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Summary

Background: Production of the GTP-bound form of the Ran
GTPase (RanGTP) around chromosomes induces spindle as-
sembly by activating nuclear localization signal (NLS)-contain-
ing proteins. Several NLS proteins have been identified as
spindle assembly factors, but the complexity of the process
led us to search for additional proteins with distinct roles in
spindle assembly.
Results: We identify a chromatin-remodeling ATPase, CHD4,
as a RanGTP-dependent microtubule (MT)-associated protein
(MAP).MTbinding occurs via the region containing anNLS and
chromatin-binding domains. In Xenopus egg extracts and
cultured cells, CHD4 largely dissociates from mitotic chromo-
somes and partially localizes to the spindle. Immunodepletion
of CHD4 from egg extracts significantly reduces the quantity
of MTs produced around chromatin and prevents spindle
assembly. CHD4 RNAi in both HeLa and Drosophila S2 cells
induces defects in spindle assembly and chromosome align-
ment in early mitosis, leading to chromosomemissegregation.
Further analysis in egg extracts and in HeLa cells reveals that
CHD4 is a RanGTP-dependent MT stabilizer. Moreover, the
CHD4-containing NuRD complex promotes organization of
MTs into bipolar spindles in egg extracts. Importantly, this
function of CHD4 is independent of chromatin remodeling.
Conclusions: Our results uncover a new role for CHD4 as a
MAP required for MT stabilization and involved in generating
spindle bipolarity.

Introduction

The mitotic spindle accurately segregates duplicated chro-
mosomes into daughter cells. Although chromosomes were
once considered as passengers in this process, it is now clear
that they play a major role in spindle assembly [1, 2], with a key
component being the Ran GTPase [3–7]. The RanGTP gradient
is produced locally around chromosomes [8]. RanGTP binds
to the heterodimeric nuclear transport receptor importin a/b
and dissociates nuclear localization signal (NLS)-containing
proteins from the importins [9–11]. The liberated NLS pro-
teins play several roles in spindle assembly around chromo-
somes [12].

We developed a method to isolate NLS proteins from
Xenopus egg extracts [13] and subsequently purified the
microtubule (MT)-associated protein (MAP) fraction [14]. Using
*Correspondence: yokoyama@embl.de (H.Y.), mkoffa@mbg.duth.gr (M.D.K.)
the NLS-MAP purification, we identified CHD4 (chromodomain
helicase DNA binding protein 4). CHD4 is known as a chro-
matin-remodeling ATPase and a catalytic subunit of the
NuRD (nucleosome-remodeling deacetylase) complex [15].
Although the chromatin-remodeling activity of CHD4 has
been established in vitro [16, 17], its function in vivo remains
unclear. In flies, germ cells carrying homozygous mutations
in CHD4 do not develop [18]. Humans have two orthologs,
CHD3 and CHD4. CHD3, but not CHD4, depletion from
cultured cells induces prometaphase-like spindle defects [19].
Here, we report that CHD4 is a RanGTP-regulated MAP that

localizes to spindle MTs and is essential for spindle assembly.
This function of CHD4 involves the RanGTP-dependent stabi-
lization of MTs and organization of MTs into bipolar spindles.

Results

CHD4 Is a Novel MAP that Largely Dissociates from Mitotic

Chromatin and Partially Localizes to the Spindle
To identify new RanGTP-regulated MAPs, we sequentially
purified NLS proteins and MAPs from cytostatic factor
(CSF)-arrested M phase Xenopus egg extracts [14]. Mass
spectrometry identified 168 proteins, including known
RanGTP-regulated MAPs (ISWI, XCTK2, TPX2, HURP, NuMA,
andXkid; seeTableS1available online). Thechromatin-remod-
eling ATPase CHD4 was identified with high confidence
(Table S1) and was examined further.
Recombinant CHD4 bound to Taxol-stabilizedMTs in a sedi-

