

An Evaluation of the Accuracy of Real-Time Zenith Total Delay Estimates

<u>Furgan Ahmed¹</u>, Norman Teferle¹, Richard Bingley², Denis Laurichesse³

University of Luxembourg, Luxembourg
 University of Nottingham, United Kingdom
 Centre National d'Etudes Spatiales, France

European Geosciences Union General Assembly 2013 April 12, 2013

Overview

- Introduction
- From Near Real-Time to Real-Time
- Real-time systems
- Test and Reference datasets, methodology
- Results
- Conclusions

GNSS Meteorology

- Assimilation of GNSS derived Zenith Total Delay (ZTD) in Numerical Weather Prediction (NWP) models
 - Has a reported positive impact on weather forecasting
 - In practice at various meteorological institutions
- Low-latency ZTD estimates needed for high update-rate NWP models
- Meteorology user requirements for nowcasting (TOUGH, 2004):

Integrated Water Vapour (IWV)					
	Target Threshold				
Horizontal Domain	Europe to National				
Repetition Cycle	5 min 1 hour				
Integration Time	MIN(5 min, rep cycle)				
Relative Accuracy	1 kg/m ² 5 kg/m ²				
Timeliness	5 min 30 min				

GNSS Meteorology

- Assimilation of GNSS derived Zenith Total Delay (ZTD) in Numerical Weather Prediction (NWP) models
 - Has a reported positive impact on weather forecasting
 - In practice at various meteorological institutions
- Low-latency ZTD estimates needed for high update-rate NWP models
- Meteorology user requirements for nowcasting (TOUGH, 2004):

GNSS Meteorology

- Assimilation of GNSS derived Zenith Total Delay (ZTD) in Numerical Weather Prediction (NWP) models
 - Has a reported positive impact on weather forecasting
 - In practice at various meteorological institutions
- Low-latency ZTD estimates needed for high update-rate NWP models
- Meteorology user requirements for nowcasting (TOUGH, 2004):

Near Real-Time ZTD Estimation at University of Luxembourg

- Hourly NRT solution "UL01" submitted to EGVAP
 - Sub-millimetre level agreement with IGS Final Troposphere Product
 - Based on Bernese GPS Software
 5.0, upgrade to 5.2 is in
 preparation
 - Uses IGS Ultra-Rapid products
 - Sub-hourly (15min) NRT solution "UL04" run internally
 - Millimetre level agreement with IGS Final Troposphere Product

We use the UL01 solution for comparison of the RT solutions.

Towards Real-Time...

- "Nowcasting" leads to a drive for real-time processing
- Experimental setup at the University of Luxembourg with two real-time GNSS software packages
- Europe-wide network
- Precise Point Positioning (PPP)
- ZTD estimates every 10 minutes

Towards Real-Time... (2)

• Three real-time ZTD solutions generated using:

Software:	BNC2.7	PPP-Wizard I ^(*)	PPP-Wizard II ^(**)
Update Cycle	Real-time	Real-time	Real-time
Output Interval	1 second	5 seconds	5 seconds
GNSS Used	GPS	GPS	GPS
Input Raw Data	Real-time streams (RTCM3)	Real-time streams (RTCM3)	Real-time streams (RTCM3)
Input Clock Stream	CLK11 (IGS)	CLK9B (CNES)	CLK9B (CNES)
Input Ephemeris Stream	RTCM3EPH (IGS)	RTCM3EPH (IGS)	RTCM3EPH (IGS)
Ambiguity Resolution	No	No	Yes

- Accuracy assessment of ZTD estimates needed!
- * Modified version to disable ambiguity resolution
- ** Version with ambiguity resolution enabled

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Test Dataset and Products

- 8 IGS stations selected for comparison ٠
- Time period: 2013-02-22 0000UTC ~ 2013-02-29 00:00UTC

Stations used for comparison

Products streams used

/sis

ter

UNIVERSITÉ DU LUXEMBOURG

Station ID	Latitude (degree)	Longitude (degree)	Stream	Content	Analys Cente	
CAGZ	39.14	8.97	CLK11	Orbit and Clock corrections to	BKG	
GOPE	49.91	14.79		Broadcast Ephemeris		
HOFN	64.27	344.81	CLK9B	 Orbit and Clock corrections to Broadcast Ephemeris 	CNES	
MATE	40.38	16.42		- Corrections for Integer		
ORID	41.07	20.47		Ambiguity Resolution		
PADO	45.41	11.90	RTCM3EPH	Broadcast Ephemeris	BKG	
POTS	52.19	13.07				
REYK	64.08	338.43			ni.In	

Reference Dataset

- IGS Final Troposphere Product
 - IGS Final Orbit/Clock products
 - Precise Point Positioning using BSW5.0
 - (without integer ambiguity resolution)
 - Sampling: 300 sec

- Comparison strategy:
 - Period: 2013-02-22 0000UTC ~ 2013-02-29 00:00UTC
 - Statistics computed using common epochs

Results: Real-Time vs IGS Final

Mean Biases (Station: CAGZ)		Mean Biases (Statio	on: HOFN)	Mean Biases (Station: REYK)		
BNC2.7 vs IGS Final Trop.	15.2 ± 12.8 mm	BNC2.7 vs IGS Final Trop.	18.4 ± 11.5 mm	BNC2.7 vs IGS Final Trop.	16.2 ± 12.4 mm	
PPP-Wizard I vs IGS Final Trop.	60.7 ± 9.6 mm	PPP-Wizard I vs IGS Final Trop.	44.9 ± 6.4 mm	PPP-Wizard I vs IGS Final Trop.	41.6 ± 9.2 mm	
BNC2.7 vs PPP-Wizard I	44.4 ± 14.0 mm	BNC2.7 vs PPP-Wizard I	-26.9 ± 10.2 mm	BNC2.7 vs PPP-Wizard I	-21.4 ± 11.2 mm	

Similar biases have been reported before but a constant bias in the ZTD for a particular station is not a problem for the assimilation into NWP models as a monthly station-bias is estimated. However, this remains under investigation for us.

