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INTRODUCTION

I the classical genus zero (two point) algebras (Witt algebra,
Virasoro algebra, affine Kac-Moody algebras of untwisted
type, ...) are well-established and of relevance e.g. in CFT

I but from the application there is a need for the multi-point
algebras in every genus (of course including genus zero)

I higher genus and still two points this was done by
Krichever and Novikov

I the multi-point theory was done by the speaker
I importance for KZ equations for genus zero in CFT is

nowadays classical
I for higher genus KZ connections in the context of Mg,n see

joint work of the speaker with Oleg Sheinman
I recently revived interest in genus zero multi-point quantum

field theory (N-point Virasoro algebra)



I Goal: show that the recently discussed N-point Virasoro
algebras (Cox, Jurisisch, Martins, and others) are special
examples of the multi-point KN type algebras

I Gain: gives useful structural insights and an easier
approach to calculations

I removes some misconceptions about certain observed
phenomena

What I will do here:
I recall the geometric setup for KN type algebras
I introduce the algebras
I almost-grading including triangular decomposition
I determine “all” central extensions



What will be the outcome for KN type, genus zero:
I all cohomology (cocycle) classes (2nd Lie algebra

cohomology with values in the trival module) for vector field
algebra and the differential operator algebras are
geometric

I give the universal central extensions for them explicitly
I the same for the current algebra, yielding affine algebras
I Heisenberg algebra obtained by cocycles for the function

algebra which are multiplicative
I give access to easy calculations of structure constants and

cocycle values for these algebras
I As illustration: three point genus zero situation.



CLASSICAL ALGEBRAS

I purely algebraic terms the Virasoro algebra
generators {en(n ∈ Z), t} and relations

[en,em] = (m − n)en+m +
1
12

(n3 − n)δ−m
n · t .

I without central term: Witt algebra
I g a finite-dimensional simple Lie algebra,
β the Cartan–Killing form,

[x̂ ⊗ zn, ŷ ⊗ zm] := ̂[x , y ]⊗ zn+m − β(x , y) · n δ−n
m · t .

ĝ is called affine Lie algebra.



GEOMETRIC SET-UP (KN TYPE ALGEBRAS)

P1

P2

Q1

I Σg be a compact Riemann surface of genus g = g(Σg).
I A be a finite subset of Σg , A = I ∪O, both non-empty,

disjoint, I = (P1, . . . ,PK ) in-points and
O = (Q1, . . . ,QM) out-points

I genus zero: A = {P1,P2, . . . ,PN},
PN can be brought to∞ by fractional linear transformation

I Pi = ai , ai ∈ C, i = 1, . . . ,N − 1, PN =∞
I local coordinates z − ai , i = 1, . . . ,N − 1, w = 1/z
I classical situation: Σ0 = S2, I = {0}, O = {∞}



GEOMETRIC REALIZATIONS OF THE KN TYPE ALGEBRAS

I K is the canonical bundle, i.e. local sections are the
holomorphic differentials

I Kλ := K⊗λ for λ ∈ Z
I the sections are the forms of weight λ, e.g. λ = −1 are

vector fields, λ = 0 are functions,
I for half-integer λ we need to fix a square root L of K (also

called theta characteristics, or spin structure)
I for g = 0 only one square-root, the tautological bundle U
I we ignore in this presentation the half-forms (e.g. the

supercase)



I Fλ := Fλ(A) := {f is a global meromorphic section of Kλ
such that f is holomorphic over Σ \ A}.

I infinite dimensional vector spaces
I meromorphic forms of weight λ
I

F :=
⊕
λ∈ 1

2Z

Fλ.



I We define an associative structure

· : Fλ ×Fν → Fλ+ν .

I in local representing meromorphic functions

(s dzλ, t dzν) 7→ s dzλ · t dzν = s · t dzλ+ν .

I F is an associative and commutative graded algebra.
I F0 =: A is a subalgebra and Fλ are modules over A.



