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Abstract— This paper addresses synchronization of invertible
matrices over graphs. The matrices represent pairwise trans-
formations between n euclidean coordinate systems. Synchro-
nization means that composite transformations over loops are
equal to the identity. Given a set of measured matrices that
are not synchronized, the synchronization problem amounts to
fining new synchronized matrices close to the former. Under the
assumption that the measurement noise is zero mean Gaussian
with known covariance, we introduce an iterative method based
on linear subspace projection. The method is free of step
size determination and tuning and numerical simulations show
significant improvement of the solution compared to a recently
proposed direct method as well as the Gauss-Newton method.

I. INTRODUCTION

This paper presents a method for synchronization of in-
vertible matrices (or transformations) over graphs. The word
“synchronization” in this context, does not refer to consen-
sus [1] or rendezvous, e.g., attitude synchronization [2], but
to transitive consistency [3], [4]. It means that transforma-
tions over loops are equal to the identity. This is a property
that must be fulfilled if the transformations are bijections.
If the property is not fulfilled, i.e., the matrices are not
synchronized, the objective is to find new matrices that are
synchronized and “close” to the former in an appropriate
sense.

The synchronization problem has been addressed in the
literature before, but mostly for the case of orthogonal
matrices. In the case of orthogonal matrices, Govindu et al.
use Lie-group averaging, where a first-order approximation
in the tangent space is employed [5]-[7]. Singer et al.,
present several optimization-based approaches [4], [8], [9].
The same group of authors have also presented several
application-oriented results [10]-[13]. Their works have also
been adapted by Pachauri et al. to the case where the
transformations are permutation matrices [14].

Practical examples where synchronization is present in-
clude rigid bodies in space and multiple-images registra-
tion [15]. In the former, the transformations are rigid and in
the latter the transformations are affine (if not nonlinear); by
using homogeneous coordinates, the transformations can be
represented as matrices in GL(d, R). Furthermore, the rota-
tional respective linear part can be chosen to be synchronized
independently from the translational part. Synchronization is
also closely related to the 3D localization problem, where
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rigid transformations are calculated from camera measure-
ments [16]-[18], and the Generalized Procrustes Problem,
where rotations, translations and scales are calculated from
point-clouds [19]-[23].

In this paper, we introduce a new iterative method for
synchronization. Under the assumptions that the matrices are
drawn from Gaussian distributions with known covariance,
the method achieves a suboptimal solution to the maximum
log-likelihood problem. The key procedure in each iteration
of the method comprises a projection step, where the ma-
trices calculated in the previous iteration are projected onto
a linear subspace calculated by spectral factorization of a
positive semi-definite matrix. The method is free from step-
size determination and tuning. For initialization, a problem
is solved with a convex objective function and quadratic
constraints; it is solved by means of spectral factorization
of a Hessian matrix. This initialization method improves on
a recently presented direct method [23].

II. GRAPHS AND CONSISTENT MATRICES

In order to define the problem we want to solve, we need
to state some concepts of directed graphs. Let G = (V, )
be a directed graph, where V = {1,2,...,n} is the node set
and £ C V x V is the edge set.

Definition II.1. (connected graph, undirected path)

The directed graph G is connected if there is an undirected
path from any node in the graph to any other node. An
undirected path is defined as a (finite) sequence of unique
nodes such that for any pair (i,7) of consecutive nodes in
the sequence it holds that

((3,7) € &) or ((4,i) € €).

Definition II.2. (quasi-strongly connected graph, center,
directed path)

The connected directed graph G is quasi-strongly connected
(OSC) if it contains a center. A center is a node in the graph
to which there is a directed path from any other node in the
graph. A directed path is defined as a (finite) sequence of
unique nodes such that any pair of consecutive nodes in the
sequence comprises an edge in E.

Definition IL.3. (strongly connected graph)
The directed graph G is strongly connected if for each pair
(i,5) € V x V), there is a directed path from i to j.

Definition I1.4. (strongly connected component)

A strongly connected component of a directed graph G =
(V, &), is a strongly connected graph G. = (V.,E.), such
that V. CVand € D E. C V. XV,



Definition IL5. The complete graph is (V,V x V).

Now we connect the directed graphs with collections of
matrices in GL(d,R).

