Microbial Genomics

Comparative genomics and evolution of transcriptional regulons in Proteobacteria --Manuscript Draft--

Manuscript Number:	MGEN-D-16-00018R1						
Full Title:	Comparative genomics and evolution of transcriptional regulons in Proteobacteria						
Article Type:	Research Paper						
Section/Category:	Systems Microbiology: Large-scale comparative genomics						
Corresponding Author:	Dmitry A Rodionov, Ph.D. Sanford-Burnham-Prebys Medical Discovery Institute La Jolla, CA UNITED STATES						
First Author:	Semen A Leyn						
Order of Authors:	Semen A Leyn						
	Inna A Suvorova						
	Alexey E Kazakov						
	Dmitry A Ravcheev						
	Vita V Stepanova						
	Pavel S Novichkov						
	Dmitry A Rodionov, Ph.D.						
Abstract:	Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10,600 TF binding sites and identified more than 15,600 target genes for 1,896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologs for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. The detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that awaits future experimental validation. It provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.						

±

MICROBIAL GENOMICS

Research paper template

Comparative genomics and evolution of 1 transcriptional regulons in Proteobacteria. 2 Semen A. Leyn^{1*}, Inna A. Suvorova^{1*}, Alexey E. Kazakov², Dmitry A. Ravcheev³, Vita V. 3 Stepanova¹, Pavel S. Novichkov², Dmitry A. Rodionov^{1,4} 4 5 ¹A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia 6 7 ² Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³ Luxembourg Centre for System Biomedicine, Esch-sur-Alzette, L-4362, Luxembourg 8 ⁴ Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA 9

- 10 *Equally contributed authors
- 11

12 ABSTRACT

Comparative genomics approaches are broadly used for analysis of transcriptional 13 regulation in bacterial genomes. In this work, we identified binding sites and reconstructed 14 regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes 15 from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10,600 TF binding 16 sites and identified more than 15,600 target genes for 1,896 TFs constituting the studied 17 orthologous groups of regulators. These include a set of orthologs for 21 metabolism-18 associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more 19 taxonomic groups and several additional TFs that represent non-orthologous substitutions 20 of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents 21 22 of the reconstructed regulons, we identified the core, taxonomy-specific and genomespecific TF regulon members and classified them by their metabolic functions. The detailed 23 analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino acid-specific regulons 24 demonstrated remarkable differences in regulatory strategies used by various lineages of 25 Proteobacteria. The obtained genomic collection of *in silico* reconstructed TF regulons 26 27 contains a large number of new regulatory interactions that awaits future experimental 28 validation. It provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative 29 metabolic transporters and enzymes that are abundant in the reconstructed regulons. 30

31

32 DATA SUMMARY

33

Inferred transcription factor binding sites and reconstructed regulons have been deposited in the
 RegPrecise database (URL – http://regprecise.lbl.gov/RegPrecise/project_proteobacteria.jsp).

36

- 37 We confirm all supporting data, code and protocols have been provided within the article or
- 38 through supplementary data files. \boxtimes
- 39 _____

40

41 **IMPACT STATEMENT**

Bacteria in most ecological niches are constantly exposed to variations in many factors 42 including nutrient availability. Changes in gene expression using transcription factors allow 43 bacteria to adapt to these variations. Knowledge of transcriptional regulatory networks is 44 essential for understanding cellular processes. Comparative genomics is the analysis and 45 comparison of genomes from different species. Thousands of sequenced bacterial genomes 46 47 open an opportunity to reconstruct transcriptional regulatory networks using the comparative genomics. Despite the importance of transcriptional regulation of the central 48 49 metabolism for systems-level metabolic modelling of Bacteria, our understanding of the respective transcription factor regulons is limited for the majority of sequenced bacteria. In 50 51 this study, the researches have applied the comparative genomics approach to describe 52 regulatory networks of genes involved in the central metabolism in four major classes of Proteobacteria. The reconstructed regulatory networks involve 33 groups of orthologous 53 transcription factors with different DNA recognition motifs. Large-scale phylogenomic 54 analysis of the reconstructed TF regulons reveals and classifies various evolutionary 55 56 processes that shape regulatory networks in Bacteria. The reconstructed regulon contents suggest numerous novel functional associations between both known and uncharacterized 57 58 genes encoding enzymes and transporters thus providing testable hypotheses for future 59 experimental studies. This study demonstrates the power of comparative genomics for the 60 reconstruction of transcription factor regulons in bacteria.

61 **INTRODUCTION**

62 Regulation of gene expression is an important mechanism for fast adaptation of prokaryotic 63 metabolism to changing environmental conditions. Transcription factors (TFs) repress or activate 64 gene transcription via specific binding to TF binding sites (TFBSs) in regulatory gene regions. Binding ability of many bacterial TFs depends on the presence or absence of an effector such as intracellular 65 metabolites, inorganic chemicals or physical stimuli (Browning and Busby 2004). A set of genes 66 67 directly controlled by a single TF is called a regulon. Global TF regulons in bacteria contain large sets of genes (operons) that share similar TFBSs in their promoter regions, while local TFs control one or 68 69 several operons that are often co-localized with a TF gene (Rodionov 2007).

70 Experimental studies built a foundation for understanding mechanisms laying behind transcription regulation (Minchin and Busby 2009). However even with high throughput 71 72 technologies as ChIP-Seq or RNA-Seq, these approaches still consume a lot of time and resources 73 and therefore are restricted by few model organisms (Grainger, et al. 2009). At this point 74 comparative genomics studies of growing number of sequenced bacterial genomes provide a successful approach to extend our knowledge of known TF regulons to wide range of bacterial 75 76 lineages, as well as to perform ab initio prediction of novel TF regulons (Rodionov 2007). 77 Comparative genomics-based regulon reconstruction combines identification of conserved cis-acting 78 TFBSs, their genomic and metabolic context analysis in a set of closely-related genomes. Finally, it 79 results in determination of a regulog that is a set of genes/operons co-regulated by orthologous TFs 80 in closely related organisms. Implementation of this approach in the RegPredict web tool (Novichkov, et al. 2010) produced numerous computational reconstructions of TF regulogs across a 81 82 wide range of bacterial taxa (Ravcheev, et al. 2011; Rodionov, et al. 2011; Leyn, et al. 2013; 83 Ravcheev, et al. 2013; Rodionov, et al. 2013). This substantial amount of data on regulon 84 reconstructions captured in the RegPrecise database (Novichkov, et al. 2013) provides the basis for 85 description of most common types of events associated with evolution of TF regulons in bacteria 86 such as duplications and losses of TFs and their TFBSs that result in expansions, shrinkages, mergers 87 and split-ups of regulons (Gelfand 2006; Rodionov, et al. 2006; Ravcheev, et al. 2014). New non-88 orthologous TFs could be introduced to control equivalent pathways or, vice versa, orthologous TFs 89 could control distinct pathways in related taxonomic groups of bacteria (Yang, et al. 2006; Rodionov, 90 et al. 2008; Kazakov, et al. 2009; Leyn, et al. 2014).

91 We recently conducted a comprehensive comparative genomics analysis of regulatory systems 92 for methionine metabolism in near 200 representative genomes from 22 taxonomic groups from the 93 phylum Proteobacteria (Leyn, et al. 2014). In y-proteobacteria, two TFs, MetJ and MetR, are 94 implicated in the control of methionine metabolism, whereas this function is taken by other TFs 95 (SahR and SamR) or RNA regulatory systems (e.g., SAH and SAM riboswitches) in other lineages of 96 Proteobacteria. The core of MetJ regulons includes a large numbers of genes that are highly 97 conserved in most lineages of γ -proteobacteria. In contrast, the core of MetR regulons includes only 98 two genes, metE and metR, whereas regulatory interactions between MetR and other target genes 99 are mostly linage-specific. Regulatory system replacement and lineage-specific regulon expansions in 100 Proteobacteria were also observed in the comparative genomics analyses of TF regulons involved in 101 fatty acid degradation (FadR, PsrA, FadP), branched-chain amino acid utilization (LiuR, LiuQ), N-102 acetylglucosamine utilization (NagC, NagR, NagQ) (Yang, et al. 2006; Kazakov, et al. 2009), biotin 103 biosynthesis (BirA, BioR) (Rodionov and Gelfand 2006) and central carbohydrate metabolism (HexR) 104 (Leyn, et al. 2011).

105 Here, we extended these observations toward large-scale regulon reconstructions for 21 known TFs that have orthologs in a wide phylogenetic range of Proteobacteria. By comparing the metabolic 106 107 context of the reconstructed TF regulons, we identified the core, taxonomy-specific and genome-108 specific members of regulons, and proposed evolutionary scenarios for regulation of several 109 pathways involved in metabolism of amino and fatty acids, nucleotides and co-factors in Proteobacteria. Additionally, we predicted novel regulators of aromatic amino acid metabolism 110 replacing the TyrR/PhrR and HmgR regulons in Alteromonadales and Pseudomonadales (named 111 HmgS and HmgQ), and a novel regulator of NAD metabolism in β - and α -proteobacteria, named 112 NadQ. The obtained regulatory reconstructions for both known and new TF regulons across 196 113 reference genomes of Proteobacteria will be useful for development of theoretical models for the 114 115 evolution of microbial regulatory networks.

116

117 **METHODS**

For regulon reconstruction, we selected 196 reference genomes of α -, β -, γ - and δ -118 119 proteobacteria and subdivided them into 21 sets of evolutionary related genomes (Table S1). Closely related strains and species were excluded from the analysis because they skew the TFBS training set 120 and thus decrease the sensitivity of the TFBS recognition rule. Genomes and the phylogenetic 121 122 species tree were downloaded from MicrobesOnline database (Dehal, et al. 2010). Each taxonomic 123 group includes 4 to 16 genomes of bacteria. Orthologs of TFs in the selected genomes were identified as bidirectional best hits using protein BLAST search (Altschul, et al. 1997) and were 124 125 additionally confirmed via phylogenetic trees using precomputed protein trees in MicrobesOnline. 126 The genomes of ε -proteobacteria were not analyzed because of the absence of orthologs for target 127 TFs. ζ -proteobacteria, which is represented by a single genome in the MicrobesOnline database, was not suitable for the comparative genomic analysis. 128

Genes in the reconstructed regulons were considered orthologs if they were classified as specific 129 130 tree-based orthologs in MicrobesOnline. Conservancy of the genomic context through related 131 genomes was considered as an additional support for gene orthology. Comparative analysis of 132 conserved gene neighborhoods was conducted in MicrobesOnline. Biological functions of genes 133 were predicted by BLAST search against the SwissProt/Uniprot database (UniProt 2014), domain 134 architecture analysis in the Pfam database (Finn, et al. 2014), and by using gene function assignments in the PubSEED database (Overbeek, et al. 2005). Known metabolic pathways were 135 taken from KEGG (Kanehisa and Goto 2000) and EcoCyc (Karp, et al. 2014). Sequence logos for TF 136 137 binding sites were drawn using the WebLogo package (Crooks, et al. 2004).

138 For regulon reconstruction we used an established comparative genomics approach implemented 139 in the RegPredict interactive tool (Novichkov, et al. 2010). This approach is based on construction of 140 positional weight matrices (PWMs) for TFBS motifs, and further genomic searches for additional regulon members on the basis of predicted TFBSs in upstream gene regions (Rodionov 2007). 141 142 Bioinformatics workflow used for regulon reconstruction is described in Figure S1. Two main 143 workflows were applied for regulon reconstructions: (i) propagation and expansion of known TF 144 regulons that were previously experimentally studied in model organisms (Table S2) and/or 145 computationally reconstructed in Shewanella spp. (Rodionov, et al. 2011); and (ii) ab initio prediction of novel TF regulons for sets of potential target genes involved in the same metabolic pathway. To 146 find conserved TFBS motifs for the known TFs in each taxonomic group where their orthologs are 147 148 present, we used initial training sets of genes that are orthologous to previously established regulon 149 members in model species, and then updated each set by potential regulon members confirmed by 150 the comparative genomics checks. For novel TF regulons, the original training sets included genes 151 from the respective metabolic pathways and/or conservative chromosomal gene neighborhoods 152 around analyzed TFs.

A simple iterative procedure implemented in the Discover Profile tool in RegPredict was used for 153 154 identification of conserved palindromic DNA motifs and construction of PWMs. For most of the analyzed TFs, their DNA motifs have palindromic structure and length between 15 and 25 nt, 155 whereas the TFBS motifs of NagQ and BirA represent tandem and inverted repeats, respectively. The 156 157 obtained PMWs (both known and ab initio predicted) were further used for identification of 158 additional candidate sites in upstream gene regions as previously described (Leyn, et al. 2014; 159 Ravcheev, et al. 2014). Each predicted regulatory interaction was analyzed for conservation within 160 the analyzed groups of genomes using the Clusters of co-Regulated Orthologous operoNs (CRONs) 161 approach in RegPredict. Further analysis of functional and genomic context and curation of each 162 CRON resulted in the final TF regulon model. All reconstructed TF regulons including TFBS motifs and 163 sets of TF-regulated genes/operons with their functional annotations are accessible in the latest release of the RegPrecise database (Novichkov, et al. 2013) (Data Citation 1). Each TF regulon in 164 RegPrecise belong to two types of regulon collections classified by either taxonomy of studied 165 166 bacteria, or by the name of TFs.

167

168 **RESULTS AND DISCUSSION**

169 Statistics of reconstructed regulons and regulogs

A set of 196 representative genomes of γ -, β -, α -, and δ -proteobacteria selected from the 170 171 MicrobesOnline database was classified into 21 taxonomic groups by analyzing the phylogenetic 172 species tree (Table S1). For the analysis of evolution of transcriptional regulation, we selected a set 173 of 21 transcriptional regulators of the central metabolism that are present either in E. coli and/or 174 Shewanella spp. and that are conserved in five or more taxonomic groups of Proteobacteria (Table 1; Figure S1). The selected TFs include the previously known regulators that control 175 176 biosynthesis/utilization of amino acids (ArgR, HutC, HypR, LiuR, MetJ, MetR, TrpR, TyrR), fatty acids (FabR, FadR, PsrA), nucleotides (NrdR, RutR), and vitamins (BirA, NrtR), as well as nitrogen and 177 178 carbon metabolism (HexR, GlcC, LldR, NagC, NtrC, PdhR). Sixteen of these TFs are present in E. coli, of them twelve regulators are also shared by Shewanella spp., whereas the remaining five TFs (LiuR, 179 180 HutC, HypR, NrtR, PsrA) are unique for Shewanella spp. We also studied 12 additional TFs that 181 appear to substitute some of the above TFs in the control of specific metabolic pathways, and thus 182 can be assumed as non-orthologous TF replacements. These include known and predicted regulators 183 that control metabolism of amino acids (HmgQ, HmgR, HmgS, LiuQ, SahR, SamR) and fatty acids 184 (FadP), vitamin biosynthesis (BioR, NadR, NadQ), and N-acetyl-glucosamine metabolism (NagQ, NagR) (marked with asterisk in Table 1). 185

Application of the comparative genomics procedure to 33 analyzed groups of orthologous TFs resulted in reconstruction of 283 regulogs containing 1896 regulons that are unevenly distributed across 21 taxonomic groups of Proteobacteria (Figure S2). Each regulon includes a set of target genes/operons that are co-regulated by the same TF in a particular genome. A regulog represents a set of regulons under control of orthologous TFs in a specific taxonomic group of Proteobacteria. The most widespread orthologous groups of analyzed TFs are NrdR (186 regulons, 20 regulogs), NtrC (169 regulons, 19 regulogs), MetR (117 regulons, 14 regulogs), HutC (113 regulons, 18 regulogs), LiuR
(104 regulons, 16 regulogs), HexR (95 regulons, 13 regulogs), and BirA (94 regulons, 11 regulogs).

The taxonomical distribution of analyzed TF regulogs across four subdivisions from the 194 195 Proteobacteria phylum is summarized in Figure 1. Overall, 30 out of 33 analyzed TFs are present in γ -196 proteobacteria, and 14 of these regulators do not have orthologs in other classes of Proteobacteria. 197 α -proteobacteria totally possess 15 studied TFs, including one regulator (BioR), which is unique for 198 this class. Among 17 studied TFs in β -proteobacteria, two regulators (LiuQ, FadP) are unique for this 199 class. δ -proteobacteria that represent the most taxonomically diverged subdivision of Proteobacteria 200 have orthologs for only five studied TFs. Several TFs (such as LldR, GlcC, RutR) that are present in 201 several classes of Proteobacteria show a mosaic distribution across the analyzed genomes and taxa, 202 while other TFs (such as ArgR, FabR, FadR, MetJ, TrpR, TyrR) are highly conserved in many taxonomic 203 groups of γ -proteobacteria but are absent in other classes. The diverse distribution of TFs suggests 204 different evolutionary pathways for the studied metabolic regulons.

The detailed descriptions of reconstructed regulons and regulogs are captured in the RegPrecise database (Data Citation 1), whereas the complete list of regulatory interactions between the studied TFs and their target genes is provided in Table S3. Overall, the obtained regulons included 10,663 candidate TFBSs and 15,690 target genes (Table 1). The largest average number of target genes per genome (more than 10 genes per genome) was observed for regulators of amino acid metabolism (ArgR, LiuR, MetJ, TyrR), the fatty acid degradation regulators FadP and PsrA, the carbohydrate metabolism regulators HexR, NagC and NagR, and the pyrimidine utilization regulator RutR.

212 For most of the studied TFs, their cognate DNA binding motifs are generally conserved across the 213 analyzed taxonomic groups (see the RegPrecise database for detailed lists of taxonomy-specific TFBS 214 motifs, Data Citation 1). However, for several TFs including FabR, HypR, NrtR, RutR, SahR and TrpR, 215 we observed taxon-specific substitutions in their cognate DNA motifs, whereas the GlcC-binding DNA motifs in α - and β -/ γ -subdivisions of Proteobacteria are characterized by different length of the 216 217 spacer between the conserved palindromic half-sites (Figure 2). Finally, the HexR and NagQ motifs in 218 several taxonomic groups of γ -proteobacteria have different consensus sequences and structures 219 (Yang, et al. 2006; Leyn, et al. 2011).

220

221 Conservation of reconstructed regulons

222 To analyze conservation of regulatory interactions in the reconstructed regulogs, we calculated 223 the conservation score as a number of gene occurrence in a regulog divided by a number of regulons 224 in a regulog. Average of these taxonomy-specific conservation scores was calculated for all 225 orthologous groups of target genes across analyzed lineages of Proteobacteria. For each group of 226 orthologous TFs, we plotted the average conservation score of a target gene against the number of 227 taxonomic groups, in which this gene is regulated. The obtained plots visualize average conservation 228 of regulatory interactions and thus help to determine the core, taxonomy-specific and genome-229 specific target genes within the reconstructed TF regulons (Figure S3).

The core regulon members determined by this approach represent regulatory interactions with high average conservation scores that are conserved in more than half of reconstructed TF regulogs. The core members of most of the analyzed regulons are consistent with major biological functions and molecular effectors of their cognate TFs (Table S4). For instance, the arginine repressor regulon ArgR in γ -proteobacteria has a conserved core that includes genes involved in arginine biosynthesis (*argABCEFGH, carAB*), transport (*artPIQM*), and degradation (*astAD*), as well as the *argR* gene itself (Figure 3). The cores of most other reconstructed TF regulons include their cognate TF genes. Exceptions from this observation include the FabR, FadR and NadQ regulons that include their cognate TF genes only in some taxonomic groups of Proteobacteria; the biotin repressor BirA, which is autoregulated only in *Desulfovibrionales*, and the deoxyribonucleotide reductase regulator NrdR, which was never found under autoregulation. Negative autoregulation of a TF gene is a common feature of bacterial regulatory networks. Here, we demonstrate that this type of regulatory interaction is highly conserved in the evolution of regulatory networks of Proteobacteria.

243 The remaining members of reconstructed regulons were classified into the taxon- and genome-244 specific groups depending on their average conservation scores. The taxonomy-specific regulon 245 members are characterized by strong conservation of regulatory interactions restricted to a half or 246 less taxonomic groups containing an orthologous TF. At that the taxon-specific regulon members 247 were defined as genes that are regulated in more than 65% of genomes in at least one taxonomic 248 group. In contrast, the genome-specific regulon members are characterized by low conservation of 249 regulatory interactions, when in each taxonomic group conservation of a regulatory interaction is 250 less than 65% The groups of taxonomy-and genome-specific TF regulon members with assigned 251 metabolic pathways are often involved in the same major biological process as the core regulon 252 members (Table S4). However, in some TF regulons these categories also involve genes that 253 participate in other metabolic pathways or biological processes. For example, the taxon-specific 254 members of ArgR regulons include genes involved in arginine biosynthesis (argD) and transport (artJ, 255 argW, omp), arginine degradation (astBC), as well as genes from glutamate (gltBD) and branched-256 chain amino acid (ilvMGDA) biosynthesis, putrescine transport (potFGHI), and pyruvate metabolism 257 (oadABG) (Figure 3). The genome-specific ArgR regulon members include arginine degradation genes 258 (arcABCD, astE), proline (proVWX) and histidine (hisJMPQ) transporters and putrescine metabolism 259 genes (speF, potE). Likewise, in our previous analysis of the methionine-specific regulons MetJ, MetR 260 and SahR in Proteobacteria, we identified the core-, taxonomy- and genome-specific members of 261 regulons and demonstrated their involvement in different aspects of the methionine metabolism. 262 Other amino acid-specific TF regulons analyzed in the current work are described in more detail in 263 the following sections.

264 TrpR, TyrR and other TF regulons for aromatic amino acid metabolism

The aromatic amino acids tryptophan, tyrosine and phenylalanine are synthesized in 265 266 Proteobacteria by the common pathway leading from erythrose 4-phospate through 2-dehydro-3deoxy-D-arabinoheptonate-7-phosphate (DAHP), and shikimate to chorismate (Figure 4). After 267 268 chorismate, the pathway divides into the three terminal biosynthetic pathways that are specific for 269 each aromatic amino acid. E. coli has three DAHP synthase isoenzymes, AroF, AroG, and AroH, which 270 are feedback inhibited by tyrosine, phenylalanine and tryptophan, respectively. The biosynthesis of 271 aromatic amino acids is regulated at both the DNA and RNA levels. The DNA-binding transcription 272 factors TyrR and TrpR jointly control the expression of genes involved in the aromatic amino acid metabolism in E. coli (Pittard and Yang 2008). At the RNA level, the trpEDCBA operon encoding the 273 274 tryptophan biosynthesis enzymes and the phenylalanine biosynthesis gene pheA are regulated by translational attenuation in *E. coli* and other γ-proteobacteria (Panina, et al. 2001). The tryptophan-275 276 responsive regulator TrpR in E. coli acts as a repressor of the trpEDCBA operon, the tryptophan 277 transporter gene mtr, and the regulatory gene trpR (Czernik, et al. 1994; Jeeves, et al. 1999). In 278 addition, TrpR negatively regulates the expression of the shikimate kinase aroL and the DAHP 279 synthase aroH that are involved in the chorismate biosynthesis. The tyrosine-responsive regulator 280 TyrR in E. coli negatively controls the tyrosine biosynthesis genes tyrB, aroF-tyrA, aroLM, the 281 aromatic amino acid transporter aroP and the tyrR gene itself. In addition, TyrR activates the

282 tyrosine- and tryptophan-specific transporters tyrP and mtr and the folate biosynthesis gene folA in the presence of tyrosine or phenylalanine (Yang, et al. 2004; Pittard, et al. 2005). The TyrR regulon 283 was also partially studied in two other Enterobacteria. In Citrobacter freundii, it activates the 284 tyrosine degradation gene tpl (Smith and Somerville 1997). In Enterobacter cloacae, TyrR activates 285 the *ipdC* gene involved in the synthesis of indole acetate from tryptophan and represses a 286 divergently transcribed gene, akr, encoding a putative aldo-keto reductase (Coulson and Patten 287 288 2015). An ortholog of TyrR in *Pseudomonas putida*, known as PhhR, is responsible for the activation 289 of genes essential for phenylalanine degradation and phenylalanine homeostasis (Herrera, et al. 290 2010). In Pseudomonas aeruginosa, PhhR directly controls the phhABC, hpd, and dhcA transcriptional 291 units involved in the phenylalanine and tyrosine catabolism (Palmer, et al. 2010).

292 The comparative genomics approach was applied to analyze regulons controlled by transcription 293 factors homologous to TrpR and TyrR/PhhR and to predict novel regulons for aromatic amino acid 294 metabolism (Table S5). The TrpR-family regulons reconstructed in eight lineages of γ -proteobacteria 295 control genes for the tryptophan biosynthesis, uptake and catabolism (Figure 4). In most of the 296 analyzed taxonomic groups, TrpR regulates the trpR and trpE genes that form the conserved regulon 297 core, whereas other genes from tryptophan biosynthesis pathway and the *mtr* transporter were 298 classified as taxon-specific members of the regulon. Two other known targets of TrpR in E. coli, the 299 chorismate biosynthesis genes aroLM and aroH, represent regulatory interactions that are 300 conserved in a small number of closely-related Enterobacteriales genomes but not in other lineages. 301 New predicted members of the TrpR regulons include various aromatic amino acid biosynthesis 302 genes such as aroG in Pasteurellales, aroF-tyrA in Shewanellaceae, aroF2 and aroA in Vibrionales, as 303 well as the tryptophan degradation genes *tnaAB* and a predicted tryptophan transporter from the 304 COG0733 family in Vibrionales. Interestingly, the TrpR regulon in Shewanella spp. does not include 305 the tryptophan biosynthesis operon, which is regulated by a translational attenuator at the RNA 306 level (Panina, et al. 2001).

307 The content of reconstructed TyrR (PhhR) regulons is highly variable across the analyzed 6 lineages of γ -proteobacteria (Table S5). The most conserved members of these regulons are the *tyrR* 308 309 gene itself, the tyrosine biosynthesis and transport genes aroF-tyrA and tyrP, as well as the 310 phenylalanine and tyrosine degradation genes phhAB, hmqABC and hpd (Figure 4). The aromatic 311 amino acid transporters mtr and aroP, as well as the chorismate biosynthesis genes aroLM, which 312 were previously known as TyrR-regulated genes in E. coli, belong to the TyrR regulons only in 313 Enterobacteriales. The folA gene represents another previously known member of the TyrR regulon 314 in E. coli, however we were unable to find conserved TyrR-binding sites upstream of folA orthologs in 315 other Enterobacteriales.

A novel predicted tyrosine transporter from the COG2814 family was found under TyrR 316 317 regulation in seven genomes of Enterobacteriales. The reconstructed TyrR regulons in Vibrionales 318 are extended to include a predicted novel tyrosine transporter from the COG0733 family and the 319 aroG gene. The most significant shifts in the regulon content were identified in Shewanellaceae, 320 where TyrR controls the degradation pathways for various amino acids including phenylalanine 321 (phhAB), tyrosine (hmgCB), tryptophan (tdo-kyn), branched chain amino acids (ldh, brnQ, liu, ivd, and 322 bkd operons), proline (putA), methionine (mdeA), and oligopeptides (various peptidase genes). In 323 addition, the conserved part of the TyrR regulons in Shewanellaceae includes the 324 tyrosine/phenylalanine biosynthesis genes aroA and tyrB, as well as the aceBA and acsA genes from 325 the central carbon metabolism. Finally, the tpl gene encoding an alternative pathway of tyrosine 326 degradation belongs to the TyrR regulons in Citrobacter koseri and two Pasteurellales, whereas the indole acetate synthesis gene *ipdC* is regulated by TyrR in some *Enterobacteriales* and *Shewanellaceae* genomes.

329 The homogentisate pathway of the tyrosine degradation encoded by the hmqABC operon in P. 330 putida is regulated by the IcIR-family repressor HmgR and homogentisate as anitirepressor (Arias-331 Barrau, et al. 2004). Similar HmgR regulons were reconstructed in four other Pseudomonas species, 332 whereas the *hmqABC* genes in two other *Pseudomonas* spp. belong to the TyrR-family PhrR regulons (Table S5). In a closely-related bacterium from the Pseudomonadaceae family, Azotobacter 333 334 vinelandii, which lack both PhrR and HmgR regulons, we identified a novel LysR-family regulon for 335 the homogentisate pathway genes, which we termed HmgQ. Orthologous HmgQ regulators in the 336 Shewanellaceae family are predicted to control the hmgA-hpd genes, whereas the hmgCB genes of 337 the homogentisate pathway belong to the extended TyrR regulon in Shewanella spp.. Another novel 338 regulator from the MarR family (termed HmgS), was identified in several Alteromonadales and 339 *Pseudoalteromonadales* species, where it is predicted to control the *hmqAB* genes.

340 In conclusion, the transcriptional regulation of aromatic amino acid metabolism is highly 341 variable among major lineages of γ -proteobacteria (Table S5). The TyrR-family regulators control the aromatic amino acid biosynthesis, uptake and/or catabolic pathways in most of the analyzed taxa. In 342 343 contrast, the reconstructed regulons in the Shewanellaceae family predict a global regulatory role of 344 TyrR for genes that are involved in catabolism of various amino acids and in central carbon 345 metabolism. The mode of TyrR action on its predicted novel targets in Shewanella is to be 346 determined experimentally. Preliminary comparative analysis of positions of the TyrR-binding sites in 347 the promoter gene regions suggest that TyrR probably acts as an activator for most of the amino acid degradation operons in Shewanella spp. (data not shown). The homogentisate pathway in γ -348 349 proteobacteria is controlled by either TyrR/PhhR, or by non-orthologous local regulators from the 350 IcIR, LysR, and MarR protein families. We also observed interchangeability between the TyrR and 351 TrpR regulons: the aroF-tyrA genes are controlled by TyrR in most of the analyzed lineages, whereas 352 in the Shewanellaceae family, this operon is predicted to be controlled by TrpR. Overall, the major 353 biological role of TyrR in Enterobacteriales and Pasteurellales is the regulation of aromatic amino 354 acid biosynthesis and transport genes, however in Pseudomonas and Shewanella it mostly controls 355 the amino acid degradation pathways, whereas in other Alteromonadales species, as well as in 356 Vibrionales and Aeromonadales, it is implicated in the control of both biosynthetic and catabolic 357 pathways.

358

359

360 HypR regulon for proline and 4-hydrohyproline utilization

L-proline, the only proteinogenic imino acid, is used by many bacteria as a source of energy 361 362 and a precursor for other amino acid synthesis. 4-hydroxy-L-proline, which can be synthesized posttranslationally from L-proline, is also a rich source of carbon and nitrogen for many microorganisms. 363 364 In Sinorhizobium meliloti, the hydroxyproline transport and utilization genes (hyp) are negatively regulated by the GntR-family regulator HypR, with 4-hydroxy-L-proline as an inducer (White, et al. 365 2012). Orthologs of HypR were identified in 13 taxonomic groups that mostly belong to γ -366 proteobacteria but also include three α -proteobacterial and two β -proteobacterial taxa (Figure S2). 367 368 The core of reconstructed HypR regulons includes hypR, which is autoregulated in 32 out of 46 369 studied genomes, and hypE, hypO, hypD, and hypH encoding enzymes involved in the conversion of 370 hydroxyproline into α -ketoglutarate (Figure 5). Operon organization of the hyp genes varies among

the studied bacteria. Taxonomy-specific regulon members include an alternative 4-hydroxyproline 371 epimerase (hypY) and two putative enzymes from the TCA cycle, malate dehydrogenase (hypS) and 372 373 citrate isomerase (*hypX*), that are potentially involved in α -ketoglutarate utilization (Figure 5). PutA, 374 the main enzyme of the proline catabolic pathway that provides proline oxidation into 1-pyrroline-5-375 carboxylate, is the taxonomy-specific member of the HypR regulons in the Shewanellaceae and 376 Aeromonas spp. Ornithine can be converted into proline via ornithine cyclodeaminase (COG2423), 377 which is predicted to be a part of HypR regulon in Vibrio parahaemolyticus, Paracoccus denitrificans 378 and several Shewanella spp. Thus, HypR function probably expands onto ornithine degradation.

In *S. meliloti*, hydroxyproline is imported into the cell via the ABC-family transporter HypMNPQ, which is predicted to be a part of HypR regulons only in three other genomes and thus was classified as a taxonomy-specific regulon member. Two other predicted hydroxyproline transporters, namely HypT from the MFS family and HypABC from the TRAP family, were identified as genome-specific members of the HypR regulons. Furthermore, HypR-regulated genes encoding a putative TonB-dependent outer membrane transporter in several *Alteromonadales* and a COG531family permease in *Erwinia amylovora* can be also involved in hydroxyproline/proline transport.

386 The large amounts of proline and hydroxyproline are found in the abundant protein collagen 387 (Phang, et al. 2015). We identified a number of secreted collagenases (colA1, colA2 and colA3) within 388 the reconstructed HypR regulons in the Alteromonadales (mostly in Shewanella spp.), suggesting the 389 HypR regulons evolved in these species to include the upstream metabolic steps in the 390 proline/hydroxyproline utilization pathway (Figure 5). Moreover, the reconstructed HypR regulons in 391 the Alteromonadales and Aeromonas taxa of γ -proteobacteria include various proline (di)peptidases 392 (PrdP, AmpP, and YpdF) and proline dipeptide/tripeptide permease (PdtP), suggesting these species 393 utilize another upstream source of proline for the catabolic pathway (Figure 5).

394

395 HutC regulon for histidine utilization

396 Histidine is a well-known source of carbon, nitrogen and energy for many bacteria. The 397 histidine degradation pathway was studied in Klebsiella aerogenes and Salmonella typhimurium and 398 involves four reactions catalyzed by HutH, HutU, HutI and HutG (re-named HutG2 in this work, 399 belongs to the COG0010 family), whereas in *Pseudomonas* spp. the pathway involves an alternative 400 HutG enzyme from the COG3741 family, as well as an additional reaction catalyzed by HutF (Figure 401 6) (Goldberg and Magasanik 1975; Zhang and Rainey 2007). The histidine utilization genes are 402 regulated by orthologous HutC repressors in the above three γ -proteobacteria. Orthologs of HutC 403 were identified in 113 genomes from all studied taxa of α -, β -, and γ -proteobacteria except the 404 Pasteurellales (Figure S2). The core of reconstructed HutC regulons includes all known histidine 405 catabolic enzymes including both alternative HutG enzymes, as well as the HutD protein, which has 406 yet unknown function in the pathway. At that the HutC regulons in the Pseudomonadaceae, 407 Enterobacteriales, Burkholderiales, Rhizobiales and Vibrionales taxa often include multiple paralogs 408 of the histidine ammonia-lyase HutH. In addition to the hut genes, HutC was predicted to co-regulate 409 the histidine biosynthesis operon in *Colwellia psychrerythraea* and *Idiomarina loihiensis* (Figure 6).

The taxonomy- and genome-specific members of the reconstructed HutC regulons are represented by a number of known or putative transporters involved in histidine uptake (Figure 6). These include three known histidine uptake systems: the HisT permease in the *Burkholderiales*, *Moraxellaceae* and *Pseudomonadaceae*, and two distinct ABC-family transporters, HisJMPQ in *Burkholderia* and HutXYZ in *Pseudomonadas* and some *Rhizobiales*. A novel histidine transporter 415 from the ABC family (named HisXYZ) was predicted in the Comamonadaceae, Ralstonia and 416 Rhizobiales. Moreover, the reconstructed regulons include a novel TonB-dependent outer 417 membrane transporter in the Caulobacterales and Sphingomonadales, a COG2814-family permease 418 in Ralstonia spp. and a COG3314-family transmembrane protein in Aeromonas, Psychromonas and 419 Marinomonas spp. that are potentially involved in histidine uptake. Additional putative transporter 420 from the COG1457 family was identified in the HutC regulons of Burkholderia, Pseudomonas, 421 Klebsiella and Acinetobacter spp., however all these species already possess the HisT permease. 422 Therefore, there is not enough information to support assignment of histidine specificity to these 423 novel COG1457-family transporters that are homologous to purine and allantoine transporters.

