolving Contradicting Decisions

After each decision, PUMConf traverses the PL diagram
to determine previous decisions contradicting the current de-

cision (Checking Decision Consistency). Two or more con-
figuration decisions may contradict each other if they result
in violating some variation point and variant dependency
constraints (i.e., require and conflict). If there is any contra-
diction, the analyst is expected to update one or more deci-
sions to resolve the contradiction (see Figure 6). PUMConf
employs a consistency checking algorithm based on map-
ping variation points, use cases and variant dependencies to
propositional logic formulas. For a given decision regarding
a variation point in the PL diagram, the algorithm infers
further, implicit decisions and only checks the satisfaction
of the propositional formulas derived from the dependencies
of the variation point [10].

In Figure 6, a contradiction between the decisions in Stor-
ing Error Status and Clearing Error Status is reported. The
upper part of the user interface provides an explanation for
the contradiction, while the bottom part lists the decisions
involved in the contradiction, with an Edit button to update
the corresponding decision.

3.2.2 Configuration Decisions for PL Specifications
PUMConf processes the PL use case specifications, using

NLP, to retrieve variability information, i.e., optional steps,
optional alternative flows, and variant order, in essential and
variant use cases selected in the PL diagram. The analyst
is asked to make decisions (e.g., selecting the appropriate
optional steps) for the retrieved variability information.

3.2.3 Configuration Decisions for PL Domain Model
Our tool collects decisions for all optional and variant do-

main entities to generate the PS domain model. First, the
analyst makes decisions for optional entities. Then, for each
variation entity, the appropriate variant entities are selected.

3.3 Generation of PS Use Case Models
After all the decisions are made, the PS use case and do-

main models are generated from the PL models and the
configuration decisions. The generation of the PS models
are implemented as a set of transformation rules in Java.

3.3.1 Generation of PS Use Case Diagrams
PUMConf takes the PL use case diagram and the diagram

decisions as input, and generates, using the transformation
rules, the PS use case diagram as output (see Figure 7).

STO System

Sensors

Recognize
Gesture

Identify System
Operating

Status

Provide System
Operating

Status

Tester

<<include>>

Store Error
Status

<<include>>

Clear Error
Status

Clear Error Status
via Diagnostic Mode

Clear Error Status
via IEE QC Mode

<<include>>

<<include>>

<<include>>

STO
Controller

Figure 7: Part of the PS Use Case Diagram for STO

Example transformation rules for PL use case diagrams
are as follows: (i) selected variant use cases become essential
in the PS diagram, (ii) selected variant use cases are included
by use cases including the corresponding variation points,
and (iii) variation points are removed in the PS diagram.

3.3.2 Generation of PS Use Case Specifications
PUMConf takes the PL specifications and the diagram

and specification decisions as input to generate the PS spec-
ifications as output (see Table 2). The generated PS use case
specifications contain (1) selected variant use cases included
in the flows of use cases (Line 14 in Table 2) (2) selected
optional steps and alternative flows, and (3) decided orders
for steps with a variant order.

Table 2: A PS Use Case Specification for STO
1 USE CASE Identify System Operating Status
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the watchdog reset is valid.
4 2. The system VALIDATES THAT the RAM is valid.
5 3. The system VALIDATES THAT the sensors are valid.
6 4. The system VALIDATES THAT no error is detected.
7 1.1 Specific Alternative Flow
8 RFS 1
9 1. The system sets WatchdogError as detected.
10 2. RESUME STEP 2.
11 Postcondition: The WatchdogError has been detected.
12 1.4 Specific Alternative Flow
13 RFS 4
14 1. INCLUDE USE CASE: Store Error Status.
15 2. ABORT.
16 Postcondition: There are some errors detected.

3.3.3 Generation of PS Domain Models
PUMConf takes the PL domain model and the corre-

sponding decisions as input, and generates the PS domain
model as output (see Figure 8). The generated PS domain
model includes all the selected optional and variant domain
entities as well as mandatory entities.

