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The equilibrium properties of hard rod monolayers are investigated in a lattice model (where position
and orientation of a rod are restricted to discrete values) as well as in an off-lattice model featuring
spherocylinders with continuous positional and orientational degrees of freedom. Both models are
treated using density functional theory and Monte Carlo simulations. Upon increasing the density
of rods in the monolayer, there is a continuous ordering of the rods along the monolayer normal
(“standing up” transition). The continuous transition also persists in the case of an external potential
which favors flat-lying rods in the monolayer. This behavior is found in both the lattice and the
continuum models. For the lattice model, we find very good agreement between the results from the
specific DFT used (lattice fundamental measure theory) and simulations. The properties of lattice
fundamental measure theory are further illustrated by the phase diagrams of bulk hard rods in two
and three dimensions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960618]

I. INTRODUCTION

Several systems of scientific and technological interest
can be characterized as being monolayers of anisotropic
particles, such as Langmuir monolayers,1 or very thin
films of elongated organic molecules,2 such as organic
semiconductors.3,4 Since the particular molecular interactions
in these systems may be very complicated, it is worthwhile
to investigate simpler models of anisotropic colloids to obtain
general insights into the thermal behavior of these systems.
Among these, hard-body models (where particles interact
only via their excluded volume) are a natural starting point to
assess effects of anisotropy, both for thermal equilibrium and
non-equilibrium conditions (i.e., growth of the monolayer).

We present our investigations on equilibrium and on
growth of hard-rod monolayers in two papers, where in
Paper I we focus on equilibrium properties and in Paper II,30

we treat the growth process. In both papers, the focus will be
on hard-rod lattice models since for these a fairly transparent
theoretical analysis of equilibrium and growth is possible
in the framework of density functional theory (DFT). In
particular, we use the framework provided by fundamental
measure theory (FMT)5 within which very accurate density
functionals for systems of anisotropic hard particles have
been constructed for continuous6 and, important for the
present investigations, for lattice models.7,8 For the subsequent
investigations of the growth process, kinetic Monte Carlo
(MC) simulations on a lattice are a natural starting point.
Since lattice models inevitably restrict the translational and
orientational degrees of freedom of rods, we will also present
results for an off-lattice hard-rod (spherocylinder) model and
identify similarities and differences between lattice and off-
lattice models.

a)martin.oettel@uni-tuebingen.de

The restriction of orientation in hard-rod (cuboid) models
comes with the benefit that density functionals become
tractable and therefore also analytic results can be derived.
Ref. 9 treats the phase behavior of needle-like rods in narrow
slits using an Onsager-type DFT. For continuous translational
degrees of freedom and in three dimensions (3D) a rich
phase diagram was derived using FMT.10 Although not
all details are the same in a simulated phase diagram of
hard cuboids with unrestricted orientation,11 the restricted-
orientation model gives a good first estimate of what can
be expected. If the particles are restricted to a plane (the
monolayer case), the first-order isotropic-nematic transition
becomes a continuous one, according to FMT in the restricted-
orientation model.12,13 The orientational order perpendicular
to the plane Q is proportional to the density ρ for low
densities. An approximate DFT and simulations for hard
ellipsoids (unrestricted orientation) seem to confirm this
behavior although very low densities have not been sampled
in the simulations.14 Such a possible qualitative change of
the nature of the nematic transition through dimensional
restriction is very interesting by itself, and therefore we will
establish analytically the Q ∝ ρ behavior explicitly in the
low-density limit for both lattice and continuum models. The
presence of an orientation-dependent external potential in
the monolayer plane (substrate potential) does not change
the continuous nature of the nematic transition but the
onset of particles “standing up” may become very sharp
for substrate potentials which actually favor particles “lying
down.”

The structure of the paper is as follows: In Sec. II,
we describe the lattice version of fundamental measure
theory (FMT) for hard rod mixtures and give illustrative
examples for the functionals. The bulk equilibrium properties
of monocomponent rods in two dimensions (2D) and three
dimensions (3D) are briefly discussed, followed by the results

0021-9606/2016/145(7)/074902/12/$30.00 145, 074902-1 Published by AIP Publishing.
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for the monolayer (3D confined). Sec. III discusses the
spherocylinder off-lattice model for the monolayer using
DFT in the low-density limit and using simulations. Sec. IV
discusses similarities and differences between the lattice and
off-lattice models and gives a summary. Two appendices
briefly discuss the grand canonical simulation method for the
lattice model and the derivation of the excluded area between
hard rods (in the continuum model) whose centers are confined
to a plane.

II. DENSITY FUNCTIONAL THEORY FOR HARD ROD
LATTICE MODELS

A. Fundamental measure theory

The rod model used in this work is formulated on a simple
cubic lattice in d dimensions. A lattice point s is specified by a

set of d integers (s = (s1, . . . , sd)). The lattice constant a is the
unit of length. Hard rods are lines (1D), rectangles (2D), or
parallelepipeds (3D) with corners sitting on lattice points, and
thus their geometry is specified by their extent in the cartesian
directions, which are again sets of d integers. The position
of a rod is specified by the corner whose lattice coordinates
are minimal each (see Fig. 1). Hard rods are not allowed to
overlap (but they may “touch,” i.e., share surfaces), thus the
interaction potential for two rods Li and L j of species i and j
at positions si and s j with extensions Li = (Li,1, . . . ,Li,d) and
L j = (L j,1, . . . ,L j,d) is given by

ui j(si,s j) =



∞ ( f i j = 1)
0 ( f i j = 0) . (1)

Here, f i j = f (si,s j,Li,L j) is the rod overlap function given
by

f (si,s j,Li,L j) =
d

k=1

θ(si,k, s j,k,Li,k,L j,k), (2)

θ(si,k, s j,k,Li,k,L j,k) =



1 (s j,k = {si,k − (L j,k − 1), . . . , si,k + (Li,k − 1)})
0 (otherwise) . (3)

The overlap function is 1 whenever there is an overlap in
all lattice dimensions, meaning that the rods are disjunct for
f = 0 (see Fig. 1). Note that due to the chosen convention for
the rod location the overlap function is not symmetric in the
rod locations si and s j.

