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Abstract— Independent Component Analysis is a popular
statistical method for separating a multivariate signal into
additive components. It has been shown that the signal sep-
aration problem can be reduced to the joint diagonalization
of the matrix slices of some higher-order cumulants of the
signal. In this approach, the unknown mixing matrix can
be computed directly from the obtained joint diagonalizer.
Various iterative algorithms for solving the non-convex joint
diagonalization problem exist, but they usually lack global
optimality guarantees. In this paper, we introduce a procedure
for computing an optimality gap for local optimal solutions.
The optimality gap is then used to obtain an empirical error
bound for the estimated mixing matrix. Finally, a class of
simultaneous matrix decomposition problems that admit such
relaxation procedure is identified.

I. INTRODUCTION

A large class of algorithms for Independent Components
Analysis (ICA) is based on the simultaneous diagonalisation
of several symmetric matrices, obtained from the higher
order cumulants of the empirical data [Cardoso, 1999]. In
the orthogonal approach, where the signal is spatially white,
the matrix slices of the fourth-order cumulant tensor can be
diagonalised by an orthogonal mixing matrix. The ICA is
then equivalent to a simultaneous diagonalisation problem,
over the set of orthogonal matrices O(n). In general, for non
spatially white signals, the ICA is either cast into a non-
orthogonal simultaneous digaonalization problem [Yeredor,
2002] [Afsari and Krishnaprasad, 2004] [Ziehe et al., 2004],
or reduced to the orthogonal case via the empirical whitening
of the signal. See [Souloumiac, 2009] for a comparison
of these two approaches. In the presence of noise, the
problem of finding the approximate joint diagonalizer of a
set of matrices is usually reformulated as a minimisation
problem over a suitable set matrix. In the orthogonal case, the
existence of a global optimal solution for this minimisation
problem is guaranteed by the compactness of the O(n). Due
to the non-convexity of the associated objective function,
finding a global optimizer is in general hard and should be
approximately solved in an iterative fashion. Two popular
classes of iterative methods have been proposed in the litera-
ture: Jacobi-like algorithms based on Givens rotation updates
[Bunse-Gerstner et al., 1993] [Cardoso and Souloumiac,
1996] and matrix-manifold approaches where the descent
steps are computed from a gradient flow equation [Manton,
2002] [Yamada and Ezaki, 2003] [Afsari and Krishnaprasad,
2004]. Other approaches have also been considered, see for
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example [Wax and Sheinvald, 1997] [Van der Veen, 2001]
[Afsari, 2006]. A drawback of all these iterative methods
is the lack of global optimality guarantees and some, often
obscure, dependence on the initialisation. However, most
of these iterative algorithms have been proven to achieve
local convergence. The ‘distance’ between the obtained local
optimal solution and the global optimal solution depends on
the cost function landscape which in general is not straight-
forward to analyse. The optimality gap of such solutions,
i.e. the distance between a particular local optimum and the
global minimum of the objective function, can depend on
the initialisation but also on the unknown noise level of the
data. This paper provides a procedure based on a spectral
relaxation of the non-convex objective function, to compute
such an optimality gap.

A series of numerical experiment show that the obtained
optimality gap can be very small in relation to the global
minimum of the relaxed objective function. Two main con-
clusions can be drawn: i) for the class of simultaneous
matrix decomposition related to ICA, the spectral relaxation
can be used as a good approximation of the true non-
convex objective function and ii) in most of the cases, the
solutions provided by the iterative algorithms tested here
are practically equivalent to the theoretical global optimal
solution . In the case of the orthogonal joint diagonalization,
we show how the optimality gap can be used to characterize
a given sub-optimal solution. In particular, it is possible to
estimate the distance between the sub-optimal solution and
the closest exact diagonalizer of the exactly joint diagonaliz-
able ground-truth matrices. Under the reasonable assumption
that an estimation of the noise level is available such a bound
involves only ‘empirical’ quantities that can computed from
the input matrices and the optimality gap. More practically,
in the ICA framework these bounds can be used to estimate
the error in the recovery of the ICA mixing matrices by
using only the observed signal and a prior knowledge of
the noise level of the signal. Finally, we show that the
method is quite general and can be used to compute the
optimality gap in a broader class of problem. Under certain
rank-dimension conditions, this class includes a large number
of simultaneous matrix decomposition problems where the
optimization problem is harder that in the ICA setting and
subject to stronger initialisation issues.