mentation assay, although with moderate affinity (Figure S1A).
Binding was inhibited by the importin a/b heterodimer, but in-
hibition was reversed by RanQ69L (a Ran mutant that mimics
RanGTP) (Figure 1A).
We made a specific antibody against CHD4 (Figure 1B) and

immunostained nuclei and spindles assembled in Xenopus
egg extracts. In interphase, CHD4 was on chromatin, while in
mitosis, it was at the spindle with some enrichment on spindle
poles and chromosomes (Figure 1C). The localization was vali-
dated using CHD4-depleted extracts and by staining spindles
in the presence of recombinant CHD4 (Figures S1B and S1C).
In Xenopus XL177 cells, CHD4 localized to the nucleus during
interphase, while it was cytoplasmic, but enriched on spindle
MTs, during mitosis (Figure 1D).
The levels of CHD4 in egg extracts did not change during the

cell cycle (Figure S1D). Reisolation of chromatin from cycling
egg extracts showed that while CHD4 bound chromatin in
interphase, the majority (w87%) dissociated during mitosis,
similarly to the chromatin-remodeling ATPase ISWI (imitation
switch) and in contrast to RCC1 (Figure S1E) [20–22]. More-
over, in the absence of chromatin, CHD4 bound toMTs in inter-
phase as well as in mitosis (Figure S1F).
Thus, during interphase, CHD4 is nuclear and separate from

MTs. In mitosis, CHD4 mostly dissociates from chromatin and
partially localizes to spindle MTs.

Immunodepletion of CHD4 from Egg Extracts Reduces MT
Assembly and Prevents Spindle Formation

To address the role of CHD4 in mitosis, we depleted CHD4
from egg extracts (Figure 2A). Nuclei assembled similarly in
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Figure 1. CHD4 Is a RanGTP-Dependent MAP

that Dissociates from Mitotic Chromatin and

Partially Localizes to the Spindle

(A) Regulation of CHD4 binding to microtubules

(MTs) by RanGTP and importin a/b. Recombi-

nant CHD4 (0.20 mM) was incubated with

Taxol-stabilized MTs (20 mM) in the presence

or absence of 1 mM importin a, 1 mM importin

b, and 5 mM RanQ69L. After centrifugation,

supernatant (s) and pellet (p) fractions were

analyzed by Coomassie staining (top) and

immunoblot (bottom). BSA was used as a carrier

protein.

(B) Immunoblot of CSF extract with affinity-puri-

fied CHD4 antibody.

(C) Localization of CHD4 in Xenopus egg

extracts. Interphase nuclei and mitotic spin-

dles were assembled and stained with CHD4

antibody and Alexa 488-labeled anti-rabbit IgG (green). Cy3-labeled tubulin is shown in red; DNA stained with Hoechst is blue.

(D) Localization of CHD4 in Xenopus XL177 cells. Cells were stained with CHD4 antibody followed by Alexa 488-labeled anti-rabbit IgG (green). Tubulin was

stained with anti-tubulin and Alexa 568-labeled anti-mouse IgG (red).

Scale bar represents 20 mm. See also Figure S1.
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control and CHD4-depleted interphase extracts (Figure 2B).
Ten minutes after inducing mitosis, MTs were generated
around chromosomes in control extracts, but not in CHD4-
depleted extracts (Figures 2B and 2C). CHD4-depleted ex-
tracts eventually nucleated MTs, but these were fewer and
did not organize into bipolar spindles (Figures 2B–2D). Chro-
mosomes did not align, and some of them looked detached
from the structures (Figure 2B; Figure S2). Addition of recom-
binant CHD4 to the depleted extracts did not rescue the
defects.

Analysis of CHD4 immunoprecipitates from egg extracts
identified CHD4 and other NuRD proteins as a stoichiometric
complex (Figure 2E). No interaction was detected between
CHD4 and other MT-regulating proteins such as XMAP215,
EB1, or Cdk11 (Figure 2E). These results suggest that addi-
tional NuRD components may affect spindle assembly
together with CHD4.

