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Abstract

This technical report details our a semi-automated framework for the reverse-
engineering and testing of access control (AC) policies for web-based applica-
tions. In practice, AC specifications are often missing or poorly documented,
leading to AC vulnerabilities. Our goal is to learn and recover AC policies from
implementation, and assess them to find AC issues. Built on top of a suite of
security tools, our framework automatically explores a system under test, mines
domain input specifications from access request logs, and then, generates and
executes more access requests using combinatorial test generation. We apply
machine learning on the obtained data to characterise relevant attributes that
influence access control to learn policies. Finally, the inferred policies are used
for detecting AC issues, being vulnerabilities or implementation errors. We
have evaluated our framework on three open-source applications with respect
to correctness and completeness. The results are very promising in terms of
the quality of inferred policies, more than 94% of them are correct with respect
to implemented AC mechanisms. The remaining incorrect policies are mainly
due to our unrefined permission classification. Moreover, a careful analysis of
these policies has revealed 92 vulnerabilities, many of them are new.

1 Introduction

Web-based systems are increasingly adopted in virtually all domains, from e-government,
social networks and media, to finance and education. Access control (AC) is a pivotal
feature of such systems since they serve different users and manage sensitive data.
Unfortunately, AC specifications are often missing or poorly documented, leading to
AC vulnerabilities. Moreover, the cost to perform AC testing or auditing can be
substantially high due to the lack of such specifications.

In this work, we address the problem by developing a semi-automated frame-
work, namely ReACP, for the reverse-engineering of AC policies of web-based sys-
tems. Furthermore, upon a tool-assisted systematic assessment of output policies,
our framework aids the analyst in detecting AC vulnerabilities.

The primitives elements of AC policies are resources, subjects (users), access con-
texts, and permissions. A specific policy governs access permissions to a specific
resource for one or more subjects in given contexts. Based on these basic concepts,
many AC models have been proposed in the past decades [5], such as Role-Based
Access Control (RBAC) model [26], XACML [21], or Attribute Based Access Control
(ABAC) [16]. In this paper, we refer to the ABAC model and use key attributes,
such as role, resource, and context, to present the policies that are reverse-engineered
by our framework.



In the reverse-engineering of AC policies, the outcome AC policies need to meet
two qualities: completeness and usefulness. Completeness concerns the coverage of
the elements of AC policies to ensure that we do not leave out any important factor
that influences AC. In contrast, usefulness entails several properties: (i) the obtained
AC policies reflect correctly the actual implementation, (ii) the policies must be easy
for the analyst to assess, and (iii) they should help pinpoint AC vulnerabilities if they
do exist.

Our preliminary work [18] has paved the first building blocks for the framework, in
particular: resource discovery, access analysis, AC policy inference aiming at reverse-
engineering AC policy specifications. Based on a security tool suite, our approach
automatically exercises a target system with a set of known users and roles. Once
assess logs are obtained and analysed, we apply a machine learning technique to
infer AC policies, and then support the analyst in assessing them and detecting
vulnerabilities.

In this paper, we extend our previous work along the two above-mentioned qual-
ity dimensions. First, we enhance the resource discovery capability of ReACP by
considering meaningful domain data. In web-based systems, many web resources are
reachable only when meaningful data are provided in access requests. Otherwise, web
servers will deny the requests or return no new useful information for identifying new
resources or their attributes.

To help achieve this first objective, we propose an XML schema-like format for the
specifications of domain inputs. Our format allows the domain experts to easily spec-
ify data types (e.g. string, numeric) and other input specifications using boundaries,
enumerations, and regular expressions. Moreover, because the specification format is
similar to the XML schema, which is widely used in the industry, the learning cost is
expected to be low. More importantly, our ReACP framework is capable of mining
domain input specifications from execution logs automatically. Hence, manual effort
is mainly needed for refinements.

Having domain input specifications, our extended framework uses a combinatorial
test generation technique to generate many more and diverse access requests. This
helps not only uncover new resources but also learn resource and context attributes
that matter in AC policies. Moreover, exercising a resource with an increased number
of diverse requests also increases the confidence in the policies that we learn.

To improve the usefulness of the inferred policies, we introduce a meta-attribute
concept and a method to process intermediate data so that the output policies are
more understandable. They are often more abstract, yet at the same time can capture
the important relationships among factors that influence AC policies.

Key contributions in this paper include:



¢ A semi-automated approach to reverse-engineer access control policies
based on systematic testing and machine learning using data in access
logs.

o A large scale empirical study based on open source web applications
demonstrating the degree of correctness and completeness of the learned
policies.

© An approach using machine learning classifiers to detect potential ac-
cess control vulnerabilities.

We have evaluated ReACP on three open-source web applications, two of them
being widely used in practice. Results are promising and show that ReACP could
infer correct policies and most of the ones implemented (89%). Moreover, it also
helped detecting 92 real vulnerabilities.

The remainder of this paper is organised as follows. Section 2 and Section 2.3
give background knowledge and discuss a motivating example that is used along the
description of our framework. Section 4 introduces the key concepts used in our work
and presents XInput, our proposed format for the specifications of domain inputs.
Section 5 discusses our framework, followed by a section that describes our tool.
Section 6 reports on our experiments and results. Finally, Section 8 concludes the

paper.

2 Background

2.1 Access Control

Access control is a pervasive security mechanism which is used in virtually all systems
[9]. It is concerned with authorising the right resource access permissions to users.
The fundamental concepts in an access control model include users, subjects, objects,
and permissions. User refers to human users who interact with a computer system.
Subject refers to a process or program acting on behalf of a user. Object refers
to resources accessible from a system (in this paper, object and resource are used
interchangeably). Permission refers to the authorisation to perform some actions
(e.g., read, update) on objects. In some systems, the notion of Access Context is
also important. It concerns properties of the subjects (e.g., location, age) attempting
access, the states of objects being accessed (e.g., a paper cannot be modified after the
proceeding has been published), contextual factors when the access is taking place
(e.g., working time or holiday), and access methods (e.g, using a trusted device or
not).

Over the past decade, a number of access control models have been proposed.
The Role-based Access Control (RBAC) model [10] is the most widely adopted. Ac-



cording to a recent study carried out by NIST (the American National Institute of
Standards and Technology), RBAC’s adoption is increasing steadily, and up to 50%
of the surveyed organisations with more than 500 employees [22]. In the model, one
of the key concepts is the Role, which refers to different privileges on a system. Users
and permissions are then assigned to roles; these assignments govern users’ accesses
to resources.

Because of its flexibility, the Attribute Based Access Control (ABAC) model [16]
has recently gained interest and can potentially be used to replace other AC mod-
els. ABAC policies can use any type of attributes, such as user attributes, resource
attributes, context attributes, or attributes that represent the relationships between
users and resources. ABAC controls accesses based on these attributes and their
values.

2.2 AC Vulnerabilities

Broken access control is a class of AC vulnerabilities. According to a recent report by
the Open Web Application Security Project (OWASP!) in 2013, broken access control
is involved in three out of the top ten vulnerabilities: Missing Function Level Access
Control, Insecure Direct Object References, and Broken Authentication and Session
Management [12].

Missing Function Level Access Control. Due to a lack of proper access enforce-
ment, many web applications check access rights before making functionality or sys-
tem resources visible (via web links, for example). However, the same check must
be carried out on the server side when a functionality or a resource is accessed.
Otherwise, attackers can forge requests to get access to the resource without being
authorised.

Insecure Direct Object References vulnerability refers to the exposure of direct
references to internal resources (such as files). If such internal resources are not ade-
quately protected, they can be maliciously accessed. Broken Authentication and Ses-
sion Management relates to the authentication and session management of an access
control mechanism. If they are implemented improperly, attackers can compromise
user credentials or impersonate other users to access their private resources.

Information Disclosure dues to improper data sanitisation is another class of AC
vulnerability. When displaying information to the end users, especially in unexpected
circumstances when invalid data are provided or errors occur, sensitive information
must properly be sanitised. Unfortunately, many systems in practice still have this
kind of vulnerability, disclosing source code or database information to end users.

Faulty AC policy implementations can be vulnerable to Privilege Escalation at-

Thttps://www.owasp.org



tacks. In such cases, users with a non-privileged role maliciously access privileged
resources, or users access resources own by others without proper permissions.

2.3 Web Crawling

Web crawling, also referred to as Web Spidering, is a technique for the retrieval of
web resources. Its basic process is rather straightforward, starting from the URLs of
one or a few pages (seeding entry pages), a web crawler (also called spider) extracts
hyperlinks from the contents of the pages and then iteratively navigates the web pages
addressed by those links [23]. Advanced web crawlers can identify and submit web
forms to achieve more thorough exploration of web applications. Recent advances
in web technologies (i.e., Web 2.0), where Javascript is used extensively to render
user interfaces, implement navigation, and to enable asynchronous communications
with web servers, have brought great challenges to web crawling as discussed in [29].
Unfortunately, only limited research attention has been paid to improve web crawlers
to support Web 2.0, (see, for example, [19, 7] and references therein).

Web crawling is used for a variety of purposes, such as web archiving, building
search engines [23], or reverse engineering of web applications where models of web
systems are reconstructed and used for maintenance or testing [6]. In security con-
texts, it helps scan the “attack surface” of web applications through which security
test inputs, i.e., attacks, can be submitted to applications.