This paper proceeds as follows: Section II contains a brief
review of the link between ICA and simultaneous diago-
nalisation; Section III is dedicated to the spectral relaxation
in the case of the orthogonal simultaneous diagonalisation;
the empirical bound and a sketch on how this is obtained
from the optimality gap is given in Section IV while all



the details about the derivation of the empirical bound
are provided in Section V; finally, Section VII includes
possible generalisations and Section VII a series of numerical
simulations and experiments on synthetic data.

II. ICA AND SIMULTANEOUS DIAGONALISATION

Consider the ICA model

x = U0s (1)

where x is the observed n-dimensional signal, U0 is the
mixing matrix and the components of s are the n independent
sources. In the orthogonal approach, x and s are assumed to
be unit norm spatially white vectors and U0 an orthogonal
matrix. The general case where x is not spatially white
can be reconnected to the orthogonal case via an opportune
pre whitening of the signal [Souloumiac, 2009]. It can be
shown that the matrix slices of the fourth-order cumulant
tensor of x can be diagonalised by the orthogonal matrix U0

[Cardoso, 1999]. Given four random variables u1, u2, u3, u4,
their fourth order cumulant tensor is defined by

Cum(u1, u2, u3, u4) = (2)

E(ū1ū2ū3ū4)− R̄12R̄34 − R̄13R̄24 − R̄14R̄23

where ū = u−E(u), with E(u) being the expectation value
of u, and R̄ij = E(ūiūj). The (assumed) independence of
the sources implies Cum(si, sj , sk, sl) = k(si)δ(i, j, k, l),
where the kurtosis is defined as k(u) = Cum(u, u, u, u),
and hence

Cum(xi, xj , xk, xl) (3)

=

n∑
a=1

k(sa)[U0]ia[U0]ja[U0]ka[U0]la

The matrix slices of these fourth-order tensors [Mr]ij =∑
kl[Θr]klC

(4)
ijkl, where C

(4)
ijkl = Cum(xi, xj , xk, xl), Θr,

for r = 1, . . . , R, are n × n random matrices, can be
simultaneously diagonalised by the matrix U0. For any r =
1, . . . , R, the matrix slice Mr is a symmetric matrices of the
form

Mr = U0diag([Λr1, . . . ,Λrn])UT0 r = 1, . . . , R (4)

where diag(a), for a = [a1, . . . , an], is a diagonal matrix
with entries a1, . . . an and Λra = k(sa)[UT0 ΘrU0]aa. In
presence of white noise, ε, the ICA model (1) is x = U0s+ε
and the empirical cumulant matrices are no longer simultane-
ously diagonalisable. However, an estimation of the mixing
matrix U0 can be obtained by finding their approximate joint
diagonalizer. The empirical matrix slices can be written as

M̂r = Mr + σWr r = 1, . . . , R (5)

where Mr are the joint diagonalizable matrices defined in (4),
σ is a positive scalar and Wr are symmetric matrices whose
explicit form in terms of U0, s and ε can be obtained from
the definition of the fourth-order cumulant (3). With no loss
of generality we can assume ‖Wr‖ ≤ 1. The approximate
orthogonal diagonalizer of the empirical matrices M̂r can

be found by solving the following non-convex optimization
problem1

minimize L(U) =

R∑
r=1

‖off(UT M̂rU)‖2 (6)

s.t. UTU = 1

where [off(A)]ij = 0 if i = j and [off(A)]ij = Aij if i 6= j
and ‖ · ‖ is the Frobenius norm, i.e. ‖A‖ =

√
Tr(ATA).

III. SPECTRAL RELAXATION AND OPTIMALITY GAP

Due to the non-convexity of L(U), solving (6) is not
straightforward. However, L admits a convex relaxation that
can be solved globally by means of a spectral decomposition
of a positive semi-definite matrix computed from the data.
The global optimum of the relaxed objective bounds from
below the global optimum of L. By letting U∗ be a solution
obtained from an iterative algorithm, a bound on the opti-
mality gap is obtained as the distance between L(U∗) and
global optimum of the relaxed objective. By construction it
bounds from above the distance between the obtained local
minimum and the global minimum of L(U).

