
Noname manuscript No.
(will be inserted by the editor)

Configuring use case models in product families

Ines Hajri · Arda Goknil · Lionel C. Briand · Thierry Stephany

the date of receipt and acceptance should be inserted later

Abstract In many domains such as automotive and avion-
ics, the size and complexity of software systems is quickly
increasing. At the same time, many stakeholders tend to be
involved in the development of such systems, which typi-
cally must also be configured for multiple customers with
varying needs. Product Line Engineering (PLE) is there-
fore an inevitable practice for such systems. Furthermore,
because in many areas requirements must be explicit and
traceability to them is required by standards, use cases and
domain models are common practice for requirements elici-
tation and analysis. In this paper, based on the above obser-
vations, we aim at supporting PLE in the context of use case-
centric development. Therefore, we propose, apply, and as-
sess a use case-driven configuration approach which interac-
tively receives configuration decisions from the analysts to
generate Product Specific (PS) use case and domain models.
Our approach provides the following: (1) a use case-centric
product line modeling method (PUM), (2) automated, inter-
active configuration support based on PUM, and (3) an au-
tomatic generation of PS use case and domain models from
Product Line (PL) models and configuration decisions. The
approach is supported by a tool relying on Natural Language
Processing (NLP), and integrated with an industrial require-
ments management tool, i.e., IBM Doors. We successfully
applied and evaluated our approach to an industrial case
study in the automotive domain, thus showing evidence that
the approach is practical and beneficial to capture variability
at the appropriate level of granularity and to configure PS
use case and domain models in industrial settings.

Ines Hajri, Arda Goknil, and Lionel C. Briand
SnT Centre for Security, Reliability and Trust, University of Luxem-
bourg, Luxembourg
Thierry Stephany
International Electronics & Engineering (IEE), Contern, Luxembourg
E-mail: {ines.hajri, arda.goknil, lionel.Briand}@uni.lu
thierry.stephany@iee.lu

1 Introduction

In various domains such as automotive and avionics, soft-
ware systems are quickly getting larger and more complex.
These systems often consist of various interacting subsys-
tems, e.g., lighting systems, engine controller, and sensing
systems. Further, many suppliers are typically involved in
system development. Each supplier is mostly specialized in
developing one or two of these subsystems. For example,
in the automotive domain, while one supplier provides a
sensing system monitoring the driver seat for occupancy by
means of a pressure sensitive sensor, another supplier may
develop an engine controller using the output of the sens-
ing system to prevent unintentional vehicle starts and un-
necessary fuel consumption. These suppliers develop multi-
ple versions of the same product since they work with many
manufacturers (customers). Therefore, given the complex-
ity arising from the context described above, systematic and
supported Product Line Engineering (PLE) is crucial in their
software development practice, from requirements analysis
to implementation and testing.

Our work was motivated by discussions with IEE S.A.
(in the following “IEE”) [3], a leading supplier in automo-
tive sensing systems enhancing safety and comfort in vehi-
cles produced by major car manufacturers worldwide. Such
systems monitor the physical environment by means of phys-
ical components (e.g., electrical field sensors, pressure sen-
sitive sensors, and force sensing resistors), detect events or
changes in the existence of objects and humans (e.g., seat
occupant classification, gesture recognition, and driver pres-
ence detection), and provide the corresponding output to
other subsystems (e.g., airbag control unit, trunk controller,
and engine controller). At IEE, similar to many other de-
velopment environments, use cases (including use case di-
agrams and use case specifications) are the main artifacts
employed to elicit requirements and communicate with cus-

tomers. In order to clarify the terminology used in the re-
quirements and to provide a common understanding of the
application domain concepts, use cases are often accompa-
nied by a domain model formalizing concepts and their re-
lationships, often under the form of a class diagram with
constraints.

For each new product family, it is common to start a
development project with an initial customer providing re-
quirements for a single product. The analysts elicit and doc-
ument the initial product requirements as use cases and a
domain model. The use cases and domain model are copied,
modified, and then maintained for each new customer. This
practice is called clone-and-own reuse [25] and requires the
entire use cases and domain model to be evaluated man-
ually to identify changes since nothing indicates what the
variable requirements are and where they are located. The
clone-and-own approach is fully manual, error-prone, and
time-consuming in industrial practice. Therefore, more ef-
ficient and automated techniques are required to manage
reuse of common and variable requirements given as use
cases and domain model across products in a product line.
One significant step in that direction is automated configu-
ration that aims at guiding configuration decisions for Prod-
uct Line (PL) use cases and domain model. In our context,
the analysts explicitly specify PL variability, and automati-
cally generate Product Specific (PS) use cases and domain
model for a configured product. This is expected, in the con-
text of use case-driven development, to facilitate the reuse of
use case models for multiple products. After assessing rel-
evant techniques in the literature, we developed a complete
use case-driven configuration approach supporting embed-
ded system development, though we expect it to be easily
applicable in other contexts. We target, to the largest extent
possible, common software modeling practices, to achieve
widespread applicability.

The benefits of use case-driven configuration have been
acknowledged and there are proposed approaches in the lit-
erature [9,61,6]. Many studies [34,27,8] provide configura-
tion approaches which require that feature models be traced
as an orthogonal model to artifacts such as UML use case,
activity and class diagrams. In order to employ these ap-
proaches in industrial practice, the analysts need to provide
feature models with their traces to use cases and related ar-
tifacts. The evolution of feature models also requires these
traces to be maintained manually by the analysts. Due to
deadline pressure and limited resources, many software de-
velopment companies find such additional traceability and
maintainability effort to be impractical. Moon et al. [53,52]
propose a method that generates PS use cases from PL use
cases without using any feature model. However, the pro-
posed method requires Primitive Requirements (PR) (i.e.,
building blocks of complex requirements) to be specified by
the analysts and traced to the use case diagram and specifi-

cations via PR - Context and PR - Use Case matrices. The
configuration takes place by selecting the PRs in the matri-
ces without any automated guidance.

To avoid, or at least minimize, additional traceability and
maintenance effort required by the approaches in the litera-
ture, we first need a modeling method with which we can
model variability information explicitly in the use case dia-
gram, specifications, and domain model, without additional
artifacts. Therefore, in our previous work [44], which this
paper extends, we proposed and assessed the Product line
Use case modeling Method (PUM), which enables the an-
alysts to capture and document variability in PL use case
diagrams, use case specifications, and domain models. For
PL use case diagrams, we employ the diagram extensions
proposed by Halmans and Pohl [45]. These extensions over-
come the shortcomings of textual representations of vari-
ability, such as implicit variants and variation points. Fur-
ther, for PL use case specifications, we employ Restricted
Use Case Modeling (RUCM) [79], which includes a tem-
plate and restriction rules to reduce imprecision and incom-
pleteness in use cases. RUCM was a clear choice since it
reduces ambiguity and facilitates automated analysis of use
cases [78,80,73,74]. However, since it was not originally
meant to model variability, we introduced some PL exten-
sions to capture variability in use case specifications [44].
To be able to capture variability in PL domain models, we
rely on the stereotypes (i.e., variation, variant and optional),
proposed by Ziadi and Jezequel [82] for UML class dia-
grams.

In this paper, we propose, apply, and assess a use case-
driven configuration approach based on PUM. Our goal is
to provide a degree of configuration automation that enables
effective product-line management in use case-driven de-
velopment, without requiring additional modeling artifacts
and traceability effort. Our approach supports four activities.
First, the analysts model the variability information explic-
itly in a PL use case diagram, its use case specifications, and
its corresponding domain model. Second, the consistency of
the PL use case diagram and specifications are checked and
inconsistencies are reported if there are any. For instance, a
variation point in the use case diagram might be missing in
the corresponding use case specification or a use case spec-
ification may not conform to the extended RUCM template.
Third, the analyst is guided to make configuration decisions
based on variability information in the PL models. The par-
tial order of decisions to be made is automatically identified
from the dependencies among variation points and variant
use cases. In the case of contradicting configuration deci-
sions, such as two decisions resulting in selecting variant
use cases violating some dependency constraints, we au-
tomatically detect and report them. The analyst must then
backtrack and revise the decisions to resolve these inconsis-
tencies. Alternatively, we could employ constraint solvers

(i.e., SAT solver, BDD solver and Prolog solver) to identify
a priori possible contradicting decisions so as to avoid them.
However, according to our observation at IEE, customers are
also involved in the decision-making process in which they
frequently re-evaluate, backtrack and revise their decisions.
Therefore, it is important for them to have the possibility
to make contradicting decisions and revise prior ones as a
result. Fourth, based on configuration decisions, the PS use
case and domain models are generated from the PL use case
and domain models. To support these activities, we devel-
oped a tool, PUMConf (Product line Use case Model Con-
figurator). The tool automatically checks the consistency of
the PL models, identifies the partial order of decisions to be
made, determines contradicting decisions, and generates PS
use case and domain models. To summarize, the contribu-
tions of this paper are:

– a configuration approach that is specifically tailored to
use case-driven development, and that guides the ana-
lysts and customers in making configuration decisions
in product lines to automatically generate PS use case
and domain models;

– tool support integrated with an industrial requirements
management tool (i.e., IBM Doors) as a plug-in, which
relies on Natural Language Processing (NLP) to report
inconsistencies in PL use case models and contradict-
ing configuration decisions, and to automatically gener-
ate PS use case and domain models;

– an industrial case study demonstrating the applicability
and benefits of our configuration approach.

This paper is structured as follows. Section 2 introduces
the industrial context of our case study to illustrate the prac-
tical motivations for our configuration approach. Section 3
discusses the related work in light of our needs. In Section 4,
we provide an overview of the approach. Section 5 provides
a brief description of PL use case and domain modeling
proposed in our previous work, which this paper extends.
In Section 6, we illustrate our approach through example
models. In Sections 7 and 8, we provide the details of the
core technical parts of our approach: consistency checking
of configuration decisions and generation of PS use case and
domain models. Section 9 presents our (publicly available)
tool support for configuration, while Section 10 presents our
industrial case study, involving an embedded system called
Smart Trunk Opener (STO), along with results and lessons
learned. We conclude the paper in Section 11.

2 Motivation and Context

Our configuration approach is developed for the context of
embedded software systems, interacting with multiple other
external systems, and developed according a use case-driven

process, by a supplier for multiple manufacturers (customers).
In such a context, requirements variability is communicated
to customers and an interactive configuration process is fol-
lowed for which guidance and automated support are needed.
For instance, for each product in a product family, IEE ne-
gotiates with customers how to resolve variation points in
requirements, in other words how to configure the product
line.

In this paper, we use Smart Trunk Opener (STO) as a
case study, to motivate and assess our approach. STO is a
real-time automotive embedded system developed by IEE.
It provides automatic, hands-free access to a vehicle’s trunk,
in combination with a keyless entry system. In possession
of the vehicle’s electronic remote control, the user moves
her leg in a forward and backward direction at the vehicle’s
rear bumper. STO recognizes the movement and transmits a
signal to the keyless entry system, which confirms that the
user has the remote. This allows the trunk controller to open
the trunk automatically.

STO Requirements
from Customer A

(Use Case Diagram
and Specifications,
and Domain Model)

Customer A
for STO

evolves to

(clone-and-own)

modify

STO Requirements
from Customer B

(Use Case Diagram
and Specifications,
and Domain Model)

modify

evolves to

(clone-and-own)

STO Requirements
from Customer C

(Use Case Diagram
and Specifications,
and Domain Model)

modify

Customer B
for STO

Customer C
for STO

Fig. 1 Clone-and-Own Reuse at IEE for a Product Family

The current use case-driven development practice at IEE,
like in many other environments, is based on clone-and-own
reuse [25] (see Fig. 1). IEE starts a project with an initial
customer. The product requirements are elicited from the
initial customer and documented as a use case diagram, use
case specifications, and a domain model. For each new cus-
tomer in the product family, the IEE analysts need to clone
the current models, and negotiate variabilities with the cus-
tomer to produce a new use case diagram, set of specifica-
tions, and domain model (see clone-and-own in Fig. 1). As
a result of the negotiations, the IEE analysts make changes
in the cloned models (see modify). With such practice, vari-
ants and variation points (i.e., where potential changes are
made) are not documented and IEE analysts, together with
the customer, need to evaluate the entire use cases and do-
main model.

Fig. 2 depicts part of the initial UML use case diagram
of the STO product, which describes four main functions:
recognize gesture, provide system operating status, clear er-
ror status, and provide system user data.

In the clone-and-own reuse, the initial diagram forms
the baseline to negotiate the STO requirements with other
potential customers. For instance, a second customer could
require all use cases except Store Error Status, Clear Error

STO System

Sensors

STO Controller

Recognize
Gesture

Identify System
Operating Status

Tester Provide System
User Data

<<include>>
Store Error

Status

<<include>>

Clear Error
Status

Provide System
User Data via

Standard Mode

Provide System
User Data via IEE

QC Mode

<<extend>>

Clear Error Status
via Diagnostic

Mode

Clear Error
Status via IEE

QC Mode

<<extend>>

<<extend>>

<<extend>>

Provide System
Operating Status

<<include>>

Fig. 2 Part of the UML Use Case Diagram for STO

Status, and two use cases extending Clear Error Status. A
third customer could need another method of providing sys-
tem user data as a new use case Provide System User Data
via Diagnostic Mode, which extends Provide System User
Data but does not exist in the initial diagram in Fig. 2. The
IEE analysts need to clone the diagram for each new cus-
tomer, negotiate the diagram changes with the customer, and
then modify it.

One solution to automate the current practice is to have
PL use cases in which variability information is explicitly
represented. A configurator can guide the analysts and cus-
tomers to automatically generate PS use cases by processing
the variability information in PL use cases. However, UML
does not allow to explicitly represent variability informa-
tion in the diagram, e.g., which use cases are mandatory and
which ones are variant. For instance, in Fig. 2, there are three
variation points: Clear Error Status, Store Error Status, and
Provide System User Data. Clear Error Status and Store Er-
ror Status are optional while Provide System User Data is
mandatory. We also need to represent cardinality constraints
over these variation points, i.e., the number of variants to
be chosen. For instance, there are at least three ways of op-
erationalizing Provide System User Data: Provide System
User Data via Diagnostic Mode is optional while the other
two are mandatory. In addition, there are dependencies be-
tween variation points, e.g., having Store Error Status in an
STO product requires having Clear Error Status in the same
product.

A use case diagram is accompanied by a set of use case
specifications providing detailed use case descriptions. The
configuration also has to take into account these detailed de-
scriptions since some variability information (e.g., optional
use case steps and flows) cannot be captured in a use case di-
agram but only in specifications. However, a use case spec-
ification usually conforms to a standard use case template
which, in general, does not provide any means to document
variability information [26,47,10]. Capturing the most pop-

ular guidelines, the Cockburn’s template [26] has been so
far followed at IEE to document use case specifications (see
Table 1).

Table 1 Some Initial STO Use Case Specifications

1 USE CASE Recognize Gesture
2 1. The system ‘identifies system operating status’.
3 2. The system receives the move capacitance from the sen-

sors.
4 3. The system confirms the movement is a valid kick.
5 4. The system informs the trunk controller about the valid

kick.
6 Extensions
7 3a. The movement is not a valid kick.
8 3a1. The system sets the overuse counter.
9
10 USE CASE Identify System Operating Status
11 Main Success Scenario
12 1. The system checks Watchdog reset and RAM.
13 2. The system checks the upper and lower sensors.
14 3. The system checks if there is any error detected.
15 Extensions
16 2a. Sensors are not working properly.
17 2a1. The system identifies a sensor error.
18 3a. There is an error in the system.
19 3a1. The system ‘stores error status’.
20
21 USE CASE Provide System User Data
22 1. The tester requests receiving system user data via standard

mode.
23 2. The system ‘provides system user data via Standard

Mode’.
24 Extensions
25 1a. The tester requests receiving system user data via IEE

QC mode.
26 1a1. The system ‘provides system user data via IEE QC

Mode’.
27
28 USE CASE Provide System User Data via Standard Mode
29 Main Success Scenario
30 1. The system sends the calibration data to the tester.
31 2. The system sends the sensor data to the tester.
32 3. The system sends the trace data to the tester.
33 4. The system sends the error data to the tester.
34 5. The system sends the error trace data to the tester.

Variation points and variant use cases are not visible in
Table 1. These are the main elements for which the cus-
tomer has to make a decision. Mandatory and variant use
cases, e.g., Recognize Gesture in Lines 1-8 and Provide Sys-
tem User Data via Standard Mode in Lines 28-34, cannot be
distinguished from each other. Variation points are given as
extensions of the basic flow, e.g., executing Store Error Sta-
tus, Provide System User Data via Standard Mode, and Pro-
vide System User Data via IEE QC Mode in Lines 18-19 and
25-26. However, this is no different from the execution of a
mandatory use case in another use case (the include relation-
ship), e.g., Identify System Operating Status in Line 2. With
standard templates, it is also not possible to specify optional
steps or their order, which may vary across products, e.g.,

the steps in Lines 30-34 which are optional with a variant
order. Without explicit variability information, the analysts
manually clone the specifications, evaluate the entire docu-
mentation to negotiate potential changes with the customer,
and finally update the cloned specifications. For instance, for
a new customer asking a diagnostic mode, the IEE analysts
manually add a new use case specification Provide System
User Data via Diagnostic Mode and yet another extension
to Provide System User Data (see Lines 24-26). On the other
hand, if the same customer does not require calibration and
sensor data to be sent to the tester in the standard mode, the
analysts need to manually delete the corresponding use case
steps from Provide System User Data via Standard Mode
(Lines 30 and 31).

