N-point Virasoro algebras are multi-point Krichever-Novikov type ALGEBRAS

Martin Schlichenmaier
Mathematics Research Unit
University of Luxembourg
QQQ Kristineberg, Sweden, 11-15 July 2016 arXiv:1505.00736
Book: Krichever-Novikov type algebras. Theory and Applications. DeGruyther, 2014

Introduction

- the classical genus zero (two point) algebras (Witt algebra, Virasoro algebra, affine Kac-Moody algebras of untwisted type, ...) are well-established and of relevance e.g. in CFT
- but from the application there is a need for the multi-point algebras in every genus (of course including genus zero)
- higher genus and still two points this was done by Krichever and Novikov
- the multi-point theory was done by the speaker
- importance for KZ equations for genus zero in CFT is nowadays classical
- for higher genus KZ connections in the context of $M_{g, n}$ see joint work of the speaker with Oleg Sheinman
- recently revived interest in genus zero multi-point quantum field theory (N-point Virasoro algebra)
- Goal: show that the recently discussed N-point Virasoro algebras (Cox, Jurisisch, Martins, and others) are special examples of the multi-point KN type algebras
- Gain: gives useful structural insights and an easier approach to calculations
- removes some misconceptions about certain observed phenomena
What I will do here:
- recall the geometric setup for KN type algebras
- introduce the algebras
- almost-grading including triangular decomposition
- determine "all" central extensions

What will be the outcome for KN type, genus zero:

- all cohomology (cocycle) classes (2nd Lie algebra cohomology with values in the trival module) for vector field algebra and the differential operator algebras are geometric
- give the universal central extensions for them explicitly
- the same for the current algebra, yielding affine algebras
- Heisenberg algebra obtained by cocycles for the function algebra which are multiplicative
- give access to easy calculations of structure constants and cocycle values for these algebras
- As illustration: three point genus zero situation.

Classical Algebras

- purely algebraic terms the Virasoro algebra generators $\left\{e_{n}(n \in \mathbb{Z}), t\right\}$ and relations

$$
\left[e_{n}, e_{m}\right]=(m-n) e_{n+m}+\frac{1}{12}\left(n^{3}-n\right) \delta_{n}^{-m} \cdot t .
$$

- without central term: Witt algebra
- \mathfrak{g} a finite-dimensional simple Lie algebra, β the Cartan-Killing form,

$$
\left[\widehat{x \otimes z^{n}}, \widehat{y \otimes z^{m}}\right]:=[x, \widehat{y}] \widehat{\otimes z^{n+m}}-\beta(x, y) \cdot n \delta_{m}^{-n} \cdot t .
$$

$\widehat{\mathfrak{g}}$ is called affine Lie algebra.

GEOMETRIC SET-UP (KN TYPE ALGEBRAS)

- Σ_{g} be a compact Riemann surface of genus $g=g\left(\Sigma_{g}\right)$.
- A be a finite subset of $\Sigma_{g}, A=I \cup O$, both non-empty, disjoint, $I=\left(P_{1}, \ldots, P_{K}\right)$ in-points and
$O=\left(Q_{1}, \ldots, Q_{M}\right)$ out-points
- genus zero: $A=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$,
P_{N} can be brought to ∞ by fractional linear transformation
- $P_{i}=a_{i}, \quad a_{i} \in \mathbb{C}, i=1, \ldots, N-1, \quad P_{N}=\infty$
- local coordinates $z-a_{i}, i=1, \ldots, N-1, \quad w=1 / z$
- classical situation: $\Sigma_{0}=S^{2}, \quad I=\{0\}, \quad O=\{\infty\}$