424

425 Taxonomy-specific regulon expansion/shrinking

In addition to the above described five amino acid-specific regulons and also the previously described methionine regulons (Leyn, et al. 2014), we observed many variations in reconstructed regulons for orthologous TFs in different lineages of Proteobacteria including regulon expansion and contraction and many cases of recruiting non-orthologous TFs to control equivalent pathways. The most interesting and novel examples of the observed evolutionary changes in the reconstructed TF regulons are briefly described below.

432 The FabR repressor, which was previously known to control the fatty acid biosynthesis genes 433 fabAB in E. coli and other Enterobacteriales, co-regulates the unsaturated fatty acid biosynthesis 434 genes desABC in several lineages of γ -proteobacteria. In addition, the FabR regulon in six Shewanella 435 species is expanded by the *pfaRABCD* operon encoding polyunsaturated fatty acid synthase. The 436 fatty acid degradation pathway in *Shewanellaceae* and other γ -proteobacteria is regulated by PsrA, 437 whereas in Enterobacteriales the analogous pathway is regulated by FadR. The FadR regulon in 438 Shewanellaceae is contracted and retains only two operons shared with the orthologous regulon in 439 Enterobacteriales and Vibrionales (fadIJ and fadL). The PsrA regulon in Shewanellaceae is expanded 440 by several operons involved in the tricarboxylic acid cycle (aceBA, sdh, gltA). The biological role of 441 PsrA regulons in two lineages of β -proteobacteria, *Ralstonia* and *Burkholderia*, is shifted to control 442 the fatty acid biosynthesis genes, whereas the fatty acid degradation genes are predicted to be co-443 regulated by a novel regulator TetR-family regulator, termed FadP, in the above two lineages, as well 444 in Comamonadaceae, which lack PsrA or FadR regulons (Kazakov, et al. 2009).

445 HexR in *Enterobacteriales* is a local regulator of glucose-6-phosphate dehydrogenase (*zwf*), 446 whereas in other lineages of γ -proteobacteria it co-regulates *zwf-pgl* with genes from the Entner-447 Doudoroff pathway (edd, eda), glucokinase (glk) and pyruvate kinase (pykA). The HexR regulons in 448 Shewanellaceae and Vibrionales are significantly expanded to include various other genes from the 449 central glycolytic and fermentation pathways, glucose transport, mannitol utilization, nucleoside 450 metabolism, glutamate biosynthesis, and the glycine cleavage system (Leyn, et al. 2011). The 451 pyruvate-responsive regulator PdhR, which solely control the pyruvate dehydrogenase operon 452 aceEF-lpdA in Enterobacteriales, Vibrionales and several other lineages, undergoes radical expansion to include genes involved in the tricarboxylic acid cycle (sdhCDAB, gltA, aceAB, oadGAB) and 453 454 fermentation (pflBA, focA, lldP-dld) in Shewanellaceae.

455 NtrC protein is a regulator of nitrogen assimilation described in *E. coli* and *Rhodobacter* 456 *capsulatus* (Reitzer 2003; Masepohl and Hallenbeck 2010). Orthologs of the NtrC protein were found 457 in 19 analyzed taxa. A core part of the regulon contains genes for glutamine synthetase (*glnA*), 458 ammonium transporter (*amtB*) and nitrogen assimilation regulatory genes (*glnBK* and *ntrB*, *ntrC*). On 459 the other hand, the NtrC regulon demonstrates taxon-specific expansions to other nitrogen metabolism genes. NtrC-dependent regulation of glutamate dehydrogenase (gdhA) is a specific 460 461 feature of the *Moraxellaceae*, *Rhodobacterales* and δ -proteobacteria. Genes encoding glutamate 462 synthase (*qltBD*) are regulated by NtrC in the *Moraxellaceae* and *Shewanellaceae*, as well as in some 463 β -, α - and δ -proteobacteria. In a number of taxa, the NtrC regulon is expanded to the genes 464 encoding hydrogenases that act on carbon-nitrogen bonds. Thus, allophanate hydrolase (atzF) and agmatinase (speB) are regulated in the *Rhizobiales* and β -proteobacteria, respectively, whereas 465 urease (ureABC) and urea ABC transporters (uctABC and urtABCDEF) are regulated in the 466 Alteromonadales, Oceanospirillales, Rhizobiales and Rhodobacterales. In α - and β -proteobacteria, 467 468 the NtrC regulon is expanded to genes involved in nitrogen oxide uptake and reduction, such as assimilatory reductases of nitrate (nasAB) and nitrite (nasDE and nirA), nitrate-nitrite antiporter 469 470 (narK) and nitrate ABC transporter (nrtABC). Together, the core of the NtrC regulon includes genes 471 necessary to inclusion of ammonia into organic compounds through glutamine synthesis, whereas 472 the taxon-specific regulon members are necessary for generation of ammonia via metabolism of 473 various nitrogen compounds.

474

475 Non-orthologous TFs for N-acetylglucosamine utilization pathway

476 Three different TFs were previously found in Proteobacteria to control the N-477 acetylglucosamine catabolic pathway, namely NagC, NagQ and NagR (Yang, et al. 2006). All three 478 regulons have similar cores consisting of two central enzymes from the N-acetylglucosamine 479 pathway (naqA and naqB) and a PTS-family transporter that is involved in uptake and 480 phosphorylation of N-acetylglucosamine. Taxonomic distribution of these three regulatory systems is 481 not uniform: NagC and NagR were found in γ -proteobacteria, whereas NagQ was identified in α - and 482 β -proteobacteria, as well as in some lineages of and γ -proteobacteria. Interestingly, *Reinekea* sp. has 483 two distinct regulators, where the NagQ regulon contains genes involved in the sugar catabolic 484 pathway (naqKAB) and chitin degradation (cdxA, chiA), whereas NagC controls genes encoding an N-485 acetylglucosamine-specific PTS transporter and chemotaxis proteins. Furthermore, in two 486 Xanthomonas spp. we found both NagQ and NagR, where NagQ regulates the N-acetylglucosamine catabolic and transport genes (nagAB and nagP), while NagR regulons include the N-487 488 acetylglucosamine kinase and TonB-dependent outer membrane receptors that might be involved in 489 sugar transport across the outer memberane. Overall, all three N-acetylglucosamine-specific TF 490 regulons are expanded in many genomes to include various chitin utilization genes. Also, a 491 significant expansion of the NagC regulon was observed in the Vibrionales, where it includes the 492 central glycolytic (gapA, gapB, fbaA, pgk, eno) and glycogen biosynthesis (glgAC) genes.

493

494 Two distinct TF regulons for biotin biosynthesis pathway

495 Two distinct TFs, BirA and BioQ, control the biotin/vitamin B7 biosynthesis pathway in Proteobacteria. BirA was previously studied in many details in E. coli (Beckett 2005). It is a 496 497 bifunctional protein that functions both as a transcriptional repressor and a biotin-protein ligase, which covanlently links biotin to biotin-dependent enzymes. BirA enzymes are ubiquitous in 498 499 microorganisms, while the N-terminal DNA-binding domain can be only found in a subset of BirA 500 proteins from a broad number of Proteobacteria, Firmicutes and several other lineages of Bacteria and Archaea. Among the studied Proteobacteria, BirA repressors and regulons were found in the γ -501 and δ -subdivisions. The most conserved part of BirA regulons consists of the biotin biosynthesis 502

503 genes (*bioABCDF*). The BirA regulons in *Desulfovibrionales* are expanded to include the fatty acid 504 biosynthesis genes (*fabF*, *fabH*, *acpP*), that are involved in the same pathway with the biotin-505 dependent acetyl-CoA carboxylase. The BirA proteins from β - and α -subdivisions of Proteobacteria 506 have lost their DNA-binding domains, and apparently the BirA regulons do not exist in these species.

507 The previous comparative genomics analysis of biotin pathway genes has identified a novel 508 GntR-family TF in α -proteobacteria from the *Rhizobiales* and *Rhodobacteriales* lineages, termed 509 BioR, which was predicted to control the biotin metabolism genes (Rodionov and Gelfand 2006). The 510 reconstructed BioR regulons include the biotin biosynthesis genes (*bioABDF, bioCG, bioZ*), as well as 511 a novel ECF-family transporter for biotin (*bioYMN*) (Hebbeln, et al. 2007). The BioR regulon was later 512 experimentally validated in *Brucella melitensis* and *Paracoccus denitrificans* (Feng, et al. 2013; Feng, 513 et al. 2015).

514

515 Identification of a novel TF regulon involved in NAD biosynthesis

516 In the *Enterobacteriales*, the NAD cofactor metabolism genes are controlled by NadR 517 regulator, which is absent in all other lineages of Proteobacteria. The most conserved part of NadR 518 regulon is the *nadA-pnuC* operon that encodes a *de novo* NAD biosynthesis enzymes and a ribosyl 519 nicotinamide transporter. In several enterobacterial genomes, NadR controls additional NAD 520 biosynthesis and nicotinate/vitamin B3 salvage genes (*nadB, pncB, niaP, nadR*).

521 In α - proteobacteria and several species of β - and γ -proteobacteria we found a novel TF, 522 termed NadQ, which presumably controls the NAD biosynthesis genes. Proteins from the NadQ orthologous group belong to yet uncharacterized protein family (COG4111) that is characterized by a 523 524 characteristic C-terminal DNA-binding domain with a helix-turn-helix (HTH) motif, which is 525 homologous to another regulator of NAD metabolism, NrtR (Rodionov, et al. 2008). However, the N-526 terminal effector binding domain of NadQ is unique as it is not similar to the ADP ribose-binding 527 domain of NrtR. Palindromic DNA binding motifs for NadQ identified in seven lineages of 528 Proteobacteria are characterized by the common consensus sequence ttATRCTCannntGAGYATaa, 529 where R and Y stand for purines or pyrimidines, respectively. The nadQ genes are often clustered on 530 the chromosome with the *de novo* NAD biosynthesis genes (*nadABC*). Thus, the core of 531 reconstructed NadQ regulons in proteobacteria includes these central NAD biosynthesis genes. In 532 the Rhodobacterales and Caulobacterales, the NadQ regulon is expanded to include the lower NAD 533 biosynthesis pathway genes (nadE and nadD). Effector molecule for the novel NadQ regulator is to 534 be determined experimentally but the regulon content suggests that it can be either NAD itself or 535 one of pathway intermediates.

536 Conclusions

We used the comparative genomics approach for reconstruction of regulatory networks for amino 537 538 acid and other central metabolic pathways that are controlled by specific groups of TFs. The results 539 of this study demonstrate considerable variability of the TF regulons for the central metabolic 540 pathways in Gram-negative bacteria from the phylum Proteobacteria. The core members of the 541 characterized TF regulons are involved in arginine biosynthesis (ArgR), biotin biosynthesis (BirA), 542 fatty acid biosynthesis (FabR) and degradation (FadR, FadP, PsrA), glycolate, lactate and pyruvate utilization (GlcC, LldR, PdhR), central carbohydrate metabolism (HexR), histidine and 543 544 hydroxyproline/proline utilization (HutC, HypR), branched-chain amino acid degradation (LiuR, LiuQ), methionine metabolism (MetJ, MetR, SahR), nitrogen assimilation (NtrC), deoxyribonucleotide 545

546 biosynthesis (NrdR), N-acetylglucosamine utilization (NagC, NagQ, NagR), pyrimidine degradation (RutR), tyrosine and phenylalanine metabolism (TyrR) and tryptophan biosynthesis (TrpR). Large-547 scale phylogenomic and comparative genomics analyses of these TFs reveal numerous examples of 548 various evolutionary processes for regulators and their regulons both at the levels of a taxonomic 549 group/class of bacteria and an individual genome. These predicted evolutionary processes can be 550 classified into three distinct types: (i) "regulon expansion" in certain taxa compared to other lineages 551 552 that can be ranged from additions of several regulons members to large-scale shifts in the regulated metabolic pathways (e.g., PdhR, TyrR and TrpR regulons in Shewanella spp.); (ii) "fuzzy regulons" 553 554 when a regulon contains a small conserved core and a large periphery of taxon- and genome-specific 555 genes (e.g. ArgR, HexR and NtrC regulons); (iii) "regulon loss or acquisition" when entire regulon (including a TF and all its TFBSs and target genes) is absent or present only in specific genomes 556 557 within a taxonomic group of bacteria (e.g. GlcC and HypR that are present in individual species of 558 Enterobacteria or NagR that was found in all but one Shewanella spp.). The most conserved 559 regulatory interactions were identified within TF regulons that are involved in the control of certain 560 essential biosynthetic pathways (e.g. BirA, NrdR, and FabR). Overall, this study provides new insights 561 into the evolutionary mechanisms that shape transcriptional regulatory networks in Bacteria.

562

563 **ABBREVIATIONS**

- 564 TF, Transcription factor; TFBS, transcription factor binding site; PWM, positional weight matrix;
- 565 CRON, cluster of co-regulated orthologous operons.
- 566

567

568 ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (14-04-00870) and by the 569 570 Russian Academy of Sciences via the program "Molecular and Cellular Biology". Additional funding was provided by the Genomic Science Program (GSP), Office of Biological and Environmental 571 Research (OBER), U.S. Department of Energy (DOE), and is a contribution of the Pacific Northwest 572 573 National Laboratory (PNNL) Foundational Scientific Focus Area. Regulon reconstruction in sulfate-574 reducing δ -proteobacteria, data accumulation and visualization in the RegPrecise database, and 575 project maintenance in the RegPredict web server by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area 576 577 Program at Lawrence Berkeley National Laboratory, is based upon work supported by the U.S. 578 Department of Energy, Office of Science, Office of Biological & Environmental Research under 579 contract number DE-AC02-05CH11231.

580 **REFERENCES**

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25:3389-3402. Arias-Barrau E, Olivera ER, Luengo JM, Fernandez C, Galan B, Garcia JL, Diaz E, Minambres B. (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in *Pseudomonas putida. J Bacteriol.* **186**:5062-5077.

588 **Beckett D. (2005)** The Escherichia coli biotin regulatory system: a transcriptional switch. *J* 589 *Nutr Biochem.* **16**:411-415.

590 **Browning DF, Busby SJ. (2004)** The regulation of bacterial transcription initiation. *Nat Rev* 591 *Microbiol.* **2**:57-65.

592 **Coulson TJ, Patten CL. (2015)** The TyrR transcription factor regulates the divergent akr-593 ipdC operons of *Enterobacter cloacae* UW5. *PLoS One.* **10**:e0121241.

594 **Crooks GE, Hon G, Chandonia JM, Brenner SE. (2004)** WebLogo: a sequence logo 595 generator. *Genome Res.* **14**:1188-1190.

596 **Czernik PJ, Shin DS, Hurlburt BK. (1994)** Functional selection and characterization of DNA 597 binding sites for trp repressor of *Escherichia coli*. *J Biol Chem.* **269**:27869-27875.

598 Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, 599 Huang KH, Keller K, Novichkov PS & other authors. (2010) MicrobesOnline: an integrated 600 portal for comparative and functional genomics. *Nucleic Acids Res.* **38**:D396-400.

Feng Y, Kumar R, Ravcheev DA, Zhang H. (2015) *Paracoccus denitrificans* possesses two
 BioR homologs having a role in regulation of biotin metabolism. *Microbiology Open.* 4:644-659.

Feng Y, Xu J, Zhang H, Chen Z, Srinivas S. (2013) Brucella BioR regulator defines a complex
 regulatory mechanism for bacterial biotin metabolism. *J Bacteriol.* 195:3451-3467.

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington
 K, Holm L, Mistry J & other authors. (2014) Pfam: the protein families database. *Nucleic Acids Res.* 42:D222-230.

608 Gelfand MS. (2006) Evolution of transcriptional regulatory networks in microbial genomes.
 609 Curr Opin Struct Biol. 16:420-429.

610 **Goldberg RB, Magasanik B. (1975)** Gene order of the histidine utilization (hut) operons in 611 Klebsiella aerogenes. *J Bacteriol.* **122**:1025-1031.

612 **Grainger DC, Lee DJ, Busby SJ. (2009)** Direct methods for studying transcription regulatory 613 proteins and RNA polymerase in bacteria. *Curr Opin Microbiol.* **12**:531-535.

Hebbeln P, Rodionov DA, Alfandega A, Eitinger T. (2007) Biotin uptake in prokaryotes by
solute transporters with an optional ATP-binding cassette-containing module. *Proc Natl Acad Sci U S A.* 104:2909-2914.

Herrera MC, Duque E, Rodriguez-Herva JJ, Fernandez-Escamilla AM, Ramos JL. (2010)
Identification and characterization of the PhhR regulon in *Pseudomonas putida*. *Environ Microbiol*. 12:1427-1438.

Jeeves M, Evans PD, Parslow RA, Jaseja M, Hyde EI. (1999) Studies of the *Escherichia coli* Trp repressor binding to its five operators and to variant operator sequences. *Eur J Biochem.* 265:919-928.

623 **Kanehisa M, Goto S. (2000)** KEGG: kyoto encyclopedia of genes and genomes. *Nucleic* 624 *Acids Res.* **28**:27-30.

Karp PD, Weaver D, Paley S, Fulcher C, Kubo A, Kothari A, Krummenacker M, Subhraveti
P, Weerasinghe D, Gama-Castro S & other authors. (2014) The EcoCyc Database. *EcoSal Plus.*6.

628 **Kazakov AE, Rodionov DA, Alm E, Arkin AP, Dubchak I, Gelfand MS. (2009)** Comparative 629 genomics of regulation of fatty acid and branched-chain amino acid utilization in 630 proteobacteria. *J Bacteriol.* **191**:52-64.

Leyn SA, Kazanov MD, Sernova NV, Ermakova EO, Novichkov PS, Rodionov DA. (2013)
 Genomic reconstruction of the transcriptional regulatory network in *Bacillus subtilis*. J
 Bacteriol. 195:2463-2473.

Leyn SA, Li X, Zheng Q, Novichkov PS, Reed S, Romine MF, Fredrickson JK, Yang C,
 Osterman AL, Rodionov DA. (2011) Control of proteobacterial central carbon metabolism by
 the HexR transcriptional regulator: a case study in *Shewanella oneidensis*. *J Biol Chem.* 286:35782-35794.

Leyn SA, Suvorova IA, Kholina TD, Sherstneva SS, Novichkov PS, Gelfand MS, Rodionov
 DA. (2014) Comparative genomics of transcriptional regulation of methionine metabolism in
 Proteobacteria. *PLoS One.* 9:e113714.

641 **Masepohl B, Hallenbeck PC. (2010)** Nitrogen and molybdenum control of nitrogen fixation 642 in the phototrophic bacterium *Rhodobacter capsulatus*. *Advances in Experimental Medicine* 643 *and Biology*. **675**:49-70.

644 **Minchin SD, Busby SJ. (2009)** Analysis of mechanisms of activation and repression at 645 bacterial promoters. *Methods.* **47**:6-12.

Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov
 MD, Riehl W, Arkin AP, Dubchak I & other authors. (2013) RegPrecise 3.0--a resource for
 genome-scale exploration of transcriptional regulation in bacteria. *BMC Genomics.* 14:745.

Novichkov PS, Rodionov DA, Stavrovskaya ED, Novichkova ES, Kazakov AE, Gelfand MS,
 Arkin AP, Mironov AA, Dubchak I. (2010) RegPredict: an integrated system for regulon
 inference in prokaryotes by comparative genomics approach. *Nucleic Acids Res.* 38:W299-307.

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard
 V, Diaz N, Disz T, Edwards R & other authors. (2005) The subsystems approach to genome
 annotation and its use in the project to annotate 1000 genomes. *Nucleic Acids Res.* 33:5691 5702.

Palmer GC, Palmer KL, Jorth PA, Whiteley M. (2010) Characterization of the *Pseudomonas aeruginosa* transcriptional response to phenylalanine and tyrosine. *J Bacteriol.* 192:2722-2728.

- 658 **Panina EM, Vitreschak AG, Mironov AA, Gelfand MS. (2001)** Regulation of aromatic amino 659 acid biosynthesis in gamma-proteobacteria. *J Mol Microbiol Biotechnol.* **3**:529-543.
- 660 **Phang JM, Liu W, Hancock CN, Fischer JW. (2015)** Proline metabolism and cancer: 661 emerging links to glutamine and collagen. *Curr Opin Clin Nutr Metab Care.* **18**:71-77.
- 662 **Pittard J, Camakaris H, Yang J. (2005)** The TyrR regulon. *Mol Microbiol.* **55**:16-26.
- 663 **Pittard J, Yang J. (2008)** Biosynthesis of the Aromatic Amino Acids. *EcoSal Plus.* **3**.
- Ravcheev DA, Best AA, Sernova NV, Kazanov MD, Novichkov PS, Rodionov DA. (2013)
 Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. *BMC Genomics.* 14:94.
- Ravcheev DA, Best AA, Tintle N, Dejongh M, Osterman AL, Novichkov PS, Rodionov DA.
 (2011) Inference of the transcriptional regulatory network in *Staphylococcus aureus* by
 integration of experimental and genomics-based evidence. *J Bacteriol.* 193:3228-3240.
- Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA,
 Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA. (2014) Comparative genomics
 and evolution of regulons of the Lacl-family transcription factors. *Front Microbiol.* 5:294.
- 673 **Reitzer L. (2003)** Nitrogen assimilation and global regulation in *Escherichia coli*. *Annual* 674 *Review of Microbiology*. **57**:155-176.
- 675 **Rodionov DA. (2007)** Comparative genomic reconstruction of transcriptional regulatory 676 networks in bacteria. *Chem Rev.* **107**:3467-3497.
- Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N.
 (2008) Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related
 regulators. *Nucleic Acids Res.* 36:2047-2059.
- Rodionov DA, Gelfand MS. (2006) Computational identification of BioR, a transcriptional
 regulator of biotin metabolism in Alphaproteobacteria, and of its binding signal. *FEMS Microbiol Lett.* 255:102-107.
- 683 **Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW. (2006)** Computational 684 reconstruction of iron- and manganese-responsive transcriptional networks in alpha-685 proteobacteria. *PLoS Comput Biol.* **2**:e163.
- Rodionov DA, Novichkov PS, Stavrovskaya ED, Rodionova IA, Li X, Kazanov MD, Ravcheev
 DA, Gerasimova AV, Kazakov AE, Kovaleva GY & other authors. (2011) Comparative genomic
 reconstruction of transcriptional networks controlling central metabolism in the *Shewanella* genus. *BMC Genomics.* 12 Suppl 1:S3.
- Rodionov DA, Rodionova IA, Li X, Ravcheev DA, Tarasova Y, Portnoy VA, Zengler K,
 Osterman AL. (2013) Transcriptional regulation of the carbohydrate utilization network in
 Thermotoga maritima. Front Microbiol. 4:244.
- 693 **Smith HQ, Somerville RL. (1997)** The tpl promoter of *Citrobacter freundii* is activated by 694 the TyrR protein. *J Bacteriol.* **179**:5914-5921.

695 UniProt C. (2014) Activities at the Universal Protein Resource (UniProt). *Nucleic Acids Res.*696 42:D191-198.

697 White CE, Gavina JM, Morton R, Britz-McKibbin P, Finan TM. (2012) Control of 698 hydroxyproline catabolism in *Sinorhizobium meliloti*. *Mol Microbiol*. **85**:1133-1147.

Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova
 AY, Nealson KH, Osterman AL. (2006) Comparative genomics and experimental
 characterization of N-acetylglucosamine utilization pathway of *Shewanella oneidensis*. J Biol
 Chem. 281:29872-29885.

Yang J, Hwang JS, Camakaris H, Irawaty W, Ishihama A, Pittard J. (2004) Mode of action of
 the TyrR protein: repression and activation of the tyrP promoter of *Escherichia coli*. *Mol Microbiol*. 52:243-256.

706 **Zhang XX, Rainey PB. (2007)** Genetic analysis of the histidine utilization (*hut*) genes in 707 *Pseudomonas fluorescens* SBW25. *Genetics.* **176**:2165-2176.

708

709 DATA BIBLIOGRAPHY

Leyn, S. A., Suvorova, I. A., Kazakov, A. E., Ravcheev, D. A., Stepanova, V. V., Novichkov, P. S.,
Rodionov, D. A. RegPrecise 4.0. Collection of regulogs for transcription factor families in
Proteobacteria. http://regprecise.lbl.gov/RegPrecise/project_proteobacteria.jsp (2016).

713

714 FIGURES AND TABLES

715 Figure 1. Taxonomic distribution of 33 studied transcription factor regulons in four major

- classes of Proteobacteria. Circles include number of TFs that are either taxonomic class specific or shared between several classes.
- 718 Figure 2. Examples of motifs changes in four orthologous groups of studied TFs.
- 719 Conservative positions between motifs within groups are boxed with the same color.
- 720 Figure 3. Arginine metabolism and its regulation by ArgR in Proteobacteria.
- Figure 4. Aromatic amino acid metabolism and its regulation by TyrR, TrpR and other
 transcription factors in Proteobacteria.
- Figure 5. Hydroxyproline and proline utilization pathway and its regulation by HypR in
 Proteobacteria.
- 725 Figure 6. Histidine metabolism and its regulation by HutC in Proteobacteria.
- 726

727 Table 1. Statistics for the studied TF regulons in Proteobacteria.

	Protein	Metabolic pathways	Genomes	TFBSs	Genes,	Genes,	
TF ¹	family	controlled by a TF	(taxa) ²	total ³	total ³	average ⁴	
ArgR	ArgR	Arginine metabolism	62 (6)	1079	1223	19.7	
BioR*	GntR	Biotin biosynthesis	13 (2)	34	59	4.5	
BirA	BirA	Biotin biosynthesis	94 (11)	185	495	5.3	
FabR	TetR	Fatty acid biosynthesis	74 (10)	361	392	5.3	
FadP*	TetR	Fatty acid degradation	25 (3)	194	448	17.9	
FadR	GntR	Fatty acid degradation	61 (6)	374	423	6.9	
GlcC	GntR	Glycolate utilization	23 (7)	83	133	5.8	
HexR	RpiR	Central carbohydrate metabolism	87 (11)	897	1178	13.5	
HmgQ*	LysR	Tyrosine degradation	17 (2)	35	50	2.9	
HmgR*	IclR	Tyrosine degradation	5 (1)	12	24	4.8	
HmgS*	MarR	Tyrosine degradation	3 (1)	6	9	3.0	
HutC	GntR	Histidine utilization	113 (18)	386	857	7.6	
HypR	GntR	Proline / 4-hydrohyproline utilization	44 (12)	190	265	6.0	

LiuQ*	TetR	Branched-chain amino acid utilization	14 (3)	54	73	5.2
LiuR	MerR	Branched-chain amino acid utilization	103 (15)	671	1411	13.7
LldR	GntR	Lactate utilization	55 (13)	146	241	4.4
MetJ	MetJ	Methionine metabolism	62 (6)	1026	857	13.8
MetR	LysR	Methionine metabolism	117 (14)	570	480	4.1
NadR*	NadR	NAD biosynthesis	11 (1)	27	35	3.2
NadQ*	NadQ	NAD biosynthesis	30 (7)	67	109	3.6
NagC	ROK	N-acetylglucosamine utilization	31 (5)	304	431	13.9
NagQ*	GntR	N-acetylglucosamine utilization	31 (10)	81	225	7.3
NagR*	Lacl	N-acetylglucosamine utilization	25 (4)	168	288	11.5
NrdR	NrdR	Deoxyribonucleotide biosynthesis	186 (20)	638	591	3.2
NrtR	NrtR	NAD biosynthesis	28 (11)	75	96	3.4
NtrC	Fis	Nitrogen assimilation	169 (19)	921	1804	10.7
PdhR	GntR	Pyruvate metabolism	55 (6)	200	399	7.3
PsrA	TetR	Fatty acid degradation	76 (12)	673	845	11.1
RutR	TetR	Pyrimidine catabolism	68 (13)	273	743	10.9
SahR*	ArsR	Methionine metabolism	62 (9)	156	266	4.3
SamR*	ArsR	Methionine metabolism	4 (1)	17	30	7.5
TrpR	TrpR	Aromatic amino acid metabolism	53 (8)	142	314	5.9
TyrR	TyrR	Aromatic amino acid metabolism	67 (7)	618	896	13.4

¹Initially, we studied 21 TFs that are present in *E. coli* and/or *Shewanella* spp. and that are
 conserved in five or more taxonomic groups of Proteobacteria. Additionally, we studied TFs
 that represent non-orthologous replacements of the initial set of TFs in some taxonomic
 groups are marked by asterisk.

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue, 26 Apr 2016 06:41:58

- ⁷³² ²Number of genomes and taxonomic groups (in parenthesis) of Proteobacteria that contain
- the studied TF regulon. The detailed distribution of regulons and regulogs is provided inFigure S2.
- ⁷³⁵ ³Total number of candidate TF-binding sites (TFBSs) and TF-regulated genes (target genes) in
- 736 all studied genomes.
- ⁴Average number of candidate TFBSs per genome.
- 738

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

Figure S1. Bioinformatics workflow used for reconstruction of TF regulons.

For regulon reconstruction we started from collections of known TFs in *Escherichia coli* and *Shewanella* species and identification of their orthologs. Collections of TFs were obtained from RegulonDB (Gama-Castro, et al. 2016) for *E. coli* and the RegPrecise (Novichkov et al., 2013) for *Shewanella* spp. For subsequent reconstruction steps we used genomes from MicrobesOnline (Dehal, et al. 2010) database because the RegPredict platform for reconstruction of transcription regulation is linked with genomes in MicrobesOnline. In each taxonomic group, from 4 to 16 representative genomes were selected based on the MicrobesOnline species tree. Closely related strains were eliminated from our analysis to

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue, 26 Apr 2016 06:41:58 avoid skews in the consistency check approach and to simplify the simultaneous analysis in the RegPredict web server. At that we preferably selected most well studied genome representative in each set of closely-related genomes. Next we searched for orthologous TFs in the selected genomes using the bidirectional best hits approach and protein BLAST server at NCBI (Altschul, et al. 1997).

For regulon reconstruction in each group of genomes possessing TF orthologs we used standard comparative genomics approach (Rodionov 2007) that consists of the next steps:

- 1. Obtain training set of potential TFBS;
- 2. Build positional weight matrix (PWM);
- 3. Whole-genomic search for additional TFBSs and regulon members;
- 4. False positive filtering;
- 5. PWM refinement and continue from step 2.

For collection of training sets we used two strategies. (i) For studied known regulons we collected upstream regions of known to be regulated genes with attention for more precise information about location of TFBSs (as electrophoretic mobility shift assay or DNase footprinting assay). (ii) For novel TF regulons, we used genomic context analysis where we predicted regulation of neighborhood genes by their conservative co-localization in one locus mapped to phylogenetic tree of TF. Another approach is functional analysis based on assumption that genes from one metabolic pathway or one process should be regulated simultaneously. Based on this approach we taken upstreams of genes from one process. Association of TF with regulation was made by conservative co-localization of TF gene with genes from this pathway.

Collected upstream regions were used to identify a common DNA motif using the Discover Profiles tool in the RegPredict platform (Novichkov et al., 2010). We searched for DNA motifs either palindromic or tandem repeat symmetry. Sequences of identified DNA motif sites were used to build PWM. The constructed PWMs were further used to search for additional potential TFBSs across upstreams of all genes in genomes using the RegPredict server. Typically we searched the regions beginning 400 nt upstream to and ending 50 nt downstream to the translational start of each gene. Typical threshold for site search procedure was selected as 10% less of the lowest site score from the training set. The whole genomic searches in RegPredict result in construction of a set of CRONs (Clusters of co-Regulated Orthologous operoNs). Each CRONs in RegPredict was built by the following algorithm: 1) PWM found potential TFBSs above threshold; 2) operon predicted by taking gene with potential TFBS as the first gene of operon and prolong operon to all genes with the same direction and intergenic distance less than 200 nt: 3) identification of orthologs and paralogs for each gene in this operon based on Orthologous Groups in MicrobesOnline database; 4) steps 2 and 3 repeated until convergence. Automatic construction of CRONs and manual curation of the obtained CRONs in the RegPredict server allowed us to filter out false positive site predictions by utilizing the consistency check approach. The consistency check approach is based on the assumption that true sites are conserved in evolution. It should be noted that the cases of operon gene content rearrangement are also taken into consideration in the course of CRON analysis and curation. On next step, the identified true positive TFBSs were added to refine PWM and further repeat the genomic site searches.

At the final step of the manual regulon annotation, gene functions are assigned using the existing gene annotations in Genbank and SEED databases (Overbeek, et al. 2005), annotations of homologous proteins in SwissProt / UniProt database (UniProt 2015) and analysis of Pfam domains (Finn, et al. 2016). All reconstructed regulons were finally deposited in the latest release of the RegPecise database (http://regprecise.lbl.gov) (Novichkov, et al. 2013).

		γ-proteobacteria										β-	prote	obact	eria	α	prote	obact	eria	<mark>δ</mark> -pro	teob.			
TF	Escherichia coli	Enterobacteriales (12)	Vibrionales (10)	Pasteurellales (9)	Shewanellaceae (16)	Other Alteromonadales (9)	Psychromonadaceae/ Aeromonadales (6)	Oceanospirillales/ Alteromonadales (12)	Pseudomonadaceae (8)	Moraxellaceae (4)	Xanthomonadales (4)	Ralstonia (6)	Burkholderia (8)	Comamonadaceae (11)	Other various B-proteobacteria (12)	Rhizobiales (15)	Rhodobacterales (15)	Rhodospirillales (9)	Sphingomonadales (7)	Caulobacterales (4)	Desulfovibrionales (10)	Desulfuromonadales (9)	TOTAL reguloGs	TOTAL reguloNs
ArgR	+	12	10	9	16	9	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	62
BioR*	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	6	0	0	0	0	0	2	13
BirA	+	12	10	0	16	9	6	11	8	0	3	0	0	0	8	0	0	0	0	0	3	8	11	94
FabR	+	12	10	8	16	9	4	6	8	2	3	0	0	0	0	0	0	0	0	0	0	0	10	78
FadP*	-	0	0	0	0	0	0	0	0	0	0	6	8	11	0	0	0	0	0	0	0	0	3	25
FadR	+	12	10	9	16	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	61
GlcC	+	1	0	0	0	0	0	3	6	0	0	0	4	0	2	6	1	0	0	0	0	0	7	23
HexR	+	11	10	0	16	5	6	6	16	0	0	6	8	9	2	0	0	0	0	0	0	0	13	95
HmgQ*	-	0	0	0	16	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	17
HmgR*	-	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5
HmgS*	-	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
HutC	-	8	10	0	16	8	4	3	6	2	3	6	8	7	1	10	10	5	2	4	0	0	18	113
HynR	-	1	1	0	16	3	3	2	1	0	0	1	3	0	0	6	8	1	0	0	0	0	13	46
LiuO*	-	0	0	0	0	0	0	0	0	0	0	4	8	2	0	0	0	0	0	0	0	0	3	14
LiuR	_	0	6	0	16	8	2	6	8	0	0	6	2	10	5	Q	13	3	6	1	0	0	16	104
	-	5	0	0	0	0	0	1	7	2	1	1	8	3	5	0	2	Л	0	0	6	1	13	55
Moti		12	10	0	16	0	6		,	0	0	4	0	0	0	0	0	-	0	0	0	4	6	62
MotP		12	10	0	16	1	5	12	0	0	2	6	7	5	0	0	12	0	0	0	0	0	14	117
NadO*	т	0	10	0	10	4	0	12	0	2	0	0	,	2	0	12	2	7	0	4	0	0	7	20
NadQ*	-	11	0	0	0	0	0	0	0	2	0	0	0	2	1	12	2	0	0	4	0	0	1	11
Nag	- -	12	10	2	0	0	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	21
NagO*		0	10	0	0	0	0	2	2	0	2	1	7	0	1	7	4	1	0	2	0	0	10	21
NagQ NagR*	_	0	0	0	15	3	0	3	0	0	1	0	0	0	0	0	-	0	0	0	0	0	10	25
NrdR	-	12	10	9	16	9	6	12	8	1	4	6	8	11	12	15	15	Q	7	1	0	Q	20	186
NrtR		1	10	0	3	0	3	2	1	2	0	0	0	11	2	2	1	0	0	0	0	0	11	28
NtrC	+	12	9	0	16	9	6	12	8	4	4	6	8	11	9	14	14	8	6	4	0	9	19	169
PdhR	+	12	10	0	16	9	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	55
PsrA	-	0	8	0	16	4	3	8	8	0	3	6	8	0	5	3	0	0	0	4	0	0	12	76
RutR	+	7	2	0	0	5	1	8	20	2	0	4	7	0	0	9	13	1	0	2	0	0	17	81
SahR*	-	0	0	0	0	0	0	9	8	0	0	0	0	0	0	10	2	7	7	4	9	6	9	62
SamR*	-	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	4
TroR	+	12	10	8	16	0	2	2	0	2	1	0	0	0	0	0	0	0	0	0	0	0	8	53
TvrR	+	12	10	9	16	9	4	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	8	67
TOTAL																							-	
regulogs	17	20	19	9	19	21	19	21	22	9	12	13	14	12	13	13	15	10	5	9	3	5	283	
TOTAL		20		-								10					10	10		-			200	
regulons	-	189	160	71	290	124	84	115	139	22	35	62	94	75	61	110	104	46	28	33	18	36		1896

Figure S2. Taxonomic distribution of studied TF regulons and regulogs in 21 taxonomic groups of Proteobacteria

21 TFs are present in *E. coli* and/or *Shewanella* spp. and are conserved in five or more taxonomic groups of Proteobacteria.