We observe that IEE, like many other companies, em-
ploys a domain model to document and clarify domain enti-
ties mentioned in use case specifications. In a product fam-
ily, variability also occurs in domain entities and needs to be
managed together with use cases for each customer.

Request
- code: integer
- name: String
- response: ResponseType

Sensor

Tester
1

ClearError
StatusRequest

Error
- errorStatus:Boolean
- isStored: Boolean
- isDetected: Boolean

itserrors*

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

1

ProvideSystem
UserDataRequest

Kick
- isValid : Boolean
- moveAmplitude: integer
- moveDuration: integer
- moveVelocity: integer

1

input

connect

itsKick

12

1 1

*
ask

SensorError

RAMError

StandardMode
ProvideDataReq

QCMode
ProvideDataReq

DiagnosticMode
ProvideDataReq

Fig. 3 Simplified Portion of the Initial STO Domain Model

Fig. 3 presents part of the STO domain model for the ini-
tial customer in the clone-and-own reuse context. Some do-
main entities (e.g., ClearErrorStatusRequest and Diagnos-
ticModeProvideDataReq) are not requested for every STO
product while some STO products require additional domain
entities (e.g., VoltageDiagnostic) for their domain model.
Without having explicit variability information of what en-
tity is being optional, the IEE analysts need to evaluate each
entity in the initial domain model for each new customer.

Within our context, we identify two challenges that should
also apply to other environments and that need to be consid-
ered in reusing use cases and a domain model for a product
family:

Challenge 1: Modeling Variability Information with
Least Possible Modeling Overhead. The analysts need to
explicitly document variability information (e.g., variant use
cases, variation points, and optional steps) for use cases and
a domain model to be communicated with the customers
during product configuration. Relating feature models to use
cases and domain model is the most straightforward option
but has shortcomings in terms of additional modeling and
traceability effort. For example, it would not be easy for an-
alysts and customers to comprehend and visualize all vari-
ability information traced to use case diagram, use case spec-
ifications and domain model. In STO, we identified 11 manda-
tory and 13 variant use cases which contain 7 variation points,
12 constraints associated with these variation points, and 7
variant dependencies. The STO use cases include 211 use
case flows (24 basic flows and 188 alternative flows) with
5 optional steps while the STO domain model contains 11
variant domain entities. The variability information scattered
across all these use case flows with trace links from feature
models would be communicated to customers and used to
configure a product.

Challenge 2: High Degree of Automation in Use Case-
Driven Configuration. In order to facilitate use case-driven
configuration in industrial practice, a high degree of automa-
tion is a must while the analysts are interactively guided for
their decisions. Before the configuration, it should be au-
tomatically confirmed that all artifacts with variability in-
formation, including use case diagram, specifications, and
domain model, are consistent. Any inconsistency in these
artifacts may cause invalid configuration outputs. Adding to
the complexity affecting the decision-making process dur-
ing configuration, there may be contradicting decisions and
hierarchies among decisions. During the configuration pro-
cess, the analysts need to be interactively informed about
contradicting decisions and the order of possible decisions.
With interactive guidance and proper tool support, the an-
alysts can fix inconsistent PL artifacts and resolve decision
contradictions, which leads to the automatic generation of
PS use cases and their domain model.

We addressed the first challenge in our previous work [44]
with the Product line Use case modeling Method (PUM). In
the remainder of this paper, we focus on how to best address
the second challenge in a practical manner, in the context
of use case-driven development, while relying on PUM to
minimize the modeling overhead.

3 Related Work

In this section, we cover the related work across three cate-
gories.

Configuration Techniques for Requirements Variabil-
ity. Eriksson et al. [34] provide an approach to manage natural-
language requirements specifications in the software prod-

uct line context. Variability is captured and managed using
a feature model while requirements in various forms, e.g.,
use cases, textual requirements specifications and domain
model, are traced to the feature model. The analyst selects
the features in the feature model to be included in the prod-
uct. By following traces from the selected features to the
requirements, the approach filters those requirements that
are relevant for a specific product in the product line. These
filtered requirements are then exported as product require-
ments specifications. The approach does not support any au-
tomated decision-making solution (e.g., decision ordering,
decision consistency checking, and inferring decisions) for
selecting features (Challenge 2). In addition, the analyst has
to manually assign traces between features and requirements
at a very low level of granularity, i.e., sequences of use case
steps (Challenge 1). pure::variants [5] is a tool to manage
all parts of software products with their components, re-
strictions and terms of usage. Its extension, pure::variants
for IBM DOORS [4], enables the analyst to capture vari-
ability as features in a feature model, and trace them to re-
quirements specifications in IBM DOORS. It transforms the
requirements specifications into product requirements based
on the selected features in the feature model. Compared to
the approach proposed by Eriksson et al. [34], pure::variants
for IBM DOORS provides a better automated support, i.e.,
an automated contradiction detection for feature models. How-
ever, the analyst still suffers from the same modeling over-
head, when pure::variants is employed. The analyst needs
to manually establish traces at a very low level granular-
ity and maintain these traces when the feature model or re-
quirements specifications evolve. There are many similar
approaches, eg., [42,24,22,7,21], which require modeling
and maintenance overhead with poor automated configura-
tion support. Our configuration approach attempts to min-
imize this overhead by capturing variability information in
use case and domain models (Challenge 1).

Moon et al. [53,52] propose a method that generates
PS use cases from PL use cases without using any feature
model. However, the proposed method requires that Prim-
itive Requirements (PR) (i.e., building blocks of complex
requirements) be specified by the analyst and traced to the
use case diagram and specifications via the PR - Context and
PR - Use Case matrices. The analyst has to manually encode
traceability information in these matrices (Challenge 1). The
configuration takes place by selecting the PRs in the matri-
ces without any automated decision-making support (Chal-
lenge 2).

John and Muthig [46] introduce some product line ex-
tensions to use case diagrams and specifications to be able
to capture variant use cases without a feature model. They
propose a new artifact, called decision model, to represent
variation points textually in a tabular form. Each variation
point has multiple facts which represent decisions. For each

decision, there are actions which describe configuration op-
erations for use cases, e.g., removing parts of a use case.
The analyst is expected to configure, with the help of the
decision model, the product specific use case diagram and
specifications but such a decision model can quickly become
too complex for the analyst to comprehend. There is no au-
tomated tool support reported for the approach (Challenge
2). Faulk [37] proposes the use of a similar decision model
to generate PS requirements specifications from PL require-
ments specifications. Biddle et al. [16] provide support for
configuring use case specifications through parametrization.
Parameters can be specified anywhere in the name or body
of a parameterized use case. The manual assignment of val-
ues to parameters is considered as configuring product spe-
cific use case specifications (Challenge 2). Fantechi et al. [36,
35] propose Product Line Use Cases (PLUC), an extension
of the Cockburn use case template with three kinds of tags
(i.e., alternative, parametric, and optional). It is not possible
with these tags to explicitly represent mandatory and op-
tional variants. Variants and variation points are hidden in
use case specifications conforming to PLUC. These two ap-
proaches [16,36] do not support variability in the use case
diagram and domain model. They also lack automated sup-
port for the decision-making process including decision or-
dering and detection of contradicting decisions (Challenge
2).

Annotation- and Composition-based Configuration for
Scenario-based Requirements. Some approaches specialize
in configuring scenario-based requirements using annotation-
and composition-based techniques [6]. The Product Line Use
case modeling for Systems and Software engineering ap-
proach (PLUSS) proposed by Eriksson et al. [34,32,33] uses
feature models to configure requirements in multiple forms
including scenario-based requirements models (e.g., use cases
and activity diagrams). PLUSS employs annotations through-
out requirements to represent how they are related to fea-
tures. Czarnecki and Antkiewicz [27] propose another con-
figuration approach based on annotation of scenarios using
feature models. Activity diagrams are used to specify sce-
narios. Traces between feature models and activity diagrams
are given as special annotations on activity diagrams. To an-
notate activity diagrams, the approach employs model tem-
plates, which contain the union of the model elements, e.g.,
presence conditions and meta-expressions, in all valid tem-
plate instances, i.e., annotated activity diagrams. A product
is specified by creating a feature configuration based on the
feature model. The model template is instantiated automati-
cally by using the feature configuration. The generated tem-
plate instance is an activity diagram of the specified prod-
uct. Although the template instantiation is automated, fea-
ture configuration is manual (Challenge 2). The analyst also
has to manually create a feature model and a model template
for annotations.

Bonifácio et al. [20,18] propose a framework for model-
ing the composition process of scenario variability mecha-
nisms (MSVCM). They provide a weaver (configurator) that
takes a PL use case model, a feature model, a product con-
figuration, and configuration knowledge as input. The prod-
uct configuration artifact identifies a specific product, which
is characterized by a configuration of features in the feature
model, while the configuration knowledge relates features
to transformations used for automatically generating the PS
use case model. These two artifacts are manually created by
the analyst (Challenge 2). The Variability Modeling Lan-
guage for Requirements (VML4RE) [8,83] presents a sim-
ilar solution for the composition of use case diagrams and
their selected scenarios represented by activity diagrams.
It supports the definition of traces between feature models
and requirements (e.g., use case diagram and activity dia-
gram). VML4RE provides a simple set of operators to spec-
ify the composition of requirements models for generating
PS requirements models. There are more composition-based
approaches [71,54,17] to configure scenario-based require-
ments using feature models.

All these configuration approaches given above require
additional modeling and traceability effort for feature mod-
els (Challenge 1) while most of them do not provide a high
degree of automation for the decision-making process (Chal-
lenge 2). There are approaches [66,72,76] that support the
identification and extraction of variable features from given
requirements but these approaches still require a consider-
able manual intervention in the identification of features. In
addition, the detailed functionality of a feature is still shown
in the traced requirements documents, and this requires fre-
quent context switching, which is not practical in industrial
projects. Stoiber and Glinz [67] propose the modularization
of variability information in decision tables to avoid context
switching, but the analyst still needs to manually encode all
decision constraints and traces in such tables, which can eas-
ily get too complex to comprehend (Challenge 1). Bonifácio
et al. [19] argue that annotation-based approaches entangle
the representation of common and variant behavior, whereas
the composition-based approaches provide a better separa-
tion of variant behavior. They compared an annotation-based
approach, i.e., PLUSS, with a composition-based approach,
i.e., MSVCM, to investigate whether the composition-based
approach causes extra costs for modularizing scenario spec-
ifications. They concluded that although MSVCM improves
modularity, it requires more time to derive PL specifications,
and more investments on training.

Configuration Tools. Nie et al. [56] describe the key au-
tomation functionalities that configuration tools should sup-
port: inferring decisions, consistency checking, decision or-
dering, collaborative configuration, and reverting decisions
(Challenge 2). Our tool, PUMConf, automatically infers new
configuration decisions based on prior decisions and varia-

tion point-variant dependencies. The consistency of all in-
ferred and prior decisions are automatically checked. The
analyst can also revert configuration decisions in order to
maintain the consistency. PUMConf provides decision or-
dering to guide the analyst in which sequence a set of de-
cisions should be made, by taking into account the hierar-
chies among variation points. Currently, PUMConf does not
support collaborative configuration in terms of PS use case
models. Collaborative configuration is defined as coordinat-
ing the configuration of multiple systems where the config-
uration of one system depends on the configuration of other
systems [56]. We need to extend our PL use case modeling
method in such a way that the analyst is able to model de-
pendencies among PL use case models of multiple systems.
Our tool can then be extended to support collaborative con-
figuration using such dependencies.

Configuration tools in the literature partially support the
key automation functionalities within a context not specific
to use case-driven configuration (Challenge 2). Le Rosa et
al. [62] provide a questionnaire-based system configuration
tool to capture system variability based on questionnaire mod-
els composed of questions that refer to a set of facts to be set
to true or false. When the questionnaire is answered by the
analyst, the tool assigns values to facts, and derives an indi-
vidualized system by using the resulting valuation. The tool
supports the key functionalities, except collaborative con-
figuration. Another configuration tool is C2O, presented by
Nohrer et al. [59,57,58]. The tool enables the analysts to
make configuration decisions in an arbitrary order while it
guides them by rearranging the order of decisions (deci-
sion ordering), inferring decisions to avoid follow-on con-
flicts (inferring decisions), and provides support in fixing
conflicts at a later time (consistency checking and revert-
ing decisions). No support for collaborative configuration
is reported for C2O. Myllarniemi et al. [55] present Kum-
bang, a prototype configurator for product individuals from
configurable software product families. The tool focuses on
the configuration of architecture models. It supports the key
functionalities except inferring decisions and collaborative
configuration. SPLOT [51] is a web-based configurator ben-
efiting from SAT solvers and binary decision diagrams to
support reasoning and interactive configuration on feature
models. COVAMOF [63,64] supports only architecture con-
figuration, while DOPLER [1,30] is a more general config-
urator which can be customized for multiple artifacts such
as components, test cases, or documentation fragments.

The tools given above are either general configurators
(e.g., [1,30,62]) or custom configurators for artifacts such
as architecture and feature models (e.g., [55,63,64]), which
are quite different than our target artifacts. General configu-
rators could be employed to configure PS use case and do-
main models. For instance, DOPLER [1,30] supports cap-
turing the variability information using decision models and

modeling any type of artifact as asset models. Decision and
assets are linked by using traceability relations. The ana-
lyst has to model variability information in a decision model
by using DOPLERVML, a modeling language for defining
product lines. Even if use cases and domain models can au-
tomatically be translated into an asset model, the analyst still
has to manually encode the decisions in the decision model
and assign the traceability relations between decision and
asset models, which are some inclusion links. Having all
these decision and asset models with their explicit traces is
exactly the type of modeling practice that we try to avoid in
our approach (Challenge 1). In addition, DOPLER requires
considerable effort and tool-specific internal knowledge to
be customized for the consistency checking of configuration
decisions and generation of PS use case and domain models.

4 Overview of Our Approach

The process in Fig. 4 presents an overview of our approach.
In Step 1, Elicit product line use case and domain models,
the analyst elicits PL use cases and a domain model with the
use case diagram, the RUCM template, and their product
line extensions.

Fig. 4 Overview of the Approach

Check Consistency
of Product Line Use
Case and Domain

Models

start

Elicit Product Line
Use Case and

Domain Models

Are the models
consistent?

Configure Product Specific
Use Case and Domain

Models

[Yes]
[No]

PL Use Case
Diagram and

Specifications,
and Domain Model

•• •• •• •• •• •• •• ••

List of
Inconsistencies

1

PS Use Case Diagram,
Specifications,
Domain Model,

and Decision Model

Is there another
product to configure?

[Yes]

[No]

2

3

Step 1 is manual.
Its output includes (1)
a PL use case diagram,
which captures variabil-
ity, and its constraints
and dependencies, (2) PL
use case specifications,
which detail the vari-
ability information cap-
tured in the diagram,
and (3) a PL domain
model, which captures
variability in domain en-
tities (Challenge 1). In
Step 2, Check consis-
tency of product line use
case and domain mod-
els, our approach auto-
matically checks the con-
sistency of use case di-
agram, use case speci-
fications (also with the
RUCM template), and do-
main model to report inconsistencies (Challenge 2). Steps 1
and 2 are iterative: the PL diagram, specifications, and do-
main model are updated until full consistency is achieved.
We discuss these two steps in Sections 5 and 9.

In Step 3, Configure product specific use case and do-
main models, the user is asked to input configuration deci-
sions regarding variation points captured in PL use case and

domain models to automatically configure the product line
into a product. The configuration step is the main focus of
this paper. It is described in Section 6.

Step 3 includes an automated, iterative, and interactive
decision-making activity (Challenge 2). The partial order of
configuration decisions to be made is automatically identi-
fied from the dependencies among variation points and vari-
ant use cases. The analyst is asked to input the configura-
tion decisions in the given partial order. When a decision is
made, the consistency of the decision with prior decisions
is checked. There might be contradicting decisions in the
PL use case diagram such as two decisions resulting in se-
lecting variant use cases violating some dependency con-
straints. These are automatically determined and reported a
posteriori and the analyst can backtrack and revise his de-
cisions. Alternatively, the analyst could be guided through
the configuration space in such a way that decisions that
may lead to contradictions are avoided a priori [62]. SAT
solvers can be employed to incrementally prune the config-
uration space in an interactive configuration [13] while CSP
solvers are used to handle additional modeling elements in
terms of variables (e.g., sets and finite integer domains) and
constraints (not only propositional formulas) [15,14]. How-
ever, the use of the SAT and CSP solvers in an iterative and
interactive product configuration can be challenging since
(a) it can quickly become infeasible to compute inferences,
which dynamically prune the configuration space, when the
number of variables to be computed is large and (b) it may
require considerable implementation effort and internal tool
knowledge to use these solvers for computing inferences and
detecting and reporting contradictions [13,38]. According
to our observation in industry, customers are also involved
in the decision-making process. They need to account for
the entire configuration space, including contradicting de-
cisions, because they frequently re-evaluate decisions and
possibly update them. Therefore, we decided to have an a
posteriori approach for the consistency checking of configu-
ration decisions, and implemented our own algorithm fitting
our context.

