Model selection in generalized finite mixture models

Jang SCHILTZ (University of Luxembourg)

July 11, 2016

Nagin's Finite Mixture Model

- Nagin's Finite Mixture Model
- ② Generalizations of Nagin's model

- Nagin's Finite Mixture Model
- 2 Generalizations of Nagin's model
- Our model

- Nagin's Finite Mixture Model
- Quantification of Nagin's model
- Our model
- 4 Model Selection

- Nagin's Finite Mixture Model
- Quantification of Nagin's model
- Our model
- Model Selection

We have a collection of individual trajectories.

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

<u>Finite mixture model</u> (Daniel S. Nagin (Carnegie Mellon University))

• mixture : population composed of a mixture of unobserved groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

<u>Finite mixture model</u> (Daniel S. Nagin (Carnegie Mellon University))

- mixture : population composed of a mixture of unobserved groups
- finite: sums across a finite number of groups

Consider a population of size N and a variable of interest Y.

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.

 π_j : probability of a given subject to belong to group number j

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.

 π_j : probability of a given subject to belong to group number j $\Rightarrow \pi_j$ is the size of group j.

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.

 π_j : probability of a given subject to belong to group number j $\Rightarrow \pi_j$ is the size of group j.

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i), \tag{1}$$

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.

 π_i : probability of a given subject to belong to group number j $\Rightarrow \pi_i$ is the size of group j.

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i), \tag{1}$$

where $P^{j}(Y_{i})$ is probability of Y_{i} if subject i belongs to group j.

Aim of the analysis: Find r groups of trajectories of a given kind (for instance polynomials of degree 4, $P(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4$.

Aim of the analysis: Find r groups of trajectories of a given kind (for instance polynomials of degree 4, $P(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4$.

Statistical Model:

$$y_{i_t} = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4 + \varepsilon_{i_t}, \tag{2}$$

where $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma)$, σ being a constant standard deviation.

We try to estimate a set of parameters $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j, \sigma \right\}$ which allow to maximize the probability of the measured data.

o count data ⇒ Poisson distribution

- o count data ⇒ Poisson distribution
- binary data ⇒ Binary logit distribution

- count data ⇒ Poisson distribution
- binary data ⇒ Binary logit distribution
- censored data ⇒ Censored normal distribution

Notations:

Notations:

$$\quad \bullet \ \beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4.$$

Notations:

- $\beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4$.
- ullet ϕ : density of standard centered normal law.

Notations:

- $\beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4$.
- ϕ : density of standard centered normal law.

Then,

Notations:

- $\beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4$.
- ullet ϕ : density of standard centered normal law.

Then,

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j t}{\sigma}\right). \tag{3}$$

Notations:

- $\beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4$.
- ullet ϕ : density of standard centered normal law.

Then,

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j t}{\sigma}\right). \tag{3}$$

It is too complicated to get closed-forms equations.

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

gender (male, female)

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- working sector

An application example

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- working sector
- year of birth

An application example

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- working sector
- year of birth
- year of birth of children

An application example

The data: Salaries of workers in the private sector in Luxembourg from 1987 to 2006.

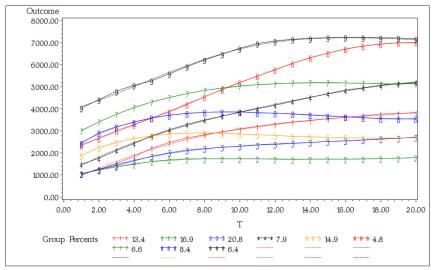
About 1.3 million salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- working sector
- year of birth
- year of birth of children
- age in the first year of professional activity

Result for 9 groups (dataset 1)

Result for 9 groups (dataset 1)



Outline

- Nagin's Finite Mixture Model
- 2 Generalizations of Nagin's model
- Our model
- Model Selection

x: vector of variables potentially associated with group membership (measured before t_1).

x: vector of variables potentially associated with group membership (measured before t_1).