12 TFs that represent non-orthologous replacements of the initial set of TFs in some taxonomic groups are marked by asterisk (*).

Each cell in represents a TF regulog; each number corresponds to the number of TF regulons per regulog.

Numbers in red font highlight TFs/taxonomic groups that have multiple regulogs represented by paralogous TFs.

Figure S3. Conservation of regulatory interactions in the reconstructed regulons. Core, Taxonomy-specific and Genome-specific groups are highlighted with red, green and blue color respectively. Regulon member names are connected with respective dots by dashes. Functional belonging of regulon members is listed in table S3.

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 Op: Tue, 26 Apr 2016 06:41:58

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue, 26 Apr 2016 06:41:58

LldR

Downloaded from www.microbiologyresearch.org b IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18

		Number of
Tax ID	Phylum / Class / Taxonomic collection ¹ / Genome	genomes
Phylum	Proteobacteria	196
Class	Gammaproteobacteria	90
	Enterobacteriales	12
511145	Escherichia coli str. K-12 substr. MG1655	
99287	Salmonella typhimurium LT2	
290338	Citrobacter koseri ATCC BAA-895	
272620	Klebsiella pneumoniae subsp. pneumoniae MGH 78578	
399742	Enterobacter sp. 638	
716540	Erwinia amylovora ATCC 49946	
187410	Erwinia amylovora ATCC 49946	
399741	Serratia proteamaculans 568	
218491	Erwinia carotovora subsp. atroseptica SCRI1043	
498217	Edwardsiella tarda EIB202	
529507	Proteus mirabilis HI4320	
243265	Photorhabdus luminescens subsp. laumondii TTO1	
	Pasteurellales	9
71421	Haemophilus influenzae Rd KW20	
634176	Aggregatibacter aphrophilus NJ8700	
272843	Pasteurella multocida subsp. multocida str. Pm70	
221988	Mannheimia succiniciproducens MBEL55E	
339671	Actinobacillus succinogenes 130Z	
228400	Haemophilus somnus 2336	
537457	Actinobacillus pleuropneumoniae serovar 7 str. AP76	
233412	Haemophilus ducreyi 35000HP	
557723	Haemophilus parasuis SH0165	
	Vibrionales	10
243277	Vibrio cholerae O1 biovar eltor str. N16961	
216895	Vibrio vulnificus CMCP6	
338187	Vibrio harveyi ATCC BAA-1116	
223926	Vibrio parahaemolyticus RIMD 2210633	
391591	Vibrio shilonii AK1	
575788	Vibrio splendidus LGP32	
312309	Vibrio fischeri ES114	
316275	Vibrio salmonicida LFI1238	
314292	Vibrio angustum S14	
298386	Photobacterium profundum SS9	
	Psychromonadaceae/Aeromonadales	6
357804	Psychromonas ingrahamii 37	
314282	Psychromonas sp. CNPT3	
58051	Moritella sp. PE36	
380703	Aeromonas hydrophila subsp. hydrophila ATCC 7966	
382245	Aeromonas salmonicida subsp. salmonicida A449	
595494	Tolumonas auensis DSM 9187	
	Shewanellaceae	16
211586	Shewanella oneidensis MR-1	
319224	Shewanella putrefaciens CN-32	
351745	Shewanella sp W3-18-1	

Table S1. Studied genomes and taxonomic groups of Proteobacteria.

Downloaded from www.microbiologyresearch.org b IP: 195.218.8.18

94122	Shewanella sp ANA-3		
60480	Shewanella sp MR-4		
60481	Shewanella sp MR-7		
325240	Shewanella baltica OS155		
318161	Shewanella denitrificans OS217		
318167	Shewanella frigidimarina NCIMB 4	100	
326297	Shewanella amazonensis SB2B		
323850	Shewanella loihica PV-4		
398579	Shewanella pealeana ATCC 70034	5	
458817	Shewanella halifaxensis HAW-FB4	-	
225849	Shewanella piezotolerans WP3		
425104	Shewanella sediminis HAW-EB3		
392500	Shewanella woodvi ATCC 51908		
352300	Alteromonadales		9
342610	Pseudoalteromonas atlantica T6c		2
314275	Alteromonas macleodii 'Deep eco	type'	
455436	Glaciecola sp. HTCC2999	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
167879	Colwellia psychrerythraea 34H		
156578	Alteromonadales bacterium TW-7	,	
326442	Pseudoalteromonas halonlanktis	۲۵C125	
87626	Pseudoalteromonas tunicata D2		
31/276	Idiomarina baltica OS145		
2839/2	Idiomarina Joihiensis I 2TR		
203342	Oceanospirillales /Alteromonadal		12
2/10521	Habella cheiuensis KCTC 2396		12
3513/8	Marinobacter aqueolei		
270374	Marinobacter sp. ELB17		
2/03/4	Oceanobacter sp. EED17		
207949	Ocoanospirillum sp. MED03		
400668	Marinomonas sp. MM/VI 1		
202122	Saccharophagus dogradans 2.40		
203122	Taredinibacter turnerae T7001		
109211	Collyibrio ipponicus Hoda107		
200202	Chromobalobactor salovigons DSN	1 2012	
230330	Poinokoa en MED207	1 3043	
202505	Alcanivoray borkumonsis SK2		
222222	Pseudomonadaceae		Q
208064	Pseudomonas aeruginosa PAO1		0
200504	Pseudomonas entomonhila 1/8		
160492	Pseudomonas entomoprina L48		
100400	Pseudomonas putida K12440	ostr DC2000	
223263	Pseudomonas fluoroscons Df 5	531. De3000	
220004	Pseudomonas mendocina ymn		
379731	Pseudomonas stutzeri A1501		
373710	Azotohacter vinelandii AvOP		
522/10			Λ
62077	Acinetohacter sn ADP1		4
/80110	Acinetobacter baumannii ABOOE7		
250526	Psychrobacter proticum 272-4		
2/01/6	Psychrobacter on DRwf 1		
249100	Xanthomonadales	wnloaded from www.microbiologyropoo	ra 4 ora by
I		IP: 195.218.8.18	io n .org by

On: Tue. 26 Apr 2016 06:41:

160492	Xylella fastidiosa 9a5c	
190486	Xanthomonas axonopodis pv. citri str. 306	
190485	Xanthomonas campestris pv. campestris str. ATCC 33913	
522373	Stenotrophomonas maltophilia K279a	
Class	Betaproteobacteria	37
	Ralstonia	6
381666	Ralstonia eutropha H16	
164546	Cupriavidus taiwanensis	
266264	Ralstonia metallidurans CH34	
264198	Ralstonia eutropha JMP134	
267608	Ralstonia solanacearum GMI1000	
402626	Ralstonia pickettii 12J	
	Burkholderia	8
272560	Burkholderia pseudomallei K96243	
243160	Burkholderia mallei ATCC 23344	
269483	Burkholderia sp. 383	
339670	Burkholderia cepacia AMMD (Burkholderia ambifaria AMMD)	
269482	Burkholderia vietnamiensis G4	
626418	Burkholderia glumae BGR1	
266265	Burkholderia xenovorans LB400	
391038	Burkholderia phymatum STM815	
	Comamonadaceae	11
397945	Acidovorax avenae subsp. citrulli AAC00-1	
232721	Acidovorax sp. JS42	
399795	Comamonas testosteroni KF-1	
398578	Delftia acidovorans SPH-1	
365044	Polaromonas naphthalenivorans CJ2	
296591	Polaromonas sp. JS666	
338969	Rhodoferax ferrireducens DSM 15236	
543728	Variovorax paradoxus S110	
391735	Verminephrobacter eiseniae EF01-2	
420662	Methylibium petroleiphilum PM1	
395495	Leptothrix cholodnii SP-6	
	Various betaproteobacteria	12
76114	Azoarcus sp. EbN1	
85643	Thauera sp. MZ1T	
159087	Dechloromonas aromatica RCB	
228410	Nitrosomonas europaea ATCC 19718	
323848	Nitrosospira multiformis ATCC 25196	
292415	Thiobacillus denitrificans	
243365	Chromobacterium violaceum ATCC 12472	
122586	Neisseria meningitidis MC58	
557598	Laribacter hongkongensis HLHK9	
265072	Methylobacillus flagellatus KT	
583345	Methylotenera mobilis JLW8	
383631	Methylophilales bacterium HTCC2181	
Class	Alphaproteobacteria	50
	Rhizobiales	15
266834	Sinorhizobium meliloti 1021	
394	KNIZODIUM SP. NGR234	
216596	Knizopium leguminosarum bv. viciae 3841 from www.microbiologyres	

On: Tue, 26 Apr 2016 06:41:5

347834	Rhizobium etli CFN 42	
176299	Agrobacterium tumefaciens str. C58 (Cereon)	
266779	Mesorhizobium sp. BNC1	
266835	Mesorhizobium loti MAFF303099	
224914	Brucella melitensis 16M	
283165	Bartonella guintana str. Toulouse	
258594	Rhodopseudomonas palustris CGA009	
224911	Bradyrhizobium japonicum USDA 110	
288000	Bradyrhizobium sp. BTAi1	
323098	Nitrobacter winogradskyi Nb-255	
438753	Azorhizobium caulinodans ORS 571	
78245	Xanthobacter autotrophicus Pv2	
/ 02 10	Rhodobacterales	15
272943	Rhodobacter sphaeroides 2.4.1	
318586	Paracoccus denitrificans PD1222	
290400	Jannaschia sp. CCS1	
314271	Rhodobacterales bacterium HTCC2654	
314256	Oceanicola granulosus HTCC2516	
314232	Loktanella vestfoldensis SKA53	
252305	Oceanicola batsensis HTCC2597	
89187	Roseovarius nubinhibens ISM	
314264	Roseovarius sp. 217	
52598	Sulfitobacter sp. EE-36	
292414	Silicibacter TM1040	
246200	Silicibacter pomerovi DSS-3	
314262	Roseobacter sp. MED193	
228405	Hyphomonas neptunium ATCC 15444	
314254	Oceanicaulis alexandrii HTCC2633	
	Rhodospirillales	9
269796	Rhodospirillum rubrum ATCC 11170	
342108	Magnetospirillum magneticum AMB-1	
272627	Magnetospirillum magnetotacticum MS-1	
137722	Azospirillum sp. B510	
414684	Rhodospirillum centenum SW	
272568	Gluconacetobacter diazotrophicus PAI 5	
634452	Acetobacter pasteurianus IFO 3283-01	
290633	Gluconobacter oxydans 621H	
391165	Granulibacter bethesdensis CGDNIH1	
	Sphingomonadales	7
314225	Erythrobacter litoralis HTCC2594	
237727	Erythrobacter sp. NAP1	
279238	Novosphingobium aromaticivorans DSM 12444	
317655	Sphingopyxis alaskensis RB2256	
452662	Sphingobium japonicum UT26S	
392499	Sphingomonas wittichii RW1	
264203	Zymomonas mobilis subsp. mobilis ZM4	
	Caulobacterales	4
190650	Caulobacter crescentus CB15	
509190	Caulobacter segnis ATCC 21756	
366602	Caulobacter sp. K31	
450851	Phenylobacterium zucineum HLK1 wnloaded from www.microbiolog	yresearch.org by
-	IP: 195.218.8.18	
	O . The 00 Arm 0040 00	44.50

Class	Proteobacteria/Delta	19
	Desulfovibrionales	10
882	Desulfovibrio vulgaris Hildenborough	
883	Desulfovibrio vulgaris str. Miyazaki F	
207559	Desulfovibrio desulfuricans G20	
525146	Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774	
411464	Desulfovibrio piger ATCC 29098	
526222	Desulfovibrio salexigens DSM 2638	
573370	Desulfovibrio magneticus RS-1	
363253	Lawsonia intracellularis PHE/MN1-00	
525897	Desulfomicrobium baculatum DSM 4028	
485915	Desulfohalobium retbaense DSM 5692	
	Desulfuromonadales	9
269799	Geobacter metallireducens GS-15	
243231	Geobacter sulfurreducens PCA	
351605	Geobacter uraniumreducens Rf4	
316067	Geobacter sp. FRC-32	
443144	Geobacter sp. M21	
398767	Geobacter lovleyi SZ	
338966	Pelobacter propionicus DSM 2379	
338963	Pelobacter carbinolicus str. DSM 2380	
281689	Desulfuromonas acetoxidans DSM 684	

¹ Taxonomic collections are according to the standartized genomic collections in the RegPrecise database.

TF	Genome	Reference
ArgR	Escherichia coli	(Tian et al., 1992;Caldara et al., 2007;Paul et al., 2007;Cho et al., 2015)
	Salmonella typhimurium	(Lu and Abdelal, 1999)
BioR	Brucella melitensis	(Feng et al., 2013)
	Paracoccus denitrificans	(Feng et al., 2015)
BirA	Escherichia coli	(Bower et al., 1995;Xu et al., 1995)
FabR	Escherichia coli	(Zhang et al., 2002;Fujita et al., 2007)
FadR	Escherichia coli	(DiRusso et al., 1992;Fujita et al., 2007)
GlcC	Escherichia coli	(Pellicer et al., 1999)
HexR	Shewanella oneidensis	(Leyn et al., 2011)
	Pseudomonas putida	(del Castillo et al., 2008;Daddaoua et al., 2009)
HmgR	Pseudomonas putida	(Arias-Barrau et al., 2004)
HutC	Salmonella typhimurium	(Hagen et al., 1975)
HypR	Sinorhizobium meliloti	(White et al., 2012)
LldR	Pseudomonas aeruginosa	(Gao et al., 2012)
	Escherichia coli	(Aguilera et al., 2008)
MetJ	Escherichia coli	(Merlin et al., 2002)
MetR	Escherichia coli	(Cai et al., 1989)
	Vibrio cholerae	(Bogard et al., 2012)
NadR	Salmonella typhimurium	(Foster et al., 1990)
NagC	Escherichia coli	(Plumbridge, 1995; 2001)
NagQ	Xanthomonas campestris	(Boulanger et al., 2010)
NagR	Xanthomonas campestris	(Boulanger et al., 2010)
	Shewanella oneidensis	(Rodionov et al., 2011)
NrdR	Escherichia coli	(Torrents et al., 2007)
	Salmonella typhimurium	(Panosa et al., 2010)
	Pseudomonas aeruginosa	(Crespo et al., 2015)
NrtR	Shewanella oneidensis	(Rodionov et al., 2008)
NtrC	Escherichia coli	(Muse and Bender, 1998;Zimmer et al., 2000)
PdhR	Escherichia coli	(Quail and Guest, 1995;Ogasawara et al., 2007)
PsrA	Pseudomonas putida	(Kojic et al., 2002;Fonseca et al., 2014)
	Pseudomonas aeruginosa	(Kang et al., 2009)
RutR	Escherichia coli	(Shimada et al., 2007;Nguyen Ple et al., 2010;Nguyen Le Minh et al., 2015)
SahR	Desulfovibrio alaskensis	(Novichkov et al., 2014)
TrpR	Escherichia coli	(Czernik et al., 1994;Jeeves et al., 1999)
TyrR	Escherichia coli	(Camakaris and Pittard, 1982;Yang et al., 2002), (Yang et al., 2004;Pittard et al., 2005)
TyrR	Enterobacter cloacae	(Coulson and Patten, 2015)
TyrR	Citrobacter freundii	(Smith and Somerville, 1997)
PhhR	Pseudomonas aeruginosa	(Palmer et al., 2010)
PhhR	Pseudomonas putida	(Herrera et al., 2009;Herrera et al., 2010)

Table S2. Examples of experimentally studied TFs analyzed in this work.

References:

- Aguilera, L., Campos, E., Gimenez, R., Badia, J., Aguilar, J., and Baldoma, L. (2008). Dual role of LldR in regulation of the IldPRD operon, involved in L-lactate metabolism in Escherichia coli. *J Bacteriol* 190, 2997-3005.
- Arias-Barrau, E., Olivera, E.R., Luengo, J.M., Fernandez, C., Galan, B., Garcia, J.L., Diaz, E., and Minambres, B. (2004). The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. *J Bacteriol* 186, 5062-5077.
- Bogard, R.W., Davies, B.W., and Mekalanos, J.J. (2012). MetR-regulated Vibrio cholerae metabolism is required for virulence. *MBio* 3.
- Boulanger, A., Dejean, G., Lautier, M., Glories, M., Zischek, C., Arlat, M., and Lauber, E. (2010). Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. *J Bacteriol* 192, 1487-1497.
- Bower, S., Perkins, J., Yocum, R.R., Serror, P., Sorokin, A., Rahaim, P., Howitt, C.L., Prasad, N., Ehrlich, S.D., and Pero, J. (1995). Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. *J Bacteriol* 177, 2572-2575.
- Cai, X.Y., Maxon, M.E., Redfield, B., Glass, R., Brot, N., and Weissbach, H. (1989). Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. *Proc Natl Acad Sci U S A* 86, 4407-4411.
- Caldara, M., Minh, P.N., Bostoen, S., Massant, J., and Charlier, D. (2007). ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. *J Mol Biol* 373, 251-267.
- Camakaris, H., and Pittard, J. (1982). Autoregulation of the tyrR gene. J Bacteriol 150, 70-75.
- Cho, S., Cho, Y.B., Kang, T.J., Kim, S.C., Palsson, B., and Cho, B.K. (2015). The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. *Nucleic Acids Res* 43, 3079-3088.
- Coulson, T.J., and Patten, C.L. (2015). The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. *PLoS One* 10, e0121241.
- Crespo, A., Pedraz, L., and Torrents, E. (2015). Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression. *PLoS One* 10, e0123571.
- Czernik, P.J., Shin, D.S., and Hurlburt, B.K. (1994). Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. *J Biol Chem* 269, 27869-27875.
- Daddaoua, A., Krell, T., and Ramos, J.L. (2009). Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. *J Biol Chem* 284, 21360-21368.
- Del Castillo, T., Duque, E., and Ramos, J.L. (2008). A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. *J Bacteriol* 190, 2331-2339.
- Dirusso, C.C., Heimert, T.L., and Metzger, A.K. (1992). Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. *J Biol Chem* 267, 8685-8691.
- Feng, Y., Kumar, R., Ravcheev, D.A., and Zhang, H. (2015). Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism. *Microbiologyopen* 4, 644-659.
- Feng, Y., Xu, J., Zhang, H., Chen, Z., and Srinivas, S. (2013). Brucella BioR regulator defines a complex regulatory mechanism for bacterial biotin metabolism. *J Bacteriol* 195, 3451-3467.
- Fonseca, P., De La Pena, F., and Prieto, M.A. (2014). A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. *Int J Biol Macromol* 71, 14-20.
- Foster, J.W., Park, Y.K., Penfound, T., Fenger, T., and Spector, M.P. (1990). Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J Bacteriol 172, 4187-4196.

- Fujita, Y., Matsuoka, H., and Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. *Mol Microbiol* 66, 829-839.
- Gao, C., Hu, C., Zheng, Z., Ma, C., Jiang, T., Dou, P., Zhang, W., Che, B., Wang, Y., Lv, M., and Xu, P. (2012).
 Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol 194, 2687-2692.
- Hagen, D.C., Gerson, S.L., and Magasanik, B. (1975). Isolation of super-repressor mutants in the histidine utilization system of Salmonella typhimurium. *J Bacteriol* 121, 583-593.
- Herrera, M.C., Duque, E., Rodriguez-Herva, J.J., Fernandez-Escamilla, A.M., and Ramos, J.L. (2010). Identification and characterization of the PhhR regulon in Pseudomonas putida. *Environ Microbiol* 12, 1427-1438.
- Herrera, M.C., Krell, T., Zhang, X., and Ramos, J.L. (2009). PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. *J Mol Biol* 394, 576-586.
- Jeeves, M., Evans, P.D., Parslow, R.A., Jaseja, M., and Hyde, E.I. (1999). Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. *Eur J Biochem* 265, 919-928.
- Kang, Y., Lunin, V.V., Skarina, T., Savchenko, A., Schurr, M.J., and Hoang, T.T. (2009). The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. *Mol Microbiol* 73, 120-136.
- Kojic, M., Aguilar, C., and Venturi, V. (2002). TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. *J Bacteriol* 184, 2324-2330.
- Leyn, S.A., Li, X., Zheng, Q., Novichkov, P.S., Reed, S., Romine, M.F., Fredrickson, J.K., Yang, C., Osterman, A.L., and Rodionov, D.A. (2011). Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis. *J Biol Chem* 286, 35782-35794.
- Lu, C.D., and Abdelal, A.T. (1999). Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. *J Bacteriol* 181, 1934-1938.
- Merlin, C., Gardiner, G., Durand, S., and Masters, M. (2002). The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). *J Bacteriol* 184, 5513-5517.
- Muse, W.B., and Bender, R.A. (1998). The nac (nitrogen assimilation control) gene from Escherichia coli. *J* Bacteriol 180, 1166-1173.
- Nguyen Le Minh, P., De Cima, S., Bervoets, I., Maes, D., Rubio, V., and Charlier, D. (2015). Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli. *FEBS Open Bio* 5, 76-84.
- Nguyen Ple, M., Bervoets, I., Maes, D., and Charlier, D. (2010). The protein-DNA contacts in RutR*carAB operator complexes. *Nucleic Acids Res* 38, 6286-6300.
- Novichkov, P.S., Li, X., Kuehl, J.V., Deutschbauer, A.M., Arkin, A.P., Price, M.N., and Rodionov, D.A. (2014). Control of methionine metabolism by the SahR transcriptional regulator in Proteobacteria. *Environ Microbiol* 16, 1-8.
- Ogasawara, H., Ishida, Y., Yamada, K., Yamamoto, K., and Ishihama, A. (2007). PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. *J Bacteriol* 189, 5534-5541.
- Palmer, G.C., Palmer, K.L., Jorth, P.A., and Whiteley, M. (2010). Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. *J Bacteriol* 192, 2722-2728.
- Panosa, A., Roca, I., and Gibert, I. (2010). Ribonucleotide reductases of Salmonella typhimurium: transcriptional regulation and differential role in pathogenesis. *PLoS One* 5, e11328.
- Paul, L., Mishra, P.K., Blumenthal, R.M., and Matthews, R.G. (2007). Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. *BMC Microbiol* 7, 2.
- Pellicer, M.T., Fernandez, C., Badia, J., Aguilar, J., Lin, E.C., and Baldom, L. (1999). Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. *J Biol Chem* 274, 1745-1752.

Pittard, J., Camakaris, H., and Yang, J. (2005). The TyrR regulon. Mol Microbiol 55, 16-26.

Plumbridge, J. (1995). Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. *EMBO J* 14, 3958-3965.

- Plumbridge, J. (2001). DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the Nacetylglucosamine-specific transporter in Escherichia coli. *Nucleic Acids Res* 29, 506-514.
- Quail, M.A., and Guest, J.R. (1995). Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli. *Mol Microbiol* 15, 519-529.
- Rodionov, D.A., De Ingeniis, J., Mancini, C., Cimadamore, F., Zhang, H., Osterman, A.L., and Raffaelli, N. (2008). Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. *Nucleic Acids Res* 36, 2047-2059.
- Rodionov, D.A., Novichkov, P.S., Stavrovskaya, E.D., Rodionova, I.A., Li, X., Kazanov, M.D., Ravcheev, D.A., Gerasimova, A.V., Kazakov, A.E., Kovaleva, G.Y., Permina, E.A., Laikova, O.N., Overbeek, R., Romine, M.F., Fredrickson, J.K., Arkin, A.P., Dubchak, I., Osterman, A.L., and Gelfand, M.S. (2011).
 Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. *BMC Genomics* 12 Suppl 1, S3.
- Shimada, T., Hirao, K., Kori, A., Yamamoto, K., and Ishihama, A. (2007). RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. *Mol Microbiol* 66, 744-757.
- Smith, H.Q., and Somerville, R.L. (1997). The tpl promoter of Citrobacter freundii is activated by the TyrR protein. *J Bacteriol* 179, 5914-5921.
- Tian, G., Lim, D., Carey, J., and Maas, W.K. (1992). Binding of the arginine repressor of Escherichia coli K12 to its operator sites. *J Mol Biol* 226, 387-397.
- Torrents, E., Grinberg, I., Gorovitz-Harris, B., Lundstrom, H., Borovok, I., Aharonowitz, Y., Sjoberg, B.M., and Cohen, G. (2007). NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. *J Bacteriol* 189, 5012-5021.
- White, C.E., Gavina, J.M., Morton, R., Britz-Mckibbin, P., and Finan, T.M. (2012). Control of hydroxyproline catabolism in Sinorhizobium meliloti. *Mol Microbiol* 85, 1133-1147.
- Xu, Y., Nenortas, E., and Beckett, D. (1995). Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis. *Biochemistry* 34, 16624-16631.
- Yang, J., Camakaris, H., and Pittard, J. (2002). Molecular analysis of tyrosine-and phenylalanine-mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli. *Mol Microbiol* 45, 1407-1419.
- Yang, J., Hwang, J.S., Camakaris, H., Irawaty, W., Ishihama, A., and Pittard, J. (2004). Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. *Mol Microbiol* 52, 243-256.
- Zhang, Y.M., Marrakchi, H., and Rock, C.O. (2002). The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. *J Biol Chem* 277, 15558-15565.
- Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., Bender, R.A., and Kustu, S. (2000). Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. *Proc Natl Acad Sci U S A* 97, 14674-14679.

Table S3. Reconstructed regulatory interactions and functional annotations for the analyzed TF regulons of Proteobacteria.

Regulon	Target gene	RI ¹	Taxa ²	Functional role	Metabolic pathway / Biological process
ArgR	argH	57	6	Argininosuccinate lyase (EC 4.3.2.1)	Arginine biosynthesis
ArgR	argB	54	6	Acetylglutamate kinase (EC 2.7.2.8)	Arginine biosynthesis
ArgR	argC	53	6	N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38)	Arginine biosynthesis
ArgR	argG	52	5	Argininosuccinate synthase (EC 6.3.4.5)	Arginine biosynthesis
ArgR	argF	52	5	Ornithine carbamoyltransferase (EC 2.1.3.3)	Arginine biosynthesis
ArgR	argA	51	6	N-acetylglutamate synthase (EC 2.3.1.1)	Arginine biosynthesis
ArgR	argR	48	5	Arginine biosynthesis transcription regulator ArgR, ArgR family	Arginine biosynthesis
ArgR	argE	42	6	Acetylornithine deacetylase (EC 3.5.1.16)	Arginine biosynthesis
ArgR	artl	41	5	Arginine ABC transporter, substrate-binding protein	Arginine transport
ArgR	artQ	39	5	Arginine ABC transporter, permease protein 1	Arginine transport
ArgR	artM	39	5	Arginine ABC transporter, permease protein 2	Arginine transport
ArgR	astD	37	4	Succinylglutamic semialdehyde dehydrogenase (EC 1.2.1.71)	Arginine degradation
ArgR	astA	37	4	Arginine N-succinyltransferase (EC 2.3.1.109)	Arginine degradation
				Acetylornithine aminotransferase (FC 2.6.1.11) / N-succinyl-L.L-diaminopimelate	
ArgR	astC	31	3	aminotransferase (EC 2.6.1.17) / Succinylornithine transaminase (EC 2.6.1.81)	Arginine degradation
ArgR	astB	21	2	Succinylarginine dihydrolase (EC 3.5.3.23)	Arginine degradation
ArgR	artP	28	4	Arginine ABC transporter, ATP-binding protein	Arginine transport
ArgR	carA	25	4	Carbamoyl-phosphate synthase small chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
ArgR	carB	24	4	Carbamoyl-phosphate synthase large chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
ArgR	argD	22	3	Acetylornithine aminotransferase (EC 2.6.1.11)	Arginine biosynthesis
ArgR	gltB	34	3	Glutamate synthase [NADPH] large chain (EC 1.4.1.13)	Glutamate biosynthesis
ArgR	gltD	33	3	Glutamate synthase [NADPH] small chain (EC 1.4.1.13)	Glutamate biosynthesis
ArgR	argW	17	2	Predicted arginine uptake transporter, COG3314 family	Arginine transport
ArgR	SO0620	15	1	Conserved hypothetical protein	
ArgR	ilvM	14	1	Acetolactate synthase small subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
ArgR	SO3392	14	1	NADH-dependent flavin oxidoreductase, Oye family	
ArgR	ilvG	14	1	Acetolactate synthase large subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
ArgR	ilvD	14	1	Dihydroxy-acid dehydratase (EC 4.2.1.9)	Branched-chain amino acid biosynthesis
ArgR	ilvA	14	1	Threonine dehydratase biosynthetic (EC 4.3.1.19)	Branched-chain amino acid biosynthesis
ArgR	artJ	10	1	arginine ABC transporter, substrate-binding protein	Arginine transport
ArgR	yfcH	7	1	Conserved hypothetical protein	
ArgR	omp	14	1	TonB-dependent outer membrane transporter	Arginine transport ?
ArgR	oadA	12	1	Oxaloacetate decarboxylase, alpha chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	oadB	12	1	Oxaloacetate decarboxylase, beta chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	oadG	12	1	Oxaloacetate decarboxylase gamma chain (EC 4.1.1.3)	Pyruvate metabolism
ArgR	potF	12	1	Putrescine ABC transporter, substrate-binding protein (TC 3.A.1.11.2)	Putrescine transport
ArgR	potG	12	1	Putrescine ABC transporter, ATP-binding protein (TC 3.A.1.11.2)	Putrescine transport
ArgR	potH	12	1	Putrescine ABC transporter, permease protein 1 (TC 3.A.1.11.2)	Putrescine transport
ArgR	potl	12	1	Putrescine ABC transporter, permease protein 2 (TC 3.A.1.11.2)	Putrescine transport
ArgR	recN	12	1	DNA repair protein RecN	DNA repair
ArgR	aprE	11	1	Alkaline serine protease	
ArgR	SO0762	10	1	Isochorismate hydrolase (EC 3.3.2.1)	
ArgR	astE	7	2	succinylglutamate desuccinylase	Arginine degradation
ArgR	SO2753	9	1	Prolyl endopeptidase (EC 3.4.21.26)	
ArgR	arcA	5	1	Arginine deiminase (EC 3.5.3.6)	Arginine degradation
ArgR	arcB	1	1	Ornithine carbamoyltransferase (EC 2.1.3.3), catabolic	Arginine degradation
ArgR	arcC	1	1	Carbamate kinase (EC 2.7.2.2)	Arginine degradation

ArgR	arcD	1	1	Arginine/ornithine antiporter	Arginine degradation
ArgR	hisJ	6	1	histidine ABC transporter, substrate-binding protein	Histidine transport
ArgR	hisM	6	1	histidine ABC transporter, inner membrane permease	Histidine transport
ArgR	hisP	6	1	histidine ABC transporter, ATP-binding protein	Histidine transport
ArgR	hisQ	6	1	histidine ABC transporter, permease protein	Histidine transport
ArgR	potE	8	1	Putrescine/ornithine antiporter	Putrescine transport
ArgR	proV	3	1	Glycine betaine/L-proline ABC transporter, ATP-binding protein	Proline transport
ArgR	proW	3	1	Glycine betaine/L-proline ABC transporter, permease protein	Proline transport
ArgR	proX	3	1	Glycine betaine/L-proline ABC transporter, substrate-binding protein	Proline transport
ArgR	SO0312	8	1	Predicted outer membrane porin	
ArgR	ggt2	7	1	Gamma-glutamyltranspeptidase (EC 2.3.2.2)	Glutathione metabolism
ArgR	SO4732	7	1	Conserved hypothetical protein	
ArgR	тср	6	1	Methyl-accepting chemotaxis protein	
ArgR	aprE2	5	1	Cold-active alkaline serine protease (EC 3.4.21.62)	
ArgR	ilvE	5	1	Branched-chain amino acid aminotransferase (EC 2.6.1.42)	Branched-chain amino acid biosynthesis
ArgR	ECA3537	3	1	amino acid-binding protein	
ArgR	ECA3538	3	1	polar amino acid ABC transporter, inner membrane subunit	
ArgR	ECA3539	3	1	amino acid ABC transporter, ATP-binding protein	
				Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase (EC	
ArgR	hisA	4	1	5.3.1.16) Histidinol-phosphatase (EC 3.1.3.15) / Imidazolegivcerol-phosphate dehvdratase (EC	Histidine biosynthesis
ArgR	hisB	4	1	4.2.1.19)	Histidine biosynthesis
ArgR	hisC	4	1	Histidinol-phosphate aminotransferase (EC 2.6.1.9)	Histidine biosynthesis
ArgR	hisD	4	1	Histidinol dehydrogenase (EC 1.1.1.23)	Histidine biosynthesis
ArgR	hisF	4	1	Imidazole glycerol phosphate synthase cyclase subunit (EC 4.1.3)	Histidine biosynthesis
ArgR	hisG	4	1	ATP phosphoribosyltransferase (EC 2.4.2.17)	Histidine biosynthesis
ArgR	hisH	4	1	lmidazole glycerol phosphate synthase amidotransferase subunit (EC 2.4.2) Phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) / Phosphoribosyl-ATP pyrophosphatase	Histidine biosynthesis
ArgR	hisl	4	1	(EC 3.6.1.31)	Histidine biosynthesis
ArgR	pbpG	4	1	D-alanyl-D-alanine endopeptidase	
ArgR	Swoo_0949	4	1	Peptidase U32	
ArgR	ybgH	3	1	amino acid/peptide transporter	
ArgR	SO1443	3	1	Conserved hypothetical protein	
ArgR	SO1915	3	1	Serine protease, subtilase family	
ArgR	SO2306	3	1	Cell division protein FtsK	
ArgR	marC	1	1	Membrane protein, MarC family	
ArgR	speF	1	1	Ornithine decarboxylase (EC 4.1.1.17)	Putrescine metabolism
BioR	bioB	12	2	Biotin synthase (EC 2.8.1.6)	Biotin biosynthesis
BioR	bioR	10	2	Biotin metabolism regulatory protein BioR, GntR family	Transcription regulation
BioR	bioY	8	2	Substrate-specific component BioY of biotin ECF transporter	Biotin transport
BioR	bioF	7	2	8-amino-7-oxononanoate synthase (EC 2.3.1.47)	Biotin biosynthesis
BioR	bioD	7	2	Dethiobiotin synthetase (EC 6.3.3.3)	Biotin biosynthesis
BioR	bioA	7	2	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase (EC 2.6.1.62)	Biotin biosynthesis
BioR	bioZ	3	1	Biotin synthesis protein bioZ	Biotin biosynthesis
BioR	bioM	1	1	ATPase component BioM of energizing module of biotin ECF transporter	Biotin transport
BioR	bioG	1	1	Biotin synthesis protein bioG	Biotin biosynthesis
BioR	bioN	1	1	Transmembrane component BioN of energizing module of biotin ECF transporter	Biotin transport
BioR	bioC	1	1	Biotin synthesis protein bioC	Biotin biosynthesis
BioR	panD	1	1	aspartate alpha-decarboxylase	Pantothenate biosynthesis
BirA	bioB	93	11	Biotin synthase (EC 2.8.1.6)	Biotin biosynthesis
BirA	bioF	86	11	8-amino-7-oxononanoate synthase (EC 2.3.1.47)	Biotin biosynthesis