Request
- code: integer
- name: String
- response: ResponseType

ErrorClearing
Request

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

DataProvision
Request

1*
ask

QCMode
ClearErrorReq

DiagnosticMode
ClearErrorReq

Figure 8: Part of the PS Domain Model for STO

4. EVALUATION
PUMConf has been evaluated in an industrial context for

which a case study, i.e., STO, and a questionnaire study were
reported in [10]. We applied PUMConf to the functional re-
quirements of STO. Using our modeling method PUM [9], we
modeled seven variation points, thirteen variant use cases,
and seven variant dependencies in the PL use case models
for STO. We used PUMConf to configure the PS use case
and domain models of STO for four clients. All the gener-
ated PS models were confirmed by the IEE analysts to be
correct and complete. The PL models that we derived using
PUM were sufficient to make all the configuration decisions
needed in PUMConf to generate the correct and complete
PS models for the considered STO products.

To evaluate the output of PUMConf, we had a semi-
structured interview with seven industrial participants. The
participants held various roles (e.g., development manager
and system engineer) and all had substantial experience in
software development. The interview was preceded by a pre-
sentation illustrating our modeling method PUM, the PUM-
Conf steps, and a tool demo. We also organized three hands-
on sessions where the participants could use PUMConf.

We handed out two questionnaires to assess PUM and
PUMConf in terms of adoption effort, expressiveness, com-
parison with current practice, and tool support. The re-
sults of the questionnaire showed that all participants agreed
about the expressiveness and simplicity of PUM. They also
agreed about the useful guidance provided by PUMConf for
configuring PS models. The participants mentioned that the
effort required to adopt PUMConf is reasonable although
more practice and training were still needed to become fa-
miliar with the tool. They also stated that PUMConf should
be extended to capture non-functional requirements.

5. IMPLEMENTATION & AVAILABILITY
PUMConf has been implemented as a DOORS Plug-in.

This Plug-in activates the user interfaces of PUMConf and
provides the features consistency checking of PL artifacts
and configuration of PS models. We use GATE (http://
gate.ac.uk/), an open source NLP framework, to annotate
use case specifications. The NLP output contains the anno-
tated use case steps. The annotations are used to check the
consistency of the specifications, the diagram, and the do-
main model. PUMConf uses the same annotations to match
the transformation rules for the generation of PS models.

PUMConf relies upon: (i) IBM DOORS to model PL use
case specifications and (ii) Papyrus to model and save PL
use case diagrams as a UML file. To load use cases from IBM
DOORS, it uses DOORS Document Exporter, an API that
exports the DOORS content as text files. The generation of
PS models has been implemented as a Java application. The
DOORS eXtension Language (DXL) is employed to load the
generated PS use case specifications into IBM DOORS.

PUMConf is approximately 17K lines of code, exclud-
ing comments and third-party libraries. Additional details
about PUMConf, including executable files and a screencast
covering motivations, are available on the tool’s website at:

https://sites.google.com/site/pumconf/

6. CONCLUSION
We presented a tool, PUMConf, to support the configura-

tion of requirements in a use case-driven development con-
text. More specifically, it automatically generates PS use
case and domain models from PL models. The key charac-
teristics of our tool are (1) the consistency checking of PL
artifacts by relying on Natual Language Processing, (2) the
automated and interactive configuration support based on
variability modeling for commonly used modeling artifacts,
i.e., use case diagrams, specifications and domain models,
and (2) the automatic generation of PS use case and do-
main models from PL models and configuration decisions.
PUMConf has been evaluated over an industrial case study.
The evaluation shows that our tool is practical and benefi-
cial to configure PS use case and domain models in industrial
settings. In the future, we plan to extend PUMConf to sup-
port regression test selection and change impact analysis in
the context of use case-driven development and testing. We
further plan to conduct more case studies to better evaluate
the practical utility and usability of the tool.