I Lie algebra structure:

Fλ ×Fν → Fλ+ν+1, (s, t) 7→ [s, t ],

I in local representatives of the sections

(s dzλ, t dzν) 7→ [s dzλ, t dzν ] :=

(
(−λ)s

dt
dz

+ ν t
ds
dz

)
dzλ+ν+1,

I F with [., .] is a Lie algebra
I F with respect to · and [., .] is a Poisson algebra
I L := F−1 is a Lie subalgebra (the algebra of vector fields),

and the Fλ’s are Lie modules over L.
I F0⊕F−1 = A⊕L =: D1 is also a Lie subalgebra of F , it is

the Lie algebra of differential operators of degree ≤ 1



ALMOST-GRADED STRUCTURE

I L = ⊕n∈ZLn is a vector space direct sum, then L is called
an almost-graded (Lie-) algebra if

(I) dimLn <∞,
(II) There exist constants L1,L2 ∈ Z such that

Ln · Lm ⊆
n+m+L2⊕

h=n+m−L1

Lh, ∀n,m ∈ Z.



I introduce an almost-grading for Fλ by exhibiting certain
elements f λn,p ∈ Fλ, p = 1, . . . ,K which constitute a basis
of the subspace Fλn of homogeneous elements of degree
n.

I the basis element f λn,p of degree n is of order

ordPi (f
λ
n,p) = (n + 1− λ)− δp

i

at the point Pi ∈ I, i = 1, . . . ,K .
I prescription at the points in O is made in such a way that

the element f λn,p is essentially unique
I Warning: The decomposition depends on the splitting of A

into I ∪O.



GENUS ZERO – STANDARD SPLITTING

I standard splitting: I = {P1,P2, . . . ,PN−1} and O = {∞},
we have K = N − 1

I it is enough to construct a basis {An,p} of A
I then Fλn = An−λdzλ, f λn,p = An−λ,pdzλ

I An,p(z) := (z − ap)n ·
∏K

i=1
i 6=p

(z − ai)
n+1 · α(p)n+1,

p = 1, . . . ,K
I α(p) normalization factor such that

An,p(z) = (z − ap)n(1 + O(z − ap))

I the order at∞ is fixed as −(Kn + K − 1)

I en,p = f−1
n,p = An+1,p

d
dz , p = 1, . . . ,K



I The above algebras are almost-graded algebras.
I the almost-grading depends on the splitting of the set A

into I and O.
I Fλ =

⊕
m∈ZFλm, with dimFλm = K .

I there exist R1,R2 (independent of n and m) such that

An · Am ⊆
n+m+R1⊕
h=n+m

Ah , [Ln,Lm] ⊆
n+m+R2⊕
h=n+m

Lh ,



I for genus zero and standard splitting

R1 =

{
0, N = 2,
1, N > 2,

R2 =


0, N = 2,
1, N = 3,
2, N > 3 .

I triangular decomposition U = U[−] ⊕ U[0] ⊕ U[+] with

U[+] :=
⊕
m>0

Um, U[0] =
m=0⊕

m=−Ri

Um, U[−] :=
⊕

m<−Ri

Um.

Here U is any of the above algebras A, L, .....



BEFORE CENTRAL EXTENSIONS

I Ci be positively oriented (deformed) circles around the
points Pi in I, i = 1, . . . ,K

I C∗j positively oriented circles around the points Qj in O,
j = 1, . . . ,M.

I A cycle CS is called a separating cycle if it is smooth,
positively oriented of multiplicity one and if it separates the
in-points from the out-points.

I we will integrate meromorphic differentials on Σg without
poles in Σg \ A over closed curves C.

I hence, C and C′ are equivalent if [C] = [C′] in
H1(Σg \ A,Z).



I [CS] =
∑K

i=1[Ci ] = −
∑M

j=1[C∗j ]

I given such a separating cycle CS (respectively cycle class)
we define F1 → C, ω 7→ 1

2πi

∫
CS
ω

I This integration corresponds to calculating residues

ω 7→ 1
2πi

∫
CS

ω =
K∑

i=1

resPi (ω) = −
M∑

l=1

resQl (ω).



CENTRAL EXTENSIONS

I A central extension of a Lie algebra U is defined on the
vector space direct sum Û = C⊕ U.
x̂ := (0, x), t := (1,0)

[x̂ , ŷ ] = [̂x , y ] + Φ(x , y) · t , [t , Û] = 0, x , y ∈ U.

I Û will be a Lie algebra, if and only if Φ is antisymmetric and
fulfills the Lie algebra 2-cocycle condition

0 = d2Φ(x , y , z) := Φ([x , y ], z) + Φ([y , z], x) + Φ([z, x ], y).

I A 2-cocycles Φ is a coboundary if there exists a φ : U → C
such that

Φ(x , y) = d1φ(x , y) = φ([x , y ]).



I the second Lie algebra cohomology H2(U ,C) of U with
values in the trivial module C classifies equivalence
classes of central extensions.

