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Abstract—In widely used mobile operating systems a single
vulnerability can threaten the security and privacy of billions
of users. Therefore, identifying vulnerabilities and fortifying
software systems requires constant attention and effort. However,
this is costly and it is almost impossible to analyse an entire
code base. Thus, it is necessary to prioritize efforts towards the
most likely vulnerable areas. A first step in identifying these
areas is to profile vulnerabilities based on previously reported
ones. To investigate this, we performed a manual analysis of
Android vulnerabilities, as reported in the National Vulnerability
Database for the period 2008 to 2014. In our analysis, we
identified a comprehensive list of issues leading to Android
vulnerabilities. We also point out characteristics of the locations
where vulnerabilities reside, the complexity of these locations
and the complexity to fix the vulnerabilities. To enable future
research, we make available all of our data.

Index Terms—Software Security, Complexity, Android, Vul-
nerabilities, Common Vulnerability Exposures

I. INTRODUCTION

Smartphones have a wide range of applications that go
beyond the simple task of making phone calls. Thus, simple
defects can lead to vulnerabilities that cause high-profile
security mishaps with the potential of impacting billions of
users.

Current research on software vulnerabilities has largely
focused on predicting which artifacts (e.g. components, classes
or files) are vulnerable [1]–[3]. To perform such predictions,
researchers have built classification models based on several
metrics that were found empirically to estimate the probability
that a vulnerability is present in a given artifact. However, very
few works try to profile them and none of them apply to the
specific case of mobile operating systems.

In view of this, the objective of our research is to improve
the understanding of vulnerabilities, which impacting the
Android operating system. To do so, we manually investigate
known vulnerabilities and more specifically the code changes
that were made to fix them. To this end, we focus on
three properties: their root causes, their complexity and their
location.

Since project leaders, developers and code reviewers are
often interested in the root causes of vulnerabilities, we
build a taxonomy of the issues causing vulnerabilities. In the
remainder of the paper, we refer to those root causes as issues.

To study real Android vulnerabilities, we consider the NIST
National Vulnerability Database (NVD). It is known as the
largest public repository that encompasses details regarding
Common Vulnerability Exposures (CVEs). Our experience in

crawling this data has highlighted challenges for exploiting
the NVD in its current form to perform a comprehensive
and large-scale study of vulnerabilities. We found that NVD
metadata is suitable for computing high-level statistics about
the vulnerabilities but problematic in gathering and linking
them with the actual code.

Our study has thus required intensive manual work to collect
the missing/hidden information on Android vulnerabilities
recorded in the NVD. This information includes the often
missing links to the relevant patches, as well as some valuable
information that are hidden in the description or in the natural
language, of the vulnerability reports.

Based on our study, which includes vulnerabilities reported
between 2008 and 2014, we build a taxonomy of the issues
that are reported in CVEs. We also characterize the fixes made
to correct the vulnerabilities by summarizing (1) their origin
(2) the complexity of the code where the vulnerabilities are
found (3) the complexity of the fixes themselves and (4) the
different actions that were necessary to fix the vulnerabilities.

The present study makes the following contributions:
• We profile, taxonomize and present some characteristics

of the Android vulnerabilities.
• We provide a collection of Android vulnerabilities that are

reported in the NVD Database, which has been enriched
with information mined outside NVD. This collection is
available at http://www.jimenez.lu/Research/

• We provide guidelines for improving the NVD in order
to enable systematic meta-analysis and other analysis
studies related to vulnerabilities.

The remainder of this paper is organized as follows: Section
II introduces Android and vulnerabilities. Section III motivates
our work. Section IV describes the methodology used to obtain
our results, presented in Section V. The approach and its
possible improvements are discussed in Section VI. Finally,
we examine related work in Section VII before concluding in
Section VIII.

II. BACKGROUND

This section presents background material for defining the
context of our study. Specifically, we give a brief description
of the Android operating system in Section (II-A). We then
provide details regarding Common Vulnerability Exposures
(II-B) and the National Vulnerable Database (II-C). Finally,
a definition of vulnerabilities is given (II-D).

http://www.jimenez.lu/Research/


Fig. 1: The four layers of the Android operating system.