Our motivation is to rely, to the largest extent possi-
ble, on a solution that can be easily customized for further
extensions addressing automated reconfiguration, including
change impact analysis on PL use case and domain models.
One may argue that existing configuration tools [62,64,59,
28] could be reused within the context of use case-driven
configuration but these tools either need feature models [28]
or require the variability information to be depicted inde-
pendently of specific notations or languages, by means of
a set of facts [62,59]. As discussed earlier, not only does
this not match our practical needs but, furthermore, we also
need a custom solution to generate PS use case and domain
models based on the decisions. The entire configuration ap-
proach is illustrated by an example in Section 6. We provide

the details of our decision consistency checking algorithm
in Section 7, whereas Section 8 presents the generation of
PS use case and domain models from PL models.

5 Elicitation of Variability in Use cases

Our configuration approach starts with the activity of elic-
itation of PL use case and domain models. This activity is
based on the Product line Use case modeling Method (PUM)
which we present in our previous paper [44]. The artifacts of
PUM is a PL use case diagram using product line extensions
proposed by Halmans and Pohl [45,23], PL use case speci-
fications using RUCM extensions which we propose, and a
PL domain model using stereotypes provided by Ziadi and
Jezequel [82]. In this section, we give a brief description of
these PL artifacts.

5.1 Use Case Diagram with Product Line Extensions

For use case diagrams, we employ the PL extensions pro-
posed by Halmans and Pohl [45,23] since they support ex-
plicit representation of variants, variation points, and their
dependencies. We do not introduce any further extensions.
In this section, we briefly describe the extensions (see Fig. 5).

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn… …

variation
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAn

…
<<Variant>>

UCB1

min2..max2

<<Variant>>
UCBj

…

variation
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAu

…

<<Variant>>
UCB1

min2..max2

<<Variant>>
UCBt

…

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn…

UC1 <<Variant>>
UC2

(a) Variant Use Case and Variability Relation

(b) Mandatory and Optional Variability Relations

(c) Mandatory and Optional Variation Points with Mandatory and Optional Variability Relations

{max > = min }

{ min = max = n }

{ min > 0 or
(min = 0 and
max < n) }

Fig. 5 Graphical Notation of Product Line Extensions for Use Case
Diagrams

Variant use cases are distinguished from essential (manda-
tory) use cases, i.e., mandatory for all the products in a prod-

uct family, by using the ‘Variant’ stereotype (Fig. 5(a)). A
variation point given as a triangle is associated to one, or
more than one use case using the ‘include’ relation. A ‘tree-
like’ relation, containing a cardinality constraint, is used to
express relations between variants and variation points, which
are called variability relations. The relation uses a [min..max]
notation in which min and max define the minimum and
maximum numbers of variants that can be selected for the
variation point. A variability relation is optional where (min =

0) or (min > 0 and max < n); n is the number of vari-
ants for a variation point. A relation is mandatory where
(min = max = n). The customer has no choice when
a mandatory relation relates mandatory variants to a vari-
ation point [45]. Optional and mandatory relations are de-
picted with light-grey and black filled circles, respectively
(Fig. 5(b)). A use case is either Essential or Variant. The
notation for variation points, in Fig. 5, can also be used for
variation points in actors [45]. In addition, the extensions al-
low the analysts to represent the dependencies requires and
conflicts among variation points and variant use cases, e.g.,
a variant use case requires a variation point and a variation
point conflicts with another variation point [23].

STO System

Sensors

Recognize
Gesture

Identify System
Operating

Status

Storing Error
Status

Provide System
Operating

Status

Tester
Provide System

User Data

<<include>>

<<Variant>>
Store Error

Status

<<include>>

Clearing
Error Status

<<Variant>>
Clear Error

Status

Method of
Providing

Data

<<Variant>>
Provide System User
Data via Diagnostic

Mode

<<Variant>>
Provide System User

Data via Standard
Mode

<<Variant>>
Provide System User

Data via IEE QC
Mode

<<include>>

0..1

2..20..1

0..1

<<Variant>>
Clear Error Status

via Diagnostic
Mode

<<Variant>>
Clear Error Status
via IEE QC Mode

0..1

<<include>>

Method of
Clearing

Error Status

1..1

<<require>>

STO Controller

<<include>>

Fig. 6 Part of the Product Line Use Case Diagram for STO

Fig. 6 gives part of the product line use case diagram for
STO. We document two optional and two mandatory varia-
tion points. The mandatory variation points indicate where
the customer has to make a selection for an STO product.
For instance, the ‘Provide System User Data’ essential use
case has to support multiple methods of providing data where
the methods of providing data via IEE QC mode and Stan-
dard mode are mandatory (the mandatory variability relation
in the ‘Method of Providing Data’ variation point with a car-
dinality of ‘2..2’). In addition, the customer can select the
method of sending data via diagnostic mode, i.e., the ‘Pro-
vide System User Data via Diagnostic Mode’ variant use

case with an optional variability relation. In STO, the cus-
tomer may decide that the system does not store the errors
determined while the system identifies its operating status
(the ‘Identify System Operating Status’ essential use case
and the ‘Storing Error Status’ optional variation point). The
require dependency relates the two optional variation points
such that if the customer selects the variant use case in the
‘Storing Error Status’ variation point, the variant use case in
the ‘Clearing Error Status’ variation point has to be selected.

Use case diagrams capture variants, variation points, their
cardinalities and dependencies. Some further variability in-
formation can be given in use case specifications. For in-
stance, in Fig. 6, the ‘Identify System Operating Status’ use
case includes the ‘Storing Error Status’ optional variation
point. Only the corresponding use case specification indi-
cates in which flows of events the variation point is included.

5.2 Restricted Use Case Modeling (RUCM) and its
Extensions

This section briefly introduces the RUCM template and its
PL extensions which we proposed. RUCM provides restric-
tion rules and keywords constraining the use of natural lan-
guage in use case specifications [79]. We employ RUCM
in the elicitation of PL use case specifications since it was
designed to make use case specifications more precise and
analyzable, while preserving their readability. But since it
was not originally designed for PL modeling, we had to in-
troduce PL extensions.

Table 2 provides some of the STO use cases written ac-
cording to the extended RUCM rules. In RUCM, use cases
have basic and alternative flows (Lines 2, 8, 13, 16, 22, 27,
33 and 38). In Table 2, we omit some alternative flows and
some basic information such as actors and pre/post condi-
tions.

A basic flow describes a main successful path that sat-
isfies stakeholder interests. It contains use case steps and a
postcondition (Lines 3-7, 23-26 and 39-43). A step can be
one of the following interactions: an actor sends a request
and/or data to the system (Lines 34); the system validates a
request and/or data (Line 4); the system replies to an actor
with a result (Line 7). A step can also capture the system
altering its internal state (Line 18). In addition, the inclusion
of another use case is specified as a step. This is the case of
Line 3, as denoted by the keyword ‘INCLUDE USE CASE’.
All keywords are written in capital letters for readability.

The keyword ‘VALIDATES THAT’ (Line 4) indicates a
condition that must be true to take the next step, otherwise
an alternative flow is taken. In Table 2, the system proceeds
to Step 3 (Line 5) if the operating status is valid (Line 4).

Alternative flows describe other scenarios, both success
and failure. An alternative flow always depends on a con-
dition in a specific step of the basic flow. In RUCM, there

Table 2 Some STO Use Cases in the extended RUCM
1 USE CASE Recognize Gesture
2 1.1 Basic Flow
3 1. INCLUDE USE CASE Identify System Operating Status.
4 2. The system VALIDATES THAT the operating status is

valid.
5 3. The system REQUESTS the move capacitance FROM the

sensors.
6 4. The system VALIDATES THAT the movement is a valid

kick.
7 5. The system SENDS the valid kick status TO the STO Con-

troller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 2
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the OveruseCounter by the incre-

ment step.
19 2. ABORT.
20
21 USE CASE Identify System Operating Status
22 1.1 Basic Flow
23 1. The system VALIDATES THAT the watchdog reset is

valid.
24 2. The system VALIDATES THAT the RAM is valid.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.4 Specific Alternative Flow
28 RFS 4
29 1. INCLUDE <VARIATION POINT: Storing Error Status>.
30 2. ABORT.
31
32 USE CASE Provide System User Data
33 1.1 Basic Flow
34 1. The tester SENDS the system user data request TO the

system.
35 2. INCLUDE <VARIATION POINT : Method of Providing

Data>.
36
37 <VARIANT>USE CASE Provide System User Data via

Standard Mode
38 1.1 Basic Flow
39 V1. <OPTIONAL>The system SENDS calibration TO the

tester.
40 V2. <OPTIONAL>The system SENDS sensor data TO the

tester.
41 V3. <OPTIONAL>The system SENDS trace data TO the

tester.
42 V4. <OPTIONAL>The system SENDS error data TO the

tester.
43 V5. <OPTIONAL>The system SENDS error trace data TO

the tester.

are three types of alternative flows: specific, bounded and
global. A specific alternative flow refers to a step in the
basic flow (Lines 13, 16 and 27). A bounded alternative
flow refers to more than one step in the basic flow (Line 8)
while a global alternative flow refers to any step in the basic

flow. For specific and bounded alternative flows, the key-
word ‘RFS’ is used to refer to one or more reference flow
steps (Lines 9, 14, 17, and 28).

Bounded and global alternative flows begin with ‘IF ..
THEN’ for the condition under which the alternative flow is
taken (Line 10). Specific alternative flows do not necessarily
begin with ‘IF .. THEN’ since a guard condition is already
indicated in its reference flow step (Line 4).

Our RUCM extensions are twofold: (i) new keywords
and restriction rules for modeling interactions in embedded
systems and restricting the use of existing keywords; (ii)
new keywords for modeling variability in use case speci-
fications.

We introduce extensions into RUCM regarding the us-
age of ‘IF’ conditions and the way input/output messages
are expressed. PUM follows the guidelines that suggest not
to use multiple branches within the same use case path [48],
thus enforcing the usage of ‘IF’ conditions only as a means
to specify guard conditions for alternative flows. PUM in-
troduces the keywords ‘SENDS .. TO’ and ‘REQUESTS ..
FROM’ to distinguish system-actor interactions. According
to our experience, in embedded systems, system-actor inter-
actions are always specified in terms of messages. For in-
stance, Step 3 in Table 2 (Line 5) indicates an input message
from the sensors to the system while Step 5 (Line 7) contains
an output message from the system to the STO Controller.
Additional keywords can be defined for other types of sys-
tems.

To reflect variability in use case specifications in a re-
stricted form, we introduce into the RUCM template the no-
tion of variation point and variant, complementary to the
diagram extensions in Section 5.1. Variation points can be
included in basic or alternative flows of use cases. We em-
ploy the ‘INCLUDE <VARIATION POINT : ... >’ keyword
to specify the inclusion of variation points in use case speci-
fications (Lines 29 and 35). Variant use cases are given with
the ‘<VARIANT >’ keyword (Line 37). The same keyword
is also used for variant actors related to a variation point
given in the use case diagram.

There are types of variability (e.g, optional steps and op-
tional alternative flows) which cannot be captured in use
case diagrams due to the required level of granularity for
product configuration. To model such variability, as part of
the RUCM template extensions, we introduce optional steps,
optional alternative flows and a variant order of steps. Op-
tional steps and optional alternative flows begin with the
‘<OPTIONAL>’ keyword (Lines 8 and 39-43). In addition,
the order of use case steps may also vary. We use the ‘V’
keyword before the step number to express the variant step
order (Lines 39-43). A variant order occurs with optional
and/or mandatory steps. It is important because variability
in the system behavior can be introduced by multiple execu-
tion orders of the same steps. For instance, the steps of the

basic flow of the ‘Provide System User Data via Standard
Mode’ use case are optional. Based on the testing procedure
followed in the STO product, the order of sending data to the
tester also varies. In the product configuration, the customer
has to decide which optional step to include in which order
in the use case specification.

5.3 Product Line Domain Model

We encounter two cases (i.e., variation and optionality) to
model variability in domain entities. The first case is an in-
heritance hierarchy where some subentities are optional and
alternative of another entity while others are mandatory. In
such a case, the abstract entity is the variation with its vari-
ant subentities. In the second case, the domain entity is op-
tional, but not part of any inheritance hierarchy. In order to
support these two cases in the PL domain model, we em-
ploy the stereotypes (i.e., variation, variant, and optional)
which Ziadi and Jezequel [82] propose to model variability
in UML class diagrams (see Fig. 7).

<<Variation>>
Request

- code: integer
- name: String
- response: ResponseType

Sensor

Tester
1

<<Variant>>
ClearError

StatusRequest

Error
- errorStatus:Boolean
- isStored: Boolean
- isDetected: Boolean

itserrors*

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

1

<<Variation>>
ProvideSystem

UserDataRequest

Kick
- isValid : Boolean
- moveAmplitude: integer
- moveDuration: integer
- moveVelocity: integer

1

input

connect

itsKick

12

1 1

1
*

ask

SensorError

RAMError

StandardMode
ProvideDataReq

QCMode
ProvideDataReq

<<Variant>>
DiagnosticMode
ProvideDataReq

<<Optional>>
VoltageDiagnostic
- guardACVoltage: integer
- guardCurrent: integer

Fig. 7 Simplified Portion of the Product Line Domain Model for STO

The Variant and Variation stereotypes are used to spec-
ify variability associated with an inheritance hierarchy. The
variation is the abstract class (Request and ProvideSyste-
mUserDataRequest) while variants are given as subclasses
with the Variant stereotype (ClearErrorStatusRequest and
DiagnosticModeProvideDataReq). QCModeProvideDateReq
and StandardModeProvideDataReq do not have any stereo-
type, thus implying these are mandatory for all STO prod-
ucts. The Optional stereotype is for optional entities which
are not part of any inheritance hierarchy (e.g., VoltageDiag-
nostic).

- name: String
VariationPoint

DecisionModel

- isSelected: Boolean

OptionalVariation
Point

MandatoryVariation
Point

- name: String
UseCase

- isSelected: Boolean

Variant
UseCase

Essential
UseCase

- orderNumber: Integer
- variantOrderNumber: Integer

Step

- isSelected: Boolean
OptionalStep Mandatory

Step

1..*
variants

1 variationpoint

1 ..*

0..*

0..*

- isSelected: Boolean

OptionalAlternative
Flow

Mandatory
AlternativeFlow

BasicFlow

- name: String
VariantOrder

1

0..* 1

2..*

Flow
- number: Integer

0..*
- name: String
- isSelected: Boolean

VariantActor
0..*

variationpoint

0..*

usecases

- name: String
-isSelected: Boolean

DomainEntity 0..*

1

0..1

1

1 1

1

0..*

Fig. 8 Decision Metamodel

The PL domain model in Fig. 7 does not contain any
variant dependency such that the selection of one variant
domain entity disables (or enables) the selection of some
other variant entities. Ziadi and Jezequel [82] propose to
specify such dependencies in the Object Constraint Lan-
guage (OCL). Alternatively, some special stereotypes, e.g.,
requires and conflicts, can also be employed for UML class
associations to specify the variant dependencies in PL do-
main models.

6 Configuration of Product Specific Use Case and
Domain Models

The product configuration is a decision-making process, where
the variability information is examined to select the desired
features for the product. A product in a product family is
defined as a unique combination of features selected during
configuration. In this paper, we rely on variability informa-
tion given in the PL use case diagram, specifications and
domain model. The user selects (1) the desired use cases in
the PL use case diagram, (2) use case elements in the PL use
case specifications, and (3) domain entities in the PL domain
model, to generate the PS use case diagram, specifications,
and domain model.

Our configuration mechanism relies on a use case con-
figuration function. The configuration function takes a PL
use case diagram, a set of PL use case specifications, and
a PL domain model as input, and produces a PS use case
diagram, a set of PS use case specifications, a PS domain
model, and a decision model which captures configuration
decisions. Such a decision model is important since the an-
alyst/customer may need to update decisions to reconfigure
the PS models for the same product.

The decision model conforms to a decision metamodel,
which is described in Fig. 8. We will shortly describe its
elements.

There are four main use case elements for which the user
has to make decisions (i.e., Variation Point, Optional Step,
Optional Alternative Flow, and Variant Order). In a varia-
tion point, the user selects variant use cases to be included
for the product. For PL use case specifications, the user se-
lects optional steps and alternative flows to be included and
determines the order of steps (variant order). In the PL do-
main model, the user makes decisions for the Variant and
Optional entities. All these decisions are saved in the deci-
sion model, whose structure is formalized by the decision
metamodel.

The reader is referred to Supplementary Material1 for
the algorithm of the configuration function. At a high level,
the algorithm first traverses the use case diagram for vari-
ation points, and then processes use case specifications for
optional alternative flows, optional steps, and variant orders.
Then the domain model is traversed for Variant and Op-
tional domain entities. In the following, we explain the steps
of the algorithm with an illustrative example. The example is
a slight adaptation of part of our industrial case study since
we needed some additional modeling elements to illustrate
the complete set of features of the algorithm. Fig. 9 depicts
an example PL use case diagram with four variation points,
eight variant use cases, and one essential use case.