BirA	bioD	83	10	Dethiobiotin synthetase (EC 6.3.3.3)	Biotin biosynthesis
BirA	bioC	84	10	Biotin synthesis protein bioC	Biotin biosynthesis
BirA	bioA	65	8	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase (EC 2.6.1.62)	Biotin biosynthesis
BirA	bioH	33	5	Biotin synthesis protein bioH	Biotin biosynthesis
BirA	COG1040	23	4	competence protein F	
BirA	fabF	3	1	3-oxoacyl-[acyl-carrier-protein] synthase, KASII (EC 2.3.1.41)	Fatty acid biosynthesis
BirA	birA	3	1	Biotin-protein ligase (EC 6.3.4.15) / Biotin operon repressor	Transcription regulation
BirA	fabG	3	1	3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)	Fatty acid biosynthesis
BirA	DVU2560	3	1	conserved domain protein	
BirA	acpP	3	1	acyl carrier protein, putative	
BirA	Dde_2651	2	1	hypothetical thioesterase domain protein	
BirA	XAC0384	2	1	putative short chain dehydrogenase	
BirA	XAC0386	2	1	hypothetical protein	
BirA	bioHC	3	1	Biotin synthesis protein BioH / Biotin synthesis protein BioC	Biotin biosynthesis
BirA	yigM	3	1	Predicted biotin transporter YigM	Biotin transport
BirA	CV3478	1	1	Phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17)	Phosphatidylcholine biosynthesis
BirA	bioW	1	1	Pimeloyl-CoA synthase (EC 6.2.1.14)	Biotin biosynthesis
FabR	fabA	62	8	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60)	Fatty acid biosynthesis
FabR	hylll	30	6	COG1272: Predicted membrane protein hemolysin III homolog	Fatty acid metabolism
FabR	OLE1	38	5	Fatty acid desaturase (EC 1.14.19.1)	Unsaturated fatty acid biosynthesis
FabR	plsC	30	6	1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51)	Glycerolipid metabolism
FabR	desB	13	6	Acyl-CoA delta-9-desaturase, DesB	Unsaturated fatty acid biosynthesis
FabR	desC	13	6	Flavodoxin reductases (ferredoxin-NADPH reductases) family 1	Unsaturated fatty acid biosynthesis
FabR	lcfH	25	5	putative long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid biosynthesis
FabR	fabR	26	3	Unsaturated fatty acid biosythesis repressor FabR, TetR family	Transcription regulation
FabR	fadL	25	3	Long-chain fatty acid transport protein	Fatty acid biosynthesis
FabR	fabR2	5	2	Unsaturated fatty acid biosythesis repressor FabR, TetR family	Transcription regulation
FabR	fabB	20	4	3-oxoacyl-[acyl-carrier-protein] synthase, KASI (EC 2.3.1.41)	Fatty acid biosynthesis
FabR	rraB	17	2	Ribonuclease E inhibitor RraB	
FabR	IcfE	16	1	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid biosynthesis
FabR	hylll	17	2	COG1272: Predicted membrane protein hemolysin III homolog	
FabR	Maqu_3149	2	1	AraC family transcriptional regulator	Transcription regulation
FabR	pfaA	7	2	omega-3 polyunsaturated fatty acid synthase subunit, PfaA	Unsaturated fatty acid biosynthesis
FabR	pfaB	7	2	omega-3 polyunsaturated fatty acid synthase subunit, PfaB	Unsaturated fatty acid biosynthesis
FabR	COG2030	6	1	Putative acyl dehydratase, COG2030	
FabR	pfaR	6	1	transcriptional regulator for synthesis of eicosapentaenoic acid, PfaR	Transcription regulation
FabR	pfaC	6	1	omega-3 polyunsaturated fatty acid synthase subunit, PfaC	Unsaturated fatty acid biosynthesis
FabR	desA	1	1	Fatty acid desaturase (EC 1.14.99)	Unsaturated fatty acid biosynthesis
FabR	fadE3	5	1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
FabR	pfaD	4	1	Enoyl-[acyl-carrier-protein] reductase [FMN] (EC 1.3.1.9), inferred for PFA pathway	Fatty acid biosynthesis
FabR	psrA	2	1	Predicted transcriptional regulator for fatty acid degradation PsrA, TetR family	Unsaturated fatty acid biosynthesis
FabR	fadE	1	1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
FabR	COG2072	3	2	probable flavin-containing monooxygenase, COG2072	
FabR	COG0300	2	1	probable short-chain dehydrogenase, COG0300	
FadP	fadP	24	3	Predicted transcriptional regulator for fatty acid degradation FadP, TetR family	Transcription regulation
FadP	etfA	23	3	Electron transfer flavoprotein alpha subunit	Electron transfer chain for fatty acid degradation
FadP	etfB	23	3	Electron transfer flavoprotein, beta subunit	Electron transfer chain for fatty acid degradation
FadP	acdH	23	3	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
FadP	fadA	22	3	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	Fatty acid degradation

				Enoyl-CoA hydratase (EC 4.2.1.17) / Delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase (EC	
FadP	fadB	22	3	epimerase (EC 5.1.2.3)	Fatty acid degradation
	1000		5	Enoyl-CoA hydratase (EC 4.2.1.17) / 3,2-trans-enoyl-CoA isomerase (EC 5.3.3.8) / 3-	
FadP	acdB	22	3	hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	Fatty acid degradation
FadP	acdA	22	3	3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	Fatty acid degradation
FadP	etfD	21	3	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	Electron transfer chain for fatty acid degradation
FadP	acdH2	20	3	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
FadP	echH	19	3	Enoyl-CoA hydratase (EC 4.2.1.17)	Fatty acid degradation
FadP	acdP	18	3	acyl-CoA dehydrogenase domain protein	Fatty acid degradation
FadP	acdQ	18	3	Acyl-CoA dehydrogenase (EC 1.3.99)	Fatty acid degradation
FadP	fadD1	13	2	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
FadP	maoC	13	2	Putative (R)-specific enoyl-CoA hydratase, MaoC- like	
FadP	echl	13	2	MaoC domain protein dehydratase	
FadP	pncA	13	2	Nicotinamidase (EC 3.5.1.19)	Nicotinate biosynthesis
FadP	fadD2	11	2	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
FadP	nppD	11	2	2-nitropropane dioxygenase NPD	
FadP	acdH3	12	3	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
FadP	paaG4	7	2	Enoyl-CoA hydratase (EC 4.2.1.17)	Fatty acid degradation
FadP	paaH1	7	2	3-hydroxybutyryl-CoA dehydrogenase, phenylacetic acid degradation	Fatty acid degradation
FadP	RSc1638	6	1	hypothetical protein	, .
FadP	BPSL1235	6	1	Phosphotransferase enzyme family protein	
FadP	bktB	6	1	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	Fatty acid degradation
FadP	alkK	6	1	Medium-chain-fatty-acid-CoA ligase	Fatty acid degradation
FadP	Rsc1773	6	1	putative 4-hydroxybenzoyl-CoA thioesterase	,
FadP	RSc1772	6	1	Alpha/beta hydrolase fold-3 domain protein	
FadP	RSc2046	6	1	conserved hypothetical protein, DUF1178	
FadP	RPSI 1236	5	1	Putative phosphoglycerate mutase	Glycolysis
	5. 521255	5	-		0.700.700
FadP	liuR	4	1	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	Transcription regulation
FadP	degV	4	1	conserved hypothetical protein, DegV family	
FadP	acsA	4	1	Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Acetyl-coenzyme A synthetase
FadP	h16_A1555	4	1	conserved hypothetical protein, UPF0065	
FadP	Rmet_0145	3	1	TesB-like acyl-CoA thioesterase 2	
FadP	paal	2	1	phenylacetic acid degradation protein Paal	Fatty acid degradation
FadP	Rsc1774	2	1	GCN5-related N-acetyltransferase	
FadP	acdH4	1	1	Acyl-CoA dehydrogenase domain protein	Fatty acid degradation
FadR	fadL	50	5	Long-chain fatty acid transport protein	Fatty acid degradation
FadR	fadl	47	5	FadI component of anaerobic fatty acid oxidation complex	Fatty acid degradation
FadR	fadJ	46	5	FadJ component of anaerobic fatty acid oxidation complex	Fatty acid degradation
FadR	fadE	38	4	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
FadR	fabA	26	3	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60)	Fatty acid biosynthesis
FadR	fadH	25	3	2,4-dienoyl-CoA reductase [NADPH] (EC 1.3.1.34)	Fatty acid degradation
FadR	fadB	24	3	fatty oxidation complex, alpha subunit FadB	Fatty acid degradation
FadR	fadA	24	3	fatty oxidation complex, beta subunit FadA	Fatty acid degradation
FadR	fadR	26	2	Transcriptional regulator for fatty acid degradation FadR, GntR family	Transcription regulation
FadR	fadE2	16	2	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
FadR	fabB	14	2	fatty oxidation complex, alpha subunit FadB	Fatty acid biosynthesis
FadR	fadD	13	2	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
FadR	SO0572	16	1	Enoyl-CoA hydratase (EC 4.2.1.17)	Fatty acid degradation
FadR	SO4716	13	1	Acetyltransferase, GNAT family	

FadR	plsB	8	1	Glycerol-3-phosphate acyltransferase (EC 2.3.1.15)	Glycerolipid metabolism
FadR	iclR	8	1	Acetate operon transcriptional repressor, IcIR family	Transcription regulation
FadR	fadM	8	1	Long-chain acyl-CoA thioesterase FadM (EC=3.1.2)	Fatty acid degradation
FadR	yebV	8	1	hypothetical protein	
FadR	VC2105	6	1	Thioesterase/thiol ester dehydrase-isomerase	
FadR	tesB	4	1	Acyl-CoA thioesterase	Fatty acid degradation
FadR	acdB	2	1	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
FadR	COG0596	1	1	Predicted hydrolase/acyltransferase	
GlcC	glcE	23	7	Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE	Glycolate utilization
GlcC	glcF	22	7	Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GlcF	Glycolate utilization
GlcC	glcD	21	7	Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD	Glycolate utilization
GlcC	glcC	22	6	Glycolate utilization operon transcriptional activator GlcC	Transcription regulation
GlcC	glcG	13	4	Hypothetical protein GlcG in glycolate utilization operon	Glycolate utilization
GlcC	glcB	8	3	Malate synthase G (EC 2.3.3.9)	Tricarboxylic acid cycle
GlcC	glcA	1	1	Glycolate permease	Glycolate transport
GlcC	lldD	4	1	L-lactate dehydrogenase (EC 1.1.2.3)	Lactate utilization
GlcC	mlr6914	4	1	uncharacterized conserved membrane protein	
GlcC	lvsR	3	1	Transcriptional regulator, LysR family, in glycolate utilization operon	Transcription regulation
GlcC	lldG	1	1	L-lactate dehydrogenase, subunit LldG	Lactate utilization
GlcC	lldE	1	1	L-lactate dehvdrogenase. Fe-S oxidoreductase subunit LldE	Lactate utilization
GleC	alcO	1	1	Predicted TRAP-type glycolate transport system, small permease component	Glycolate transport
GICC	glcM	1	1	Predicted TRAP-type glycolate transport system, large permease component	Glycolate transport
GICC	lidp	2	1	I-lactate nermease	Lactate utilization
GICC	lide	2	1	Lactate dehydrogenase. Iron-sulfur cluster-binding subunit LldF	
GICC	nur	1	1	Predicted TRAP-type glycolate transport system periplasmic component	Chicalete transport
GICC	BICH	1	1	hypothetical protein	Giycolate transport
GICC	NGR_C03940	1	1	Lastate debudregenase. En S ovideredustase subunit V/zE	
GICC	ykgE	1	1		Lactate utilization
GICC	ykgF	1	1	L-lactate dehydrogenase, fron-sunur cluster-binding subunit rkgr	Lactate utilization
GICC	ykgG	1	1	L-lactate denydrogenase, nypotnetical protein subunit YkgG	Lactate utilization
HexR	hexR	74	11	Central carbonydrate metabolism transcription regulator HexK, RpiR family	Transcription regulation
HexR	zwf	72	9	Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49)	Pentose phosphate pathway
HexR	edd	55	9	Phosphogluconate dehydratase (EC 4.2.1.12)	Entner-Doudoroff pathway
HexR	eda	53	9	AroA I alpha	Entner-Doudoroff pathway
HexR	pgl	53	8	6-phosphogluconolactonase (EC 3.1.1.31), eukaryotic type	Pentose phosphate pathway
HexR	glk	33	7	Glucokinase (EC 2.7.1.2)	Glycolysis
HexR	pykA	40	7	Pyruvate kinase (EC 2.7.1.40)	Glycolysis
HexR	gapA	28	5	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)	Glycolysis
HexR	pgi	31	5	Glucose-6-phosphate isomerase (EC 5.3.1.9)	Glycolysis
HexR	nnc	20	4	Phosphoenolpyruvate carboxylase (EC 4.1.1.31)	Glycolysis
HexR	tal	23	5	Transaldolase (EC 2.2.1.2)	Pentose phosphate pathway
HeyR	nnsA	20	3	Phosphoenolpyruvate synthase (EC 2.7.9.2)	Gluconeogenesis
HovR	aceB	25	3	Malate synthase (EC 2.3.3.9)	Tricarboxylic acid cycle
HovP	2000	23	1	Isocitrate Ivase (FC 4 1 3 1)	Tricarboxylic acid cycle
HovR	ganB	10	7	NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (FC 1 2 1 13)	Glycolysis
HevP	Rahp	13	э 2	Pyrilyate formate-lyase activating enzyme (FC 1 07 1 4)	Greenstation
Horp	puA acoE	10	с с	Pyrilyate dehydrogenase F1 component (FC 1.2.4.1)	
nexk	alet	10	2	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex (EC	ryi uvale melabolism
HexR	aceF	10	2	2.3.1.12)	Pyruvate metabolism
HexR	gpmM	12	2	2,3-bisphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.1)	Glycolysis
HexR	adhE	18	3	Alcohol dehydrogenase (EC 1.1.1.1)	Fermentation

HexR	pckA	10	4	Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49)	Gluconeogenesis
HexR	grcA	12	2	Autonomous glycyl radical cofactor	
HexR	gltD	12	2	Glutamate synthase [NADPH] small chain (EC 1.4.1.13)	Glutamate biosynthesis
HexR	gltB	12	2	Glutamate synthase [NADPH] large chain (EC 1.4.1.13)	Glutamate biosynthesis
HexR	aldE	7	4	Aldose 1-epimerase	Glycolysis
HexR	tpiA	11	2	Triosephosphate isomerase (EC 5.3.1.1)	Glycolysis
HexR	pntB	11	2	NAD(P) transhydrogenase subunit beta (EC 1.6.1.2)	NAD metabolism
HexR	ptsG	8	2	PTS system, glucose-specific IIB component (EC 2.7.1.69) / PTS system, glucose-specific IIC component (EC 2.7.1.69)	Glucose transport
HexR	mtlA	10	2	PTS system, mannitol-specific IIC component (EC 2.7.1.69) / PTS system, mannitol-specific IIB component (EC 2.7.1.69) / PTS system, mannitol-specific IIA component (EC 2.7.1.69)	Mannitol utilization
HexR	pntA	10	2	NAD(P) transhydrogenase alpha subunit (EC 1.6.1.2)	NAD metabolism
HexR	pflB	7	2	Pyruvate formate-lyase (EC 2.3.1.54)	Fermentation
HexR	mtlR	9	2	Mannitol operon repressor	Transcription regulation
HexR	ptsl	7	2	Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	Glucose transport
HexR	focA	7	2	Formate efflux transporter (TC 2.A.44 family)	Fermentation
HexR	ptsH	7	2	Phosphocarrier protein of PTS system	Glucose transport
HexR	mtlD	9	2	Mannitol-1-phosphate 5-dehydrogenase (EC 1.1.1.17)	Mannitol utilization
HexR	crr	7	2	PTS system, glucose-specific IIA component (EC 2.7.1.69)	Glucose transport
HexR	phk	16	1	Xylulose-5-phosphate phosphoketolase (EC 4.1.2.9)	Pentose phosphate pathway
HexR	hexR1	8	1	Central carbohydrate metabolism transcription regulator HexR, RpiR family	Transcription regulation
HexR	gapA2	16	1	glyceraldehyde-3-phosphate dehydrogenase, type I	Glycolysis
HexR	vbfA	10	1	Putative exported protein	
HexR	pepD	9	1	Aminoacyl-histidine dipeptidase (Peptidase D) (EC 3.4.13.3)	
HexR	deoD	14	1	Purine nucleoside phosphorylase (EC 2.4.2.1)	Nucleoside metabolism
HexR	end	14	1	6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44)	Pentose phosphate pathway
HexR	nqrD	14	1	NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein NqrD	Electron transport chain
HexR	nqrC	14	1	NADH:ubiquinone oxidoreductase, Na translocating, gamma subunit	Electron transport chain
		_		DNA hisding response regulator CND controls provide provide the entry of alugoes	
HexR	gitR	7	1	NAPUluking response regulator Gitx, controls specific points for the entry of glucose	Transcription regulation
HexR	nqrF	14	1	NADH:ubiquinone oxidoreductase, Na transiocating, beta subunit	Electron transport chain
HexR	nqrA	14	1	NADH:ubiquinone oxidoreductase, Na translocating, alpha subunit	Electron transport chain
HexR	deoA	14	1	Thymidine phosphorylase (EC 2.4.2.4)	Nucleoside metabolism
HexR	nqrE	14	1	NqrE	Electron transport chain
HexR	deoB	14	1	Phosphopentomutase (EC 5.4.2.7)	Nucleoside metabolism
HexR	nqrB	14	1	NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein NqrB	Electron transport chain
HovP	altS	7	1	Integral membrane sensor signal transduction histidine kinase (EC 2.7.13.3), glucose catabolism cluster	Transcription regulation
Hext	gits	,	1	Putative inner membrane protein	Transcription regulation
нехк	ygavv	8	1	Englace (EC 4.2.1.11)	Chreathrain
Hexn	eno	4	3	Aminomothyltransforase (dwcine cleavage system T protein) (EC 2.1.2.10)	
nexn	gcvi	12	1	Annonechyltransierase (giyene eleavage system i protein) (Ee 2.1.2.10)	Glychle cleavage system
HexR	gcvP	12	1	Glycine dehydrogenase [decarboxylating] (glycine cleavage system P protein) (EC 1.4.4.2)	Glycine cleavage system
HexR	nupC	12	1	nucleoside transporter, NupC family	Nucleoside metabolism
HexR	gcvH	12	1	Glycine cleavage system H protein	Glycine cleavage system
HexR	nirB	7	1	Nitrite reductase [NAD(P)H] large subunit (EC 1.7.1.4)	Nitrogen metabolism
HexR	nirD	7	1	Nitrite reductase [NAD(P)H] small subunit (EC 1.7.1.4)	Nitrogen metabolism
HexR	pta	4	1	Phosphate acetyltransferase (EC 2.3.1.8)	Fermentation
HexR	mgsA	2	1	Methylglyoxal synthase (EC 4.2.3.3)	Methylglyoxal metabolism
HexR	gltA	2	1	Citrate synthase (si) (EC 2.3.3.1)	Tricarboxylic acid cycle

HexR	ackA	4	1	Acetate kinase (EC 2.7.2.1)	Fermentation
HexR	PF00248	2	1	Putative aldo/keto reductase	
HexR	SO1118	10	1	hypothetical protein	
HexR	cdd	10	1	cytidine deaminase	Nucleoside metabolism
HexR	glgX	6	1	Glycogen debranching enzyme (EC 3.2.1)	Glycogen utilization
HexR	pgk	3	2	Phosphoglycerate kinase (EC 2.7.2.3)	Glycolysis
HexR	glgA	5	1	Glycogen synthase, ADP-glucose transglucosylase (EC 2.4.1.21)	Glycogen utilization
HexR	adhB	8	1	alcohol dehydrogenase II	Fermentation
HexR	ldhA	3	1	D-lactate dehydrogenase (EC 1.1.1.28)	Fermentation
HexR	gntU	1	1	Low-affinity gluconate/H+ symporter GntU	Gluconate utilization
HexR	glgC	5	1	Glucose-1-phosphate adenylyltransferase (EC 2.7.7.27)	Glycogen utilization
HexR	mglB	3	1	Galactose/methyl galactoside ABC transport system, D-galactose-binding periplasmic protein MglB (TC 3.A.1.2.3)	Galactose transport
HexR	mcn1	8	1	methyl-accepting chemotaxis protein	
nexit	mepi	0	-	······································	
HexR	ptsHI	1	1	PTS system, glucose-specific IIA component (EC 2.7.1.69) / Phosphocarrier protein of PTS system / Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	Glucose transport
HexR	gntK	1	1	Gluconokinase (EC 2.7.1.12)	Gluconate utilization
				Galactose/methyl galactoside ABC transport system, ATP-binding protein MgIA (EC	
HexR	mglA	3	1	3.6.3.17)	Galactose transport
HexR	mglC	3	1	Galactoside transport system permease protein mglC (TC 3.A.1.2.3)	Galactose transport
HexR	cpsA	2	1	Capsular polysaccharide synthesis enzyme CpsA, sugar transferase	
HexR	glgP	2	1	Glycogen phosphorylase (EC 2.4.1.1)	Glycogen utilization
HexR	prpB	1	1	Carboxyphosphonoenolpyruvate phosphonomutase (EC 2.7.8.23)	
HexR	oxIT	1	1	Putative oxalate:formate antiporter	Tricarboxylic acid cycle
HexR	ugpC	1	1	SN-glycerol-3-phosphate transport ATP-binding protein UgpC (TC 3.A.1.1.3)	Glycerol-3-phosphate transport
HexR	glpT	2	1	Glycerol-3-phosphate transporter	Glycerol-3-phosphate transport
HexR	pykF	1	1	Pyruvate kinase (EC 2.7.1.40)	Glycolysis
HexR	lctP	3	1	L-lactate permease	Lactate utilization
HexR	gapN	2	1	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9)	Glycolysis
HexR	fba	1	1	Fructose-bisphosphate aldolase class II (EC 4.1.2.13)	Glycolysis
HexR	manC	1	1	Mannose-1-phosphate guanylyltransferase (GDP) (EC 2.7.7.22)	Mannose utilization
HexR	bkdA2	1	1	Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4)	Branched-chain amino acid degradation
HexR	bkdB	1	1	Dihydrolipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex (EC 2.3.1.168)	Branched-chain amino acid degradation
				Deve shad also in a labor labor and dala adar anno 154 anno 154 also a labor a labor da 156 4 2 4 4	
HexR	DKdA1	1	1	Brancheu-chain alpha-keto aciu denyulogenase, El component, alpha subunit (ec 1.2.4.4,	Branched-chain amino acid degradation
HexR	nupC2	3	1	putative nucleoside transporter, hupe family	Nucleoside metabolism
HexR	mcp2	3	1	metnyl-accepting chemotaxis sensory transducer	
HexR	PST_3493	1	1		
HexR	dld	1	1	D-Lactate denydrogenase (EC 1.1.2.5)	Lactate utilization
HmgQ	hpd	16	2	4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	Tyrosine degradation
HmgQ	hmgA	14	1	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation
HmgQ	hmgB	1	1	Maleylacetoacetate isomerase (EC 5.2.1.2)	Tyrosine degradation
HmgQ	hmgC	1	1	Fumarylacetoacetase (EC 3.7.1.2)	Tyrosine degradation
HmgQ	gloA	1	1	Predicted homogentisate dioxygenase, GloA family	Tyrosine degradation
HmgQ	hmgQ	16	1	Tyrosine degradation transcriptional regulator, LysR family	Transcription regulation
HmgR	hpd	1	1	4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	Tyrosine degradation
HmgR	hmgA	5	1	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation
HmgR	hmgB	5	1	Maleylacetoacetate isomerase (EC 5.2.1.2)	Tyrosine degradation
HmgR	hmgC	5	1	Fumarylacetoacetase (EC 3.7.1.2)	Tyrosine degradation
HmgR	COG2814	3	1	Predicted tyrosine transporter, COG2814 family	Tyrosine transport

HmgR	hmgR	5	1	Tyrosine degradation transcriptional regulator, IcIR family	Transcription regulation
HmgS	hmgA	3	1	Homogentisate 1,2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation
HmgS	hmgB	3	1	Maleylacetoacetate isomerase (EC 5.2.1.2)	Tyrosine degradation
HmgS	hmgS	3	1	Tyrosine degradation transcriptional regulator, MarR family	Transcription regulation
HutC	hutU	106	18	Urocanate hydratase (EC 4.2.1.49)	Histidine degradation
HutC	hutH	108	18	Histidine ammonia-lyase (EC 4.3.1.3)	Histidine degradation
HutC	hutl	108	18	Imidazolonepropionase (EC 3.5.2.7)	Histidine degradation
HutC	hutC	103	17	Histidine utilization repressor, GntR family	Transcription regulation
HutC	hutF	59	13	Formiminoglutamic iminohydrolase (EC 3.5.3.13)	Histidine degradation
HutC	hutG	53	13	N-formylglutamate deformylase (EC 3.5.1.68)	Histidine degradation
HutC	hutD	41	11	Conserved hypothetical protein related to histidine degradation	Histidine degradation
HutC	hutG2	32	10	Formiminoglutamase (EC 3.5.3.8)	Histidine degradation
HutC	hisT	18	6	Histidine transport protein (permease)	Histidine transport
HutC	hutH2	14	6	Histidine ammonia-lyase (EC:4.3.1.3)	Histidine degradation
HutC	COG3314	6	5	Predicted histidine uptake transporter	Histidine transport
HutC	COG1457 (CodB)	11	5	Permease, cytosine/purines, uracil, thiamine, allantoin family protein	Transport
HutC	hutX	8	4	Histidine ABC transporter, histidine-binding protein (TC 3.A.1)	Histidine transport
HutC	hutW	8	4	Histidine ABC transporter, permease protein (TC 3.A.1)	Histidine transport
HutC	hutV	8	4	Histidine ABC transporter, ATP-binding protein (TC 3.A.1)	Histidine transport
HutC	COG834 (HisJ)	7	4	ABC amino acid transporter, periplasmic binding protein	Histidine transport
HutC	hisC	6	4	Histidinol-phosphate aminotransferase	Histidine biosynthesis
HutC	COG1126 (GlnQ)	4	3	ABC amino acid transporter, ATPase component	Histidine transport
HutC	COG765 (HisM)	5	3	ABC amino acid transporter, permease component	Histidine transport
HutC	hisX	13	3	Putative histidine ABC transporter, substrate binding protein	Histidine transport
HutC	hisY	13	3	Putative histidine ABC transporter, permease protein	Histidine transport
HutC	hisZ	13	3	Putative histidine ABC transporter, ATPase protein	Histidine transport
HutC	Caul_2357	3	2	Optional hypothetical component of omp transporter	Transport
HutC	omp	3	2	TonB-dependent outer membrane transporter	Histidine transport?
HutC	COG5285	4	2	Phytanoyl-CoA dioxygenase	
HutC	COG4160 (ArtM)	2	2	ABC amino acid transporter, permease component	Transport
HutC	COG277(GlcD)	2	2	FAD linked oxidase domain protein	
HutC	COG1125 (OpuBA)	2	2	ABC proline/glycine/betaine transporter, ATPase component	Transport
HutC	COG1174 (OpuBB)	2	2	ABC proline/glycine/betaine transporter, permease component	Transport
HutC	COG1732 (OpuBC)	2	2	ABC proline/glycine/betaine transporter, periplasmic binding domain	Transport
HutC	COG2423	2	2	Predicted ornithine cyclodeaminase, mu-crystallin homolog (EC 4.3.1.12)	
HutC	COG3221 (PhnD)	2	2	ABC phosphate/phosphonate transporter, periplasmic binding component	Transport
HutC	hisD	4	2	Histidinol dehydrogenase (EC 1.1.1.23)	Histidine biosynthesis
				Phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) / Phosphoribosyl-ATP pyrophosphatase	
HutC	hisl	2	1	(EC 3.6.1.31)	Histidine biosynthesis
HutC	hisG	2	1	ATP phosphoribosyltransferase (EC 2.4.2.17)	Histidine biosynthesis
HutC	hisF	2	1	Imidazole glycerol phosphate synthase cyclase subunit (EC 4.1.3)	Histidine biosynthesis
HutC	hisA	2	1	5.3.1.16)	Histidine biosynthesis
HutC	hisH	2	1	Imidazole glycerol phosphate synthase amidotransferase subunit (EC 2.4.2)	Histidine biosynthesis
				Histidinol-phosphatase (EC 3.1.3.15) / Imidazoleglycerol-phosphate dehydratase (EC	
HutC	hisB	2	1	4.2.1.19)	Histidine biosynthesis
HutC	COG2814 (AraJ)	4	1	Putative histidine permease, major facilitator superfamily	Histidine transport
HutC	hisP	4	1	Histidine ABC transporter, ATP-binding protein HisP (TC 3.A.1.3.1)	Histidine transport
HutC	hisP2	4	1	Histidine ABC transporter, ATP-binding protein HisP (TC 3.A.1.3.1)	Histidine transport
HutC	COG1960 (CaiA)	1	1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	
HutC	COG1804 (CaiB)	1	1	CAIB/BAIF family protein	

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18

11	hial2		1	Histidine ABC transporter, histidine-binding periplasmic protein precursor HisJ (TC	Listiding transport
Hutc	nisjz	4	1	S.R.I.S.I)	Histidine transport
HutC	nisiM	4	1	Histidine ABC transporter, permease protein histi (TC 3.A.1.3.1)	Histidine transport
HutC	hisM2	4	1	Histidine ABC transporter, permease protein histi (1C 5.A.1.5.1)	Histidine transport
HutC	hisQ	4	1	Histidine ABC transporter, permease protein hist (TC 3.A.1.3.1)	Histidine transport
HutC	hisQ2	4	1	Transariational resultator JoB family	Histidine transport
HutC	COG1414	3	1		
HutC	COG2855	1	1	Uncharacterized concerned nutative expected protein	
HutC	COG3181	1	1	Histidine ABC transporter, histidine-binding periplasmic protein precursor HisJ (TC	
HutC	hisJ	2	1	3.A.1.3.1)	Histidine transport
HutC	COG3842 (PotA)	1	1	ABC transporter, ATPase component	Transport
HutC	COG1176 (PotB)	1	1	ABC transporter, permease component	Transport
HutC	COG1177 (PotC)	1	1	ABC transporter, permease component	Transport
HutC	COG687 (PotD)	1	1	ABC transporter, periplasmic binding protein	Transport
HutC	COG1028 (FabG)	2	1	Short-chain alcohol dehydrogenase	
HutC	COG1063 (Tdh)	2	1	Zn-dependent dehydrogenase	
HutC	SMa0403	2	1	hypothetical protein	
HutC	COG596 (MhpC)	1	1	Putative hydrolases or acyltransferases (alpha/beta hydrolase superfamily)	
HypR	hypD	31	11	1-pyrroline-4-hydroxy-2-carboxylate deaminase (EC 3.5.4.22) # predicted	Hydroxyproline/proline degradation
HypR	hypR	32	10	Predicted regulator for proline and hydrohyproline utilization, GntR family	Transcription regulation
				D-amino acid dehydrogenase (EC 1.4.99.1) family protein in hydroxy-L-proline catabolic	
НурК	hypO	20	9	ciuster	Hydroxyproline/proline degradation
HypR	hypE	21	9	Proline racemase /4-nydroxyproline epimerase (EC 5.1.1.8)	Hydroxyproline/proline degradation
HypR	hypH	17	7	Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) # hydroxy-L-proline-inducible	Hydroxyproline/proline degradation
HypR	hypS	8	5	Putative L-lactate/Malate dehydrogenase	TCA cycle
HypR	hypY	9	4	Proline racemase /4-hydroxyproline epimerase (EC 5.1.1.8)	Hydroxyproline/proline degradation
HypR	COG2423	8	3	Predicted ornithine cyclodeaminase, mu-crystallin homolog	Proline degradation
HypR	hypP	4	3	Predicted hydroxyproline ABC transporter, permease protein	Hydroxyproline transport
HypR	hypM	4	3	Predicted hydroxyproline ABC transporter, substrate-binding protein	Hydroxyproline transport
HypR	hypN	4	3	Predicted hydroxyproline ABC transporter, permease protein	Hydroxyproline transport
HypR	hypQ	4	3	Predicted hydroxyproline ABC transporter, ATP-binding protein	Hydroxyproline transport
11 D	he way		2	Putative citrate/isocitrate isomerase or aconitase ## predicted from clustering to proline	TCA such
нурк	пурх	4	3	Proline dehydrogenase (EC 1.5.99.8) (Proline oxidase) / Delta-1-pyrroline-5-carboxylate	I CA CYCIE
HypR	putA	18	2	dehydrogenase (EC 1.5.1.12)	Proline degradation
HypR	prdP	8	2	Proline dipeptidase	Proline degradation
HypR	ampP	9	2	Xaa-Pro aminopeptidase (EC 3.4.11.9)	Proline degradation
HypR	omp	5	2	TonB-dependent receptor, collagen-binding surface protein	Proline transport?
HypR	colA2	9	2	Microbial collagenase, secreted (EC 3.4.24.3)	Collagen degradation
HypR	COG4663	2	1	TRAP-type C4-dicarboxylate transport system, periplasmic component	
HypR	COG3090	2	1	TRAP-type C4-dicarboxylate transport system, small permease component	
HypR	COG4664	2	1	TRAP-type C4-dicarboxylate transport system, large permease component	
HypR	hypD'	1	1	1-pyrroline-4-hydroxy-2-carboxylate deaminase (EC 3.5.4.22) # predicted	Hydroxyproline/proline degradation
HunD	bypH'	1	1	Ketoglutarate semialdehyde dehydrogenase (FC 1 2 1 26) # hydroxy-l -proline-inducible	Hydrowyproling/proling dogradation
турк	нурп	T	T	Putative ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) # hydroxy-L-proline-	riyoroxypronne/pronne degradation
HypR	hypH'-2	1	1	inducible	Hydroxyproline/proline degradation
HypR	EAM_2484	1	1	Oxidase	
HypR	COG446 (HcaD)	1	1	Putative oxidoreductase in 4-hydroxyproline catabolic gene cluster	
HypR	COG687 (PotD)	1	1	Probable binding protein component of ABC transporter	
HypR	VP1327	1	1	hypothetical protein	
HypR	COG2271 (UhpC)	1	1	Transporter, MFS superfamily	