A. Android

The Android operating system is composed of four layers,
which are depicted by Figure 1. The first layer is a modified
Linux kernel. The layer on top of the Linux kernel encom-
passes C/C++ Libraries, Java Core Libraries and the Dalvik
Virtual Machine (DVM), which has recently been renamed as
Android Runtime (ART). The DVM and the ART are used
to run user applications and embedded applications written in
the Java programming language [4]. Finally, the third layer
contains built-in Android applications while the last layer is
for user applications.

Since Android is Open-Source1, practitioners and re-
searchers can adapt it for their specific needs. In this study, we
focus on vulnerabilities related to the Android system, i.e., the
second (libraries and DVM) and third (built-in applications)
layers (highlighted in gray on Figure 1). The vulnerabilities af-
fecting the two other layers, i.e., the kernel or the applications,
were not considered since these vulnerabilities are respectively
reported as Linux or application specific.

B. Common Vulnerability Exposures (CVE)

CVE is a system that provides a reference for all publicly
reported vulnerabilities. This system is managed by the Na-
tional Institute of Standard and Technology (NIST). To easily
share data related to vulnerabilities, each one of the identified
and accepted vulnerabilities receives a unique identifier. To get
a CVE identifier, a vulnerability must be reported to a certified
authority that will approve and emit the number.

C. National Vulnerability Database (NVD)

The National Vulnerability Database is the U.S. government
database for all reported CVEs. Besides the various infor-
mation that is required by the CVE system, NVD contains
additional information like its Common Vulnerability Score,
its type of vulnerability (Common Weakness Enumeration
CWE [7]) and sometimes links to existing patches. In March
2016, over 75.000 vulnerabilities were reported in the NVD,
making it the largest public database of vulnerabilities.

D. Vulnerabilities

Software vulnerabilities range from simple bugs to
insufficient counter measures, which provide malicious users
the opportunity to attack a system or an application. The
literature provides several definitions for vulnerabilities, e.g.,

1Android source code is available on Github [5] and on GoogleSource [6].

they can be referred as bugs, security bugs [8] or software
“weaknesses”. In this article, we use the terminology of the
CVE system to define vulnerabilities:

“An information security “vulnerability” is a mistake in
software that can be directly used by a hacker to gain access
to a system or network.” [9]

In the present paper, we use the CVE system as a dictionary
for the Android vulnerabilities. Thus, all the vulnerabilities
used in the present study have been accepted and received a
CVE number, meaning that an independent authority has cer-
tified that these vulnerabilities are real. We therefore consider
them as real vulnerabilities.

III. MOTIVATION

Android is currently the most widely used operating system
for hand-held devices, such as smartphones, and is trending
in other embedded system products, such as TV sets, watches
and Internet boxes. In the first quarter of 2015 334.4 million
Android devices were sold, which represents 78% of the
market [10]. These sales also exceed, by far, the number of
personal computers that were sold in the entire year 2014
(308 million [11]). A direct consequence is that a single
vulnerability of the Android system, or within one of its
embedded libraries, can impact a huge number of users.

A way to avoid this situation is to find vulnerabilities before
release time. To do so, a strong focus on reviewing and
fortifying the existing code needs to be made by developer
teams. However it is not possible to look at the entire code base
especially when taking into consideration that finding vulnera-
bilities requires a specific mindset [12]. A prioritization during
the reviewing process is therefore necessary. If we assume
that vulnerability prediction techniques are good indicators
of vulnerable code [13], these techniques are costly and not
well suited for the Android environment and its specificities.
Indeed the Android code base is heavily fragmented and split
in over 1,000 git repositories, which have some redundancy
[6]. This hinders both the applicability and effectiveness of the
techniques as they require to be launched on every repository
independently. Also since the code base is fragmented, very
few elements can be learned by the techniques. Thus, to reduce
the scope of the research, a first and really instructive step
consists of profiling vulnerabilities so that we increase our
understanding of them. In other words, we need to provide
answers specific to the application context, i.e., Android, and
to the following questions: What are they? Are they hard to
fix? Where are they coming from?.

By investigating these questions, we can help developers
and code reviewers to identify them, and focus their efforts
on parts that are matching our shaped profile.

