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ABSTRACT 

Already today, a huge number of bridges are in an ailing condition due to their increasing age and due 

to an increased traffic volume, especially of heavy transport vehicles. To assess their load bearing 

capacity and subsequently predict their remaining life span, every bridge needs to be analysed by con-

dition assessment. The consequences of unreliable condition assessment should not be underestimated, 

as most bridge constructions constitute cost intensive and indispensable infrastructures. Thus, modern 

condition assessment methods, easy and obvious in their application, are needed in order to reduce 

future investigations.  

To offer an easy handling alternative to evaluate the condition of bridges, the Deformation Area Dif-

ference Method has been developed. Hereby, the accruing deformation of bridges under a static load 

will be analysed with the help of modern measurement equipment. Therefore, the resulting defor-

mation curves like the deflection, the inclination angle and the curvature curves, will be analysed in 

one diagram together with the results out of initial measurements or theoretically calculated defor-

mation curves. The DAD-Method is then applied on the surface difference area between those two 

curves for the deflection, the inclination and the curvature. It will be demonstrated that a localisation 

of damage is possible, independent from the degree of damage. 

In this study, the applicability of the DAD-Method including the comparison of innovative measure-

ment techniques using a laboratory specimen is investigated. For further explanation of the back-

ground of the DAD-Method, the results from a FE-calculation are presented. 
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1. Introduction 

More than 39.000 bridges currently exist in the road network of the Federal Republic of Germany. 

Their average age is between 30 and 50 years. According to BASt (Bundesanstalt für Straßenwesen) 

5 % of these bridge structures have the highest priority for inspection. Due to a high ratio of large 

bridges, however, they represent about 25 % of the total bridge area (Bundesministerium für Verkehr 

und digitale Infrastruktur 2015). By comparison, the number of bridges in the USA reaches an amount 

of 600.000 (Scheer 2010), of which more than 11 % (resp. 66.000) are categorised as deficient struc-

tures and require significant maintenance or replacement. The average age of all bridges in the USA is 

43 years and the deficient ones are about 65 years old. In the next 10 years, every fourth bridge in the 

USA (170.000) will be older than 65 years (Lee und Goldberg 2013). Unfortunately, this number is 

located far above the number of presently deficient bridges. In addition, each bridge requires regular 

structure inspection, which should be economical and reliable. 

The classical inspection methods are tapping of concrete surface for assessment of cavities, measure-

ment of cracks, chemical investigation on concrete parts to assess the risk of corrosion, examination of 

concrete strength with a “Schmidt Hammer” (Szilágyi 2013) or drilling core extraction and measure-

ment of support displacement, etc. Other inspection methods, namely non-destructive methods, are 

increasingly gaining importance: electrochemical potential measurement to determine the chloride-

induced reinforcement (Markeset und Myrdal 2007), Ultrasound Echo Principle and impact echo 

method (Chaudhary 2013), infrared thermography (Cotič, et al. 2015) to localise moisture damage 

(Srinivasan, et al. 2009), laser measurements for large scale preliminary investigation 

(Bundesministerium für Verkehr, Bau und Stadtentwicklung 2013), etc. The long term monitoring 

method is used for the supervision of the whole structure (Helmi, et al. 2015), by which the structural 

change due to variable loads over a longer period is controlled. However, the monitoring requires in-

tense and extensive engineering work. A remaining risk of incorrect assessment of bridge exists be-

cause the result is influenced by many factors (for example: temperature, load situation and weather).  



This paper presents a Method that has simple application and evaluation. The Deformation Area Dif-

ference Method (DAD-Method) can be applied to a non-destructive load deflection test of a bridge. 