3 Working Example

We consider a simple web-based document management (SDM) system, depicted in
Figure 1, as a working example for our approach. Its server-side code consists of five
server pages: Logln, Main, viewDocument, manageDocument, and manageUser; they
are located in the following folders: root, root, root/user, root/manager, root/admin,
respectively. The folder root is the root server directory of SDM.

When a user has an access to the system, she is sent to the Login page and,
once authenticated, she is redirected to the Main page in which she will be provided
links to the viewDocument and manageDocument pages, depending on her roles in the
system. The page viewDocument has two parameters, path and id, which indicate the
path to a file and the document identifier, respectively. The page manageDocument
has three Ajax-based functions, namely ajaz-create, ajaz-update, and ajaz-approve to
create, update, and approve documents. These functions are also enabled based on
users’ roles and, once triggered, they open dynamic forms through which documents
can be uploaded and updated.

The administrator of the system has to enter the admin suffix manually to the
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Figure 1: A simple web-based document management system.

URL of SDM in order to access the administrative zone. The page manageUser allows
him to create, update, delete, and assign roles to users. There is no direct link to the
admin area from the Main page.

SDM assigns access permissions to roles. In particular, five roles are pre-defined:
adminRole, userRole, managerRole, authorRole, and guestRole with the assigned ac-
cess permissions as follows:

Role Access Permissions
userRole viewDocument
managerRole viewDocument

manageDocument /ajax-approve

authorRole viewDocument
manageDocument /ajax-create
manageDocument /ajax-update

adminRole manageUser

viewDocument

D *
manageDocument/

By design, all users can access the Login page while only authenticated users can
access the Main page. From there, depending on the roles of the users, authorised
functions (i.e., links) will be provided. For example, users of role userRole can only
view their documents.



Let us discuss some of commonly encountered AC vulnerabilities (Missing Func-
tion Level Access Control) using SDM as an example:

V1: Once logged in, a user is redirected to the Main page which only displays links
to the allowed pages. For example, assuming a malicious user named Mallory has
been assigned to userRole, only a list of links of the form viewDocument?path=... are
displayed on his browser. The developer makes an assumption that by displaying
only authorised links a user like Mallory cannot access other pages. However, this
assumption is wrong since, based on indexing and suggesting tools like Google, by
looking at a browser’s history, or by simple guessing, Mallory can easily access other
web pages if proper access enforcement is not in place. A malicious user can also try
to guess and add some commonly used nouns like admin, backup, config to the main
URL in order to access sensitive areas of a web application. Thereby, in the case of
SDM, if only the administrator is assumed to know the admin suffix and no access
control is in place, unauthorised access is likely to occur.

V2: Since web clients can send direct HT'TP requests to SDM, a malicious user can
create requests to trigger the Ajax-based functions. If accesses are enforced only at
the web pages, unauthorised accesses to these functions will occur.

V3: The path parameter of the viewDocument page can easily be tampered with ille-
gitimate values. For instance, a malicious user can enter a value such as /etc/passwd,
trying to compromise the server. Based on the naming scheme of the parameter,
an attacker can guess and access other users’ documents. For example, if the values
of the path parameter for Mallory are mallory/1 and mallory/2, this pattern can
be inferred and Mallory can then try the alice/[0-9/+ pattern in order to view the
documents of the user alice.

We propose an approach to address the above issues by discovering resources in
web applications like SDM, learning access permissions for different roles in an auto-
mated fashion, and then pointing out potential AC problems. We start by introducing
some key definitions in the following section.

4 Definitions

In this section, we define the basic concepts used in the paper. We also discuss our
proposed XML-based format for the specifications of domain inputs. It facilitates the
specifications of web pages, inputs, data types and input classes that are used for
access testing.

4.1 Basic Concepts
AC Request. AC requests are HTTP requests sent to the system under test (SUT).



Resource. Resources of a web-based SUT are managed through web pages and are
identifiable based on URIs (Uniform Resource Identifiers) as well as relevant request
parameters and their values. A request parameter is deemed relevant if it affects AC
policies, i.e., influences access permissions. In our motivating example, the parameter
1d of the page viewDocument is relevant because it helps identify specific documents.
Context. Contexts are situations where AC requests take place. A context is char-
acterised by various factors such as resource states (a target resource might have
different states that are influencing AC policies), access history (preceding access
sequences to current AC requests). Besides, other contextual factors like time, geo-
location, server availability can also play a role in AC policies.

Access Corpus. The access corpus of a resource contains access instances to that
resource. In particular, the access corpus AS of resource r of the SUT is a tu-
ple AS(r) = (USER, ROLE, ATT,CONTEXT,p), where USER is a set of users
{uy,us,...}; ROLE is a set of roles {rolej,roles,...} that are assigned to users;
ATT is a tuple of attributes of r: ATT = (raj,ras,...), where each attribute
ra; can receive a set of values; CONTEXT is a tuple of contextual attributes
CONTEXT = (cay,cas,...), with each attribute capturing a set of concrete con-
text values; and p (for permission) can be assigned one of two string literals: allowed
and denzied.

We can also view the access corpus of resource r as a table having the following
columns: USER, ROLE,ray,ras,...,cay,cas,...,permission. For illustration, let
us consider two users Alice and Bob of the SDM in Section 3. Alice is assigned to
user Role and Bob is assigned to manager Role. The resource view Document has two
attributes id and path representing the unique ID of documents and the dynamically-
generated paths, respectively. The access corpus of resource viewDocument is pre-
sented in Table 1.

Table 1: An example of user access corpus of resource view Document.

ray= ras=— cap =

User Role id path | context_time Permission
alice  userRole 1 hashl | 9AM allowed
alice  userRole 1 hash2 | 9PM denied
alice  userRole 2 hash3 | 9AM denied
alice  userRole 2 hash4 | 9PM denied
bob managerRole 1 hash5 | 9AM allowed
bob managerRole 1 hash6 | 9PM denied
bob managerRole 2 hash7 | 9AM allowed
bob managerRole 2 hash8 | 9PM denied




4.2 XlInput: Specification Language for Domain Inputs

Domain input data have a crucial role for the reverse-engineering of AC policies and
for detecting AC issues since, without meaningful domain data, requests sent to a
SUT may simply be rejected because they contain invalid data. As a consequence,
without the right input data, we may not be able to discover resources, contexts,
and their attributes for learning AC policies. Therefore, we systematically consider
domain input data, including their specifications and usage, in our approach.

We propose an XML-based language, called Xinput?, for the specifications of
domain inputs for web applications. Xinput is inspired by classification trees for par-
tition testing [13], but we want to provide the analyst with a flexible and familiar
format that enables different and convenient ways of specifying inputs for multi-
ple web pages. Moreover, such format can be used directly, without any additional
transformation, to generate executable test cases. To the best of our knowledge, no
language exists that fulfils the requirements

In essence, Xinput allows specifying web pages, including URLs, input fields, data
types, and input classes of each field. A data type indicates a primitive type of in-
put data (e.g, string, boolean, or integer). An input class pertains to two concepts:
equivalence class and subtype. An equivalence class is a concept used in software
testing that indicates a family of input values that have the same impact or trigger
the same behaviour when they are submitted to the SUT. A subtype denotes concrete
values or a specific range of values that an input can receive. Equivalence classes are
considered when we have time and domain knowledge to holistically classify input
domain into equivalence classes for an input. In practice, however, we may have to
work with only a few or a group of input values because of the lack of domain knowl-
edge and time constraint. By supporting both subtypes and equivalence classes, our
Xinput format gives input specifications the flexibility of being partial with subtypes
or comprehensive with equivalence classes.

In Xinput specifications, a web page is characterised by a unique URL; it may
contain one or more input fields. An input field is defined by its name, source (i.e.,
intended for user or web server), data type (e.g., string or integer), and input classes.
As an example, let us consider a web page that asks the end user to select a month.
The web page specification in Xinput is as follows, where month has 12 input classes
corresponding to the 12 months of a year.

2The XML schema for Xinput is available at http://people.svv.lu/nguyen/tools/xinput



<page urlPath=’page.php’>
<xinput name=’month’>
<dataClz base=’string’>
<enum value=’jan’/>
<enum value=’feb’/>

<enum value=’dec’/>
</dataClz>
</xinput>
</page>
Listing 1: An example of an Xinput specification using enumerations.

We borrow the well-known restriction specifications in XML Schema Definition
[31], including enumeration, boundary, length, and regular pattern to define input
classes. For instance, when an input has only a limited set of valid values, they are
listed as an enumeration. When an input composes of several classes, they can be
specified with length restrictions and patterns (for string) or boundaries (for both
string and numeric).