The main steps of the configuration algorithm for use
case diagrams are:

– Identifying variation points in the diagram to start the
configuration. In Fig. 9, there are four variation points
and two of them are included by variant use cases in an-
other variation point (i.e., UC2 in VP1 includes VP2, and

1 http://people.svv.lu/hajri/sosym/
SupplementaryMaterial.pdf

System

Actor1

UC1

VP4

<<Variant>>
UC9

<<include>>

VP2

<<Variant>>
UC6

<<Variant>>
UC5

0..1

1..2

<<Variant>>
UC2

<<Variant>>
UC3

1..1

VP1

1..2

Actor2

<<Variant>>
UC4

VP3

<<Variant>>
UC8

<<Variant>>
UC7

1..2

<<include>>
<<include>>

<<conflict>>

<<require>>

Fig. 9 Example Product Line Use Case Diagram

UC3 includes VP3). The algorithm automatically filters
out the variation points included by variant use cases be-
cause the analyst can make a decision for these variation
points only if the including variant use case is selected
for the product. For instance, VP2 will not be considered
if UC2 is not selected in VP1. The user can start making
decisions with either VP1 or VP4.

– Getting a decision for each variation point and resolv-
ing contradicting decisions. This is an iterative step. For
each variation point identified, the analyst is asked to
make a decision. A decision is about selecting, for the
product, variant use cases in the variation point. After
the analyst makes the decision, the algorithm first checks
the associated cardinality constraints. The use case dia-
gram is then traversed to determine previous decisions
contradicting the current decision. If there is any con-
tradiction, the analyst is expected to update one or more
decisions to resolve the contradiction.

– The analyst makes a decision in VP4, which is se-
lecting UC9 for the product. The decision complies
with the cardinality constraint. No contradiction is
identified since there is no previous decision. There-
fore, the decision is saved in the decision model.

– The analyst proceeds with VP1. UC2 and UC4 are
selected while UC3 is not selected for the product.
The decision complies with the cardinality constraint
in VP1. The algorithm identifies a contradiction with
the decision in VP4. Since the user does not select
UC3, UC7 and UC8 in VP3 included by UC3 are
also automatically not selected. However, UC9 re-
quires UC8 in the product. The analyst is asked to
resolve the contradiction by updating either the de-
cision for VP4 or the decision for VP1.

– The analyst updates the decision in VP1 to resolve
the contradiction. Only UC2 and UC3 are selected in
the updated decision, which complies with the cardi-
nality constraint. At this point, there is no contradic-
tion identified. UC3 is already selected but the ana-

lyst has not yet made the decision for VP3. There-
fore, the decision is saved in the decision model.

– The analyst is asked to make further decisions for the
variation points included by the selected variant use
cases. UC2 and UC3 include VP2 and VP3, respec-
tively. In the decisions for VP2 and VP3, the analyst
selects UC6 and UC8. The decisions comply with
the associated cardinality constraints, and there is no
contradiction identified with the previous decisions.
While UC6 is selected, the user decides not to have
UC7 (UC6 conflicts with UC7 in Fig. 9). UC9 and
UC8 are selected in VP4 and VP3, respectively (UC9
requires UC8). The decisions are saved in the deci-
sion model. All variation points are addressed after
the analyst selects UC2, UC3, UC6, UC8, and UC9.

– Generating the PS use case diagram from the PL di-
agram. By using the decisions stored in the decision
model, the algorithm automatically generates the PS use
case diagram from the PL diagram (see Fig. 10 for the PS
diagram generated from Fig. 9). The transformation is
based on a set of transformation rules further described
in Section 8. For instance, for UC1, VP1 and the selected
UC2 in Fig. 9, the algorithm creates UC1 and UC2 with
an include relation in Fig. 10.

System

Actor1

UC1 UC9
<<include>>

UC6

UC2 Actor2
UC3

UC8

<<include>>
<<include>>

Fig. 10 Generated Product Specific Use Case Diagram

One may argue that the include relations with the sin-
gle, including use cases in Fig. 10 are redundant because
an include relation is used to show that the behavior of an
included use case is inserted into the behavior of multiple
including use cases. Alternatively, we could choose an ap-
proach which directly inserts (copy-and-paste) the behavior
of the included use cases into the including use case speci-
fications. However, to ease the traceability between PL and
PS use case diagrams, we prefer to employ include relations
in the PS use case diagram even if they are for single, in-
cluding use cases. For instance, UC2, UC3, UC6 and UC8
in Fig. 10 can be directly traced to the variant use cases UC2,
UC3, UC6 and UC8 in Fig. 9, respectively.

After the PL use case diagram, the algorithm handles the
PL use case specifications. Table 3 provides the PL specifi-
cations of some use cases in Fig. 9. The algorithm has two
steps for use case specifications:

Table 3 Some Example Specifications of the PL Use Cases in Fig. 9

1 USE CASE UC1
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the operating status is

valid.
4 2. The system REQUESTS the measurements FROM the

sensors.
5 3. INCLUDE <VARIATION POINT: VP1>.
6 4. The system VALIDATES THAT the computed value is

valid.
7 5. The system SENDS the computed value TO the STO Con-

troller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 1
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the counter by the increment step.
19 2. ABORT.
20
21 <VARIANT>USE CASE UC2
22 1.1 Basic Flow
23 V1. The system SENDS measurement errors TO the STO

Controller.
24 V2. <OPTIONAL>The system VALIDATES THAT RAM

is valid.
25 V3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.2 Specific Alternative Flow
28 RFS V2
29 1. ABORT.
30 1.3 Specific Alternative Flow
31 RFS V3
32 1. <OPTIONAL>The system SENDS diagnosis TO the

STO Controller.
33 2. ABORT.
34 1.4 Specific Alternative Flow
35 RFS 4
36 1. INCLUDE <VARIATION POINT: VP2>.
37 2. ABORT.

– Getting decisions for each optional step, optional alter-
native flow, and variant order group. In Table 3, there
are two variation points (Lines 5 and 36), one variant use
case (Lines 21-37), two optional steps (Lines 24 and 32),
one optional alternative flow (Lines 8-12), and one vari-
ant order group (Lines 23-25). The decisions for variant
use cases have already been made in the PL diagram (se-
lecting UC2 and UC3 in VP1 and UC6 in VP2). There-
fore, in this step, the analyst is only asked to make de-
cisions for optional steps, optional alternative flows, and
variant order groups. For example, the user selects only
one of the optional steps (Line 24) with the order V2,
V1, and V3 (Lines 23-25). The optional bounded alter-
native flow is not selected. These decisions are saved in
the decision model.

Table 4 Some of the Generated PS Use Case Specifications

1 USE CASE UC1
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the operating status is

valid.
4 2. The system REQUESTS the measurements FROM the

sensors.
5 3. The system VALIDATES THAT ‘Precondition of UC2’.
6 4. INCLUDE UC2.
7 5. The system VALIDATES THAT the computed value is

valid.
8 6. The system SENDS the computed value TO the STO Con-

troller.
9 1.2 Specific Alternative Flow
10 RFS 1
11 1. ABORT.
12 1.3 Specific Alternative Flow
13 RFS 3
14 1. INCLUDE UC3.
15 2. RESUME STEP 5.
16 1.4 Specific Alternative Flow
17 RFS 5
18 1. The system increments the counter by the increment step.
19 2. ABORT.
20
21 USE CASE UC2
22 1.1 Basic Flow
23 1. The system VALIDATES THAT RAM is valid.
24 2. The system SENDS measurement errors TO the STO Con-

troller.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.2 Specific Alternative Flow
28 RFS 1
29 2. ABORT.
30 1.3 Specific Alternative Flow
31 RFS 3
32 1. ABORT.
33 1.4 Specific Alternative Flow
34 RFS 4
35 1. INCLUDE UC6.
36 2. ABORT.

– Generating PS use case specifications from PL use case
specifications. The PL use case specifications are auto-
matically transformed into the PS specifications based
on configuration decisions and a set of transformation
rules (see Section 8). Table 4 provides some of the PS
use case specifications generated from Table 3. First,
some of the variation points in the PL specifications (Lines
5 and 36 in Table 3) are transformed based on the de-
cisions for the PL diagram. For instance, for VP1, the
configurator creates two include statements for UC2 and
UC3 (Lines 6 and 14 in Table 4) with a validation step
(Line 5 in Table 4) and a corresponding specific alterna-
tive flow where UC3 is included (Lines 12-15). The cre-
ated validation step checks if the precondition of UC2 is
met. If the condition holds, UC2 is executed in the basic
flow (Line 6). If not, the newly created alternative flow
is taken and UC3 is executed (Line 14). For VP2, only
UC6 is included in the PS specification of UC2 since the

user selects only UC6. After handling variation points,
selected optional steps and optional alternative flows are
included in the PS specifications (Line 23). Variant order
groups are ordered in the PS specifications according to
the given decision (Lines 23-26).

Lastly, the configuration algorithm collects decisions for
each optional and variant domain entities in order to gen-
erate the PS domain model from the PL domain model. The
algorithm does not currently take into account the variant de-
pendencies in PL domain models. It would need further ex-
tensions for detecting configuration decisions violating con-
straints imposed by variant dependencies. The detection of
such decisions in PL domain models is very similar to the
consistency checking of configuration decisions in PL use
case diagrams (see Section 7.3). Therefore, we would only
need to adapt the current consistency checking algorithm
for PL domain models. The PS domain model generation
is straightforward. In addition to mandatory entities, each
selected optional and variant entity is copied into the PS do-
main model without product line stereotype. The generated
model is pruned for the cases where a is-a relation has only a
single subclass. Fig. 11 provides the PS domain model gen-
erated from the PL domain model in Fig. 7.

Request
- code: integer
- name: String
- response: ResponseType

Sensor

Tester

1

Error
- errorStatus:Boolean
- isStored: Boolean
- isDetected: Boolean

itserrors*

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

1

Kick
- isValid: Boolean
- moveAmplitude: integer
- moveDuration: integer
- moveVelocity: integer

1

input

connect

itsKick

12

1 1

1
*
ask

SensorError

RAMError

StandardMode
ProvideDataReq

QCMode
ProvideDataReq

VoltageDiagnostic
- guardACVoltage: integer
- guardCurrent: integer

Fig. 11 Generated Product Specific Domain Model

The PL domain model contains two variant entities (Clear-
ErrorStatusRequest and DiagnosticModeProvideDataReq) and
one optional entity (VoltageDiagnostic). The analyst selects
only VoltageDiagnostic for the PS domain model. There-
fore, only VoltageDiagnostic among variant and optional en-
tities is copied into the PS domain model in Fig. 11. In
the PL model, there are two main request types, i.e., Clear-
ErrorStatusRequest and ProvideSystemDataRequest, with sub
request types. Since ClearErrorStatusRequest is not selected
by the analyst, ProvideSystemDataRequest is the only re-
maining subclass of Request in the inheritance hierarchy.
During pruning of the PS model, it is removed and the sub-

classes StandardModeProvideDataReq and QCModeProvide-
DataReq become direct specializations of Request.

Another output of our configuration approach is a deci-
sion model which conforms to the decision metamodel in
Fig. 8. The decision model stores all the configuration deci-
sions for the use case diagram, the use case specifications,
and the domain model. Fig. 12 depicts the decision model
resulting from the example configuration using the PL use
case diagram in Fig. 9, the PL use case specifications in Ta-
ble 3, and the PL domain model in Fig. 7.

The decision model in Fig. 12 contains several instances
of DomainEntity, VariationPoint, UseCase for which the an-
alyst made the decisions described above. For instance, the
VP1 instance of MandatoryVariationPoint is associated with
three instances UC2, UC3 and UC4 of VariantUseCase, while
the decision for the variation point is encoded as True or
False using the isSelected attribute. The decision models can
be employed for further use such as representing decisions
for reconfiguration of the same product and comparison of
the decisions in multiple products for regression test selec-
tion within the context of product line testing, as further de-
scribed in Section 11.

7 Consistency Checking of Configuration Decisions

In this section, we present the details of the consistency
checking of configuration decisions in the PL use case di-
agram. The objective of consistency checking (Section 7.1)
is to identify contradicting decisions for variation points in a
configurable PL use case diagram (Section 7.4). The consis-
tency checking algorithm (Section 7.3) is based on mapping
from the PL use case diagram to propositional logic (Sec-
tion 7.2).

7.1 Objective and Assumptions

Consistency checking of configuration decisions is vital at
collecting decisions from the analyst. PS models cannot be
generated from inconsistent decisions. In our configuration
approach, consistency checking aims at determining contra-
dicting decisions for the variation points in the PL use case
diagram. Two or more configuration decisions may contra-
dict each other if they result in violating some variation point
and variant dependency constraints (i.e., require and con-
flict). Assume there are two conflicting, variant use cases
Ua and Ub (i.e., Ua conflicts with Ub). Ua and Ub are se-
lected in decisions Da and Db, respectively. Da and Db are
contradicting because Ua and Ub cannot exist for the same
product.

The analyst needs to update decisions in order to resolve
contradictions. Our approach follows the Fix right away with
selective (multiple) undo strategy [58] in which only involved

:DecisionModel
- name = “UC1”
:EssentialUseCase

- name = “VP1”
:MandatoryVariationPoint- name = “VP4”

:OptionalVariationPoint

- name = “UC2”
- isSelected = True

:VariantUseCase
- name = “UC3”
- isSelected = True

:VariantUseCase
- name = “UC4”
- isSelected = False

:VariantUseCase
- name = “UC9”
- isSelected = True

:VariantUseCase

- name = “VP2”
:MandatoryVariationPoint

- name = “VP3”
:MandatoryVariationPoint

- name = “UC5”
- isSelected = False

:VariantUseCase
- name = “UC6”
- isSelected = True

:VariantUseCase
- name = “UC7”
- isSelected = False

:VariantUseCase
- name = “UC8”
- isSelected = True

:VariantUseCase

variants

variants

variationpoint

usecases usecases

variationpoint

variants variants

- name: “VoltageDiagnostic”
- isSelected: True

:DomainEntity

- name: “ClearErrorStatusRequest”
- isSelected: False

:DomainEntity

- name: “DiagnosticModeProvideDataReq”
- isSelected: False

:DomainEntity

- number = 2
- isSelected = False

:OptionalAlternativeFlow

- number = 1
:BasicFlow

- name = “V”
:VariantOrder

- orderNumber = 2
- variantOrderNumber = 1

:MandatoryStep

- orderNumber = 3
- variantOrderNumber = 3

:MandatoryStep

- orderNumber = 1
- variantOrderNumber = 2
- isSelected = True

:OptionalStep

- number = 3

:Mandatory
AlternativeFlow

- orderNumber = 1
- variantOrderNumber = 0
- isSelected = False

:OptionalStep

usecases

variationpoint

Fig. 12 Example Decision Model Resulting from the Example Configuration

decisions are updated to return the configuration to a consis-
tent state immediately when the analyst introduces a con-
tradicting decision. To do that, we automatically identify
the decisions involved in the contradiction. We chose this
strategy based on our discussions with IEE analysts because
each time a decision is made during configuration with cus-
tomers, analysts would like to keep decisions in the PL di-
agram consistent and not to have multiple contradictions
at a time. Tolerating contradictions during decision-making
makes it hard to communicate with untrained customers for
reasoning on decisions and resolving contradictions. For the
resolution of decision contradictions in the PL use case dia-
gram, our underlying assumption is that the diagram is con-
figurable. A PL use case diagram is configurable if at least
one valid PS use case diagram can be generated from the
PL diagram. It may not be configurable because of an incor-
rect combination of variant and variation point dependencies
(see Section 7.4).

7.2 Propositional Logic Mappings

Our consistency checking algorithm is based on mapping
variation points, use cases and variant dependencies to propo-
sitional logic formulas. We assume that a PL use case di-
agram PLD is defined as a set, where each use case is a
member of the set. The PL diagram consists of n use cases
PLD = {u1, ..., un}; each use case ui in PLD is repre-
sented by a boolean variable with the same name. Boolean
variable ui evaluates to true if use case ui is selected and
false otherwise. If there is no decision made yet for use
case ui, variable ui is not valued (unknown). Please note
that all essential use cases are automatically selected. Fig-
ure 13 gives the corresponding propositional formulas for
each pattern involving dependencies, variation points, and

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

Dependency, Variation Point, and Variant Use Case Propositional Logic Mapping

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<require>>

UCAm ⟶ UCBn (m ��1 and n � 1)

 ¬ (UCAm ⋀ UCBn) (m ��1 and n � 1)

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<conflict>>

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<require>>

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<conflict>>

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<require>>

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<require>>

variation
point A

<<Variant>>
UCA1

min..max

<<Variant>>
UCAm…

variation
point B

<<Variant>>
UCB1

min..max

<<Variant>>
UCBn…

<<conflict>>

(UCA1 ⋁ … ⋁ UCAm) ⟶ (UCB1 ⋁ … ⋁ UCBn)
(m ��1 and n � 1)

¬ ((UCA1 ⋁ … ⋁ UCAm) ⋀ (UCB1 ⋁ … ⋁ UCBn))
(m ��1 and n � 1)

UCAm ⟶ (UCB1 ⋁ … ⋁ UCBn)
(m ��1 and n � 1)

(UCA1 ⋁ … ⋁ UCAm) ⟶ UCB1
(m ��1 and n � 1)

¬ ((UCA1 ⋁ … ⋁ UCAm) ⋀ UCB1)
(m ��1 and n � 1)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 13 Mapping from PL Use Case Diagram to Propositional Logic

variant use cases, where propositions capture logical rela-
tionships among variant use cases. For instance, according
to the corresponding propositional formula in Fig. 13(a),
if use case UCAm is selected for a product then the se-
lection logically implies that use case UCBn is also se-

lected. Fig. 13(c) depicts the mapping when there is a re-
quire dependency between two variation points A and B.
In such a case, if at least one of the variant use cases in
variation point A (UCA1 ∨ ... ∨ UCAm) is selected, then
at least one of the variant use cases in variation point B
(→ UCB1 ∨ ... ∨ UCBn) should also be selected.