GEOMETRIC REALIZATIONS OF THE KN TYPE ALGEBRAS

- \mathcal{K} is the canonical bundle, i.e. local sections are the holomorphic differentials
- $\mathcal{K}^{\lambda}:=\mathcal{K}^{\otimes \lambda}$ for $\lambda \in \mathbb{Z}$
- the sections are the forms of weight λ, e.g. $\lambda=-1$ are vector fields, $\lambda=0$ are functions,
- for half-integer λ we need to fix a square root L of \mathcal{K} (also called theta characteristics, or spin structure)
- for $g=0$ only one square-root, the tautological bundle U
- we ignore in this presentation the half-forms (e.g. the supercase)
- $\mathcal{F}^{\lambda}:=\mathcal{F}^{\lambda}(A):=\left\{f\right.$ is a global meromorphic section of \mathcal{K}^{λ} such that f is holomorphic over $\Sigma \backslash A\}$.
- infinite dimensional vector spaces
- meromorphic forms of weight λ

$$
\mathcal{F}:=\bigoplus_{\lambda \in \frac{1}{2} \mathbb{Z}} \mathcal{F}^{\lambda}
$$

- We define an associative structure

$$
\cdot: \mathcal{F}^{\lambda} \times \mathcal{F}^{\nu} \rightarrow \mathcal{F}^{\lambda+\nu}
$$

- in local representing meromorphic functions

$$
\left(s d z^{\lambda}, t d z^{\nu}\right) \mapsto s d z^{\lambda} \cdot t d z^{\nu}=s \cdot t d z^{\lambda+\nu}
$$

- \mathcal{F} is an associative and commutative graded algebra.
- $\mathcal{F}^{0}=: \mathcal{A}$ is a subalgebra and \mathcal{F}^{λ} are modules over \mathcal{A}.
- Lie algebra structure:

$$
\mathcal{F}^{\lambda} \times \mathcal{F}^{\nu} \rightarrow \mathcal{F}^{\lambda+\nu+1}, \quad(s, t) \mapsto[s, t]
$$

- in local representatives of the sections

$$
\left(s d z^{\lambda}, t d z^{\nu}\right) \mapsto\left[s d z^{\lambda}, t d z^{\nu}\right]:=\left((-\lambda) s \frac{d t}{d z}+\nu t \frac{d s}{d z}\right) d z^{\lambda+\nu+1}
$$

- \mathcal{F} with [.,.] is a Lie algebra
- \mathcal{F} with respect to \cdot and [., .] is a Poisson algebra
- $\mathcal{L}:=\mathcal{F}^{-1}$ is a Lie subalgebra (the algebra of vector fields), and the \mathcal{F}^{λ} 's are Lie modules over \mathcal{L}.
- $\mathcal{F}^{0} \oplus \mathcal{F}^{-1}=\mathcal{A} \oplus \mathcal{L}=: \mathcal{D}^{1}$ is also a Lie subalgebra of \mathcal{F}, it is the Lie algebra of differential operators of degree ≤ 1

Almost-Graded structure

- $\mathcal{L}=\oplus_{n \in \mathbb{Z}} \mathcal{L}_{n}$ is a vector space direct sum, then \mathcal{L} is called an almost-graded (Lie-) algebra if
(I) $\operatorname{dim} \mathcal{L}_{n}<\infty$,
(II) There exist constants $L_{1}, L_{2} \in \mathbb{Z}$ such that

$$
\mathcal{L}_{n} \cdot \mathcal{L}_{m} \subseteq \bigoplus_{n=n+m-L_{1}}^{n+m+L_{2}} \mathcal{L}_{h}, \quad \forall n, m \in \mathbb{Z}
$$

- introduce an almost-grading for \mathcal{F}^{λ} by exhibiting certain elements $f_{n, p}^{\lambda} \in \mathcal{F}^{\lambda}, p=1, \ldots, K$ which constitute a basis of the subspace $\mathcal{F}_{n}^{\lambda}$ of homogeneous elements of degree n.
- the basis element $f_{n, p}^{\lambda}$ of degree n is of order

$$
\operatorname{ord}_{p_{i}}\left(f_{n, p}^{\lambda}\right)=(n+1-\lambda)-\delta_{i}^{p}
$$

at the point $P_{i} \in I, i=1, \ldots, K$.