The NuRD Complex Promotes Bipolar Spindle Formation
Bipolar structures can be assembled in the absence of chro-
matin by adding RanQ69L to egg extracts [3, 5, 7]. Control
extracts assembled asters and spindle-like structures after
80 min, w42% of the structures being bipolar (Figure 3A).
CHD4-depleted extracts assembled a similar number of MT
structures, but most were asters with fewer MTs (Figures 3A
and 3B). Thus, CHD4 affects MT stabilization and bipolariza-
tion, but not MT nucleation.

Addition of recombinant CHD4 to the depleted extracts
significantly rescued the MT quantity in the RanGTP-induced
asters but did not restore bipolarity (Figures 3B and 3C).
Addition of the NuRD complex eluted from the CHD4 immuno-
precipitates to the depleted extracts fully rescued RanGTP-
induced bipolar ‘‘spindle’’ formation (Figure 3C; Figures S3A
and S3B; Table S2). The eluted NuRD complex, however, did
not rescue sperm spindle assembly (Figure 2). The quality of
the complex was possibly inadequate to prevent chromosome
scattering at early stages and therefore to rescue chromatin-
driven spindle assembly.

CHD4 Is a RanGTP-Dependent MT Stabilizer
We then analyzed whether CHD4 stabilizes MTs in a RanGTP-
dependent manner. Incubation of purified centrosomes in
control extracts induced MT aster formation, and addition of
RanQ69L resulted in increased MT length and density [13]. In
CHD4-depleted extracts, centrosomes nucleated asters as in
the control, but RanQ69L no longer stabilized MTs (Figure 3D).
Addition of either recombinant CHD4 or the NuRD complex to
the depleted extracts restoredMT stabilization in the presence
of RanQ69L (Figure 3E). Importantly, neither CHD4 nor the
NuRD complex had an effect on MT stability in the absence
of RanQ69L (Figure 3E). Consistently, CHD4 localized to cen-
trosomal asters in a RanGTP-dependent manner (Figures
S3C and S3D).
We then examined whether CHD4 stabilizes MTs directly.

The MT binding site resides in the N terminus of CHD4, con-
taining an NLS and chromatin-binding domains (PHD and
chromodomains) (Figure S4). Recombinant CHD4 and its
N-terminal fragment not only bound but also bundled Taxol-
stabilized MTs in vitro (Figures 4A and 4B). Bundling was
inhibited by the importin a/b heterodimer but reinduced by
RanQ69L addition (Figure 4A). Control MTs nucleated with
GMPCPP [23] disappeared after treatment on ice for 3 min,
while CHD4-induced MT bundles were resistant to depoly-
merization (Figure 4C). The GFP-CHD4 fusion protein also
bundled MTs and bound along the MT length (Figure 4D).
The binding was specific, since GFP-CHD4 alone did not
aggregate.
The above results (Figures 3 and 4) indicated that CHD4

is responsible for RanGTP-dependent MT stabilization,
while the NuRD complex promotes bipolar spindle formation.
Neither function requires chromatin remodeling, since they
occur in the absence of chromatin.

CHD4 Is Required for Chromosome Alignment in HeLa

Cells
Humans encode two orthologs (CHD3 and CHD4) of Xenopus
CHD4. Human CHD3, but not CHD4, localizes on spindle poles
[19]. Depletion of human CHD3 disrupts centrosome integrity
and induces spindle defects, while no severe effect was re-
ported for CHD4 [19]. We revisited the role of human CHD4
during mitosis. We confirmed the reported CHD4 localization
in the mitotic cytoplasm, but when soluble CHD4 was ex-
tracted before fixation, residual CHD4 was found on spindle
MTs (Figure S5A).
Three siRNAs targeting CHD4 efficiently silenced CHD4

expression in HeLa cells. Results shown here used siRNA1,
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Figure 2. CHD4 Depletion Leads to Severe Spin-

dle Assembly Defects in Xenopus Egg Extracts

(A) CSF extract was immunodepleted using

rabbit IgG (mock) or anti-CHD4 antibody. Each

extract (1 ml) was immunoblotted by the CHD4

antibody and ISWI antibody as a control.

