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Fig. 2. “What is a circle?” In finite element analysis it is an idealization attained in the limit of mesh refinement but never for any finite mesh. In
isogeometric analysis, the same exact geometry and parameterization are maintained for all meshes.

The main idea of isogeometric analysis (IGA)

@ J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes. Isogeometric analysis of structural vibrations. Comput. Methods Appl.
Mech. Engrg., 195, 5257-5296, 2006
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Polynomial degrees for geometries and simulation

Polynomial degree required to represent a geometry?
@ Straight-sided polygonal domains (including L-shaped)
@ Curved boundaries, typically, circular and elliptical shapes

Typically, pg = 1,2,...5...20 !l

Polynomial degree for the numerical solution?

If the analytical solution is expected to be sufficiently regular, the p- or
hp- method can be employed (with p, > py) to obtain higher accuracy
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Various splines basis in practice

B-Splines, NURBS, T-Splines,

LR-Splines, (truncated)Hierarchical B-Splines,

PHT-Splines, Generalized B-Splines, SubD, add your choice

Combining various basis
Geo NURBS, T-Splines, SubD

Solution B-Splines, LR-Splines, (truncated)Hierarchical B-Splines,
PHT-Splines, Generalized B-Splines, add your choice

v

@ R. Sevilla, S. Fernandez Mendez, and A. Huerta. NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth.
Engrg., 76, 56-83, 2008.

@ B. Marussig, J. Zechner, G. Beer, T.P. Fries. Fast isogeometric boundary element method based on independent field
approximation. Comput. Methods Appl. Mech. Engrg., 284, 458-488, 2015. (ECCOMAS 2014, arxiv/1406.3499)

Previous talk of S. Elgeti (Spline-based FEM for fluid flow)
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Motivation summarized

Standard paradigm of IGA

Geometry and simulation spaces are tightly integrated, i.e. same
space for geometry and numerical solution

@ Situations where this tight integration can be relaxed for improved
solution quality

» Geometry of the domain is simple enough to be represented by low
order NURBS, but the solution is sufficiently regular. Higher order
approximation delivers superior results.

» Solution has low regularity (e.g. corner singularity) but the curved
boundary can be represented by higher order NURBS.

» In shape/topology optimization, the constraint of using the same
space is particularly undesirable.

» Standard tools for the geometry/boundary but different
(spline-)basis for solution (to exploit features like local refinement).
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Some historical background of the patch test

|. Babuska and R. Narasimhan. The Babuska-Brezzi condition and the patch test: an example. Comput. Methods Appl.
Mech. Engrg., 140, 183-199, 1997.

G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewicz. Triangular elements in plate bending - conforming and

nonconforming solutions, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson
Air Force Base, Dayton, Ohio, 547-576, 1965.

T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall Inc., 1987.

F. Stummel. The generalized patch test. SIAM J. Numer. Anal., 16(3), 449-471, 1979.

M. Wang. On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J.
Numer. Anal., 39(2), 363-384, 2001.

0O.C. Zienkiewicz, and R.L. Taylor. The finite element patch test revisited: A computer test for convergence, validation and
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error estimates. Comput. Methods Appl. Mech. Engrg., 149, 223-254, 1997.
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O.C. Zienkiewicz, and R.L. Taylor. The finite element patch test revisited: A computer test for convergence, validation and

error estimates. Comput. Methods Appl. Mech. Engrg., 149, 223-254, 1997.

mSubsequemly, the patch test has
generated some mathematical controversy (see Stummel [65]) and undergone rumi-

nation (see Irons and Loikkanen [66] and Taylor et al. {67]). In addition, in the context
of complicated theories. it is not always even clear how to pose patch tests. For these
reasons faith in the patch test has eroded in some quarters. This is unfortunate, for we
firmly believe that, within the realm of problems dealt with so far in this book, the
patch test is the most practically useful technique for assessing element behavior. Thus
we wish to avoid altoge:her the mathematically controversial facets of this subject and
return to the spirit of Irons’ original conception.

Patch tests Various partitioning of the domain



Original geometry parametrization of the domain

@ The geometry is exactly represented by NURBS of degrees 1x2
@ Basic parametrization by one element, defined by 2 knot vectors

Y ={0,0,1,1}, N ={0,0,0,1,1,1}.

@ Together with NURBS basis, this is given by the following set of 6
control points, where the third value denotes the weight.

P[0,0] := {1,0,1}, P[1,0] := {2,0, 1},
P[0, 1] := {1,1,1/v/2},  P[1,1] :={2,2,1//2},
P[0,2] := {0,1,1}, P[1,2] := {0,2,1}.