IV. METHODOLOGY

Our analysis is based on all vulnerabilities reported between
2008 and 2014 in the NVD database and are related to
Android. In total we have 42 vulnerabilities. Our approach for



this analysis can be summarized in the following steps. We first
manually mine the NVD database to find the actual reported
issues and their corresponding patches. We then classify the
vulnerabilities. Finally, we analyze the vulnerabilities.

The described process is designed to answer the three
following Research Questions (RQs):

• RQ1: What kind of issues cause vulnerabilities? Can we
categorize them?

• RQ2: In which components the Android vulnerabilities
are located?

• RQ3: How vulnerabilities are fixed?

A. Vulnerability & Issue Mining

The first step of our approach is to retrieve Android Vul-
nerabilities from the CVE-NVD database. To this end, we
manually mine the database to look for the vulnerabilities
related to Android. Unfortunately and despite that CVE-NVD
provides a lot of useful information, this is not enough to
answer our RQs. In particular, we are lacking information
for the following three elements: Vulnerable components, Bug
reports, Patches. As a result, we have to explore all the external
resources provided via links within CVE.

While browsing all the links present in our set of CVE, we
found out that about 20% of those links were dead and 72%
in the case of links pointing to patches or bug reports. After
some experiments, we realized that this issue is not restricted
to Android. Indeed, only 30% of the link declared in all CVE
are still valid and that this number was even lower when only
studying patch links.

This complicates the data mining process as it implies
finding the new location of the resource. We solved this
issue by performing extensive manual search of the related
repositories, i.e., browsing of the git commit history, looking
for keywords present in the vulnerability description. This
allowed us to retrieve patches for 31 vulnerabilities.

B. Taxonomy of the Issues Related to Android Vulnerabilities

Once all the sought patches and bug reports have been
retrieved, we categorize the related issues. Here, an issue
denotes a problem impacting one or more files within a commit
(patch). Since categorizing an issue requires its understanding,
we only consider vulnerabilities for which we are able to find
related patch(es).

The aim of categorization is to obtain a taxonomy of the
issues related to Android vulnerabilities. Many researches have
been conducted to categorize bugs, e.g., [14], [15]. However,
these categories were quite impractical since most of the issues
we found, were either A) didn’t fit into a single category
or B) were fitting into many. To solve this, we use mind
mapping as a way to extend the existing bug taxonomies
to fit to our needs. Mind mapping is a technique suggested
by Vijayaraghavan et al. [16] that constructs a taxonomy
by incrementally considering one issue after the other. This
process allows the taxonomy to evolve over time, i.e., to
become more complete with each newly considered issue.

To categorize appropriately the considered issues, we apply
the following methodology. We first analyze the commits
and/or patches along with their related source code. We then
read the bug and vulnerability reports and their available
comments. Next, we cross the information retrieved and try
to answer the following question: What was the problem with
the code, what kind of mistake led to the vulnerability and
at which state of the project it was made. Finally, we decide
which category fits best for the studied issue. Note that when
an issue doesn’t fit into an existing category, a new category
is created. After categorizing all the issues, we proceed with
the analysis of the components and changes.

C. Analysis

After categorizing all the issues, we proceed with the
analysis of the components and changes.

1) Component Analysis: We analyze the vulnerable compo-
nents to identify information related to Android vulnerabilities.
To this end, we focus on two aspects of the vulnerable
component that we detail shortly. The first one is its purpose
and the second one is its complexity compared to the other
components.

a) Purpose of the Component.: This information indi-
cates which part of the Android system tends to have the most
vulnerabilities. To this end, we design top level categories of
purposes and classify the vulnerable components, according
to them.

b) Complexity Analysis of a Component.: Chowdhury
and Zulkernine [17] in their study show that there is a cor-
relation between code complexity and the appearance of vul-
nerabilities. Thus, we measure the complexity of the functions
that were changed to remove the vulnerability and compare it
with the complexity of the other functions located in the same
source code file trying to see if we find the same correlation
with Android vulnerabilities. The metric used for this analysis
is the McCabe Cyclomatic complexity [18].