Results: Comparison Statistics

Biases between Real-Time ZTD and IGS Final Troposphere Product						
BNC 2.7			PPP-Wizard I			
Bias [mm]	SD [mm]	RMS [mm]	Bias [mm]	SD [mm]	RMS [mm]	
14.9	12.2	19.4	47.8	7.7	48.4	

Biases between Real-Time ZTD and UL01 solution (near real-time)

BNC 2.7				PPP-Wizard	I
Bias [mm]	SD [mm]	RMS [mm]	Bias [mm]	SD [mm]	RMS [mm]
13.8	11.1	18.1	47.2	7.7	47.9

Bias between BNC2.7 and PPP-Wizard I					
Bias [mm]	SD [mm]	RMS [mm]			
-34.7	12.1	36.8			

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Results: Comparison Statistics

Biases between Real-Time ZTD and IGS Final Troposphere Product						
BNC 2.7			PPP-Wizard I			
Bias [mm]	SD [mm]	RMS [mm]	Bias [mm]	SD [mm]	RMS [mm]	
14.9	12.2	19.4	47.8	7.7	48.4	

Biases between Real-Time ZTD and UL01 solution (near real-time)

BNC 2.7				PPP-Wizard	I
Bias [mm]	SD [mm]	RMS [mm]	Bias [mm]	SD [mm]	RMS [mm]
13.8	11.1	18.1	47.2	7.7	47.9

LUXEMBOURG

A large bias between two		Bias between BNC2.7 and PPP-Wizard I				
real-time solutions is believed to be because of		RMS [mm]	SD [mm]	Bias [mm]		
the difference in strategy to	_	36.8	12.1	-34.7		
compute ZTD						

Results: Comparison to Requirements for Nowcasting

 RMS of bias between real-time and IGS Final solutions supposed as a measure of relative accuracy

ZTD accuracy translated to IWV accuracy

Real-Time Solution Relative Accuracy (IWV)		Agreement with Accuracy Requirement		
BNC2.7	3.2 kg/m ²	Lies within the threshold		
PPP-Wizard I	8.0 kg/m ²	Exceeds the threshold by 3 kg/m ²		

Results: Ambiguity Resolution

=> Mean difference between fixed and float solution: $1.3 \pm 5.5 \text{ mm} (\text{ZTD}) \approx 0.2 \pm 0.9 \text{ kg/m}^2 (\text{IWV})$

Results: Ambiguity Resolution

Biases between PPP-Wizard solutions and IGS Final Troposphere Product						
Without Ambiguity Resolution			With A	mbiguity Res	solution	
Bias [mm]	SD [mm]	RMS [mm]	Bias [mm]	SD [mm]	RMS [mm]	
47.8	7.7	48.5	46.5	8.6	47.4	

=> Ambiguity fixed solution agrees to IGS Final Trop. Product slightly better

Results: Bias corrected time-series

New time-series after subtracting mean station-specific bias from the corresponding ZTD estimates:

UNIVERSITÉ DU

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Conclusions

- Two real-time ZTD systems (three solutions) have been introduced and compared
- The real-time ZTD solutions show an agreement of about 3.5 cm with each other
- The real-time ZTD solutions show an agreement of 1.9 cm to 4.8 cm with the IGS Final Troposphere product
- The current results suggest that ambiguity resolution in real-time Precise Point Positioning has a very small effect on the ZTD estimates
- BNC2.7 solution meets the accuracy threshold requirement for nowcasting
- PPP-Wizard exceeds the accuracy threshold for nowcasting by 3 kg/m²

Thank you!

References

- Byram, S., Hackman, C., Slabinski, V., Tracey, J., Computation of a High-Precision GPS-Based Troposphere Product by the USNO, Proceedings of the ION GNSS 2011, September 2011, Portland, Oregon
- Dach, R., Hugentobler, U., Fridez, P., Meindl, M. (Eds.) (2007) Bernese GPS Software Version 5.0, 612, Astronomical Institute, University of Bern
- BKG Ntrip Client (BNC) Version 2.7 Manual, Federal Agency for Cartography and Geodesy, Frankfurt, Germany
- Laurichesse, D., The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator", Proceedings of the ION GNSS 2011, September 2011, Portland, Oregon
- Exploitation of ground-based GPS for operational numerical weather prediction and climate applications, Final Report COST Action 716

Acknowledgements

- This project is funded by the Fonds National de la Recherche, Luxembourg (Reference No. 1090247)
- We are thankful to BKG for their software BNC 2.7
- We are thankful to IGS and CNES for real-time GNSS data and products

