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Aim of the paper

The aim of the PhD project is to develop a risk management software for
alternative UCITS.

In this paper, we analyse the different methods to estimate the parameters
of α-stable distributions and choose the one which is best for our purposes.

Then, we show that hedge fund indices follow α-stable distributions and we
compute value at risk and expected shortfall for four hedge fund indices.
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Stable distributions

A non-degenerate random variable X is said to be stable, if for each pair
(X1,X2) of independent copies of X and for any constants a > 0 and
b > 0 the random variable aX1 + bX2 has the same distribution as cX + d
for some constants c > 0 and d .

Such distributions form a four-parameter family of continuous probability
distributions.

The concentration parameter α ∈ (0, 2] represents the characteristic
exponent or index of stability and determines the rate at which the
tails of the distribution tamper off.

The asymmetry parameter β ∈ [−1,+1] represents the skewness.

γ ∈ [0,∞) is a scale parameter, compressing or extending the
distribution.

δ ∈ R a location parameter, shifting the distribution to the left or
right.
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Characteristic Function

There are no general closed formulas for the probability density function of
stable distributions, except for particular values of the shape parameters
(α, β).

The characteristic function φ(t) of X can however be written as

φ(t) = exp[itµ− |ct|α(1− iβ sgn(t)Φ)],

where sgn(t) denotes the sign of t and

Φ = tan(πα/2), if α 6= 1

and

Φ = −2
2

π
log |t|, if α = 1.
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Examples of stable distributions

A lot of famous distributions can be obtained as special cases of stable
distribution.

If α = 2, one gets Gaussian distributions.

If α = 1 and β = 0, one gets Cauchy distributions.

If α = 1
2 and β = 1, one gets Lévy distributions.

If α = 1 and β = 1, one gets Landau distributions (Landau 1944).

If α = 3
2 and β = 0, one gets Holtsmark distributions (Holtsmark

1914)
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Analysed estimation methods

Order Statistics

The quantile method

The order moment method

Maximum Likelihood Estimation

Fast Fourier Transform based method

Modified parametrization based method

Empirical Characteristic Function

Sample characteristic function based parameter estimation

Fixed interval based parameter estimation

We decided to use the quantile method to get good starting parameters
for a modified parametrization based maximum likelihood estimation.
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The Quantile Method

Suppose we have n independent drawings xi from the stable distribution
S(α, β, γ, δ).

Denote by x̂p the p-th quantile of X in the sample. The parameters of
S(α, β, γ, δ) can then be estimated by

α̂ = Ψ1( x̂.95−x̂.05
x̂.75−x̂.25

, x̂.95+x̂.05−2x̂.5
x̂.95−x̂.05

).

β̂ = Ψ2( x̂.95−x̂.05
x̂.75−x̂.25

, x̂.95+x̂.05−2x̂.5
x̂.95−x̂.05

).

γ̂ = x̂.75−x̂.25

φ3(α̂,β̂)
.

δ̂ = x̂.5 + γ̂φ5(α̂, β̂)− β̂γ̂ tan(πα̂2 ),

where Ψ1,Ψ2, φ3 and φ5 are tabulated functions that can be found in
McCulloh (1986).
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Advantages and disadvantages of the quantile approach

The main advantages of the quantile approach:

(a) Elimination of asymptotic bias in their estimators as opposed to the
similar Fama/Roll method.

(b) Stable parameters are relatively straightforward to estimate (minimal
calculations, not computer-intensive).

The main disadvantages of the quantile approach:

(a) Method does not work for α < 0.6.

(b) to get reliable estimates, you need quite large datasets.
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Modified parametrization based method

Modified parametrization of Zolotarev (1999):

A random variable X ∼ (α, β, γ, δ) has the characteristic function:

E exp(itX ) =


exp

(
− γα |tα|

[
1 + iβ(tan π

2
(sign t))((γ |t|)1−α − 1

]
+ iδ0t

)
, α 6= 1

exp

(
− γ |t|

[
1 + iβ 2

π
(sign t)(ln |t|+ ln γ)

]
+ iδ0t

)
, α = 1

Nolan(1997) derives the following formulas to compute the probability
density function values of a standardized random variable X with
Zolotarev’ parameterization in the case where γ = 1 and δ0 = 0:
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Modified parametrization based method

f (x−ζ;α, β) =



α(x−ζ)
1

α−1

π ln|α−1|

∫ π
2

−θ0

V (θ;α, β) exp(−(x − ζ)
α

α−1 V (θ;α, β))dθ α 6= 1 and x > ζ

Γ
(
1 + 1

α

)
cos(θ0)