(B) CHD4-depleted extracts neither assemble

spindles nor align chromosomes. Mock or

CHD4-depleted CSF extracts were supple-

mented with sperm and Cy3-tubulin (red), driven

to interphase, and cycled into mitosis for

80 min. At each time point, aliquots were fixed.

DNAwas stained with Hoechst (blue). This exper-

iment was reproduced five times. Scale bar rep-

resents 20 mm.

(C) CHD4-depleted extracts do not efficiently

produce MTs around chromosomes. The MT

intensity around sperm assayed in (B) was quan-

tified 10 and 80 min after inducing mitosis. We

defined the MT intensity in control extracts after

80 min as 1. n > 30 structures. Error bars

represent SD. ****p < 0.0001 (Student’s t test,

two-tailed).

(D) Quantitation of bipolar spindles assayed in

(B). After 80 min, the percentage of bipolar spin-

dles and abnormal MT structures was quantified

over the total number of sperm counted. n > 50

sperm heads. Error bars represent SD from four

independent experiments. ****p < 0.0001.

(E) The CHD4 antibody specifically immunopre-

cipitates NuRD complex proteins. CSF extract

was incubated with protein A beads covalently

coupled to rabbit IgG or the CHD4 antibody.

The beads were washed and resuspended in

SDS-PAGE sample buffer. Left: the bound pro-

teins were analyzed by Coomassie staining.

Proteins in the indicated bands were identified

by mass spectrometry. *Hsc70 identified both in

control and CHD4 immunoprecipitates. Right:

immunoblot against the indicated proteins.

See also Figure S2.

A New Role for Chromatin-Remodeling Factor CHD4
2445
the most efficient (Figure 5A; Figure S5B). Levels of CHD3 and
other NuRD components were only slightly affected (Fig-
ure 5A). The majority of CHD4-silenced cells (66%) exhibited
chromosome alignment defects, categorized as misaligned
(one to two chromosomes not aligned at the metaphase plate;
47%) or severe misaligned (more than two chromosomes not
aligned; 19%) (Figures 5B and 5C). A small number of cells
had lagging chromosomes in anaphase (8%). Control cells
also exhibited misaligned chromosomes, but at a much lower
frequency (10%) (Figure 5C; Figure S5C).

Live imaging of HeLa cells expressing GFP-a-tubulin and
mCherry-H2B showed that control cells formed spindles
and divided within 60 min (Figure 5D; Movie S1). CHD4-
silenced cells showed significantly prolonged prometaphase
(w60 min) as well as metaphase-to-anaphase delay, and their
mean division time was 137 min (Figure 5D; Movie S2). Many
cells (80 of 150) that initiated anaphase displayed lagging
chromosomes.
CHD4-silenced metaphase cells ex-
hibited high levels of BubR1 on kineto-
chores of unaligned, but also of aligned,
chromosomes (Figure 5E). Therefore, in
the absence of CHD4, spindle assembly
checkpoint signaling on kinetochores is
activated, presumably by insufficient
tension due to improper MT attachment
[24, 25]. Nevertheless, many cells enter anaphase without
silencing the BubR1 signal, as previously observed upon
HURP or SAF-A depletion [26–28].
Rescue experiments were performed in HeLa cells by

sequentially transfecting with control siRNA or CHD4 siRNA1
and a plasmid encoding GFP, wild-type GFP-CHD4, or a
siRNA1-resistant mutant GFP-CHD4. Cells were synchronized
with nocodazole, released, and arrested in metaphase by the
proteasome inhibitor MG132. In the presence of CHD4-siRNA,
the mutant GFP-CHD4 protein was expressed, but not the
wild-type (Figure 5F, left panel). The expression levels of the
mutant GFP-CHD4 were similar to those of endogenous
CHD4 (Figure S5D). Chromosome misalignment observed
upon CHD4-siRNA was significantly reversed by the mutant
GFP-CHD4 (Figure 5F, middle and right panels).
Similarly to HeLa cells, CHD4 is also required for spindle