10



<page urlPath=’book.php’>
<xinput name=’id’>
<dataClz base=’string’>
<enum. value=’1’/>
<enum. value=’2’/>

<enum value=’10’/>
</dataClz>
</xinput>
<xinput name=’title’>
<dataClz base=’string’ name=’short’>
<min. value=’1’/> <max. value=’256’/>
</dataClz>
<dataClz base=’string’ name=’long’>
<min. value=’257’/>
</dataClz>
</xinput>
<xinput name=’price’>
<dataClz base=’double’ name=’cheap’>
<min. value=’0.1’/> <max. value=’10.0°/>
</dataClz>
<dataClz base=’double’ name=’expensive’>
<min. value=’10.0"/>
</dataClz>
</xinput>
<xinput name=’ISBN’>
<dataClz base=’string’ name=’demo’>
<xs:pattern value=’[0-9]{13}’/>
</dataClz>
</xinput>
</page>

Listing 2: An example of are more complete Xinput specifications.

For example, consider the Xinput specification in Listing 2: a web page called
book.php has four user inputs id, title, price, and ISBN. The first input has 10 classes
matching 10 concrete values, the second and third have two classes, characterised by
length and boundary specifications. The last input ISBN has a class specified by
means of a regular pattern for any string of 13 digits3.

As visible seen from the example, Xinput is flexible, it allows specifying both
equivalence classes and subtypes. In the case of the ISBN input, we are interested

3The example is for demonstration only, it is not the standard ISBN specification.
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in only the values that match the defined pattern, i.e., a subtype, and not their
equivalence classes. Also, the format is detailed enough to generate concrete values.
For instance, for the class cheap of the input price, we can pick any value within the
specified range for price.

5 ReACP Framework

We propose a comprehensive framework, namely ReACP, for supporting the reverse-
engineering of AC policies and detecting AC issues in web applications. The main
structure of ReACP is depicted in Figure 2, and consists of seven steps:

1. Ezploratory Access Testing, where the SUT is exercised to obtain AC logs for
subsequent analysis.

2. Mining and Refining Domain Input Specifications, where input specifications are
mined and revised. Input specifications will be used for AC request generation
to further exercise the SUT.

3. Determining Permission Filters, where permission filters are specified to help
classify AC responses as allowed or denied.

4. Access Request Generation, where we use input specifications and combinatorial
test generation to generate more diverse AC requests.

5. Access Testing, where AC requests are sent to the SUT on behalf of different
users.

6. Inferring AC Policies, where AC policies are learned after obtaining and analysing
AC logs.

7. Assessment and AC Issue Detection, where we assess the inferred policies for
correctness and use them to detect AC issues.

We discuss these seven steps in detail in the next sections.

5.1 Step 1: Exploratory Access Testing

The goal of this step is to explore the SUT and exercise its functionality in order to
populate access logs for subsequent steps. The inputs for this step include a set of
user credentials having different privileges with respect to the SUT.

12
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Figure 2: Seven steps of ReACP to reverse-engineer AC policies.

For this step, we rely on a security tool suite called BurpSuite* (more specifically its
spider and proxy) and manual browsing. Firstly, the automated crawling component
BurpSuite’s Spider starts crawling the SUT with different user credentials to discover
web resources. Typically, the spider is provided with one or a few seeding pages
to start the crawling process, it then analyses the content of visited web pages to
determine links and forms, and follows them to visit more pages. Web crawlers might,
sometimes, have problem with the SUTs that have isolated web pages, i.e., there is
no link among them. To deal with this, for SUTs that have web root directories
(where server code is stored) accessible for analysis, in our approach, we consider
all server static resources including server pages, images, folders, and all other files
in the directories as seeding pages for spidering. This helps improve the crawler’s
performance.

Secondly, since crawlers in general have no knowledge about business logics or
domain data, manual browsing is useful to further explore the SUT in areas the
spider cannot reach, such as the web pages that demand meaningful input data. To
do this, a tester can use a browser and interact with the SUT; all requests and their
corresponding responses are recorded through the BurpSuite’s proxy. Notice that the
proxy can also be used to capture execution logs when the SUT is used by end users in
production or when the SUT is functionally tested during development. In addition,
other spiders with different crawling capabilities such as Crawljax [19] that supports
Javascript, can be used in tandem with the proxy to further explore the SUT. Figure
3 shows how different components are integrated for exploratory access testing. The

‘http:/ /portswigger.net /burp
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results of this first step are the resource access logs, which include HTTP requests
and responses captured by the BurpSuite’s proxy.

Credential

Set
Security Tool
Suite requests
- SUT
Othersecurity | _ __ 5 proxy
tools 7 spider
P pi responses

Web Browsers |~

/

1

Users

Figure 3: Automated exploration of resource accesses for the SUT. Dashed arrows
indicate optional involvement of the other security tools or end users.

5.2 Step 2: Mining and Refining Domain Input Specifica-
tions

In Step 1, manual browsing with user-provided input data can help explore and reach
the parts of the SUT that the spider cannot. Moreover, such data are also useful to
generate meaningful access requests to further exercise the SUT so as to learn AC
policies precisely and completely, and to detect AC problems. Therefore, in ReACP,
we automatically mine partial input specifications from logged data to produce input
specifications in the Xinput format and then involve domain experts for refinements.

In the following we discuss how input specifications, including web pages, their
inputs, and the classes of each input, are mined. The next section will discuss how
to use such specifications to generate access requests.

First, crawling logs consisting of HT'TP requests and responses from all exploratory
sessions are consolidated to extract: (i) URL paths of web pages, (ii) input identifiers,
i.e. names of parameters extracted from URL query strings and bodies of HT'TP re-
quests, and from hyper-links and web forms of HTTP responses, and (ii) all values
of each input. Values of inputs are extracted as follows:

14



o Query strings: Query strings are a part of URLs in requests, they are parameter-
value pairs. Data values in query strings are extracted for the corresponding
parameters. For example, in URL http://examp.le/p?q=10, from the query
string ¢=10 we can extract the value 10 for the parameter gq.

o Hyper-links: Hyper-links are in HT'TP responses. We consider links that are
within the scope of the SUT to extract data values. Extracting data from
hyper-links is the same as from query strings.

e Web forms: Web forms in HTTP responses can contain hidden inputs with
server-generated or predefined values (e.g, in select elements). The example
given in Listing 3 shows a form in which the input field “month” has only some
predefined values. They are extracted for mining purposes.

e Bodies of POST requests: POST requests are the results of form submissions
with user inputs. The bodies of the requests contain parameter-value pairs that
are extracted for specification mining.

<html>
<body>
<form action=°‘‘page.php’’>
<select name=‘‘month’’>
<option value=‘‘jan’’></option>
<option value=‘‘feb’’></option>
<option value=‘‘mar’’></option>
</select>
</form>
</body>
</html>
Listing 3: An example of an HTML web forms from which we can extract data for
the “month” input.

We propose the following five rules to mine input specifications:

e Rule 1: type: if all logged values of an input are numeric, then the data type
of the input is numeric (integer or double, depending on whether all values are
integer or not, respectively), otherwise it is string.

e Rule 2: enumeration: inputs having a limited number of data values (no more
than 10 in our current setting) or inputs listed in select elements should be
specified as enumerations, where each value represents a distinct class. For
example, if in a web page we have an input having a select form element that lists

15



all the countries in the world, then the classes of the input are an enumeration
of the countries.

e Rule 3: length: if the type of an input is string and Rule 2 is not applicable
(i.e., it has more data values), the minimum and maximum length of its data
values are used for the specification of the input.

e Rule 4: boundary: if the type of an input is numeric and Rule 2 is not applicable,
meaning that we might have many numeric data values (at least 10), then we
resort to data clustering to learn classes. The idea is to group similar input
values into the same class so the analyst can save time revising only a few mined
classes instead of considering all the specific values. The clustering technique
used is the Expectation-Maximization (EM) algorithm [1], which can estimate
the number of clusters in addition to providing the clusters themselves. Each
obtained cluster is, then, considered as a class for the input, characterised by
the boundaries of the data in the cluster (min, max).

e Rule 5: pattern: this rule is an alternative to Rule 3 and can be applied for
strings. There exist different approaches proposed in the literature to learn regu-
lar patterns from string samples (e.g., [4, 8]), which can be applied to mine input
specifications. However, such approaches require a sufficiently large sample as
otherwise learned patterns may not be general. We leave the implementation
of this rule open for future work.

The domain analyst can manually analyse the string samples and define classes
by mean of regular patterns for the input. We subsequently support the gener-
ation of concrete values from regular patterns, as discussed in the next section.

By applying these rules on logged data we can learn initial specifications in which,
all web pages, inputs of the pages, their types and initial classes are ready for refine-
ment, where needed.

The output of this step is an Xinput file containing input specifications that will
be used in Step 4 for the generation of AC requests.

5.3 Step 3: Determining Permission Filters

This step focuses on determining access permissions (“allowed” or “denied”) for AC
requests by analysing the responses in the access logs. We define a set of filters that
specify how the SUT grants or denies permissions to AC requests.

Access permission of a user to a resource is determined based on HTTP responses,
more specifically the standard HTTP status codes [30], and the HTML contents. In
addition to using HTTP status codes, some web systems gracefully deny unauthorised
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accesses with an “OK Status” web page (HTTP code = 200) but stating, for instance,
“Access is not allowed”. Because these denial messages usually follow certain patterns,
we use regular expressions in our approach to match HTML contents and classify them
as denial or normal, indicating the corresponding requests are denied or allowed,
respectively.