π
(
1 + ζ2

) 1
2α

α 6= 1 and x = ζ

f (−x ;α,−β) α 6= 1 and x < ζ

1
|2β| e

−πx
2β

∫ π
2

−π
2

V (θ;α, β) exp(−e−
πx
2β V (θ;α, β))dθ α = 1 and β 6= 0

1

π(1 + x2)
α = 1 and β = 0,
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Modified parametrization based method

where
ζ = ζ(α, β) =

{
−β tan πα

2
, α 6= 1

0, α = 1

θ0 = θ0(α, β) =

{
1
α

arctan(β tan πα
2

), α 6= 1
π
2
, α = 1

and

V (θ;α, β) =



(cosαθ0)
1

α−1

(
cos θ0

sinα(θ0 + θ)

) α
α−1 cos(αθ0 + (α− 1)θ)

cos θ0
, α 6= 1

2
π

( π
2

+ βθ

cos θ

)
exp

(
exp

(
1
β

(
π
2

+ βθ

)
tan θ

))
, α = 1, β 6= 0.

The log likelihood function can then be computed numerically using the
quasi-Newton method.
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Data

The data used in this study consist of daily price series of 4 proprietary
hedge fund indices over the period 2003 - 2015: DMXUSD, CAIXUSD,
GAIXUSD, ABRXEUR.

The diversity of the underlying consitutents (aggregation of derivatives
with symmetric or asymmetric payoffs) that are part of these indices
require robust management procedures, in particular within the regulated
UCITS framework.
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Data

Most of the previous studies on empirical financial data were focusing on
the asset level (single instrument), whereas we aim at developing risk
management tools at a portfolio level, especially for UCITS Managed
Futures - CTAs.

The reason is that UCITS CTAs generally allocate their assets into cash or
spreading the latter instrument into riskless fixed-income government
securities, and a Total Return Swap (TRS) on a proprietary hedge fund
index such as the ones used in our sample.

As a result, the market risk of Managed Futures - UCITS CTAs is more or
less identical to their corresponding indices, underlying of the TRS.
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Descriptive Statistics
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The hedge fund indices are leptokurtic just as other European stock
market indices such as the French CAC 40, German DAX 30, and British
Footsie 100.

Hedge fund indices exhibit larger excess kurtosis, and are significantly
skewed to the left in particular for those holding derivative instruments
with asymmetric payoff functions such as GAIXUSD and CAIXUSD.

An investigation of the historical profits and losses (P&L) shows that the
biggest historical daily losses are respectively -2.44%, -2.52%, -5.96%,
-4.67% for ABRXEUR, CAIXUSD, DMIXUSD, and GAIXUSD, whereas
their corresponding maximum daily profits are 2.47%, 1.56%, 6.83%,
4.45%.
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The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test fails to reject at a 5%
significance level lags the null hypothesis that CAIXUSD, DMIXUSD, and
GAIXUSD (up to 3 lags) are trend stationary whereas ABRXEUR return
series follow a nonstationary unit root process.
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The alternative indices exhibit significant autocorrelation.

The Global Alpha Strategy displays a significant third-order
autocorrelation of at least 0.2, results for the remaining Single-Manager
strategies suggest AR(1) processes.
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α-STABLE GARCH(1,1)

Given the simultanous presence of leptokurtosis and volatility clustering
phenomena exhibited by the data, we use a variation of Liu and Brorsen’s
model (1995) in which a random variable Y follows a univariate Stable -
Garch process if ε is i.i.d and modeled with an α-Stable distribution :

yt = δ + εtγt (1)

γλt = ω + φ1γ
λ
t−1 + τ1 |yt−1 − δ|λ (2)

where γ, δ, ε, and α represent respectively the scale, location, real-valued
discrete-time stochastic process, and characteristic exponent, λ = 1,
whereas ω, φ, τ are estimated from the following regression:

|εt |α = ω + (φ1 + τ1) |εt−1|α − φ1υt−1 + υt (3)

where υ represents the residual term.
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As demonstrated by Mittnik et al. (2002) stationarity criteria involves
λ(φ1 + τ1) ≤ 1, and as opposed to Liu and Brorsen(1995) the parameter
constraints ω ≥ 0, φ ≥ 0, τ ≥ 0 have been relaxed.

Finally, the risk metrics are derived from the usual definitions:

VaR = qk = F−1
k (α̂, β̂, γ̂, δ̂),

where F denotes the cumulative distribution function, and

ES =
1

1− cl

∫ 1

cl
qkdk,

where cl represents the confidence level.
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Backtests
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Backtests
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Backtests
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Regulatory breaches
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Conclusion

Risk management tool using stable distributions are perfectly suited to
significantly skewed and leptokurtic data.
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