Definition IL.6. (transitive consistency)

1) The matrices in the collection {Gi;} ¢ jyevxy of ma-
trices in GL(d,R) are transitively consistent for the
complete graph if there is a collection {G;}icy of
matrices in GL(d,R) such that

Gij = G7'G; for all i, j. (1)

2) Given a graph G = (V,&), the matrices in
the collection {G;} i jyee of matrices in GL(d,R)
are transitively consistent for G if there is a col-
lection {Gij}ijyevxy 2O {Gij}ajee such that
{Gij}i.j)evxv is transitively consistent for the com-
plete graph.

Another word for transitive consistency, which will be
used in this paper, is synchronization. We say that two collec-
tions {G,}icy and {G,}iey are equal up to transformation
from the left if there is a matrix Q € GL(d,R) such that

QG; = G, for all i.

Lemma IL.1 ( [3]). For any graph G = (V, ) and collection
{Gij}ij)ee of matrices in GL(d,R) that are transitively
consistent for G the following holds

1) All collections {G;}icy satisfying (1) are equal up
to transformation from the left if and only if G is
connected,

2) there is a unique collection {Gij}jjevxy O
{Gij}i.j)ee of transitively consistent matrices for the
complete graph, if and only if all collections {G;}icy
satisfying (1) are equal up to transformation from the

left.

Lemma IL2. The matrices in the collection {G;} jyevxv
of matrices in GL(d,R) are transitively consistent for the
complete graph if and only if

Gir = GG
for all i,j and k.

For a proof of Lemma I1.2 we refer to [24].

III. PROBLEM FORMULATION

In this section we formulate the problem. On a high level,
the problem is described as follows. Given a directed and
connected graph G = (V,€) and a collection {Gi;}; j)ee
of matrices in R?*?, the problem is to find a collection
of transitively consistent (or synchronized) invertible C_?ij-
matrices (i.e., elements in GL(d,R)) that are close to the
G;; matrices (we return to the meaning of closeness in
the detailed description of the problem below). Due to
Definition I1.6, this general problem is equivalent to finding
a collection {G;};cy of invertible matrices such that the
matrices G;; = (G 'G}) are close to the G;;-matrices.

Now we provide a detailed description of the problem. It
is formulated as a maximum likelihood estimation problem.
We assume that there is a collection {G}"*},cy of matrices
in GL(d,R) such that that (the vectorization of) each G,;-
matrix in the collection {G;}(; j)ee has been drawn from
the distribution

/\/'(vec((C??“e)_l(}’;“‘“’)7 Q;jl).
Each Q;; € R %4 g positive definite. The vec(+)-operator
transforms a matrix into a vector by stacking the columns
after each other in consecutive order.

The maximum-likelihood matrix synchronization problem
is formulated as

1

iVGC(GZ‘j — G;lGj)T'
(i,5)€E
Qijvec(Gij — G 1Gy),

f(G) =

minimize
G

2)

subject to G = [G1,Ga,...,Gy],
G; € GL(d,R) for all i.

Remark IIL.1. In the special case when the Q;j-matrices
are equal to the identity, problem (2) can be written more
compactly as
1 _
fGy =Y 31Gy =G LGl
(i,9)€€

The graph G = (V,&) is assumed to be connected. Con-
nectivity, is necessary to guarantee that the GG; matrices are
unique up to transformations from the left in the case of
synchronized G;; matrices, see Lemma II.1.

It should be noted that problem (2) is a nonlinear (non-
convex) least squares problem over an open (non-convex) set.
A valid concern is that of the well-posedness of Problem (2),
ie., can we rightfully write “minimize” instead of “inf”.
In fact, in its most general form, without any requirements
for the G-graph and the (;;-matrices, the problem is not
well-posed. To be sure that there exists a minimizer to the
problem, we have to impose additional constraints on those
objects. Proposition III.1 introduces such constraints.

According to Proposition III.1 1), the well-posedness is
guaranteed if G is strongly-connected. The condition 2) in
the proposition violates the assumption that the matrices
are drawn from Gaussian distributions. Thus, this second
condition is nothing but a requirement for the Problem (2)
to be well posed. It should be noticed however that the event
that at least one of the drawn matrices is rank deficient has
probability zero.