The following table represents general filters to classify responses and determine
access permissions:

Condition Permission
HTTP Code = 4xx,5xx,301, any content denied
HTTP Code = 200,302,304, denial content denied
HTTP Code = 200,302,304, normal content allowed

We may need to customise these filters to specific applications to correctly classify
AC responses. These filters will be used later on in Step 5 during access testing.

5.4 Step 4: Access Request (Generation

In this step, the ReACP uses the Xinput specification file from Step 2 to simulate
more access requests to further exercise the SUT. The goal is to determine how
the SUT responds to new requests with new data or combined data from different
users. The results from these requests will help us learn detailed policies and detect
vulnerabilities where one can illegitimately access resources of others.

In Xinput specifications, each web page contains a set of input fields and each input
field contains a set of specified input classes. In turn, each of them is characterised
by a boundary and length, or a pattern specification. In the case where an input
is specified by an enumeration, each enumerated value is considered a distinct class.
For instance, the example in Listing 2 has four inputs id, title, price, ISBN, which
have 10, 2, 2, and 1 class, respectively.

In practice, a web page might have many input fields and each of them can have
many input classes. Trying to exercise all combinations of input classes would lead
to an exponentially large number of requests to handle. For example, a simple web
page with three inputs, each with 10 classes, would result in 10® combinations. As a
result, in the paper we apply combinatorial testing to generate combinations of input
classes and achieve an adequate degree of combinatorial coverage while minimising
the number of requests to be executed.

Standard combinatorial testing strategies aim, for example, at generating com-
binations that cover all pairs or all triples of input classes [11, 34]. Several such
algorithms and other more recent ones that apply meta-heuristic search [15, 17] have
been proposed and developed to efficiently generate minimal sets of combinations.
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Moreover, there exist many available tools that support the generation of test com-
binations. In ReACP, we opt for a tool called AllPairs®, which implements pairwise
generation following a greedy strategy, for its ease of integration and fast execution.
This choice stems from existing evidence suggesting that there is little difference be-
tween test combinations generated by greedy combination strategies and by other
strategies using meta-heuristic search algorithms [24].

In AllPairs, each input class is represented by a label that corresponds to enumer-
ated values or the name of the class. Considering the example in Listing 2, there are
four inputs and their corresponding class labels are:

id: idy,ids, . . ., id1g
title: short, long
price:  cheap, expensive
ISBN: ISBN

Dealing with all class combinations for the inputs would lead to a total of 2*2*10*1 =
40 combinations. Instead, AllPairs generates only 20 pairwise combinations, including
those listed below.

idy, short, cheap, isbn
ida, long, expensive, isbn
ids, long, cheap, isbn

idy, short, expensive, isbn
ids, short, expensive, isbn

18: id3, short, expensive, isbn
19:  ids, short, cheap, isbn
20:  idy, long, expensive, isbn

Once the combinations are obtained, we concretise them by deriving concrete
values from the class specifications to generate actual requests. The concretisation
rules defined for different types of specifications are provided below. For illustration,
we explain these rules using a combination generated by AllPairs in the above example
< idy, short, cheap, isbn >.

e cnumeration: simply pick the value corresponding to the enumerated element.
For instance, we pick value 1 for the input id.

e [ength: generate a random string of characters that satisfies the length specifi-
cations. For instance, the short class represents strings having their length in
between 1 and 256. Therefore, our framework generates a random string “abc”
for the title input.

®By McDowell, previously available at http://pairwise.org/tools.asp
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e boundary: generate a random numeric value that satisfies the boundary speci-
fications. For instance, the cheap class requires values in between 0.1 and 10.0.
Therefore, our framework generates a random number (e.g., 5.0) within the
range for the price input.

e pattern, generate a random string that matches the defined pattern. In ReACP,
we use a tool called Xeger® for this type of specifications. It converts regular
expressions to automata and generates strings (in other words, sequences of
labels) from the automata. For instance, for isbn the tool generates a string of
13 digits (e.g., “0123456789123”) for the ISBN input.

As a result, the first combination of classes can be concretised to an HTTP re-
quest having four parameters: id = 1, title = “abc”, price = 5.0, and ISBN =
“0123456789123”.

5.5 Step 5: Access Testing Execution

This step consists of establishing access contexts (or just context for brevity), sub-
mitting access requests, and determining access permissions.

5.5.1 Setting up Access Contexts

Contexts are defined by the states of resources being requested and the environment
(specified by the time, location, and states of other resources that interact with the
targeted resources). Contexts can affect access permissions in many cases and we
therefore need to establish the right contexts before submitting any access request.
In web applications, contexts are materialised in client states, server states, access
time, and location.

For client states, although the HTTP protocol is stateless, web applications have
to maintain the state of each and every client in order to provide services according
to a business process. For example, an e-commerce system has to ensure whether a
user has logged in and added some items to her shopping cart before allowing her to
check-out. On the client side, states are stored in cookies, hidden form fields, and
query strings with their values set by the server upon interactions with the client.
We propose a systematic approach to deal with client states. First, ReACP adds
an attribute called source to the input fields and automatically assigns its value to
SERVER or USER during the mining procedure at Step 2. Cookie and hidden input
fields are assigned SERVER, otherwise they are USER (only inputs of USER type
needs classification mining and refinements). Second, for any web page that has an

6Maintained at https://github.com/bluezio/xeger
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input field with a SERVER source, a set-up script is prepared to guarantee that the
client is at the right state for incoming requests to the page.

Depending on the SUT, server states are defined by means of database or file
systems. However, these states should be initialised before executing a request and
rolled back after completing a test session or a request when the executed request
results into database or file changes. We have observed that, in many cases, such
access requests are denied because of missing data which were deleted by previous
requests. Therefore, ensuring that the server is in the right state is important as
otherwise we might miss the opportunity to learn useful AC policies. To this end, our
framework supports executing external scripts for setting up purposes, e.g., populate
a database or reset file contents.

For some applications in which the time and location are considered in the AC,
server time and client location must also be controlled during the execution of access
requests. Changing server time can be done by external scripts similar to those for
setting up database or file systems that our framework supports. Likewise, client
location can be manipulated by our framework when submitting AC requests.

5.5.2 Test Execution

In ReACP, there are three sources to obtain requests for access testing: the spider
(Step 1), the end-users through manual browsing (Step 1), and the requests generated
from input specifications using pairwise testing (Step 4). Here we want to exercise
the SUT to evaluate how it controls accesses by submitting these requests with dif-
ferent users. Recall that we have a set of user credentials, having different privileges,
that use when performing exploratory access testing at Step 1, which we can reuse
here. Moreover, the tester can easily add more user credentials, if budget permitting,
keeping in mind that having more users will help us learn useful information such as
whether the SUT differentiates access policies according to users even when they be-
long to the same role (due to ownership, authorship, specific profiles the users might
have, or other reasons that concern AC policies).

Given a user, our framework performs necessary authentication and also ensures
that proper context is established before executing access requests. Responses re-
ceived from the SUT are analysed with respect to the permission filters defined in
Step 3, to determine whether the corresponding requests are allowed or denied.

The result of each request execution with a user credential is represented by input
values, context values, and the permission labelled as allowed or denied. The overall
test results are a set of access instances AS (corpus) for each resource. Recall that an
access corpus is a table of users, roles, resource attributes, contexts and permission.
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5.6 Step 6: Inferring AC Policies

Based on detailed access and permission data, for each and every resource of the
SUT, we aim at learning implemented access control policies at the right level of
abstraction. In some cases, we can apply machine learning directly on the data
collected, as described above, to infer AC policies. However, for some resources, pre-
processing the data is required to help the machine learning algorithm learn more
insightful policies at a more appropriate level of abstraction, as described next.

5.6.1 Pre-processing Data

Recall that our goal is to learn AC policies for analysis purposes, e.g., to determine
their compliance with specified or expected policies. Hence, it is desirable that the
learned AC policies explicitly capture the key factors that impact access control and
abstract away unimportant details. For instance, in our motivating example, a user is
only allowed to access his own documents. If we have long lists of document identifiers
and users, we want to avoid learning specific AC policies for every document as this
would unnecessarily complicate manual analysis. Instead, we would like to learn, at
an abstract level, how document ownership influences AC policies.

More generally, before learning policies, we employ data pre-processing for the
resources with which concrete data should be abstracted, to only retain attributes or
their relationships that really matter in AC policies. To support pre-processing, we
rely on a concept called meta-attribute. A meta-attribute represents a relationship
between two or more attributes. In the context of access control, we observe common
meta-attributes in many systems, including ownership, authorship, assignment. The
values of such meta-attributes can often be mapped to a Boolean value, indicating
whether the underlying relationship exists or not. The analyst may consider these as
a starting point to define meta-attributes.

In ReACP, we propose some templates for rules to add meta-attributes to the
access dataset and to determine their values:

IF attl IN {set 1} AND att2 IN {set 2}
THEN meta-att-name
ELSE meta-att-name
IF attl IN {set 1} OR att2 IN {set 2}
THEN meta-att-name = value-t
ELSE meta-att-name

value-t

value-f

value-f

These rules read as follows: given an access dataset, for access instance, add a new
meta-attribute meta-att-name, then check the values of attributes att! and att2, for
that instance, to determine if they are contained in the value sets set 1 and set 2,
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respectively. Last, assign the corresponding value (value-t or value-f) to the meta-
attribute.