IP: 195.218.8.18

HypR	hypT	1	1	Putative hydroxyproline transporter	Hydroxyproline transport
HypR	hypZ	1	1	OsmC/Ohr family protein	
HypR	COG531 (PotE)	1	1	Putative proline/hydroxyproline permease, PotE family	Hydroxyproline/proline transport
HypR	colA1	7	1	Microbial collagenase, secreted (EC 3.4.24.3)	Collagen degradation
HypR	pdtP	6	1	Predicted proline dipeptide/tripeptide permease, MFS family	Proline transport
HypR	ATW7_13133	1	1	hypothetical protein	
HypR	ypdF	1	1	Aminopeptidase YpdF (MP-, MA-, MS-, AP-, NP- specific)	Collagen degradation
HypR	hypA	1	1	Predicted hydroxyproline TRAP-type transport system, small permease component	Hydroxyproline transport
HypR	hypB	1	1	Predicted hydroxyproline TRAP-type transport system, large permease component	Hydroxyproline transport
HypR	hypC	1	1	Predicted hydroxyproline TRAP-type transport system, periplasmic component	Hydroxyproline transport
HypR	colA3	4	1	Microbial collagenase, secreted (EC 3.4.24.3)	Collagen degradation
HypR	omp2	1	1	TonB-dependent receptor	
LiuQ	liuD	14	3	Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4)	Branched_chain amino acid degradation
LiuQ	liuB	14	3	Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)	Branched_chain amino acid degradation
LiuQ	liuQ	12	3	Predicted branched-chain amino acid degradation regulator LiuQ, TetR family	Branched_chain amino acid degradation
LiuQ	liuA	11	3	Isovaleryl-CoA dehydrogenase (EC 1.3.99.10)	Branched_chain amino acid degradation
LiuQ	liuC	11	3	Methylglutaconyl-CoA hydratase (EC 4.2.1.18)	Branched_chain amino acid degradation
LiuQ	aacS	4	1	AMP-dependent synthetase and ligase	Branched_chain amino acid degradation
LiuQ	liuE	2	2	Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4)	Branched_chain amino acid degradation
LiuQ	ivd2	1	1	Isovaleryl-CoA dehydrogenase (EC 1.3.99.10)	Branched_chain amino acid degradation
LiuQ	liuQ2	1	1	Predicted transcriptional regulator LiuQ of leucine degradation pathway, TetR family	Transcription regulation
LiuQ	atuB	1	1	Short-chain dehydrogenase/reductase SDR	
LiuQ	liuQ1	1	1	Predicted transcriptional regulator LiuQ of leucine degradation pathway, TetR family	Transcription regulation
LiuQ	acsA	1	1	Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Acyl-coenzyme A synthetase
					Electron transfer chain for branched-chain amino acid
LiuR	etfA	49	10	Electron transfer flavoprotein, alpha subunit	degradation
LiuR LiuR	etfA etfB	49 48	10 9	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit	degradation Electron transfer chain for branched-chain amino acid degradation
LiuR LiuR LiuR	etfA etfB ivdA	49 48 54	10 9 10	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC	49 48 54 47	10 9 10 9	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA	49 48 54 47 65	10 9 10 9 11	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB	49 48 54 47 65 55	10 9 10 9 11 10	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC	49 48 54 47 65 55 54	10 9 10 9 11 10 10	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD	49 48 54 47 65 55 54 46	10 9 10 9 11 10 10 9	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE	49 48 54 47 65 55 54 46 49	10 9 10 9 11 10 10 9 9	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE	49 48 54 47 65 55 54 46 49 90	10 9 10 9 11 10 10 9 9 13	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR	49 48 54 47 65 55 54 46 49 90 1	10 9 10 9 11 10 9 9 13 1	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR aacS2 acdA2	 49 48 54 47 65 55 54 46 49 90 1 2 	 10 9 10 9 11 10 9 9 13 1 2 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuB liuC liuB aacS2 acdA3	 49 48 54 47 65 55 54 46 49 90 1 2 6 	 10 9 11 10 9 13 1 2 2 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR aacS2 acdA2 acdA3 acdB2	 49 48 54 47 65 55 54 46 49 90 1 2 6 1 	 10 9 11 10 9 9 13 1 2 1 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Enoyl-CoA hydratase (EC 4.2.1.17)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR aacS2 acdA2 acdA3 acdB2 acdB3	 49 48 54 47 65 54 46 49 90 1 2 6 1 1 1 	10 9 10 9 11 10 9 9 13 13 1 2 2 1 1	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuB liuC liuC liuC acdS2 acdA3 acdB3 acdB3 acdB4	 49 48 54 47 65 54 46 49 90 1 2 6 1 1 2 	 10 9 11 10 9 13 1 2 1 1 1 1 1 1 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) 5-ketoacyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuB liuC liuB liuC acdA3 acdB3 acdB4 acdB5	 49 48 54 47 65 54 46 49 90 1 2 6 1 1 2 1 1 2 1 	 10 9 11 10 9 13 1 2 1 1 1 1 1 1 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA darboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR aacS2 acdA3 acdB4 acdB4 acdB5 acdH3	 49 48 54 47 65 55 54 46 49 90 1 2 6 1 1 2 1 2 1 3 	 10 9 11 10 9 9 13 1 2 1 1 1 1 1 1 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation
LiuR LiuR LiuR LiuR LiuR LiuR LiuR LiuR	etfA etfB ivdA ivdC liuA liuB liuC liuD liuE liuR aacS2 acdA2 acdA3 acdB3 acdB4 acdB5 acdH3 acdH3	 49 48 54 47 65 54 46 49 90 1 2 6 1 1 2 1 3 1 	 10 9 11 10 9 13 1 2 1 1 1 1 1 1 1 1 	Electron transfer flavoprotein, alpha subunit Electron transfer flavoprotein, beta subunit Acetyl-CoA C-acyltransferase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12) Isovaleryl-CoA dehydrogenase (EC 1.3.99.10); Butyryl-CoA dehydrogenase (EC 1.3.99.2) Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4) Methylglutaconyl-CoA hydratase (EC 4.2.1.18) Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4) Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acidCoA ligase (EC 6.2.1.3) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Enoyl-CoA hydratase (EC 4.2.1.17) Enoyl-CoA hydratase (EC 4.2.1.17) Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2) Acyl-CoA dehydrogenase (EC 1.3.99.3)	degradation Electron transfer chain for branched-chain amino acid degradation Branched-chain amino acid degradation Branched-chain amino acid degradation

LiuR	aceA	1	1	isocitrate lyase	Tricarboxylic acid cycle
LiuR	acs	2	1	acyl-CoA synthase	Acyl-coenzyme A synthetase
LiuR	acsA	2	1	Acyl-coenzyme A synthetases/AMP-(fatty) acid ligases	Acyl-coenzyme A synthetase
LiuR	ahpD	2	1	alkylhydroperoxidase AhpD family core domain protein	
LiuR	badi	1	1	2-ketocyclohexanecarboxyl-CoA hydrolase (EC 4.1.3.36)	
LiuR	csgA	1	1	Short-chain dehydrogenase/reductase SDR(EC:1.1.1.184)	
LiuR	Daci_5984	1	1	Alpha/beta hydrolase fold (EC 3.8.1.5)	
LiuR	dcp	2	1	Peptidyl-dipeptidase dcp (EC 3.4.15.5)	
LiuR	ebA6516	1	1	Enoyl-CoA hydratase (EC 4.2.1.17)	Enoyl-CoA hydratase
LiuR	eftB	1	1	Electron transfer flavoprotein, beta subunit	Electron transfer chain for branched-chain amino acid degradation
LiuR	etfD1	1	1	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	Electron transfer chain for branched-chain amino acid degradation Electron transfer chain for branched-chain amino acid
LiuR	etfD2	1	1	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	degradation
LiuR	fabG	2	2	3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)	Fatty acid biosynthesis
LiuR	fadA	1	1	acetyl-CoA acyltransferase	Fatty acid degradation
LiuR	fadB	1	1	3-hydroxyacyl-CoA dehydrogenase	Fatty acid degradation
LiuR	fadL	1	1	Long-chain fatty acid transport protein	Fatty acid degradation
LiuR	for	1	1	Flavodoxin reductases (ferredoxin-NADPH reductases) family 1	
LiuR	h16 A0164	1	1	Metallo-beta-lactamase family protein	
LiuR	h16_A0171	1	1	Dehydrogenases with different specificities (related to short-chain alcohol dehydrogenases)	
LiuR	h16_A0173	1	1	2-Hydroxychromene-2-carboxylate isomerase	
LiuR	h16_A0174	1	1	Putative phosphatase YieH	
LiuR	h16_A0175	1	1	hypothetical protein	
LiuR	h16_A0176	1	1	Maleylacetoacetate isomerase (EC 5.2.1.2) / Glutathione S-transferase	
LiuR	h16_A0178	1	1	Dienelactone hydrolase or related enzyme	
LiuR	hit	3	1	Bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) (EC 3.6.1.17)	
LiuR	IL0880	2	1	Sensory box/GGDEF family protein	
LiuR	ivdA1	1	1	3-ketoacyl-CoA thiolase [isoleucine degradation] (EC 2.3.1.16)	Branched-chain amino acid degradation
LiuR	ivdA2	1	1	3-ketoacyl-CoA thiolase [isoleucine degradation] (EC 2.3.1.16)	Branched-chain amino acid degradation
LiuR	ivdB1	1	1	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched-chain amino acid degradation
LiuR	ivdB2	1	1	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched-chain amino acid degradation
LiuR	ivdC1	1	1	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	Branched-chain amino acid degradation
LiuR	ivdC2	1	1	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	Branched-chain amino acid degradation
LiuR	ivdD1	1	1	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched-chain amino acid degradation
LiuR	ivdD2	1	1	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched-chain amino acid degradation
LiuR	ivdE1	1	1	Enoyl-CoA hydratase [valine degradation] (EC 4.2.1.17) / Enoyl-CoA hydratase [isoleucine degradation] (EC 4.2.1.17)	Branched-chain amino acid degradation
LiuR	ivdE2	1	1	EnoyI-COA hydratase [value degradation] (EC 4.2.1.17) / EnoyI-CoA hydratase [isoleucine degradation] (EC 4.2.1.17)	Branched-chain amino acid degradation
LiuR	ivd61	1	1	3-hydroxyacyl-CoA dehydrogenase [isoleucine degradation] (EC 1.1.1.35)	Branched-chain amino acid degradation
Linb	ivdG2	1	1	3-hydroxyacyl-CoA dehydrogenase (isoleucine degradation) (FC 1 1 1 35)	Pranched chain amino acid degradation
Linb	lofA	1	1	I ong-chain-fatty-acidCoA ligase (EC 6 2 1 3)	
Ling	live	1	1	Branched-chain amino acid transport ATP-hinding protein LivE (TC 3 A 1 4 1)	Branched-chain amino acid transport
LiuR	livG	4	4	Branched-chain amino acid transport ATP-binding protein LivG (TC 3 A 1 4 1)	Branched-chain amino acid transport
Ling	live	4	4	Branched-chain amino acid transport permease protein Live (10 sharing)	Branched-chain amino acid transport
LIUN		-	+		oranoneu enam annito aciu transport
LiuR	livK	6	5	Branched-chain amino acid transport substrate-binding protein LivK (TC 3.A.1.4.1)	Branched-chain amino acid transport
LiuR	livM	4	4	Branched-chain amino acid transport system permease protein LivM (TC 3.A.1.4.1)	Branched-chain amino acid transport
LiuR	mmgB	1	1	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation
LiuR	mmgC	1	1	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	

LiuR	paaG	2	2	Enoyl-CoA hydratase/isomerase	
LiuR	paaH1	3	1	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation
LiuR	paal	10	3	Phenylacetic acid degradation-related protein	
LiuR	рааК	2	2	Phenylacetate-coenzyme A ligase (EC 6.2.1.30)	
LiuR	Rru_A1944	1	1	2-hydroxychromene-2-carboxylate isomerase (EC 5.3.99)	
LiuR	RSc0258	1	1	Beta-lactamase domain protein	
LiuR	RSc0259	1	1	Protein of unknown function DUF1289	
LiuR	RSc0281	1	1	Metallo-beta-lactamase family protein	
LiuR	serA	2	1	D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95)	Serine biosynthesis
LiuR	SMc00041	5	1	hypothetical protein	
LiuR	tyrP	1	1	Tyrosine-specific transport protein (HAAAP family)	
LiuR	tyrR	7	1	aromatic amino acid biosynthesis/transport transciptional regulator	Transcriptional regulator
LiuR	усіК	3	1	Oxidoreductase, short-chain dehydrogenase/reductase family	
LiuR	aacS	12	5	Acetoacetyl-CoA synthetase [leucine] (EC 6.2.1.16)	Branched-chain amino acid degradation
LiuR	acdA	28	5	Enoyl-CoA hydratase (EC 4.2.1.17)	Branched-chain amino acid degradation
LiuR	acdB	27	5	3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	Branched-chain amino acid degradation
LiuR	acdH	43	8	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Branched-chain amino acid degradation
LiuR	acdH2	14	4	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Branched-chain amino acid degradation
LiuR	acdL	7	4	Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13)	Branched-chain amino acid degradation
LiuR	acdL2	6	3	Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13)	Branched-chain amino acid degradation
LiuR	acdP	4	1	Acyl-CoA dehydrogenase family protein	Branched-chain amino acid degradation
LiuR	acdQ	4	1	Acyl-CoA dehydrogenases	Branched-chain amino acid degradation
LiuR	aceB	16	1	malate synthase A	Tricarboxylic acid cycle
LiuR	асеК	17	3	Isocitrate dehydrogenase phosphatase (EC 2.7.11.5)/kinase (EC 3.1.3)	Tricarboxylic acid cycle
LiuR	atuC	1	1	Geranyl-CoA carboxylase carboxyl transferase subunit	Branched-chain amino acid degradation
LiuR	atuD	1	1	Isovaleryl-CoA dehydrogenase (EC 1.3.99.10)	Branched-chain amino acid degradation
LiuR	atuE	1	1	Isohexenylglutaconyl-CoA hydratase	Branched-chain amino acid degradation
LiuR	atuF	1	1	Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)	Branched-chain amino acid degradation
LiuR	bkdA1	25	3	Branched-chain alpha-keto acid dehydrogenase, E1 component, alpha subunit (EC 1.2.4.4	Branched-chain amino acid degradation
LiuR	bkdA2	25	3	Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4) Dihydrolipoamide acyltransferase component of branched-chain alpha-keto acid	Branched-chain amino acid degradation
LiuR	bkdB	25	3	dehydrogenase complex (EC 2.3.1.168)	Branched-chain amino acid degradation
LiuR	cah	19	4	Carbonic anhydrase (EC 4.2.1.1)	Carbonic anhydrase
LiuR	echH	7	1	Enoyl-CoA hydratase (EC 4.2.1.17)	Branched-chain amino acid degradation Electron transfer chain for branched-chain amino acid
LiuR	etfD	23	5	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	degradation
LiuR	fadD	9	4	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
LiuR	gltB	18	2	Glutamate synthase [NADPH] large chain (EC 1.4.1.13)	Glutamate biosynthesis
LiuR	gltD	18	2	Glutamate synthase [NADPH] small chain (EC 1.4.1.13)	Glutamate biosynthesis
LiuR	hbdA	6	1	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation
LiuR	ivdB	28	5	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched-chain amino acid degradation
LiuR	ivdD	27	5	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched-chain amino acid degradation
LiuR	ivdE	31	6	EnoyI-CoA hydratase [valine degradation] (EC 4.2.1.17)	Branched-chain amino acid degradation
LiuR	ivdF	32	6	3-hydroxyisobutyrate dehydrogenase (EC 1.1.1.31)	Branched-chain amino acid degradation
LiuR	ivdG	31	6	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation
LiuR	ldh	21	3	Leucine dehydrogenase (EC 1.4.1.9)	Branched-chain amino acid degradation
LiuR	liuF	19	2	Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit A (EC 2.8.3.5)	Branched-chain amino acid degradation
LiuR	liuG	19	2	Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit B (EC 2.8.3.5)	Branched-chain amino acid degradation

LiuR	liuR1	10	2	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	
LiuR	liuR2	5	4	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	
LiuR	mcm	9	2	Methylmalonyl-CoA mutase (EC 5.4.99.2)	Branched-chain amino acid degradation
LiuR	mdh	9	1	Malate dehydrogenase (EC 1.1.1.37)	Tricarboxylic acid cycle
LiuR	рааН	17	4	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157)	Branched-chain amino acid degradation
LiuR	PF03060	6	1	Dioxygenases related to 2-nitropropane dioxygenase	
LiuR	PF04828	11	1	Glutathione S-transferase, unnamed subgroup (EC 2.5.1.18)	
LiuR	PF09917	6	1	Protein of unknown function, PF09917	
LiuR	prpB	2	1	Methylisocitrate lyase (EC 4.1.3.30)	Propionate metabolism
LiuR	prpC	2	1	2-methylcitrate synthase (EC 2.3.3.5)	Propionate metabolism
LiuR	prpD	2	1	2-methylcitrate dehydratase (EC 4.2.1.79)	Propionate metabolism
LiuR	Rfer_2814	1	1	protein of unknown function DUF849	
LiuR	sucA	9	1	2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2)	Tricarboxylic acid cycle
11-D	D	0		Dihydrolipoamide succinyltransferase component (E2) of 2-oxoglutarate dehydrogenase	Totas de sur dis estal sur la
LIUK	SUCB	8	1	Complex (EC 2.3.1.01)	
LIUK	succ	9	1	Succinyi-CoA ligase [ADP-forming] beta chain (EC 6.2.1.5)	
LIUK	sucD	9	1		
LIUK	thrA	15	1		Inreonine biosynthesis
LiuR	thrB	15	1		Threonine biosynthesis
LiuR	thrC	15	1	Lastata responsive resultator LIdD. CastD family	Threonine biosynthesis
LidR	lldR	54	13		Transcription regulation
LIdR	lidP	41	12	L-lactate permease	Lactate transport
LIdR	did	23	8	D-Lactate denydrogenase (EC 1.1.2.5)	Lactate utilization
LIdR	lldG	29	9	L-lactate denydrogenase, nypothetical protein subunit Lido	Lactate utilization
LIdR	lldD	21	7	L-lactate dehydrogenase (EC 1.1.2.3)	Lactate utilization
LldR	lldE	26	8	L-lactate dehydrogenase, Fe-S oxidoreductase subunit	Lactate utilization
LldR	lldF	25	8	L-lactate dehydrogenase, iron-sulfur cluster-binding subunit	Lactate utilization
LldR	glcF	5	2	Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GicF	Glycolate utilization
LIdR	glcD	5	2	Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD	Glycolate utilization
LldR	lldEF	4	1	Iron-sulfur cluster-binding subunit LldF	Lactate utilization
LldR	lldX	5	1	predicted lactate permease, DUF81 family	Lactate transport
LIdR	glcE	1	1	Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE	Glycolate utilization
LldR	glcG	1	1	Hypothetical protein GlcG in glycolate utilization operon	Glycolate utilization
LldR	glcB	1	1	Malate synthase G (EC 2.3.3.9)	Tricarboxylic acid cycle
MetJ	metA	50	5	Homoserine O-succinyltransferase (EC 2.3.1.46)	Methionine biosynthesis
MetJ	metB	46	6	Cystathionine gamma-synthase (EC 2.5.1.48)	Methionine biosynthesis
Metl	metE	44	6	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase (EC 2.1.1.14)	Methionine biosynthesis
Metl	metF	43	6	5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20)	Methionine biosynthesis
MetJ	metH	36	4	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
MetJ	metl	36	4	Methionine ABC transporter permease protein	Methionine transport
MetJ	metJ	59	6	S-adenosylmethionine-responsive transcriptional repressor MetJ	Transcription regulation
MetJ	metK	55	6	S-adenosylmethionine synthetase (EC 2.5.1.6)	Methionine biosynthesis
MetJ	metL	48	5	Aspartokinase (EC 2.7.2.4) / Homoserine dehydrogenase (EC 1.1.1.3)	Methionine biosynthesis
MetJ	metN	37	4	Methionine ABC transporter ATP-binding protein	, Methionine transport
MetJ	metQ	38	4	Methionine ABC transporter substrate-binding protein	Methionine transport
				Homocysteine-responsive transcriptional regulator of methionine metabolism, LysR	·
MetJ	metR	44	5	family	Transcription regulation
MetJ	metT	32	4	Methionine transporter MetT, NhaC antiporter family	Methionine transport
MetJ	ahpC	5	1	Alkyl hydroperoxide reductase protein C (EC 1.6.4)	

MetJ	ahpF	3	1	Alkyl hydroperoxide reductase protein F (EC 1.6.4)	
MetJ	ASA_2534	1	1	Erythronate-4-phosphate dehydrogenase (EC 1.1.1.290)	
MetJ	asd	1	1	Aspartate-semialdehyde dehydrogenase (EC 1.2.1.11)	Methionine biosynthesis
MetJ	btuB2	1	1	TonB-dependent outer membrane transporter for vitamin B12	Vitamin B12 transport
MetJ	btuC	1	1	Vitamin B12 ABC transporter, permease component BtuC	Vitamin B12 transport
MetJ	btuD	1	1	Vitamin B12 ABC transporter, ATPase component BtuD	Vitamin B12 transport
MetJ	btuF	1	1	Vitamin B12 ABC transporter, B12-binding component BtuF	Vitamin B12 transport
MetJ	СКО_03982	1	1	hypothetical protein	
MetJ	COG0235	3	1	Ribulose-5-phosphate 4-epimerase and related epimerases and aldolases	
MetJ	COG4948	3	1	L-alanine-DL-glutamate epimerase and related enzymes of enolase superfamily	
MetJ	COG5276	4	1	Hypothetical protein, COG5276 family	
MetJ	folE	3	1	GTP cyclohydrolase I (EC 3.5.4.16) type 1	
MetJ	mccA	3	1	Cystathionine beta-synthase (EC 4.2.1.22)	Methionine biosynthesis
MetJ	тссВ	3	1	Cystathionine gamma-lyase (EC 4.4.1.1)	Methionine biosynthesis
MetJ	mdeA2	3	1	Methionine gamma-lyase (EC 4.4.1.11)	Methionine biosynthesis
MetJ	metC	12	2	Cystathionine beta-lyase (EC 4.4.1.8)	Methionine biosynthesis
MetJ	metE2	8	2	Methionine synthase II, vitamin-B12 independent (EC 2.1.1.14)	Methionine biosynthesis
				5 10 methologetetrohodrefelete reductees non arthelegeus isomme (FC 1 5 1 20)	
MetJ	metF-II	4	1	5,10-metnyienetetranyorotolate reductase, non-orthologous isozyme (EC 1.5.1.20)	Methionine biosynthesis
MetJ	metQ2	5	3	Wethionine ABC transporter substrate-binding protein	Methionine transport
MetJ	mmuM	11	4	Homocysteine S-metnyitransferase (EC 2.1.1.10)	Methionine biosynthesis
MetJ	mmuP	10	3	S-methylmethionine transporter	Methionine transport
MetJ	mtnA	6	1	Wetnyitnioribose-1-phosphate isomerase (EC 5.3.1.23)	Methylthioribose recycling
MetJ	mtnB	8	2	Methylthioribulose-1-phosphate denydratase (EC 4.2.1.109)	Methylthioribose recycling
MetJ	mtnC	7	2	2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase (EC 3.1.3.77)	Methylthioribose recycling
MetJ	mtnD	7	2	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase (EC 1.13.11.54)	Methylthioribose recycling
MetJ	mtnE	7	1	Methionine aminotransferase	Methylthioribose recycling
MetJ	mtnK	7	2	5-methylthioribose kinase (EC 2.7.1.100)	Methylthioribose recycling
MetJ	mtnX	5	1	Predicted methylthioribose ABC transporter, ATP-binding protein	Methylthioribose recycling
MetJ	mtnY	5	1	Predicted methylthioribose ABC transporter, permease protein	Methylthioribose recycling
MetJ	mtnZ	5	1	Predicted methylthioribose ABC transporter, substrate-binding protein	Methylthioribose recycling
MetJ	pcbC	3	1	putative 20G-Fe(II) oxygenase	
MetJ	PCNPT3_05874	1	1	Homoserine/homoserine lactone efflux protein	
MetJ	pduO	1	1	Cob(I)alamin adenosyltransferase (EC 2.5.1.17)	Vitamin B12 biosynthesis
MetJ	PF08908	2	1	Protein of unknown function DUF1852	
MetJ	serA	4	1	D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95)	Serine biosynthesis
MetJ	thrA	3	1	Aspartokinase (EC 2.7.2.4) / Homoserine dehydrogenase (EC 1.1.1.3)	Threonine biosynthesis
MetJ	thrB	3	1	Homoserine kinase (EC 2.7.1.39)	Threonine biosynthesis
MetJ	thrC	3	1	Threonine synthase (EC 4.2.3.1)	Threonine biosynthesis
MetJ	ybdH	3	1	Uncharacterized oxidoreductase YbdH	
MetJ	btuB	30	5	TonB-dependent outer membrane transporter for vitamin B12	Vitamin B12 transport
MetJ	COG3126	14	1	Lipoprotein-related protein	
MetJ	csd	7	1	Cysteine desulfurase (EC 2.8.1.7)	Methionine metabolism
MetJ	metX	10	2	Homoserine O-acetyltransferase (EC 2.3.1.31)	Methionine biosynthesis
		10	2	O-acetylhomoserine sulfhydrylase (EC 2.5.1.49) / O-succinylhomoserine sulfhydrylase (EC 2.5.1.49)	
iviet)	metr	18	3	2.J.I.40)	wethionine plosynthesis
iviet	msrA	19	2	replice methonine sunoxide reductase ivisrA (EC 1.8.4.11)	wethionine metabolism
Metl	mtsA	8 8	1	Duplicated ATPase component MtsB of energizing module of methionine-regulated ECF transporter	Methionine transport
		-	-	Transmembrane component MtsC of energizing module of methionine-regulated ECF	
MetJ	mtsC	8	1	transporter	Methionine transport

MotP	motP	111	14	Homocysteine-responsive transcriptional regulator of methionine metabolism, LysR family	Transcription regulation
Weth	metr	111	14	i uniny	Transcription regulation
MetR	metE	88	12	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase (EC 2.1.1.14)	Methionine biosynthesis
MetR	metE2	23	6	Methionine synthase II, vitamin-B12 independent (EC 2.1.1.14)	Methionine biosynthesis
MetR	metF	43	6	5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20)	Methionine biosynthesis
MetR	glyA	43	6	Serine hydroxymethyltransferase (EC 2.1.2.1)	Methionine biosynthesis
MetR	PF08908	20	6	Protein of unknown function DUF1852	
MetR	metH	26	5	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
MetR	luxS	21	2	S-ribosylhomocysteine lyase (EC 4.4.1.21) / Autoinducer-2 production protein LuxS	SAM recycling
MetR	metA	14	2	Homoserine O-succinyltransferase (EC 2.3.1.46)	Methionine biosynthesis
MetR	metE2-2	7	2	Methionine synthase II, vitamin-B12 independent (EC 2.1.1.14)	Methionine biosynthesis
MetR	PF03358	3	1	NADPH-dependent FMN reductase	
MetR	ilvI	15	1	Acetolactate synthase large subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
MetR	ilvH	15	1	Acetolactate synthase small subunit (EC 2.2.1.6)	Branched-chain amino acid biosynthesis
MetR	hmp	9	1	Flavohemoprotein (Hemoglobin-like protein) (Flavohemoglobin) (Nitric oxide dioxygenase) (EC 1.14.12.17)	Nitric oxide cell defense
M-40	motif II	2	1	5 10 methylenetetrahydrofolate reductase, non-orthologous isozyme (FC 1 5 1 20)	Mathianing bigg wthesis
Meth	metr-II	3	1		Methionine biosynthesis
Math	metc	2	1	hypothetical sodium-dependent transporter	Methonine biosynthesis
Math	HIU/30	3	1	Elavin reductase-like EMN-binding	
Meth	PF01613	3	1	Protoin of unknown function DLIE209	
MetR	PF02677	1	1		
MetR	pfl	3	1	Pyruvale formale-iyase (EC 2.3.1.34)	
MetR	dsbC	2	1	Mathiasian ADC target and that the hindling mathia	
MetR	metQ2	3	1	There are a supported and the substrate-binding protein	Methionine transport
MetR	thrC	2	1	Inreonine synthese (EC 4.2.3.1)	Threonine biosynthesis
MetR	hom	2	1	Homoserine denydrogenase (EC 1.1.1.3)	Methionine biosynthesis
MetR	metF2	2	1	5,10-methylenetetranydrofolate reductase (EC 1.5.1.20)	Methionine biosynthesis
MetR	metH2	5	2	S-methylicitranydroiolatenomocysteine methyliciansierase (EC 2.1.1.13) Homocysteine-responsive transcriptional regulator of methionine metabolism. LysR	Methionine biosynthesis
MetR	metR2	1	1	family	Transcription regulation
MetR	gcvP	1	1	Glycine dehydrogenase [decarboxylating] (glycine cleavage system P protein) (EC 1.4.4.2)	Glycine cleavage system
MetR	gcvH	1	1	Glycine cleavage system H protein	Glycine cleavage system
MetR	mdeA	1	1	Methionine gamma-Iyase (EC 4.4.1.11)	Methionine biosynthesis
MetR	bhmT	2	1	Betainehomocysteine S-methyltransferase (EC 2.1.1.5)	Methionine biosynthesis
NadR	nadA	10	1	Quinolinate synthetase (EC 4.1.99)	NAD biosynthesis
NadR	pnuC	11	1	Ribosyl nicotinamide transporter	Niacin or Ribosyl nicotinamide transport
NadR	pncB	6	1	Nicotinate phosphoribosyltransferase (EC 2.4.2.11)	NAD metabolism
NadR	nadB	5	1	L-aspartate oxidase (EC 1.4.3.16)	NAD biosynthesis
NadR	nadR	2	1	Transcriptional regulator of NAD metabolism / Nicotinamide-nucleotide adenylyltransferase, NadR family (EC 2.7.1.2) / Ribosylnicotinamide kinase (EC 2.7.1.22)	NAD metabolism
NadR	niaP	1	-	Niacin transporter, MFS family	Niacin or Ribosyl nicotinamide transport
NadO	nadA	30	7	Quinolinate synthetase (EC 4.1.99)	NAD biosynthesis
NadO	nadC	28	7	Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19)	NAD biosynthesis
NadO	nadB	27	7	L-aspartate oxidase (EC 1.4.3.16)	NAD biosynthesis
		c		NAD supported to (EC, C, C, T, E) / Clutoming an identication of the state of NAD support	
NadQ	nade	6	2	Transcriptional regulator of NAD metabolism. COC4111 for the	
NadQ	nadQ	3	2	rranscriptional regulator or INAD metabolism, COG4111 Tamily	ranscription regulation
NadQ	nadD	4	1	Nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18) ## bacterial NadD family	NAD biosynthesis
NadQ	proA	4	1	Gamma-glutamyl phosphate reductase (EC 1.2.1.41)	Proline biosynthesis

NadQ	HNE_0691	1	1	hypothetical protein	
NadQ	nadC2	1	1	Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19)	NAD biosynthesis
NadQ	nadA1	1	1	Quinolinate synthetase (EC 4.1.99)	NAD biosynthesis
NadQ	nadA2	1	1	Quinolinate synthetase (EC 4.1.99)	NAD biosynthesis
NadQ	nadB2	1	1	L-aspartate oxidase (EC 1.4.3.16)	NAD biosynthesis
NadQ	nadB1	1	1	L-aspartate oxidase (EC 1.4.3.16)	NAD biosynthesis
NadQ	nadC1	1	1	Quinolinate phosphoribosyltransferase [decarboxylating] (EC 2.4.2.19) PTS system, N-acetylglucosamine-specific IIB component (EC 2.7.1.69) / PTS system,	NAD biosynthesis
NagC	nagE	21	4	glucose-specific IIC component (EC 2.7.1.69)	N-acetylglucosamine utilization
NagC	nagA	31	4	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	N-acetylglucosamine utilization
NagC	nagC	27	4	N-acetylglucosamine-6P-responsive transcriptional repressor NagC, ROK family	Transcription regulation
NagC	nagB	29	4	Glucosamine-6-phosphate deaminase (EC 3.5.99.6)	N-acetylglucosamine utilization
NagC	ptsl	15	3	Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	Sugar transport
NagC	ptsH	15	3	Phosphocarrier protein of PTS system	Sugar transport
NagC	crr	14	3	PTS system, glucose-specific IIA component (EC 2.7.1.69)	Sugar transport
NagC	nagF	2	1	PTS system, glucose-specific IIA component (EC 2.7.1.69) / Phosphocarrier protein of PTS system / Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	N-acetylglucosamine utilization
NagC	тср	7	2	N-acetylglucosamine regulated methyl-accepting chemotaxis protein	Chemotaxis
NagC	omp	3	1	Outer membrane receptor protein	N-acetylglucosamine utilization
NagC	mcp2	5	2	N-acetylglucosamine regulated methyl-accepting chemotaxis protein N-acetylglucosamine-1-phosphate uridyltransferase (EC 2.7.7.23) / Glucosamine-1-	Chemotaxis
NagC	glmU	14	2	phosphate N-acetyltransferase (EC 2.3.1.157)	N-acetylglucosamine utilization
NagC	hex	11	2	Beta-hexosaminidase (EC 3.2.1.52)	Chitin degradation
NagC	rpmE1	2	1	50S ribosomal protein L31	
NagC	znuA	2	1	Zinc ABC transporter, periplasmic-binding protein ZnuA	
NagC	pyrG	10	1	CTP synthase (EC 6.3.4.2)	
NagC	eno	9	1	Enolase (EC 4.2.1.11)	Glycolysis
NagC	tfoX	9	1	DNA transformation protein TfoX	
NagC	tfoX1	9	1	DNA transformation protein TfoX1 (Sxy) PTS system, glucose-specific IIB component (EC 2.7.1.69) / PTS system, glucose-specific IIC component (EC 2.7.1.69)	Mannaca and ducaca transport
Nage	pise file A	0	1	Fructore-hisphosphate aldolase class II (EC / 1 2 13)	
Nage	Abdi	8	1	Phosphoglycorate kinase (EC 2 7 2 2)	Glycolysis
Nage	рдк	8	1	Chitinaso (EC 2.2.1.14)	Giycolysis Chitin da madati an
NagC	chia	8	1	DTC system manages specific IIAD companent	Chitin degradation
NagC	almS	9	1	Glucosaminefructose-6-phosphate aminotransferase [isomerizing] (FC 2.6.1.16)	N-acetylglucosamine utilization
Nage	man7	9	1	PTS system mannose-specific IID component	Mannoso and glucoso transport
Nage	manZ	9	1	PTS system mannose-specific IIc component	Mannose and glucose transport
NagC	nagE2	9 7	1	PTS system, N-acetylglucosamine-specific IIA component (EC 2.7.1.69) / PTS system, N- acetylglucosamine-specific IIB component (EC 2.7.1.69) / PTS system, N- acetylglucosamine-specific IIC component (EC 2.7.1.69)	N-acetylglucosamine utilization
NagC	aldE	7	1	Aldose 1-epimerase	, 0
NagC	chi	6	2	Chitinase (EC 3.2.1.14)	Chitin degradation
NagC	nagD	8	1	Phosphatase NagD predicted to act in N-acetylglucosamine utilization subsystem PTS system, N-acetylglucosamine-specific IIB component (EC 2.7.1.69) / PTS system, N-	N-acetylglucosamine utilization
NagC	nagE1	6	1	acetylglucosamine-specific IIC component (EC 2.7.1.69)	N-acetylglucosamine utilization
NagC	gapA	5	1	NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)	Glycolysis
NagC	chbR	6	1	Chitobiose-specific regulator ChbR, AraC family	Transcription regulation
NagC	chbB	6	1	PTS system, chitobiose-specific IIB component (EC 2.7.1.69)	Chitobiose utilization
NagC	gdhA	1	1	NADP-specific glutamate dehydrogenase (EC 1.4.1.4)	Glutamate degradation
NagC	roml1	1	1	ribosomal protein L36	