Patch tests Various partitioning of the domain



Parametrization of the domain for the patch-test |

A B C
0=0

Quarter annulus region

@ For patch-test in 2D, one-time h-refinement in both directions
@ Consider the refined knot vectors

¥ ={0,0,s,1,1}, N ={0,0,0,¢,1,1,1}.

Patch tests Various partitioning of the domain



Parametrization of the domain for the patch-test Il

Shape A For non-uniform curvilinear elements, shift the points B,
D, F, Hand /. Set

t=1—t+t/V2, b:=t+V2t4,
Updated set of control points in non-homogenized form

{1,0,1}, {1+s,0,1}, {2,0,1}

(1+s)t Vet

t
{17\/—Tﬁ7t1}7 {(1+S)7 \/§t1 >t1}7 {27 t1 >t1}
{%71%}7{\@(1 f“_t)7<1+5>v%2}7{%2_072v%2

{0,1,1}, {0,1+s,1}, {0,2,1}

Patch tests Various partitioning of the domain
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Parametrization of the domain for the patch-test Il
Shape B Add another parameter §, two interior points changed as

{(1+s)t1 (1 + s)t b o) {\@(14—3)(1—1‘) (1+9k b
b+d N2t +o) b+20 O b+20 2

+ 6}

Quarter annulus region with non-uniform elements,
(s=2/3,t=1/8,6 =1/2)

Patch tests Various partitioning of the domain



Various combinations of degrees and knots/weights

@ p, = pg, and X, = ¥4 (isogeometric case)
@ py < pg, and X, = ¥4 (different end knots)
@ py > pg, and X, = ¥4 (different end knots)
® py, = pg,and X, # X4
® py<pg,and X, # ¥4
® py,>pg,and X, # X4

Patch tests Various combinations of degrees and knots/weights
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Problem setup

o

Figure 1: Pressurized cylinder.

Problem domain

@ L2 error in the solution

_1+V< r2rz(p2 — p1)
ur = —— (-

r2py — rzps
F(1- 2y)r¥>
G 2

Some numerical results Patch test results



Patch tests

@ py = Pg, .. py = pg = 1x2
@ py < pg,i.e. py=1x2, pg = 2x3
@ py > Pg, i.e. py = 2x3, pg = 1x2
PT1 Shape A, ©, = ¥4, 0.17 and 0.25 interior knots pt

PT2 Shape A, ¥, # ¥4. ¥4 has 0.17 and 0.25 interior knot pt,
and ¥, has 0.35 and 0.81 interior knot pt

PT3 Same as PT1, NURBS for geo, and B-Splines for solution
PT4 Shape B, >, # ¥4

Some numerical results Patch test results 17



Results for various choices of py, pg, >y, X g

| Test|py = pg|pu < Pg|Pu > Pyg|
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Test| pu=pg Pu < Pg Pu > Pg

PT1|2.34666e-15|4.46571e-15|1.59281e-13
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PT2
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4.46571e-15
1.64516e-15

1.59281e-13
2.14010e-15

Some numerical results Patch test results



Results for various choices of py, pg, >y, X g

Test

Pu = Pg

Pu < Pg

Pu > Pg

PTH
PT2
PT3

2.34666e-15
4.04412e-14
2.47975e-15

4.46571e-15
1.64516e-15
1.14036e-14

1.59281e-13
2.14010e-15
8.12925e-15

Some numerical results Patch test results



Results for various choices of py, pg, >y, X g

Test

Pu = Pg

Pu < Pg

Pu > Pg

PTH
PT2
PT3
PT4

2.34666e-15

4.04412e-14

2.47975e-15
0.00212

4.46571e-15
1.64516e-15
1.14036e-14

*

1.59281e-13
2.14010e-15
8.12925e-15

*

Some numerical results Patch test results



Numerical setup

Example 1: Quarter annulus domain.

Case A1 Similar elements, both geo and solution using NURBS,
Y, = ¥4 (except end knots for p, # pg)

Case A2 Same as A1 except X, # Xg

Case B1 Similar elements, geo using NURBS, and solution using
B-Splines, >, = >, (except weights, and end knots for
Pu # Pg)

Case B2 Same as B1 except ¥, # ¥4

Case C1 Nonuniform elements (with parameter ¢), both geo and
solution using NURBS, ¥, = ¥, §, = d4 (except end
knots for p, # pg)

Case C2 Same as C1 except 6, # dg

Case C3 Same as C1 except X, # X4, and d, # dg

Some numerical results Convergence results 19



Convergence: Example 1

L2 error in the solution

Case A1 Case A2
Pu=Pg | Pu<Pg | Pu>Pg | Pu=Pg | Pu<Pg | Pu>Pg
0.004332|0.004332|0.000440|0.002128|0.002128{0.000145
3.768 3.768 8.664 3.877 3.877 8.807
3.936 3.936 8.704 3.968 3.968 8.670
3.983 3.983 8.436 3.992 3.992 8.425
3.996 3.996 8.231 3.998 3.998 8.237

