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Bachelier World Congress 2016, New York

Xuecan CUI Jang SCHILTZ
University of Luxembourg

July 15th, 2016

*Research funded by Fonds National de la Recherche Luxembourg (FNR)



Asset Pricing
Models with

Lévy
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3 Decomposing S&P500 index

4 Summary



Asset Pricing
Models with

Lévy
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Literature

Time-varying Jump Diffusion Framework

Time-varying volatility: Empirical studies on the statistical
properties of realized and/or implied volatilities have given rise
to various stochastic volatility models in the literature, such as
the Heston model, CEV models and also stochastic volatility
models with jumps etc.

Existence of jumps is empirically supported: Carr and Wu
(2003), Pan (2002).

Jump intensity is time-varying: Christoffersen et al (2012).
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Motivation & Contribution

Previous studies rely on a specific model structure for volatility
and jumps (e.g. Santa-Clara and Yan 2010).

We introduce a general non-parametric time-varying jump
diffusion framework as a natural generalisation of the results
from literature (Bollerslev, Todorov and Xu, 2015 JFE).

Theoretical part: We assume a time-varying Lévy process, with
time-varying drift, volatility and jump intensity parameters, to
model the jump diffusion economy. We study an equilibrium
asset and option pricing model in this economy.

Empirical part: Under this general framework, we decompose
S&P500 index into time-varying processes of drift, volatility and
jump, using the Hodrick-Prescott filter and a particle filter.
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Model Build-up

Stock Market

An investment of St in the stock market is governed by:

dSt
St−

= µ(t)dt +σ(t)dBt + (ex −1)dNt −λ(t)E (ex −1)dt, (1)

where St− is the value of St before a possible jump occurs;
µ(t) and σ(t) are the rate of return and the volatility of the
investment.

The jump part is assumed to be a Poisson process, with jump
intensity λ(t) and jump size x which follows an arbitrary
distribution.
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Money Market Account

We further assume that there is a market for instantaneous
borrowing and lending at a risk-free rate r(t). The money
market account, Mt , follows

dMt

Mt
= r(t)dt. (2)

The risk-free rate, r(t), will be derived from the general
equilibrium later, as a part of the solution.
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Representative Investor

Maximize the expected utility function of life time consumption

max
ct

Et

∫ T

t

p(t)U(ct)dt,

where ct is the rate of consumption at time t,
U(c) the utility function with U ′ > 0, U ′′ < 0, and
p(t) ≥ 0, 0 ≤ t ≤ T the time preference function.

Assume constant relative risk aversion (CRRA) utility function.

U(c) =

{
c1−γ

1−γ γ > 0, γ 6= 1,

ln c , γ = 1,

where the constant γ is the relative risk aversion coefficient,
γ = −cU ′′/U ′.
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Lévy
Processes

Xuecan Cui &
Jang Schiltz

Introduction

Asset Pricing
Model with
Time-varying
Lévy
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Total Wealth

The total wealth of the representative investor at time t:

Wt = W1t + W2t

where W1t = ωWt is invested in the stock market,
and W2t = (1− ω)Wt is invested in the money market.

ω is called the wealth ratio.
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Representative Investor’s Optimal Control Problem:

max
ct ,ω

Et

∫ T

t
p(t)U(ct)dt, (3)

subject to

dWt

Wt
= ω

dSt

St−
+(1−ω)

dMt

Mt
−

ct

Wt
dt

= [r(t) + ωµ(t)− ωr(t)− ωλ(t)E(ex − 1)−
ct

Wt
]dt + ωσ(t)dBt

+ ω(ex − 1)dNt ,

where φ(t) = µ(t)− r(t) is the equity premium.

Market Clearing: Because there is only one investor in the economy,
he has to put all the wealth into the stock market. The general
equilibrium occurs at ω = 1, under which the market is cleared.
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Equity Premium

Proposition

In the production economy with jump diffusion and one
representative investor with CRRA utility function, the
equilibrium equity premium is given by

φ(t) = φσ(t) + φJ(t),

where φσ(t) = γσ(t)2 -diffusion risk premium

φJ(t) = λ(t)E [(1− e−γx)(ex − 1)] -jump risk premium

The risk-free rate is a time-varying function:

r(t) = µ(t)− φ(t) = µ(t)− φσ(t)− φJ(t).
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Lévy
Processes

Xuecan Cui &
Jang Schiltz

Introduction

Asset Pricing
Model with
Time-varying
Lévy
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General Pricing Kernel

Proposition

The pricing kernel is given by

dπt

πt
= −r(t)dt − γσ(t)dBt + (ey − 1)dNt − λ(t)E(ey − 1)dt,

or equivalently, after integration

πT

πt
= exp{−

∫ T

t
γσ(s)dBs −

∫ T

t
[r(s) +

1

2
γ

2
σ

2(s)]ds − E(ey − 1)

∫ T

t
λ(s)ds +

Nt,T∑
i=1

yi}.