In a SAT solver based approach, for the entire PL use
case diagram, one propositional formula can be formed as
a conjunction of formulas derived from each dependency in
the diagram using the mapping. Given such propositional
formula and a set of variable assignments (decisions), a SAT
solver can determine whether there is a value assignment
to the remaining variables (undecided variation points) that
will satisfy the predicate [13]. This approach may not be
feasible for complex industrial projects when the number
of variables to be computed is large. Therefore, to deter-
mine contradicting decisions, we follow an approach differ-
ent than determining if there exists an interpretation that sat-
isfies a propositional formula derived from the entire PL use
case diagram (Section 7.3).

7.3 Consistency Checking Algorithm

For a given decision regarding a variation point in the PL
diagram, our approach only checks the satisfaction of the
propositional formulas derived from its dependencies. The
number of variables taken into account in such approach is
much smaller than the number of variables derived from the
entire diagram to be computed by an approach using SAT
solvers. Assume that we have two variant use cases Ua and
Ub where Ua requires Ub and Ua is selected. The corre-
sponding propositional formula in Fig. 13(a) is not satisfied
only if Ub is unselected in prior decisions and there is no
other further decision to be made for Ub. Therefore, we only
check if Ub is unselected and cannot be selected in further
decisions. If there is no decision made for Ub yet, we do
not need to check if the corresponding formula is satisfied.
The satisfaction of the formula is checked only if there is
a valuation of the variable in the formula for Ub based on
configuration decisions. However, decisions for other vari-
ant use cases might imply a decision for Ub. Our approach
automatically infers those implicit decisions to be taken into
account in the valuation of formulas.

Alg. 1 describes the part of our configuration algorithm
related to consistency checking. For each new decision made
by the analyst, the algorithm checks if the formulas derived
for the decided use case elements are satisfied. If the formu-
las are not satisfied, the algorithm returns contradicting de-
cisions to the analyst. The analyst updates the decisions to
resolve the contradiction. In order to illustrate the algorithm,
we rely on the example, contradicting decisions in Fig. 9.

The analyst makes a decision d for each variation point
vp, which is either included by an essential use case uc or

Alg. 1: Part of config
Inputs : PL use case diagram, PLD,

Set of PL use case specifications, PLS,
PL domain model, PLDM

Output: Set of PS use case models

1 Let DC be the empty set for completed decisions;
2 Let L be the set of pairs of variation points vp and use cases uc

such that use cases are essential and they include the variation
points, or the variation points are not included by any use case;

3 T ← L;
4 while L 6= ∅ do
5 dp ∈ L;
6 Let SUC be the set of variant use cases selected in dp.vp;
7 Let NSUC be the set of variant use cases unselected in

dp.vp;
8 Let d be the quadruple (dp.vp, dp.uc, SUC,NSUC);
9 if (d satisfies cardinality constraints in dp.vp) then

10 Let C be the empty set for contradicting decisions;
11 C ← checkConflictingVP(dp.vp, DC, d, PLD);
12 C ← C ∪ checkRequiringVP(dp.vp,DC,d,PLD);
13 C ← C ∪ checkRequiredVP(dp.vp,DC,d,PLD);
14 foreach (u ∈ SUC) do
15 C ← C ∪ checkConflictingUC(u,DC,d,PLD);
16 C ← C ∪ checkRequiringUC(u,DC,d,PLD);
17 end foreach
18 foreach (u ∈ NSUC) do
19 C ← C ∪ checkRequiredUC(u, DC, d, PLD);
20 end foreach
21 if (C = ∅) then
22 DC ← DC ∪ {d};
23 L← L\{dp};
24 Let newp = {(vp, uc) |uc includes vp ∧ uc ∈

SUC ∧ (vp, uc) /∈ T};
25 L← L ∪ newp;
26 T ← T ∪ newp;
27 else
28 updateDecisions(C ∪ {d});
29 end if
30 else
31 updateDecisions({d});
32 end if
33 end while
34 ...

not included by any use case (Lines 2, 4 and 5). For each new
decision d, the algorithm checks if there is any contradicting,
prior decision. Decision d is a quadruple of variation point
vp, essential use case uc including vp, set of selected vari-
ant use cases SUC in vp, and set of unselected variant use
cases NSUC in vp (Line 8). For the decisions in VP1 and
VP4 in Fig. 9, d is (V P1, UC1, {UC2, UC4}, {UC3})
and (V P4, null, {UC9}, ∅), respectively. The algorithm
first determines if d complies with the cardinality constraint
in vp (Line 9). If the cardinality constraint is satisfied, the
algorithm checks if d contradicts any prior decision (Lines
10-29); otherwise, the analyst is asked to update decision d

for the cardinality constraint (Line 31). We call some check
functions (i.e., checkConflictingVP, checkRequiringVP, check-
RequiredVP, checkConflictingUC, checkRequiringUC, and

checkRequiredUC) to determine whether the propositional
logic formulas, derived from the dependencies to/from the
diagram elements decided in d, are satisfied by d and set
of prior decisions DC (Lines 10-20). If there is a formula
not satisfied, there is at least one prior decision that is con-
tradicting d. The algorithm reports contradicting decisions
to be updated by the analyst in the updateDecisions func-
tion (Line 28). If there is no contradicting decision, d is
approved and considered completed (Lines 21-23). The se-
lected variant use cases may include variation points. The
pairs of those variation points and their including use cases
are considered for further decisions (Lines 24-26). Each check
function in Alg. 1 checks the propositional formulas in one
or more mappings in Fig. 13.

– checkConflictingVP checks the formulas for selected vari-
ation point vp conflicting with a variation point or a vari-
ant use case (Fig. 13(d) and (g)),

– checkConflictingUC checks the formulas for selected
variant use case u conflicting with a variation point or
a variant use case (Fig. 13(b) and (g)),

– checkRequiringVP checks the formulas for selected vari-
ation point vp requiring a variation point or a variant use
case (Fig. 13(c) and (f)),

– checkRequiredVP checks the formulas for unselected
variation point vp required by a variation point or a vari-
ant use case (Fig. 13(c) and (e)),

– checkRequiringUC checks the formulas for selected vari-
ant use case u requiring a variation point or a variant use
case (Fig. 13(a) and (e)),

– checkRequiredUC checks the formulas for unselected
variant use case u required by a variation point or a vari-
ant use case (Fig. 13(a) and (f)).

In Fig. 9, the decision in V P1 contradicts the prior de-
cision in V P4 because of the require dependency. This is
determined by the function checkRequiredUC, whose algo-
rithm is presented in Alg. 2. For the rest of the check func-
tions, the reader is referred to Supplementary Material.

Alg. 2 checks the formulas in Fig. 13(a) and (f) for an
unselected variant use case required by a variation point or a
variant use case. For instance, in Fig. 13(a), when UCBn is
unselected and there is no further decision made for UCBn,
it checks if UCAm is selected in any prior decision. If UCAm

is already selected, it reports a contradiction.
Alg. 2 takes as input use case uc unselected in decision

d, set of prior decisions DC, decision d, and PL use case
diagram PLD, while it returns the set of decisions contra-
dicting d. The inputs of checkRequiredUC for the exam-
ple in Fig. 9 are UC3, {D1}, D2, and the PL diagram in
Fig. 9 where D1 = (V P4, null, {UC9}, ∅) and D2 =

(V P1, UC1, {UC2, UC4}, {UC3}). The functions used
in Alg. 2 are the following:

Alg. 2: checkRequiredUC
Input : Use case, uc, Set of decisions, DC,

Decision, d, PL use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions;
2 if ((uc is not selected in the completed decisions) and (there is

no further decision to be made for uc)) then
3 Let EX be the empty set for inferred, unselected elements;
4 EX ←

{uc} ∪ inferUnselectedElements(uc, d, DC, ∅, PLD);
5 foreach (dm ∈ DC) do
6 Let SUC be the set of selected use cases in dm;
7 Let vp be the variation point in dm;
8 if (SUC 6= ∅) and ((EX ∩ getRequiredElements(vp,

PLD)) 6= ∅) then
9 RES ← RES ∪ {dm};

10 end if
11 foreach (u ∈ SUC) do
12 Let I be the empty set for inferred, selected elements;
13 I ← {u} ∪ inferSelectedElements(u, dm,

DC ∪ {d}, ∅, PLD);
14 foreach (e ∈ I) do
15 if (EX ∩ getRequiredElements(e, PLD) 6= ∅)

then
16 RES ← RES ∪ getInvolvedDecisions(e,

dm, d, DC);
17 end if
18 end foreach
19 end foreach
20 end foreach
21 return RES;
22 else
23 return RES;
24 end if

– inferUnselectedElements infers unselected elements for
use case uc unselected in decision d (Line 4),

– inferSelectedElements infers selected elements for use
case u selected in decision dm (Line 13),

– getRequiredElements returns use cases and variation points
required by other variation points or variant use cases
(vp in Line 8 and e in Line 15),

– getInvolvedDecisions returns all decisions contradicting
decision d for element e in decision dm (Line 16).

Alg. 2 starts with checking whether uc, unselected in de-
cision d, is also unselected in the set of prior decisions DC,
while it is also not possible to make any further decision
for uc (Line 2). If uc is already selected in another decision
or if there is still yet another decision to be made for uc,
the function returns an empty set of contradicting decisions
(Line 23); otherwise, the function checks whether there is
any selected use case which requires uc (Lines 3-21). For
UC3, the decision can be made only via the pair (V P1,
UC1) since UC1 is the only use case including V P1. D2 is
the decision made via the pair (V P1, UC1) where UC3 is
unselected.

When uc is unselected in d, there might be other vari-
ant use cases automatically unselected. These use cases are
in the variation points included by uc (Line 4). The func-
tion inferUnselectedElements returns the inferred, un-
selected use cases and variation points for use case uc uns-
elected in decision d. For D2, it infers UC7, UC8, and V P3

(EX = {UC3, UC7, UC8, V P3 }). V P3 is included only
by UC3. UC7 and UC8 in V P3 cannot be selected after
UC3 is unselected in D2. Since all variant use cases in V P3

are automatically unselected, V P3 is also considered unse-
lected. If any of these elements in the set of unselected ele-
ments EX is required by a variation point selected in prior
decision dm in DC, the current decision d contradicts dm

(Lines 6-10). The variant use cases selected in dm (SUC in
Line 6) might cause other variant use cases automatically to
be selected. These are the use cases with a mandatory vari-
ability relation in the variation points included by the use
cases selected in dm (Line 13). The function inferSelect-
edElements infers those variant use cases to check whether
they require any unselected element in EX (Lines 11-19).
For D1, there is no inferred variant use case. There is only
UC9 which is selected for V P4 in D1 (I = {UC9} for u
= UC9). Only UC9, selected in D1, requires UC8 in EX

(Line 15). There might be other prior decisions contribut-
ing to the selection of UC9. The function getInvolvedDeci-
sions returns all these decisions (Line 16). There is only D1

in which UC9 is selected. Therefore, the function checkRe-
quiredUC returns only D1 in the set of contradicting deci-
sions (RES = {D1} in Lines 16 and 21).

7.4 Non-configurable PL Use Case Diagrams

As stated in Section 7.1, our assumption for consistency
checking is that the PL diagram is configurable. Fig. 14 pro-
vides an example of a non-configurable PL diagram.

System

Actor1

UC1

VP3

<<Variant>>
UC8

<<include>>

0..1

<<Variant>>
UC2

<<Variant>>
UC3

0..1

VP1

2..2

Actor2
<<Variant>>

UC4

VP2

<<Variant>>
UC7

<<Variant>>
UC6

2..2

<<include>> <<conflict>>

<<require>>

<<Variant>>
UC5

0..1

Fig. 14 An Example of a Non-Configurable PL Use Case Diagram

Essential use case UC1 includes mandatory variation point
VP1 which has three variant use cases through optional and
mandatory variability relations. Variant use cases UC3 and

UC4 in VP1 are always selected because of the mandatory
variability relation (cardinality constraint ‘2..2’ in VP1). UC3
includes another mandatory variation point, VP2, which has
three variant use cases UC5, UC6 and UC7. UC6 and UC7
are always selected because of the mandatory variability re-
lation (cardinality constraint ‘2..2’ in VP2). Therefore, vari-
ant use cases UC3, UC4, UC6, and UC7 are automatically
selected for every product. UC7 requires another variant use
case, UC8, while UC8 conflicts with UC4. The require de-
pendency implies that if UC7 is selected for a product, UC8
should also be selected for the same product. Since UC7
is automatically selected for every product, UC8 should al-
ways be selected for every product. On the other hand, UC8
cannot be selected for any product because it conflicts with
UC4, which is also automatically selected for every product.
Therefore, it is not possible to generate a valid PS use case
diagram from the PL diagram in Fig. 14. The combination
of the dependencies require between UC8 and UC7, con-
flict between UC8 and UC4, and include between UC3 and
VP2 and the cardinality constraints (2..2) in VP1 and VP2
is the reason of non-configurability in Fig. 14. Such combi-
nation of dependencies and cardinality constraints in a non-
configurable PL use case diagram needs to be resolved be-
fore making configuration decisions. Otherwise, in the non-
configurable PL diagram, there will always be contradicting
decisions which are impossible to resolve.

The detection of non-configurable models has been ad-
dressed in the context of feature modeling and product line
requirements specifications [14,70,69]. There are also tech-
niques [40,39,41] to identify incorrect combinations of re-
quirements dependencies in a broader context. Existing tech-
niques (e.g., [62,40,68,75,49,50,65,31]) could be adapted
for PL use case diagrams in our configuration approach as
part of Step 1, Elicit Product Line Use Case and Domain
Models, in Fig. 4. Before making decisions, the analyst could
automatically check if the PL use case diagram is config-
urable and, if necessary, could resolve the incorrect combi-
nation of dependencies and cardinality constraints.

8 Generation of PS Use Case Models

After the decisions are made, the PS use case and domain
models are generated from the PL models. The generation
of PS models are implemented in the PL-PS Transformer
component in PUMConf (Fig. 15). The details of the com-
ponent architecture of PUMConf are given in Section 9.

The PL-PS Transformer contains three subcomponents:
Diagram Transformer, Specification Transformer and Do-
main Model Transformer. The subcomponents are update-
in-place transformations [29] in which a model is both an
input and output. Each subcomponent takes one of the PL
models and relevant decisions in the decision model as in-
put, and produces the corresponding PS model as output.

PL Use Case
Diagram

Diagram
Decisions in

Decision Model

PL Use Case
Specifications

Specification
Decisions in

Decision Model

Annotated
PL Use Case

Specifications

PL Domain
Model

Domain Model
Decisions in

Decision Model

PL-PS Transformer

Diagram
Transformer

Specification
Transformer

Domain
Model

Transformer

PS Use Case
Diagram

PS Use Case
Specifications

PS Domain
Model

GATE NLP
Workbench JAPEJAPEJAPEJAPE

Fig. 15 Overview of the PS Use Case and Domain Model Generation

All PL and PS use case specifications are stored as plain
text in the native IBM DOORS format. During the consis-
tency checking of use case and domain models (see Step
2 in Fig. 4), for the RUCM keywords and types of steps,
use case specifications in IBM DOORS are annotated us-
ing NLP provided by the GATE workbench (see Section 9).
The Specification Transformer uses the annotations to dis-
tinguish RUCM steps and types of alternative flows in match-
ing transformation rules (Section 9). It processes the plain
text instead of instances of the RUCM metamodel [81]. Com-
pared to model transformation languages, Java provides much
more flexibility for handling annotated plain text in terms of
loading, matching and editing the text. Therefore, we used
Java to implement the Specification Transformer. To provide
the uniformity in the PL-PS Transformer, other subcompo-
nents are also implemented in Java.

The Diagram Transformer takes the PL use case dia-
gram and diagram decisions as input, and generates the PS
use case diagram as output. The PS diagram generation is
based on mappings between patterns in PL and PS diagrams
driven by decisions. For instance, for a variant use case in
the PL diagram, there is a corresponding use case in the
PS diagram only if the variant use case is selected during
decision-making. Fig. 16 gives example source and target
patterns with decisions for use case diagrams.