assembly in Drosophila cells (called dMi-2). Many (40.3%)
dMi-2-depleted mitotic cells exhibited spindle defects, with
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Figure 3. CHD4 Is Required for RanGTP-Dependent MT Stabilization, and NuRD Complex Is Required for Bipolar Spindle Formation

(A) CHD4 depletion does not affect RanGTP-dependent MT nucleation but prevents bipolar spindle formation. Mock and CHD4-depleted CSF extracts were

incubated with RanQ69L and Cy3-tubulin at 20�C for 80 min. Numbers of MT structures and spindle-like structures were counted in 100 randomly selected

fields with a 633 objective. Error bars represent SD from three independent experiments. ****p < 0.0001 (Student’s t test, two-tailed).

(B) MT intensity of Ran-induced asters, but not of spindle-like structures, was quantified. n > 20 asters. Error bars represent SD. ****p < 0.0001.

(C) NuRD complex rescues bipolar spindle formation. The assay shown in (A) was performed in the presence of endogenous CHD4 concentration (0.3 mM) of

recombinant CHD4 or purified NuRD complex (Figure S3). Number of spindle-like structures was counted in 100 random fields. Error bars represent SD from

three independent experiments. ***p < 0.001.

(D) CHD4 depletion prevents RanGTP-dependent MT stabilization. Extracts were incubated with centrosomes, Cy3-tubulin, and anti-TPX2 antibody in the

presence or absence of RanQ69L at 20�C for 30 min. The assay was performed in the presence of the TPX2 antibody that inhibits RanGTP-dependent MT

nucleation and allows MT nucleation exclusively from centrosomes [13]. MT intensity in centrosomal asters was quantified. n > 20 asters. Error bars repre-

sent SD. ****p < 0.0001.

(E) Recombinant CHD4 rescues RanGTP-dependent MT stabilization. The assay shown in (D) was performed in the presence of recombinant CHD4 or the

NuRD complex. n > 20 asters. Error bars represent SD. ****p < 0.0001.

Scale bars represent 20 mm. See also Figure S3.
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few and disorganizedMTs (Figures S5E–S5G). Most frequently
(19.7%), prometaphase-like defects were found (Figures S5F
and S5G). Live-cell imaging of dMi-2-depleted cells showed
defective spindles with nonaligned chromosomes, some of
which initiated anaphase, causing MT and chromosome
segregation defects (Figure S5H; Movies S3, S4, and S5).
CHD4 Is Required for MT Stability and Spindle Assembly in
HeLa Cells

CHD4-silenced cells exhibited 20% shorter spindles (8.03 6
1.00 mm) compared to control cells (10.03 6 1.07 mm) (Fig-
ure 6A), suggesting defects in MT stabilization. We tested
whether kinetochore MT stability is affected upon CHD4



Figure 4. CHD4 Directly Stabilizes MTs in a

RanGTP-Dependent Manner

(A) CHD4 bundles MTs in vitro. Recombinant

full-length CHD4, aa 1–692, or aa 693–1893

(1 mM) was incubated with 0.3 mM Taxol-stabi-

lized MTs labeled with Cy3 at room temperature

(RT) for 10 min. When indicated, 2 mM importin

a, 2 mM importin b, or 5 mM RanQ69L was

included. Scale bar represents 20 mm.

(B) EM analysis of MT bundles induced by CHD4

in (A) and stained with uranyl acetate. The arrow

represents a large protein density. Scale bar rep-

resents 0.2 mm.