A. Spectral Relaxation

Consider the function L : O(n2)→ R defined by

L(V ) = Tr
(
OffV m̂m̂TV T

)
(7)

where the matrix Off is defined by Off vec(A) = vec off(A)
and m̂ = [vec(M̂1), . . . , vec(M̂R)]T . It easy to verify that
L(U) = L(U ⊗ U), where ⊗ is the Kronecker product. A
‘relaxed’ optimization problem is

minimize L(V ) = Tr
(
OffV m̂m̂TV T

)
(8)

s.t. V TV = 1

where the relaxation is to drop the constraint V = U⊗U . The
objective function of the relaxed problem is quadratic in V
and a global optimal solution can be found by computing the
spectral decomposition of the positive semi-definite matrix
m̂m̂T . Since Off is diagonal with only zeros and ones on
the diagonal, the solution to (8) is given by a column wise
reordering of the matrix consisting of the singular vectors of
m̂m̂T . More precisely

V∗ = QΓV̄ T m̂m̂T = V̄ ΣV̄ T (9)

where Σ is a diagonal matrix, Q is an orthogonal matrix such
that OffQ = Off and Γ is a permutation matrix that swaps
the n2−n smallest singular values of m̂m̂T to the positions
defined by the non-zero entries of Off . In other words, Q is
an orthogonal matrix that leave the subspace of the smallest
singular values of mmT invariant, up to permutations.

1This is a rather arbitrary but common choice and other more refined
objective functions may be considered.



B. Optimality Gap

Due to the compactness of O(n), the optimization prop-
timizoblem (6) has a globally optimal solution. Let Ūopt be
such a globally optimal solution to (6) and U∗ the solution
computed by an iterative algorithm. Then

L(V∗) ≤ L(Ūopt ⊗ Ūopt) = L(Ūopt) ≤ L(U∗) (10)

In particular, for any suboptimal U∗ we can bound the
distance from the global optimum by computing the relaxed
solution V∗ and use

L(U∗)− L(Ūopt) ≤ δopt, δopt = L(U∗)− L(V∗) (11)

IV. ERROR BOUNDS

In this section we provide bounds for the error in the
estimation of the mixing matrix U0 by a function of the
optimality gap and other empirical quantities. The key idea
is to combine a characterization of the global optimum
analogous to the perturbation analysis of [Cardoso, 1994]
with the optimality gap (11). In particular, the optimality gap
is used to establish an upper bound on the distance between
the obtained sub-optimal solution U∗ and a provably good
optimal solution Uopt, where provably good means that it
is possible to prove its closeness to a ground truth mixing
matrix U0. Both the analysis of [Cardoso, 1994] and all
bounds derived here are linear approximations, that hold up
to second order terms in the noise parameter. Our main result
is the following theorem.

Theorem 1. Let M̂r, for r = 1, . . . , R, be the nearly joint
diagonalizable matrices defined in (5). Let U∗ be any sub-
optimal solution of the joint diagonalization problem (6).
Then there is a U0, which is an exact diagonalizer of the
ground-truth matrices, such that U∗ can be written as

U∗ = U0e
α∗X∗ α∗ > 0 X = −XT ‖X‖ = 1

(12)
and α∗ obeys

α∗ ≤
σĝ

Γ̂

(
ĝ + 2 +

√
ĝ2 + 4ĝ + 1 +

δopt

2σ2ĝ

)
(13)

up to O(σ2) terms, where ĝ = Γ̂2

γ̂ ,

γ̂ = min
i<i′

R∑
r=1

([UT∗ M̂rU∗]ii − [UT∗ M̂rU∗]i′i′)
2 (14)

Γ̂ =

R∑
r=1

∑
i<i′

([UT∗ M̂rU∗]ii − [UT∗ M̂rU∗]i′i′)
2 (15)

and δopt is defined in (11).

Proof’s sketch

Let U0 be a joint diagonalizer of the ground-truth matrices
Mr, r = 1, . . . , R. Every orthogonal matrix can be written
in the form U = U0e

αX , for some α > 0 and X = −XT .
Without loss of generality one can also assume ‖X‖ = 1.
The empirical bound in Theorem 1 is an inequality on
the perturbation parameter α. According to the expansion

U = U0e
αX , the perturbation parameter α is interpreted as

the ‘distance’ between U and the ground-truth solution U0.
The proof of Theorem 1 consists of four steps:
(i) Characterization of the optimal solutions: an optimal
solution Uopt of (6) is expanded around U0, the closest joint
diagonalizer of the ground-truth matrices, and characterized
via a linear inequality on αopt, the perturbation parameter
defined by the expansion Uopt = U0e

αoptXopt ;
(ii) Distance from the optimal solution: the distance between
Uopt and the obtained sub-optimal solution U∗ is estimates
as a function of the ground-truth matrices and the optimality
gap (11);
(iii) Empirical estimation: the theoretical inequalities ob-
tained in the previous steps are converted into ‘empirical’
linear inequalities via a Taylor expansion in the parameter
σ;
(iv) Triangular inequality: a bound on α∗ in terms of the
empirical bound on αopt and the obtained distance from the
optimal solution is derived via the triangular inequality.