For example, consider the access data presented in Table 1. We choose to capture
document ownership with a meta-attribute called isOwned by defining this rule to
obtain the extended access corpus in Table 2.

IF USER IN {alice} AND id IN {1, 3, 5, 7%}
THEN isOwned = 1
ELSE isOwned = 0

Table 2: An example of an extended user access dataset for resource view Document
where the_meta-attribute isOwned is added.

User Role id | isOwned | path | time | Permission
alice userRole 1 true h.1 | 9AM allowed
alice userRole 1 true h.2 | 9PM denied
alice userRole 2 false h.3 | 9AM denied
alice userRole 2 false h.4 | 9PM denied
alice userRole 3 1 h.9 | 9AM allowed
alice userRole 3 1 h.10 | 9PM denied
alice userRole 5 1 h.11 | 9AM allowed
alice userRole 5 1 h.12 | 9PM denied
alice userRole 8 false h.19 | 9AM denied
alice userRole 8 false h.20 | 9PM denied
bob  managerRole | 1 false h.5 | 9AM allowed
bob  managerRole | 1 false h.6 | 9PM denied
bob  managerRole | 2 false h.7 | 9AM allowed
bob  managerRole | 2 false h.8 | 9PM denied

5.6.2 Learning AC Policies

The number of access requests to a resource is often very large because it can have
many attributes and can be accessed in various contexts. Manually analysing them
to reverse-engineer AC policies is impractical. Therefore, we propose to apply a
classification technique [32] that yields decision trees to learn AC policies from access
data. Considering the permissions of access requests as class labels (i.e., allowed or
denied), such classification technique helps identify automatically the attributes (e.g.
role, resource attributes) that characterise AC policies. Moreover, the outputs are
structured in a decision tree form, making it easy for human experts to analyse them.
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In particular, we use the J48 classifier that implements the C4.5 algorithm [25]
in Weka [14], to learn decision trees for inferring AC policies. There exists a num-
ber of classification algorithms that can produce decision trees, e.g., REPTree, Ran-
domTree [14, 32], but we choose J48 since it supports binary splitting [32] that often
results in more concise outputs, reducing the time needed for validation.

A decision tree can be represented graphically in which the root and intermediate
nodes represent attributes, the outgoing edges from the nodes are specific values for
these attributes, and each leaf node represents a class label (allowed or denied). In
the decision tree, the paths from the root to the leaves represent classification rules.
In our context, they match the AC policies that we need to infer. For example,
Figure 4 depicts the decision tree learned from the access data dataset of the resource
viewDocument in Table 1. The classifier identified three attributes to be relevant for
access control: context_time, ROLE, and id.

9PM 100%

context_
time

9AM

managerRole 100%

100%
userRole

100%

Figure 4: An example of decision tree learned from the access data corpus of the
view Document resource.

Four concrete policies corresponding to the leaves can be derived from the tree
include:

P1: IF resource = ‘viewDocument’
AND context_time = ‘9PM’ THEN denied

P2: IF resource = ‘viewDocument’
AND context_time = ‘9AM’
AND ROLE = ‘managerRole’ THEN allowed

P3: IF resource = ‘viewDocument’

AND context_time = ‘9AM’
AND ROLE = ‘userRole’
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AND id = ¢1¢ THEN allowed

P4: IF resource = ‘viewDocument’
AND context_time = ‘9AM’
AND ROLE = ‘userRole’

AND id = ‘2¢ THEN denied

In our context, our objective is to use decision trees to accurately characterise
and explain the logged access data (training data); the decision trees are not used for
prediction as it is often the case. We are therefore not concerned with over-fitting the
training data but rather with capturing as many AC rules as possible. Therefore, we
recommend to turn off the pruning [32] option of J48 to generate the most precise
tree possible.

From the above example, we observe that a set of policies will tend to grow large
since the id attribute with concrete values (id = ‘1‘) appear in the policies. There
could be many distinct id values in an access dataset. Now, if we apply machine
learning on the data in Table 2, with one extended meta-attribute (isOwned), we can
learn more abstract and meaningful policies that do not depend on the number of id
values. For instance, the following policy advantageously replaces the set of policies
above:

P1’:
IF resource = ‘viewDocument’
AND context_time = ‘9AM’
AND isOwned = true THEN allowed

5.7 Step 7: Assessment and AC Issue Detection

A classifier also provides a prediction confidence for each leaf node of the trees. This
measure indicates the homogeneity of the data sample that falls into a leaf node in
terms of the ratio of accesses that are allowed or denied. In this respect, we define a
consistent rule as a rule that predicts allowed or denied with 100% confidence given its
corresponding leaf node. The other rules are referred to as inconsistent, meaning that
in their corresponding leaf nodes some accesses are allowed while others are denied. In
the context of access control, such inconsistent rules may indicate potential problems
in the AC implementation or a lack of information regarding the attempted accesses
(e.g., history, parameters).

In an ideal situation where there is no noise in the training data (e.g., wrong
labelling or error in attribute values), we should expect all rules to be consistent
since the algorithm can grow each branch of the tree deeply enough to perfectly
classify the training examples. Inconsistencies may be due to implementation errors
that lead to inconsistent responses of the SUT, even for the same request. Another
reason is that some relevant information in the training data might be missing. For
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instance, if the contextual attribute access-time is relevant in AC policies, some actual
access instances in the training data corresponding to the same request might have
different labels because they are issued at different times. However, since access-time
is not included in the training data, the leaf node pertaining to those instances is
inconsistent.

In ReACP, we take several measures to mitigate the missing information problem.
First, in Step 1 - Exploratory Access Testing, we rely not only on automated crawlers
but also enable the analyst to interact and explore the SUT manually. In this way, web
pages that are difficult for the crawlers to reach (because they demand meaningful
domain inputs) can also be exercised. Second, in Step 2 - Specification Mining,
we automatically mine domain specifications and solicit all resource attributes. This
helps avoid missing attributes by human mistakes when such specifications are defined
manually from scratch. Finally, in Step 5 - Access Testing, access contexts are also
carefully prepared such that if they affect AC policies, they will be included in the
training data for inferring policies.

Eventually, all the inferred rules should be validated to identify potential AC
problems and discrepancies with expected AC requirements. Toward this end, since
their number could be large, we suggest guidelines for the analyst to pay special
attention to the following types of resources and their corresponding access rules:

e Resources that allow access to all users; we have observed many cases where
such resources have been left unprotected by the implemented AC mechanism.

e Resources that are related to the database, configuration, installation, backup
files, and other static documents. The development team might have forgot-
ten to remove them or properly protect them before deployment. There could
potentially be insecure direct accesses (without authentication) to them.

e Resources with corresponding inconsistent AC rules. The analyst should check
whether inconsistency is due to AC implementation mistakes or other reasons
that affect access control.

5.8 Tool Implementation

We have developed a tool called ACMate” with graphical user interfaces to implement
and support the adoption of ReACP. Figure 5 is a screen shot of ACMate. The tool
is integrated with BurpSuite to leverage its features, including its proxy, spider, and
site map. Key features of ACMate include: (1) exploring the web applications to
uncover resources, (2) generating the AC test requests and performing AC testing on
behalf of various users, and (3) inferring AC policies.

"Available at http://people.svv.lu/nguyen/tools/acmate/
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start || AC Testing || AC Policy | Options |

Customize target pages and users:
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(@] /wordpress /wp-admin/plugins.php A admin ] K
@] /wordpress/wp-admin/plugin-install.php r alice W
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Figure 5: ACMate: a tool suite for the reverse engineering and testing of access
control policies.
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ACMate provides the user with an interface to specify input configuration, con-
sisting of a list of users’ credentials (username and password) and a set of permission
filters for classifying access responses.

ACMate can also mine input specifications automatically. Domain input specifi-
cations are extracted from proxy logs and saved in an XML-based XInput file. The
analyst can easily work with the file to check and refine the mined specifications.
During AC testing, ACMate uses such specifications to generate test requests and
execute them.

In our tool, the decision tree algorithm J48 [14] is used to infer the AC policies
from the access logs obtained after performing AC testing.

6 Experimental Evaluation

In this section, we discuss the experiments that we have carried out to evaluate our
approach. We investigate whether the proposed approach is effective in inferring
correct AC rules and in helping the detection of AC vulnerabilities. We also assess
the usefulness of input specification mining and the role of combinatorial testing in
the proposed approach.

Since ReACP aims at learning policies that have actually been implemented in
the systems under test, we need to validate the policies to assess whether or not they
reflect correctly the implementation. Therefore, the first research question can be
stated as follows:

RQ1: Does ReACP correctly infer the AC policies that are implemented in
the SUT?

We check the inferred policies for inconsistency and validate them against stake-
holders” AC requirements to identify discrepancies, as discussed in Section 5.7. These
are indicators of AC issues, including vulnerabilities that lead to privilege escalations
or faulty enforcement implementations that do not satisfy the requirements (e.g.,
denying accesses issued by authorised bodies). Therefore, it is interesting to evaluate
whether the policies inferred with ReACP help pinpoint AC issues.