2) Change Analysis: Once the issue and the component
analyzed, we investigate the complexity of the vulnerability
itself. We first analyze the patches and synthesize their con-
tents through keywords. We then use the following metrics to
measure the complexity of the vulnerabilities:
a) Number of commits: Number of commits required to cor-

rect the vulnerability.
b) Number of modified files: Number of modified, deleted or

created files.
c) Number of Changed Lines of Executed Code (CLoEC):

Number of modified, added or deleted lines of code.
Empty lines and bracket lines are ignored and commands
spanning over multiple lines are measured as a single line.
This metric can also be referred as Code Churn in the
literature with the difference that we don’t take into account
modification on commented lines.

d) Cyclomatic Complexity of Change (CyCC) [19] The CyCC
metric measures the number of linearly independent se-
quences of changed statements from entry to exit in a
changed program. It represents the least complex changes



needed to remove the studied defect [19]. It is computed
the same way that the Cyclomatic Complexity except that
it uses the Change Sequence Graph (CSG [20]) instead of
the Control Flow graph. The CSG is a control flow Graph
that only contains basic blocks that were changed. A Cycc
superior to 2 indicates that the change was complex as
it involves the addition or modification of more than two
independent linearly path.

We chose the CLoEC metric since it represents a raw measure
of the number of code changes. In contrast, CyCC metric
quantifies the complexity of changes by considering only the
independent code places that the developer has to consider.
Thus, both CLoEC and CyCC quantify the difficulty of fixing
a vulnerability.

V. EXPERIMENTAL RESULTS

This section presents the results obtained while applying
the methodology presented in Section IV. As stated before,
from a total number of 42 vulnerabilities, we managed to
retrieve the related patches for 31 of them. We first identified
the causes of the vulnerabilities and introduced a taxonomy
(V-A). Then, we report the information regarding the nature
of the vulnerable components (V-B). Finally, in Section V-C,
we detail our findings related to the changes necessary to patch
Android vulnerabilities.

A. RQ1: Categorizing the Causes of Android Vulnerabilities

Our analysis revealed a total of 43 different issues, one or
two per vulnerability report. They were processed according
to the methodology presented in Section IV-B to build the
mind map. This taxonomy is presented in Figure 2. The mind
map is composed of three main nodes Design, Code and Test.
They refer to the moment of the probable phase of devel-
opment when the issue occurred. The second level of nodes
corresponds to the cause of the issue. We identified 8 nodes,
i.e., Resource Management, Data, Semantic, Initialization Bug,
Forget to remove debug features, Flow, Unauthorized Access,
and Insecure Protocol. The third level, which appears only
in the Code part, allows a better categorization of the issues.
The third level is composed of 9 nodes. i.e., Buffer overflow,
Incorrect pointer dereference, Stack consumption, Input not
verified, Serialization issue, Unprotected use of a function,
Missing / Incorrect implementation of a feature, Object not
rightly created, and Wrong initialization of data.

Table I shows the frequency of the categorized issues
extracted from the mind map. We can clearly see that most of
the issues originate from the coding part (about 70%). This is
not very surprising as other studies on faults and failures, e.g.,
Hamill et al. [21], showed that failures are heavily associated
with coding faults. However, the number of issues related to
design is surprisingly high (about 28 %). This might be at-
tributed to the number of issues related to permission handling.
A deeper analysis shows that a great number of issues are
due to a missing or incorrect implementation of features. This
kind of issues can occur when developers misunderstand or

TABLE I: Distribution of the 43 issues in the taxonomy.

Origin Kind Number Total (%)

DESIGN

Flow 4
12 (27.90%)Insecure protocol 1

Unauthorized access 7

CODE

Resource Management

30 (69.77%)

Buffer overflow 4
Incorrect pointer dereference 1
Stack consumption 1

Data
Input not verified 7
Serialization issue 1

Semantic
Unprotected use of a function 3
Missing/incorrect implem. of a feature 11

Initialization
Object not rightly created 1
Wrong initialization of data 1

TEST Forgot to remove debug feature 1 1 (2.32%)

misinterpret requirements of the system. Another reason can
be the oversight of taking into account a specific case.

Our taxonomy allows us to distinguish 13 kinds of issues
that cause Android vulnerabilities. We believe that those cate-
gories can be helpful during a code review to determine what
to look for. However, this new taxonomy raises the question
of what are the actual differences between the vulnerability
causes and their consequences? In other words, we want to
check whether the categories of causes, i.e., as identified by us,
differ from the categories of the consequences, i.e., as reported
by the Common Weakness Enumeration (CWE [7]). To answer
this question we compare our categories with the CWE one. In
fact, only two of our categories are overlapping with those of
CWE: Input validation (CWE category) with input not verified
(our taxonomy) and Buffer errors (CWE category) with buffer
overflow (our taxonomy).