V. PROOF OF THEOREM 1
The proof of Theorem 1 is organised in the four main

steps outlined in the previous section. A detailed description
of each step is provided in the followingsolution to.

A. Characterization of the optimal solutions
In this subsection we recall a result for the perturbation

of joint diagonalizers that first appeared in [Cardoso, 1994].
However, the bound obtained here is slightly different from
the one of [Cardoso, 1994] for the following reason. Since
our goal is only to bound the ‘distance’ between the optimal
solutions of (6), Uopt, and the ground-truth mixing matrices,
U0, we focus on the magnitude of the perturbation parameter
αopt appearing in the expansion Uopt = U0e

αoptXopt , where
Xopt is a unit norm skew-symmetric matrix. As in [Cardoso,
1994], a first order bound in the parameter αopt and the noise
level σ defined in (5) is obtained by expanding around U0

the stationarity equation ∇L(U) = 0, where ∇L(U) is the
gradient of the objective function (6) at U . The key difference
between the derivation described here and [Cardoso, 1994]
is that we do not provide an explicit form for Xopt in terms
of the unperturbed matrices Mr and noise matrices Wr. In
fact, these are ground-truth quantities that are in general not
known and cannot appear in the empirical estimation.

The bound on αopt is obtained as follows. The gradient of
(6) at U is computed by considering the directional derivative
of (6) at U in a tangent space direction Z = −ZT

〈Z,∇L〉 =
d

dt
L(UetZ)

∣∣∣∣
t=0

(16)

=
d

dt

R∑
r=1

‖off(e−tZUT M̂rUe
tZ)‖2

∣∣∣∣∣
t=0

(17)

= 2

R∑
r=1

Tr
(
Z[off(UT M̂rU), UT M̂T

r U ]
)

(18)

= −2〈Z,
R∑
r=1

[off(UT M̂rU), UT M̂rU ]〉 (19)



where we have defined 〈A,B〉 = Tr(ATB), [A,B] = AB−
BA, used the cliclic properties of the trace, M̂r = M̂T

r and
Z = −ZT . The solutions of (6) are, by definition, stationary
points of (6) and hence solutions of the stationarity equation
above. Let Uopt be a minimizer of (6) in a neighbourhood of
U0, which is a joint diagonalizer of the ground-truth matrices.
Since Uopt is an orthogonal matrix, it can be written as
Uopt = U0e

αoptXopt , with Xopt = −XT
opt, ‖Xopt‖ = 1.

Moreover, if the noise parameter is small enough, one can
assume that Uopt is not too far from U0 and consider a linear
expansion of the stationarity condition around U0. We have

0 =

R∑
r=1

[off(UToptM̂rUopt), U
T
optM̂rUopt] (20)

=

R∑
r=1

[off ([Λr, αoptXopt]) ,Λr] (21)

+

R∑
r=1

[off
(
UT0 σWrU0

)
,Λr] +O((αopt + σ)2)

where we have defined Λr = diag([Λr1, . . . ,Λrn]). The idea
is to isolate the terms that are linear in αoptXopt and obtain
a linear equation of the form αoptT̃vec(Xopt) = w, where T̃
is a d2×d2 matrix and and w is the vectorization of the term
proportional to σ. The linear equation can be used to estimate
αopt by finding a lower bound of ‖αoptT̃vec(Xopt)‖ under
the constraint ‖Xopt‖ = 1. It is easy to show that the linear
operator T̃ is given by

T̃ =

R∑
r=1

t̃2r t̃r = (1⊗ Λr − Λr ⊗ 1)Off (22)

and that T̃vec(X) = 0 for all X = −XT . In order to
use the linearized stationarity equation to bound αopt =
‖vec(αoptXopt)‖ we need to project the equation into a
subspace where the corresponding linear operator is invert-
ible. This subspace is the subspace of strictly lower-diagonal
matrices. The idea is to exploit the fact that αoptXopt

is skew-symmetric. Since the lower-diagonal part equals
the upper-diagonal part up to a sign flip, it is enough to
characterize its lower-diagonal part.2 First of all, it easy
to verify that