’ RQ2: Do the inferred AC policies help detecting AC issues? ‘

In ReACP, we propose to leverage domain input specifications and combinatorial
testing to generate more requests and increase their diversity. The goal is to exercise
the SUT more thoroughly, with meaningful data, to uncover resources and their
relevant attributes in order to learn a more complete set of policies. Hence, we
investigate the role of these factors in the next research question:
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RQ3: Do input specifications and pairwise test generation help learn a more
complete set of policies in terms of the coverage of policy attributes (roles,
users, resource attributes)?

Manually specifying the domain inputs is expensive, especially when we test large
SUTs with many inputs that might be poorly documented. Therefore, our imple-
mented tool for ReACP supports the analyst in specifying domain inputs. It mines
automatically input specifications from access logs into the XInput format, which
contains web page URLs, input parameter identifiers, types, and classes. Our fourth
research question addresses the usefulness of input specification mining.

RQ4: To what extent is input specification mining helpful for developers to
specify domain inputs?

In the following sections, we first describe the selected subject applications and
the procedure of setting and executing the experiments. Then, we present and discuss
the experimental results for the above research questions.

6.1 Subject Applications and Settings

We evaluate ReACP on three open-source Web applications: WordPress®, TaskF-
reak?, and iTrust!®. WordPress is a widely used content management system (CMS)
for blogging and news publishing. TaskFreak is a popular open-source system for
project management. We deploy the latest multi-user version of TaskFreak (v0.6.4).
iTrust is a healthcare system used in educational courses about access control and
testing. WordPress and TaskFreak are deployed on an Apache HTTP Server while
iTrust is deployed on Apache Tomcat under a Linux server. While all the applica-
tions support the role concept and assign permissions to roles, the implementation
of AC enforcement is different among applications. For instance, WordPress allows
permission administration at runtime while TaskFreak and iTrust hard-code role per-
missions. WordPress and TaskFreak take into account ownership relationship between
users and resources, while iTrust does not.

Table 3 shows the size of the subject applications in terms of number of server
pages (ending with .PHP or .JSP, which include also library files), and number of
lines of code. The data in the table were collected using cloc!!, a popular tool used
by developers for measuring code metrics. Apart from having different sizes and

8https://wordpress.org

Yhttp:/ /www.taskfreak.com
Ohttp://agile.csc.ncsu.edu/iTrust /wiki/doku.php
Hhttps://github.com/AlDanial /cloc
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being developed in different languages, the applications also implement different AC
enforcement mechanisms. These make them interesting subject applications for our
evaluation.

Table 3: The open-source Web applications used in the experiments.

SUT Language | Number of server | LOCs
pages

WordPress | PHP 482 133,023

iTrust JSP 220 23,859

TaskFreak | PHP 180 19,448

Each application comes with a set of hard-coded roles having different privileges.
For example, the developers of TaskFreak (used for project management) have pre-
defined four roles, administrator, manager, intern, and guest, which are assigned to
users depending on their roles in managed projects. Similarly, iTrust has eight roles
corresponding to various duties in a hospital, WordPress provides five roles for au-
thoring and editing blog posts or news articles. In particular, WordPress also allows
the administration of user-role assignments. Therefore, we consider a special role,
namely no-assignment, for users who own an active account in the application but
for which the account has not been assigned to any role. This is to check whether
such users can carry out any unauthorised operations.

For each SUT, we create a set of users and assign them to the available roles. We
also populate data for each user (e.g. creating new posts, set up the ownership to the
posts). As discussed in Section 5, various factors such as users’ roles and resource
ownership can influence AC policies. Therefore, in our experiments, we prepare data
and ensure the coverage of users’ profiles, user-role assignments, and add at least two
users per role, each of them having different ownership settings on resources. This
process led to the number of users per role reported in Table 4.

We also need to account for interferences among testing sessions where, after test-
ing with one user, resource states might be changed and affect the access permissions
of other users. To do so, we use a technology offered by virtual machine platforms
(e.g., VirtualBox or Parallels Desktop) to quickly save and restore states of the sys-
tems before and after each test session.

6.2 Procedure

In our experiments, we follow the seven steps of ReACP. We use the automated
features of our tool, ACMate, to support the tasks in these steps. Specifically, for
each subject under test, in Step 1 - Ezploratory Access Testing, we collect data about
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Table 4: Number of users per role used in the experiments.
SUT Role Number of users
WordPress | administrator

subscriber

author
contributor
editor
no-assignment

TaskFreak | administrator

manager

intern

guest

iTrust administrator

er

hep

It

patient

pha

uap

tester
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the resources and accesses to the SUT by using a web browser to initiate the discovery.
We enable the proxy option in the browser and set it to direct the requests/responses
to BurpSuite’s proxy. We use the browser to authenticate the SUT website with a
test user credential so that a valid session is set up before using the spidering mode
in ACMate for automated crawling. After that, we use the same browser to manually
interact with the SUT by exercising all functions provided and we simulate different
access situations for the links which are missed in the initial step (see Section 5.1). At
the end of this step, we use ACMate’s mining feature to analyse the resulting output
and generate an Xinput file.

We revise the Xinput items to check whether Xinput data classes are valid and
relevant to be used in our experiments. For example, ACMate automatically mines
the logs of addTelemedicineData.jsp, a web page of for iTrust, and extracts an
enumeration (Rule 2, Section 5.2) containing two concrete values, 25 and 60, for its
diastolicBlood Pressure attribute. 25 is an invalid value which was randomly entered
by the spider. We, therefore, update this attribute value class to match the valid range
[40, 150]. The revised Xinput is later used to generate the test requests in Step 4.

For correctly classifying access permissions, based on the generic AC permission
filter patterns discussed in Section 5.3, we define five content patterns for iTrust. Typ-
ically, the responses having HTTP codes 301, 40* or 50* with specific content patterns
(such as “Server Error” or “Request timeout”) and the HTTP 200 responses contain-
ing “You are not authorized” clearly state that the corresponding access requests are
denied. We also isolate the requests causing error messages (e.g. “ITrustException”
or “NullPointerException”) and investigate them separately. They are often related
to AC issues because of exposing sensitive information, such as source code. Similarly,
we define four content patterns for TaskFreak. For WordPress, we need 17 content
patterns in its permission filter set.

For resources where relationships among attributes can help characterise AC poli-
cies, we apply the pre-processing step and define meta-attributes representing the
relationships. In our experiments, the mapping templates described in Section 5.6.1
are sufficient for the selected applications. Finally, we use ACMate’s AC policy in-
ference function to infer the AC policies.

To assess the inferred policies when addressing research questions RQ1 and RQ2,
it is important to differentiate some key artefacts and their links. As depicted in Fig.
6, since inferred policies are learned by executing the actual implementation with
some AC configurations that are defined by the system administrator for controlling
accesses, we inspect the inferred policies and compare them against the implemen-
tation for correctness (RQ1). Moreover, we define Gold Standard (GS) Policies as
policies that the stakeholders expect the system to enforce. We derive GS policies of
an application from its requirements documents, when they exist, and from the AC
configurations. For finding AC issues (RQ2), we compare the inferred policies with
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GS to detect discrepancies and then analyse their causes.

AC Requirements| derive
Documents !

Y
derive Gold Standard

_____ > Policies ,I,

E RQ2: Finding

AC Issues
AC IJ
Configurations

Implementation Inferred Policies

| RQ1: Assessing \

Correctness

Figure 6: Three key artefacts in assessing the research questions RQ1 and RQ2: Gold
Standard Policies, Implementation, and Inferred Policies.

6.3 Results for RQ1: Inferring Correct AC Policies

Recall that each resource is associated with an access dataset. The decision tree
learned from the data characterise the access policies relevant to the resource. The
paths from the root of the tree to its leaves represent specific policies (examples are
given in Section 5.6.2). To address RQ1, we consider only the main resources (i.e., web
pages) that are intended for user interactions, excluding all library pages'?. Finally,
we count the number of inferred policies and assess their correctness.

We consider the policies that are learned from all AC requests, including those
from automated crawling and those that are generated using domain input spec-
ifications and pairwise test generation. Moreover, we have also carried out data
pre-processing for 4 (out of 35) resources of WordPress, 3 (out of 6) resources of
TaskFreak, and 10 (out of 205) resources of iTrust. Such resources initially led to a
large number of detailed policies, at the wrong level of abstraction, thus making them
hard to understand.

To illustrate the effect of pre-processing, let us consider a resource of TaskFreak,
project_edit.php. If we do not apply pre-processing, 471 AC policies would have
been inferred. However, when we use a meta-attribute representing the project-user

12Library pages of the selected applications control accesses in the same manner, all users are
allowed or denied, and ReACP learns them correctly.
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assignment relationship (isAssigned), the number of AC policies reduces to three,
without loss of information, as shown below:

1: IF isAssigned = 0 AND ac-role = manager
THEN allowed

0 AND ac-role != manager
THEN denied

1 THEN allowed

2: IF isAssigned

3: IF isAssigned

These more abstract policies are much easier to understand: if a user is assigned to
a project, certain operations can be performed. Otherwise, the permission is allowed
if and only if the role of the user is manager.

Table 5: The correctness of inferred policies.