Some numerical results Convergence results
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Convergence: Example 1

L2 error in the solution

Case B1 Case B2
Pu=Pg | Pu<Pg | Pu>Pg | Pu=Pg | Pu<Pg | Pu>Pg
0.004601|0.004601|0.000472|0.002701|0.002701{0.000249
3.953 3.953 8.666 4.674 4.674 8.700
3.974 3.974 9.163 4129 4129 12.689
3.992 3.992 8.546 4.029 4.029 9.587
3.998 3.998 8.257 4.007 4.007 8.527

Some numerical results Convergence results

20



Convergence: Example 1

L2 error in the solution

Case C1 Case C2
Pu=Pg | Pu<Pg | Pu>Pg | Pu=Pg | Pu<Pg | Pu>Pg
0.004584|0.004584|0.000274|0.003676|0.003676{0.000241
3.782 3.782 10.254 3.810 3.810 9.885
3.931 3.931 8.659 3.935 3.935 8.548
3.984 3.984 8.118 3.984 3.984 8.100
3.996 3.996 8.028 3.996 3.996 8.024

Some numerical results Convergence results
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Convergence: Example 1

L2 error in the solution

Case C3
Pu=Pg | Pu<Pg | Pu> Pg
0.008824|0.008824|0.003984
3.779 3.779 1.891
3.944 3.944 2.018
3.983 3.983 2.013
3.995 3.995 2.005
4.000 4.000 2.002

Some numerical results Convergence results

20
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Approaches of IGA and GIA

Physical domainm €N

Zc Na(€)

Solutlon
Parametric domain: Basis functions: \ £)oF!
£EeP
, {N N
— {Na(&)}oms ¢ 4*5
\ Solution approximation: -
Ul

© - ULN.(©)

The main idea of isogeometric analysis (IGA)
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Approaches of IGA and GIA

Parametric domain: Basis functions: Physical domain z e

§€P @ =F() = Zcmw

et {Na(E)}N
SEE= T el e

M Solution ap\froximation: / *
—_— {Mﬂ(é)}ﬁzl Uc(e) :ZU,{;M,V(E)
=1

The main idea of geometry-induced analysis (GIA)

@ G. Beer, B. Marussig, J. Zechner, C. Dinser, T.P. Fries. Boundary Element Analysis with trimmed NURBS and a
generalized IGA approach. http://arxiv.org/abs/1406.3499,2014.

@ B. Marussig, J. Zechner, G. Beer, T.P. Fries. Fast isogeometric boundary element method based on independent field
approximation. Comput. Methods Appl. Mech. Engrg., 284, 458-488, 2015.
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Naming convention

Sub-parametric interpolation: The order of the interpolation for x is lower than
that for ¢.

Isoparametric interpolation: The order of the interpolation for x is the same as
that for ¢.

Super-parameiric interpolation: The order of the interpolation for x is higher than
that for ¢.

In developing solutions to Cq problems one may use either “sub-parametric™ or
“isoparametric” interpolations since either ensures that the polynomials 1, x, y and
for three dimensions z are always available, thus ensuring that constant derivatives
can be computed. On the other hand use of “super-parametric” interpolation should
generally be avoided.

\ 0O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. Elsevier, 2013.
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Pu = Pg Pu < Pg Pu > Pg
Iso-parametric Sub-parametric
Iso-geometric | Sub-geometric | Super-geometric

Conclusions

23



Concluding remarks
@ When knot data are same (same representation/basis)

Conclusions

24



Concluding remarks

@ When knot data are same (same representation/basis)

» various combinations of polynomial degrees pass the test for all
kind of elements

Conclusions

24



Concluding remarks

@ When knot data are same (same representation/basis)

» various combinations of polynomial degrees pass the test for all
kind of elements

@ When knot data are different (allowing different basis)

Conclusions

24



Concluding remarks

@ When knot data are same (same representation/basis)

» various combinations of polynomial degrees pass the test for all
kind of elements

@ When knot data are different (allowing different basis)

» various combinations of polynomial degrees pass the test for
(curvilinear-) rectangular elements

Conclusions

24



Concluding remarks

@ When knot data are same (same representation/basis)

» various combinations of polynomial degrees pass the test for all
kind of elements

@ When knot data are different (allowing different basis)

» various combinations of polynomial degrees pass the test for
(curvilinear-) rectangular elements

One message

@ Without any fancy/weird elements, various combinations of
different basis and polynomial degrees pass the test, and can be
used in practice

5
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