In the following we consider such a rod mixture with ν
species subject to external fields V ext(s) = {V ext

1 (s), . . . ,V ext
ν (s)}

where V ext
j (s) acts on rod species j. At lattice site s,

the number density of rods per lattice site is specified by
ρ(s) = {ρ1(s), . . . , ρν(s)}, where ρ j(s) is the density of rod
species j, i.e., the probability of a given site to be occupied by
the lower left corner of a particle. In density functional theory,
all equilibrium properties of a rod mixture in external fields
are obtained by minimizing the grand potential functional,

Ω[ρ(s)] = F id[ρ(s)] + F ex[ρ(s)] −
ν
i=1


s
(µi − V ext

i (s)) ρi(s),
(4)

FIG. 1. Definitions for the example of hard 2×3-rods in d = 2. Rod location
is specified by the position of the lower left corner (i.e., the corner whose
lattice coordinates are minimal). Rods may “touch” (left) but not overlap
(right).

with respect to the particle densities ρ(s). The chemical
potential for rod species i = 1 . . . ν is denoted by µi. If different
species belong to the same type of rod in different orientations,
the corresponding chemical potentials must be equal in
equilibrium. F id[ρ(s)] denotes the ideal gas contribution to
the free energy functional, given by

F id[ρ(s)] =
ν
i=1


s

ρi(s)(ln ρi(s) − 1). (5)

Energies are measured in units of kBT throughout the paper.
The exact form of the excess free energy functional F ex

is in general unknown, and in this work we will approximate it
within the fundamental measure approach. For lattice models
of hard rods, this approach has been worked out in Refs. 7
and 8, resulting in an approximative form for F ex which we
apply in the present study (Lafuente–Cuesta functional).

The class of free energy functionals derived in Refs. 7
and 8 makes use of weighted densities nα(s), which are
defined as convolutions of densities ρ(s) with weight functions
wα B {wα

1 , . . . , w
α
ν },

nα(s) =
ν
i=1

ρi ⊗ wα
i (s). (6)

Convolutions (⊗) on the lattice are defined as

( f ⊗ g) (s) =


s′
f (s′)g(s − s′). (7)

The d-dimensional index α = (α1, . . . ,αd) specifies different
weight functions wα

i , with allowed values αi = 0,1 only.
The weight functions wα

i (specific for species i) have the
meaning of defining a support of rods K α

i with edge lengths
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Kα
i = (Kα1

i,1, . . . ,K
αd
i,d

), i.e., they are 1 on points covered
by K α

i and 0 otherwise. This can be formalized using
the θ-function already employed for defining rod overlap
(Eq. (3)),

wα
i (s) =

d
k=1

θ(0, sk,αk,K1
i,k). (8)

The edge lengths of rods K α
i are related to those of the rods

Li as follows:

Kαk
i,k
= Li,k − (1 − αk) (k = 1, . . . ,d), (9)

i.e., whenever the index α j is 0, the edge length of K αi
i in the

dimension j is shortened by 1 compared to the corresponding
edge length of Li, otherwise (α j = 1) the edge length is
identical. In particular, for α = (1, . . . ,1) all rods K αi

i are
identical to Li. The meaning of the corresponding weighted
density n(1, ...,1)(s) = η(s) is a local packing or volume fraction
of rods at point s. Fig. 2 illustrates the four possible weight
functions for a rod with edge lengths L = (3,2) on a 2D
lattice.

As a second ingredient, the Lafuente–Cuesta functional
needs the excess free energy of a zero-dimensional (0d)
cavity, Φ0d, i.e., a restricted domain on the lattice which
can only hold one particle at a time. Such a cavity may
consist of more than one point where the rod is positioned.
Furthermore, for a mixture, the set of points {scav, i} specifying
the allowed location of species i does not need to coincide
with the corresponding set {scav, j} for species j. Note that
the sets {scav, i} and {scav, j} are not independent since the 0D
cavity property is required to hold globally for the mixture,
and not just for the individual components. The free energy
Φ0d(η) of such a cavity is a function exclusively of the
total packing fraction η ≡ ηcav =

ν
i=1


s∈{scav, i} ρi(s) in the

cavity,

Φ
0d(η) = η + (1 − η) ln(1 − η). (10)

Using this 0d free energy, the Lafuente–Cuesta excess free
energy functional is given by

F ex =


s
DαΦ

0d(nα(s)). (11)

Remember that α is a d-dimensional index with entries
{0,1} only. In Eq. (11), Dα =

d
i=1 Dαi

and Dαi
is the

difference operator acting on a function f (αi) according to
Dαi

f (αi) = f (1) − f (0).
It can be shown that F ex as defined above yields the

correct excess free energy, Eq. (10), for any 0D cavity.7,8 In

order to assess the accuracy of the expression for situations of
less severe confinement, we explicitly evaluate the properties
of different bulk systems in Sec. II C. In a first step,
however, we illustrate the construction of the Lafuente–Cuesta
functional by applying it to different mixtures in 1D, 2D,
and 3D.

B. Special cases

Here we give the explicit functionals for some special
mixtures. The equilibrium properties of examples (b) and (c)
(2D and 3D systems) will be discussed in Sec. II C and those
of example (d) (monolayer) in Sec. II D.

(a) d = 1: Mixture of hard rods in one dimension. The excess
free energy functional is given by

F ex =


s

(
Φ

0d(n(1)(s)) − Φ0d(n(0)(s))) . (12)

This is the well-known exact solution for the 1d lattice
hard rod mixture, derived in Ref. 7 following the recipe
from Ref. 15 which treats the 1D continuum hard rod
mixture. Another yet different derivation can be found in
Ref. 16.

(b) d = 2: A system of rods with length L and width 1
corresponds to the binary mixture with rod lengths
L1 = (L,1) and L2 = (1,L). The excess free energy
functional is given by

F ex =


s

(
Φ

0d(n(1,1)(s))

−Φ0d(n(0,1)(s)) − Φ0d(n(1,0)(s))) . (13)

The weighted densities are given by

n(1,1)(s) = ρ1 ⊗ w
(1,1)
1 (s) + ρ2 ⊗ w

(1,1)
2 (s),

n(0,1)(s) = ρ1 ⊗ w
(0,1)
1 (s),

n(1,0)(s) = ρ2 ⊗ w
(1,0)
2 (s).