Except these two categories, no other category overlaps.
Yet, this overlapping seems logical as in this case the CWE
categories of vulnerabilities are in fact describing the origin
of the vulnerabilities.

From the above-mentioned results, it becomes clear that our
issue taxonomy provides quite different information than the
categorization of CWE. This information could be used as
check list for developers before committing to the repositories.
Additionally, it is noted that our taxonomy is complete with
respect to our data and that it can be extended based on
additional data for future investigations. This is actually the
advantage of using mind maps, i.e., it is incremental and thus,
it remains open for future evolution.

B. RQ2: Vulnerable Components

Our second research question is about the vulnerable com-
ponents. This piece of information is indeed of interest for
prioritizing purposes.

1) Role of the vulnerable component: After analyzing all
the vulnerabilities, we distinguished 9 kinds of top level com-
ponents, i.e, Driver, Library, Messaging, Networking, Access
Control, Browsing, Cryptography, Dalvik and Debug. The
result of this analysis are presented in Fig. 3.
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Fig. 2: The issue taxonomy: mind map of issues related to Android vulnerabilities.

Fig. 3: Vulnerable components.

We observed that 9 of the vulnerabilities were originating
from components related to web browsing. The components
in charge of the control of access were responsible for 7 of
them. This was expected as we found a lot of issues related
to the handling of permission.

Another important kind of component was the cryptography
related ones, with 6 vulnerabilities. One interesting fact about
those vulnerabilities is that they are directly linked to a lack of
understanding on how cryptography works and how it should
be implemented.

The remaining categories were Driver, Network, Library,
Messaging, Dalvik and Debug with respectively 5, 5, 4, 4, 1
and 1 vulnerabilities. We noticed that the 3 most represented
ones account for more than 50% of all the vulnerabilities.

These components can have a major impact on the system,
i.e., to gain control or leak some sensitive information.

Thus focusing on repositories and components that have this
kind of role will reduce the amount of code to review

2) Complexity of the vulnerable components: In the second
part of our analysis, we computed the cyclomatic complexity
of all vulnerable functions and compared it to the average
complexity of all the other functions that were present in the
same file. In total, we studied 40 different vulnerable functions.
They correspond to the code that we retrieved and was written
in Java, C or C++. Indeed, it is not possible to compute the
complexity for vulnerabilities caused by errors within XML
or RC files.

Figure 4a presents our results on a logarithmic scale. The
horizontal axis corresponds to the average complexity and the
vertical axis corresponds to the complexity of the vulnerable
function. The gray line represents the y = x function. Thus,
points above this line indicates a complexity of the vulnerable
function higher than the non-vulnerable ones.

From these data, we observed that almost all vulnerable
functions had a higher cyclomatic complexity than the rest of
the functions, on average, located in the same file. In fact, only
two cases are less complex. However, these represent functions
that needed to be changed in combination with others which
are indeed complex. This fact confirms that vulnerabilities tend
to appear in functions that have a higher complexity than the
average and can be used together with the previous result as
a way to warn the developer when they are about to modify
complex part of a likely to be vulnerable component.
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Fig. 4: Complexity of the vulnerable components and of the changes made to fix the vulnerabilities.

C. RQ3: Fix Analysis

The last part of our study of Android vulnerability is about
the changes required to remove a vulnerability. These are
described in terms of change types and complexity.

1) Kind of Change: Table II shows the changes that were
required and their distribution. Among the patches that we
were able to retrieve, 60% of them consisted in the addition
of one or more lines of codes, 23% were modifications of
existing codes and 17% were about removing code.

One of the first things that we notice is that almost one
third of those changes are in fact additions of one or more
conditions, meaning that the developer’s mistake was mostly
failing to adequately check something in the code. Removing
actions are frequently used to remove some “resources” that
are not needed. The modification changes were mostly simple
ones like a call to a method, changing the arguments that
were passed to it in order to avoid triggering a vulnerability.
In only one case the issue was so complicated that it required a
complete rewrite. This means that vulnerability fixing doesn’t
imply in most of the case large and deep refactoring of the
code and can be done within the vulnerable function.