Fig. 16 has three columns, i.e., source pattern, decision,
and target pattern, to represent example mappings between
PL and PS diagrams. Decisions for the diagrams are rep-
resented as quadruples (see Section 7). In Fig. 16(a), the
analyst selects all variant use cases in mandatory variation
point X included by essential use case UC. The variation
point, include relation and unselected variant use cases are
removed while each selected variant use case is transformed
into a use case included by UC in the PS diagram. In Fig. 16(b),
optional variation point X is included by essential use case
UC while all variant use cases are unselected. Only essen-

UC

<<Variant>>
UCn

<<include>>

Variation
Point X

max = min

<<Variant>>
UC1 …

min > 0

Actor

UC

UCn

<<include>>
UC1

<<include>>

…

Actor

Source Pattern Target PatternDecision

(X, UC, {UC1,…, UCn}, ⦰)

<<Variant>>
UCn

Variation
Point X

max >= min

<<Variant>>
UC1 …

min = 0

UC <<include>>

Actor

UC

Actor

(X, UC, ⦰, {UC1,…, UCn})

Variation
Point X

max = 1

<<Variant>>
UC1

min = 0

Actor

(X, null, {UC1}, ⦰) UC1

Actor

(a)

(b)

(c)

Fig. 16 Example Source and Target Patterns with Decisions for Use
Case Diagrams

tial use case X is kept in the PS diagram. The source pattern
in Fig. 16(c) represents optional variation point X which has
one variant use case (i.e., UC1). X is not included by any
other essential or variant use case. When UC1 is selected,
only variation point X is removed from the PS diagram.

The Specification Transformer takes both diagram and
specification decisions to generate PS use case specifica-
tions (see Fig. 17 for example mappings between PL and PS
specifications). Diagram decisions are used to transform use
case steps where variation points are included. In Fig. 17(a),
the source pattern represents an example specification where
the variation point X in Fig. 16(a) is included in between
other use case steps. For the same decision, represented as a
quadruple, in Fig. 16(a) where all variant use cases are se-
lected, the VALIDATES THAT and INCLUDE steps in the
basic flow and a set of alternative flows are generated for
the PS specification. One of the variant use cases (UC1) is
executed in the basic flow (the step where UC1 is included)
if its precondition holds (the VALIDATES THAT step). The
rest of the selected use cases are executed in the generated
alternative flows. One of the alternative flows is taken if
the VALIDATES THAT statement in the basic flow fails. In
Fig. 17(b), the source PL specification for Fig. 16(b) is trans-
formed into the PS specification based on the diagram deci-
sion where no variant use case is selected. The step where
the variation point X is included is removed for the PS spec-
ification.

Fig. 17(c) represents an example source pattern which
contains multiple optional steps in a variant order. The an-
alyst has to decide which optional steps are retained and in
which order in the PS specification. The specification deci-
sion for each optional step is represented as a triple of the
step name, a boolean variable which is true when the step is

Source Pattern Target PatternDecision

(X, UC, {UC1,…, UCn}, ⦰)

(X, UC, ⦰, {UC1,…, UCn})

(STEP A1, true, n)

(a)

(b)

(c)

Dependency INCLUDE VARIATION POINT X.

Basic Flow
Steps Flow of events.
Step INCLUDE VARIATION

POINT X.
Steps Flow of events.

Dependency INCLUDE UC1,..., UCn.

Basic Flow

Steps Flow of events.
Step VALIDATES THAT

Pre-condition of
UC1.

Step INCLUDE UC1.
Steps Flow of events.

Specific
Alternative
Flow (SAFn-1)

Step RFS Validation step
in SAFn-2

Step IF Pre condition of
UCn-1 THEN

Step INCLUDE UCn-1.
SAFn Step INCLUDE UCn.

Dependency INCLUDE VARIATION POINT X.

Basic Flow
Steps Flow of events.
Step INCLUDE VARIATION

POINT X.
Steps Flow of events.

Dependency No INCLUDE Step

Basic Flow Steps Flow of events.
Steps Flow of events.

Basic Flow

Steps Flow of events.
Step V1. OPTIONAL STEP A1
Steps Flow of events.
Step Vn. OPTIONAL STEP An
Steps Flow of events.

Basic Flow

Steps Flow of events.
Step STEP An
Steps Flow of events.
Step STEP A1
Steps Flow of events.

(STEP An-1, true, 2)
(STEP An, true, 1)

(STEP A2, true, n-1)…

Fig. 17 Example Source and Target Patterns with Decisions for Use Case Specifications

selected, and the decided order number. In the example, each
optional step is selected in a reverse order for the PS specifi-
cation (see the decision column in Fig. 17(c)). Based on the
decisions, the selected optional steps (OPTIONAL STEP A1,
..., OPTIONAL STEP An−1, OPTIONAL STEP An) are pre-
served in the reverse order (STEP An, STEP An−1, ... , STEP
A1) in the target pattern while there might be common steps
in between the selected optional steps.

The Domain Model Transformer takes the PL domain
model and domain model decisions as input to generate a
PS domain model. As we discussed in Section 6, the gener-
ation of a PS domain model is straightforward: in addition to
mandatory entities, all selected optional and variant domain
entities are kept, while their PL stereotypes are removed.
The is-a relations having only a single subclass are also re-
moved to prune the generated model. In the next section,
we present the tool support and architecture, which provide
more detailed information about the interaction of the PL-PS
Transformer with other components of the tool.

9 Tool Support

We have implemented our configuration approach in a pro-
totype tool, PUMConf (Product line Use case Model Config-
urator). Section 9.1 provides the layered architecture of the
tool while we describe the tool features with some screen-
shots in Section 9.2. For more details and accessing the tool
executables, see: https://sites.google.com/site/
pumconf/.

9.1 Tool Architecture

The tool architecture is composed of three layers (see Fig. 18):
(i) the User Interface (UI) layer, (ii) the Application layer,
and (iii) the Data layer.

Doors PapyrusU
I

La
ye

r

Rhapsody

A
pp

lic
at

io
n

La
ye

r
D

at
a

La
ye

r

PL/PS
Use Case

Specifications

Artifact
Consistency

Checker

PL/PS
Use Case
Diagram

PL/PS
Domain
Model

GATE NLP
Workbench JAPEJAPEJAPEJAPE

usesConfigurator

Decision
Model

uses

Decision
Consistency

Checker

PL-PS
Transformer

uses

uses

Fig. 18 Layered Architecture of PUMConf

User Interface (UI) Layer. This layer supports the ac-
tivity of eliciting product line use cases and domain models
to create or update the PL artifacts (see Fig. 4). It also en-
ables the viewing of the generated PS artifacts. We employ
IBM Doors (www.ibm.com/software/products/ca/en/
ratidoor/) for use case specifications, Papyrus (https://
www.eclipse.org/papyrus/) for use case diagrams, and
IBM Rhapsody (www.ibm.com/software/products/en/
ratirhapfami) for domain models. IBM Doors does not
put any restriction on the structure of use cases and thus
allows the adoption of the RUCM template. Halmans and
Pohl [45] do not provide any metamodel or UML profile

for the PL use case diagram extensions. Therefore, we im-
plemented our own UML profile in Papyrus to enable the
use of the Papyrus model editor for creating and editing
PL use case diagrams. Our choice of IBM Rhapsody for
domain models is based on the modeling practice at IEE,
which has been based on Rhapsody. For domain modeling,
we could also employ the Papyrus model editor which we
use to present the decision model.

Application Layer. This layer supports the main activi-
ties of our approach in Fig. 4: checking consistency of PL use
case and domain models and configuring PS use case and
domain models. It contains four main components imple-
mented in Java: Configurator, Artifact Consistency Checker,
Decision Consistency Checker, and PL-PS Transformer. To
access these Application Layer components through the UI
Layer, we implemented an IBM DOORS plugin (see Fig. 19).

Fig. 19 Menu to Activate IBM DOORS Plug-ins for PUMConf

The Configurator component is a coordinator that man-
ages two other components, i.e., Decision Consistency Checker
and PL-PS Transformer. In addition to the Configurator, the
user has direct access, via the DOORS plug-in, to the Arti-
fact Consistency Checker which employs NLP to check the
consistency of the PL use case diagram, the use case spec-
ifications complying with the RUCM template, and the do-
main model. The Decision Consistency Checker implements
the parts of the configuration algorithm where a decision for
the PL use case diagram is received from the analyst and its
consistency with previous decisions is checked. The algo-
rithm does not attempt to find a valid configuration but sim-
ply traverses the diagram for decisions to recursively check
whether the implications of any variation point - variant use
case dependency (i.e., include, require, and conflict) are vi-
olated by the decisions (see Section 7).

The PL-PS Transformer component is the Java imple-
mentation of the transformation rules for the use case dia-
gram, specifications and domain model. Before the applica-
tion of the transformation rules, use case specifications need
to be annotated by using NLP (see Section 8).

To perform NLP in use case specifications, the Config-
urator and Artifact Consistency Checker components use a
regular expression engine, called JAPE [43], in the GATE
workbench (http://gate.ac.uk/), an open-source Natu-
ral Language Processing (NLP) framework. We implemented
the extended RUCM restriction rules in JAPE. With NLP,

use cases are first split into tokens. Second, Part-Of-Speech
(POS) tags (i.e., verb, noun, and pronoun) are assigned to
each token. By using the RUCM restriction rules implemented
in JAPE, blocks of tokens are tagged to distinguish RUCM
steps (i.e., output, input, include, and internal operations)
and types of alternative flows (i.e., specific, alternative, and
global). The output of the NLP contains the annotated use
case steps. The Configurator passes the annotations to the
PL-PS Transformer in order to match the transformation
rules while the Artifact Consistency Checker processes these
annotations with the use case diagram and domain model to
generate the list of inconsistencies among the artifacts. For
instance, the consistency of use case specifications and do-
main model is checked by comparing the use case specifica-
tion entities identified by the NLP application with the enti-
ties in the domain model. For each domain entity identified
through NLP, the Artifact Consistency Checker generates an
entity name by removing all white spaces and putting all
first letters following white spaces in capital. If the entity
name does not appear either as class name or as an attribute
name in the domain model, or if the entity name is only men-
tioned in the optional parts of use case specifications while
it appears as a mandatory entity in the domain model, an
inconsistency is reported. The consistency checking could
be extended with syntactic and semantic similarity check-
ing techniques [11,12] to tackle inconsistent naming con-
ventions in the comparison.

Data Layer. All the use case specifications are stored in
the native IBM DOORS format while the domain model is
exported into the XMI format by the Rhapsody XMI toolkit.
The PL use case diagram and the generated PS diagram are
stored using the UML profile mechanism, while the decision
model is saved in Ecore [2].

9.2 Tool Features

We describe the most important features of our tool: manag-
ing PL use case and domain models, checking consistency of
PL use case and domain models, getting configuration de-
cisions from the analyst, checking consistency of decisions,
and displaying decisions. These features support the steps of
the modeling process given in Fig. 4.

Managing PL use case and domain models. This fea-
ture supports Step 1, Elicit Product Line Use Case and Do-
main Models, in Fig. 4. The analyst can create, update, and
delete the PL use case diagram, specifications, and domain
model by using the selected modeling tools (i.e., IBM Doors,
Papyrus, and Rhapsody) adopted in PUMConf.

Checking consistency of PL use case and domain mod-
els. The consistency of the PL use case and domain models
needs to be ensured in Step 2, Check Consistency of Prod-
uct Line Use Case and Domain Models, in Fig. 4 before the
analyst makes decisions about the variability information.

Our tool automatically checks (1) if the PL use case spec-
ifications conform to the RUCM template and its product
line extensions, (2) if the PL use case diagram is consis-
tent with the PL use case specifications, and (3) if the PL
domain model is consistent with the PL use case specifica-
tions (see Fig. 19). Fig. 20 presents an example output of
the consistency checking of the PL use case diagram and
specifications in Section 6.

Fig. 20 PUMConf User Interface for Reporting Inconsistencies

Four types of inconsistencies are reported in Fig. 20:
missing variation points in the specifications, variant use
cases given as essential ones in the corresponding specifi-
cations, and missing variation points in the diagram.

Getting configuration decisions from the analyst. Dur-
ing Step 3, Configure Product Specific Use Case and Do-
main Models, in Fig. 4, the tool first determines the list of
variation points to be decided, based on the dependency struc-
ture of variation points, i.e., include. The analyst makes a
decision for each variation point in the list, while the tool
checks the consistency of the decision with prior decisions.
A decision may cause further decisions to be made for some
other variation points, i.e., included by the variant use cases
selected in the decision. In such cases, after each decision
the tool automatically updates the list of variation points to
be decided. Fig. 21 presents the user interface for getting the
decision for variation point VP4 in Fig. 9.

Fig. 21 PUMConf’s User Interface for (a) listing variation points driv-
ing decisions, (b) selecting variant use cases for the selected variation
point, and (c) showing the updated list of variation points after the de-
cision.

In Fig. 21(a), the tool lists the variation points VP1 and
VP4 but not VP2 and VP3 since the analyst can make a deci-
sion for VP2 and VP3 only after UC2 and UC3 are selected
in VP1 (see Fig. 9). The analyst makes a decision in VP4 by
selecting UC9 in Fig 21(b). After the decision is confirmed
to be consistent with previous decisions, VP4 is highlighted
in green, indicating that the decision has been validated and
recorded (see Fig. 21(c)).

After the decisions for the PL diagram are made, the an-
alyst proceeds with the PL use case specifications and do-
main model. Fig. 22 presents the PUMConf’s user interface
for selecting optional steps in the PL specification of use
case UC2 in Table 3.

Fig. 22 PUMConf’s User Interface for Selecting Optional Steps in Use
Cases.

In Fig. 22, the tool lists the entire use case specification
including the optional tags on optional steps. The analyst
makes a decision for each optional step and each optional
alternative flow in the specification (none in UC2). After
these decisions are made, the tool asks the order of the vari-
ant order steps if there are any in the specification.

Checking consistency of decisions. After each decision
is made in the diagram, the tool checks its consistency with
prior decisions. If there is any contradicting decision, the an-
alyst is asked to update the current and/or previous decisions
causing the contradiction.

After the decision regarding VP4 in Fig. 21(b), the ana-
lyst proceeds with VP1 in Fig. 21(c) and then selects UC2
and UC4 (Fig. 23(a)). Please note that UC2 is automati-
cally selected since it is a mandatory variant use case im-
plied by the cardinality constraint in VP1. When the analyst
submits the decision, the tool automatically checks if it con-
tradicts prior decisions. A contradiction for the decisions in

Fig. 23 PUMConf’s User Interface for (a) selecting variant use cases
for the corresponding variation point, (b) explaining the contradicting
decisions, (c) updating the contradicting decision, and (d) showing the
updated list of variation points after the updated decision.

VP1 and VP4 is reported (Fig 23(b)). The upper part of the
user interface in Fig. 23(b) provides an explanation for the
contradiction while the bottom part lists the decisions in-
volved in the contradiction, with an Edit button to update
the corresponding decision. To resolve the contradiction in
Fig. 23(b), the analyst updates the decision in VP1 by select-
ing UC2 and UC3 but not UC4 (Fig. 23(c)). After the deci-
sion is updated, the tool checks again for contradictions. It
confirms that there is no more contradiction and all decisions
are consistent. UC2 and UC3 include VP2 and VP3, respec-
tively. Therefore, after UC2 and UC3 are selected, the pairs
(UC2, V P2) and (UC3, V P3) are automatically given to
the analyst to make further decisions (Fig. 23(d)).

Displaying decisions. After the configuration is com-
pleted with the generation of the PS use case and domain
models, the analyst may need to reconfigure. The tool presents
the entire set of decisions for the product with a user inter-
face similar to Fig. 21(a) and (b).

10 Evaluation

In this section, we evaluate our configuration approach via
reporting (i) an industrial case study, i.e., STO, to demon-
strate its feasibility (Section 10.1), (ii) the results of a ques-
tionnaire based survey at IEE aiming at investigating how
PUMConf is perceived to address the challenges listed in
Section 2 (Section 10.2), and (iii) discussions with the IEE

analysts to gather more insights into the benefits and chal-
lenges of applying it in an industrial setting (Section 10.3).

10.1 Industrial Case Study

We report our findings about the feasibility of our approach
and its tool support in an industrial context. In order to ex-
periment with PUMConf in an industrial project, we applied
it to the functional requirements of STO.

10.1.1 Goal

Our goal was to assess, in an industrial context, the feasi-
bility of using PUMConf to improve variability modeling
and reuse in the context of use case and domain models.
STO was selected for this assessment since it was a rela-
tively new project at IEE with multiple potential customers
requiring different features.

10.1.2 Study Context

IEE is a typical supplier in the automotive domain, produc-
ing sensing systems (e.g., Vehicle Occupant Classification,
Smart Trunk Opener, and Driver Presence Detection) for
multiple automotive manufacturers. In IEE’s business con-
text, like in many others, use cases are central development
artifacts which are used for communicating requirements
among stakeholders, such as customers. In other words, in
the context of product lines, IEE’s software development
practices are strongly use case-driven and analysts elicit re-
quirements and produce a new version of use cases for each
new customer and product. As a result, IEE needs to adopt
PLE concepts (e.g., variation points and variants) to iden-
tify commonalities and variabilities early in requirements
analysis. These concepts are essential for communicating
variability to customers, documenting it for software engi-
neers, and supporting decision making during the elicitation
of customer specific requirements [45].