The random variable y modeling the jump size in the logarithm of
the pricing kernel, satisfies E [(ey − e−γx)(ex − 1)] = 0.
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Lévy
Processes

Xuecan Cui &
Jang Schiltz

Introduction

Asset Pricing
Model with
Time-varying
Lévy
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European Call

Proposition

The price of a European call, c(St , t), in the jump diffusion
economy satisfies

∂c(St , t)

∂t
+

1

2
σ2(t)S2

t
∂2c(St , t)

∂S2
+ [r(t)− λQ(t)EQ(ex − 1)]St

∂c(St , t)

∂S

− r(t)c(St , t) + λQ(t){EQ [c(Ste
x , t)]− c(St , t)} = 0,

with final condition

c(ST ,T ) = max(ST − K , 0),

where λQ(t) ≡ λ(t)E(ey ): jump intensity in the risk-neutral measure

Q,defined by EQ [f (x)] := E [ey f (x)]
E(ey )

, for any function f (x).
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European Call

Proposition

Pricing formula of a European call option:

c(St , t) =
+∞∑
n=0

e−
∫ T
t λQ (s)ds (

∫ T
t λQ(s)ds)n

n!
EQ
n [cBS (SeX e−EQ (ex−1)

∫ T
t λQ (s)ds , t)],

where cBS(S , t) is the Black-Scholes formula price for the European
call option and

X =
∑n

i=1 xi .



Asset Pricing
Models with

Lévy
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Empirical Part

Decompose the S&P500 Index into time-varying components,
using

the Hodrick-Prescott Filter

a particle filter (Sequential Monte Carlo Method)
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Hodrick-Prescott Filter

The Hodrick-Prescott filters was first proposed in
Whittaker (1923), then popularized in economics by
Hodrick and Prescott (1997).

The method serves to decompose the time series
yt = ln(St) into a trend component τt , and a cyclical
component ct :

yt = τt + ct , for t = 1, . . . ,T .

Condition: For a given a, τt satisfies

min
τ

(
T∑
t=1

(yt − τt)2 + a
T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2),

where a = 129600 for monthly data1.

1Ravn and Uhlig (2002)
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Extract Drift

Data:

S&P500 index, daily, 1985 - 2014.

In each month, we use the 5% to 95% quantile of ln(St),
compute the mean as a monthly data input for HP filter.

As a result, we decompose the stock index into a time-varying
trend component T and a component C :

ln(St) = T + C .

T is a monthly drift, C the remaining process of volatility plus
jumps.
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Time-varying Drift

Figure 1.

mean (×10−5) volatility skewness kurtosis
∆ ln(S) 31.9 0.0115 -1.3044 31.8

∆C 1.91 0.0117 -1.2229 30.1

Table 1.
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By taking the difference of the time-varying trend (∆T ), we
can observe that:

Regime Switching: Before 2000, stock return was positive.
However, after 2000 we can observe that it fluctuates
around zero.
Volatility/Jump Clustering: In negative return periods,
there exists jumps and volatility clustering. By contrast, in
positive return period, volatility/jump process is much less
volatile.

Figure 2.
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Filtering Problems

For filtering problem, the data is generated by the state
space model, which consists of the observation and state
evolution equations,

Observation equation: yt = f (xt , ε
y
t )

State evolution: xt+1 = g(xt , ε
x
t+1),

where εyt+1 is the observation error or “noise”, and εxt+1

are state shocks.

Particle filters belong to statistical filtering methods,
which usually refer to an algorithm for extracting a latent
state variable (e.g. volatility) from noisy observations (e.g.
stock price/return) using a statistical model.
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state variable (e.g. volatility) from noisy observations (e.g.
stock price/return) using a statistical model.
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Particle Filters

Particle filters use a sampling approach with a set of
particles to represent the posterior density of a latent state
space (Johannes, Polson and Stroud 2009, RFS).

They are simulation-based estimation methods, which
include a set of algorithms that estimate the posterior
density by directly implementing the Bayesian recursion
equations.

The state space model used in particle filters can be
non-linear and the initial state and noise distributions can
take any form required.