(14)

Note that the weights w
(0,1)
2 = w

(1,0)
1 = 0 since they

correspond to the support of rods with width 0. Likewise
w
(0,0)
1 = w

(0,0)
2 = 0.

(c) d = 3: A system of rods with length L and height/width
1 corresponds to the ternary mixture with rod lengths
L1 = (L,1,1), L2 = (1,L,1) and L3 = (1,1,L). The excess
free energy functional is given by

FIG. 2. The four FMT weight functions
for a rod with edge lengths L= (3,2).
The lattice point at which the weight
functions are evaluated is denoted by
s. The thick points indicate on which
lattice points the weight function is 1.
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F ex =


s

(
Φ

0d(n(1,1,1)(s)) − Φ0d(n(0,1,1)(s)) − Φ0d(n(1,0,1)(s)) − Φ0d(n(1,1,0)(s))) . (15)

The weighted densities are given by

n(1,1,1)(s) = ρ1 ⊗ w
(1,1,1)
1 (s) + ρ2 ⊗ w

(1,1,1)
2 (s)

+ ρ3 ⊗ w
(1,1,1)
3 (s), (16)

n(0,1,1)(s) = ρ1 ⊗ w
(0,1,1)
1 (s),

n(1,0,1)(s) = ρ2 ⊗ w
(1,0,1)
2 (s), (17)

n(1,1,0)(s) = ρ3 ⊗ w
(1,1,0)
3 (s).

Similarly to case (b), the weights w(α1,α2,α3)
i = 0 whenever

α j = 0 and i , j since they correspond to the support of
rods with width 0.

(d) d = 3 (confined), the monolayer: A system of rods
with length L and height/width 1 whose positions are
constrained to a 2D-plane corresponds to a 2D ternary
mixture with rod lengths L1 = (L,1), L2 = (1,L) (rods
lying in-plane), and L3 = (1,1) (rods standing up). The
excess free energy functional is given by formally the
same functional as in (a),

F ex =


s

(
Φ

0d(n(1,1)(s))

−Φ0d(n(0,1)(s)) − Φ0d(n(1,0)(s))) , (18)

but now the weighted densities are given by

n(1,1)(s) = ρ1 ⊗ w
(1,1)
1 (s) + ρ2 ⊗ w

(1,1)
2 (s)

+ ρ3 ⊗ w
(1,1)
3 (s),

n(0,1)(s) = ρ1 ⊗ w
(0,1)
1 (s),

n(1,0)(s) = ρ2 ⊗ w
(1,0)
2 (s).

(19)

C. Equilibrium bulk properties in 2D and 3D

1. d = 2, the binary mixture with rod lengths
L1 = (L, 1) and L2 = (1, L)

In the bulk, both densities (ρ1 and ρ2) and all
weighted densities are constant. We introduce the total
density ρ B ρ1 + ρ2 and denote by η B n(1,1) = Lρ the
total packing fraction. Furthermore n(0,1) = (L − 1)ρ1, n(1,0)
= (L − 1)ρ2, and S = (ρ1 − ρ2)/ρ is an order parameter for
the demixed state. We refrain from calling S a nematic
order parameter, since the alignment of rods corresponds
just to a demixed state between species 1 and 2, and the
corresponding transition has the character of a liquid–vapor
transition.17 The bulk free energy density, f2d(ρ,S)
= f id

2d + f ex
2d, written as depending on the variables ρ and S

becomes

f id
2d =

3
i=1

ρi ln ρi − ρ, (20)

f ex
2d = Φ

0d(ρL) − Φ0d ((L − 1)ρ1) − Φ0d ((L − 1)ρ2) , (21)

ρ1 =
ρ

2
(1 + S), (22)

ρ2 =
ρ

2
(1 − S). (23)

At fixed ρ, the equilibrium demixing parameter Seq is found
by solving µS = ∂ f2d/∂S = 0. For L ≤ 3, the mixed state
(Seq = 0) is the only solution and f is minimal there. For
L ≥ 4 there exists a critical packing fraction ηc < 1 above
which three solutions S = {0,±Seq} signal demixing: the
solutions S , 0 have lower free energy. At ηc, there is
no jump in the demixing parameter, which is the behavior
also observed at a liquid–vapor transition. One may thus
expand

µS(η,S) ≈ µ1,S(η)S + µ3,S(η)S3 + · · · (24)

and find the critical packing fraction by solving µ1,S(ηc) = 0,
with the solution

ηc =
2

L − 1
. (25)

The equilibrium demixing Seq(η) in the vicinity of ηc can
be approximated by solving µS = 0 for S using the Taylor
approximation (24), giving

Seq =


−
µ1,S(η)
µ3,S(η) ≈

√
η − ηc


3

2(L − 2) (L − 1). (26)

The behavior of Seq(η) near ηc born out by the approximate
theory is, of course, of mean-field type.

These findings can be compared with simulation work
which finds the demixing transition for L ≥ 718,19 and a
critical packing fraction ηc ≈ 5/L.20 Thus, FMT overestimates
the tendency to demix. Note, however, that the demixing
follows from a single functional, unlike other approaches
which assume distinct expressions for the isotropic and
the demixed phase free energies.20 For very high packing
fractions η ≈ 1, theoretical arguments predict a reentrant
transitions from the demixed to a disordered state, bearing
some characteristics of a cubatic phase on a lattice.18 This
transition has been studied in more detail using simulations
in Refs. 21 and 22. The present FMT functional, however,
does not give this transition. For rods with extensions m × mL
(where m,mL are integer and L may be noninteger), the
phase diagram has been investigated in Refs. 23 and 24
where (for m > 1) it is shown that a columnar phase
appears between the demixed and high-density disordered
phase.

In 2D continuum models with anisotropic particles,
simulations have frequently addressed the case of hard
ellipses. A recent work finds a critical aspect ratio of Lc . 4.25
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2. d = 3, the ternary mixture with rod lengths
L1 = (L, 1, 1), L2 = (1, L, 1), and L3 = (1, 1, L)

The total density is ρ = ρ1 + ρ2 + ρ3 and the total packing
fraction is η B n(1,1,1) = Lρ. We define the order parameters

Q =
ρ3 − ρ1+ρ2

2

ρ1 + ρ2 + ρ3
,

S =
ρ1 − ρ2

ρ1 + ρ2
.