I A Lie algebra U is called perfect if [U ,U ] = U .
I perfect Lie algebras admit universal central extensions



LOCAL AND BOUNDED COCYCLES

I γ a cocycle for the almost-graded Lie algebra U is called a
local cocycle if ∃T1,T2 such that
γ(Un,Um) 6= 0 =⇒ T2 ≤ n + m ≤ T1

I γ is called bounded (from above) if ∃T1 such that
γ(Un,Um) 6= 0 =⇒ n + m ≤ T1

I for the classes it means that it contains one representing
cocycle of this type.

I Importance: Local cocycles allow to extend the
almost-grading to the central extension.

I The speaker classified for the above algebras local and
bounded cocycle classes. They are given by geometric
cocycles of certain type (see below).



GEOMETRIC COCYCLES

I A cocycle γ : U × U → C is called a geometric cocycle if
there is a bilinear map γ̂ : U × U → F1, such that γ is the
composition of γ̂ with an integration, i.e. γ = γC := 1

2πi

∫
C γ̂

with C a curve on Σg .
I Given γ̂ only the class of C in H1(Σg \ A,C) plays a role,
I

dim H1(Σg \ A,C) =

{
2g, #A = 0,1,
2g + (N − 1), #A = N ≥ 2 .



I genus zero and N ≥ 1: dim H1(Σ0 \ A,C) = (N − 1)

I basis e.g. given by circles Ci around the points Pi , where
we leave out one of them.
For example [Ci ], i = 1, . . . ,N − 1.

I better choice: e.g. for the standard splitting take
[CS] = −[C∞] and [Ci ], i = 1, . . . ,N − 2



MAIN RESULT – PHILOSOPHY - (GENUS ZERO !!)

I we show that in genus zero our cocycles classes are
geometric cocycles classes with respect to certain
explicitely given one-forms

I this is done by showing that all cocycles are bounded
cocycles with respect to the almost-grading induced by the
standard splitting,

I now the classification result of bounded cocycle classes of
the author is used which gives a complete classification
and explicit expressions given by integrals over curves

I note that in genus zero the geometric cocycles can be
obtained via integration over circles around the points in I,
or alternatively around∞

I and they can be calculate via residues
I In case that the Lie algebra is perfect the universal central

extension can directly be given.



FUNCTION ALGEBRA – HEISENBERG ALGEBRA

I γ is L-invariant if γ(e . f ,g) + γ(f ,e .g) = 0, for all f ,g ∈ A,
for all e ∈ L,

I multiplicative if γ(fg,h) + γ(gh, f ) + γ(hf ,g) = 0, for all
f ,g,h ∈ A

I Theorem: If one of the above properties is fulfilled then it is
a geometric cocycle.

I basis

γAi (f ,g) =
1

2πi

∫
Ci

fdg = resai (fdg), i = 1, . . . ,N − 1.

I γ is bounded from above with respect to the
almost-grading given by the standard splitting.



I Every L-invariant cocycle is multiplicative and vice versa.
I Two point situation: γ(An,Am) = α · (−n) · δ−n

m

I Heisenberg algebra is such a central extension (the local
one or the “full” one).

I for the full one the center is (N − 1)-dimensional



VECTOR FIELD ALGEBRA

Results: g = 0
I Every cocycle class is geometric and given by

γLC,R(e, f ) =
1

2πi

∫
C

(
1
2

(ef ′′′ − e′′′f )− R(ef ′ − e′f )dz.

I R is a projective connection, with our coordinates we can
take R = 0.

I after cohomological changes they are bounded
I H2(L,C) is (N − 1)-dimensional
I can be calculate by residues at the points
I these cocycles generate a universal central extension.
I By different techniques Skryabin has shown the existence

of a universal central extension for arbitrary genus.



DIFFERENTIAL OPERATOR ALGEBRA

I Main result also here: all cocycle classes are geometric
I L-invariant coycles for A and arbitrary cocycles for L

define two cocycle types for D1.
I There is a another type: mixing cocycles

γ
(m)
C,T (e,g) :=

1
2πi

∫
C

(eg′′ + Teg′)dz, e ∈ L,g ∈ A,

I T is an affine connection. Can be taken to be zero on the
affine part.