7. ACKNOWLEDGMENTS
Financial support was provided by IEE and FNR under

grants FNR/P10/03 and FNR10045046.

http://gate.ac.uk/
http://gate.ac.uk/
https://sites.google.com/site/pumconf/

8. REFERENCES
[1] IEE (International Electronics & Engineering) S.A.,

http://www.iee.lu/.

[2] M. Alférez, J. Santos, A. Moreira, A. Garcia,
U. Kulesza, J. Araújo, and V. Amaral. Multi-view
composition language for software product line
requirements. In SLE’09, pages 103–122, 2009.

[3] R. Bonifácio and P. Borba. Modeling scenario
variability as croscutting mechanisms. In AOSD’09,
pages 125–136, 2009.

[4] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In GPCE’05, pages 422–437, 2005.

[5] D. Dhungana, P. Grünbacher, and R. Rabiser. The
DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Automated Software
Engineering, 18:77–114, 2011.

[6] M. Eriksson, J. Borstler, and K. Borg. Managing
requirements specifications for product lines - an
approach and industry case study. Journal of Systems
and Software, 82:435–447, 2009.

[7] M. Eriksson, H. Morast, J. Borstler, and K. Borg. The
pluss toolkit - extending telelogic doors and
ibm-rational rose to support product line use case
modeling. In ASE’05, pages 300–304, 2005.

[8] A. Fantechi, S. Gnesi, G. Lami, and E. Nesti. A
methodology for the derivation and verification of use
cases for product lines. In SPLC’04, pages 255–265,
2004.

[9] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany.
Applying product line use case modeling in an
industrial automotive embedded system: Lessons
learned and a refined approach. In MODELS’15, pages
338–347, 2015.

[10] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany.
Configuring use case models in product families.

Software and Systems Modeling, 2016.

[11] G. Halmans and K. Pohl. Communicating the
variability of a software-product family to customers.
Software and Systems Modeling, 2:15–36, 2003.

[12] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T. -
software product lines online tools. In 761-762, editor,
OOPSLA’09, 2009.

[13] M. Moon and K. Yeom. An approach to develop
requirement as a core asset in product line. In
ICSR’04, pages 23–34, 2004.

[14] M. Moon, K. Yeom, and H. S. Chae. An approach to
developing domain requirements as a core asset based
on commonality and variability analysis in a product
line. IEEE Transactions on Software Engineering,
31(7):551–569, 2005.

[15] A. Nöhrer and A. Egyed. C2O configurator: a tool for
guided decision-making. Automated Software
Engineering, 20:265–296, 2013.

[16] A. K. Thurimella and D. Janzen. Metadoc feature
modeler: A plug-in for IBM rational DOORS. In
SPLC’11, pages 313–322, 2011.

[17] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and
M. Z. Z. Iqbal. Automatic generation of system test
cases from use case specifications. In ISSTA’15, pages
385–396, 2015.

[18] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and
M. Z. Z. Iqbal. UMTG: a toolset to automatically
generate system test cases from use case specifications.
In ESEC/SIGSOFT FSE’15, pages 942–945, 2015.

[19] T. Yue, L. C. Briand, and Y. Labiche. Facilitating the
transition from use case models to analysis models:
Approach and experiments. ACM Transactions on
Software Engineering and Methodology, 22(1), 2013.

[20] T. Ziadi and J.-M. Jezequel. Product line engineering
with the uml: Deriving products. In Software Product
Lines. Springer, 2006.

http://www.iee.lu/

	Introduction
	Related Work
	Tool Overview
	Elicitation of PL Use Case Models
	Elicitation of Configuration Decisions
	Configuration Decisions for PL Diagrams
	Configuration Decisions for PL Specifications
	Configuration Decisions for PL Domain Model

	Generation of PS Use Case Models
	Generation of PS Use Case Diagrams
	Generation of PS Use Case Specifications
	Generation of PS Domain Models

	Evaluation
	Implementation & Availability
	Conclusion
	Acknowledgments
	References