(27)

Q , 0 signifies an excess (Q > 0) or depletion (Q < 0) of
particles in z-direction (nematic state) while S , 0 signals
order in the x–y–plane orthogonal to the nematic director
(biaxial state). The bulk free energy density, f3d(ρ,Q,S)
= f id

3d + f ex
3d, written in dependence on the variables ρ, Q, and

S becomes

f id
3d =

3
i=1

ρi ln ρi − ρ, (28)

f ex
3d = Φ

0d(Lρ) − Φ0d ((L − 1)ρ1) − Φ0d ((L − 1)ρ2)
−Φ0d ((L − 1)ρ3) , (29)

ρ1 =
ρ

3
(1 −Q)(1 + S), (30)

ρ2 =
ρ

3
(1 −Q)(1 − S), (31)

ρ3 =
ρ

3
(1 + 2Q). (32)

Minimization of the total free energy density with respect
to Q and S shows that the model has a stable nematic
state (Q = Qmin > 0, S = 0) for L ≥ 4. Note that the director
could also be oriented along the x- or y-axis instead of the
chosen z-axis. A pure nematic state with director along the
x[y]-axis and order parameter Q′ is equivalent to a minimum
free energy state with Q = −Q′/2 and S = ±3Q′/(2 +Q′)
using the order parameters (27). This is therefore not a
biaxial state. The associated liquid-nematic transition is of
first order, and we have determined coexistence between
the liquid and the nematic state by performing the common
tangent construction for the free energy density f3d(ρ,0,0)
(liquid phase) and f3d(ρ,Qmin,0) (nematic phase), which
implies equality of the chemical potential µ = (∂ f3d)/(∂ρ)
and pressure p = µρ − f3d. Results are shown in Fig. 3(b).

The packing fractions of the coexisting nematic state are
very well described by ηc,nem = 3.58/L. The gap in packing
fractions of the coexisting states has a maximum of ≈0.08 at
L = 8 and tends to zero as L → ∞.

We have not found any simulation data for the 3D lattice
rods to compare with. On the other hand, our FMT results
are qualitatively similar to findings for 3D hard rods in the
continuum. For hard spherocylinders, the isotropic-nematic
transition sets in for aspect ratios larger than approximately
3.7. The transition is a clear first-order transition with a
maximum in the coexistence gap at an aspect ratio of
about 10.26

D. The monolayer system

In the lattice model, this is the effectively 2D ternary
mixture with rod lengths L1 = (L,1), L2 = (1,L) (rods lying
in-plane) and L3 = (1,1) (rods standing up).

The total density is ρ = ρ1 + ρ2 + ρ3 and the total packing
fraction in the plane is η B n(1,1) = L(ρ1 + ρ2) + ρ3. The
order parameters Q and S are the same as in Eqs. (27).
Q > 0 signifies an excess of particles “standing-up” (nematic
state) while S , 0 signals demixing of “lying-down” particles
(biaxial state, if additionally Q , 0). In the bulk free energy
density, f3d,conf(ρ,Q,S) = f id

3d,conf + f ex
3d,conf, one can identify

f id
3d,conf = f id

3d whereas the excess part becomes

f ex
3d,conf = Φ

0d(L(ρ1 + ρ2) + ρ3) − Φ0d ((L − 1)ρ1)
−Φ0d ((L − 1)ρ2) . (33)

At fixed total density ρ, the minimization of the free energy
with respect to Q and S reveals the following picture: For
“small” rod lengths L ≤ 12 there is no biaxial state (S = 0,
no demixing in the plane), but the “nematic” order parameter
Q grows monotonically and smoothly from 0 to 1 when
the total density varies between 0 and 1 (close-packed state
of rods standing up). Results for L = 4 . . . 10 are shown in
Fig. 4(a), demonstrating that for increasing L the rods quickly
“stand up.” The FMT results show excellent agreement with
Monte Carlo simulation results27 on the same confined model
for L = 4 and 6. For larger rod lengths (L = 8 and 10) the
agreement with our grand canonical Monte Carlo (GCMC)

FIG. 3. (a) Rods in d = 2: Demixing order parameter S as a function of the total packing fraction for different rod lengths L. Dotted lines correspond to the
approximate solution near the onset of demixing (Eq. (26)). (b) Rods in d = 3. Liquid−nematic binodal in the plane spanned by the inverse rod length 1/L and
the packing fraction η. Square symbols show the packing fraction of the coexisting nematic state, circles the packing fraction of the coexisting liquid state.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  158.64.77.126 On: Tue, 23 Aug

2016 12:43:09



074902-6 Oettel et al. J. Chem. Phys. 145, 074902 (2016)

FIG. 4. (a) Order parameter Q for rods standing up vs. total density. Lines are results from FMT and symbols are results from Monte Carlo simulations reported
in Ref. 27. Thin lines are results from our GCMC simulations where a running average of 20 points on density intervals of 0.04 has been taken. (b) Phase
diagram from FMT showing a reentrant behavior for mixing (S = 0) and demixing (S , 0) in the plane. The rod length L is treated as a continuous variable. The
critical point occurs for a rod length of Lc ≈ 12.077 at a density of ρc ≈ 0.0828.

simulations is only slightly worse. The implementation of
GCMC is briefly described in Appendix A.

For L ≥ 13, FMT predicts reentrant demixing in the
plane, i.e., in a certain interval [ρlow(L), ρup(L)] for the total
density the biaxiality parameter will be nonzero, S , 0. This
reentrant behavior is qualitatively understood as follows. In the
d = 2 model it was found that the critical density of demixing
of planar rods is ρ1 + ρ2 = 2/(L(L − 1)). For increasing L
one therefore expects ρlow(L) → 0. On the other hand, for
a certain L but increasing ρ the fraction of planar rods
initially grows, reaches a maximum, and becomes smaller
again since the rods stand up, see Fig. 4(a). Therefore, if
there exists a lower demixing density ρlow(L), one would
expect the existence of a higher remixing density ρup(L)
owing to the reduction of the planar rod density. Similarly
as in the d = 2 model, the demixing transition is continuous
and hence the densities ρlow(L), ρup(L) can be found using
the following argument: Let µQ(ρ,Q,S) = ∂ f3d,conf/∂Q and
µS(ρ,Q,S) = ∂ f3d,conf/∂S be chemical potentials for the
order parameters Q and S. For a mixed state (S = 0), we
define Qeq(ρ) through µQ(ρ,Qeq,0) = 0. As before, we may
expand

µS(ρ,Q,S) ≈ µ1,S(ρ,Q)S + µ3,S(ρ,Q)S3 + · · ·. (34)

At the de-/remixing densities one has the condition

µ1,S(ρ,Qeq(ρ))|ρ=ρlow[up] = 0, (35)

which needs to be solved numerically. The results are depicted
in Fig. 4(b), showing the onset of demixing at L = 13 and
a maximum density interval for the demixed state at around
L = 20.