∑R
r=1[off ([Λr, X]) ,Λr] is a skew symmetric

matrix. For any skew symmetric matrix X one has X =
low(X) − low(X)T , where the operator low(·) is defined
by [low(A)]ij = Aij if i > j and [low(A)]ij = 0

for i ≤ j. It follows that
∑R
r=1[off ([Λr, X]) ,Λr] = 0

implies low
(∑R

r=1[off ([Λr, X]) ,Λr]
)

= 0 and vice versa.
In particular we observe that

low

(
R∑
r=1

[off ([Λr, X]) ,Λr]

)
= (23)

low

(
R∑
r=1

[low ([Λr, low(X)]) ,Λr]

)
2A similar splitting operator technique has been used for example in

[Konstantinov et al., 1994] for the perturbation analysis of a slightly different
matrix factorisation problem.

as it can be shown by using the fact that the commutator
between a diagonal matrix and a strictly upper-diagonal
matrix is strictly upper-diagonal. We consider the projected
stationarity equation

low

(
R∑
r=1

[low ([Λr, low(αoptXopt)]) ,Λr]

)
= (24)

−low

(
R∑
r=1

[off
(
UT0 σWrU0

)
,Λr]

)

that holds up to O((αopt + σ)2) terms. The vectorization of
the above equation reads

Tvec(αoptXopt) = (25)

−vec

(
R∑
r=1

low
(
[off

(
UT0 σWrU0

)
,Λr]

))

where T is a linear operator defined by

Tx = vec

(
low

(
R∑
r=1

[low ([Λr, low(mat(x))]) ,Λr]

))
(26)

where x is a d2-dimensional vector and mat(x) its column-
wise matricization. The linear operator T can be written
explicitly in terms of Kronecker products of the diagonal ma-
trices Λr and a linear operator Low defined by Lowvec(A) =
vec(low(A)). Its explicit form is

T =

R∑
r=1

t2r tr = Low(1⊗ Λr − Λr ⊗ 1)Low (27)

The matrices tr are a diagonal matrices whose non-vanishing
diagonal elements are

[tr]ii =

R∑
r=1

Λrj−Λrj′ i = d(j−1)+j′ and j < j′ (28)

Note that T is always rank-deficient and hence non-
invertible. However, since Xopt = −XT

opt and ‖Xopt‖ = 1,
a lower bound on the perturbation parameter αopt can be
obtained by taking the norm of both sides of (25). Let

γ = min{‖Tvec(X)‖, ‖X‖ = 1, X = −XT } (29)

= min
j<j′

R∑
r=1

(Λrj − Λrj′)
2 (30)

then it easy to see that γ > 0 if, for all j 6= j′ there exists
at least one r ∈ {1, . . . , R} such that Λrj 6= Λrj′ . This is
the non-degeneracy condition required in [Cardoso, 1994]
for (6) to be well posed. Note that one has γ > 0 because
all vanishing elements on the diagonal of T multiply the
vanishing elements of vec(X), if X = −XT . From (25)



one has

(αoptγ)2 ≤ ‖Tvec(αoptXopt)‖2 (31)

≤

∥∥∥∥∥low

(
R∑
r=1

[low
(
UT0 σWrU0

)
,Λr]

)∥∥∥∥∥
2

(32)

=

∥∥∥∥∥
R∑
r=1

trvec(UT0 σWrU0)

∥∥∥∥∥
2

(33)

≤
R∑
r=1

‖tr‖2
R∑
r=1

‖σWr‖2 (34)

= Γ2W2 (35)

where we have defined

Γ2 =

R∑
r=1

‖tr‖2 =

R∑
r=1

∑
i<i′

(Λri − Λri′)
2 (36)

W2 =

R∑
r=1

‖σWr‖2 (37)

and used ‖A‖ = ‖vec(A)‖, low([off(A),Λ]) =
low([low(A),Λ]), for any diagonal Λ and ‖UT0 AU0‖ = ‖A‖.
This implies

αopt ≤
ΓW
γ

+O((αopt + σ)2) (38)

B. Distance From the Optimal Solution

Aim of this subsection is to estimate the distance between
a sub-optimal solution and the closest optimal solution
characterized by (38). Again, since the sub-optimal solution
is an orthogonal matrix we can write U∗ = U0e

α∗X∗, with
‖X∗‖ = 1 and α∗ > 0. The goal is to obtain a bound for
‖α∗X∗−αoptXopt‖ as a function of the optimality gap (11).
We consider the inequality

δopt ≥
R∑
r=1

‖off(UT∗ M̂rU∗)‖2 −
R∑
r=1

‖off(UToptM̂rUopt)‖2

(39)