Like in many other environments, the current practice
at IEE is based on clone-and-own reuse [25]. IEE starts a
new product family with an initial customer providing re-
quirements of a single product in the product family. The
initial product requirements are elicited and documented as
use cases and a domain model which are copied and then
maintained for each new customer. Changes are then made
manually in the copied models.

IEE provided their initial STO documentation, which
contained a use case diagram, use case specifications, and
supplementary requirements specifications describing non-
functional requirements and domain concepts. The initial
documentation was the output of their current clone-and-
own reuse practice. That documentation contains variabil-

ity information only in the form of some brief textual notes
attached to the relevant use case specifications.

To model the STO requirements according to our prod-
uct line use case modeling method, PUM, we first examined
the initial STO documentation. Since the initial documen-
tation contains almost no structured variability information,
we had to work together with IEE engineers to build and iter-
atively refine our models. When we started to study the STO
documentation, the STO project was in its initial phase and
there was only one prototype implementation to discuss with
some potential customers. One may argue that it is not al-
ways easy to identify variations in requirements when a new
project starts. However, the IEE analysts stated that, most of
the time in their domain of applications, requirements and
their variability can be identified with the first customer.

10.1.3 Results

After studying the initial STO documentation and meeting
with the IEE analysts, we built the PL use cases and domain
model for STO. The diagram in Fig. 6, the use case specifi-
cations in Table 2, and the domain model in Fig. 7 are part of
the PL models we derived as a result of our modeling effort.
Tables 5 and 6 report on the size of the entire PL use cases
and domain model for STO.

Table 5 Product Line Use Cases in the Case Study

	 #	of	Use	
Cases	

#	of	
Variation	
Points	

#	of	
Basic	
Flows	

#	of	
Alternative	
Flows	

#	of	
Steps	

#	of	
Condition	
Steps		

Essential	
Use	Cases	

11	 6	 11	 57	 192	 57	

Variant	
Use	Cases	

13	 1	 13	 131	 417	 130	

	

Our modeling method, as part of our configuration ap-
proach, provided better assistance for capturing and analyz-
ing variability information compared to the current, more
informal practice at IEE. With the PL extensions, for exam-
ple, we could unveil variability information not covered in
the initial STO documentation. For instance, the use case di-
agram extensions helped us identify and model that Clear
Error Status via IEE QC Mode is mandatory while Clear
Error Status via Diagnostic Mode is optional (see Fig. 6),
which was not previously documented.

Table 6 Size of the Domain Model

! Essential!
Part!

Variant!
Part!

#!of!!
Entities!

42# 12#

#!of!!
Attributes!

64# 11#

#!of!
Associations!

28# 6#

#!of!
Inheritance!
Relations!

22# 20#

#

When discussions start
with a customer regard-
ing a specific product,
the IEE analysts need
to make decisions on
variability aspects docu-
mented in PL use case
models. At a later stage,
when we met again with
the IEE analysts for dis-
cussing configuration needs,

IEE had already developed various STO products for dif-
ferent car manufacturers. By using PUMConf, we, together
with the IEE analysts, configured the PS use case and do-
main models for four products selected among the STO
products IEE had already developed. The IEE analysts made
the configuration decisions on the PL models using the guid-
ance provided by PUMConf. Table 7 summarizes the re-
sults of the configuration for the STO products using our
approach.

Table 7 Results Summary for the Configuration of STO Use Case and
Domain Models for Various Car Manufacturers

Product	
#	of	Selected	
Variant	Use	

Cases	

#	of	Selected	
Optional	Steps	

#	of	Decided	
Variant	Orders	

#	of	Selected	
Variant	Entities		

P1	 4	 1	 0	 4	
P2	 2	 1	 0	 1	
P3	 6	 1	 0	 5	
P4	 4	 1	 0	 3	
	

The first column is the number of variant use cases se-
lected by the analysts for each product. In the PL use case
diagram, there are six variant use cases with a mandatory
variability relation, which are automatically selected. Ta-
ble 7 does not include the automatically selected variant use
cases. The PL specifications have five optional steps in the
same variant order group to decide (see the variant use case
Provide System User Data via Standard Mode in Table 2).
Only one optional step is selected for each product (second
column in Table 7), thus not requiring any decision on the
variant order (third column). The fourth column in Table 7
presents the number of entities selected among twelve vari-
ant entities (see Table 6).

All the generated PS use case and domain models were
confirmed by the IEE analysts to be correct and complete.
The PL models that we derived from the initial STO docu-
mentation were sufficient to make all the configuration deci-
sions needed in PUMConf to generate the correct and com-
plete PS models for the STO products.

10.2 Questionnaire Study

We conducted a questionnaire study to evaluate, based on
the viewpoints of IEE engineers, how well our configura-
tion approach addresses the challenges that we identified in
capturing requirements variability and configuring PS use
cases. The study is described and reported according to the
template provided by Wohlin et al. [77].

10.2.1 Planning and Design

To evaluate the output of PUMConf in light of the chal-
lenges we identified earlier, we had a semi-structured inter-
view with seven participants holding various roles at IEE:

software development manager, software team group leader,
software lead engineer, system engineer, and embedded soft-
ware engineer. All participants had experience with use case-
driven development and modeling. The interview was pre-
ceded by presentations illustrating the PL extensions of use
case and domain models, PUMConf steps, a tool demo, and
detailed examples from STO. Interactive sessions included
questions posed to the participants about the models. In the
sessions, the participants took a more active role and gave
us feedback. We also organized three hands-on sessions in
which the participants could apply the proposed modeling
method and the PUMConf tool. In the first hands-on ses-
sion, the participants were asked to find inconsistencies in
the faulty PL use case diagram and specifications. In the
second session, they were using PUMConf to identify and
resolve contradicting configuration decisions in the STO PL
use case and domain models. In the third session, the partic-
ipants used PUMConf to configure PS use case and domain
models from the STO PL models.

To capture the perception of engineers participating in
the interviews, regarding the potential benefits of PUMConf
and how it addresses the targeted challenges, we handed out
two questionnaires including questions to be answered ac-
cording to two Likert scales [60] (i.e., agreement and prob-
ability). The questionnaires were structured for the partici-
pants to assess our modeling method and our configurator,
PUMConf, in terms of adoption effort, expressiveness, com-
parison with current practice, and tool support. The partic-
ipants were also encouraged to provide open, written com-
ments.

10.2.2 Results and Analysis

We solicited the opinions of the participants using question-
naires (see Fig. 24). The objective of the first questionnaire
was to assess our product line use case modeling method.
Fig. 24(a) and (b) depict the questions and answers from the
participants for the first questionnaire.

All participants agreed that the PL extensions for use
case diagrams are simple enough to enable communication
between engineers and customers (QA1) and thus they would
probably use such extensions in their projects (QA2). Ex-
cept for one case, all participants agreed that the extensions
provide enough expressiveness to capture variability infor-
mation in their projects (QA3). The participant who dis-
agreed on QA3 commented that a few customers do not em-
ploy use cases in their development practice and, in these
cases, the IEE analysts opt for informal discussions about
the product. However, in all cases, use cases are nevertheless
employed at IEE as part of their internal practice. All partic-
ipants stated that the PL specification extensions are sim-
ple enough (QA4) and variability captured in the diagram
is adequately reflected in the specifications (QA6). They

also all agreed that they would use the specification exten-
sions to capture variability information (QA5). There was
also a strong consensus among the participants about expres-
siveness and simplicity of the PL domain model extensions
(QA7 and QA8). The last part of the questionnaire focuses
on the overall modeling method in terms of expressiveness,
usefulness and adoption effort (QA9 - QA14). The partic-
ipants provided a very positive feedback for the method in
general but they also stated that (i) additional practice and
training was still needed to become familiar with the method
and tool support, (ii) customers also needed to be trained re-
garding the extensions, RUCM and the tool support, and (iii)
the software development of a few customers is not use case-
driven. These were the reasons stated for the disagreement
of two participants on QA10 and QA12.

The objective of the second questionnaire was to assess
our use case-driven configuration approach and its tool sup-
port. Fig. 24(c) and (d) depict the corresponding answers.
The second questionnaire was structured in four different
parts: configuring the PS use case diagram (QB1 - QB3),
configuring the PS use case specifications (QB4 and QB5),
configuring the PS domain model (QB6 and QB7), and
the overall configuration approach and tool support (QB8

- QB13). All participants agreed that the configurator was
adequate to capture configuration decisions for PS use cases
and domain models, and they would use the configurator to
configure PS models in their projects (QB1 - QB7). For
the overall configuration approach and tool support (QB8

- QB13), two participants raised issues similar to those of
the first questionnaire. Customers also need training to get
familiar with the configuration approach and tool support
(QB8 and QB9). Since a few customers do not rely on use
case modeling, IEE analysts would in these cases use the
configurator only for internal communication and documen-
tation during product development (QB11). On the other
hand, all participants saw value in adopting the configura-
tion approach (QB10), and they agreed that the configura-
tor provides useful assistance for configuring PS use case
and domain models, compared to the current practice in their
projects (QB12).

10.2.3 Threats to Validity

The main threat to validity in our case study concerns the
generalizability of the conclusions and lessons learned. To
mitigate this threat, we applied PUMConf to an industrial
case study that includes nontrivial use cases in an applica-
tion domain with multiple customers and numerous sources
of variability. Though their number is small, we selected the
respondents to our questionnaire and interviews to hold var-
ious, representative roles and with substantial industry expe-
rience. We can also confidently say that the software devel-
opment practice at IEE is typical of embedded system devel-

(a)

0!

1!

2!

3!

4!

5!

6!

7!

8!

QA1. Our diagram is
simple enough to

enable
communication

between engineers
and customers!

QA3. The notation
provides enough

expressiveness to
conveniently capture

the variability
information in your

projects!

QA4. Our use case
specifications are
simple enough to

enable
communication

between engineers
and customers.!

QA6. Variability
captured in the use

case diagram is
adequately reflected
in the specifications!

QA7. The
stereotypes used in
the domain model

are simple and
expressive enough to
capture variability in

domain entities.!

QA9. The steps in
our modeling

method are easy to
follow.!

QA10. The effort
required to learn
how to apply our

method is
reasonable. !

Strongly agree!
Agree!
Disagree!
Strongly disagree!

(b) 0!

1!

2!

3!

4!

5!

6!

7!

QA2. If a use case
diagram like the one
we presented were

available to you,
would you use that
model to help you

capture or
understand
variability?!

QA5. If use case
specifications like the

ones we presented
were available to you,
would you use those
specifications to help

you capture or
understand
variability?!

QA8. If a domain
model like the one we

presented were
available to you,

would you use that
model to help you

understand or
capture variability in

domain entities?!

QA11. Would you see
value in adopting the
presented method for
capturing variability?!

QA12. Does the
presented method

provide useful
assistance for easing
the communication
between engineers

and customers?!

QA13. Does the
presented method

provide useful
assistance for
capturing and

analyzing variability
information

compared to the
current modeling
practice in your

projects?!

QA14. Do you think
that the presented
tool provides useful

assistance for
minimising the

inconsistencies in use
case diagrams and

specifications?!

Very probably!
Probably!
Probably not!
Surely not!

(c)

(d)

0!

1!

2!

3!

4!

5!

6!

7!

QB1. The decision-making in
the configurator is sufficient to
capture configuration decisions

for product specific use case
diagrams.!

QB4. The decision-making in
the tool is sufficient to capture

configuration decisions for
product specific use case

specifications.!

QB6. The decision-making in
the configurator is sufficient to
capture configuration decisions

for product specific domain
models.!

QB8. The steps in our
configuration method are easy

to follow, given appropriate
training.!

QB9. The effort required to
learn how to apply the

configuration method is
reasonable. !

Strongly agree!
Agree!
Disagree!
Strongly disagree!

0!

1!

2!

3!

4!

5!

6!

7!

QB2. If the
configurator like the

one we presented
were available to

you, would you use
it to configure

product specific use
case diagrams in

your projects?!

QB3. Do you think
that the presented
tool provides useful

assistance for
identifying and
resolving the
inconsistent

decisions in PL use
case diagrams?!

QB5. If the
configurator like the

one we presented
were available to

you, would you use
it to configure

product specific use
case specifications
in your projects?!

QB7. If the
configurator like the

one we presented
were available to

you, would you use
it to configure

product specific
domain models in

your projects?!

QB10. Would you
see value in
adopting the

presented method
for configuring

product specific use
case models?!

QB11. Does the
presented method

provide useful
assistance for easing
the communication
between engineers

and customers
during

configuration?!

QB12. Does the
presented method

provide useful
assistance for

configuring product
specific use case

models compared to
the current practice

in your projects?!

QB13. Do you think
that the presented
tool provides useful

automation for
generating product

specific use case and
domain models?!

Very probably!
Probably!
Probably not!
Surely not!

Fig. 24 Responses to the Questions Related to the Product Line Use Case Modeling Method and Configuration Approach

opment in the automotive domain. To limit threats to internal
validity, we had many meetings with the IEE analysts in the
STO project to verify the correctness and completeness of
our models.

10.3 Discussions with the Analysts and Engineers

The questionnaire study had open, written comments un-
der each section, in which the participants could state their
opinions in a few sentences about how PUMConf addresses
the challenges reported in Section 2. As reported in Sec-
tion 10.2, the participants’ answers to the questions through
Likert scales and their open comments indicate that they see
high value in adopting the configuration approach and its
tool support in an industrial setting in terms of increasing
reusability, minimizing modeling effort, and providing ef-
fective automation. In order to elaborate over the open com-
ments in the two questionnaires, we organized further dis-
cussions with the participants. Based on the feedback in the
comments, we identified three aspects to discuss with the
participants: modeling effort, degree of automation, and lim-
itations of the configuration approach.

10.3.1 Modeling Effort

In the current practice at IEE, like in many other environ-
ments, there is no systematic way to model variability infor-
mation in use case and domain models. As mentioned be-
fore, the IEE analysts take only brief notes attached to use
case specifications to indicate what may vary in the speci-
fication. They are reluctant to use feature models traced to
use case specifications because of two main issues: (i) hav-
ing feature models requires considerable additional model-
ing effort with manual assignment of traces at a very low
level of granularity, e.g., sequences of use case steps; and (ii)
they find it hard and distracting to switch from feature mod-
els to use cases and vice versa during the decision-making
process. The PL extensions in Section 5 enable the ana-
lysts to model variability information directly in use case
and domain models without any feature modeling. The IEE
analysts stated that the effort required to apply the exten-
sions for modeling variability information was reasonable.
By having variability information in use case and domain
models, the analysts could focus on one artifact at a time
to make configuration decisions. They considered the ex-
tensions to be simple enough to enable communication be-
tween analysts and customers, but they also mentioned that
training customers may be more of a challenge since the
company may need customers’ consent to adopt PUMConf.
Thus, its costs and benefits should be made clear to cus-
tomers.

10.3.2 Degree of Automation

In our discussions with the analysts at IEE, we noticed that:
(i) the current clone-and-own reuse practice has no system-
atic way and automated support to decide what to include
in PS use case and domain models; (ii) typically, multiple
analysts and engineers from both the customer and supplier
sides are involved in the decision-making process; (iii) the
analysts and engineers have to spend several days to man-
ually review the entire set of requirements cloned from the
previous product; and (iv) the intended updates on the cloned
use case and domain models are manually carried out by
the IEE analysts. On the other hand, PUMConf consists of
various automated use case modeling and configuration ac-
tivities in the context of product lines. The decision mak-
ing process is automated in the sense that the IEE analysts
are guided through the PL artifacts for collecting and verify-
ing configuration decisions, while the generation of PS arti-
facts does not require any human intervention. Using PUM-
Conf, the IEE analysts only select a set of relevant variant
use cases, optional steps, and variant entities for a prod-
uct. Corresponding PS use case and domain models are ob-
tained from the PL models automatically, which greatly re-
duces the complexity of the entire configuration process.
Though modeling variability in PL models is mostly man-
ual, PUMConf provides automatic consistency checking for
these models and feedback to the analyst to help them refine
and correct the models. The IEE analysts considered the au-
tomated consistency checking of decisions and the genera-
tion of PS artifacts to be highly valuable.

10.3.3 Limitations of the Configuration Approach

Our configuration approach and tool support have some lim-
itations at this current stage. First, our modeling method
supports only functional requirements. As stated by IEE an-
alysts, there are numerous types of non-functional require-
ments (e.g., security, timing, and reliability) which may play
a key role in variability associated with functional require-
ments. It is crucial to capture and configure such aspects as
well. Second, we do not address and support the evolution of
PL use case and domain models. When a new project starts,
requirements and their variations might not be fully known.
As a result, in early stages, analysts are expected to redefine
variation points and variants in requirements specifications
through frequent iterations. We were told such changes need
to be managed and supported to enable analysts to converge
towards consistent and complete requirements and variabil-
ity information. Third, PUMConf is currently implemented
as a plugin in IBM DOORS, in combination with commer-
cial modeling tools used at IEE, i.e., IBM Rhapsody, and
Papyrus. PUMConf highly depends on the outputs of these
tools. The analysts mentioned that these tools might be re-

placed with other tools or the newer versions of the same
tools in the future. Future changes in the tool chain will need
to fulfill the following constraints: (i) a new modeling tool
for PL diagrams should be extensible in such a way that we
can implement the PL diagram extensions in its use case
metamodel, (ii) a new requirements management tool should
not enforce its own template and restriction rules that con-
flict with the RUCM and PL specification extensions, and
(iii) a new tool for domain modeling should support the pro-
filing mechanism which enables analysts to model the do-
main with the PL stereotypes.