- prescription at the points in O is made in such a way that the element $f_{n, p}^{\lambda}$ is essentially unique
- Warning: The decomposition depends on the splitting of A into $I \cup O$.

GEnUs ZERO - STANDARD SPLITTING

- standard splitting: $I=\left\{P_{1}, P_{2}, \ldots, P_{N-1}\right\}$ and $O=\{\infty\}$, we have $K=N-1$
- it is enough to construct a basis $\left\{A_{n, p}\right\}$ of \mathcal{A}
- then $\mathcal{F}_{n}^{\lambda}=\mathcal{A}_{n-\lambda} d z^{\lambda}, \quad f_{n, p}^{\lambda}=A_{n-\lambda, p} d z^{\lambda}$
- $A_{n, p}(z):=\left(z-a_{p}\right)^{n} \cdot \prod_{\substack{i=1 \\ i \neq p}}^{K}\left(z-a_{i}\right)^{n+1} \cdot \alpha(p)^{n+1}$, $p=1, \ldots, K$
- $\alpha(p)$ normalization factor such that

$$
A_{n, p}(z)=\left(z-a_{p}\right)^{n}\left(1+O\left(z-a_{p}\right)\right)
$$

- the order at ∞ is fixed as $-(K n+K-1)$
- $e_{n, p}=f_{n, p}^{-1}=A_{n+1, p} \frac{d}{d z}, \quad p=1, \ldots, K$
- The above algebras are almost-graded algebras.
- the almost-grading depends on the splitting of the set A into I and O.
- $\mathcal{F}^{\lambda}=\bigoplus_{m \in \mathbb{Z}} \mathcal{F}_{m}^{\lambda}, \quad$ with $\quad \operatorname{dim} \mathcal{F}_{m}^{\lambda}=K$.
- there exist R_{1}, R_{2} (independent of n and m) such that

$$
\mathcal{A}_{n} \cdot A_{m} \subseteq \bigoplus_{n=n+m}^{n+m+R_{1}} \mathcal{A}_{h}, \quad\left[\mathcal{L}_{n}, \mathcal{L}_{m}\right] \subseteq \bigoplus_{n=n+m}^{n+m+R_{2}} \mathcal{L}_{h}
$$

- for genus zero and standard splitting

$$
R_{1}=\left\{\begin{array}{ll}
0, & N=2, \\
1, & N>2,
\end{array} \quad R_{2}= \begin{cases}0, & N=2 \\
1, & N=3 \\
2, & N>3\end{cases}\right.
$$

- triangular decomposition $\mathcal{U}=\mathcal{U}_{[-]} \oplus \mathcal{U}_{[0]} \oplus \mathcal{U}_{[+]}$with

$$
\mathcal{U}_{[+]}:=\bigoplus_{m>0} \mathcal{U}_{m}, \quad \mathcal{U}_{[0]}=\bigoplus_{m=-R_{i}}^{m=0} \mathcal{U}_{m}, \quad \mathcal{U}_{[-]}:=\bigoplus_{m<-R_{i}} \mathcal{U}_{m}
$$

Here \mathcal{U} is any of the above algebras $\mathcal{A}, \mathcal{L}, \ldots \ldots$

BEFORE CENTRAL EXTENSIONS

- C_{i} be positively oriented (deformed) circles around the points P_{i} in $I, i=1, \ldots, K$
- C_{j}^{*} positively oriented circles around the points Q_{j} in O, $j=1, \ldots, M$.
- A cycle C_{S} is called a separating cycle if it is smooth, positively oriented of multiplicity one and if it separates the in-points from the out-points.
- we will integrate meromorphic differentials on Σ_{g} without poles in $\quad \Sigma_{g} \backslash A$ over closed curves C.
- hence, C and C^{\prime} are equivalent if $[C]=\left[C^{\prime}\right]$ in $\mathrm{H}_{1}\left(\Sigma_{g} \backslash A, \mathbb{Z}\right)$.
- $\left[C_{S}\right]=\sum_{i=1}^{K}\left[C_{i}\right]=-\sum_{j=1}^{M}\left[C_{j}^{*}\right]$
- given such a separating cycle C_{S} (respectively cycle class) we define $\mathcal{F}^{1} \rightarrow \mathbb{C}, \quad \omega \mapsto \frac{1}{2 \pi \mathrm{i}} \int_{C_{S}} \omega$
- This integration corresponds to calculating residues