= 2

R∑
r=1

‖low(UT∗ M̂rU∗)‖2 − 2

R∑
r=1

‖low(UToptM̂rUopt)‖2

(40)
where the second equality holds because the matrices
UT∗ M̂rU∗ and UToptM̂rUopt are symmetric. Expanding in
αopt, α∗ and σ and neglecting higher order terms we obtain

δopt

2
≥

R∑
r=1

(
yT tTr try + 2yT tTr (trz + ar)− 2zT tTr trz

)
(41)

where we have defined y = vec(α∗X∗ − αoptXopt), z =
vec(αoptXopt), tr = Low(1 ⊗ Λr − Λr ⊗ 1)Low and ar =
vec(low(UT0 σWrU0)). This implies

yTTy ≤ δopt

2
+ 2zTTz − 2yT

R∑
r=1

tTr (trz + ar) (42)

where T =
∑R
r=1 t

T
r tr. Letting ỹ = y

‖y‖ and using γ ≤
ỹTT ỹ one has

‖y‖2γ ≤

∣∣∣∣∣δopt

2
+ 2zTTz − 2yT

R∑
r=1

tTr (trz + ar)

∣∣∣∣∣ (43)

≤ C + 2B‖y‖ (44)

where

C =
δopt

2
+ 2zTTz ≤ δopt

2
+ 2α2

optΓ
2 (45)

B = ‖
R∑
r=1

tTr (trz + ar)‖ ≤ αoptΓ
2 + ΓW (46)

This is a scalar second order inequality in ‖y‖ = ‖α∗X∗ −
αoptXopt‖. One obtains

‖α∗X∗ − αoptXopt‖ ≤ (47)

B +
√
B2 + Cγ

γ
+O((αopt + α∗ + σ)2)

C. Empirical Estimations
In order to obtain an empirical error bound, all quantities

in (38) and (47) should be expressed as functions of the
empirical matrices M̂r, the obtained solution and the opti-
mality gap. The formers are characterized by the empirical
joint eigenvalues, given by

Λ̂ri = UT∗ M̂rU∗ r = 1, . . . , R i = 1, . . . , n (48)

where U∗ is the obtained sub-optimal solution. For all r =
1, . . . , R and all i = 1, d . . . , n, the Λ̂ri obey

Λ̂ri = Λri +
[
[UT0 MrU0, α∗X∗] + UT0 σWrU0

]
ii

(49)
= Λri +O(α∗) +O(σ) (50)

that implies

γ̂ = min
i 6=i′

R∑
r=1

(Λ̂ri − Λ̂ri′)
2 = γ +O(α∗ + σ) (51)

with γ defined in (29), and

Γ̂2 =

R∑
r=1

∑
i<i′

(Λ̂ri − Λ̂ri′)
2 = Γ2 +O((α∗ + σ)2) (52)

with Γ defined in (36). Finally, by assuming ‖σWr‖2 ≤ 1
one has W2 = σR. Alternatively, one could assume all Wr

to be relatizations of a matrix random variable W defined by
{W ∼ W : W = WT , [W ]ij = N (0, 1)}. In this case the
matrices Wr are unbounded but a probabilistic constraint on
1
R

∑
r ‖Wr‖2 can be obtained by computing the expectation

and the variance of the the random variable ‖W‖2 and then
applying the Chebyshev’s inequality Pr(|x − E(x)| > t) <
E((x−E(x))2)

t2 , with t > 0 and x an arbitrary scalar random
variable. By choosing for simplicity the former assumption,
the following empirical bounds hold up to higher order terms
in (αopt + αopt + σ)

C ≤ δopt

2
+ 2

σ2Γ̂4

γ̂2
B ≤ σΓ̂(1 +

Γ̂2

γ̂
) (53)

where we have used αopt ≤ σΓ̂
γ̂ +O((αopt + αopt + σ)2).



D. Triangular inequality

The result obtained in Section V-B can be combined with
the error bound obtained in Section V-A and the empirical
estimations given in Section V-C to obtain an empirical
inequality on the distance between the sub-optimal solution
U∗ and the closest ground-truth mixing matrix U0. This is
done via the triangular inequality

α∗ = ‖α∗X∗‖ ≤ ‖α∗X∗ − αoptXopt‖+ ‖αoptXopt‖ (54)

Up to second order terms in the perturbation parameters αopt,
α∗ and σ one obtains

α∗ ≤ B +
√
B2 + Cγ

γ
+ αopt (55)

≤ σĝ

Γ̂

(
ĝ + 2 +

√
ĝ2 + 4ĝ + 1 +

δopt

2σ2ĝ

)
(56)

where we have defined ĝ = Γ̂2

γ̂ and δopt is given in (11).