Application | #Resources | #Inferred Policies #Correct Policies %
WordPress 35 1,391 1,388 99.78
iTrust 205 1,518 1,441 94.93
TaskFreak 6 65 62 95.38

Table 5 shows the total numbers of inferred AC policies and the number of cor-
rect ones corresponding to the three applications, WordPress, iTrust, and TaskFreak.
As we can observe, the percentage of correctly inferred policies for the considered
resources is high, thus suggesting that our ReACP framework is effective in learning
correct policies.

We investigated the policies that are incorrect and found two causes. The first
one is due to incomplete context initialisation during test execution. As discussed in
Section 5.5.1, contexts affect access permissions and missing contextual information
leads to denial of accesses. For example, WordPress uses a dynamic parameter called
nonce to control the order of AC requests and all requests without nonce are denied.
For some of our executed requests, their contexts were not completely set and incorrect
policies were learned.

The second cause for incorrect policies is related to the use of permission filters.
Currently, our filters rely only on response codes and contents i.e., containing some
specific texts that indicate access permission. They fail to recognise the denial cases in
which we must take into account the relationship between the requesting users and the
target resources in classifying access permissions. For example, in TaskFreak, when
a user adversarially requests profile information of other users, TaskFreak returns his
own profile instead of replying with a denial message. Only analysing the profile
content cannot help classify such request correctly. Regarding the permission filters
of WordPress and iTrust, their filters are not refined enough to properly classify some
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responses with HTTP code 200. For this particular response family, one needs to
check the content of the responses for “denial” messages (discussed in Step 3 of the
framework). We have missed some of these messages, thus leading to their responses
being wrongly classified and therefore learning incorrect policies.

6.4 Results for RQ2: Detecting AC Issues Using Inferred AC
Policies

To answer RQ2, we derive gold standard (GS) policies from the AC configurations
defined by system administrators and requirements documentations that come with
the applications. The details of the GS policies of each application are described in
Appendix. Inferred policies are then compared to GS to find AC issues, including
errors in enforcement implementation or vulnerabilities. We inspect each suspected
issue by testing and analysing the applications with the corresponding requests to
ascertain whether they are errors or vulnerabilities.

Table 6: Vulnerabilities found thanks to ReACP.

SUT AC Vulnerability Vulnerable Resource

iTrust Insecure Direct Object Refer- 44
ences
Missing Function Level Access 38
Control

TaskFreak | Privilege Escalation 4
Information Disclosure

WordPress | Privilege Escalation 1

Table 6 summarises the number of vulnerabilities found. As a student project,
iTrust has many vulnerabilities (82 in total). In contrast, since TaskFreak is a pop-
ular open-source project management system, it was unexpected to find seven new
AC vulnerabilities that had not been published, to the best of our knowledge. We
have informed the developer of TaskFreak and submitted these vulnerabilities to the
NVD database (US National Vulnerability Database) '*. For WordPress, we found
a known vulnerability that has been detected and fixed by the subsequent version of
WordPress. We can thus conclude that, by assessing the inferred policies and inves-
tigating those that differ from GS, many new vulnerabilities have been found. This
supports the usefulness of the inferred policies in detecting AC issues.

In what follows, we describe in detail the vulnerabilities.

Bhttps://nvd.nist.gov
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6.4.1 iTrust

In iTrust, we found 44 resources that are Insecure Direct Object References vulnera-
bilities. Those resources were accessible by all users. They returned Java exceptions
showing implementation errors. The source code and database information is also
disclosed in the error contents.

We also found that 38 resources located in important directories (util, errors and
DataTables) were not protected by the implemented AC rules (Missing Function
Level Access Control vulnerability). They did not check user authorisation. These
resources can leak important information, such as showing database tables or trans-
actional logs which can be used in privilege escalation attacks.

Among the unprotected resources for end users, we found three critical privilege
vulnerabilities. First, the /util/resetPassword.jsp page allows any user (even an
anonymous user without authentication) to change passwords of any other users.
Second, the /util/getUser.jsp page is accessible without proper authorisation en-
forcement and displays users private data. Third, the /errors/reboot.jsp page allows
anyone to reboot the web server, which might render the system inaccessible to all
users.

6.4.2 TaskFreak

In our experiment with TaskFreak, we found five pages containing nine AC vulnerabil-
ities. T'wo pages, project_edit.php and user_edit.php, contain four privilege escalation
vulnerabilities; a malicious user can perform unauthorised operations on resources of
others. All the five pages can result in information disclosure.

e project_edit.php has three privilege escalation vulnerabilities. One of the in-
ferred AC policy shows that any user can open the “create new project” page
by requesting project_edit.php?id = 0 and create a new project. This is incor-
rect when comparing with the GS policies for intern and guest users - projects).
Another AC policy for the same resource also shows that manager users can
view any projects, including projects that are not assigned to him. This is
against the GS policies for manager. In the last policy, we found that the a
moderator user can assign himself to a higher position (e.g., leader). This is
also against the GS policies.

e user_edit.php has one escalation vulnerability. Amongst the inferred policies,
one policy suggests that a user can change password of other users provided that
the two password attributes passwordl and password2 have the same value.
This AC policy, however, is incorrect with the GS policy, stating that only
admanistrator users can edit other users’ account.
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e rss.php has one information disclosure vulnerability. One of the inferred policy
shows that any user can see the list of tasks associated with other users. This
is incorrect when comparing with the GS policies for guest users.

Apart from rss.php, other four pages (user_list.php, user_edit.php, project_list.php,
project_edit.php) are also vulnerable to disclose information. When they are re-
quested with invalid data (such as out-of-range values), they return error pages show-
ing detailed database queries.

6.4.3 WordPress

In the case of WordPress’s edit.php page, when analysing its inferred policies we
realised a discrepancy between them and the GS policies. The inferred AC policies
show that the operation to change a post’s status to “published”, which is reserved
to the administrator and editor, is also allowed to the users of role contributor. This
violates the GS and, hence, indicates a privilege escalation vulnerably in the version
of WordPress used in the experiment (3.8.1).

Such a vulnerability permits malicious contributors to post content without ap-
proval. It was detected thanks to our use of combinatorial testing that combines
a user of role contributor with the operation to change posts’ status, which is not
available to the user through the user interface. Note that the vulnerability has been
fixed in subsequent versions.

6.5 Results for RQ3: The Role of Input Specifications and
Pairwise Test Generation

For a given resource, a set of policies is complete if it covers all the attributes that
affect the access permissions to the resource. In other words, we assess the complete-
ness of the policies related to a resource if all user roles, contexts, and attributes of
the resource are accounted for by the policies.

We investigate the role of domain input specifications and pairwise test generation
(XInput for brevity) in learning more complete policies. In ReACP, we propose
to take meaningful domain inputs into account by mining input specifications and
involving the analyst to revise them. Based on such information, we apply pairwise
test generation to obtain diverse AC requests which consider the interactions among
input parameters and execute them.

To answer RQ3, we compare the output policies that we can learn from two sce-
narios. The first one considers only the AC logs obtained from the exploratory testing
step of ReACP. These logs are the result of automated crawling and manual usage
(logs from users’ interaction with applications). The second scenario (with XInput)

36



also mines input specifications and exercises the SUTs with additional requests using
combinatorial testing. We consider here the inferred policies for the same resources
as in RQ1: 35 resources of WordPress, 205 resources of iTrust, and 6 resources of
TaskFreak.

Table 7: The number of executed tests and inferred policies without or with combi-
natorial testing.

Subject Exploratory Test- | With Combinatorial
ing Only Testing
#Tests #Policies | #Tests #Policies
WordPress 1,859 149 8,943 1,391
iTrust 122,343 672 | 222,840 1,518
Taskfreak 59,629 41 | 342,517 65

Table 7 summarises the number of access requests (aka test cases) executed and
the number of policies inferred without and with combinatorial testing. We can
observe that the number of tests increases by a large extent thanks to the use of
domain input specifications and combinatorial testing, indicating that the subjects
are exercised much more thoroughly. Also, the number of inferred policies increases
significantly when combinatorial testing is considered. Given that the same number
of resources is considered in both cases, the increase indicates that more attributes
and increased diversity in their values have been taken into account to produce more
policies. Therefore, input specifications and additional combinatorial testing are ben-
eficial. Based on a careful inspection of the inferred policies for TaskFreak, and
random samples of 10 resources of WordPress and iTrust, we could confirm that do-
main input specifications and pairwise test generation actually led to more complete
policies.

The following concrete example shows the decision tree learned only from ex-
ploratory testing logs for get Personnell D.jsp, a resource in iTrust.

forward = staff/editPersonnel. jsp
| ac-role = patient

| | ac-method = GET: allowed

| | ac-method = POST: denied

| ac-role != patient

| | ac-role = tester

| | | ac-method = GET: allowed
| | | ac-method = POST: denied
| | ac-role !'= tester

| | | ac-role = PHA
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| | ac-method = GET: allowed
| | ac-method = POST: denied
| ac-role !'= PHA
|
|
|

| ac-role = ER

| | ac-method = GET: allowed

| | ac-method = POST: denied

| | | | ac-role !'= ER: allowed

forward != staff/editPersonnel. jsp: allowed
Number of Leaves : 10

In the above decision tree, many values of the forward attribute that determines
access permission of AC requests and many roles of iTrust, e.g., administrator, hpc,
are not present. Therefore, the 10 policies that could be extracted from the tree
are incomplete. Moreover, some policies are incorrect as well. For instance, the last
one states that accesses in which forward differs from staf f/edit Personnel.jsp are
allowed for all users, which is not correct. When considering Xinput, we learned
a more complete decision tree, producing 24 correct policies, in which all roles and
values of the forward attribute were considered.