The principle of the method is the bending line from which the inclination angle and the curvature can 

be determined to identify the discontinuity of the static system or local damage of a structure. The 

special features of the DAD-Method are the insensitivity to the degree of damage and to global influ-

ence, as well as only requiring a theoretical reference system. Moreover, the DAD-Method requires 

numerical modelling of the bridge and precise deflection measurement which constitutes the main 

challenge. In order to identify a suitable measurement technique, a laboratory test setup of a reinforced 

concrete beam is prepared (Fig. 1). The beam is loaded in several load steps and the deflection is 

measured with modern instruments. The application of the DAD-Method is presented in the following 

by means of theoretical calculation of the test beam. 

 

 

Fig. 1. Laboratory test setup of a reinforced concrete beam 

2. Background of the DAD-Method 

The special feature of the DAD-Method is the independence both from a real reference system and 

from the degree of damage. The background of the method is finding and localising the discontinuity 

(damage) of a static system due to further processing of deflection data. Damage entails a local stiff-

ness reduction of the static system, which in turn increases the deflection. The deflection can be gener-

ally determined according to equation (1). 

The bending stiffness EI(x) is not constant along the longitudinal axis of the beam. This means that 

between the moment and the curvature of a cross section, there exists a nonlinear relation. The curva-

ture can be determined by the strain state of the cross section (Fig. 2), which is a result of the inner 

force balance (Baumgard 2012). The curvature corresponds to the second derivation of the bending 

line and depends on the strain conditions and on static depth (equation (2)). The bending stiffness 

EI(x) of every section dx (Fig. 2) can be calculated from the moment M(x) divided by the curvature 

k(x). Indeed, the local stiffness reduction of a structure can be determined from the second derivation 

of the measured bending line on the basis of precise deflection measurement. 
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Fig. 2. Relation between curvature and strain (Zilch und Zehetmaier 2010) 
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As already mentioned, the prerequisite of DAD-Method is a load deflection test of a bridge structure 

with precise measurement of the bending line. The theoretical bending moment for the load deflection 

test is known. The curvature can be determined as second derivation of the bending line. Accordingly, 

it is possible to recognise a local stiffness reduction from the course of the bending line. 

A non-destructive condition assessment of bridges requires a load deflection test in serviceability limit 

state. Therefore, only small deflections need to be produced. In general the load can be generated by a 

single truck or by several trucks depending on the static system of the bridge. Using such curvature 

values increases the risk of incorrect assessment for the localisation of discontinuities in the static sys-

tem. However, the DAD-Method enables a precise localisation of discontinuity also for small deflec-

tions. The procedure of the method is, firstly to develop a FE-model of the bridge, then to compare the 

calculated deflection with the measured deflection. Subsequently, the DAD-values are used to detect 

an invisible discontinuity of the deformation behaviour of the static system. 

2.1 Theoretical basis of the DAD-Method 

The theoretical basis and individual steps for the application of DAD-Method are explained in the 

following using an example. The bridge has for the example a span of 30 m (Fig. 3). The FE-mesh for 

this example is chosen with 2,00 m, thereby the bridge is divided into 15 elements along the longitudi-

nal direction. This means, deflection values are available every 2,00 m. A deflection measurement 

every 2,00 m is also achievable in situ. Local damage is generated by reducing the stiffness at the posi-

tion between x=6 m and x=8 m. By calculation, respectively, by the deflection measurement, the basic 

information of the bending line along the longitudinal axis of the beam, of undamaged respectively 

damaged systems, becomes available (Fig. 3). 
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Fig. 3. The example of a bridge with local damage (above), the static system with 15 elements (in the 

middle), the course of the bending line with and without damage (bottom left), the measured and cal-

culated values of the bending line (bottom right) 

 

Now the first derivation of the bending line is calculated and respectively the inclination angle is de-

termined with the equations (3), (4) and according to (Fig. 3). The resulting inclination angle is 

shown in Fig. 4. The second derivation of the bending line is determined using equations (5), (6) and 

according to Fig. 4 in order to determine the curvature. In Fig. 5, the course of curvature is shown. 
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Fig. 4. The course of inclination angle of the bridge with and without damage (left), the measured and 

calculated values of the inclination angle (right) 
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Fig. 5. The course of curvature of the bridge with and without damage (left), the measured and calcu-

lated values of the curvature (right) 

 

As shown in Fig. 3, Fig. 4 and Fig. 5, the basis of the DAD-Method is to differentiate the area be-

tween the undamaged and damaged courses. The localisation of the damage for this example becomes 

obvious when looking at the course of curvature, because the degree of damage (65,7 %) was chosen 

relatively large in order to provide clear illustration. The discontinuity or damage is clearly locatable. 