Before we proceed, we introduce the set

S={G:G=[G1,Ga,...,G,],G; € GL(d,R) for all i}.

Proposition IIL.1. If one of the two assumptions below are
fulfilled, then f defined in problem (2) attains a minimum on
the set S.



1) G=(V,E) is strongly connected,

2) G = (V,€) is connected, and there is at most one
strongly connected component G. of G that contains
two or more nodes. For any edge (i,j) € £, where at
least one of the nodes i and j is not in G, it holds

that G;; € GL(R, d).

Proof of Proposition II1.1: All norms in this proof shall
be read as the Frobenius norm. The proof begins with a
general part and proceeds with parts tailored for conditions
1) and 2), respectively.

General part: Since, the function f is bounded from below
(by 0), there is a sequence {G*}52,; with G® € S for all s

such that
f li s sty < %) for all s.
LG = Jim f(G) and J(G) < F(G) forall 5
Let G° = [Gf,G5,...,G:) for all s, where G €

GL(d,R) for all i,s. Since {f(G*)}32, is decreasing,
due to the structure of f, it is easy to verify that
(G G M semy (i)€E is uniformly bounded, which
means that the elements in {(G}) "G }sen, i, )ee are uni-
formly bounded. Hence, there is a sub- sequence {sy}%2,
such that {(Gf’“)‘lG;k}z‘;l converges for all (i,5) € &
(application of Weierstrass Theorem). Thus, there are C_lij €
R*4 for all (i,7) € € such that

lim (G5*)7'G3

k—o0

= G, for all (i,j) € €. 3)
One can now show that

inf_(G) =

GeS

Z %VCC(GU — Gij)TQijveC(Gij - éij)'

(i,4)€€

Condition 1) The first step is to show that the G’ij-matrices
are invertible. Suppose that there is an edge (i1,42) € & such
that G;,;, is not invertible. Since the graph G is strongly
connected (7, j) is part of a loop with distinct nodes. Let the
edges in the loop be (i1,42), (i2,43),. ., (in,41), where N
is the number nodes in the loop. Now it holds that

Jm (GE) TG (G TG - (G TG
—00

= (lim (G3) G (Jim (GG -

(khm (G)1Gsr) = G Giss o Gine = .

112 Tigt3 ~ " INT1
Since the right-hand side in the last equation is inverible, all
the matrices in the left-hand side must also be. Especially
Gi,i,,» which was claimed not to. This is a contradiction.
Hence, all the G’ij -matrices are invertible.

Now we can augment the collection of G;;-matrices. We
define

Gij = lim (GJ*)7'G5* for all (j,) € &, 4)

k—o0

For any (i,1) ¢ &, for which there is j such that (i, j), (5,1) €
£ holds, we define G;; by

lim (G5*) 71 G (G5 Gy

k—o0
=(Jm (G763 Jim (G)7NG)

= Gijéjl =Gy.

Now we can add new matrices to the collection of existing
G;j-matrices by considering new (i, j, |)-triplets as set forth
above. As a consequence of the fact that the graph G is
connected, this procedure can be continued until all the G-
matrices are added (i.e., all index pairs are considered). All
the matrices in the collection {G;;} (i j)evxv are invertible.
Furthermore, by using a limit argument, one can show that

Gijéjk = Gil for all i,j, l.

The latter implies — due to Lemma II.2 — that there are G-
matrices in GL(d,R) such that

Gy = GG forall (i,5) € V x V.

Hence, the problem has a minimizer under condition 1).

Condition 2) We partition &, i.e., the edge-set of G, into
two sets. The first, .S;, comprises edges that are contained
in the strongly connected component G.. The second, So,
comprises the rest of the edges.

First, we consider edges in S;. Along the lines of the
proof for condition 1), one can prove that Gm ij = Gik
for all i, j,k € G.. Furthermore, for all edges in S;, there
are (3;-matrices such that G” = G 1G for all 4,5 € G..