$$
\omega \quad \mapsto \quad \frac{1}{2 \pi \mathrm{i}} \int_{C_{S}} \omega=\sum_{i=1}^{K} \operatorname{res}_{P_{i}}(\omega)=-\sum_{l=1}^{M} \operatorname{res}_{Q_{l}}(\omega) .
$$

CENTRAL EXTENSIONS

- A central extension of a Lie algebra \mathcal{U} is defined on the vector space direct sum $\widehat{\mathcal{U}}=\mathbb{C} \oplus U$. $\hat{x}:=(0, x), t:=(1,0)$

$$
[\hat{x}, \hat{y}]=\widehat{[x, y]}+\Phi(x, y) \cdot t, \quad[t, \widehat{U}]=0, \quad x, y \in U .
$$

- \widehat{U} will be a Lie algebra, if and only if Φ is antisymmetric and fulfills the Lie algebra 2-cocycle condition

$$
0=d_{2} \Phi(x, y, z):=\Phi([x, y], z)+\Phi([y, z], x)+\Phi([z, x], y) .
$$

- A 2-cocycles Φ is a coboundary if there exists a $\phi: \mathcal{U} \rightarrow \mathbb{C}$ such that

$$
\Phi(x, y)=d_{1} \phi(x, y)=\phi([x, y]) .
$$

- the second Lie algebra cohomology $\mathrm{H}^{2}(\mathcal{U}, \mathbb{C})$ of \mathcal{U} with values in the trivial module \mathbb{C} classifies equivalence classes of central extensions.
- A Lie algebra \mathcal{U} is called perfect if $[\mathcal{U}, \mathcal{U}]=\mathcal{U}$.
- perfect Lie algebras admit universal central extensions

LOCAL AND BOUNDED COCYCLES

- γ a cocycle for the almost-graded Lie algebra \mathcal{U} is called a local cocycle if $\exists T_{1}, T_{2}$ such that
$\gamma\left(\mathcal{U}_{n}, \mathcal{U}_{m}\right) \neq 0 \Longrightarrow T_{2} \leq n+m \leq T_{1}$
- γ is called bounded (from above) if $\exists T_{1}$ such that $\gamma\left(\mathcal{U}_{n}, \mathcal{U}_{m}\right) \neq 0 \Longrightarrow n+m \leq T_{1}$
- for the classes it means that it contains one representing cocycle of this type.
- Importance: Local cocycles allow to extend the almost-grading to the central extension.
- The speaker classified for the above algebras local and bounded cocycle classes. They are given by geometric cocycles of certain type (see below).

GEOMETRIC COCYCLES

- A cocycle $\gamma: \mathcal{U} \times \mathcal{U} \rightarrow \mathbb{C}$ is called a geometric cocycle if there is a bilinear map $\widehat{\gamma}: \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{F}^{1}$, such that γ is the composition of $\widehat{\gamma}$ with an integration, i.e. $\gamma=\gamma_{C}:=\frac{1}{2 \pi \mathrm{i}} \int_{C} \widehat{\gamma}$ with C a curve on Σ_{g}.
- Given $\hat{\gamma}$ only the class of C in $\mathrm{H}_{1}\left(\Sigma_{g} \backslash A, \mathbb{C}\right)$ plays a role,

$$
\operatorname{dim} \mathrm{H}_{1}\left(\Sigma_{g} \backslash A, \mathbb{C}\right)= \begin{cases}2 g, & \# A=0,1 \\ 2 g+(N-1), & \# A=N \geq 2\end{cases}
$$

- genus zero and $N \geq 1$: $\quad \operatorname{dim} \mathrm{H}_{1}\left(\Sigma_{0} \backslash A, \mathbb{C}\right)=(N-1)$
- basis e.g. given by circles C_{i} around the points P_{i}, where we leave out one of them. For example $\left[C_{i}\right], i=1, \ldots, N-1$.
- better choice: e.g. for the standard splitting take $\left[C_{S}\right]=-\left[C_{\infty}\right]$ and $\left[C_{i}\right], i=1, \ldots, N-2$

MAIN RESULT - PHILOSOPHY - (GENUS ZERO !!)