The individual steps are explained in the following using the formulas (from (7) to (12)). First, the 

areas between the undamaged and damaged courses (bending line, inclination, curvature) are divided 

in regular distances (equations (7), (8) and (9)), thus demarcating the 15 individual areas. Then, the 

individual areas are squared and normalised by the squared total area (equations (10), (11) and (12)). 

The graphical illustration of DAD-values are presented in Fig. 6. The discontinuity of the static system 

can be easily seen in the courses of the bending line and inclination (Fig. 6), however a clear localisa-

tion of the damage is possible by consideration of the DAD-values from curvature (Fig. 6). The preci-

sion of localisation depends on the density of the FE-mesh and the density of measuring points. The 

determination of the existing stiffness of the static system becomes possible by using the measured or 

calculated curvature values (equation (2)). 
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with:  

DAD   = Deformation Area Difference 

𝐷𝐴𝐷𝑖,𝑤  = Deformation area difference value from section i resulting from the bending line 

∆𝐴𝑖,𝑤
2   = Deformation area difference of the segment i between the observed bending lines 

∑ ∆𝐴𝑖,𝑤
2𝑛

1   = Total area difference enclosed by the observed bending lines  

𝐷𝐴𝐷𝑖,𝜑  = Deformation area difference value from section i resulting from inclination angle 

∆𝐴𝑖,𝜑
2   = Deformation area difference of the segment i between the observed inclinations 

∑ ∆𝐴𝑖,𝜑
2𝑛

1   = Total area difference enclosed by the observed inclinations 

𝐷𝐴𝐷𝑖,𝜅  = Deformation area difference value from section i resulting from curvature 

∆𝐴𝑖,𝜅
2   = Deformation area difference of the segment i between the observed curvatures  

∑ ∆𝐴𝑖,𝜅
2𝑛

1   = Total area difference enclosed by the observed curvatures 
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3. Application of DAD-Method 

A laboratory test with a reinforced concrete beam is prepared in order to compare appropriate meas-

urement techniques. The prepared concrete beam is single spanned (Fig. 7). The beam is loaded step-

wise until yielding of reinforcement. The main materials are concrete C40/50 and reinforcement steel 

B500B. The load stages are shown in Table 1. 

 ∅8-20

3∅16

3∅16

Side view: reinforced concrete beam

3∅16

3∅16

 ∅8-20

Cross section 1-1

1

1

1,203,601,20

6,00

25

20

 

Fig. 7. Test specimen – Reinforced concrete beam 

 

Table 1. Load steps [kN] 

Nr. # 1 2 3 4 5 6 7 8 9 

Load [kN] 0,00 3,00 5,23 10,00 15,00 20,00 30,00 40,00 50,00 

𝐷𝐴𝐷𝑖,𝜅 =
∆𝐴𝑖,𝜅

2

∑ ∆𝐴𝑖,𝜅
2𝑛

1

 (12) 



3.1 The stiffness reduction of the reinforced concrete beam due to loading 

The example in Section 2 has been presented based on a theoretical example using linear calculation. 

However, the stiffness of a reinforced concrete beam decreases by increasing load due to cracking, 

yielding of the reinforcement or failure of the concrete in the compression zone. In Fig. 8, the linear 

and non-linear behaviours of the test specimen are illustrated. The non-linear behaviour is shown here 

on results from the FE-program Sofistik, whereas a comparison of several non-linear calculations will 

be presented in Section 3.2. The beam shows a linear behaviour until the cracking load Fcr is reached. 