NagC	chbA	6	1	N,N'-diacetylchitobiose-specific PTS system, EIIA component	Chitobiose utilization
NagC	exbD	1	1	Biopolymer transport protein ExbD/ToIR	
NagC	tonB	1	1	Periplasmic binding protein TonB	
NagC	chbC	6	1	PTS system, chitobiose-specific IIC component (EC 2.7.1.69)	Chitobiose utilization
NagC	exbB	1	1	Biopolymer transport protein ExbB	
NagC	chbG	6	1	Cellobiose phosphotransferase system YdjC-like protein	
NagC	chbF	5	1	Chitobiose-specific 6-phospho-beta-glucosidase ChbF (EC 3.2.1.86)	Chitobiose utilization
NagC	ybfM	4	1	N-acetylglucosamine-regulated outer membrane porin	Chitobiose utilization
NagC	cbp	4	1	Chitin binding protein	Chitin degradation
NagC	glgA	3	1	Glycogen synthase, ADP-glucose transglucosylase (EC 2.4.1.21)	Glycogen metabolism
NagC	grcA	3	1	autonomous glycyl radical cofactor GrcA	
NagC	chiP	3	1	Outer membrane chitoporin	Chitobiose transport
NagC	chiD	3	1	Chitodextrinase precursor (EC 3.2.1.14)	Chitin degradation
NagC	glgC	3	1	Glucose-1-phosphate adenylyltransferase (EC 2.7.7.27)	Glycogen metabolism
NagC	gapB	3	1	NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13)	Glycolysis
NagC	ompC	3	1	Predicted OmpC-like chitoporin	Chitobiose utilization
NagC	adh	2	1	Alcohol dehydrogenase (EC 1.1.1.1); Acetaldehyde dehydrogenase (EC 1.2.1.10)	
NagC	gltA	2	1	Citrate synthase (si) (EC 2.3.3.1)	Tricarboxylic acid cycle
NagC	chiS	2	1	Chitin catabolic cascade sensor histidine kinase ChiS	Transcription regulation
NagC	epd	2	1	D-erythrose-4-phosphate dehydrogenase (EC 1.2.1.72)	
NagC	galP	2	1	D-galactose transporter	Galactose transport
NagC	chi1	1	1	Chitinase (EC 3.2.1.14)	Chitin degradation
NagC	VP1029	1	1	Hypothetical protein	
NagC	ompU	1	1	Outer membrane protein OmpU	
NagC	VC1591	1	1	Oxidoreductase, short-chain dehydrogenase/reductase family	
NagC	aldC	1	1	Alpha-acetolactate decarboxylase (EC 4.1.1.5)	
NagC	budB	1	1	Acetolactate synthase, catabolic (EC 2.2.1.6)	
NagC	alsR	1	1	Transcriptional regulator of alpha-acetolactate operon alsR	Transcription regulation
NagC	nanM	1	1	N-acetylneuraminic acid-induced hypothetical transmembrane protein	N-acetylneuraminic acid transport
NagC	fimB	1	1	type 1 fimbriae regulatory protein FimB	
NagC	nanC	1	1	N-acetylneuraminic acid outer membrane channel protein NanC	N-acetylneuraminic acid transport
NagQ	nagQ	33	10	Predicted transcriptional regulator of N-Acetylglucosamine utilization, GntR family	Transcription regulation
NagQ	nagA	30	10	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	N-acetylglucosamine utilization
NagQ	nagB2	26	9	Glucosamine-6-phosphate deaminase [isomerizing], alternative (EC 3.5.99.6) PTS system N-acetylalucosamine-specific IIB component (EC 2 7 1 69) / PTS system N-	N-acetylglucosamine utilization
NagQ	nagE	15	6	acetylglucosamine-specific IIC component (EC 2.7.1.69)	N-acetylglucosamine utilization
NagQ	ptsl	15	5	system / Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)	Sugar transport
NagQ	nagK	13	3	N-acetylglucosamine kinase of eukaryotic type (EC 2.7.1.59)	N-acetylglucosamine utilization
NagQ	murQ	8	3	N-acetylmuramic acid 6-phosphate etherase (EC 4.2)	N-acetylmuramic acid utilization
NagQ	nagT	11	3	N-Acetyl-D-glucosamine ABC transport system, sugar-binding protein	, N-acetylglucosamine utilization
NagQ	nagV	10	3	N-Acetyl-D-glucosamine ABC transport system, permease protein 2	N-acetylglucosamine utilization
NagQ	nagU	10	3	N-Acetyl-D-glucosamine ABC transport system, permease protein 1	N-acetylglucosamine utilization
NagQ	nagW	10	3	N-Acetyl-D-glucosamine ABC transport system, ATP-binding component	N-acetylglucosamine utilization
NagQ	hex	3	2	Beta-hexosaminidase (EC 3.2.1.52)	N-acetylglucosamine utilization
NagQ	chiA	2	2	Chitinase (EC 3.2.1.14)	Chitin degradation
NagQ	cdxA	2	2	Chitodextrinase precursor (EC 3.2.1.14)	Chitin degradation
NagQ	omp_nag	4	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	- Chitobiose utilization
NagQ	nagD	6	2	Hypothetical oxidoreductase related to N-acetylglucosamine utilization	
NagQ	nagZ	1	1	Beta N-acetyl-glucosaminidase (EC 3.2.1.52)	Chitin degradation

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18

NagQ	nagB	3	1	Glucosamine-6-phosphate deaminase (EC 3.5.99.6)	N-acetylglucosamine utilization
NagQ	nagR	2	1	Transcriptional regulator of N-acetylglucosamine utilization, Lacl family	Transcription regulation
NagQ	wecA	1	1	Undecaprenyl-phosphate N-acetylglucosaminyl 1-phosphate transferase (EC 2.7.8)	
NagQ	hex2	1	1	N-Acetyl-D-glucosamine ABC transport system ATP-binding protein	Chitin degradation
NagQ	cga	1	1	Glucoamylase (EC 3.2.1.3)	
NagQ	ybfM	1	1	N-acetylglucosamine-regulated outer membrane porin	Chitobiose utilization
NagQ	cbp21	1	1	Chitin binding protein	Chitin degradation
NagQ	chiC	1	1	Chitinase (EC 3.2.1.14)	Chitin degradation
NagQ	chi	1	1	Chitinase (EC 3.2.1.14)	Chitin degradation
NagQ	nagP	2	1	N-acetyl\glucosamine transporter, NagP	N-acetylmuramic acid utilization
NagQ	omp1	1	1	Outer membrane protein (porin)	Chitobiose utilization
NagQ	CC0542	1	1	Predicted periplasmic phosphohydrolase	
NagQ	MED297_05914	1	1	Hypothetical protein	
NagQ	nagX	1	1	N-acetylglucosamine related transporter, NagX	N-acetylmuramic acid utilization
NagQ	anaG	1	1	Alpha-N-acetylglucosaminidase (EC 3.2.1.50)	Alpha-N-acetylglucosaminidase
NagQ	mlr4776	1	1	Hypothetical protein	
NagQ	nagM	1	1	Predicted N-Acetylglucosamine ABC transporter, inner membrane subunit	N-acetylmuramic acid utilization
NagQ	nagO	1	1	Predicted N-Acetylglucosamine ABC transporter, periplasmic sugar-binding protein	N-acetylmuramic acid utilization
NagQ	nagN	1	1	Predicted N-Acetylglucosamine ABC transporter, permease protein	N-acetylmuramic acid utilization
NagQ	nagK2	1	1	N-acetylglucosamine kinase (EC 2.7.1.59), ROK family	N-acetylglucosamine utilization
NagQ	nagD1	1	1	Probable oxidoreductase	
NagQ	nagL	1	1	Predicted N-Acetylglucosamine ABC transporter, ATP-binding protein	N-acetylmuramic acid utilization
NagR	omp_nag	24	3	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	trpX	24	3	Tryptophan halogenase	
NagR	nagA	23	4	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) PTS system, N-acetylglucosamine-specific IIB component (EC 2.7.1.69) / PTS system, N-	N-acetylglucosamine utilization
NagR	nagP	23	4	acetylglucosamine-specific IIC component (EC 2.7.1.69)	N-acetylglucosamine utilization
NagR	nagK	21	3	N-acetylglucosamine kinase of eukaryotic type (EC 2.7.1.59)	N-acetylglucosamine utilization
NagR	nagX	19	3	N-acetylglucosamine related transporter, NagX	N-acetylglucosamine utilization
NagR	hex	18	4	Beta-hexosaminidase (EC 3.2.1.52)	Chitobiose utilization
NagR	nagB2	14	4	Glucosamine-6-phosphate deaminase [isomerizing], alternative (EC 3.5.99.6)	N-acetylglucosamine utilization
NagR	nagK2	6	1	Predicted N-acetylglucosamine kinase, glucokinase-like (EC 2.7.1.59)	N-acetylglucosamine utilization
NagR	nagR	8	3	Transcriptional regulator of N-acetylglucosamine utilization, LacI family	Transcription regulation
NagR	nagB	9	3	Glucosamine-6-phosphate deaminase (EC 3.5.99.6)	N-acetylglucosamine utilization
NagR	chiA	10	3	Chitinase (EC 3.2.1.14)	Chitin degradation
NagR	nixC	3	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	naxA	3	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	cbp	7	2	Chitn and N-acetylglucosamine-binding protein A	Chitin degradation
NagR	pckA	2	1	Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49)	Gluconeogenesis
NagR	chiD	2	1	Chitodextrinase (EC 3.2.1.14)	Chitin degradation
NagR	pgi2	2	1	Glucose-6-phosphate isomerase (EC 5.3.1.9)	Glycolysis
NagR	sapC	10	1	Peptide transport system permease protein sapC (TC 3.A.1.5.5)	
NagR	mcp_nag	8	1	N-acetylglucosamine regulated methyl-accepting chemotaxis protein	Chemotaxis
NagR	nixD	2	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	nixB	2	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	pilM	7	1	homolog of type IV pilus assembly protein PilM	
NagR	duf81	6	1	protein of unknown function DUF81	
NagR	nagS2	1	1	Putative sulfatase (EC 3.1.6)	
NagR	SO0851	5	1	prepilin-type cleavage/methylation-like protein	
NagR	CPS_2383	1	1	Putative surface protein	
------	---------------	-----	----	--	---------------------------------------
NagR	SO0852	5	1	Type IV fimbrial biogenesis protein PilV	Fimbriae biogenesis
NagR	ATW7_01305	1	1	Pass1-related protein	
NagR	bgIX	1	1	Beta-glucosidase (EC 3.2.1.21)	Glucosides utilization
NagR	SO0850	5	1	Type IV fimbrial biogenesis protein PilX	Fimbriae biogenesis
NagR	SO0854	4	1	Type IV pilus biogenesis protein PilE	Fimbriae biogenesis
NagR	SO0853	4	1	Type IV fimbrial biogenesis protein FimT	Fimbriae biogenesis
NagR	nixA	1	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	cbp2	2	1	putative chitn-binding protein, exported	Chitin degradation
NagR	cdxA	2	1	Chitodextrinase precursor (EC 3.2.1.14)	Chitin degradation
NagR	pdaA	1	1	Peptidoglycan N-acetylglucosamine deacetylase	N-acetylglucosamine utilization
NagR	omp_nag2	1	1	N-acetylglucosamine-regulated TonB-dependent outer membrane receptor	Chitobiose utilization
NagR	chiA3	1	1	chitodextrinase	Chitin degradation
NrdR	nrdA	126	19	Ribonucleotide reductase of class Ia (aerobic), alpha subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdB	117	19	Ribonucleotide reductase of class Ia (aerobic), beta subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdD	70	12	Ribonucleotide reductase of class III (anaerobic), large subunit (EC 1.17.4.2)	Deoxyribonucleotide biosynthesis
NrdR	nrdG	63	12	Ribonucleotide reductase of class III (anaerobic), activating protein (EC 1.97.1.4)	Deoxyribonucleotide biosynthesis
NrdR	nrdJ	46	5	Ribonucleotide reductase of class II (coenzyme B12-dependent) (EC 1.17.4.1) @ intein- containing	Deoxyribonucleotide biosynthesis
NrdR	yfaE	40	7	Ferredoxin	Oxidoreductase
NrdR	nrdJa	21	4	Ribonucleotide reductase of class II (coenzyme B12-dependent) (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdH	16	2	Ib	Deoxyribonucleotide biosynthesis
NrdR	nrdF	15	2	Ribonucleotide reductase of class Ib (aerobic), beta subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdl	15	2	Ribonucleotide reductase stimulatory protein Nrdl	Deoxyribonucleotide biosynthesis
NrdR	nrdE	15	2	Ribonucleotide reductase of class Ib (aerobic), alpha subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	SO2417	16	1	Ferredoxin	Oxidoreductase
NrdR	trxA	4	1	Thioredoxin	Oxidoreductase
NrdR	topA	8	1	DNA topoisomerase I (EC 5.99.1.2)	Replication
NrdR	nrdJb	5	3	1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdA2	2	2	Ribonucleotide reductase of class Ia (aerobic), alpha subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdB2	2	2	Ribonucleotide reductase of class Ia (aerobic), beta subunit (EC 1.17.4.1)	, Deoxyribonucleotide biosynthesis
NrdR	Sala 1774	2	1	protein of unknown function DUF559	
NrdR	– Ajs 0086	3	1	hypothetical protein	
NrdR	nrdA1	1	1	Ribonucleotide reductase of class Ia (aerobic), alpha subunit (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdB1	1	1	Ribonucleotide reductase of class Ia (aerobic), beta subunit (EC 1.17.4.1)	, Deoxyribonucleotide biosynthesis
NrdR	RSp0964	1	1	hypothetical protein	
NrdR	nrdJ1	1	1	Ribonucleotide reductase of class II (coenzyme B12-dependent) (EC 1.17.4.1)	Deoxyribonucleotide biosynthesis
NrdR	nrdD fragment	1	1	Ribonucleotide reductase of class III (anaerobic), large subunit (EC 1.17.4.2)	Deoxyribonucleotide biosynthesis
NrtR	nrtR	24	10	Nudix-related transcriptional regulator NrtR	Transcription regulation
NrtR	nrtX	7	6	NrtR-regulated hypothetical OrfX, Band 7 protein domain	Putative NAD metabolism genes
NrtR	pncB	15	5	Nicotinate phosphoribosyltransferase (EC 2.4.2.11)	NAD metabolism
NrtR	nrtY	6	5	NrtR-regulated hypothetical OrfY, PpnK-type ATP-NAD kinase domain	Putative NAD metabolism genes
NrtR	pncA	13	5	Nicotinamidase (EC 3.5.1.19)	NAD metabolism
NrtR	nadV	7	4	Nicotinamide phosphoribosyltransferase (EC 2.4.2.12)	NAD metabolism
NrtR	prs	6	3	Ribose-phosphate pyrophosphokinase (EC 2.7.6.1)	NAD metabolism
NrtR	nadE	8	4	NAD synthetase (EC 6.3.1.5)	NAD metabolism
NrtR	nadD	4	3	Nicotinate-nucleotide adenylyltransferase (EC 2.7.7.18) Nicotinamide-nucleotide adenylyltransferase NadM family (EC 2.7.7.1) / ADP-ribose	NAD metabolism
NrtR	nadM	4	2	pyrophosphatase (EC 3.6.1.13)	NAD metabolism

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue, 26 Apr 2016 06:41:58

NrtR	pnuC	1	1	Ribosyl nicotinamide transporter, PnuC-like	NAD metabolism
NrtR	nadR	1	1	Nicotinamide-nucleotide adenylyltransferase, NadR family (EC 2.7.7.1) / Ribosylnicotinamide kinase (EC 2.7.1.22)	NAD metabolism
NtrC	glnA	163	19	Glutamine synthetase type I (EC 6.3.1.2)	Glutamine biosynthesis
NtrC	ntrC	157	19	nitrogen regulation protein NR(I)	Transcription regulation
NtrC	ntrB	157	19	Nitrogen regulation protein NR(II) (EC 2.7.3)	Nitrogen metabolism regulation proteins
NtrC	amtB	134	17	ammonium transporter	Nitrogen source transport
NtrC	glnK	107	13	nitrogen regulatory protein P-II	Nitrogen metabolism regulation proteins
NtrC	glnB	66	7	Nitrogen regulatory protein P-II	Nitrogen metabolism regulation proteins
NtrC	nifR3	41	5	Nitrogen assimilation transcriptional regulator NtrX, Fis family	
NtrC	nasD	34	8	Nitrite reductase, large subunit (EC 1.7.1.4)	Nitrogen metabolism
NtrC	nasE	33	8	Nitrite reductase, small subunit (EC 1.7.1.4)	Nitrogen metabolism
NtrC	ntrY	30	4	Nitrogen regulation protein NtrY, sensor kinase (EC 2.7.3)	Nitrogen metabolism
NtrC	amtB2	30	8	ammonium transporter	Nitrogen source transport
NtrC	narK	23	6	Nitrate/nitrite antiporter	Nitrogen source transport
NtrC	ntrX	24	3	Nitrogen assimilation transcriptional regulator NtrX, Fis family	Nitrogen metabolism
NtrC	ntrZ	23	3	Conserved hypothetical signal peptide protein	
NtrC	nasA	23	7	Assimilatory nitrate reductase, large subunit (EC:1.7.99.4)	Nitrogen metabolism
NtrC	nrtC	22	4	Nitrate ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	nrtB	21	4	Nitrate ABC transporter, permease component	Nitrogen source transport
NtrC	nrtA	21	4	Nitrate ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	urtB	22	3	Urea ABC transporter, permease component 2	Nitrogen source transport
NtrC	gdhA	13	3	NADP-specific glutamate dehydrogenase (EC 1.4.1.4)	Nitrogen metabolism
NtrC	ureD	20	3	Urease accessory protein, UreD	Nitrogen metabolism
NtrC	ureA	20	3	Urease, gamma subunit (EC 3.5.1.5)	Nitrogen metabolism
NtrC	ureB	19	3	Urease, beta subunit (EC 3.5.1.5)	Nitrogen metabolism
NtrC	ureC	19	3	Urease, alpha subunit (EC 3.5.1.5)	Nitrogen metabolism
NtrC	urtA	18	3	Urea ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	urtD	16	3	Urea ABC transporter, ATP-binding component 1	Nitrogen source transport
NtrC	CHP02001	12	2	Conserved hypothetical protein CHP02001	
NtrC	donC	10	2	Dipeptide ABC transporter, permease component 2	Nitrogen source transport
NtrC	dppA	10	2	Dipeptide ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	donB	10	2	Dipeptide ABC transporter, permease component 1	Nitrogen source transport
NtrC	ureF	15	2	Urease accessory protein. UreF	Nitrogen metabolism
NtrC	ureG	15	2	Urease accessory protein UreG	Nitrogen metabolism
NtrC	ureE	15	2	Urease accessory protein. UreF	Nitrogen metabolism
NtrC		10	2	Uroporphyrinogen-III methyltransferase (FC 2.1.1.107)	
NtrC	urtE	10	2	Urea ABC transporter ATP-hinding component 1	Nitrogon source transport
NtrC	dinK2	10	2	nitrogen regulatory protein P-II	
NUC	giilkz	12	5		Nitrogen metabolism
NtrC	nasBA	8	1	Assimilatory nitrate reductase, large and small subunits protein fusion (EC:1.7.99.4)	Nitrogen metabolism
NtrC	dat	4	1	D-alanine aminotransferase (EC 2.6.1.21)	Proline degradation
NtrC	nasB	8	2	Assimilatory nitrate reductase, small subunit (EC:1.7.99.4)	Nitrogen metabolism
NtrC	gltJ	11	1	Glutamate-aspartate ABC transporter, transmembrane component 1	Nitrogen source transport
NtrC	gltK	11	1	Glutamate-aspartate ABC transporter, transmembrane component 2	Nitrogen source transport
NtrC	gltL	11	1	Glutamate-aspartate ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	gltl	11	1	Glutamate-aspartate ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	dppD	5	1	Dipeptide ABC transporter, ATP-binding component 1	Nitrogen source transport
NtrC	dppF	5	1	Dipeptide ABC transporter, ATP-binding component 2	Nitrogen source transport
NtrC	ntrXY	5	1	Nitrogen assimilation transcriptional regulator NtrX, Fis family	Transcription regulation
NtrC	nifR	7	1	Predicted oxidoreductase, FAD binding	

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 Op: Tue, 26 Apr 2016 06:41:58

NtrC	urtC	10	2	Urea ABC transporter, permease component 2	Nitrogen source transport
NtrC	ybdK	6	1	Carboxylate-amine ligase	
NtrC	PF04168	6	1	Conserved hypothetical protein	
NtrC	gltB	4	2	Glutamate synthase, large chain (EC 1.4.1.13)	Glutamate biosynthesis
NtrC	gltD	4	2	Glutamate synthase, small chain (EC 1.4.1.13)	Glutamate biosynthesis
NtrC	nrtA2	8	2	Nitrate ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	nifEN	6	1	Nitrogenase FeMo-cofactor scaffold and assembly protein	Nitrogen metabolism
NtrC	Gmet_0693	6	1	Conserved hypothetical protein	
NtrC	PF01841	5	1	Transglutaminase-like protein	
NtrC	rutG	5	2	Uracil permease	Nitrogen source transport
NtrC	hisM	7	1	Histidine ABC transporter, transmembrane component 2	Nitrogen source transport
NtrC	rutC	5	2	Aminoacrylate peracid reductase	Pyrimidine Degradation
NtrC	rutA	5	2	Pyrimidine oxygenase	Pyrimidine Degradation
NtrC	gInP	7	1	Glutamine ABC transporter, transmembrane component	Nitrogen source transport
NtrC	hisP	7	1	Histidine ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	glnH	7	1	Glutamine ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	hisQ	7	1	Histidine ABC transporter, transmembrane component 1	Nitrogen source transport
NtrC	rutB	5	2	Peroxyureidoacrylate / ureidoacrylate amido hydrolase	
NtrC	rutF	5	2	Flavin reductase	Pyrimidine Degradation
NtrC	hisJ	7	1	Histidine ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	astD	6	1	Succinylglutamic semialdehyde dehydrogenase (EC 1.2.1.71)	Arginine degradation
NtrC	glnQ	6	1	Glutamine ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	astB	6	1	Succinylarginine dihydrolase (EC 3.5.3.23)	Arginine degradation
NtrC	astA	6	1	Arginine N-succinyltransferase (EC 2.3.1.109)	Arginine degradation
NtrC	nac	6	1	Nitrogen assimilation transcriptional regulator, LysR family	Transcription regulation
NtrC	astC	6	1	Succinylornithine transaminase (EC 2.6.1.81)	Arginine degradation
NtrC	astE	6	1	Succinylglutamate desuccinylase (EC 3.5.1.96)	Arginine degradation
NtrC	uctA	7	1	Urea carboxylase-related ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	COG0733	2	1	Predicted sodium dependent transporter	
NtrC	glnK1	4	1	Nitrogen regulatory protein P-II	Nitrogen metabolism
NtrC	uctB	6	1	Urea carboxylase-related ABC transporter, permease component	Nitrogen source transport
NtrC	nasT	6	1	Nitrogen assimilation attenuator protein NasT	Transcription regulation
NtrC	uctC	6	1	Urea carboxylase-related ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	ureJ	5	1	Urease accessory protein, UreJ	Nitrogen metabolism
NtrC	alsT	3	1	Predicted alanin/sodium symporter	Nitrogen source transport
NtrC	ansA	3	1	L-asparaginase I (EC 3.5.1.1)	Asparagine degradation
NtrC	dppDE	5	1	Dipeptide ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	hmp	5	2	Nitric oxide dioxygenase	Nitrogen stress response
NtrC	uahA	5	1	Urea carboxylase (EC 6.3.4.6)	Nitrogen metabolism
NtrC	uahB	5	1	Urea carboxylase-related aminomethyltransferase (EC 2.1.2.10)	Nitrogen metabolism
NtrC	uahC	5	1	Urea carboxylase-related aminomethyltransferase (EC 2.1.2.10)	Nitrogen metabolism
NtrC	EAM_0873	4	1	Predicted ABC transporter, permease component 1	
NtrC	EAM_0875	4	1	Predicted ABC transporter, ATP-binding component	
NtrC	potG	4	1	Putrescine ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	potl	4	1	Putrescine ABC transporter, transmembrane component 1	Nitrogen source transport
NtrC	rutD	4	1	Aminoacrylate hydrolase	Pyrimidine Degradation
NtrC	PF09694	4	1	Conserved hypothetical protein, nitrogen assimilation associated	
NtrC	ygjG	4	1	Putrescine aminotransferase (EC 2.6.1.82)	Putrescine metabolism
NtrC	EAM_0872	4	1	Predicted ABC transporter, substrate-binding component	
NtrC	EAM 0874	4	1	Predicted ABC transporter, permease component 2	

Downloaded from www.microbiologyresearch.org b IP: 195.218.8.18 Op: Tue, 26 Apr 2016 06:41:58

NtrC	potH	4	1	Putrescine ABC transporter, transmembrane component 2	Nitrogen source transport
NtrC	nasB2	4	1	Assimilatory nitrate reductase, large subunit (EC:1.7.99.4)	Nitrogen metabolism
NtrC	nirA	4	1	Ferredoxinnitrite reductase (EC 1.7.7.1)	Nitrogen metabolism
NtrC	ddpC	3	1	Dipeptide ABC transporter, transmembrane component 2 (TC 3.A.1.5.2)	Nitrogen source transport
NtrC	amaB	3	1	N-carbamoyl-L-amino acid hydrolase	
NtrC	potC	2	1	Putrescine ABC transporter, transmembrane component 2 (TC_3.A.1.11.1)	Nitrogen source transport
NA	aug(n	1	Serinepyruvate aminotransferase (EC 2.6.1.51) / L-alanine:glyoxylate aminotransferase	Aming gold degradation
NTC	puce	3	1	(EC 2.0.1.44)	Amino acid degradation
NTC	rute	3	1	Dispetide APC transporter subtrate hinding comparent (TC 2.4.1.5.2)	Pyrimidine Degradation
NtrC	ddpA	3	1	Dipeptide ABC transporter, substrate-binding component (TC 3.4.1.1.1.2)	Nitrogen source transport
NtrC	potA	2	1	Putrescine ABC transporter, ATP-binding component (TC_3.A.1.11.1)	Nitrogen source transport
NtrC	ddpX	3	1	D-alanyi-D-alanine dipeptidase (EC 3.4.13)	
NtrC	ddpB	3	1	Dipeptide ABC transporter, transmembrane component 1 (TC 3.A.1.5.2)	Nitrogen source transport
NtrC	rutE2	1	1	3-hydroxy propionic acid dehydrogenase	Pyrimidine Degradation
NtrC	potB	2	1	Putrescine ABC transporter, transmembrane component 1 (TC_3.A.1.11.1)	Nitrogen source transport
NtrC	rutR	1	1	Pyrimidine catabolism transcriptional regulator RutR, TetR family	Transcription regulation
NtrC	potD	2	1	Putrescine ABC transporter, substrate-binding component (TC_3.A.1.11.1)	Nitrogen source transport
NtrC	ddpD	3	1	Dipeptide ABC transporter, transmembrane component 3 (TC 3.A.1.5.2)	Nitrogen source transport
NtrC	ddpF	3	1	Dipeptide ABC transporter, ABC-binding component (TC 3.A.1.5.2)	Nitrogen source transport
NtrC	ybiB	2	1	Conserved hypothetical protein	
NtrC	СКО_01526	2	1	Predicted transcriptional regulator, RpiR family	Transcription regulation
NtrC	TM1040_0383	2	1	Conserved hypothetical protein	
NtrC	COG0547	2	1	Glycosyl transferase, family 3	
NtrC	atzF	2	1	Allophanate hydrolase (EC 3.5.1.54)	Nitrogen metabolism
NtrC	atzF2	2	1	Allophanate hydrolase (EC 3.5.1.54)	Nitrogen metabolism
NtrC	Jann_1753	2	1	Conserved hypothetical protein	
NtrC	ISBma2	1	1	Transposase, IS4	
NtrC	nrtB3	1	1	Nitrate ABC transporter, permease component	Nitrogen source transport
NtrC	nrtC3	1	1	Nitrate ABC transporter, ATP-binding component	Nitrogen source transport
NtrC	nrtA3	1	1	Nitrate ABC transporter, substrate-binding component	Nitrogen source transport
NtrC	Daro_0818	1	1	Hypothetical protein	
NtrC	pkn	1	1	Probable serine/threonine-protein kinase SCO3848	
NtrC	PF02627	1	1	Putative alkylhydroperoxidase	
NtrC	OB2597 07045	1	1	Conserved hypothetical protein	
NtrC	 OB2597_07055	1	1	Hypothetical protein	
NtrC	- Xaut 1081	1	1	Hypothetical protein	
NtrC	– NGR b03860	1	1	Hypothetical protein	
NtrC	speB	1	1	Agmatinase (EC 3.5.3.11)	Putrescine metabolism
NtrC	lann 1751	1	1	Hypothetical protein	
PdhR	aceE	55	6	Pyruvate dehydrogenase E1 component (EC 1.2.4.1)	Pyruvate metabolism
PdhR	ndhR	55	6	Transcriptional repressor for pyruvate dehydrogenase complex	Transcription regulation
	pann	55	U	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex (EC	Transcription regulation
PdhR	aceF	54	6	2.3.1.12)	Pyruvate metabolism
PdhR	IndA	49	5	Dihydrolipoamide dehydrogenase of pyruvate dehydrogenase complex (FC 1 8 1 4)	Pyruvate metabolism
PdbR	oadB	19	2	Oxaloacetate decarboxylase beta chain (FC 4.1.1.3)	
PdbR	Abco	10	2	Oxaloacetate decarboxylase alpha chain (FC 4 1 1 3)	
DdbP	oode	19	2	Oxaloacetate decarboxylase gamma chain (FC 4 1 1 3)	
	oduu	10	4	Pyruvate formate-lyase activating enzyme (FC 1 97 1 4)	Formato motabolism
	μι Α of P	10	1	Pyrivate formate-lyase (EC 2.3.1.54)	
Pank	рив	10	1		Tricochevulie - sid such
FuilK	aleb	14	T	Marace synthese (LC 2.3.3.)	mular boxylic acid cycle

PdhR	aceA	12	1	Isocitrate Iyase (EC 4.1.3.1)	Tricarboxylic acid cycle
PdhR	pfIX	11	1	pyruvate formate lyase-related hypothetical transporter	
PdhR	ndh	8	1	NADH dehydrogenase	NAD metabolism
PdhR	hemL	6	1	Glutamate-1-semialdehyde aminotransferase (EC 5.4.3.8)	Porphyrin biosynthesis
PdhR	focA	6	1	formate transporter	
PdhR	yfiD	4	1	stress-induced alternate pyruvate formate-lyase subunit	
PdhR	deaD	5	1	Cold-shock DEAD-box protein A	
PdhR	суоС	3	2	Cytochrome O ubiquinol oxidase subunit III (EC 1.10.3)	Electron transfer chain
PdhR	суоЕ	3	2	Heme O synthase, protoheme IX farnesyltransferase (EC 2.5.1) COX10-CtaB	Porphyrin biosynthesis
PdhR	суоD	3	2	Cytochrome O ubiquinol oxidase subunit IV (EC 1.10.3)	Electron transfer chain
PdhR	суоВ	3	2	Cytochrome O ubiquinol oxidase subunit I (EC 1.10.3)	Electron transfer chain
PdhR	суоА	3	2	Cytochrome O ubiquinol oxidase subunit II (EC 1.10.3)	Electron transfer chain
PdhR	dld	2	1	Predicted D-lactate dehydrogenase, Fe-S protein, FAD/FMN-containing	Lactate metabolism
PdhR	lldP	2	1	L-lactate permease	Lactate metabolism
PdhR	grcA	1	1	stress-induced alternate pyruvate formate-lyase subunit	Pyruvate metabolism
PdhR	glcB	1	1	Malate synthase G (EC 2.3.3.9)	Glycolate utilization
PdhR	glcD	1	1	Glycolate dehydrogenase (EC 1.1.99.14), subunit GlcD	Glycolate utilization
PdhR	glcG	1	1	Hypothetical protein GlcG in glycolate utilization operon	Glycolate utilization
PdhR	glcE	1	1	Glycolate dehydrogenase (EC 1.1.99.14), FAD-binding subunit GlcE	Glycolate utilization
PdhR	glcF	1	1	Glycolate dehydrogenase (EC 1.1.99.14), iron-sulfur subunit GlcF	Glycolate utilization
PdhR	SO0273	1	1	protein of unknown function DUF1439	
PdhR	sdhC	1	1	succinate dehydrogenase, cytochrome b556 subunit	Tricarboxylic acid cycle
PdhR	gltA	1	1	citrate synthase	Tricarboxylic acid cycle
PdhR	ррс	1	1	Phosphoenolpyruvate carboxylase (EC 4.1.1.31)	Pyruvate metabolism
PdhR	sdhA	1	1	succinate dehydrogenase, flavoprotein subunit	Tricarboxylic acid cycle
PdhR	sdhD	1	1	succinate dehydrogenase, hydrophobic membrane anchor protein	Tricarboxylic acid cycle
PdhR	sdhB	1	1	succinate dehydrogenase, iron-sulfur protein	Tricarboxylic acid cycle
PsrA	psrA	69	12	Predicted transcriptional regulator for fatty acid degradation PsrA, TetR family	Transcription regulation
PsrA	fadA	56	10	3-ketoacyl-CoA thiolase (EC 2.3.1.16)	Fatty acid degradation
PsrA	fadB	55	9	Enoyl-CoA hydratase (EC 4.2.1.17)	Fatty acid degradation
PsrA	fadD	25	5	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
PsrA	acdH	26	4	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
PsrA	fadH	31	6	2,4-dienoyl-CoA reductase [NADPH] (EC 1.3.1.34)	Fatty acid degradation
PsrA	etfD	31	6	Electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1)	Electron transfer chain for fatty acid degradation
				Enoyl-CoA hydratase (EC 4.2.1.17) / Delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase (EC	
PsrA	fadJ	27	3	epimerase (EC 5.1.2.3)	Fatty acid degradation
PsrA	fadl	27	3	3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	Fatty acid degradation
PsrA	etfA	27	5	electron transfer flavoprotein, alpha subunit	Electron transfer chain for fatty acid degradation
PsrA	etfB	27	5	electron transfer flavoprotein, beta subunit	Electron transfer chain for fatty acid degradation
PsrA	fadE	17	5	Acyl-CoA denydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
PsrA	fadE1	21	3	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
PsrA	fabG	16	2	3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)	Fatty acid biosynthesis
PsrA	fabF	14	3	3-oxoacyl-[acyl-carrier-protein] synthase, KASII (EC 2.3.1.41)	Fatty acid biosynthesis
PsrA	fadD2	18	4	Long-chain-tatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
PsrA	echH	20	3	EnoyI-CoA hydratase [valine degradation] (EC 4.2.1.17)	Fatty acid degradation
PsrA	fadL	9	3	Long-chain fatty acid transport protein	Fatty acid degradation
PsrA	scp	13	3	Steroi-binding domain protein	
PsrA	fabH	12	2	3-oxoacyl-lacyl-carrier-protein] synthase, KASIII (EC 2.3.1.41)	Fatty acid biosynthesis
PsrA	fabD	12	2	Malonyl CoA-acyl carrier protein transacylase (EC 2.3.1.39)	Fatty acid biosynthesis