VI. NON ORTHOGONAL ICA AND OTHER EXTENSIONS

The method used to compute the optimality gap in Section
III can be generalised to various simultaneous matrix de-
composition problems. More precisely, a spectral relaxation
of the type (8) exists for all simultaneous decomposition
problems that can be associated to an objective function of
the form

L(X,Y ) =

R∑
r

‖p(XM̂rY )‖2 (57)

= Tr(PPT (X ⊗ Y )T m̂m̂T (X ⊗ Y )) (58)

where P is a linear projector defined by Pvec(A) =
vec(p(A)), with p(·) being any generalisation
of the off operator defined in Section II, and
m̂ = [vec(M̂1), . . . , vec(M̂R)]. It should be noticed
that the obtained optimality gap trivialises if
rank(X ⊗ Y ) < n2 − rank(m̂m̂T ) because in that
case all independent columns of the variable (X ⊗ Y ) can
be chosen in the null space of m̂m̂T and the minimum
of the relaxed objective is 0. When such rank-condition
is satisfied, one obtains a non-vanishing optimality gap,
which may be used to compute empirical bounds similar
to the result of Section IV. However, this would require a
characterisation of the optimal solution analogous to (38)
that is not available for the general case. First requirement
for such an analysis is the existence of a ground-truth
solution. This is guaranteed if the matrices M̂r are assumed
to be in the form M̂r = X−1

0 TrY
−1
0 +σWr, with p(Tr) = 0

for all r = 1, . . . , R. More generally, all steps involved in
the derivation of Theorem 1 would be related on the specific
properties of the expansion of the relevant variables, i.e.

X = Z0 + t

(
d

dt
X(Z0 + tE)|t=0

)
+O(t2) (59)

where X(t = 0) = Z0 and E is any direction. We leave
the explicit derivation of the empirical bound in the case of
more general objectives for future work.

VII. EXPERIMENTS

A set of numerical experiments has been designed to
study the tightness of the spectral relaxation described in
Section III and the empirical bound defined by Theorem 1
in Section IV. We considered the problem of the approximate
joint diagonalisation of symmetric matrices of dimension
n = 5, 10. For each n, distinct datasets of nearly joint
diagonalizable matrices have been generated, with varying
sample size (number of matrices) R = 10, 50, 100, 500 and
noise level σ = 10−12, 10−8, 10−4, 10−2, 10−1. For each
parameter setting, we have created 10 different datasets
by choosing 10 random ground-truth matrices U0, 10 joint
eigenvalues matrices Λ and the corresponding noise matrices
Wr. In particular, the noise matrices Wr have been chosen
to be gaussian symmetric random matrices of zero mean
and unit variance, i.e. [Wr]ij ∼ N (0, 1) for all i ≤ j
i, j = 1, . . . , n and Wr = WT

r . According to the assumption
considered in our perturbation analysis, the noise matrices
have been randomly renormalised to satisfy ‖Wr‖ ≤ 1. The
joint diagonalization of all datasets has been performed with
the Jacobi algorithm of [Cardoso and Souloumiac, 1996].
For each datasets we have considered 10 different initial
conditions. The convergence of the algorithm for all different
initial conditions is shown in Figure 1. In all cases the values
assumed by the objective function (6) at convergence within
the same dataset are statistically equivalent, independently
of the initial conditions. Moreover, a visual comparison with
the global minimum of the corresponding convex relaxation
shows that the obtained solutions are close to global opti-
mality. To make this evaluation more quantitative we have
defined a relative optimality gap

δ̃opt =
L(U∗)− L(V∗)

