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Focus on presenting latest results, raising some open questions,

and identifying some new challenges
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HOFEIM

Polynomial degree for the numerical solution?

If the analytical solution is expected to be sufficiently regular, the p- or

hp- method can be employed (with pu ą pg) to obtain higher accuracy
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Various splines basis in practice
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PHT-Splines, Generalized B-Splines, add your choice

R. Sevilla, S. Fernandez Mendez, and A. Huerta. NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth.

Engrg., 76, 56-83, 2008.

B. Marussig, J. Zechner, G. Beer, T.P. Fries. Fast isogeometric boundary element method based on independent field

approximation. Comput. Methods Appl. Mech. Engrg., 284, 458-488, 2015. (ECCOMAS 2014, arxiv/1406.3499)

Talk of S. Elgeti on Monday, 2016.05.30 (Spline-based FEM for fluid flow on deforming domains)
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Recall

The main idea of isogeometric analysis (IGA)

J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes. Isogeometric analysis of structural vibrations. Comput. Methods Appl.

Mech. Engrg., 195, 5257-5296, 2006
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space for geometry and numerical solution

Situations where this tight integration can be relaxed for improved
solution quality

§ Geometry of the domain is simple enough to be represented by low

order NURBS, but the solution is sufficiently regular. Higher order

approximation delivers superior results.
§ Solution has low regularity (e.g. corner singularity) but the curved

boundary can be represented by higher order NURBS.
§ In shape/topology optimization, the constraint of using the same

space is particularly undesirable.
§ Standard tools for the geometry/boundary but different

(spline-)basis for solution (to exploit features like local refinement).
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Some historical background of the patch test
I. Babuska and R. Narasimhan. The Babuska-Brezzi condition and the patch test: an example. Comput. Methods Appl.

Mech. Engrg., 140, 183-199, 1997.

G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewicz. Triangular elements in plate bending - conforming and

nonconforming solutions, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson
Air Force Base, Dayton, Ohio, 547-576, 1965.

F. Stummel. The generalized patch test. SIAM J. Numer. Anal., 16(3), 449-471, 1979.

M. Wang. On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J.

Numer. Anal., 39(2), 363-384, 2001.

O.C. Zienkiewicz, and R.L. Taylor. The finite element patch test revisited: A computer test for convergence, validation and

error estimates. Comput. Methods Appl. Mech. Engrg., 149, 223-254, 1997.

T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall Inc., 1987.
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Original geometry parametrization of the domain

The geometry is exactly represented by NURBS of degrees 1x2

Basic parametrization by one element, defined by 2 knot vectors

Σ “ t0,0,1,1u, Π “ t0,0,0,1,1,1u.

Together with NURBS basis, this is given by the following set of 6

control points, where the third value denotes the weight.

Pr0,0s :“ t1,0,1u, Pr1,0s :“ t2,0,1u,
Pr0,1s :“ t1,1,1{

?
2u, Pr1,1s :“ t2,2,1{

?
2u,

Pr0,2s :“ t0,1,1u, Pr1,2s :“ t0,2,1u.
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Parametrization of the domain for the patch-test I

θ “ π{2

A C

E

G

H

D
I

r “ 1

r “ 2

F

B

θ “ 0

Quarter annulus region

For patch-test in 2D, one-time h-refinement in both directions

Consider the refined knot vectors

Σ “ t0,0, s,1,1u, Π “ t0,0,0, t ,1,1,1u.
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Parametrization of the domain for the patch-test II

Shape A Uniform curvilinear elements s “ t “ 1{2

Shape B For non-uniform curvilinear elements, shift the points B,

D, F , H and I. Set

t1 :“ 1 ´ t ` t{
?

2, t2 :“ t `
?

2t1,

Updated set of control points in non-homogenized form

t1,0,1u, t1 ` s,0,1u, t2,0,1u

t1,
t?
2t1

, t1u, tp1 ` sq, p1 ` sqt?
2t1

, t1u, t2,

?
2t

t1
, t1u

t
?

2p1 ´ tq
t2

,1,
t2

2
u, t

?
2p1 ` sqp1 ´ tq

t2
, p1 ` sq, t2

2
u, t2

?
2p1 ´ tq

t2
,2,

t2

2
u

t0,1,1u, t0,1 ` s,1u, t0,2,1u
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Parametrization of the domain for the patch-test III

Shape C Add another parameter δ, two interior points changed as

tp1 ` sqt1
t1 ` δ

,
p1 ` sqt?
2pt1 ` δq

, t1 ` δu, t
?

2p1 ` sqp1 ´ tq
t2 ` 2δ

,
p1 ` sqt2
t2 ` 2δ

,
t2

2
` δu

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Quarter annulus region with non-uniform elements,

(s “ 2{3, t “ 1{8, δ “ 1{2)
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Various combinations of degrees and knots/weights

pu “ pg, and Σu “ Σg (isogeometric case)

pu “ pg, and Σu ‰ Σg

pu ă pg, and Σu “ Σg

pu ă pg, and Σu ‰ Σg

pu ą pg, and Σu “ Σg

pu ą pg, and Σu ‰ Σg
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Various combinations of degrees and knots/weights

pu “ pg, and Σu “ Σg (isogeometric case)

pu “ pg, and Σu ‰ Σg

pu ă pg, and Σu “ Σg

pu ă pg, and Σu ‰ Σg

pu ą pg, and Σu “ Σg

pu ą pg, and Σu ‰ Σg

Total number of cases

3 choices of element shapes, and 6 choices of degrees/knots,

total of 18 cases !!
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Results for various choices of pu, pg,Σu,Σg

L2 error in the solution u “ 1 ` x ` y

pu “ pg, i.e. pu “ pg “ 1x2
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pu ą pg , Σu ‰ Σg 1.5010e-015 1.4193e-015 0.03019

pu “ pg , Σu ‰ Σg 7.4477e-016 1.0611e-015 0.20155

What is expected for u “ 1 ` x2 ` y2 ?

Some numerical results Patch test results 18



Numerical setup

Analytic solution with Dirichlet BC

u “ logp
a

ppx ´ 0.1q ˚ px ´ 0.1q ` py ´ 0.1q ˚ py ´ 0.1qqq
Example A Same knot vectors, same starting approximation for

solution as geo (using NURBS)

Example B Same geo, but different knot vectors for geo and solution

(still using NURBS), which also represents geo

Example C Same knot vectors for geo and field, geo using NURBS,

and solution using B-Splines

Some numerical results Convergence results 19
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Approaches of IGA and GIA

The main idea of Geometry-Independent Field approximaTion (GIFT)

G. Beer, B. Marussig, J. Zechner, C. Dünser, T.P. Fries. Boundary Element Analysis with trimmed NURBS and a

generalized IGA approach. http://arxiv.org/abs/1406.3499, 2014.

B. Marussig, J. Zechner, G. Beer, T.P. Fries. Fast isogeometric boundary element method based on independent field

approximation. Comput. Methods Appl. Mech. Engrg., 284, 458-488, 2015.
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Approaches of IGA and GIA

The main idea of isogeometric analysis (IGA)

The main idea of geometry-induced analysis (GIA)
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Concluding remarks

When knot data are same (same representation/basis)
§ various combinations of polynomial degrees pass the test for all

kind of parametric elements

When knot data are different (allowing different basis)
§ various combinations of polynomial degrees pass the test on

rectangular elements in parametric domain

One message

Without any fancy/weird parametric elements, various

combinations of different basis and polynomial degrees pass the

test, and can be used in practice
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