At this point, the first stiffness reduction arises. The second stiffness reduction of the reinforced con-

crete beam occurs upon reaching the yielding strength of the reinforcement at 50 kN. The concrete 

compression reaches the limit of 3,50 ‰ under the load of 54 kN, which determines the failure of the 

element. 
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Fig. 8. Non-linearity of the reinforced beam 

3.2 Load deflection behaviour of the laboratory beam 

For preliminary design of the girder, various approaches have been used to compare them. These in-

volve a linear calculation, a non-linear analysis with Sofistik and RSTAB, a simplified manual calcu-

lation and an iterative calculation using Excel. The procedure of simplified manual calculation will be 

described hereafter. As described in equation (2), the reduced stiffness is determined from the bending 

moment and the curvature. However, the compression zone of concrete is simplified as a rectangular 

zone (Fig. 9). This has the consequence that the accuracy is lower at smaller load levels. First, the 

compression zone height x is determined from the bending moment, then the lever arm of internal 

forces z. Using the known compression area, the internal forces Zs1d and Dcd can be determined, from 

which the tensile strain of steel is calculated. Now using the steel tensile strain εs1, the static height d 

and the compression zone height x, the curvature κ and the stiffness EI of the beam are calculated 

(equation (2)). The simplification lies on the safe side (smaller inner lever arm), whereby the yield 

point of the tensile reinforcement is reached at 40 kN which is demonstrated in Fig. 11 by the bend in 

the course of the “simplified” deflection at 40 kN. The basic procedure of the iterative calculation with 

excel is similar to the simplified manual calculation. Here the compression area is not simplified, but 

the coefficient ka (to consider the lever arm height) and the coefficient αR (to consider the stress curve 

in the compression zone of concrete) are taken into account. The non-linear respectively iterative cal-

culation starts with the cracking of concrete in the tensile zone. In the range of the second stiffness 

reduction (Section 3.1), the strain of the reinforcement (εs1=2,50 ‰) is defined as limit, while the 

compression of concrete εc2 constitutes the iterative input value (Fig. 9). At the next stiffness reduc-

tion, the constraint is the maximum concrete compression (εc2=3,50 ‰), whereby the strain of rein-

forcement is iterated between εs1=2,174 ‰ and εs1=25,0 ‰ until the internal forces are in equilibrium. 

Subsequently, the curvature can be calculated according to equation (2) by using the strain values. 

Now the determination of the stiffness reduction and the deflection becomes possible due to the curva-

ture values and the virtual forces. The calculated stiffness reduction and the deflection are shown in 

Fig. 11 in graphical form. 
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Fig. 9. Basis of the simplified and iterative calculation 

 

    

Fig. 10. Modelling of the beam with RSTAB (left), with Sofisitk (right) 

 

Table 2. Calculated bending for the different load steps 

Load level iterative Excel simplified RSTAB Sofistik linear 

[kN] [mm] [mm] [mm] [mm] [mm] 

0,00 0,00 0,00 0,00 0,00 0,00 

3,00 0,73 0,90 0,70 0,61 0,73 

5,23 1,11 1,60 1,10 0,92 1,10 

10,00 2,95 3,10 2,40 2,72 1,90 

15,00 5,28 4,70 4,40 5,56 2,74 

20,00 7,71 6,50 6,80 8,29 3,58 

30,00 12,64 10,30 12,10 13,43 5,27 

40,00 17,59 14,70 17,60 18,39 6,95 

50,00 26,33 24,43 24,90 24,01 8,63 

 

    
 

Fig. 11. Load-deflection curve (left), stiffness reduction (right) 

The cracking of the reinforced concrete beam is often underestimated, whereas the stiffness can be 

reduced on an average by 50% (Fig. 11) (Fastabend 2002). 