Multinomial logit model:

$$\pi_j(x_i) = \frac{e^{x_i \theta_j}}{\sum_{k=1}^r e^{x_i \theta_k}},\tag{4}$$

where θ_j denotes the effect of x_i on the probability of group membership.

x: vector of variables potentially associated with group membership (measured before t_1).

Multinomial logit model:

$$\pi_j(x_i) = \frac{e^{x_i\theta_j}}{\sum_{k=1}^r e^{x_i\theta_k}},\tag{4}$$

where θ_j denotes the effect of x_i on the probability of group membership.

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{x_i \theta_j}}{\sum_{i=1}^{r} e^{x_i \theta_k}} \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j t}{\sigma}\right).$$
 (5)

Let $z_1...z_M$ be covariates potentially influencing Y.

Let $z_1...z_M$ be covariates potentially influencing Y.

We are then looking for trajectories

$$y_{i_t} = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4 + \alpha_1^j z_1 + \dots + \alpha_M^j z_M + \varepsilon_{i_t},$$
 (6)

where $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma)$, σ being a constant standard deviation and z_l are covariates that may depend or not upon time t.

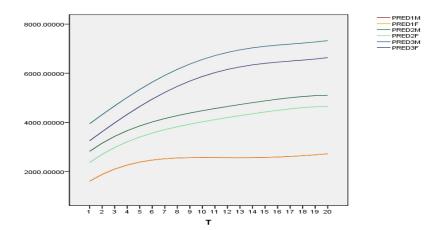
Let $z_1...z_M$ be covariates potentially influencing Y.

We are then looking for trajectories

$$y_{i_t} = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4 + \alpha_1^j z_1 + \dots + \alpha_M^j z_M + \varepsilon_{i_t},$$
 (6)

where $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma)$, σ being a constant standard deviation and z_l are covariates that may depend or not upon time t.

Unfortunately the influence of the covariates in this model is limited to the intercept of the trajectory.



Outline

- Nagin's Finite Mixture Model
- Quantification of Nagin's model
- Our model
- Model Selection

Our model

Our model

Let $x_1...x_M$ and z_t be covariates potentially influencing Y.

Our model

Let $x_1...x_M$ and z_t be covariates potentially influencing Y.

We propose the following model:

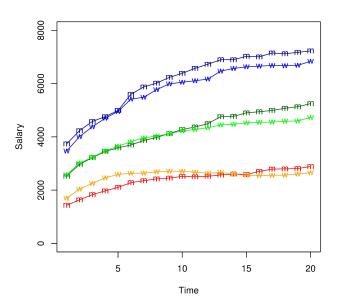
$$y_{i_{t}} = \left(\beta_{0}^{j} + \sum_{l=1}^{M} \alpha_{0l}^{j} x_{i_{l}} + \gamma_{0}^{j} z_{i_{t}}\right) + \left(\beta_{1}^{j} + \sum_{l=1}^{M} \alpha_{1l}^{j} x_{i_{l}} + \gamma_{1}^{j} z_{i_{t}}\right) t$$

$$+ \left(\beta_{2}^{j} + \sum_{l=1}^{M} \alpha_{2l}^{j} x_{i_{l}} + \gamma_{2}^{j} z_{i_{t}}\right) t^{2} + \left(\beta_{3}^{j} + \sum_{l=1}^{M} \alpha_{3l}^{j} x_{i_{l}} + \gamma_{3}^{j} z_{i_{t}}\right) t^{3}$$

$$+ \left(\beta_{4}^{j} + \sum_{l=1}^{M} \alpha_{4l}^{j} x_{i_{l}} + \gamma_{4}^{j} z_{i_{t}}\right) t^{4} + \varepsilon_{i_{t}}^{j},$$

where $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma^j)$, σ^j being the standard deviation, constant in group j.