Secondly, we consider edges in Ss. Each edge in Sy is
contained in a tree (which is one of perhaps many trees
consisting of nodes that are not in G.) where one and only
one “leaf-edge” ends or starts in a node 7. that is a node in
G.. Now one can show that there are C_r‘ij—matrices for the
edges in the tree such that

Gij = GGy,

where the G;-matrices (for all nodes but i.) are computed
recursively, starting with Gy, where k is the other node,
besides 7., in the “leaf-edge”. Depending on whether the
edge has the form (k,ic) or (ic, k), the matrix Gy is either
given by G = GMCG:l or G = G;,G; . The matrix
G, was assumed to be invertible, see condition 2). Once
Gy is computed, we can continue with the matrices of the
nodes directly connected to k and so on. The equivalent
procedure is then performed for all the trees (if there are
more than one). ]

Remark IIL.2. Note that since the graph G is assumed to be
connected, the C_?ij—matrices in the proof of Proposition III.1
correspond to a unique (up to transformation from the left
that is) collection of G;-matrices, see Lemma II.1. However,
we do not claim the solution to be unique (up to transfor-
mation from the left) of the optimal solution to this problem.



IV. THE ITERATIVE PROJECTION METHOD

In this section we introduce our method, which is an iter-
ative method that achieves a suboptimal solution to Problem
(2). At each iteration k, the matrix

G(k) = [G1(k), Go(k), - ..,

is calculated. After a suitable_number of iterations, 7', the
algorithm stops and the final G-matrix is chosen as the best
G (k)-matrix for all the iterations k =1,2,...,7.

Gn(F)]

A. Initialization

As initialization for the method (step O in the main
algorithm), an other optimization problem than (2) is solved.
The problem is defined below.

minimize Z
(1,7)€€

subject to G = [G1,Ga,...
Gi c RdXd
GGT =nl.

1
S11Gi; Gy — Gill%

,Gnl, (&)

The G;(0)-matrices are obtained from the optimal solution
to this problem. Provided that the G;j-matrices are close
enough to be synchronized, one can show that that the opti-
mal G;-matrices are invertible and the problem is well posed.
Solving (5) amounts to performing a Spectral Factorization
or a Singular Value Decomposition (SVD). More specifically,
we reformulate the problem (5) as:

min‘i/‘r/nize trace(WTHW),

(6)
subject to W e R">4 wTWw = 1.

The matrix H is defined as

H = diag(A1) ® I + diag(WTW) —w — w7,
where 1 € R™ is the vector where each element is equal to
]., W = [Wij], A= [Aij}’ and

Wi = Gi; if (4,)) €€, A= 1 if (i,9) €€,
0 else, 0 else.
Now, let V' be the optimal solution to Problem (6) (ob-

tained by preforming SVD or spectral factorization of H)
and identify the G;(0)-matrices by

= [(G1(0)7T, (G2 (0)7 T, ...

B. Main algorithm

Step 0: Set k¥ = 0, choose T € N, and choose G(0)
according to the procedure in Section IV-A.

(G (0))77].

Step 1: Let H(k) = [H;;(k)], where
Hi(k) =Y (Gi(k)" @ 1) Qi (G5(k)"
JEN;

ST (Gih)" ©Gi) Qui(Gilk)" ® Gji)

{j:iENj}

®I)+

for all 7 and

Hij (k) =

(i,)) &

{ ! {(M)
T (27]) ’

{-@ ) QG (R @ Gy) it {(m
. ) T i (7’7]) )

{~awT o) G mTon i {(m
—( ](k) ® 1) Q”(G]-(k)T(X)G”) if (4,7) €€,

—(Gi(k)" ® G;i) " Qsi(Gi(k)" ® 1) (4,9) €

for all ¢ # j. The object ® is the Kronecker product.

Step 2: Let Z(k) be the matrix (up to permutation),
whose column vectors are given by the d? eigenvectors
corresponding to the d? smallest eigenvalues of the
matrix H (k). These eigenvectors are computed by spectral
factorization of H (k).

Step 3: Define R = [Ry, Ry, ..., R,] € R via
vec(R)
=Z(k)Z (k)" vec([(G1(k ))_1»(G2(k))_1,~-,(Gn(/f))_l(]%

where R; € R%*9 for all i.

Step 4: If the R;-matrices are invertible and £ + 1 < T, let

k=k+1, G(k) = R, and goto Step 1. Else, let
o =G(l here | = i
G = G(l), where arg me{rlr’l%?wk} f(G(m))

and terminate the algorithm.