(C) CHD4 directly stabilizes MTs in vitro. Cy3-

labeled GMPCPP MTs were incubated with BSA

or his-CHD4 at RT for 10 min. Samples were sub-

sequently incubated on ice for 3 min. Scale bar

represents 20 mm.

(D) GFP-CHD4 binds along the MTs in vitro. GFP,

GFP-CHD4, or histidine-tagged XMAP215 (1 mM)

were incubated with or without Cy3-labeled

Taxol-stabilized MTs (0.3 mM) at RT for 10 min.

Note that his-XMAP215 is a negative control

that bundles MTs but does not show green sig-

nals. Scale bar represents 20 mm.

See also Figure S4.
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reduction. After cold treatment for 10 min, less-stable MTs
depolymerized, but kinetochore fibers were specifically pre-
served in control cells (Figure 6B) [29]. In CHD4-silenced cells,
however, only few kinetochore fibers remained after cold treat-
ment (Figure 6B).

We also examined MT regrowth after longer cold treatment.
In control cells, centrosome-nucleated MT asters appeared
45 s after rewarming and were organized into bipolar spindles
within 5 min (Figure 6C). In CHD4-silenced cells, two centroso-
mal asters also appeared, but bipolar spindles formed only
after 15–30 min and were often abnormal. MT density was
significantly lower in CHD4-silenced cells at early times but
recovered later (after 15 min) (Figure 6C).

These results show that CHD4 is required for assembly and
stability of kinetochore and centrosomal MTs, regulating
overall MT stability in HeLa cells.

Discussion

Physiological Function of CHD4

CHD4 is known as a chromatin-remodeling ATPase and cata-
lytic subunit of the NuRD complex [15]. CHD4 plays important
roles in DNA damage response, cell-
cycle progression, and transcriptional
regulation [30–33]. Here we find that
CHD4 is a bona fide MAP. Binding
occurs via an N-terminal region contain-
ing NLS and chromatin-binding do-
mains and is regulated by RanGTP. In
Xenopus egg extracts and cultured
cells, CHD4 largely dissociates from
mitotic chromatin and relocalizes to
the mitotic cytoplasm and on the spin-
dle. CHD4 depletion from egg extracts,
human cells, or Drosophila cells causes
MT reduction, chromosome misalign-
ment, and delays in early mitosis, lead-
ing to chromosome missegregation in
anaphase. The low percentage of mitotic defects reported
after human CHD4 depletion [19] may be attributable to differ-
ential RNAi efficiencies.

RanGTP-Dependent MT Stabilizers Required for Spindle
Assembly

Our in vitro results show that CHD4 is necessary and sufficient
for RanGTP-dependent MT stabilization but is not required for
MT nucleation. Consistently, CHD4 regulates the stability of
both kinetochore and centrosomal MTs in HeLa cells. Cdk11
(cyclin-dependent kinase 11) is also required for RanGTP-
dependent MT stabilization [13], but no interaction was
detected between CHD4 and Cdk11. MT stabilization around
chromosomes may be distinctly regulated in space: CHD4
could be activated in the vicinity of chromosomes and stabilize
MTs there, while substrates phosphorylated by Cdk11 could
diffuse and stabilize MTs distant from chromatin.

Chromatin-Remodeling ATPases that Regulate MTs during

Mitosis
Among the chromatin-remodeling ATPases [15], our NLS-MAP
purification identified only CHD4 and ISWI. Both proteins bind



Figure 5. CHD4 Is Required for Chromosome Alignment in Human Cells

(A) Human CHD4 is downregulated by siRNA. HeLa cells were treated with siRNA1 for 48 hr. Whole extracts (10 mg) were immunoblotted.

(B)Mitotic defects associatedwith CHD4 reduction. 48 hr after siRNA1 treatment, cells were fixed and stained for tubulin (green), CHD4 (red), andDNA (blue).

The defects were classified as misaligned, with one to two chromosomes not aligned at the metaphase plate; severe misaligned, with more than two chro-

mosomes not aligned; lagging anaphase, with missegregated chromosomes; and multipolar, with more than two poles.