- we show that in genus zero our cocycles classes are geometric cocycles classes with respect to certain explicitely given one-forms
- this is done by showing that all cocycles are bounded cocycles with respect to the almost-grading induced by the standard splitting,
- now the classification result of bounded cocycle classes of the author is used which gives a complete classification and explicit expressions given by integrals over curves
- note that in genus zero the geometric cocycles can be obtained via integration over circles around the points in I, or alternatively around ∞
- and they can be calculate via residues
- In case that the Lie algebra is perfect the universal central extension can directly be given.

Function algebra - Heisenberg algebra

- γ is \mathcal{L}-invariant if $\gamma(e . f, g)+\gamma(f, e . g)=0$, for all $f, g \in \mathcal{A}$, for all $e \in \mathcal{L}$,
- multiplicative if $\gamma(f g, h)+\gamma(g h, f)+\gamma(h f, g)=0$, for all $f, g, h \in \mathcal{A}$
- Theorem: If one of the above properties is fulfilled then it is a geometric cocycle.
- basis

$$
\gamma_{i}^{\mathcal{A}}(f, g)=\frac{1}{2 \pi \mathrm{i}} \int_{C_{i}} f d g=\operatorname{res}_{a_{i}}(f d g), \quad i=1, \ldots, N-1
$$

- γ is bounded from above with respect to the almost-grading given by the standard splitting.
- Every \mathcal{L}-invariant cocycle is multiplicative and vice versa.
- Two point situation: $\gamma\left(\boldsymbol{A}_{n}, \boldsymbol{A}_{m}\right)=\alpha \cdot(-n) \cdot \delta_{m}^{-n}$
- Heisenberg algebra is such a central extension (the local one or the "full" one).
- for the full one the center is $(N-1)$-dimensional

VEctor field algebra

Results: $g=0$

- Every cocycle class is geometric and given by

$$
\gamma_{\mathcal{C}, R}^{\mathcal{L}}(e, f)=\frac{1}{2 \pi \mathrm{i}} \int_{C}\left(\frac{1}{2}\left(e f^{\prime \prime \prime}-e^{\prime \prime \prime} f\right)-R\left(e f^{\prime}-e^{\prime} f\right) d z\right.
$$

- R is a projective connection, with our coordinates we can take $R=0$.
- after cohomological changes they are bounded
- $\mathrm{H}^{2}(\mathcal{L}, \mathbb{C})$ is $(N-1)$-dimensional
- can be calculate by residues at the points
- these cocycles generate a universal central extension.
- By different techniques Skryabin has shown the existence of a universal central extension for arbitrary genus.

DIFFERENTIAL OPERATOR ALGEBRA

- Main result also here: all cocycle classes are geometric
- \mathcal{L}-invariant coycles for \mathcal{A} and arbitrary cocycles for \mathcal{L} define two cocycle types for \mathcal{D}^{1}.
- There is a another type: mixing cocycles

$$
\gamma_{C, T}^{(m)}(e, g):=\frac{1}{2 \pi \mathrm{i}} \int_{C}\left(e g^{\prime \prime}+T e g^{\prime}\right) d z, \quad e \in \mathcal{L}, g \in \mathcal{A}
$$

- T is an affine connection. Can be taken to be zero on the affine part.
- also \mathcal{D}^{1} is perfect and the universal central extension has $3 \cdot(N-1)$ dimensional center

OTHERS

Current algebra:

- \mathfrak{g} a finite dimensional simple Lie algebra, β Cartan-Killing form

$$
\gamma_{\beta, C}^{\bar{g}}(x \otimes f, y \otimes g)=\beta(x, y) \cdot \gamma_{C}^{A}(f, g)=\beta(x, y) \cdot \frac{1}{2 \pi \mathrm{i}} \int_{C} f d g
$$

- all cocycles are cohomologous to such cocycles,
- $\widehat{\mathfrak{g}}$ is perfect, universal central extension has again ($N-1$)dimensional center
- the multiplicativity of $\int_{C} f d g$ is crucial
- I have corresponding results for \mathfrak{g} reductive.