11 Conclusion

This paper presents a configuration approach that is dedi-
cated to environments relying on use case-driven develop-
ment. It guides customers in making configuration decisions
and automatically generates use case diagrams, use case spec-
ifications, and domain models for configured products. Our
main motivations are to provide a high degree of automa-
tion during configuration and to rely exclusively on variabil-
ity modeling for commonly used artifacts in use case-driven
development, thus avoiding unnecessary modeling overhead
and complexity. Our configuration approach builds on our
previous work (i.e., Product line Use case Modeling method)
and is supported by a tool relying on natural language pro-
cessing and integrated into IBM DOORS, that aims at (1)
checking artifact consistency, (2) identifying partial order
of decisions to be made, (3) detecting contradicting deci-
sions, and (4) generating product-specific use case and do-
main models. The key characteristic of our approach is that
variability is directly captured in product line use case and
domain models, at a level of granularity enabling both pre-
cise communication with various stakeholders, at different
levels of details, and automated product configuration. We
performed a case study in the context of automotive embed-
ded system development. The results from structured inter-
views and a questionnaire study with experienced engineers
suggest that our approach is practical and beneficial to con-
figure product use case and domain models in industrial set-
tings.

In our current tool support, we assume that product-line
use case diagrams are configurable, i.e., there is at least one
valid product use case diagram that can be generated from
a product-line diagram. We further plan to improve the pro-
posed approach and configurator (PUMConf) to identify non-
configurable product-line diagrams before making configu-
ration decisions.

Apart from the product line extensions, which are in-
dependent from any application domain, our approach does
not make use of any further extensions specific to the em-
bedded, automotive domain. Therefore, PUMConf should
be applicable to other domains and should not require any

significant adaptation as long as software development is use
case-driven.

PUMConf does not currently support the detection of
decisions violating constraints imposed by the variant de-
pendencies in PL domain models. We plan to improve the
tool for detecting such decisions, which is very similar to
the detection of contradicting decisions in PL use case dia-
grams.

For resolving contradicting decisions in PL use case di-
agrams, our approach follows the strategy in which the de-
tected contradiction is fixed right away and the configuration
is returned to a consistent state. Our motivation stemmed
from the observation that, in the considered business con-
text, tolerating contradictions in decision-making significantly
increases the complexity of communication with customers.
On the other hand, from a general standpoint, fixing a con-
tradiction immediately may not always be the optimal solu-
tion. Therefore, we plan to extend our approach to support
multiple contradiction resolution strategies.

We assume that complete product specific models are
generated from product line models in a single (albeit com-
plex and iterative) stage, which is performed jointly by a
team that combines the activities of all the different par-
ties involved in the configuration process. This is a valid
assumption in the observed business context, as well as in
many other similar contexts. Given this assumption, our tool
provides the possibility of backtracking to change configu-
ration decisions made in preceding steps of the same stage.
However, other organizations may require a multi-stage con-
figuration process, involving multiple physically dispersed
configuration teams, which have to perform their configu-
ration steps in a pre-defined order. Each step may need to
be performed by different experts at different times in phys-
ically different locations, possibly using different configu-
ration tools. In such multi-stage configuration, supporting
backtracking to earlier stages for resolving contradictions
may not be an option.

Our evaluation does not address the usability of PUM-
Conf, especially in terms of resolving contradicting deci-
sions. As future work, we plan to conduct an extensive user
study with engineers to evaluate the effort that needs to be
made in resolving contradicting decisions in PUMConf.

PUMConf is only a first step to achieve our long term
objective, i.e., change impact analysis and regression test
selection in the context of use case-driven development and
testing. Change can occur both in configuration decisions
and variability aspects of product-line models. For decision
changes in a product, the impact on other decisions needs
to be assessed and re-configuration should be considered in
the product-specific model. Further, the impact on the exe-
cution of test cases should be assessed. In contrast, changes
on product-line use case models require impact assessment
on decisions for each individual product and may entail re-

configuration and regression test selection in several prod-
ucts. Our plan for the next stages is to support change im-
pact analysis to help analysts properly manage change in
contexts where product-line and products are constantly and
concurrently evolving.

Acknowledgments

Financial support was provided by IEE and FNR under grants
FNR/P10/03 and FNR10045046.

References

1. DOPLER (Decision Oriented Product Line Engineering for effec-
tive Reuse), http://www.ase.jku.at/dopler/

2. Eclipse EMF, https://eclipse.org/modeling/emf/
3. IEE (International Electronics & Engineering) S.A., http://

www.iee.lu/
4. pure::variants for IBM Rational DOORS, http://www.

pure-systems.com/DOORS.174.0.html
5. pure::variants, http://www.pure-systems.com/pure_

variants.49.0.html
6. Alférez, M., Bonifácio, R., Teixeira, L., Accioly, P., Kulesza, U.,

Moreira, A., Araújo, J., Borba, P.: Evaluating scenario-based spl
requirements approaches: the case for modularity, stability and
expressiveness. Requirements Engineering Journal 19, 355–376
(2014)

7. Alferez, M., Kulesza, U., Moreira, A., Araujo, J., Amaral, V.:
Tracing between features and use cases: A model-driven approach.
In: VAMOS’08, pp. 81–88 (2008)

8. Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U.,
Araújo, J., Amaral, V.: Multi-view composition language for soft-
ware product line requirements. In: SLE’09, pp. 103–122 (2009)

9. Alves, V., Niu, N., Alves, C., Valença, G.: Requirements engineer-
ing for software product lines: A systematic review. Information
and Software Technology 52, 806–820 (2010)

10. Armour, F., Miller, G.: Advanced Use Case Modeling: Software
Systems. Addison-Wesley (2001)

11. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.:
Change impact analysis for natural language requirements: An nlp
approach. In: RE’15, pp. 6–15 (2015)

12. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.:
NARCIA: an automated tool for change impact analysis in natural
language requirements. In: ESEC/SIGSOFT FSE 2015, pp. 962–
965 (2015)

13. Batory, D.: Feature models, grammars, and propositional formu-
las. In: SPLC’05, pp. 7–20 (2005)

14. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated analysis
of feature models 20 years later: A literature review. Information
Systems 35(6), 615–636 (2010)

15. Benavides, D., Trinidad, P., Ruiz-Cortes, A.: Automated reasoning
on feature models. In: CAiSE’05, pp. 491–503 (2005)

16. Biddle, R., Noble, J., Tempero, E.: Supporting reusable use cases.
In: ICSR’02, pp. 210–226 (2002)

17. Blanes, D., Gonzalez-Huerta, J., Insfran, E.: A multimodel ap-
proach for specifying the requirements variability on software
product lines. In: ISD’14, pp. 329–336 (2014)

18. Bonifácio, R., Borba, P.: Modeling scenario variability as croscut-
ting mechanisms. In: AOSD’09, pp. 125–136 (2009)

19. Bonifácio, R., Borba, P., Ferraz, C., Accioly, P.: Empirical assess-
ment of two approaches for specifying software product line use
case scenarios. Software and Systems Modeling (2015)

20. Bonifácio, R., Borba, P., Soares, S.: On the benefits of scenario
variability as croscutting. In: EA-AOSD’08, pp. 1–6 (2008)

21. Braganca, A., Machado, R.J.: Automating mappings between use
case diagrams and feature models for software product lines. In:
SPLC’07, pp. 3–12 (2007)

22. Buhne, S., Halmans, G., Lauenroth, K., Pohl, K.: Scenario-based
application requirements engineering. In: Software Product Lines.
Springer (2006)

23. Buhne, S., Halmans, G., Pohl, K.: Modeling dependencies be-
tween variation points in use case diagrams. In: REFSQ’03, pp.
59–69 (2003)

24. seok Choi, W., Kang, S., Choi, H., Baik, J.: Automated generation
of product use case scenarios in product line development. In:
CIT’08, pp. 760–765 (2008)

25. Clements, P., Northrop, L.: Software Product Lines: Practices and
Patterns. Addison-Wesley (2001)

26. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley
(2001)

27. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A
template approach based on superimposed variants. In: GPCE’05,
pp. 422–437 (2005)

28. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek,
K.: fmp and fmp2rsm: Eclipse plug-ins for modeling features us-
ing model templates. In: OOPSLA’05, pp. 200–201 (2005)

29. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Systems Journal 45(3), 621–645 (2006)

30. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case
study. Automated Software Engineering 18, 77–114 (2011)

31. Duran, A., Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortes,
A.: FLAME: a formal framework for the automated analysis of
software product lines validated by automated specification test-
ing. Software and Systems Modeling (2016)

32. Eriksson, M., Borstler, J., Asa, A.: Marrying features and use cases
for product line requirements modeling of embedded systems. In:
SERPS’04, pp. 73–82 (2004)

33. Eriksson, M., Borstler, J., Borg, K.: The pluss approach - domain
modeling with features, use cases and use case realizations. In:
SPLC’05, pp. 33–44 (2005)

34. Eriksson, M., Borstler, J., Borg, K.: Managing requirements spec-
ifications for product lines - an approach and industry case study.
Journal of Systems and Software 82, 435–447 (2009)

35. Fantechi, A., Gnesi, S., John, I., Lami, G., Dorr, J.: Elicitation of
use cases for product lines. In: PFE’03, pp. 152–167 (2004)

36. Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A methodology for
the derivation and verification of use cases for product lines. In:
SPLC’04, pp. 255–265 (2004)

37. Faulk, S.R.: Product-line requirements specification (PRS): an ap-
proach and case study. In: RE’01, pp. 48–55 (2001)

38. Forbus, K.D., Kleer, J.D.: Building Problem Solvers. MIT Press
(1993)

39. Goknil, A., Kurtev, I., van den Berg, K.: A metamodeling ap-
proach for reasoning about requirements. In: ECMDA-FA’08, pp.
310–325 (2008)

40. Goknil, A., Kurtev, I., van den Berg, K., Veldhuis, J.W.: Semantics
of trace relations in requirements models for consistency check-
ing and inferencing. Software and Systems Modeling 10, 31–54
(2011)

41. Goknil, A., Kurtev, I., Millo, J.V.: A metamodeling approach for
reasoning on multiple requirements models. In: EDOC’13, pp.
159–166 (2013)

42. Gomaa, H.: Object oriented analysis and modeling families of sys-
tems with uml. In: ICSR-6, pp. 89–99 (2000)

43. H. Cunningham et al.: Developing language processing compo-
nents with gate version 8 (a user guide), http://gate.ac.
uk/sale/tao/tao.pdf

44. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: Applying product
line use case modeling in an industrial automotive embedded sys-
tem: Lessons learned and a refined approach. In: MODELS’15,
pp. 338–347 (2015)

45. Halmans, G., Pohl, K.: Communicating the variability of a
software-product family to customers. Software and Systems
Modeling 2, 15–36 (2003)

46. John, I., Muthig, D.: Product line modeling with generic use cases.
In: EMPRESS’04 (2004)

47. Kulak, D., Guiney, E.: Use Cases: Requirements in Context.
Addison-Wesley (2003)

48. Larman, C.: Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process.
Prentice Hall (2002)

49. Lauenroth, K., Pohl, K.: Towards automated consistency checks of
product line requirements specifications. In: ASE’07, pp. 373–376
(2007)

50. Lauenroth, K., Pohl, K.: Dynamic consistency checking of domain
requirements in product line engineering. In: RE’08, pp. 193–202
(2008)

51. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T. - software
product lines online tools. In: 761-762 (ed.) OOPSLA’09 (2009)

52. Moon, M., Yeom, K.: An approach to develop requirement as a
core asset in product line. In: ICSR’04, pp. 23–34 (2004)

53. Moon, M., Yeom, K., Chae, H.S.: An approach to developing do-
main requirements as a core asset based on commonality and vari-
ability analysis in a product line. IEEE Transactions on Software
Engineering 31(7), 551–569 (2005)

54. Mussbacher, G., Araújo, J., Moreira, A., Amyot, D.: AoURN-
based modeling and analysis of software product lines. Software
Quality Journal 20, 645–687 (2012)

55. Myllärniemi, V., Asikainen, T., Männistö, T., Soininen, T.: Kum-
bang configurator - a configuration tool for software product fam-
ilies. In: IJCAI-05, pp. 51–57 (2005)

56. Nie, K., Yue, T., Ali, S., Zhang, L., Fan, Z.: Constraints: The core
of supporting automated product configuration of cyber-physical
systems. In: MODELS’13, pp. 370–387 (2013)

57. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies
with HUMUS. In: VaMoS’12, pp. 83–91 (2012)

58. Nöhrer, A., Egyed, A.: Conflict resolution strategies during prod-
uct configuration. In: VaMoS’10, pp. 107–114 (2010)

59. Nöhrer, A., Egyed, A.: C2O configurator: a tool for guided
decision-making. Automated Software Engineering 20, 265–296
(2013)

60. Oppenheim, A.N.: Questionnaire Design, Interviewing and Atti-
tude Measurement. Continuum (2005)

61. Rabiser, R., Grünbacher, P., Dhungana, D.: Requirements for
product derivation support: Results from a systematic literature re-
view. Information and Software Technology 52, 324–346 (2010)

62. Rosa, M.L., van der Aalst, W.M.P., Dumas, M., ter Hofstede,
A.H.M.: Questionnaire-based variability modeling for system
configuration. Software and Systems Modeling 8, 251–274 (2009)

63. Sinnema, M., Deelstra, S.: Industrial validation of COVAMOF.
Journal of Systems and Software 81, 584–600 (2008)

64. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A
framework for modeling variability in software product families.
In: SPLC’04, pp. 197–213 (2004)

65. Stoiber, R.: A new approach to product line engineering in model-
based requirements engineering. Ph.D. thesis, University of
Zurich (2012)

66. Stoiber, R., Fricker, S., Jehle, M., Glinz, M.: Feature unweav-
ing: Refactoring software requirements specifications into soft-
ware product lines. In: RE’10, pp. 403–404 (2010)

67. Stoiber, R., Glinz, M.: Supporting stepwise, incremental prod-
uct derivation in product line requirements engineering. In: Va-
MoS’10, pp. 77–84 (2010)

68. Sun, J., Zhang, H., Li, Y.F., Wang, H.: Formal semantics and veri-
fication for feature modeling. In: ICECCS’05, pp. 303–312 (2005)

69. Trinidad, P., Benavides, D., Duran, A., Ruiz-Cortes, A., Toro, M.:
Automated error analysis for the agilization of feature modeling.
Journal of Systems and Software 81, 883–896 (2008)

70. Trinidad, P., Ruiz-Cortes, A.: Abductive reasoning and automated
analysis of feature models: How are they connected? In: Va-
MoS’09, pp. 145–153 (2009)

71. Varela, P., Araújo, J., Brito, I., Moreira, A.: Aspect-oriented anal-
ysis for software product lines requirements engineering. In:
SAC’11, pp. 667–674 (2011)

72. Wang, B., Zhang, W., Zhao, H., Jin, Z., Mei, H.: A use case based
approach to feature models’ construction. In: RE’09, pp. 121–130
(2009)

73. Wang, C., Pastore, F., Goknil, A., Briand, L.C., Iqbal, M.Z.Z.: Au-
tomatic generation of system test cases from use case specifica-
tions. In: ISSTA’15, pp. 385–396 (2015)

74. Wang, C., Pastore, F., Goknil, A., Briand, L.C., Iqbal, M.Z.Z.:
UMTG: a toolset to automatically generate system test cases from
use case specifications. In: ESEC/SIGSOFT FSE 2015, pp. 942–
945 (2015)

75. Wang, H., Li, Y.F., Sun, J., Zhang, H., Pan, J.: A semantic web ap-
proach to feature modeling and verification. In: SWESE’05 (2005)

76. Weston, N., Chitchyan, R., Rashid, A.: A framework for con-
structing semantically composable feature models from natural
language requirements. In: SPLC’09, pp. 211–220 (2009)

77. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B.,
Wesslen, A.: Experimentation in Software Engineering. Springer
(2012)

78. Yue, T., Ali, S., Briand, L.C.: Automated transition from use
cases to uml state machines to support state-based testing. In:
ECMFA’11, pp. 115–131 (2011)

79. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from
use case models to analysis models: Approach and experiments.
ACM Transactions on Software Engineering and Methodology
22(1) (2013)

80. Yue, T., Briand, L.C., Labiche, Y.: aToucan: An automated frame-
work to derive uml analysis models from use case models. ACM
Transactions on Software Engineering and Methodology 24(3)
(2015)

81. Zhang, G., Yue, T., Wu, J., Ali, S.: Zen-RUCM: A tool for support-
ing a comprehensive and extensible use case modeling framework.
In: Demos@MoDELS 2013, pp. 41–45 (2013)

82. Ziadi, T., Jezequel, J.M.: Product line engineering with the uml:
Deriving products. In: Software Product Lines. Springer (2006)

83. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A.,
Fuentes, L., Moreira, A., Araújo, J., Kulesza, U.: Vml* – a family
of languages for variability management in software product lines.
In: SLE’09, pp. 82–102 (2009)