V. EXPLANATION AND MOTIVATION OF THE ALGORITHM

In this section we explain and motivate the proposed
algorithm. To begin with, we turn to Section IV-A and
the initialization procedure. The function f in (2) reduces
to the objective function in Problem (6) if two restrictions
are fulfilled. The first is that all the @;;-matrices are equal
to I — in this case the function is on the form given in
Remark III.1 — the second is that the matrices are constrained
to be orthogonal. If these two restrictions are fulfilled, the
procedure in Section IV-A generates a solution very close
to the global optimal solution of the restricted Problem (2),
see [3] and especially Section 3.4 for further details on the
method. The constraint GGT = nl is a relaxation of the
constraint that GiGiT = I for all 7. A related method, also
for the case where );; = I for all 7,5 was presented in
[23]. That method was specialized for affine transformation
matrices.

One of the more interesting properties of Problem (6) (or
rather the matrix H defined in Section IV-A) is provided by
the following proposition.



Proposition V.1 ( [3]). The collection {G;}; jyee of matri-
ces in GL(d,R) is transitively consistent for the connected
graph G if and only if

dim(ker(H)) = d,
where H is defined in Section IV-A.

Furthermore, one can also show that the rank of H is always
larger or equal to (n — 1)d if the G,;-matrices are invertible.

Now we turn to the motivation behind the main algorithm.
We want to solve problem (2). However, not only is the
feasible set non-convex, the objective function in (2) is
non-convex too. A key idea behind the algorithm is to
approximate the objective function with a convex one. This is
done in the manner described below. The objective function
f in Problem (2) is given by

1 _ _
HEEY 5 vee(Gij — G LGN Qijvec(Gi; — G Gy)
(4,4)€E
= 3 Jveel(GuGy - GG
(3,7)€EE

Qijvec((Gi;G7 ' — G HGy).

Now, let us introduce the following function

. 1

f(GR) = > vec((GiR; — R)G;)"-
(i,§)€E

Qijvec((Gij R — Ri)Gjy),

where R = [Ry, Ry, ..., R,] and each R; € R¥*? for all i.
The problem (2) can be rewritten as

f(G, R)

minimize

¢ ®)
subject to R; = Gi_1 for all s.

Now, let us consider the following optimization problem. In

each iteration we aim to minimize f(G(k), R) with respect

to R. To be more specific, we solve a the following problem

minimize
P

|G(k) = Pllr

subject to P =[Py, Ps,..., Py,
P; e R™ for all i,
vec(P) € im(Z(k)), 9)
Z(k) = argmzin{ZTH(k:)Z N

Z e RS 7Tz 1y,
H(k) = (Vr)*f(G(k), R).
The Hessian matrix of the function f(G(k), R) with re-
spect to R is H(k). If the Gj-matrices are transitively
consistent and the G;(k)-matrices fulfill (1), then g(k) =
vec([G7 1 (k), G5 (k), ..., G5 (k)]) is contained in the d2-
dimensional nullspace of H (k). If the G;;-matrices are not
synchronized, the optimal solution to a certain optimization
problem is contained in im(Z(k)). The optimization problem
is that of minimizing f(G(k), R) with respect to R, subject
to the constraint that vec(R) has unit norm. Now, one

could propose a method similar to the one in Section IV-
A, where the optimal solution is obtained from Z(k) (which
is the equivalent to the matrix V' in Section IV-A). However,
im(Z(k)) is a d?-dimensional subspace and it is hard to
extract the optimal solution from this space. The trick is
instead to project the (vectorization of the) near-optimal
solution, consisting of the inverses of the G;(k)-matrices,
onto im(Z(k)), and by this procedure, removing the parts
that are not contained in im(Z(k)). Solving Problem (9)
corresponds to performing this projection procedure. The
projection is given by the matrix R in (7).

VI. NUMERICAL EXPERIMENTS

To evaluate the performance of the algorithm, numerical
simulations were conducted. Results of those simulations are
shown in Fig. 1. For each out of eight different param-
eter settings, 100 simulations were run and the minimum
and the median of the normalized f-values are shown for
each iteration of the algorithms (see explanation of the
normalization below). Red lines correspond to our proposed
method, whereas black lines correspond to the Gauss-Newton
method, which is a standard method for nonlinear least
squares problems. In [3], explicit expressions are provided
for the Gauss-Newton method for the case where all the Q;;-
matrices are equal to the identity matrix.