Also results for Lie superalgebras: Each central extension of \mathcal{L} gives a unique central extension of the superalgebra.

SHORT FORM

Every cocycle class is geometric and given by (for \mathcal{A} we need either \mathcal{L}-invariance or multiplicativity)

$$
\begin{gathered}
\gamma_{C}^{\mathcal{A}}(f, g)=\frac{1}{2 \pi \mathrm{i}} \int_{C} f d g \\
\gamma_{C, R}^{\mathcal{L}}=\frac{1}{2 \pi \mathrm{i}} \int_{C}\left(\frac{1}{2}\left(e f^{\prime \prime \prime}-e^{\prime \prime \prime} f\right)-R\left(e f^{\prime}-e^{\prime} f\right) d z\right. \\
\gamma_{C, T}^{(m)}(e, g):=\frac{1}{2 \pi \mathrm{i}} \int_{C}\left(e g^{\prime \prime}+T_{e} g^{\prime}\right) d z, \quad e \in \mathcal{L}, g \in \mathcal{A}, \\
\gamma_{\beta, C}^{\bar{g}}(x \otimes f, y \otimes g)=\beta(x, y) \cdot \gamma_{C}^{\mathcal{A}}(f, g)=\beta(x, y) \cdot \frac{1}{2 \pi \mathrm{i}} \int_{C} f d g
\end{gathered}
$$

Next use that $C_{i}, i=1, \ldots, N-1$ is a basis of $\mathrm{H}_{1}\left(\Sigma_{0} \backslash A, \mathbb{C}\right)$ and that the integration over C_{i} can be done by calculating residues.

Three-point algebras

- $A=I \cup O, \quad l:=\{0,1\}, \quad$ and $O:=\{\infty\}$
- basis elements ("symmetrized" and "anti-symmetrized")

$$
A_{n}(z)=z^{n}(z-1)^{n}, \quad B_{n}(z)=z^{n}(z-1)^{n}(2 z-1)
$$

- structure equations:

$$
\begin{aligned}
& A_{n} \cdot A_{m}=A_{n+m}, \\
& A_{n} \cdot B_{m}=B_{n+m} \\
& B_{n} \cdot B_{m}=A_{n+m}+4 A_{n+m+1} .
\end{aligned}
$$

- space of cocycles is two-dimensional, e.g. we take the residues around ∞ and around 0

$$
\begin{aligned}
\gamma_{\infty}^{\mathcal{A}}\left(A_{n}, A_{m}\right) & =2 n \delta_{m}^{-n}, \\
\gamma_{\infty}^{\mathcal{A}}\left(A_{n}, B_{m}\right) & =0, \\
\gamma_{\infty}^{\mathcal{A}}\left(B_{n}, B_{m}\right) & =2 n \delta_{m}^{-n}+4(2 n+1) \delta_{m}^{-n-1} . \\
\gamma_{0}^{\mathcal{A}}\left(A_{n}, A_{m}\right)= & -n \delta_{m}^{-n}, \\
\gamma_{0}^{\mathcal{A}}\left(A_{n}, B_{m}\right)= & n \delta_{m}^{-n}+2 n \delta_{m}^{-n-1} \\
& +\sum_{k=2}^{\infty} n(-1)^{k-1} 2^{k} \frac{(2 k-3)!!}{k!} \delta_{m}^{-n-k}, \\
\gamma_{0}^{\mathcal{A}}\left(B_{n}, B_{m}\right)= & -n \delta_{m}^{-n}-2(2 n+1) \delta_{m}^{-n-1} .
\end{aligned}
$$