(C) Quantitation of mitotic defects in cells treated with control siRNA or CHD4 siRNA1 (n = 300 cells from three independent experiments).

(D) Live-cell imaging reveals mitotic delay upon CHD4 reduction. Left: HeLa cells expressing GFP-a-tubulin/H2B-mCherry were imaged after siRNA trans-

fection. Time is presented in minutes. Note that after CHD4 RNAi, we observed unaligned chromosomes at 65 min, lagging chromosomes at 120 min, and

micronuclei at 135 min. Control cell, seeMovie S1; CHD4-depleted cell, see Movie S2. Right: mitotic division time from prophase to telophase. nR 150 cells

from three experiments. ***p < 0.001 (Mann-Whitney test, two-tailed). Error bars represent SD.

(E) CHD4 depletion activates the spindle assembly checkpoint. Top: maximum projections of control or CHD4-depleted HeLa cells stained for BubR1

(green), anti-centromere antibody (ACA, red), and DNA (blue). Insets show a single z slice of boxed regions. Bottom: BubR1 signals were quantified and

normalized against ACA signals in control prometaphase or metaphase cells (n = 60 kinetochores) or CHD4-depleted metaphase cells (n = 60 kinetochores

of aligned, n = 14 kinetochores of unaligned chromosomes). **p < 0.01, ***p < 0.001. Error bars represent SEM.

(legend continued on next page)
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(F) Rescue of the CHD4 siRNA-induced phenotype. HeLa cells were sequentia

GFP, GFP-CHD4wild-type (wt), or GFP-CHD4 siRNA1-resistant mutant (mut). C

with GFP and a-tubulin antibodies. Middle: maximum projections of cells staine

percentage of normal, misaligned, and severe misaligned phenotypes in cells

Scale bars represent 5 mm. See also Figure S5.
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Figure 6. CHD4 Regulates MT Dynamics in HeLa cells

(A) Spindle length is reduced upon CHD4 silencing. Left: maximum

projections of control and CHD4 siRNA-treated cells stained for

a-tubulin (red), pericentrin (green), and DNA (blue). Yellow lines indicate

interpolar distance. Right: interpolar distances measured on single-

plane confocal images. n R 60 cells from three independent experi-

ments. ***p < 0.001 (Mann-Whitney test, two-tailed). Error bars repre-

sent SD.

(B) CHD4 is required for kinetochore MT stabilization. Left: representative

images of cells treated with control or CHD4 siRNA, incubated 10 min

on ice, fixed, and stained for a-tubulin (green), ACA (red), and DNA (blue).

Right: intensity of kinetochore MTs (n = 60 cells from three experiments).

***p < 0.001. Error bars represent SEM.

(C) CHD4 is required for MT growth from centrosomes. Top: control and

CHD4-depleted cells were incubated 1 hr on ice and then rewarmed at

37�C. At the indicated time points, cells were fixed and stained for a-tubulin

(green), ACA (red), and DNA (blue). Bottom: MT intensity was quantified

(n R 60 cells for each time point, from three independent experiments).

ns: p > 0.05, *p < 0.05, **p < 0.01. Error bars represent SEM. Scale bars

represent 5 mm.
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MTs via NLS and chromatin-binding domains, largely dissoci-
ating from mitotic chromatin and relocalizing to the spindle
[14, 20, 21]. Their function is temporally distinct, however:
CHD4stabilizesMTs inearlymitosis for spindleassembly,while
ISWI stabilizes MTs in anaphase for spindle maintenance [14].