3.3 DAD- Method on the laboratory beam 

As already mentioned, the DAD-Method does not necessarily require a real reference system, but only 

a theoretical modelling of the structural system in the undamaged state. In this case, a linear calcula-

tion of the deflection is provided as a reference system. The inclination angle and the curvature can be 

determined mathematically from the first and second derivatives of the bending line. The results of the 

linear analysis are shown in the following diagrams as dashed blue lines. A realistic calculation of the 

test body is carried out by a non-linear calculation with finite elements and is shown in the following 

diagrams as solid red lines.  



To illustrate the DAD-values, in the following, the load steps are selected at 10 kN, 30 kN, 50 kN and 

54 kN. At load step 10 kN, the first stiffness reduction already occurred due to cracking. At 30 kN, the 

stiffness reduction does not increase significantly, but the cracked area becomes larger. The second 

stiffness reduction occurs under the concentrated load of 50 kN and the yield strength of the steel is 

then reached. The load is further increased until the concrete fails in the compression zone. 

In Fig. 12 a large deflection difference between the linear and non-linear calculation induced by the 

reduced stiffness can be noticed. For this case, as shown in Fig. 13, a discontinuity of inclination angle 

can be considered. However, the detection of the discontinuity is only possible by considering the 

curvature (Section 2). The detection of the discontinuity is now determined and localised using the 

DAD-values (Fig. 14). The stiffness of the reinforced concrete beam is calculated for the different 

load steps with the values from curvature and bending moment, which can be observed in Fig. 14 to 

Fig. 17. 
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Fig. 12. Load step 10kN, left: Bending line with full and reduced stiffness, 

right: DAD-values from bending line 

 

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,00

0,01

0,01

0,02

0,02

0,03

0,
0

0,
3

0,
6

0,
9

1,
2

1,
5

1,
8

2,
1

2,
4

2,
7

3,
0

3,
3

3,
6

3,
9

4,
2

4,
5

4,
8

5,
1

5,
4

5,
7

6,
0

Longitudinal axis of the beam [m] Longitudinal axis of the beam [m]

uncracked cracked

DAD-values from inclination angleInclination angle [mrad]

 
 

Fig. 13. Load step 10 kN, left: inclination with full and reduced stiffness, 

right: DAD-values from inclination 
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Fig. 14. Load step 10 kN, left: curvature with full and reduced stiffness, 

middle: DAD-values from curvature, right: stiffness at midspan 
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Fig. 15. Load step 30 kN, left: curvature with full and reduced stiffness 

middle: DAD-values from curvature; right: stiffness between the supports 
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Fig. 16. Load step 50 kN, left: curvature with full and reduced stiffness 

middle: DAD values from curvature, right: stiffness between the supports 
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Fig. 17. Load step 54 kN, left: curvature with full and reduced stiffness 

middle: DAD values from curvature, right: stiffness between the supports 

 

Load level #10 - 54kN 54 kN

 

Fig. 18. Load step 54 kN, failure of concrete in the compression zone at midspan, 

yield point of tensile reinforcement is already achieved 

4. Summary and outlook 

The presented DAD-Method is simple to use and is based on familiar knowledge for engineers. Using 

the DAD-Method, the global influences such as weather and asphalt rigidity can be neglected. The 

smallest discontinuity of the structural system becomes apparent due to the DAD-values. With refer-

ence to the theoretical calculation, it has been shown that the detection of the damage becomes possi-

ble by means of a precise deflection measurement. The localisation of local stiffness reduction can be 

detected using the DAD-Method and the degree of damage using the curvature values from the meas-

urement results. In the next step of the investigation, a load deflection test takes place, in which differ-

ent measurement techniques are compared. The considered measurement techniques are the digital 

levelling, laser scanner, total station, photogrammetry, displacement sensors and strain gauges. 

By using a suitable measuring instrument and finite element models, the DAD-Method allows to local-

ise the damage of a bridge construction and determine its degree, thus leading to an economical and 

time-saving solution for condition assessment of bridges. 
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