2) Complexity of the Changes: In the previous subsection,
we saw that the vulnerability fix could be done in most
of the cases within the vulnerable function. However, this
doesn’t mean that the fix actions are easy. Thus in this part
of our analysis, we look at the complexity of the changes
required to remove the vulnerabilities. However quantifying
the complexity of changes is quite hard. To deal with this
problem, we choose to rely on four metrics that we believe
allow a good understanding of the complexity of the changes.

The box-plots of Figure 4b show the complexity results.
We observe that in most of the cases only one commit is
required to patch an Android vulnerability. In average, it
involves the modification of 2 files and 17 lines of codes. The
average changed complexity according to the CyCC metric

is 4. This indicates that four linearly independent paths had
to be changed. This can be considered as very complex
according to the work of Böhme and al. [19]. Similarly the
complexity according to CLoEC is high, i.e., 17 lines of
instructions were in average modified (add/delete/modify) to
patch a vulnerability. Thus if Android vulnerabilities can be
solved at the function level, the efforts required to fix this
function are quite complex. We observed that the CyCC was
interesting for understanding the complexity, but not sufficient
to be used alone. Indeed sometimes vulnerabilities require
instantiation and modification that is not measured by this
metric. However, we believe that its combination with the other
metrics represents the required information.

VI. DISCUSSION

This section summarizes the findings of our study and
discusses its limitations. Specifically, Section VI-A provides
a set of guidelines that may enable future research and meta-
analysis of vulnerabilities. Sections VI-B and VI-C discuss our
actionable findings and threats to validity, respectively.

A. Guidelines for CVE-NVD

During our study, we found that the current form of the
NVD database is satisfactory for reporting problems and
keeping some statistics but is not well suited for mining
information.

In order to provide a framework that enables further research
on the mining and analysis of vulnerabilities, we suggest the
following changes. First, the inclusion of the relevant patch file
(if existing). This will allow researchers and practitioners to
better understand the error that led to vulnerability. Second,
the addition of a categorization of the vulnerability issues.
The combination of different categorization like the root cause
and the consequence will allow a better comprehension of the
vulnerabilities. Finally, the integration of a link checker to
avoid having dead links.



TABLE II: Distribution of the code changes needed to fix vulnerabilities.

Type Kind Description Number Total

ADD

Condition(s) If then else 19

36 (60.0%)

Authorization Permission in android manifest 2
Function + Use of it Creation of a new function 5
Class + Use of It Creation of a new class 2
Exception raise Try catch or throw 3
Define or initialization Variable 5

REMOVE

Condition(s) If then else 2

10 (16.7%)
Use to a function If the function was vulnerable 5
File Deprecated and vulnerable files 2
Authorization Permission in the Android manifest 1

MODIFY

Call to a method Changing arguments 8

14 (23.3%)
Condition Modifying expression 1
Function Rewrite of a function 4
Complete rewrite Rewrite of the all component 1

B. Android Vulnerability Profile

The work presented in this paper can be summarized by
the following Android vulnerability profile. Android vulner-
abilities are mostly located in components responsible for
browsing, Cryptography, Access Control or Networking. The
vulnerable parts of these components are among the most
complex ones. The vulnerabilities are mostly coming from
the coding and among all vulnerabilities one out of four (i.e.,
25%) are due to a missing or an incorrect implementation of
a feature. A lot of them are also emanating from mishandling
authorization or input. Fixing vulnerabilities is complex and
requires changes on code parts located on (in average) 4
linearly independent path accounting for an average of 17 lines
of code. However, these fix actions can be done directly within
the vulnerable function.

C. Threats to Validity

A first threat to validity is that this study was based on
manual analysis. Thus, we cannot ensure that our results are
fully accurate. For instance, a misinterpretation of the nature
of a patch or a wrong categorization of an issue are possible
mistakes that we might have made. We reduced this threat by
reproducing the results with different analysis, for three times.
Additionally, we made all of our data publicly available, thus,
enabling replication and independent validation of our results.

Another threat to the validity lies in our use of the CyCC
metrics. We use this metric as it has been used by the literature
for the study of regression bugs [19]. However, it might not be
appropriate for describing vulnerability complexity. To reduce
this threat, we included other metrics like CLoEC.