The continuous behavior of Q(ρ) and the reentrant
demixing are in fact very similar to the behavior found
in the FMT study of the restricted-orientation model with
continuous translational degrees of freedom.12 There, biaxial
ordering sets in at larger rod lengths, L ≥ 21.34.

The results in Fig. 4 suggest Q ∝ ρ, i.e., the continuous
nematic ordering sets in at ρ = 0. This is easily understood in
a low-density expansion of the FMT excess free energy (33)
which is exact up to second order. Assuming no biaxiality
(S = 0) and combining ideal and excess part we find for the

free energy derivative with respect to Q,

µQ =
∂ f3d,conf

∂Q
≈ 2

3
ρ ln

1 + 2Q
1 −Q

+
2
9
ρ2 �[2 − L − L2] + [L − 1]2Q�

+ O(ρ3). (36)

Note that in the excess part of µQ, at fixed density, there is a
constant term driving the system to Q > 0 for L ≥ 2. This is
different from the 2D and 3D bulk systems where this constant
term is absent and thus Q > 0 (for low densities) is always
unfavorable in terms of free energy cost. The equilibrium
solution µQ = 0 at Q = Qeq is found as

ρ =
3 ln 1+2Qeq

1−Qeq

[L2 + L − 2] − [L − 1]2Qeq
→ Qeq ≈

1
9
(L2 + L − 2)ρ.

(37)

Hence, for large L the lattice model predicts the scaling
Qeq ∝ ρL2.

1. Finite substrate potential

One may ask whether a finite substrate potential could
alter the continuous transition found above. It is natural to
assume that the substrate potential acts equally on the flat-lying
species 1 and 2 and differently on the upright species 3. Hence
the external contribution to the free energy becomes

f ext =

3
i=1

V ext
i ρi = v0(ρ1 + ρ2) + v3ρ3

=
ρ

3
(2v0 + v3) + 2

3
ρQ(v3 − v0). (38)

Therefore the free energy derivative with respect to Q is
modified as µQ → µQ + ρvQ with vQ =

2
3 (v3 − v0). For the

ideal gas limit this implies an initial ordering on the substrate
with order parameter

Qid =
exp(−3vQ/2) − 1
exp(−3vQ/2) + 2

. (39)

If the substrate is strongly attractive for the flat-lying species
1 and 2 (vQ ≫ 0), then we find Qid → −1/2. At nonzero
densities, the solution of µQ = 0 (Eq. (36) with the external

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  158.64.77.126 On: Tue, 23 Aug

2016 12:43:09



074902-7 Oettel et al. J. Chem. Phys. 145, 074902 (2016)

FIG. 5. (a) Order parameter Q for rods standing up vs. total density subject to a substrate potential (rod length L = 5). The substrate potential is parametrized as
−ϵ per unit length such that v3=−ϵ, v0=−Lϵ and thus vQ = (2/3)(L−1)ϵ. Lines are DFT results, symbols results from GCMC simulations (see Appendix A).
The error is smaller than the symbol size. (b) FMT phase diagram (for nonzero substrate potential) showing the reentrant behavior for mixing (S = 0) and
demixing (S , 0) in the plane. The critical points {Lc, ρc} are located at {8.12,0.123} for ϵ = 0.1, {6.72,0.149} for ϵ = 0.1, and {5.06,0.197} for ϵ = 0.5.

contribution) is obtained in the form ρ(Q). For small deviations
from equilibrium, Qeq = Qid + δQ, we can invert this function
and obtain

δQ ≈ 3
2
ρ

α − βQid

2(1 + 2Qid)−1 + (1 −Qid)−1 , (40)

with α = 2(L2 + L − 2)/9 and β = 2(L − 1)2/9. Although the
range of validity is very limited, it implies that the qualitative
behavior for ρ → 0 is unchanged since the slope of δQ(ρ)
is always positive. Thus the transition stays continuous.
However, for increasing vQ the “standing up” transition of the
monolayer becomes increasingly steep at moderate densities;
see Fig. 5(a) where we show the Q(ρ) behavior for L = 5. For
these moderate densities the expansion up to second order is
no longer valid. Particularly for the case of ϵ = 5 the behavior
near ρ = 0.2 it appears Q(ρ) has a bifurcation point, similar
to the demixing transition in the 2D bulk system discussed in
Sec. II C. The density ρ = 0.2 = 1/L at which this apparent
transition occurs is the close-packing density for rods lying
flat. However, for finite potentials it is not a phase transition
since Q(ρ) maintains its linear behavior of Q(ρ) with nonzero
slope at very small densities.

A finite substrate potential has a marked influence on the
reentrant transition for demixing in the plane. The location of
the phase boundaries has been calculated using Eq. (35), with
the condition µQ(ρ,Qeq,0) = −ρvQ for Qeq. Fig. 5(b) shows
the phase boundaries for the demixed phase with substrate
potentials ϵ = 0.1, 0.2, and 0.5 in comparison with the case
ϵ = 0. With increasing substrate potential, the density range
for the demixed phase widens considerably and the critical
point moves to smaller rod lengths.

III. MONOLAYERS OF HARD SPHEROCYLINDERS

For the lattice monolayer discussed in Sec. II it does not
matter which rod point or segment is actually fixed to the
plane since all choices lead to the same effective 2D model.
Physically, fixing the end point corresponds to the case of rods

on a hard substrate while fixing some other rod point (e.g., in
the middle) applies to Langmuir monolayers. There should be
a difference between the two cases which is not expected to
be qualitative (with regard to the type of transition). As can be
seen below, the low-density behavior of long rods with large
aspect ratios is actually insensitive to the choice of confining
plane. We thus present simulation results below solely for the
case of fixed mid-points.