Men versus women



The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

Confidence intervals of level α for the parameters β_k^j :

The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

Confidence intervals of level α for the parameters β_k^j :

$$CI_{\alpha}(\beta_k^j) = \left[\hat{\beta}_k^j - t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_k^j); \hat{\beta}_k^j + t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_k^j)\right]. \tag{7}$$



The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

Confidence intervals of level α for the parameters β_k^j :

$$CI_{\alpha}(\beta_k^j) = \left[\hat{\beta}_k^j - t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_k^j); \hat{\beta}_k^j + t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_k^j)\right]. \tag{7}$$

Confidence intervals of level α for the disturbance factor σ_j :

The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

Confidence intervals of level α for the parameters β_k^j :

$$CI_{\alpha}(\beta_{k}^{j}) = \left[\hat{\beta}_{k}^{j} - t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_{k}^{j}); \hat{\beta}_{k}^{j} + t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_{k}^{j})\right].$$
(7)

Confidence intervals of level α for the disturbance factor σ_j :

$$CI_{\alpha}(\sigma_{j}) = \left[\sqrt{\frac{(N - (2+M)s - 1)\hat{\sigma}_{j}^{2}}{\chi_{1-\alpha/2;N-(2+M)s-1}^{2}}}; \sqrt{\frac{(N - (2+M)s - 1)\hat{\sigma}_{j}^{2}}{\chi_{\alpha/2;N-(2+M)s-1}^{2}}} \right]. \quad (8)$$

We analyze the influence of the consumer price index (CPI) on the salary.

We analyze the influence of the consumer price index (CPI) on the salary. CPI and time have a correlation of 0.995.

We analyze the influence of the consumer price index (CPI) on the salary.

CPI and time have a correlation of 0.995.

Hence a model like

$$S_{it} = (\beta_0^j + \gamma_0^j z_t) + (\beta_1^j + \gamma_1^j z_t)t + (\beta_2^j + \gamma_2^j z_t)t^2 + (\beta_3^j + \gamma_3^j z_t)t^3, \quad (9)$$

where S denotes the salary and z_t is Luxembourg's CPI in year t of the study, makes no sense.

We analyze the influence of the consumer price index (CPI) on the salary.

CPI and time have a correlation of 0.995.

Hence a model like

$$S_{it} = (\beta_0^j + \gamma_0^j z_t) + (\beta_1^j + \gamma_1^j z_t)t + (\beta_2^j + \gamma_2^j z_t)t^2 + (\beta_3^j + \gamma_3^j z_t)t^3, \quad (9)$$

where S denotes the salary and z_t is Luxembourg's CPI in year t of the study, makes no sense.

Because of obvious multicolinearity problems, almost none of the parameters would be significant.

We analyze the influence of the consumer price index (CPI) on the salary.

CPI and time have a correlation of 0.995.

Hence a model like

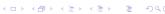
$$S_{it} = (\beta_0^j + \gamma_0^j z_t) + (\beta_1^j + \gamma_1^j z_t)t + (\beta_2^j + \gamma_2^j z_t)t^2 + (\beta_3^j + \gamma_3^j z_t)t^3, \quad (9)$$

where S denotes the salary and z_t is Luxembourg's CPI in year t of the study, makes no sense.

Because of obvious multicolinearity problems, almost none of the parameters would be significant.

Therefore, we simplify the model and calibrate

$$S_{it} = (\beta_0^j + \gamma_0^j z_t) + \gamma_1^j z_t t + \gamma_2^j z_t t^2 + \gamma_3^j z_t t^3.$$



Results for group 1

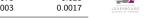
Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	321.381	1189.430	-2213.502	2856.093
γ_0	1689.492	277.834	-4.232	7.611
γ_1	0.400	0.120	0.143	0.656
γ_2	-0.034	0.007	-0.049	-0.019
γ3	0.0008	0.0002	0.0005	0.0013

Results for group 2

Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	7688.158	951.103	5660.197	9714.832
γ_0	-13.095	2.222	-17.822	-8.350
γ_1	1.260	0.096	1.055	1.465
γ_2	-0.097	0.006	-0.109	-0.085
γ_3	0.0025	0.0002	0.0022	0.0028

Results for group 3

Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	682.638	196.327	141.924	1101.045
γ_0	-11.367	4.586	-21.135	-1.586
γ_1	0.983	0.199	0.559	1.406
γ_2	-0.048	0.012	-0.073	-0.023
γ_3	0.0010	0.0003	0.0003	0.0017