6.6 Results for RQ4: Input Specification Mining

We evaluate here the usefulness of the input specification mining feature of ReACP.
We look at the size of the mined Xinput files produced automatically by our tool to
estimate the manual effort that would have otherwise been needed. We also count the
number of Xinput elements (input fields, classes) that need to be refined to evaluate
the quality of the mined specifications: the better the mined specifications, the lower
the number of refinements.

Table 8: The size of mined specifications and the number of refined elements.

Subject Mined Need refinement
WordPress | #Input fields 1,627 177
#Classes 6,643 1,857
iTrust #Input fields 662 16
#Classes 1,058 46
Taskfreak | #Input fields 34 18
#Classes 512 327

Table 8 shows the results for RQ4. We can observe that the number of input
parameters of the subject applications is as high as 1627. If we had had to specify
them manually, i.e., identifying their web pages, names, data types, and input classes,
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it would have taken an unrealistic amount of time. Thanks to our specification
mining feature, this laborious task has been largely automated. Moreover, the number
of parameters that need refinement is small: 16 for TaskFreak, 18 for iTrust, and
177 (out of 1627) for WordPress. The number of classes that need refinement is
also significantly smaller than their total number. This indicates that the mined
specifications are largely reusable as generated. From the above we conclude that
with its mining feature, ReACP helps substantially reduce the effort needed for input
specifications.

7 Related Work

Our work belongs to the research domain focusing on applying dynamic analysis to
infer program specifications and detect security vulnerabilities. In the area of access
control analysis, a similar technique called “differential analysis” has been proposed
to detect authorisation vulnerabilities in web applications [27]. It involves crawling a
system under test using different authenticated users’ sessions and unauthenticated
ones in order to determine which portions of the system are accessible from which
users. Our approach also involves web crawling with a set of user credentials but,
unlike the work in [27], our approach accounts for Javascript and “unlinked” areas of
web applications. Moreover, the goal of our approach is different as we aim at recov-
ering AC policies for web applications. We consider different resource abstractions
and apply machine learning to infer AC policies for roles, not users. As a result, our
approach is more scalable and can work with more complex web applications.

Noseevich et al. extended differential analysis with the role concept and the notion
of user cases, which represents roles’ actions and their dependencies [20]. These are
inputs defined by a human operator. The approach, then, considers sequences of use
cases, iterates through these sequences and applies differential analysis for each user
case in order to detect insufficient access control. Our approach differs in a number of
aspects. First, our goal is to infer AC policies that, on the one hand, can be validated
to detect AC issues and, on the other hand, can be used for other purposes such
as regression testing or software maintenance. Second, we deal with Javascript and
unlinked resources, which are omitted in the related work.

Alalfi et al. have worked on the reverse engineering of RBAC models for web
applications. Source code transformation and instrumentation techniques and tools
were proposed to recover UML-based structural models and behavioural models [2].
Such models act as inputs for another model transformation technique to construct
RBAC models that can be used to check against security properties [3]. Our approach
uses a proxy to obtain access traces, and hence, we do not need to modify application
source code. In addition, we take into account all types of server resources, includ-
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ing static files (e.g., PDF documents, images), which are not considered in Alalfi’s
approach.

Slankas et al. [28] proposed an approach to extract access control policies from
documents written in natural language. Natural language processing techniques are
used to extract access control concepts like subjects, actions, and resources. One of
our applications used for evaluation is also used in [28]. Xiao et al. [33] proposed
an approach called the Text2Policy to extract automatically AC policies in XACML
format from software documents and resource access information written in natural
language.

8 Conclusion

Broken access control (AC) is a widely recognised security issue in web applications.
As web applications and their AC mechanisms are becoming increasingly complex,
AC vulnerabilities become significant threats. Testing and validation to detect AC
problems are thus crucial but usually rely on documented and regularly updated
AC specifications. In practice, however, it is common for such specifications to be
missing or outdated. For many systems, AC policies are even hard-coded in the
implementation without proper documentation at all.

We propose in this paper a testing-based, semi-automated framework, called
ReACP, to infer the AC policies of web applications from their implementation. We
have also developed a tool available to practitioners. The proposed approach rests on
the integration of a popular security tool suite, domain input specifications, combina-
torial testing, and a machine learning algorithm. It first explores a SUT automatically
to obtain initial access logs. They are, then, analysed and mined for domain input
specifications. These specifications are refined by analysts and then used to generate,
in a systematic way using a combinatorial strategy, more access requests to further
exercise the SUT. Finally, machine learning is applied by using data in access control
logs to infer AC policies.

We have evaluated ReACP on three representative, open-source web applications.
The results are promising and show that ReACP can infer correct and complete
policies, which can in turn help detect actual AC vulnerabilities.
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Gold Standard AC Policies

Gold standard policies are policies that the stakeholders want the SUTs to enforce.
They are often documented in system requirements and/or specified by system ad-
ministrators in the form of AC configurations. This appendix presents the gold stan-
dard policies that we extracted from the AC configurations and documentations of
WordPress, TaskFreak, and iTrust.

Extracting GS policies is challenging, though. They might be embedded in textual
descriptions of system requirements. They might be hard-coded in configuration files,
for instance, iTrust defines access rights in it web.xml file (at run-time, these rights
must be enforced). Information regarding GS policies can also be stored in database,
e.g., role definitions, user and resource assignments. As a result, for each application,
we need to go through these sources to extract GS policies.

Specifically, for WordPress, we use its role and capability specifications'*. Table
9 details the roles and capabilities of WordPress. It associates each role to a set of
capabilities. For instance, rule Administrator has all the defined capabilities, e.g.,
create_users, edit_posts, while Subscriber has only one read capability.

Table 9: WordPress roles and capabilities (excerpt). Labels: at a cell, 1 indicates the
role on the same column is allowed to perform the operation on the same row; and 0
means the denied

Capability

Role

= = = = = = = Administrator
Editor
Author

== 0 O o O o Contributor
Subscriber

create_users
delete_users
edit_page
publish_page
publish_posts
edit_posts
read

[ S S S S > I )
=== 0O OO O O
_— O OO oo oo

For TaskFreak, we must extract its GS policies from its configuration file; i.e,
con fig.php. The full AC specifications of TaskFreak are detailed in Tables 10 and 11.
TaskFreak manages access policies based not only on roles but also on the position of

Mhttps://codex.wordpress.org/Roles_and_Capabilities
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users in assigned projects. It enforces access rights by combining these two sources
of information.

Table 10: TaskFreak’s role-based global AC specification. Labels: at a cell, 1 indicates
the role on the same column is allowed to perform the operation on the same row;
and 0 means the denied

S
S)
" |
I
o= ® Q Q
AR
'é E = {=10]
o)
©
Resource | Operation
see all 1 (1]110
SerS create new 1111010
edit any 170[01]0
delete any 170010
see all 1101010
create new 1111010
projects | edit any 170010
delete any 170(01]0
change status 1711010
create own tasks 1 (1]110
tasks view internal tasks |1 |1 |1 |0
view public task 11110
edit any task 170010
system settings 11701010

For iTrust, we extract its GS policies from its web configuration file web.xml. They
are detailed in Table 12. iTrust predefines eight roles, access permissions of roles to
folders are specified in the table. The administrator can change such specification by
editing the configuration file.

To this end, each of the subject applications has a specific way of specifying AC
policies. We extract and use them as gold standards for identifying problematic
inferred policies. Many of them have led to the detection of AC vulnerabilities.
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Table 11: TaskFreak role-based project access rights

R
5| w . %%
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HEEIEIEIE IR
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~| S| E|°|8| 05
g QD
Resource | Operation
see all 17111 ]1]1]0
comments add new comment | 1 |1 |1 |1 ][0 |0
edit any 111700010
delete any 1{1]0]01]00
create new 11111010
edit any 171101010
tasks change status 1(1]01]01]0
delete any 1({1]01]01]0
view tasks 170101010
manage 171701010
. change status 1{1]01]01]0
project | o dit info 110000
delete 110]01]01]0
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Table 12: iTrust roles and access capabilities to specific role-based authorization
folders. A cell labelled as 1 indicates the folder and files on the corresponding row
can be accessed by the role on the corresponding column.

Folders&Pages §' b .f_':;

Role
admin
er

uap

Jauth/*
/auth/hep/*
/auth/hcp-uap/*
/auth/hcp-er/*
/auth /er/*
/auth/uap/*
/auth/admin /*
/auth/staff/*
/auth /patient /*
Jauth /1t /*
/auth/tester /*
/util/getUser.jsp

— oo~ o oo oo oo patient

H RO OO Oo OO OO O+ tester

R OO0 R MR OO0 O+
—_— OO0 000 ORF OO
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