A. DFT in an expansion up to second order in density

We consider hard spherocylinders with length L and
diameter D whose centers or ends are fixed on a plane. In
order to investigate the nature of the orientation transition,
we consider a low-density expansion of the free energy. This
method was used for the well-studied model of hard rods in
3D to establish the onset of nematic order as a bifurcation and
the nature as a first order transition.28 The free energy density
up to second order in density, including the contribution from
an external potential, is given by

F = F id + F ex + F ext, (41)

F id =


d2r


dΩ ρ(r,Ω)(ln(ρ(r,Ω)Λ2) − 1), (42)

F ex =
1
2


d2r


dΩ


d2r ′


dΩ′ ρ(r,Ω)

× ρ(r′,Ω′)ω(|r − r′|,Ω,Ω′), (43)

F ext =


d2r


dΩ ρ(r,Ω)V ext(r,Ω). (44)

Here, ρ(r,Ω) is an inhomogeneous particle density in two
dimensions and units of [length]−2 which depends on the space
point r and the orientation of the rod Ω = (θ,φ), specified by
the polar angle θ and the azimuthal angle φ. The integral over
orientations is defined as

dΩ =
1

4π

 π

0
sin θdθ

 2π

0
dφ. (45)
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Λ is the thermal de Broglie length. ω(r,Ω,Ω′) is the overlap
function between rods for given orientations of and distance
r between the particles. It is 1 if there is overlap, otherwise
zero. The external (substrate) potential V ext(r,Ω) is measured
in units of kBT .

We consider only orientation-dependent substrate poten-
tials, V ext(Ω), and bulk states, i.e., no spatial dependence of
the density and introduce the orientation distribution f (Ω),

ρ(r,Ω) = ρ0 f (Ω). (46)

Then the ideal, excess, and external parts of the free energy
per particle (a = aid + aex + aext) become

aid =


dΩ f (Ω)(ln(ρ0Λ

2 f (Ω)) − 1), (47)

aex =
ρ0

2


dΩ


dΩ′ f (Ω) f (Ω′)β(Ω,Ω′), (48)

aext =


dΩ f (Ω)V ext(Ω). (49)

Here, β(Ω,Ω′) = 
d2rω(r,Ω,Ω′) is the excluded area

between the rod centers (or ends) with fixed orientations
of the rods.

In equilibrium, f (Ω) minimizes a. From δa/δ f = 0 we
obtain

ln f (Ω) = − ln C − V ext(Ω) − ρ0


dΩ′ β(Ω,Ω′) f (Ω′), (50)

where C is a constant ensuring that f is properly normalized,
i.e.,


dΩ f (Ω) = 1. It is determined by exponentiating

Eq. (50) and integrating over Ω,

f (Ω) = 1
C

exp
(
−V ext(Ω) − ρ0


dΩ′ β(Ω,Ω′) f (Ω′)

)
,

C =


dΩ exp
(
−V ext(Ω) − ρ0


dΩ′ β(Ω,Ω′) f (Ω′)

)
.

(51)

The orientation-dependent substrate potential gives rise
to a non-constant orientational distribution in the ideal gas
limit,

f id(Ω) = exp(−V ext(Ω))
dΩ exp(−V ext(Ω)) , (52)

which is normalized to 1. We introduce the small deviation
f1(Ω) B f (Ω) − f id(Ω) and linearize Eq. (51) in f1,

f1(Ω)
f id(Ω) = C1 − ρ0


dΩ′β(Ω,Ω′)( f id(Ω′) + f1(Ω′))

C1 = ρ0


dΩ


dΩ′ f id(Ω)β(Ω,Ω′)

× ( f id(Ω′) + f1(Ω′)).
(53)

The constant C1 ensures the necessary normalization condition
dΩ f1(Ω) = 0. If one expands f1 in powers of ρ0, then one

finds the leading order solution

f1(Ω) ≈ ρ0 f id(Ω)
(

dΩ


dΩ′ f id(Ω)β(Ω,Ω′) f id(Ω′)

−


dΩ′β(Ω,Ω′) f id(Ω′)
)
. (54)

This expression is equivalent to Eq. (40) in the lattice model
and shows that any deviations from the ideal gas distribution
are continuous and proportional to the density ρ0.

In the absence of a substrate potential ( f id = 1),
we can proceed further. Without loss of generality, we
put rod 1 at the coordinate center with orientation
(director) u1 = (sin θ1,0,cos θ1)T . Rod 2 has the director
u2 = (sin θ2 cos φ2,sin θ2 sin φ2,cos θ2)T . The excluded area
depends in general on the three angles θ1, θ2, φ2. If we consider
only nematic order without biaxiality, f (Ω) ≡ f (θ), then we
can define the integrated overlap area

1
2π


dφ2β(θ1, θ2, φ2) C βφ(θ1, θ2). (55)

If we take the polar angle (with respect to the interface
normal) in the interval [−π/2, π/2], symmetry considerations
give us βφ(θ1, θ2) = βφ(−θ1, θ2) = βφ(θ1,−θ2) = βφ(−θ1,−θ2).
Since also f (θ) = f (−θ), the integration domain over θ can
be restricted to [0, π/2]. The nematic order parameter in the
monolayer is defined by

Qnem =

 π/2

0
d(cos θ)P2(cos θ) f (θ), (56)

where P2(x) is the second of the Legendre polynomials Pi(x).
It is also useful to introduce the Legendre coefficients of the
excluded area,

Bi j =

 π/2

0
d(cos θ)P2i(cos θ)

×
 π/2

0
d(cos θ ′)P2 j(cos θ ′) βφ(θ, θ ′). (57)

Owing to the symmetry of the excluded area, projections only
onto even Legendre polynomials are nonzero. Using these
definitions, the nematic order parameter in the case of no
substrate potential is obtained by projecting with P2 onto the
solution for f1 in Eq. (54),

Qnem ≈ −ρ0B10. (58)

This is an interesting result since it tells us that Qnem ∝ ρ0 as
long as the leading off-diagonal Legendre coefficient of the
excluded area is nonzero. This is precisely the case in the
monolayer system (see below), whereas in 3D this coefficient
vanishes. The linearity Qnem ∝ ρ0 is completely equivalent to
the linearity found in the lattice model in the absence of a
substrate potential (see Eq. (37)).