Results for group 4

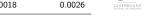
Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	8473.081	1859.349	4511.016	12434.892
γ_0	-13.083	4.342	-22.335	-3.825
γ_1	0.927	0.188	0.527	1.328
γ_2	-0.013	0.011	-0.036	0.010
γ_3	-0.0003	0.0003	-0.0009	0.0004

Results for group 5

Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	4798.276	3205.141	-2034.302	11630.238
γ_0	-2.846	7.488	-18.806	13.115
γ_1	1.315	0.324	0.0624	2.006
γ_2	-0.081	0.019	-0.122	-0.040
γ_3	0.0016	0.0005	0.0005	0.0027

Results for group 6

Parameter	Estimate	Standard error	95% confidence Lower	intervals Upper
β_0	8332.439	1139.127	5903.348	10759.713
γ_0	-12.472	2.661	-18.145	-6.800
γ_1	1.378	0.015	1.132	1.623
γ_2	-0.094	0.007	-0.108	-0.079
γ_3	0.0022	0.0002	0.0018	0.0026



Disturbance terms

The disturbance terms for the six groups are $\sigma_1=41.49,\ \sigma_2=33.18,\ \sigma_3=68.48,\ \sigma_4=64.84,\ \sigma_5=111.83$ and $\sigma_6=39.74$

Outline

- Nagin's Finite Mixture Model
- Quantification of Nagin's model
- Our model
- Model Selection

Model Selection (1)

Model Selection (1)

Bayesian Information Criterion:

$$BIC = \log(L) - 0.5k \log(N), \tag{11}$$

where k denotes the number of parameters in the model.

Model Selection (1)

Bayesian Information Criterion:

$$BIC = \log(L) - 0.5k \log(N), \tag{11}$$

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

$$CVE = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \left| y_{i_t} - \hat{y}_{i_t}^{[-i]} \right|. \tag{12}$$

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

$$CVE = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \left| y_{i_t} - \hat{y}_{i_t}^{[-i]} \right|. \tag{12}$$

Rule:

The smaller the CVE, the better the model!

Posterior probability of individual i's membership in group $j : P(j/Y_i)$.

Posterior probability of individual i's membership in group $j : P(j/Y_i)$.

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (13)

Posterior probability of individual i's membership in group $j : P(j/Y_i)$.

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (13)

Bigger groups have on average larger probability estimates.

Posterior probability of individual i's membership in group $j : P(j/Y_i)$.

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (13)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be strongly consistent with it.

Our Model Selection Criterion

We propose to take the number of groups which maximizes the classification probabilities.

Our Model Selection Criterion

We propose to take the number of groups which maximizes the classification probabilities.

$$SP = \sum_{i=1}^{N} \log(\max_{j} P(j/Y_i))$$
 (14)

Our Model Selection Criterion

We propose to take the number of groups which maximizes the classification probabilities.

$$SP = \sum_{i=1}^{N} \log(\max_{j} P(j/Y_{i}))$$
 (14)

Rule:

The bigger the SP, the better the model!

Advantages

Advantages

Computationally easy

Advantages

- Computationally easy
- Does not depend on the number of parameters in the model. Hence there is no need for a correction term.

Bibliography

- Nagin, D.S. 2005: Group-based Modeling of Development.
 Cambridge, MA.: Harvard University Press.
- Jones, B. and Nagin D.S. 2007: Advances in Group-based Trajectory Modeling and a SAS Procedure for Estimating Them. Sociological Research and Methods 35 p.542-571.
- Guigou, J.D, Lovat, B. and Schiltz, J. 2012: Optimal mix of funded and unfunded pension systems: the case of Luxembourg. *Pensions* 17-4 p. 208-222.
- Schiltz, J. 2015: A generalization of Nagin's finite mixture model. In: Dependent data in social sciences research: Forms, issues, and methods of analysis' Mark Stemmler, Alexander von Eye & Wolfgang Wiedermann (Eds.). Springer 2015.