L(U∗)
(60)

where L(U) and L(V ) are given in (6) and (8) respectively,
U∗ is solution computed by the Jacobi algorithm and V∗
the global optimum of the relaxed objective, computed as
explained in Section III. For all R and σ, all datasets and all
initial conditions we have computed the relative optimality
gap and averaged over all simulations sharing the same
parameters. The obtained values are reported in Table I. A
synthetic view of the dependence of the relative optimality
gap respect to the sample size, R, and the noise level, σ,
is provided by Figure 2 Finally, we have used the same
numerical simulations to investigate the tightness of the
empirical bound described in Section IV. For each empirical
solution U∗ obtained by the Jacobi algorithm on a given
dataset, we have computed the perturbation parameter α∗ and
the associated empirical bound, according to the definitions
given in Theorem 1. Average values for each n, R and σ
are shown in Figure 3. The intermediate lines in the plots
correspond to the bound (38) for the provably good optimal
solutions Uopt. In general, even if the bound provided by
the linear analysis of Section IV is expected to hold only up
to second order terms, the inequalities are not violated for
any value of the perturbation parameters α∗, σ. However,
the bound does not seem to be sufficiently tight to be used



n = 5 ε = 10−12 ε = 10−8 ε = 10−4 ε = 10−2 ε = 10−1

R = 10 0.41± 0.11 0.43± 0.09 0.45± 0.08 0.45± 0.09 0.42± 0.06
R = 50 0.07± 0.01 0.08± 0.01 0.08± 0.02 0.08± 0.01 0.09± 0.01
R = 100 0.04± 0.01 0.04± 0.01 0.04± 0.01 0.04± 0.00 0.04± 0.00
R = 500 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00

n = 10 ε = 10−12 ε = 10−8 ε = 10−4 ε = 10−2 ε = 10−1

R = 10 0.99± 0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
R = 50 0.18± 0.01 0.18± 0.01 0.19± 0.01 0.18± 0.02 0.18± 0.01
R = 100 0.09± 0.01 0.09± 0.01 0.09± 0.00 0.09± 0.01 0.09± 0.00
R = 500 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00

TABLE I: Average relative optimality gaps for n=5,10, different sample sizes R and noise levels σ. The displayed values
are obtained by averaging over all datasets and initial conditions for a given choice of the parameters R and σ.
The reported uncertainty is the corresponding standard variation.

in practical applications. Improvements in this sense can be
expected from a nonlinear extension of the first order analysis
considered here.

VIII. CONCLUSIONS

This paper shows how to compute a globally defined
optimality gap for a class of joint matrix decomposition
problems. In the orthogonal setting (joint diagonalization
of symmetric matrices) it is possible to use the obtained
optimality gap to bound the error in the recovered orthogonal
diagonalizer as a function of the input matrices and noise
level. Applied to ICA, this provides global guarantees on the
estimation of the mixing matrix that can be computed from
the observed signal alone (by assuming a prior knowledge
of the noise level). Numerical simulations show that the
spectral relaxation used to compute the gap can be really
tight. Moreover, the result allows us to conclude that, in
most cases, the local solutions computed by the Jacobi
iterative algorithm of [Cardoso and Souloumiac, 1996] are
close to global optimality. As a future direction, we plan to
extend the full error analysis to the non-orthogonal setting or
more general simultaneous matrix decomposition problems,
as for example the simultaneous Schur decomposition. More
practical applications in various fields (signal processing,
linear algebra, tensor factorisation..) will be also addressed
in forthcoming follow-up of this work.
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Fig. 1: The convergence of the Jacobi algorithm of [Car-
doso and Souloumiac, 1996] for different initial
conditions and different datasets. The orthogonal
matrices used as initial conditions were generated
by taking the left singular vectors of a random
matrix. In all cases, the algorithm converges to
points that can be considered statistically equiva-
lent in terms of the corresponding objective values.
For all parameters settings ( R = 10, 50, 100, 500,
σ = 10−12, 10−8, 10−4, 10−2, 10−1) only the re-
sults obtained on the first of the 10 experiments
are considered. The plots show the value of the
objective function (y-axis) at each iteration (x-axis),
with different lines corresponding to different initial
conditions. In each plot, the black dashed line rep-
resents the global minimum of the relaxed objective
that is used to compute the optimality gap.

Fig. 2: Average relative gap for different sample size
R = 10, 50, 100, 500 and noise level σ =
10−12, 10−8, 10−4, 10−2, 10−1. For given R and σ,
the average gap is over all corresponding datasets and
initial conditions. Errorbars represent the associated
standard deviations.

Fig. 3: Tightness of the empirical bound defined by Theorem
1 for different sample sizes and noise levels. The
plots show average values for the empirical pertur-
bation parameter α∗, defined by the expansion U∗ =
U0e

α∗X∗ with X∗ = −XT
∗ and ‖X∗‖ = 1, and the

associated empirical bound. The empirical bound is
computed from the obtained solution by applying the
definitions of Theorem 1. The intermediate line is a
bound on the perturbation parameter αopt, associated
with the optimal solutions of (6).