Finally, the biggest threat to validity is the fact that we rely
on the NVD-CVE set of Android vulnerabilities which have
really few links to patches. We thus cannot be certain that the
results would be the same with vulnerabilities for which patch
are not available.

VII. RELATED WORK

The security of the Android system has been extensively
reviewed in the literature [22]–[24]. Researchers have found a
number of security issues both at the operating system level

and at the application level. In an effort to address those issues,
Enck et al. have developed a tool for testing the security
enforcement at the levels of both the system and the inter-
component communication [22]. In [24] the authors have also
defined a set of analysis rules that can be used to statically
detect vulnerabilities in Android applications.

Privacy leaks are the most common security concerns in
Android. With AsDroid [25] and AppIntent [26], researchers
have built tools for statically detecting such leaks. Leaks,
however, can be benign, by being designed as part of the
application features, or malicious. The proposed approaches
thus attempt to differentiate between them in order to report
the potentially malicious leaks.

Regarding software vulnerability, a substantial part of the
literature is focused on the direction of vulnerability predic-
tion. The objective of related work in this direction is mainly
to predict whether a component is likely to contain a vulnera-
bility. Morrison et al. [27] underlines the barriers of applying
vulnerability prediction models. Meneely et al. [28] and Shin
et al. [13] have proposed a prediction approach using code
churn, i.e., code tokens that are added, modified or deleted,
in combination with both code complexity and developer
activity, to identify vulnerable files. Experiments with data
from Mozilla Firefox and the Linux kernel have revealed that
their approach can correctly identify 80% of vulnerable files,
however, with 25% false positives. Scandariato et al. [2] have
used text mining metrics to successfully predict vulnerable
components. In another recent study, Walden et al. [1] have
presented a comparative study on the performance of software
metrics and text mining for predicting vulnerabilities.

Meneely et al. [29], [30] leverage social networking metrics
to predict vulnerable files. They found that, in the Linux kernel
and Apache, files modified by more than nine contributors or
by a new one are likely to be vulnerable. Neuhaus et al. [31]
experimented on Mozilla and found that when components had
only one vulnerability in the past, they were unlikely to have
others in the future. Gegick et al. [32] developed a regression
tree model method which combines metrics like lines of code,
code churn and warnings generated by static analysis tools
and all vulnerable components with an 8% false positive rate.



Walden et al. [33] focused on PHP applications. They consid-
ered three complexity metrics and five security indicators, and
measured their correlation with vulnerabilities. Their results
vary significantly between the studied projects, indicating that
correlation between complexity and vulnerabilities might not
be generalizable.

All these studies use code or repository attributes to predict
vulnerable files. In contrast, the present paper aims at studying
directly what code changes were made to fix known and likely
severe vulnerabilities. Additionally, our focus is specific to the
Android system for which there is scarce work in the literature
of vulnerability prediction. Perhaps the most relevant work to
ours is by Bosu et al. [34] who studied the characteristics
of vulnerable code changes. However, our study differs from
it in the following three ways: a) we study changes that fix
a vulnerability rather than ones that introduce it, b) we study
known, severe and exploitable vulnerabilities rather than those
found by code reviews and c) we aim at categorizing and
describing the origin of the Android vulnerabilities and not
generic changes that might indicate the introduction of one.

Other closely related work is due to Morrison et al. [35]
and Fonseca et al. [36]. These studies explore vulnerabilities
and analyze their patches. However, both of them focus on
specific vulnerabilities that are not related to Android.

VIII. CONCLUSION

This paper presented an analysis of the issues, components
and patches related to Android vulnerabilities. Our study was
performed on the Android vulnerabilities that were reported
in the CVE-NVD database. We identified the involved issues
and established their taxonomy.

Our analysis led to the following findings: 1) vulnerable
Android components fall within 9 different top-level cate-
gories, 2) vulnerabilities tend to appear in the most complex
functions, 3) there are 13 different types of issues leading to
those vulnerabilities and 4) they require complex changes in
order to be removed. Finally, we provided some guidelines to
improve CVEs.

To enable further research and reproducibility of our re-
sults, the vulnerabilities along with their detailed analysis
and manually collected patches are publicly available at http:
//www.jimenez.lu/Research/.
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