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

PsrA	асрР	12	2	Acyl carrier protein	
PsrA	acdH1	12	2	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
PsrA	fadE2	18	2	Acyl-CoA dehydrogenase, short-chain specific (EC 1.3.99.2)	Fatty acid degradation
PsrA	fadD1	17	2	Long-chain-fatty-acidCoA ligase (EC 6.2.1.3)	Fatty acid degradation
PsrA	sdhC	16	1	succinate dehydrogenase, cytochrome b556 subunit	Tricarboxylic acid cycle
PsrA	gltA	16	1	citrate synthase	Tricarboxylic acid cycle
PsrA	aroQ	3	1	3-dehydroquinate dehydratase II (EC 4.2.1.10)	Aromatic amino acid biosynthesis
PsrA	SO2935	16	1	oxidoreductase, short-chain dehydrogenase/reductase family	
PsrA	sdhA	16	1	succinate dehydrogenase, flavoprotein subunit	Tricarboxylic acid cycle
PsrA	rpoS	8	1	RNA polymerase sigma factor RpoS	Transcription
PsrA	aceB	16	1	malate synthase A	Tricarboxylic acid cycle
PsrA	sdhD	16	1	succinate dehydrogenase subunit D	Tricarboxylic acid cycle
B	10	-		Enoyl-CoA hydratase (EC 4.2.1.17) / 3,2-trans-enoyl-CoA isomerase (EC 5.3.3.8) / 3-	
PsrA	acdB	5	1	nydroxyacyi-coA denydrogenase (EC 1.1.1.35)	Fatty acid degradation
PsrA	sdhB	16	1	succinate denyarogenase, iron-suitur protein	Tricarboxylic acid cycle
PsrA	bccP	3	1	Biotin carboxyl carrier protein of acetyl-coA carboxylase	
PsrA	accC	3	1	Biotin Carboxylase of acetyl-COA Carboxylase (EC 6.3.4.14)	
PsrA	acdA	5	1	3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)	Fatty acid degradation
PsrA	acdH2	5	4	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
PsrA	SO0881	14	1	conserved hypothetical protein	
PsrA	SO0882	14	1	oxidoreductase, GMC family	
PsrA	paal	3	1	Phenylacetic acid degradation protein paal	
PsrA	algQ	6	1	Regulator of RNA polymerase sigma(70) subunit, Rsd/AlgQ	Transcription
PsrA	phhB	3	1	Pterin-4-alpha-carbinolamine dehydratase (EC 4.2.1.96)	
PsrA	fabL	3	1	ENOYL-[ACYL-CARRIER-PROTEIN] REDUCTASE (fabL) (NADPH) (EC 1.3.1.9)	Fatty acid biosynthesis
PsrA	aceA	12	1	isocitrate lyase	Tricarboxylic acid cycle
PsrA	SO0080	9	1	thioesterase superfamily protein	
PsrA	mdh	4	1	Malate synthase (EC 2.3.3.9)	Tricarboxylic acid cycle
PsrA	ldh	2	1	Leucine dehydrogenase (EC 1.4.1.9)	Branched_chain amino acid biosynthesis
PsrA	fadH1	2	1	2,4-dienoyl-CoA reductase [NADPH] (EC 1.3.1.34)	Fatty acid degradation
PsrA	fadE3	5	1	acyl-CoA dehydrogenase	Fatty acid degradation
PsrA	acdH3	2	2	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
PsrA	paal2	1	1	Phenylacetic acid degradation protein paal	
PsrA	Sbal 0657	4	1	hypothetical protein	
PsrA	fabK	1	1	Enoyl-[acyl-carrier-protein] reductase [FMN] (EC 1.3.1.9)	Fatty acid biosynthesis
PsrA	SO3908	1	1	Enoyl-CoA hydratase (EC 4.2.1.17)	Fatty acid degradation
PsrA	acdH4	1	1	Acyl-CoA dehydrogenase (EC 1.3.99.3)	Fatty acid degradation
PsrA	fadL2	1	1	Long-chain fatty acid transport protein	Fatty acid degradation
PsrA	fadD3	1	1	long-chain-fatty-acidCoA ligase	Fatty acid degradation
RutR	rutR	52	11	Transcriptional regulator RutR of pyrimidine catabolism, TetR family	Transcription regulation
RutR	rutB	13	7	Peroxyureidoacrylate / ureidoacrylate amido hydrolase	Pyrimidine degradation
RutR	rutA	12	7	Pyrimidine oxygenase	Pyrimidine degradation
RutR	xdhC	22	5	XdhC protein (assists in molybdopterin insertion into xanthine dehydrogenase)	Purine degradation
			5		
RutR	xdhA	22	5	Xanthine dehydrogenase, iron-sulfur cluster and FAD-binding subunit A (1.17.1.4)	Purine degradation
RutR	xdhB	22	5	Xanthine dehydrogenase, molybdenum binding subunit (EC 1.17.1.4)	Purine degradation
RutR	guaD	21	5	Guanine deaminase (EC 3.5.4.3)	Purine degradation
RutR	rutC	11	6	Aminoacrylate peracid reductase	Pyrimidine degradation
RutR	rutD	11	6	Aminoacrylate hydrolase	Pyrimidine degradation
RutR	pydC	31	4	Beta-ureidopropionase (EC 3.5.1.6)	Pyrimidine degradation

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue: 26 Apr 2016 06:41:58

				Pyridine nucleotide-disulphide oxidoreductase associated with reductive pyrimidine	
RutR	pydX	29	4		Pyrimidine degradation
RutR	pydA	27	4	Dinydropyrimidine denydrogenase [NADP+] (EC 1.3.1.2)	Pyrimidine degradation
RutR	rutF	9	5	Flavin reductase	Pyrimidine degradation
RutR	руdВ	26	4	Dihydropyrimidinase (EC 3.5.2.2)	Pyrimidine degradation
RutR	pbuT	14	4	Xanthine/uracil permease	Nucleoside transport
RutR	pucL	15	3	Uricase (EC 1.7.3.3)	Pyrimidine degradation
RutR	COG3748	14	3	hypothetical protein, COG3748	
RutR	rutE	6	4	3-hydroxy propionic acid dehydrogenase	Pyrimidine degradation
RutR	rutR2	3	2	Transcriptional regulator RutR of pyrimidine catabolism, TetR family	Transcription regulation
RutR	codA	13	4	Cytosine deaminase (EC 3.5.4.1)	Pyrimidine degradation
RutR	pydP	10	3	Pyrimidine permease in reductive pathway	Pyrimidine transport
RutR	pucM	9	2	Hydroxyisourate hydrolase (EC 3.5.2.17)	Pyrimidine degradation
RutR	upp	9	3	Uracil phosphoribosyltransferase (EC 2.4.2.9)	Pyrimidine degradation
RutR	ppuD	10	3	Predicted ABC transporter, inner membrane protein precursor	Nucleoside transport
RutR	ppuC	10	3	Predicted ABC transporter, permease protein	Nucleoside transport
RutR	ppuA	10	3	Predicted ABC transporter, ATP-binding protein	
RutR	allA	9	3	Ureidoglycolate hydrolase (EC 3.5.3.19)	Purine degradation
RutR	COG0726	8	2	putative polysaccharide deacetylase family protein	
				Nucleoside-binding outer membrane protein	.
RutR	tsx	9	1	Cutiding description (FC 2 F 4 F)	Nucleoside transport
RutR	cdd	-	3	Venthing (used) accorded	Pyrimidine degradation
RutR	pbuT2	7	2	Thursday a base for the set of th	Nucleoside transport
RutR	deoA	10	3	nymiaine prosphorylase (EC 2.4.2.4)	Pyrimidine degradation
RutR	pntB	11	2	Predicted nucleoside ABC transporter, permease protein 1	Nucleoside transport
RutR	pntC	11	2	Predicted nucleoside ABC transporter, permease protein 2	Nucleoside transport
RutR	pntA	11	2	Predicted nucleoside ABC transporter, ATP-binding protein	Nucleoside transport
RutR	rutG	5	2	Uracil permease	Pyrimidine transport
RutR	rutG2	2	1	Uracil permease	Pyrimidine transport
RutR	gpt	1	1	Xanthine-guanine phosphoribosyltransferase (EC 2.4.2.22)	Purine degradation
RutR	xpt	1	1	Xanthine phosphoribosyltransferase (EC 2.4.2.22)	Purine degradation
RutR	PF07958	4	1	Conserved hypothetical protein	
RutR	ribA2	4	1	GTP cyclohydrolase II (EC 3.5.4.25) homolog	
RutR	pntD	10	2	Predicted nucleoside ABC transporter, substrate-binding protein	Nucleoside transport
RutR	pytO	10	2	Predicted pyrimidine ABC transporter, permease protein 1	Pyrimidine transport
RutR	pytM	10	2	Predicted pyrimidine ABC transporter, substrate-binding protein	Pyrimidine transport
RutR	pytN	10	2	Predicted pyrimidine ABC transporter, ATP-binding protein	Pyrimidine transport
RutR	pytQ	10	2	Predicted pyrimidine ABC transporter, permease protein 2	Pyrimidine transport
RutR	allC	6	3	Allantoicase (EC 3.5.3.4)	Purine degradation
RutR	рриВ	6	2	Predicted ABC transporter, substrate-binding protein precursor	
RutR	pytC	10	2	Pyrimidine ABC transporter, permease protein 2	Pyrimidine transport
RutR	pytB	10	2	Pyrimidine ABC transporter, permease protein 1	Pyrimidine transport
RutR	deoC	10	2	Deoxyribose-phosphate aldolase (EC 4.1.2.4)	Pyrimidine degradation
RutR	pytA	10	2	Pyrimidine ABC transporter, ATP-binding protein	Pyrimidine transport
RutR	carA	6	1	Carbamoyl-phosphate synthase small chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
RutR	carB	6	1	Carbamoyl-phosphate synthase large chain (EC 6.3.5.5)	Arginine and pyrimidine biosynthesis
RutR	pytD	9	2	Pyrimidine ABC transporter, substrate-binding protein	Pyrimidine transport
RutR	deoD	7	1	Purine nucleoside phosphorylase (EC 2.4.2.1)	Purine degradation
RutR	nupX	3	1	Nucleoside permease	Nucleoside transport
RutR	udk	3	1	Uridine kinase (EC 2.7.1.48)	Pyrimidine metabolism
RutR	COG1739	4	1	hypothetical protein, COG1739	

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18 On: Tue: 26 Apr 2016 06:41:58

RutR	ald	7	1	Aldehyde dehydrogenase (EC 1.2.1.3)	
RutR	add	5	2	Adenosine deaminase (EC 3.5.4.4)	Purine degradation
RutR	allB	3	2	Allantoinase (EC 3.5.2.5)	Purine degradation
RutR	omp1	2	1	putative TonB-dependent outer membrane transporter	Nucleoside transport
RutR	omp2	2	1	putative TonB-dependent outer membrane transporter	Nucleoside transport
RutR	pbuT3	3	1	Xanthine/uracil permease	Nucleoside transport
RutR	ssnA	3	1	Predicted chlorohydrolase/aminohydrolase	
RutR	pytH	3	1	Predicted hydrolase	
RutR	praX	3	2	Omega-amino acidpyruvate aminotransferase (EC 2.6.1.18)	
RutR	tsx2	2	1	Nucleoside-binding outer membrane protein	Nucleoside transport
RutR	codB	1	1	Cytosine permease	Nucleoside transport
RutR	nupP	2	1	Predicted purine nucleoside permease	
RutR	add2	1	1	Adenosine deaminase (EC 3.5.4.4)	Purine degradation
RutR	hpt	2	2	Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8)	Purine degradation
RutR	deoB	3	1	Phosphopentomutase (EC 5.4.2.7)	Purine degradation
RutR	RL3717	2	1	Hypothetical protein	-
RutR	RSP 1242	2	1	Predicted lyase	
	-			Nucleoside-binding outer membrane protein	
RutR	tsx3	1	1		Nucleoside transport
RutR	pbuT4	1	1	Xanthine/uracil permease	Nucleoside transport
RutR	uraA	1	1	Uracil permease	Nucleoside transport
RutR	rutR3	1	1	Transcriptional regulator RutR of pyrimidine catabolism, TetR family	Transcription regulation
RutR	Meso_2056	1	1	Hypothetical protein	
RutR	Atu2387	1	1	NTP pyrophosphohydrolase, MutT family	
RutR	mll1644	1	1	Predicted methyltransferase	
RutR	OG2516_07987	1	1	Conserved hypothetical protein	
RutR	Jann_2708	1	1	Hypothetical protein	
RutR	Jann_2706	1	1	hypothetical protein	
RutR	MED193_05504	1	1	Hypothetical protein	
RutR	MED193_05494	1	1	Hypothetical protein	
RutR	Jann_0788	1	1	Hypothetical protein	
RutR	Jann_0787	1	1	Hypothetical protein	
RutR	Jann_2704	1	1	Hypothetical protein	
RutR	RSP_0188	1	1	DedA family integral membrane protein	
RutR	OB2597_04350	1	1	Hypothetical protein	
RutR	Jann_2702	1	1	Predicted N-acetyltransferase	
RutR	SKA53_10669	1	1	Hypothetical protein	
RutR	RB2654_14945	1	1	Hypothetical protein	
RutR	OG2516_10896	1	1	Hypothetical protein	
RutR	amiC	1	1	Predicted amidase	
SahR	sahR	61	9	Predicted regulator of methionine metabolism, ArsR family	Transcription regulation
SahR	ahcY	50	7	Adenosylhomocysteinase (EC 3.3.1.1)	Methionine metabolism
SahR	metF	43	7	5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20)	Methionine biosynthesis
SahR	metK	41	7	S-adenosylmethionine synthetase (EC 2.5.1.6)	Methionine metabolism
SahR	metH	32	6	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
SahR	metH2	14	4	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
Cako	w et F	0		5-mathultatrahudrontaroultrighutamata, homoguctoing mathultraneforace (EC 2.4.4.44)	Mathianiz- hiss of
Sank	mete	ð	4	Potoino, homocystoino S mothyltransforace (EC 2.1.1.5)	ivietnionine biosynthesis
Sank	Imna	4	2	Declame-monocystellite s-methylitatisterase (EC 2.1.1.5)	ivietnionine biosynthesis
Sank	panc	5	T	ר מוונטמנכשבומ-מומווווד ווצמצב (בנ 0.3.2.1)	Alanine metabolism

SahR	metB	1	1	Cystathionine gamma-synthase (EC 2.5.1.48)	Methionine biosynthesis
SahR	metX2	1	1	Homoserine O-acetyltransferase (EC 2.3.1.31)	Methionine biosynthesis
SahR	hom	1	1	Homoserine dehydrogenase (EC 1.1.1.3)	Methionine biosynthesis
SahR	metE2	1	1	methionine synthase	Methionine biosynthesis
SahR	DUF1852	1	1	Protein of unknown function DUF1852	
SahR	ddl	1	1	D-alanineD-alanine ligase B (EC 6.3.2.4)	Alanine metabolism
SahR	Caul_3406	1	1	PIN domain protein	
SahR	metT	1	1	Methionine transporter MetT	Methionine transport
					Methionine biosynthesis
SamR	metE	1	1	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase (EC 2.1.1.14)	
SamR	metF2	4	1	5,10-methylenetetrahydrofolate reductase (EC 1.5.1.20)	Methionine biosynthesis
SamR	metX2	4	1	Homoserine O-acetyltransferase (EC 2.3.1.31)	Methionine biosynthesis
SamR	metB	4	1	Cystathionine gamma-synthase (EC 2.5.1.48)	Methionine biosynthesis
SamR	hom	3	1	Homoserine dehydrogenase (EC 1.1.1.3)	Methionine biosynthesis
SamR	metK	4	1	S-adenosylmethionine synthetase (EC 2.5.1.6)	SAM biosynthesis
SamR	samR	4	1	Transcriptional regulator of methionine metabolism, ArsR family	Transcription regulation
SamR	metH1	3	1	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
SamR	metH2	3	1	5-methyltetrahydrofolatehomocysteine methyltransferase (EC 2.1.1.13)	Methionine biosynthesis
TrpR	trpE	36	6	Anthranilate synthase, aminase component (EC 4.1.3.27)	Tryptophan biosynthesis
TrpR	trpR	37	6	Trp operon repressor	Transcription regulation
TrpR	trpG	12	4	Anthranilate synthase, amidotransferase component (EC 4.1.3.27)	Tryptophan biosynthesis
TrpR	trpB	30	4	Tryptophan synthase beta chain (EC 4.2.1.20)	Tryptophan biosynthesis
TrpR	trpC	27	3	Indole-3-glycerol phosphate synthase (EC 4.1.1.48)	Tryptophan biosynthesis
TrpR	trpA	29	3	Tryptophan synthase alpha chain (EC 4.2.1.20)	Tryptophan biosynthesis
TrpR	mtr	17	3	Tryptophan-specific transport protein	Tryptophan transport
TrpR	trpD	24	2	Anthranilate phosphoribosyltransferase (EC 2.4.2.18)	Tryptophan biosynthesis
TrpR	trpD_a	10	1	Anthranilate synthase, amidotransferase component (EC 4.1.3.27)	Tryptophan biosynthesis
TrpR	trpD_b	10	1	Anthranilate phosphoribosyltransferase (EC 2.4.2.18)	Tryptophan biosynthesis
TreeD	tu	10	1	Charismate mutace I (EC 5 / 00 5) / Prenhenate dehydrogenase [EC 5 / 00 5 1 3 1 12]	Turasina & Dhanulanalina hisaunthasia
ттер		10	1		
ттерк	0001541	1	1	2 kata 2 daayu D arabina bantulasanata 7 nbashbata sunthasa (EC 2.5.1.54)	Aronatic aming said bics with said
тирк		10	1	2-Kelo-5-Geoxy-D-al abilito-ineptutosonate-7-phosphate synthase (LC 2.5.1.54)	Aromatic amino acid biosynthesis
трк	SSF55729	1	1	Acyi-Coa N-acyicialisterase	
Тгрк	COGU733(Trp)	8	1	2 lists 2 decive Develope hertulescents 7 shoeshots surthese (FC 2 5 1 54)	Iryptophan transport
TrpR	aroG	6	1	2-keto-3-deoxy-D-arabino-neptulosonate-7-phosphate synthase (EC 2.5.1.54)	Aromatic amino acid biosynthesis
TrpR	aroH	6	1	2-keto-3-deoxy-D-arabino-neptulosonate-7-phosphate synthase (EC 2.5.1.54)	Aromatic amino acid biosynthesis
TrpR	aroM	4	1		Aromatic amino acid biosynthesis
TrpR	aroL	4	1		Aromatic amino acid biosynthesis
TrpR	yaiA	4	1	putative cytoplasmic protein	
TrpR	aroA	3	1	5-Enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19)	Aromatic amino acid biosynthesis
TrpR	COG4221	2	1	Short-chain alcohol dehydrogenase of unknown specificity	
TrpR	HI1388	2	1	Anthranilate synthase, amidotransferase component (EC 4.1.3.27)	Tryptophan biosynthesis
TrpR	tnaB	2	1	Tryptophan-specific transport protein	Tryptophan transport
TrpR	aroF2	2	1	2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54)	Aromatic amino acid biosynthesis
TrpR	HAPS_1139	1	1	ABC transporter, inner-membrane component	
TrpR	HAPS_0395	1	1	ABC transporter, substrate binding component	
TrpR	HAPS_1138	1	1	ABC transporter, ATP-binding protein	
TrpR	tnaA	1	1	Tryptophanase (EC 4.1.99.1)	Tryptophan utilization
TrpR	trpB2	1	1	Tryptophan synthase beta chain like (EC 4.2.1.20)	Tryptophan utilization
TyrR	phhA	41	5	Phenylalanine-4-hydroxylase (EC 1.14.16.1)	Phenylalanine degradation
TyrR	phhB	38	5	Pterin-4-alpha-carbinolamine dehydratase (EC 4.2.1.96)	Phenylalanine degradation

TyrR	tyrA	39	5	Chorismate mutase I (EC 5.4.99.5) / Prephenate dehydrogenase [EC:5.4.99.5 1.3.1.12]	Tyrosine & Phenylanaline biosynthesis
TyrR	tyrR	45	6	Transcriptional regulator of aromatic amino acid biosynthesis	Transcription regulation
TyrR	aroF	35	5	2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 2.5.1.54)	Aromatic amino acid biosynthesis
TyrR	COG2814	7	1	Predicted tyrosine transporter, COG2814 family	Tyrosine transport
TyrR	emrD	9	1	multidrug resistance protein D	
TyrR	pepD	9	1	Aminoacyl-histidine dipeptidase (Peptidase D) (EC 3.4.13.3)	
TD		0	1	Proline dehydrogenase (EC 1.5.99.8) (Proline oxidase) / Delta-1-pyrroline-5-carboxylate	Dualina daguadatian
тугк	putA	9	1	kunuraninasa (tautanhan dagradatian)	Proline degradation
Tyrk	куп	8	1		
TyrR	aroM	6	1	Arow ranny protein	Aromatic amino acid biosynthesis
TyrR	\$01117	8	1		
TyrR	tdo	8	1	tryptopnan 2,3-dioxygenase	Tryptophan degradation
TyrR	mtr	5	1	ryptopnan-specific transport protein	Tryptophan transport
TyrR	yaiA	5	1	nypothetical protein	
TyrR	aroG	5	2	2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase I alpha (EC 2.5.1.54)	Aromatic amino acid biosynthesis
TyrR	COG1284	4	1	Hypothetical protein	
TyrR	Sfri_3409	6	1	Hypothetical protein	
TyrR	aprE	6	1	Alkaline serine protease	
TyrR	Sfri_3410	6	1	transcriptional regulator, XRE family protein	
TyrR	ompF	4	1	outer membrane porin F	
TyrR	ipdC	7	2	Indole-3-pyruvate decarboxylase (EC 4.1.1.74)	Tryptophan degradation
TyrR	prIC	4	1	Oligopeptidase A (EC 3.4.24.70)	
TyrR	pep1	3	1	Alkaline serine exoprotease A precursor (EC 3.4.21)	
TyrR	aprE2	3	1	Cold-active alkaline serine protease (EC 3.4.21.62)	
TyrR	omp2	3	1	putative TonB-dependent outer membrane receptor	
TyrR	tpl	3	2	Tyrosine phenol-lyase (EC 4.1.99.2)	Tyrosine degradation
TyrR	folA	1	1	Dihydrofolate reductase (EC 1.5.1.3)	Tetrahydrofolate biosynthesis
TvrR	pep2	1	1	peptidase M4 thermolysin	
, TyrR	omp1	1	1	TonB-dependent receptor	
TvrR	pep4	1	1	prolyl oligopeptidase family protein	
, TvrR	tvrP	32	5	Tyrosine-specific transport protein	Tyrosine transporter
, TvrR	hmgB	29	5	Maleylacetoacetate isomerase (EC 5.2.1.2)	Tyrosine degradation
TvrR	hmgC	29	5	Fumarylacetoacetase (EC 3.7.1.2)	Tyrosine degradation
TvrR	hnd	14	4	4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	Tyrosine degradation
TvrR	hmgA	13	4	Homogentisate 1.2-dioxygenase (EC 1.13.11.5)	Tyrosine degradation
TvrR	aceA	12	1	Isocitrate Ivase (EC 4.1.3.1)	Tricarboxylic acid cycle
TyrR	aceB	16	1	Malate synthase (EC 2.3.3.9)	Tricarboxylic acid cycle
TyrR	2000	8	1	Acetoacetyl-CoA synthetase (FC 6.2.1.16)	
TyrR	aroA	1/1	1	5-Enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19)	Accertif coenzyme A synthetase
TurP	arol	14	1	Shikimate kinase III (FC 2 7 1 71)	Aromatic amino acid biosynthesis
TurP	aroP	10	1	Aromatic amino acid transport protein AroP	Aromatic amino acid biosynthesis
TYIK	alor	11	1		Aromatic amino aciu transport
TyrR	bkdA1	16	1	Branched-chain alpha-keto acid dehydrogenase, E1 component, alpha subunit (EC 1.2.4.4	,) Branched_chain amino acid degradation
TyrR	bkdA2	16	1	Branched-chain alpha-keto acid dehydrogenase, E1 component, beta subunit (EC 1.2.4.4)	Branched_chain amino acid degradation
TyrR	bkdB	16	1	Dihydrolipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex (EC 2.3.1.168)	Branched chain amino acid degradation
TyrR	brnQ	16	1	Branched-chain amino acid transport system carrier protein	Branched chain amino acid transport
TyrR	COG0733(Tvr)	13	2	Predicted tyrosine transporter, SNF family	
TyrR	tyrR2	2	1	Tyrosine and phenylalanine degradation transcriptional activator, TyrR family	Transcription regulation
TvrR	ivdA	16	1	3-ketoacyl-CoA thiolase [isoleucine degradation] (EC 2.3.1.16)	Branched chain amino acid degradation
	-	-	-		

Downloaded from www.microbiologyresearch.org by

On: Tue, 26 Apr 2016 06:41:58

TyrR	ivdB	16	1	Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)	Branched_chain amino acid degradation
TyrR	ivdC	16	1	Branched-chain acyl-CoA dehydrogenase (EC 1.3.99.12)	Branched_chain amino acid degradation
				Enoyl-CoA hydratase [valine degradation] (EC 4.2.1.17) / Enoyl-CoA hydratase [isoleucine	
TyrR	ivdD	16	1	degradation] (EC 4.2.1.17)	Branched_chain amino acid degradation
TyrR	ivdE	16	1	3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4)	Branched_chain amino acid degradation
TyrR	ivdF	16	1	3-hydroxyisobutyrate dehydrogenase (EC 1.1.1.31)	Branched_chain amino acid degradation
TyrR	ivdG	16	1	3-hydroxyacyl-CoA dehydrogenase [isoleucine degradation] (EC 1.1.1.35)	Branched_chain amino acid degradation
TyrR	ldh	16	1	Leucine dehydrogenase (EC 1.4.1.9)	Branched_chain amino acid degradation
TyrR	liuA	14	1	Isovaleryl-CoA dehydrogenase (EC 1.3.99.10)	Branched_chain amino acid degradation
TyrR	liuB	14	1	Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4)	Branched_chain amino acid degradation
TyrR	liuC	14	1	Methylglutaconyl-CoA hydratase (EC 4.2.1.18)	Branched_chain amino acid degradation
TyrR	liuD	16	1	Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)	Branched_chain amino acid degradation
TyrR	liuE	14	1	Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4)	Branched_chain amino acid degradation
TyrR	liuF	13	1	Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit A (EC 2.8.3.5)	Branched_chain amino acid degradation
TyrR	liuG	13	1	Succinyl-CoA:3-ketoacid-coenzyme A transferase subunit B (EC 2.8.3.5)	Branched_chain amino acid degradation
TvrR	liuR	14	1	Predicted transcriptional regulator LiuR of leucine degradation pathway, MerR family	Transcription regulation
TvrR	mdeA	14	2	Methionine gamma-lyase (EC 4.4.1.11)	Methionine degradation
TvrR	pep3	14	1	peptidase, M13 family	
		_			
TyrR	phhC	5	1	Aromatic-amino-acid aminotransferase (EC 2.6.1.57)	Phenylalanine degradation
TyrR	phhR	7	1	Phenylalanine degradation transcriptional activator, TyrR family	Transcription regulation
TyrR	tyrB	16	1	Tyrosine aminotransferase (EC 2.6.1.42)	Tyrosine biosynthesis / Tyrosine degradation

¹ Number of regulatory interactions

² Number of taxa with regulation

Table S4. Metabolic and gene content of reconstructed TF regulons in Proteobacteria classified by conservation of regulatory interactions.

TF name	TF regulon members	Assigned metabolic pathway or process ¹	Major function	TF effector
ArgR	Core		Arginine metabolism	Arginine
	argH, argB, argC, argG, argF, argA, argE	Arginine biosynthesis		
	argR	Transcription regulation		
	artl, artQ, artM, artP	Arginine transport		
	astD, astA	Arginine degradation		
	carA, carB	Arginine and pyrimidine biosynthesis		
	Taxonomy-specific			
	argD	Arginine biosynthesis		
	argW, artJ, omp	Arginine transport		
	gltB, gltD	Glutamate biosynthesis		
	ilvM, ilvG, ilvD, ilvA	Branched-chain amino acid biosynthesis		
	potF, potG, potH, potI	Putrescine transport		
	recN	DNA repair		
	oadA, oadB, oadG	Pyruvate metabolism		
	astC, astB	Arginine degradation		
	Genome-specific			
	ilvE	Branched-chain amino acid biosynthesis		
	hisJ, hisM, hisP, hisQ	Histidine transport		
	arcA, arcB, arcC, arcD, astE	Arginine degradation		
	hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI	Histidine biosynthesis		
	proV, proW, proX	Proline transport		
	speF, potE	Putrescine metabolism		
BioR	All target genes		Biotin biosynthesis	Unknown
	bioY, bioM, bioN	Biotin transport		
	bioB, bioF, bioD, bioA, bioZ, bioG, bioC	Biotin biosynthesis		
	bioR	Transcription regulation		
BirA	Core		Biotin biosynthesis	Biotin
	bioB, bioF, bioD, bioC, bioA	Biotin biosynthesis		
	Taxonomy-specific			
	bioH	Biotin biosynthesis		
	birA	Transcription regulation		
	fabF, fabG	Fatty acid biosynthesis		
	Genome-specific			
	yigM	Biotin transport		
	bioW	Biotin biosynthesis		
			Fatty acid	Unsaturated acyl-
FabR	Core		biosynthesis	ACP
	OLE1 (desA)	Unsaturated fatty acid biosynthesis		
	tabA, tabB, IctH	Fatty acid biosynthesis		
	plsC	Glycerolipid metabolism		
	hylll	Fatty acid metabolism		
	Taxonomy-specific			
	desB, desC	Unsaturated fatty acid biosynthesis		
	fadL, lcfE	Fatty acid biosynthesis		
	fabR, fabR2	Transcription regulation		
	Genome-specific			
	pfaA, pfaB, pfaC, pfaD	Unsaturated fatty acid biosynthesis		
	pfaR, psrA	Transcription regulation		
	fadE	Fatty acid degradation		

FadP	Core		Fatty acid degradation	Unknown
	fadA, fadB, acdA, acdB, acdH, echH, acdP, acdQ, fadD	Fatty acid degradation		
	etfA, etfB, etfD	Electron transfer chain for fatty acid degradation		
	pncA	Nicotinate biosynthesis		
	fadP	Transcription regulation		
	acsA	Acetyl-coenzyme A synthetase		
	BPSL1236	Glycolysis		
	liuR	Transcription regulation		
	paal, paaG4, paaH1, bktB, alkK	Fatty acid degradation		
FadR	Core		Fatty acid degradation	Palmitoyl-CoA; Oleoyl-CoA
	fadL, fadI, fadJ, fadE	Fatty acid degradation		
	Taxonomy-specific	Party and the second second		
	TADA, TADB	Fatty acid biosynthesis		
	fadA, fadD, fadH, fadB, fadM, SO0572	Fatty acid degradation		
	fadR, iclR	Transcription regulation		
	Genome-specific			
	acdB, tesB	Fatty acid degradation		
			Glycolate utilization	
GlcC	Core			Glycolate
	gice, gice, gicu, gicu alce	Glycolate utilization		
	Taxonomy-specific			
	glcB	Tricarboxylic acid cycle		
	glcA	Glycolate transport		
	lldD	Lactate utilization		
	Genome-specific	Chuselete transport		
	lidg lide lide vkge vkge vkgg lide	Lactate utilization		
	lysR	Transcription regulation		
			Central	
			carbohydrate	2-keto-3-deoxy-6-
HexR	Core		metabolism	phosphogluconate
	gik, pykA edd, eda	Glycolysis Enther-Doudoroff nathway		
	zwf. pgl	Pentose phosphate pathway		
	hexR	Transcription regulation		
	Taxonomy-specific			
	tal, phk, gnd	Pentose phosphate pathway		
	nqrD, nqrC, nqrF, nqrA, nqrE, nqrB	Electron transport chain		
	dune, pna, pnb, duka, pta, toca nnsA	Fermentation		
	ptsl. ptsH. ptsG. crr	Glucose transport		
	gltD, gltB	Glutamate biosynthesis		
	gcvT, gcvP, gcvH	Glycine cleavage system		
	gapA, pgi, ppc, tpiA, gapB, gpmM	Glycolysis		
	mtIA, mtID	Mannitol utilization		
	pnts, pntA pirB, pirD	NAD Metabolism		
	deoD. deoA. deoB. nunC	Nucleoside metabolism		
	mtlR, gltR, gltS	Transcription regulation		

Downloaded from www.microbiologyresearch.org b IP: 195.218.8.18 On: Tue, 26 Apr 2016 06:41:58

	aceB, aceA	Tricarboxylic acid cycle		
	Genome-specific			
	bkdA2, bkdB, bkdA1	Branched-chain amino acid degradation		
	adhB, ldhA	Fermentation		
	mglA, mglB, mglC	Galactose transport		
	gntU, gntK	Gluconate utilization		
	pckA	Gluconeogenesis		
	ptsHI	Glucose transport		
	glpT	Glycerol-3-phosphate transport		
	glgX, glgA, glgC, glgP	Glycogen utilization		
	gapN, eno, pgk, fba, aldE	Glycolysis		
	lctP, dld	L-lactate utilization		
	manC	Mannose utilization		
	cdd	Nucleoside metabolism		
			Tyrosine	
HmgQ	All target genes		degradation	Unknown
	hmgA, hmgB, hmgC, hpd, gloA hmgO	Tyrosine degradation Transcription regulation		
			Tyrosine	
HmgR	All target genes		degradation	Homogentisate
	hmgA, hmgB, hmgC, hpd	Tyrosine degradation	•	
	COG2814	Tyrosine transport		
	hmgR	Transcription regulation		
			Tyrosine	
HmgS	All target genes		degradation	Unknown
	hmgA, hmgB	Tyrosine degradation		
	hmgS	Transcription regulation		
			Histidine utilization	
HutC	Core			Urocanate
	hutU, hutH, hutI, hutD, hutF, hutG, hutG2	Histidine degradation		
	hutC	Transcription regulation		
	Taxonomy-specific			
	hisT, hisX, hisY, hisZ, hisP, hisQ, hisM, hisJ,	Histidine transport		
	COG2814, omp			
	Genome-specific			
	hutv, nutw, nutx, COG3314	Histidine transport		
	Hulmz	Histidine degradation		
		Histidine biosynthesis		
			Proline and 4-	
			hydrohyproline	Proline: 4-
HvpR	Core		utilization	hydroxyproline
- /	hypD, hypE, hypH, hypO	Hydroxyproline/proline degradation		
	hypR	Transcription regulation		
	Taxonomy-specific			
	hypY, hypH'-2	Hydroxyproline/proline degradation		
	putA, prdP, ampP	Proline degradation		
	hypP, hypM, hypN, hypQ	Hydroxyproline transport		
	COG531, omp	Hydroxyproline/proline transport		
	hypX, hypS	TCA cycle		
	colA2	Collagen degradation		
	Genome-specific			
	pdtP	Proline transport		
	hypA, hypB, hypC, hypT	Hydroxyproline transport		

	hypD', hypH'	Hydroxyproline/proline degradation		
	colA1, ypdF, colA3	Collagen degradation		
			Pronchod chain	
			amino acid	
LiuQ	Core		degradation	Unknown
	liuA, liuB, liuC, liuD	Branched-chain amino acid degradation		
	liuQ	Transcription regulation		
	Taxonomy-specific and Genome-specific			
	liuE, aacS, ivd2	Branched-chain amino acid degradation		
	acsA	Acyl-coenzyme A synthetase		
			Duoushed shein	
			amino acid	
LiuR	Core		degradation	Unknown
	liuA, liuB, liuC, liuD, liuE, ivdA, ivdC, acdH	Branched-chain amino acid degradation	acgraation .	
	liuR	Transcription regulation		
	etfA, etfB	Electron transfer chain for branched-chain amino a	cid degradation	
	Taxonomy-specific			
	aacS, acdA, acdB, acdL, acdP, acdQ, bkdA,			
	bkdB, hbdA, ivdB, ivdD, ivdE, ivdF, ivdG, ldh,	Branched-chain amino acid degradation		
	liuF, liuG, mcm, paaH, echH			
		Flashen to after their factors and a triangent	-:	
	atfD	Electron transfer chain for branched-chain amino a	ciù degradation	
	atuC. atuD. atuF. atuF	Acyclic terpenes degradation		
	gltB. gltD	Glutamate biosynthesis		
	prpB, prpC, prpD	Propionate metabolism		
	fadD	Fatty acid degradation		
	aceB. mdh. sucA. sucB. sucC. sucD. aceK	Tricarboxylic acid cycle		
	thrA. thrB. thrC	Threonine biosynthesis		
	cah	Carbonic anhydrase		
	Genome-specific			
	livF, livG, livH, livK, livM	Branched-chain amino acid transport		
	mmgB	Branched-chain amino acid degradation		
	fadA, fadB, fadL, lcfA	Fatty acid degradation		
	fabG	Fatty acid biosynthesis		
	serA	Serine biosynthesis		
	acs, acsA	Acyl-coenzyme A synthetase		
	aceA	Tricarboxylic acid cycle		
	tyrR	Transcription regulation		
LIdR			Lactate utilization	Lactate
	ala, IIaD, IIaE, IIaF, IIaG	Lactate utilization		
		Laciale transport		
	Taxonomy-specific	Transcription regulation		
	lidX	Lactate transport		
	glcF. glcD	Glycolate utilization		
	Genome-specific			
	glcE, glcG	Glycolate utilization		
	glcB	Tricarboxylic acid cycle		
			Methionine	S-adenosyl-
MetJ	Core		metabolism	methionine
	metí, metN, metQ, metT	Methionine transport		
	met, metR	I ranscription regulation		
	metA, metB, metE, metF, metH, metK, metL	wethionine biosynthesis		