- vector field algebra
- basis: $e_{n}:=A_{n+1} \frac{d}{d z}, \quad f_{n}:=B_{n+1} \frac{d}{d z}, \quad n \in \mathbb{Z}$
- structure equation

$$
\begin{aligned}
{\left[e_{n}, e_{m}\right] } & =(m-n) f_{m+n} \\
{\left[e_{n}, f_{m}\right] } & =(m-n) e_{m+n}+(4(m-n)+2) e_{n+m+1} \\
{\left[f_{n}, f_{m}\right] } & =(m-n) f_{m+n}+4(m-n) f_{n+m+1}
\end{aligned}
$$

- the universal central extension is two -dimensional, as above obtained by calculating residues at ∞ and 0 .

$$
\begin{aligned}
\gamma_{0}^{\mathcal{L}}(e, f) & =1 / 2 \operatorname{res}_{0}\left(e \cdot f^{\prime \prime \prime}-f \cdot e^{\prime \prime \prime}\right) d z \\
\gamma_{\infty}^{\mathcal{L}}(e, f) & =1 / 2 \operatorname{res}_{\infty}\left(e \cdot f^{\prime \prime \prime}-f \cdot e^{\prime \prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{\infty}^{\mathcal{L}}\left(e_{n}, e_{m}\right)= & 2\left(n^{3}-n\right) \delta_{m}^{-n}+4 n(n+1)(2 n+1) \delta_{m}^{-n-1} \\
\gamma_{\infty}^{\mathcal{L}}\left(e_{n}, f_{m}\right)= & 0 \\
\gamma_{\infty}^{\mathcal{L}}\left(f_{n}, f_{m}\right)= & 2\left(n^{3}-n\right) \delta_{m}^{-n}+8 n(n+1)(2 n+1) \delta_{m}^{-n-1} \\
& +8(n+1)(2 n+1)(2 n+3) \delta_{m}^{-n-2}
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{0}^{\mathcal{L}}\left(e_{n}, e_{m}\right)= & -\left(n^{3}-n\right) \delta_{n}^{-m}-2 n(n+1)(2 n+1) \delta_{m}^{-n-1} \\
\gamma_{0}^{\mathcal{L}}\left(e_{n}, f_{m}\right)= & \left(n^{3}-n\right) \delta_{m}^{-n}+6 n^{2}(n+1) \delta_{m}^{-n-1}+6 n(n+1)^{2} \delta_{m}^{-n-2} \\
+ & \sum_{k \geq 3} n(n+1)(n+k-1)(-1)^{k} 2^{k} \cdot 3 \cdot \frac{(2 k-5)!!}{k!} \delta_{m}^{-n-k} \\
\gamma_{0}^{\mathcal{L}}\left(f_{n}, f_{m}\right)= & -\left(n^{3}-n\right) \delta_{m}^{-n}-4 n(n+1)(2 n+1) \delta_{m}^{-n-1} \\
& -4(n+1)(2 n+1)(2 n+3) \delta_{m}^{-n-2} .
\end{aligned}
$$

ANOTHER BASIS

- our algebra \mathcal{A} can be given as the algebra $\mathcal{A}=\mathbb{C}\left[\left(z-a_{1}\right),\left(z-a_{1}\right)^{-1},\left(z-a_{2}\right)^{-1}, \ldots,\left(z-a_{N-1}\right)^{-1}\right]$, with the obvious relations.
- we set $A_{n}^{(i)}:=\left(z-a_{i}\right)^{n}$
- $A_{n}^{(i)}, \quad n \in \mathbb{Z}, i=1, \ldots, N-1$ is a generating set of \mathcal{A}
- A basis is given e.g. by $A_{n}^{(1)}, n \in \mathbb{Z}, \quad A_{-n}^{(i)}, n \in \mathbb{N}, i=2, \ldots, N-1$.
- but this defines not an almost-graded structure