Asset Pricing
Models with

Lévy
Processes

Xuecan Cui &
Jang Schiltz

Introduction

Asset Pricing
Model with
Time-varying
Lévy
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SIR Algorithm

The Sampling Importance Resampling (SIR) algorithm is a
classical particle filtering algorithm developed by Gordon,
Salmond, and Smith (1993).

SIR includes two steps: given samples from pN(xt |y t),
S1. Propagation: for i = 1, ...,N, draw

x
(i)
t+1 ∼ p(xt+1|x (i)

t ).
S2. Resampling: for i = 1, ...,N,

draw z (i) ∼ MultN(w
(1)
t+1, . . . ,w

(N)
t+1),

with importance sampling weights w
(i)
t+1 =

p(yt+1|x (i)
t+1)∑N

l=1 p(yt+1|x (l)
t+1)

,

and set x
(i)
t+1 = xz

(i)

t+1.
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SIR Algorithm

The Sampling Importance Resampling (SIR) algorithm is a
classical particle filtering algorithm developed by Gordon,
Salmond, and Smith (1993).

SIR includes two steps: given samples from pN(xt |y t),
S1. Propagation: for i = 1, ...,N, draw

x
(i)
t+1 ∼ p(xt+1|x (i)

t ).
S2. Resampling: for i = 1, ...,N,

draw z (i) ∼ MultN(w
(1)
t+1, . . . ,w

(N)
t+1),

with importance sampling weights w
(i)
t+1 =

p(yt+1|x (i)
t+1)∑N

l=1 p(yt+1|x (l)
t+1)

,

and set x
(i)
t+1 = xz

(i)

t+1.
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Lévy
Processes

Decomposing
S&P500 index

Summary

State Variable of Volatility

As a state space model (for volatility) is necessary to
implement particle filters, we assume that following
dynamics for the stochastic variance:

dνt = k(θ − νt)dt + σν
√
νtdB

ν
t ,

where νt is a mean-reverting stochastic process. Bνt is a
Brownian motion correlated with Bt , with correlation
coefficient ρ.
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Filter out Volatility

Based on the result from HP filter, we further apply SIR to
decompose the time-varying volatility and jump
(component C ).

We start with particle filters under stochastic volatility
(SV) model without jumps, then we apply particle filters
under stochastic volatility and jump (SVJ) model.

The parameters used for the particle filters are taken from
Eraker, Johannes and Polson (2003).
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Lévy
Processes

Decomposing
S&P500 index

Summary

Filter out Volatility
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Filtered Volatility Processes I - SV model

We run particle filters under SV model three times. Estimated
volatilities stay around 0.34-0.35. However, the pattern of the
volatility processes varies each time.

Note that the hump shape on the left sides are caused by an
adaptation period (around 200 initial data points) needed by the
algorithm.

Figure 3. filtered volatility processes under SV model
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Filtered Volatility Processes II - SVJ model

Following Eraker, Johannes and Polson (2003), we assume a
jump intensity of λ = 0.006, meaning 1 to 2 jumps per year; the
jump size follows a normal distribution.

With the SVJ model, filtered volatilities decrease to 0.2-0.25, as
jumps account for some of the excess variance.

We detect a high possibility of jumps around 1987-1988, and
some other infrequent jumps. Overall jumps are rare in this
model. We observe high level of volatilities when the probability
of a jump occuring is high.
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Lévy
Processes

Decomposing
S&P500 index

Summary

Filtered Volatility Processes II - SVJ model

Following Eraker, Johannes and Polson (2003), we assume a
jump intensity of λ = 0.006, meaning 1 to 2 jumps per year; the
jump size follows a normal distribution.

With the SVJ model, filtered volatilities decrease to 0.2-0.25, as
jumps account for some of the excess variance.

We detect a high possibility of jumps around 1987-1988, and
some other infrequent jumps. Overall jumps are rare in this
model. We observe high level of volatilities when the probability
of a jump occuring is high.



Asset Pricing
Models with

Lévy
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Filtered Volatility Processes II - SVJ model

Figure 4. Filtered volatility and jump processes under SVJ model
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Future Research

The decomposition of the time-varying component of
drift, volatility and jumps from S&P500 index using HP
filter and particle filter is still a preliminary result.

Here we studied the SVJ model only with fixed jump
intensity; another possibility is to consider the jump
intensity as a time-varying function, for example a
function of time-varying drift or volatility, or some other
possible exogenous determinant.

It will be interesting to use option data jointly with return
data in the filtering methods.
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Thank you!
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