The Role of CHD4 and the NuRD Complex in Spindle
Assembly

Some NuRD-complex proteins localize to mitotic spindles [19,
34, 35], but the significance of their localization was previously
unknown. We find that while CHD4 stabilizes and assembles
MTs in a RanGTP-dependent manner, the CHD4-containing
NuRD complex promotes their organization into bipolar
spindles. These functions of CHD4 and the NuRD complex
are independent of chromatin remodeling. Another, HURP-
containing, protein complex is also important for maintaining
spindle bipolarity in Xenopus egg extracts [27]. Whether the
HURP-containing and the CHD4-containing NuRD complex
regulate MT bipolarization cooperatively or distinctly remains
to be determined.
Here, we have uncovered a new role for CHD4 as a MAP in

spindle assembly that is essential for chromosome segrega-
tion. Interestingly, CHD4 plays an important role in DNA dam-
age repair [30–32]. The two functions of CHD4 are distinct but
are both critical in maintaining genome integrity.

Experimental Procedures

Xenopus Egg Extracts and XL177 Cells

CSF-arrested M phase Xenopus egg extracts (CSF extracts) were prepared

and spindle assembly was performed as described previously [36]. Endog-

enous CHD4 was depleted from CSF extracts by four rounds of incubation

with 60% (vol/vol) Dynabeads protein A coupled with anti-CHD4 antibodies.

MT density around sperm was quantified using MATLAB (The MathWorks)

[13]. Mass spectrometry of the NLS-MAP fraction purified from CSF ex-

tracts, immunofluorescence of egg extracts and XL177 cells, and immuno-

precipitation of CHD4 and elution were performed as described in the

Supplemental Experimental Procedures.

Recombinant Proteins and Antibodies

A cDNA clone (IMAGE 4683903, RZPD) covering the complete Xenopus

CHD4 cDNA was subcloned into pFastBac HTa (Invitrogen). Recombinant

CHD4 was expressed in Sf21 insect cells and purified on TALON beads

(BD Biosciences), Mono Q, and Mono S columns (GE). GFP-CHD4 and aa

693–1893 were similarly prepared. aa 1–692 was expressed in bacteria

and purified by TALON, Mono Q, and Mono S. Importin a, importin b, and

RanQ69L-GTP were prepared as described previously [13]. A rabbit poly-

clonal antibody against Xenopus CHD4 was prepared and purified against

recombinant CHD4.

MT Assays In Vitro and in Egg Extracts

MT sedimentation and MT bundling assays are described in the Supple-

mental Experimental Procedures. A RanGTP-dependent MT nucleation

assay [3] and a RanGTP-dependent MT stabilization assay [13] were

performed as described previously. Recombinant CHD4 or purified NuRD

complex was added back to the CHD4-depleted CSF extracts in a quantity

corresponding to endogenous CHD4 (0.3 mM). The density of MT asters was

quantified using MATLAB [13].

Chromatin Isolation

CSF extracts were supplemented with sperm nuclei and Cy3-tubulin, driven

into interphase, and cycled into mitosis. At each time point, an aliquot was

taken and chromatin was isolated by centrifugation [21].
lly transfected with control siRNA or CHD4 siRNA1 and a plasmid encoding

ells were arrested inmetaphase byMG132. Left: western blot of cell extracts

d for tubulin (red) and DNA (blue). GFP or GFP-CHD4mut is green. Right: the

transfected as indicated. n = 200 cells from two independent experiments.
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RNAi was performed as described previously [37]. dMi-2 dsRNAs (63697

and HFA11222) were prepared according to the GenomeRNAi database

[38]. Immunoblotting, immunofluorescence, and live imaging were per-

formed as described in the Supplemental Experimental Procedures.

HeLa Cells

siRNA oligonucleotides for CHD4 were obtained from Ambion: (1) 50-CCCA
GAAGAGGAUUUGUCATT-30, (2) 50-GGUUUAAGCUCUUAGAACATT-30, and
(3) 50-GGAGCGUAUGCUCUUAUGCTT-30. Western blotting, immunofluo-

rescence, live imaging, rescue experiments, andMT assays were performed

as described in the Supplemental Experimental Procedures.

Supplemental Information

Supplemental Information includes five figures, two tables, Supplemental

Experimental Procedures, and fivemovies and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2013.09.062.
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