(Core		Methionine metabolism	Homocysteine
l		Threonine biosynthesis		
s +	SerA	Serine biosynthesis		
ĥ		Vitamin B12 biosynthesis		
r r	ntnA, mtnB, mtnC, mtnD, mtnE, mtnK, mtnX, ntnY, mtnZ	Methylthioribose recycling		
r	nmuP	Methionine transport		
a r	asd, mccA, mccB, mdeA2, metC, metF-II, mmuM	Methionine biosynthesis		
k	ptuC, btuD, btuF	Vitamin B12 transport		
C	Genome-specific			
r	msrA, csd	Methionine metabolism		
r	netX, metY	Methionine biosynthesis		
r	mtsA, mtsB, mtsC	Methionine transport		
٦	Faxonomy-specific	·		
k	otuB	Vitamin B12 transport		

wetk	Core		metabolism	Homocysteine
	metE	Methionine biosynthesis		
	metR	Transcription regulation		
	Taxonomy-specific			
	metF, glyA, metH, metA, metF-II	Methionine biosynthesis		
	luxS	SAM recycling		
	hmp	Nitric oxide cell defense		
	ilvl, ilvH	Branched-chain amino acid biosynthesis		
	Genome-specific			
	gcvP, gcvH	Glycine cleavage system		
	metQ2	Methionine transport		
	thrC	Threonine biosynthesis		
	metC, hom, mdeA, bhmT	Methionine biosynthesis		
NadR	All target genes		NAD metabolism	NAD
	pnuC, niaP	Niacin or Ribosyl nicotinamide transport (NAD salv	age)	
	nadA, nadB	NAD biosynthesis		
	nadR, pncB	NAD salvage		
NadQ	Core		NAD metabolism	Unknown
	nadA, nadC, nadB	NAD biosynthesis		
	Taxonomy-specific			
	nadE, nadD	NAD biosynthesis		
	proA	Proline biosynthesis		
	nadQ	Transcription regulation		
			N-	
			acetylglucosamine	
NagC	Core		utilization	N-acetylglucosamine
	nagA, nagB, nagE	N-acetylglucosamine utilization		
	ptsl, ptsH, crr	Sugar transport		
	nagC	Transcription regulation		
	Taxonomy-specific			
	eno, pgk, fbaA	Glycolysis		
	omp, glmU, glmS, nagD, nagF	N-acetylglucosamine utilization		
	manX, manZ, manY, ptsG	Mannose and glucose transport		
	chiA, hex	Chitin degradation		
	тср	Chemotaxis protein (toward chitin?)		
	Genome-specific			
	chbB, chbA, chbC, chbF, chiP, ompC, ybfM	Chitobiose utilization		
	chi, cbp, chiD, chi1	Chitin degradation		

	galP gapA, gapB chbR, chiS, alsR glgA, glgC gdhA gltA nanM, nanC	Galactose transport Glycolysis Transcription regulation Glycogen metabolism Glutamate degradation Tricarboxylic acid cycle N-acetylneuraminic acid transport		
Nago	Core		N-acetylglucos-	Unknown
Nagų	nagA nagB2 nagE	N-acetylglucosamine utilization	amine utilization	UIKIIUWII
	nagO	Transcription regulation		
	Taxonomy-specific	Transcription regulation		
	chiA, cdxA, cbp21, chiC, chi, hex	Chitin degradation		
	nagB, nagK, nagZ, nagT, nagV, nagU, nagW, nagP	N-acetylglucosamine utilization		
	ybfM, omp_nag, omp1	Chitobiose utilization		
	murQ	N-acetylmuramic acid utilization		
	ptsl	Sugar transport		
	nagR	Transcription regulation	_	
	Genome-specific			
	nagX, nagM, nagO, nagN, nagL, nagK2 anaG	N-acetylglucosamine utilization Alpha-N-acetylglucosaminidase		
			N-acetylglucos-	N-acetylglucos-
NagR		N asstulaturaramina utilization	amine utilization	amine-6-phosphate
	hagA, hagK, hagB, hagBz, hagP, hagX	N-acetylgiucosamine utilization		
	chiA	Chitin degradation		
	nagR	Transcription regulation		
	Taxonomy-specific			
	nagK2	N-acetylglucosamine utilization	-	
	chiD	Chitin degradation		
	nixC, naxA	Chitobiose utilization		
	pgi2	Glycolysis		
	pckA	Gluconeogenesis		
	Genome-specific			
	cop, cop2, coxA, cniA3	Chitchiese utilization		
	hixD, hixB, hixA, omp_hag2	Chicobiose utilization		
	pdaA	N-acetylglucosamine utilization		
	mcp	Chemotaxis protein (toward chitin?)		
NrdR	Core		Deoxyribonucleotid e biosynthesis	Deoxyribonucleotide s
	nrdA, nrdB, nrdD, nrdG	Deoxyribonucleotide biosynthesis	_	
	Taxonomy-specific			
	nrdJ, nrdH, nrdF, nrdI, nrdE	Deoxyribonucleotide biosynthesis		
		Replication		
	yfae, SO2417, trxA	Oxidoreductase		
NrtP	Core		NAD metabolism	Adenosine dinhosphate ribose
NICK	nrtR	Transcription regulation		aiphosphate ribose
	Taxonomy- and Genome-specific			
	pncB, pncA, nadV, nadE, nadD, nadM, nadR.			
	pnuC, prs	NAD biosynthesis; NAD salvage		

			Nitrogen	
NtrC	Core		assimilation	Phosphorylated NtrB
	gInA	Glutamine biosynthesis		
	amtB	Nitrogen source transport		
	ntrB, glnB, glnK	Nitrogen metabolism regulation proteins		
	ntrC	Transcription regulation		
	Taxonomy-specific			
	dat	Proline degradation		
	narK, nrtC, nrtB, nrtA, gltJ, gltK, gltL, gltI, dppC,	Nitrogen source transport		
	dppA, dppB, dppD, dppF			
	ntrXY	Transcription regulation		
	nasD, nasE, ntrY, ntrX, nasA, gdhA, nasBA,	Nitrogen metabolism		
	nasB, nifEN			
	Genome-specific			
	ureD, ureA, ureB, ureC, ureE, ureG, ureF, ureJ,	Nitrogen metabolism		
	hmp, uahA, uahB, uahC, nirA, atzF			
	hisQ, hisJ, hisM, glnH, glnQ, uctA, uctB, uctC,	Nitrogen source transport		
	alsT, potG, potI, potH, potA, potB, potC, potD,			
	gltB, gltD	Glutamate biosynthesis		
	speB, ygjG	Putrescine metabolism		
	astD, astB, astA, astC, astE	Arginine degradation		
	rutC, rutA, rutF, rutD, rutE, rutE2	Pyrimidine degradation		
	ansA	Asparagine degradation		
	hmp	Nitrogen stress response		
	nac, nasT, rutR	Transcription regulation		
			Pyruvate	
PdhR	Core		metabolism	Pyruvate
	aceE, aceF, IpdA	Pyruvate utilization		
	pdhR	I ranscription regulation		
	Laxonomy-specific	NAD we at a ballious		
		NAD metabolism		
	aceb, aceA	Tricarboxylic acid cycle		
		Pyruvate metabolism		
	pilA, pilB	Formate metabolism		
	Genome-specific	Tricorhou dia agid avala		
	sunc, gita, suna, sund, sund	Electron transfor shain		
		Lastate metabolism		
		Durunate metabolism		
	home cuce	Pyruvale melabolism Porphyrin biosynthesis		
		Glycolate utilization		
	gico, gico, gico, gico, gico			
			Fatty acid	
Psr∆	Core		degradation	Oleate
	fadA fadB	Fatty acid degradation	acgradation	oleate
	nsrA	Transcription regulation		
	Taxonomy-specific			
	fadD, fadE, fadH, fadL, fadL, fadL, acdH, echH,			
	acdB. acdA	Fatty acid degradation		
	fabG, fabF, fabH, fabD, fabL	Fatty acid biosynthesis		
	aceA, aceB, gltA, sdhA, sdhB, sdhC, sdhD	Tricarboxylic acid cycle		
	etfD. etfA. etfB	Electron transfer chain for fatty acid degradation		
	rpoS. algO	Transcription		
	aroO	Aromatic amino acid biosynthesis		
	Genome-specific			
	ldh	Branched-chain amino acid biosvnthesis		
		· ,		

	mdh	Tricarboxylic acid cycle		
	SO3908	Fatty acid degradation		
	fabK	Fatty acid biosynthesis		
_			Pyrimidine	
RutR		De tatilita da cadatta	utilization	Uracil
	rutB	Pyrimidine degradation		
		Tanscription regulation		
	carA, carB	Arginine and pyrimidine biosynthesis		
	rutG. pvdP	Pyrimidine transport		
	xdhC, xdhA, xdhB, guaD, gpt, xpt, deoD	Purine degradation		
	rutF, pydC, pydX, pydA, pydB, rutE, codA, upp,			
	cdd, deoA, pucM, pucL	Pyrimidine degradation		
	pbuT, pntB, pntC, pntA, ppuD, ppuC, pntD	Nucleoside transport		
	Genome-specific			
		Pyrimidine transport		
	pytO, pytM, pytN, pytQ, pytC, pytB, pytA, pytD			
		Purine degradation		
	add, allB, allA, allC, hpt, deoB			
	deoC	Pyrimidine degradation		
			Mathianina	5 adapasul
SahR	Core		metabolism	homocysteine
Junit	ahcY	Methionine metabolism	metabolism	nomocysteme
	metF, metH	Methionine biosynthesis		
	sahR	Transcription regulation		
	metK	Methionine metabolism		
	Taxonomy-specific			
	metE, metH2	Methionine biosynthesis		
	Genome-specific			
	metT	Methionine transport		
	bhmT, metB, metX, hom	Methionine biosynthesis		
		,		
			Methionine	
SamR	All target genes		metabolism	Unknown
	metE, metF2, metX2, metB, metH, hom	Methionine biosynthesis		
	samR	Transcription regulation		
	metk	SAM biosynthesis		
			Turosino	
TvrR	Core		metabolism	Tyrosine
	aroF	Chorismate biosynthesis		
	tyrA	Tyrosine & Phenylanaline biosynthesis		
	phhA, phhB	Phenylalanine degradation		
	hmgB, hmgC, hpd, hmgA	Tyrosine degradation		
	tyrP	Tyrosine transporter		
	tyrR (phhR)	Transcription regulation		
	Taxonomy-specific			
	brnQ	Branched-chain amino acid transport		
	nuca puta			
	hkda hkda ivda ivda ivda ivda ivda ivda			
	ivdG. ldh. liuA. liuB. liuC liuD liuE liuE liuG	Branched-chain amino acid degradation		
	hmgR, liuR	Transcription regulation		
	tyrB	Tyrosine biosynthesis / Tyrosine degradation		
	aceA, aceB	Tricarboxylic acid cycle		
	aroA, aroL	Chorismate biosynthesis		

Downloaded from www.microbiologyresearch.org by IP: 195.218.8.18

	aroP	Aromatic amino acid transport		
	acsA	Acetyl-coenzyme A synthetase		
	phhC	Phenylalanine degradation		
	COG0733	Tyrosine transport		
	Genome-specific			
	aroM, aroG	Chorismate biosynthesis		
	kyn, tdo, ipdC	Tryptophan degradation		
	mtr	Tryptophan transport		
	tpl	Tyrosine degradation		
	COG2814	Tyrosine transport		
	folA	Tetrahydrofolate biosynthesis		
			Tryptophan	
TrpR	Core		biosynthesis	Tryptophan
	trpE	Tryptophan biosynthesis		
	trpR	Transcription regulation	_	
	Taxonomy-specific			
	aroF, aroG	Chorismate biosynthesis		
	trpG, trpB, trpC, trpA, trpD	Tryptophan biosynthesis		
	tyrA	Tyrosine biosynthesis		
	mtr, COG0733	Tryptophan transport	_	
	Genome-specific			
	aroH, aroM, aroL, aroA	Chorismate biosynthesis		

¹ annotated gene functions and metabolic pathways are listed in Table S3. This table excludes functionally unassigned genes.

Table S5. (A) Content of reconstructed T	vrR (PhhR), HmgR, HmgQ, Hm	gS regulons for aromatic amino acid	l metabolism in gamma-proteobacteria.
	,		

			_								281							
Enterobactoriales	yrR	Lo L	FoH	Don	ГĢ	٧rA	۲ <u>B</u>	roP	yr P	ŧ	00	a					bdC	TurP regular
Escherichia coli K-12	+	4	+	+	+	+	+	<u>≺</u>	+	+	-	-					-	ryrk reguon
Salmonella tynhimurium LT2	+	+	+	+	÷	÷	+	÷	÷	÷	_	_					+	aroF-tyrA; tyrP; tyrR; aroP; aroL; yaiA-aroM; mtr; indC
Citrobacter koseri ATCC BAA-895	+	+	+	+	+	+	+	+	+	+	+	+					+	aroF-tyrA; tyrP; tyrR; aroP; aroL-vaiA-aroM; mtr; COG2814; tol; ipdC
Klebsiella pneumoniae MGH 78578	+	+	+	+	+	+	+	+	+	+	+	-					+	aroF-tyrA: tyrP: tyrR: aroP: aroL-vaiA-aroM: mtr: COG2814: ipdC
Enterobacter sp. 638	+	+	+	+	+	+	+	+	+	+	+	-					-	aroF-tyrA: tyrP: tyrR: aroP: aroL-vaiA-aroM: mtr: COG2814
Erwinia amylovora ATCC 49946	+	+	-	+	+	+	+	+	-	+	-	-					+	aroF-tyrA: tyrR: aroP: aroL-vaiA-aroM
Yersinia pestis KIM	+	+	+	+	+	+	+	+	+	+	+	-					-	aroE-tyrA: tyrP: aroP: aroI : COG2814
Serratia proteamaculans 568	+	+	+	+	+	+	+	+	+	+	+	_					+	aroE-tyrA: tyrP: tyrR: aroP: arol: COG2814
Erwinia carotovora SCRI1043	+	+	+	+	+	+	+	+	+	+	+	-					-	aroF-tyr4: tyrP: aroP: COG2814
Edwardsiella tarda EIB202	+	-	+	+	+	+	+	+	+	+	+	-					-	aroE-tyrA: tyrP: aroP: COG2814
Proteus mirabilis HI4320	+	+	+	+	+	+	+	+	+	+	2	_					-	aroE-tyrA: tyrP: tyrR: aroP: arol
Photorhabdus luminescens TTO1	+	+	+	+	+	+	+	+	+	+	-	-					-	aroE-tyrA: tyrP: tyrR: arol
									33									
	~	æ	-	G				_	07				4	e,	S S	AB		
Vibrionales	YrB.	2	Į.	ğ	2	År,	۳ <u>۲</u>	<u>م</u>	ö			<u>b</u>	Ē	Ĕ	Ĕ	Ę		
Vibrio cholerae N16961	+	4	+	4	+	+	+	+	+			+	+	+	+	+		aroE-turA: turP: COG733: phbAB: hpd-hmgACB
Vibrio vulnificus CMCP6	+	+	+	+	÷	÷	+	÷	÷			÷	÷	÷	÷	÷		aroF-tyrA; tyrF; COG733; phAB; hpd-hmgACB; aroG
	+	+	+	+	÷	÷	+	÷	÷			÷	÷	÷	÷	÷		aroF-tyrA; tyrF; COG733; phAB; hpd-hmgACB
Vibrio parabaemolyticus RIMD 2210633	+	+	+	+	÷	÷	+	÷	÷			÷	÷	÷	÷	÷		aroF-tyrA; tyrF; COG733; phAB; hpd-hmgACB; aroG
Vibrio shilonii AK1	+	+	+	+	÷	÷	+	÷	++			÷	÷	÷	÷	÷		aron-tyrA, tyrP, COG733-1, COG733-2; phbAB-hpd-hmgACB
Vibrio splendidus LGP32	+	+	+	+	÷	÷	+	÷	4			÷	÷	÷	÷	÷		aroE-tyrA; tyrP; COG733; phbAB; bod-bmgACB; tyrP; aroG
Vibrio ficcheri ES114	+	+	+	+	÷	÷	+	÷	÷			2	2	÷.	2	÷		arol-tyrA, tyrF, COG733; tyrR
Vibrio salmonicida El1238	+	+	+	+	÷	÷	+	÷	÷			_	_	-	-	-		aroE-tyrA: tyrP: COG733: tyrR
Vibrio angustum S14	+	+	+	+	÷	÷	+	÷	÷			+	+	+	+	+		aroF-tyrA; tyrF; COG733; tyrR; tyrR; tyrR; tyrACB
Photobacterium profundum SS9	+	+	+	+	÷	4	+	÷	÷			+	÷	÷	÷	÷		aror-tyrA, tyrF, COG733, philab, tyrK, hingACB
Thotobacterialit profandant 555			<u> </u>		<u> </u>			<u>.</u>	<u>.</u>			<u>.</u>	<u> </u>	۷	8	U	B	
	۲.	Ę	F	Do Do	Ĕ	١rA	£	£	Ę			-	pd	mg	mgl	mg(hhA	
Pasteurellales	F	4	<	<u> </u>	۲	E .	F I	F.	2			F.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	4	Tyrk regulon
Haemophilus influenzae Rd KW20	+		-	+	-	÷	+	+	+									tyrA; tyrR
Aggregatibacter aphrophilus NJ8700	+		-		-	+	+	+	+			÷						tyrR; tpl
Pasteurella multocida Pm70	+		-	+	÷	Ť	+	÷	+			+						aroF-tyrA; tyrP2; tyrR; tpl
Mannheimia succiniciproducens MBEL55E	+		-	+	÷	Ť	+	÷.	+			-						aroF-tyrA; tyrP2; tyrR
Actinobacillus succinogenes 130Z	+		-	+	+	÷.	+	+	+			-						aroF-tyrA; tyrR
Haemophilus somnus 2336	+		-	+	-	÷.	+	<u>+</u>	+			-						tyrA; tyrP1
Actinobacillus pleuropneumoniae AP76	+		-	+	+	+	+	++	+			-						aroF-tyrA; tyrP1-tyrP2; tyrR
Haemophilus ducreyi 35000HP	+		-	-	+	-	-	+	-			-						aroF; tyrR
Haemophilus parasuis SH0165	+		-	-	+	+	+	++	-			-					2	aroF-tyrA; tyrP1; tyrP2; tyrR
	~	A	Ţ	U	щ	A					U.	_	gA	88	ပ္ဆ	AB	¥	
Shewanellaceae	Ţ	Aro	Aro	Aro	Aro	ž	ž				bd	Ŧ	Ŧ	틒	틒	Æ	ğ	TyrR; HmgQ regulon
Shewanella oneidensis MR-1	+	+	+	+	+	+	+				-	+	+	+	+	+	+	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella putrefaciens CN-32	+										-	+	+	+	+	+	+	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp W3-18-1		+	+	+	+	+	+								_			
	+	++	+ +	+ +	+ +	+ +	+ +				-	+	+	+	Τ.	+	+	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +				-	+ +	+ +	++	+	++	+ +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +				-	+ + +	+ + +	+ + +	+++	+ + +	+ + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +				- - -	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +					+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + + +	+ + + + +	+ + + + + +	+ + + + + +	+ + + + + + + + +				- - - -	+ + + + + +	+ + + + + +	+ + + + + +	+ + + + +	+ + + + + +	+ + + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OSI55 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400	+ + + + + +	+ + + + + + + + + +	+ + + + + + + + +	+ + + + + + + +	+ + + + + + + + +	+ + + + + + + +	+ + + + + + + + + + + +				- - - +	+ + + + + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + + +	+ + + + + + + +	+ + + + + + -	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jddC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ddC; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella p MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella amazonensis SB2B	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + +	+ + + + + + + + + +	+ + + + + + + + + + +	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + +				- - - + +	+ + + + + + + + +	+ + + + + + + + + +	+ + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella p MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella loihica PV-4	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + +	+ + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +				- - - + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ
Shewanella sp MR-3 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella irigidimarina NCIMB 400 Shewanella amazonensis SB2B Shewanella loihica PV-4 Shewanella pealeana ATCC 700345	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +				- - - + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella amazonensis SB28 Shewanella loihica PV-4 Shewanella pealeana ATCC 700345 Shewanella halifaxensis HAW-EB4	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +				- - + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + - + + + -	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jhgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jhgC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jhgC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jhgC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; jhgC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; jhgC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella amazonensis SB28 Shewanella loihica PV-4 Shewanella pealeana ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella piezotolerans WP3	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + +				- - + + -	+ + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + + +	• + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingC+mgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingC tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingC tyrR; phhAB; hmgCB; aroA; tyrB; ingC+hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingC+, imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingC+, imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingC+, imgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OSI55 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella la bilica PV-4 Shewanella pealeana ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella halifaxensis HAW-EB3	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + +				+ - + + + +	+ + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	• + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + - + + - + -	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ido-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella poleana ATCC 700345 Shewanella peleana ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella wodyi ATCC 51908	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + +				+ - + + + -	+ + + + + + + + + + + + +	+ + + + + + + + + +	+ + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella loihica PV-4 Shewanella pealeana ATCC 700345 Shewanella pealeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella geatiminis HAW-EB3 Shewanella sediminis HAW-EB3	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + + +				+ - + + + + -	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + V ⁵	+ + + + + + + + + + + + + + + + + + +	3C + + + + + + + + + + + + + + + + + + +	AB + + + + + + + + + + + + + + + + + + +	+ + + + + + - + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella la bilfaxensis SB28 Shewanella pelaeana ATCC 700345 Shewanella pelaeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908	yrR + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	AroF + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	yrB + + + + + + + + + + + + + + + + + + +	TyrP			+ - + + + -	+ +	HmgA - + + + + + + + + + + + + + + + + + +	Hund B + + + + + + + + + + + + + + + + + +		NhAB +	+ + + + + - + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; jddC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella mazonensis SB2B Shewanella loihica PV-4 Shewanella pelaeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c	+ TyrR + + + + + + + + + + + + + + +	Arol. + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + +	AroG + + + + + + + + + + + + + + + + + + +	+ AroF + + + + + + + + + + + + + + + +	+ TyrA + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + +	TyrP			+ - + + + -	+ + + + + + + + + + + + + + + + + + +	HmgA - + + + + + + + + + + + + + + + + + +	+ HmgB + + + + + + + + + + + + + + +	HmgC + + + + + + + + + + + + + + + + + + +	+ PhhAB + + + + + + + + + + + + + +	+ + + + + - + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella nazonensis SB2B Shewanella piezotolerans SB2B Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonas macleodii 'Deep ecotype'	+ + TyrR + + + + + + + + + + + + + + +	Arol + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + AroF + + + + + + + + + + + + + + + + + + +	+ + TyrA + + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + +	TyrP			+ - + + + -	+ + + + + + + + + + + + + + + + + + +	HmgA - + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ HmgC + + + + + + + + + + + + + + + + + + +	+ + PhhAB + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $ -$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hpdC; hmgA tyrR; phhAB; hmgCB; aroA; tyrB; hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella fagidimarina NCIMB 400 Shewanella nazonensis SB2B Shewanella nazonensis SB2B Shewanella piezotolerans SWP3 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonas macleodii 'Deep ecotype' Giaciecola sp. HTCC2999	+ + + Tyre + + + + + + + + + + + + + + + + +	Arol Arol + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + TyrA + + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + + +	TyrP			+ - + + + -	+ + + + + + + + + + + + + + + + + + +	HmgA + + + + + + + + + + + + + + + + +	+ + + HmgB + + + + + + + + + + + + + + + + + + +	+ HmgC + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $ +$ $ -$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella p MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella frigidimarian ACIMB 400 Shewanella mazonensis SB2B Shewanella amazonensis SB2B Shewanella pelaeana ATCC 700345 Shewanella pelaeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonas macleodii 'Deep ecotype' Glaciecola sp. HTCC2999 Colwellia psychreythraea 34H	+ + + + TyrR + + + + + + + + + + + + + +	Arol + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + +	Aroo Aroo Aroo Aroo Aroo Aroo Aroo Aroo	+ + + + AroF + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + +	TyrP			+ - + + + -	+ + + + + + + + + + + + + + + + + + +	HmgA - + + + + + + + + + + + + + + + + + +	+ + + HmgB + + + + + + + + + + + + + + + + + + +	+ + HmgC + + + + + + + + + + + + +	+ + + PhhAB + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella aleinicans VIMB 400 Shewanella laihica PV-4 Shewanella laihica PV-4 Shewanella pealeana ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonas macleodii 'Deep ecotype' Glaciecola sp. HTCC2999 Colwellia psychrerythraea 34H Alteromonadales bacterium TW-7	+ + + + + TyrR + + + + + + + + + + + + + + +	+ <td>AroH + + + + + + + + + + + + + + + + + + +</td> <td>+ +<td>- + + + + + + + + + + + + + + + + + + +</td><td>+ + + + + + + + + + + + + + + + + + +</td><td>Tyre + + + + + + + + + + + + + + + + + + +</td><td>+ TyrP</td><td></td><td></td><td> + - + + -</td><td>+ + + + + + + + + + + + + + + + + + +</td><td>+ + + + + + + + + + + + + + + + + + +</td><td>+ + + HmgB + + + + + + + + + + + + + + + + + + +</td><td>+ + + HmgC + + + + + + + + + + + + + + + + + + +</td><td>+ + + + PhhAB + + + + + + + + + + + + + + + + + + +</td><td>+ + + + + - + + - +</td><td>tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ, tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ</td></td>	AroH + + + + + + + + + + + + + + + + + + +	+ <td>- + + + + + + + + + + + + + + + + + + +</td> <td>+ + + + + + + + + + + + + + + + + + +</td> <td>Tyre + + + + + + + + + + + + + + + + + + +</td> <td>+ TyrP</td> <td></td> <td></td> <td> + - + + -</td> <td>+ + + + + + + + + + + + + + + + + + +</td> <td>+ + + + + + + + + + + + + + + + + + +</td> <td>+ + + HmgB + + + + + + + + + + + + + + + + + + +</td> <td>+ + + HmgC + + + + + + + + + + + + + + + + + + +</td> <td>+ + + + PhhAB + + + + + + + + + + + + + + + + + + +</td> <td>+ + + + + - + + - +</td> <td>tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ, tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ</td>	- + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	Tyre + + + + + + + + + + + + + + + + + + +	+ TyrP			+ - + + -	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + HmgB + + + + + + + + + + + + + + + + + + +	+ + + HmgC + + + + + + + + + + + + + + + + + + +	+ + + + PhhAB + + + + + + + + + + + + + + + + + + +	+ + + + + - + + - +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ, tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ipdC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ipdC, hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella la Inica PV-4 Shewanella la Inica PV-4 Shewanella peatena ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella halifaxensis HAW-EB4 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyl ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonas macleodii 'Deep ecotype' Glaciecola sp. HTCC2999 Colwellia psychrerythraea 34H Alteromonadales tacterium TW-7 Pseudoalteromonas halonlanktis TAC125	+ + + + + + + + + + + + + + + + + + +	Arol. + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + + + + +	AroG Ar + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + +	+ + + + + <mark>TyrA</mark> + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + + +	+ + TyrP			+ - + + -	+ + + + + + + + + + + + + + + pdH +	+ + + + + + + + + + + + + + + + + + +	+ + + + HmgB + + + + + + + + + + + + + + + + + + +	+ + HmgC + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $ +$ $ -$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; ingC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; ingA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; p
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella loihica PV-4 Shewanella pelaena ATCC 700345 Shewanella halifaxensis HAW-EB4 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonadales Saterium TW-7 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas haloplanktis TAC125	+ + + + + + + + + + + + + + + + + + +	Arol. + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + + + + +	AroG + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + + +	+ + + Tyrp			+ _ + + _ + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + HmgC + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + - +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; idd; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; idd; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; idd; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; iddC, hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hgd; hmgQ
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella baltica OS155 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella amazonensis SB28 Shewanella loihica PV-4 Shewanella pealeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonadales bacterium TW-7 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas tunicata D2 Idiomarina baltica OS145	+ + + + + + + + + + + + + + + + + + +	Arol +	AroH + + + + + + + + + + + + + + + + + + +	Aroo Aroo Aroo Aroo Aroo Aroo Aroo Aroo	+ + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	Tyre + + + + + + + + + + + + + + + + + + +	+ + + TyrP			+ _ + _ + +	+ + + + + + + + + + + + + + pdH + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + HmgC + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $ +$ $ -$	<pre>tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; idd; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; idoC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; imgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; thrGCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB</pre>
Shewanella sp ANA-3 Shewanella sp MR-4 Shewanella sp MR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella figidimarina NCIMB 400 Shewanella amazonensis SB28 Shewanella la Nationa SS28 Shewanella pelaena ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonadales pectype' Glaciecola sp. HTCC2999 Colwellia psychrerythraea 34H Alteromonadales bacterium TW-7 Pseudoalteromonas tunicata D2 Idiomarina loihiensis L7TR	+ + + + + + + + + + + + + + + + + + +	Arol +	AroH + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + + +	+ + + TyrP			+ - + + + -	+ + + + + + + + + + + + + pdH + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$ $ -$	<pre>tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; mgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; mgCB; aroA; tyrB; hmgA-hpd; hmgQ tyrR; phhAB; aroF-tyrA tyrR; phhA; aroF-tyrA tyrR; phhAB; traF, tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB</pre>
Shewanella sp NR-3 Shewanella sp NR-4 Shewanella sp NR-7 Shewanella sp NR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella mazonensis SB2B Shewanella nealeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonadales bacterium TW-7 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas tunicata D2 Idiomarina baltica OS145 Idiomarina loihiensis L2TR	+ + + + + + + + + + + + + + + + + + +	Arol + + + + + + + + + + + + + + + + + + +	AroH + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +	TyrB + + + + + + + + + + + + + + + + + +	+ + + +			+ + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	A + + + + + + + + + + + + + + + + + + +	B + + + + + + + + + + + + + + + + + + +	C + + + + HmgC + + + + + + + + + + + + + +	VB + + + + + + + + + + + + + + + + + + +	+ + + + + - + +	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hdg; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hdg; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hdg; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdG; hdg; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdG; hdg; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdG; hdg; hmgQ tyrR; phhAB; aroF-tyrA tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgACB mdA-phhAB; tyrA; tyrP; hmgACB
Shewanella sp NR-4 Shewanella sp NR-4 Shewanella sp NR-7 Shewanella sp NR-7 Shewanella denitrificans OS217 Shewanella denitrificans OS217 Shewanella frigidimarina NCIMB 400 Shewanella mazonensis SB2B Shewanella nealeana ATCC 700345 Shewanella piezotolerans WP3 Shewanella piezotolerans WP3 Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908 Alteromonadales Pseudoalteromonas atlantica T6c Alteromonadales piezotolerans 4H Alteromonadales bacterium TW-7 Pseudoalteromonas haloplanktis TAC125 Pseudoalteromonas tunicata D2 Idiomarina baltica OS145 Idiomarina loihiensis L2TR	yrr + + + + + + + + + + + + + + + + + +	rol Arol + + + + + + + + + + + + + + + + + + +	roH + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	rof + + + + Arof + + + + + + + + + + + + + + + + + + +	yrd - + + + + + + + + + + + + + + + + + +	Tyre + + + + + + + + + + + + + + + + + + +	yrP + + + + · · · · TyrP			+ + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	1mgA + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	ImgC + + + + + + + + + + + + + + + + + + +	NhAB +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $ -$	tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; tdo-kyn; igdC; hmgA-hpd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hmgA tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC, hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC; hmgA tyrR; phhAB; hmgCB; aroA; tyrB; hdC; hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdC; hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdG; hd; hmgQ tyrR; phhAB; hmgCB; aroA; tyrB; hdG; hd; hmgQ tyrR; phhAB; aroF-tyrA tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgAB tyrR; phhAB; tyrA; tyrP; hmgACB mdA-phhAB; tyrA; tyrP; hmgACB

Downloaded from www.microbiologyresearch.org b IP: 195.218.8.18 On: Tue. 26 Apr 2016 06:41:58

Psychromonas spp. (2 genomes)	-					+	+									
Moritella sp. PE36	+				+	+	+	+			+	+	+		+	tyrR; tyrP
Aeromonas hydrophila ATCC 7966	+			+	+	+	+				+	+	+	+	+	aroF-tyrA; phhAB; aroG; hpd-hmgACB
Aeromonas salmonicida A449	+			+	+	+	+				+	+	+	+	+	aroF-tyrA; phhAB; aroG; hpd-hmgACB
Tolumonas auensis DSM 9187	+			+	+	+	+									aroF-tyrA
Oceanospirillales/Alteromonadales	TyrR	AroL	AroH	AroG	AroF	TyrA	TyrB				рdн	HmgA	HmgB	HmgC	РһһАВ	No TyrR regulon
Hahella chejuensis KCTC 2396	-															
Marinobacter aqueolei	-															
Marinobacter sp. ELB17	-															
Oceanobacter sp. RED65	-															
Oceanospirillum sp. MED92	-															
Marinomonas sp. MWYL1	-															
Saccharophagus degradans 2-40	-															
Teredinibacter turnerae T7901	-															
Cellvibrio japonicus Ueda107	-															
Chromohalobacter salexigens DSM 3043	-															
Reinekea sp. MED297	-															
Alcanivorax borkumensis SK2	-															
Pseudomonadaceae	PhhR	AroL	AroH	AroG	AroF	TyrA	TyrB		COG2814	COG0733	PdH	HmgA	HmgB	HmgC	PhhAB	PhhR (TyrR) regulon; HmgR regulon; HmgQ regulon
Pseudomonas aeruginosa PAO1	+								+		+	+	+	+	+	phhR; phhABC; hpd; hmgACB-COG2814; hmgR
Pseudomonas entomophila L48	+								+			+	+	+	+	phhR; phhABC; hmgACB-COG2814; hmgR
Pseudomonas putida KT2440	+											+	+	+	+	phhR; phhAB; hmgACB; hmgR
Pseudomonas syringae DC3000	+										+	+	+	+	+	phhR; phhAB; hmgAC; hmgB-hpd; hmgR
Pseudomonas fluorescens Pf-5	+								+			+	+	+	+	phhR; phhABC; hmgACB-COG2814; hmgR
Pseudomonas mendocina ymp	+									+	+	+	+	+	+	phhR; phhABC; hpd-hmgACB-COG733
Pseudomonas stutzeri A1501	+									+	+	+	+	+	+	phhR; phhABC; hpd-hmgACB-COG733
Azotobacter vinelandii AvOP	-										+	+*'	+	+	+	hmgQ; hpd-gloA-hmgCB
Moraxellaceae	TyrR	AroL	AroH	AroG	AroF	TyrA	TyrB				Нрd	HmgA	HmgB	HmgC	PhhAB	No TyrR regulon
Acinetobacter sp. ADP1	-															
Acinetobacter baumannii AB0057	-															
Psychrobacter arcticum 273-4	-															
Psychrobacter sp. PRwf-1	-															
Xanthomonadales	yrR	AroL	AroH	AroG	AroF	yr A	٨rB				bd	HmgA	HmgB	HmgC	hhAB	No TvrR regulan
Xylella fastidiosa 9a5c		٩	٩	٩	٩	-					-	-	-	-	4	no minegalan
Xanthomonas axononodis 306	l _															
Xanthomonas campestris ATCC 33913	l _															
Stenotrophomonas maltophilia K279a	-															
· · · · · · · · · · · · · · · · · · ·																

The presence or absence of gene orthologs is shown by '+/-' signs. Colored '*' signs (red, purple, green, blue) inidcate that the gene belong to TyrR(PhhR), HmgR, HmgQ, HmgS regulons, respectively.

Last column shows the list of all corresponding operons from recontructed regulons. Additional member of TyrR regulons that are not involved in aromatic amino acid metabolism are not included.

Color code for genes in the table: TyrR (PhhR) regulator gene Chorismate biosynthesis genes Tyr biosynthesis pathway genes Tyr transporter genes

Tyr degradation genes