For simplicity, we have not considered the damped version
of the Gauss-Newton method, nor the Levenberg-Marquad
generalization. Thus, we reserve ourselves for possible im-
provements present, would these aspects been accounted for.
As is the case for our method, the initialization procedure for
the Gauss-Newton method is the direct method in Section IV-
A.

The objective values have been normalized compared to
that obtained via the initialization procedure. The initializa-
tion procedure is (to the best of our knowledge) the state of
the art in terms of direct methods. The problem at hand, (2)
that is, has (to the best of our knowledge) not been studied
before in the general form we consider. Due to this reason,
we did not consider more comparison methods than the
Gauss-Newton method and the direct method in Section I'V-
A.

The parameters in Fig. 1 are defined as follows.

e n is the number of coordinate systems.

e d is the dimension of the matrices, i.e., the matrices
are contained in R%*<,

e p is the graph density. We always assume that the
graphs are connected, so p = 0 corresponds to a tree
graph and p = 1 corresponds to the complete graph,
with linear interpolation in between.

e 04 is a parameter used in the generation of the Gj;-
matrices. It is used in the following procedure.

— First random orthogonal matrices are generated,
call them R;, for all ¢ € V. Each such matrix

is generated from R; matrices whose elements



are samples drawn from the uniform distribution
with (—0.5,0.5) as support. The R;-matrices are
projected onto O(n) in the least square sense to
get the R;-matrices.

— Then G{"*-matrices are created by element wise
addition of samples drawn from N(0,0) to the
R;-matrices.

- Now Gi¥* = (Gy*)~'GY* for all i,j. These
synchronized G;rjue-matrices are then used for the
means in the distributions N (vec(G?J‘»‘e),Q;jl),
from which the (vectorization of the) G;;-matrices
are drawn.

e 0 is a parameter used in the generation of the @Q;;
matrices. ();j-matrices are created by element wise ad-
dition of samples drawn from N(0,0q) to the identity
matrix. Then Q;; = Qg;Qij. Thus, if og = 0, it holds
that );; = I for all 4, j.

There are a couple of things to note here. The first is that
the graph is not necessarily strongly connected, albeit con-
nected. The conditions in Proposition III.1 are not necessarily
fulfilled. Yet, the method works well in practice (in the
medium sense), see the simulations. Improvement of the
initial solution was observed for all the different parameter
settings, which is not the case for the Gauss-Newton method.
The second thing to note is the involvement of orthogonal
matrices in the generation of the G}"*-matrices. Orthogonal
matrices are the least ill-conditioned matrices (with respect to
matrix inversion). Thus, for near-orthogonal GY“*-matrices,
the optimization problem is more tractable than for more ill-
conditioned matrices. For all parameter settings in Fig. 1,
o4 = 0.5, which means that the G"°-matrices are (statisti-
cally speaking) not that close to orthogonal matrices.

We should emphasize here that in each simulation, for each
setting of parameters, new matrices and graphs were gen-
erated. Also, note that no median-improvement is achieved
when the the Gauss-Newton method is used for parameter
settings corresponding to the bottom sub-figures. As already
mentioned, one might argue that by choosing proper step-
sizes and by augmenting the Gauss-Newton method with a
gradient term (the Levenberg-Marquad algorithm) we would
improve the perfomance. Now, this is underpinning one of
the advantages with the proposed method — it is free of such
step-size determination and tuning, which makes it easy to
use in practice.

VII. CONCLUSIONS

A new iterative method has been presented for synchro-
nization of invertible matrices over graphs. The matrices are
assumed to be drawn from Gaussian distributions with known
covariance. The method is projection method, where the
updated matrices in each iteration are obtained by means of
projection onto a linear subspace. The method has fast con-
vergence and is free of step-size determination and tuning. In
numerical simulations, the method performs better than the

Gauss-Newton method as well as a recently proposed direct
method.
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Fig. 1: Improvement over the direct method for the proposed algorithm and the Gauss-Newton method. Eight different
parameter settings are considered. Values below 1 are improvements compared to the direct method, which is being

used for initialization.
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