The linearized equation (53) is connected to an
approximated free energy per particle alin through δalin/δ f1
= 0. alin is quadratic in f1 and is defined to give the difference
to the isotropic state:

alin =
1
2

 π/2

0
d(cos θ) f1(θ)2 + ρ0

2

 π/2

0
d(cos θ)

×
 π/2

0
d(cos θ ′)βφ(θ, θ ′)(2 + f1(θ)) f1(θ ′). (59)

For the leading order solution (54), the free energy can be
evaluated explicitly. It is convenient to use the Legendre

expansion of the solution: f1 =
∞
i=1

f1, iP2i(cos θ) with f1, i

= −(2i + 1)ρ0Bi0. Using furthermore Bi0 = B0i one finds
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alin ≈ −
1
2

∞
i=1

(2i + 1)ρ2
0B2

i0, (60)

i.e., the free energy in the anisotropic state is always lower
than in the isotropic state.

For hard spherocylinders in the limit L/D → ∞ the
excluded area does not depend on whether the rod centers
or ends are fixed to the plane. Through geometric arguments
(see Appendix B) we find

β(θ1, θ2, φ2) = 2LD
cos θmin

| sin γ |,
θmin = min(|θ1|, |θ2|) (61)
cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos φ2,

where γ is the angle between the rods. Thus we see that
for long rods, a scaling Qnem ∝ Lρ0 is predicted, which
is different from Q ∝ L2ρ found in the lattice model. The
numerical evaluation of the Legendre coefficient in Eq. (58)
gives

Qnem ≈ 0.45 LDρ0 (L/D → ∞). (62)

B. Simulations

In order to validate the predictions from Sec. III A,
we have performed Monte Carlo (MC) simulations of hard
spherocylinders (cylinders of length L capped with two
hemispheres of diameter D on either end) whose centers
are restricted to move within a plane (off lattice) while
the orientation vectors can take any direction in three-
dimensional space. A cuboid simulation box with periodic
boundary conditions and dimensions Lx × Ly × (L + D) is
used. Configurations have been generated using single particle
displacement and rotations via the Metropolis scheme29 as
well as a specialized move for small densities that forces
particles to come close to each other. We pick two random
particles. If they are further apart than (L + D), we move
one into a circle of radius (L + D) around the center of
mass of the other. To fulfill detailed balance, the acceptance
criterion of the inverse move (i.e., to remove one particle
from the proximity of another and to place it somewhere
in the plane) is simply multiplied by the ratio between the

area of the simulation plane (Lx × Ly) and the area of that
circle (π(L + D)2). We generated configurations for a fixed
particle number N while varying the dimensions of the plane
Lx × Ly to change the area number density of the rods ρ0.
After equilibration, we generated at least 106 independent
configurations for each value of L/D, N , and ρ0 to evaluate
the nematic order parameter Qnem.

At low densities, the simulations are subject to strong
finite-size effects, which produce artefacts that might be
misinterpreted as traces of a phase transition. In Fig. 6(a),
we show Qnem(ρ0) at low densities for two different N .
Here, the horizontal lines mark the Qnem-values obtained in
simulations of freely penetrable rods. For an infinite number
of particles, this value would be zero. However, since in
the simulations we sum the orientational order tensor over a
finite number of particles, its eigenvalues are not exactly zero
and therefore the largest eigenvalue, corresponding to Qnem,
is always larger than zero. (This problem is not solved by
the common strategy of taking twice the middle eigenvalue
instead of the largest eigenvalue. It is inherent in the restriction
to finite particle numbers.31) The horizontal lines thus mark
the limit of detection of a Qnem that truly signals orientational
anisotropy for a given number of particles N . For a given N ,
there appears a first (lower) density above which orientational
order is detectable, and a second (larger) density where the
theoretically expected behavior Qnem ∝ ρ0 sets in. These two
densities are particle number dependent and shift towards zero
with increasing N , and thus are not signatures of an additional
phase transition. The solid line in Fig. 6(a) is the DFT result
(Eq. (62)) derived in Sec. III A. For densities beyond the
second density, the simulation results are very close to the
DFT result and the density range where this occurs becomes
larger with increasing system size.

The linearity Qnem ∝ ρ0 can also be seen in numerical
results for a monolayer of ellipsoids14 (Fig. 4 therein, for an
aspect ratio of 10). The density functional used in Ref. 14
reduces to Eq. (43) in the low-density limit and should
therefore comply with the present analysis; however, explicit
expressions have not been given in Ref. 14. Corresponding
Monte Carlo simulation results in Ref. 14 show agreement
with the DFT results but low densities have not been
considered.

FIG. 6. (a) Finite system size analysis, rod length L/D = 10. The dashed and dotted horizontal lines are Qnem values obtained for a system of freely penetrable
rods for particle numbers N = 6400 and 500, respectively, while the solid line is the DFT result (Eq. (62)). (b) Order parameter Qnem vs. ρ0(L/D) plot for
different aspect ratios L/D and numbers of rods N . The horizontal lines are as in (a).
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FIG. 7. Order parameter Qnem vs. number density ρ0D
2 for rods subject to an attractive substrate potential (L/D = 5). The dashed lines are the results

from the lattice model shown in Fig. 5 while data points correspond to the off-lattice simulation (errors smaller than symbol size). The substrate potential is
orientation-dependent defined by (a) V ext=−ϵ(L/D)sinθ and, (b) V ext=−ϵ(L/D)sin2θ, where θ is the angle between rod director and the substrate normal.

In Fig. 6(b), we show Qnem vs. ρ0(L/D), which is
independent of the aspect ratio L/D. System sizes are very
similar here such that the finite size effect discussed above is
not visible.