I also D1 is perfect and the universal central extension has
3 · (N − 1) dimensional center



OTHERS

Current algebra:

I g a finite dimensional simple Lie algebra, β Cartan–Killing
form

γgβ,C(x ⊗ f , y ⊗ g) = β(x , y) · γAC (f ,g) = β(x , y) · 1
2πi

∫
C

fdg

I all cocycles are cohomologous to such cocycles,
I ĝ is perfect, universal central extension has again (N − 1)-

dimensional center
I the multiplicativity of

∫
C fdg is crucial

I I have corresponding results for g reductive.

Also results for Lie superalgebras: Each central extension of L
gives a unique central extension of the superalgebra.



SHORT FORM

Every cocycle class is geometric and given by (for A we need
either L-invariance or multiplicativity)

γAC (f ,g) =
1

2πi

∫
C

fdg

γLC,R =
1

2πi

∫
C

(
1
2

(ef ′′′ − e′′′f )− R(ef ′ − e′f )dz.

γ
(m)
C,T (e,g) :=

1
2πi

∫
C

(eg′′ + Teg′)dz, e ∈ L,g ∈ A,

γgβ,C(x ⊗ f , y ⊗ g) = β(x , y) · γAC (f ,g) = β(x , y) · 1
2πi

∫
C

fdg

Next use that Ci , i = 1, . . . ,N − 1 is a basis of H1(Σ0 \A,C) and
that the integration over Ci can be done by calculating residues.



THREE-POINT ALGEBRAS

I A = I ∪O, I := {0,1}, and O := {∞}
I basis elements (“symmetrized” and “anti-symmetrized”)

An(z) = zn(z − 1)n, Bn(z) = zn(z − 1)n(2z − 1),

I structure equations:

An · Am = An+m,

An · Bm = Bn+m,

Bn · Bm = An+m + 4An+m+1.

I space of cocycles is two-dimensional, e.g. we take the
residues around∞ and around 0



I

γA∞(An,Am) = 2n δ−n
m ,

γA∞(An,Bm) = 0,

γA∞(Bn,Bm) = 2nδ−n
m + 4(2n + 1) δ−n−1

m .

I

γA0 (An,Am) = −n δ−n
m ,

γA0 (An,Bm) = n δ−n
m + 2n δ−n−1

m

+
∞∑

k=2

n (−1)k−12k (2k − 3)!!

k !
δ−n−k

m ,

γA0 (Bn,Bm) = −nδ−n
m − 2(2n + 1) δ−n−1

m .



I vector field algebra
I basis: en := An+1

d
dz , fn := Bn+1

d
dz , n ∈ Z

I structure equation

[en,em] = (m − n) fm+n,

[en, fm] = (m − n) em+n + (4(m − n) + 2) en+m+1,

[fn, fm] = (m − n) fm+n + 4(m − n) fn+m+1.

I the universal central extension is two -dimensional, as
above obtained by calculating residues at∞ and 0.

I

γL0 (e, f ) = 1/2 res0(e · f ′′′ − f · e′′′)dz

γL∞(e, f ) = 1/2 res∞(e · f ′′′ − f · e′′′)



γL∞(en,em) = 2(n3 − n) δ−n
m + 4n(n + 1)(2n + 1)δ−n−1

m

γL∞(en, fm) = 0,

γL∞(fn, fm) = 2(n3 − n) δ−n
m + 8n(n + 1)(2n + 1)δ−n−1

m

+ 8(n + 1)(2n + 1)(2n + 3)δ−n−2
m

γL0 (en,em) = −(n3 − n) δ−m
n − 2n(n + 1)(2n + 1)δ−n−1

m

γL0 (en, fm) = (n3 − n) δ−n
m + 6n2(n + 1)δ−n−1

m + 6n(n + 1)2δ−n−2
m

+
∑
k≥3

n(n + 1)(n + k − 1)(−1)k2k · 3 · (2k − 5)!!

k !
δ−n−k

m

γL0 (fn, fm) = −(n3 − n) δ−n
m − 4n(n + 1)(2n + 1)δ−n−1

m

− 4(n + 1)(2n + 1)(2n + 3)δ−n−2
m .



ANOTHER BASIS

I our algebra A can be given as the algebra
A = C[(z − a1), (z − a1)−1, (z − a2)−1, . . . , (z − aN−1)−1],
with the obvious relations.

I we set A(i)
n := (z − ai)

n

I A(i)
n , n ∈ Z, i = 1, . . . ,N − 1 is a generating set of A

I A basis is given e.g. by
A(1)

n , n ∈ Z, A(i)
−n, n ∈ N, i = 2, . . . ,N − 1.

I but this defines not an almost-graded structure