In the presence of an attractive substrate potential, we
qualitatively observe the same behaviour as in the lattice
model (see Fig. 7). We compare two different potentials (a)
V ext = −ϵ(L/D) sin θ and, (b) V ext = −ϵ(L/D)sin2θ, where θ
is the angle between rod director and the substrate normal.
Both choices drive the system toward nematic order (rods
“standing up”), with choice (b) the external free energy per
particle (Eq. (49)) becomes

aext =

 π/2

0
dθ f (θ)V ext(θ) = 2

3
ϵ

L
D

(Qnem − 1). (63)

Similar to the choice of the external potential in the lattice
model (Eq. (38)), the corresponding free energy contribution
(apart from an additive constant) is proportional to the nematic
order parameter. The plots show qualitative agreement with
the lattice model as Qnem remains continuous and the “standing
up” transition becomes steeper with increasing substrate
potential parameter ϵ .

For the moderate aspect ratios investigated here (between
3 and 10 in the case of no substrate potential and 5 for the
attractive substrate) no transition to a biaxial state has been
found. Such a biaxial state would correspond to the demixing
in the plane investigated in the lattice model. In Ref. 14, the
biaxial transition was investigated in more detail for their
system of ellipsoids on a plane and an effective substrate
attraction mimicked by a restriction of the polar angle to
values between a nonzero limiting angle and π/2. Using DFT,
the authors find that the occurrence of a biaxial transition is
very sensitive to the limiting angle: for zero angle (no substrate
potential) no transition has been found for aspect ratios up to
20 whereas small nonzero angles induce this transition.

IV. SUMMARY AND DISCUSSION

In this paper, we have analyzed the equilibrium properties
of hard rod monolayers by employing density functional
theory and Monte Carlo simulations for a cubic lattice model
(resulting in restricted translational and orientational degrees
of freedom for the rods) and a continuum model with hard

spherocylinders (having unrestricted in-plane translational and
orientational degrees of freedom). We used lattice fundamental
measure theory as a DFT for the lattice model. In two and three
dimensional bulk systems, lattice FMT predicts rod demixing
and a first order nematic transition, respectively. Applied to
the monolayer situation, lattice FMT shows a continuous
“standing-up” transition of the rods with increasing density.
These results are in excellent agreement with our results from
GCMC simulations. For the continuum model, the same type
of continuous “standing-up” transition is predicted by DFT
in a virial expansion. In MC simulations, the transition is
masked by strong finite-size effects but we have evidence that
for large system sizes simulations and DFT agree. Although
the transitions in the lattice and the continuum model are very
similar, there is a qualitative difference in the scaling with the
rod extension (at low densities ρ). The lattice model does not
show a simple scaling of the nematic order with respect to a
scaled density variable whereas in the continuum model the
scaling is with ρLD, where L and D are length and diameter
of the rods. This can be understood from the scaling of the
second virial coefficient.

The presence of an attractive surface potential does
not change the continuous character of the “standing-up”
transition. However, for attractive energies per unit rod length
which are of the order of 5 kBT or larger, the transition
resembles a second order transition as present, for instance,
in the bulk 2D system.

Our results are a first step towards modelling the
equilibrium and growth of thin films with anisotropic particles
with simple coarse-grained models. Investigations of the
dynamics of monolayer growth with hard rods would be
the logical next step.30 Incorporating particle attractions as
well as extending the investigations to multiple layers is
desirable and should be pursued both by equilibrium and
growth investigations in order to clarify the influence of the
equilibrium phase diagram vs. purely kinetic effects onto the
final structures.
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FIG. 8. (a) and (b) Hard rods (spherocylinders) with their mid-points fixed on the substrate plane. The area enclosed in dashed lines is the excluded area and
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exactly hidden behind rod 1.
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APPENDIX A: EQUILIBRIUM GRAND-CANONICAL
SIMULATIONS FOR THE MONOLAYER
IN THE LATTICE MODEL

The simulation results for the lattice monolayer system
were obtained using grand canonical Monte Carlo (GCMC)
simulations on an M × M lattice. We treated the rods with
a fixed orientation as a distinct species with corresponding
particle number Ni (i = 1 . . . 3). The chemical potential µ was
equal for all three species. In each GCMC step, insertion or
deletion of a rod was chosen with probability 1/2. Then,
the species on which the insertion/deletion is performed
was chosen with probability 1/3. For the insertion move
Ni → Ni + 1, a random lattice site was chosen. If no overlap
with the existing rods occurs, the move was accepted with
probability αins = min

�
1,M2/(Ni + 1) z exp(−∆V ext)�, where

z = exp(µ/(kBT)) and ∆V ext is the change in external energy
upon insertion of the rod. For the deletion move Ni + 1 → Ni,
a particle from species i was chosen randomly and removed
with probability αdel = min

�
1, (Ni + 1)/M2 z−1 exp(+∆V ext)�.

We used lattices with M = 256 and 107 single moves for
a data point with no or small external potential. For stronger
external potentials, we used 108 moves (ϵ = {1,2}).

APPENDIX B: EXCLUDED AREA FOR HARD
SPHEROCYLINDERS IN THE LIMIT L/D → ∞

Here we briefly derive Eq. (61). The geometric definitions
are given in Fig. 8. For infinitely thin hard rods, the (maximum)
distance of closest approach d/2 is given by

d/2 =
(L/2)

cos θmin


cos2θ1 + cos2θ2 − 2 cos θ1 cos θ2 cos γ.

(B1)

This is obtained from the law of cosines in the triangle
ABC (see Fig. 8(b)) where λ = (L/2) cos θmax/ cos θmin and
θmin[max] = min[max](|θ1|, |θ2|). If we now consider a finite,

small thickness D of the rods then rod 2 may slide past rod
1 at a distance D′ to either side of rod 1 along the direction
of d. This defines the excluded area (enclosed in dashed lines
in Fig. 8(a)). It is a rectangle with side lengths d and 2D′.
According to Fig. 8(c), the distance D′ is given by

D′ =
D

sin α
, (B2)

where α is the angle of ez with the normal vector n to the
plane spanned by the two rods. This normal vector is given by

n =
u1 × u2

| sin γ | , (B3)

where ui is the normalized director of rod i. Thus

cos α = n · ez =
sin θ1 sin θ2 sin φ2

| sin γ | . (B4)

Insertion into Eq. (B2) and some manipulations give

D′ = D
| sin γ |

cos2θ1 + cos2θ2 − 2 cos θ1 cos θ2 cos γ
, (B5)

such that finally the excluded area becomes

β(θ1, θ2, φ2) ≈ 2D′d =
2LD

cos θmin
| sin γ |. (B6)
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